Sample records for soil erosion problems

  1. The Integrated Soil Erosion Risk Management Model of Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Setiawan, M. A.; Stoetter, J.; Sartohadi, J.; Christanto, N.

    2009-04-01

    Many types of soil erosion modeling have been developed worldwide; each of models has its own advantage and assumption based on the originated area. Ironically, in the tropical countries where the rainfall intensity is higher than other area, the soil erosion problem gain less attention. As in Indonesia, due the inadequate supporting data and method to dealing with, the soil erosion management appears to be least prior in the policy decision. Hence, there is increasing necessity towards the initiation and integration of risk management model in the soil erosion, to prevent further land degradation problem in Indonesia. The main research objective is to generate a model which can analyze the dynamic system of soil erosion problem. This model will comprehensively consider four main aspects within the dynamic system analysis, i.e.: soil erosion rate modeling, the tolerable soil erosion rate, total soil erosion cost, and soil erosion management measures. The generating model will involve some sub-software i.e. the PC Raster to maintain the soil erosion modeling, Powersim Constructor Ver. 2.5 as the tool to analyze the dynamic system and Python Ver. 2.6.1 to build the main Graphical User Interface model. The first step addressed in this research is figuring the most appropriate soil erosion model to be applied in Indonesia based on landscape, climate, and data availability condition. This appropriate model must have the simplicity aspect in input data but still deal with the process based analysis. By using the soil erosion model result, the total soil erosion cost will be calculated both on-site and off-site effect. The total soil erosion cost will be stated in Rupiah (Indonesian currency) and Dollar. That total result is then used as one of input parameters for the tolerable soil erosion rate. Subsequently, the tolerable soil erosion rate decides whether the soil erosion rate has exceeded the allowed value or not. If the soil erosion rate has bigger value than the tolerable soil erosion rate, the soil erosion management will be applied base on cost and benefit analysis. The soil erosion management measures will conduct as decision maker of defining the best alternative soil conservation method in a certain area. Besides the engineering and theoretical methods, the local wisdom also will be taken into account in defining the alternative manners of soil erosion management. As a prototype, this integrated model will be generated and simulated in Serayu Watershed, Central Java, since this area has a serious issue in soil erosion problem mainly in the upper stream area (Dieng area). The extraordinary monoculture plantation (potatoes) and very intensive soil tillage without proper soil conservation method has accelerated the soil erosion and depleted the soil fertility. Based on the potatoes productivity data (kg/ha) from 1997-2007 showed that there was a declining trend line, approximately minus 8,2% every year. On the other hand the fertilizer and pesticide consumption in agricultural land are significantly increasing every year. In the same time, the high erosion rate causes serious sedimentation problem in lower stream. Those conditions can be used as study case in determining the element at risk of soil erosion and calculation method for the total soil erosion cost (on-site and off-site effect). Moreover, The Serayu Watershed consists of complex landforms which might have variation of soil erosion tolerable rate. In the future, this integrated model can obtain valuable basis data of the soil erosion hazard in spatial and temporal information including its total cost, the sustainability time of certain land or agriculture area, also the consequences price of applying certain agriculture or soil management. Since this model give result explicitly in spatial and temporal, this model can be used by the local authority to run the land use scenario in term of soil erosion impact before applied them in the real condition. In practice, such integrated model could give more understanding knowledge to the local people about the soil erosion, its processes, impacts, and how to manage that. Keywords: Risk assessment, soil erosion, dynamic system, environmental valuation

  2. Change Analysis on Soil Erosion of Fujian Province from 1990 TO 2015

    NASA Astrophysics Data System (ADS)

    Wang, X. Q.; Zeng, S. J.; Chen, X. G.; Lin, J. L.; Chen, S. M.

    2017-09-01

    Soil erosion is one of major environment problems in the world, and China is one of the most serious soil erosion country. In this paper, Fujian province was used as a study area for its typical red soil region. Based on USLE model, the soil erosion modulus in 1990 and 2015 were calculated and turned to soil erosion intensity. The soil erosion distribution trend in Fujian province was decrease from south-east coastal zone to north-west inland region. In soil erosion areas, the main erosion type was light level with about 80 %, and the soil erosion levels above serious type were mainly sporadic distribution with less than 10 %. The soil erosion improved for the past 25 years. The areas of different erosion types all decreased, and the total erosion area reduced by 26.59 %. The improvement area mainly located in north-east, south and west region. The aggravation area mainly located in the north and some middle hilly regions. The impact of human activities is more significant for erosion control.

  3. Assessment of soil erosion vulnerability in the heavily populated and ecologically fragile communities in Motozintla de Mendoza, Chiapas, Mexico

    NASA Astrophysics Data System (ADS)

    González-Morales, Selene B.; Mayer, Alex; Ramírez-Marcial, Neptalí

    2018-06-01

    Variability in physical rates and local knowledge of soil erosion was assessed across six rural communities in the Sierra Madre del Sur, Chiapas, Mexico. The average erosion rate estimated using the RUSLE model is 274 t ha-1 yr-1, with the estimated erosion rates ranging from 28 to 717 t ha-1 yr-1. These very high erosion rates are associated with high rainfall erosivity (17 000 MJ mm ha-1 h-1 yr-1) and steep slopes (mean slope = 67 %). Many of the highest soil erosion rates are found in communities that are dominated by forestland, but where most of the tree cover has been removed. Conversely, lower erosion rates are often found where corn is cultivated for most of the year. According to the results of the soil erosion KAP (knowledge, attitude and practices) survey, awareness of the concept of soil erosion was reasonably high in all of the communities, but awareness of the causes of erosion was considerably lower. More than half of respondents believed that reforestation is a viable option for reducing soil erosion, but only a third of respondents were currently implementing reforestation practices. Another third of the respondents indicated that they were not following any soil conservation practices. Respondents indicated that adoption of government reforestation efforts have been hindered by the need to clear their land to sell forest products or cultivate corn. Respondents also mentioned the difficulties involved with obtaining favorable tree stocks for reforestation. The KAP results were used to assess the overall level of motivation to solve soil erosion problems by compiling negative responses. The relationship between the magnitude of the soil erosion problem and the capacity to reduce soil erosion is inconsistent across the communities. One community, Barrio Vicente Guerrero, had the highest average negative response rate and the second highest soil erosion rate, indicating that this community is particularly vulnerable.

  4. Research progress and harnessing method of soil and water loss in Pisha Sandstone region

    NASA Astrophysics Data System (ADS)

    Xiao, P. Q.; Yang, C. X.; Jing, C. R.

    2018-05-01

    Pisha Sandstone region is the most vulnerable and the most dramatic area of soil erosion, severe soil erosion on the ecological bases of China’s energy security constitutes a serious challenge. Research progress of soil erosion in pisha Sandstone region was reviewed based on the need of soil and water ecological construction in Pisha Sandstone region and harnessing the yellow river including soil erosion mechanism, soil erosion dynamic monitoring and soil erosion simulation assessments. Meanwhile, the latest progress of soil and water conservation measures was analyzed, and the existing problems and future harnessing measures of soil and water loss were discussed. This study is to explore the comprehensive management method and provide scientific theory for constructing soil and water conservation project in Pisha Sandstone region.

  5. Soil erosion on upland areas by rainfall and overland flow

    USDA-ARS?s Scientific Manuscript database

    Soil erosion in agricultural watersheds is a systemic problem that has plagued mankind ever since the practice of agriculture began some 9,000 years ago. It is a worldwide problem, the severity of which varies from location to location depending on weather, soil type, topography, cropping practices,...

  6. Understanding soil erosion impacts in temperate agroecosystems: bridging the gap between geomorphology and soil ecology

    NASA Astrophysics Data System (ADS)

    Baxter, C.; Rowan, J. S.; McKenzie, B. M.; Neilson, R.

    2013-04-01

    Soil is a key asset of natural capital, providing a myriad of goods and ecosystem services that sustain life through regulating, supporting and provisioning roles, delivered by chemical, physical and biological processes. One of the greatest threats to soil is accelerated erosion, which raises a natural process to unsustainable levels, and has downstream consequences (e.g. economic, environmental and social). Global intensification of agroecosystems is a major cause of soil erosion which, in light of predicted population growth and increased demand for food security, will continue or increase. Elevated erosion and transport is common in agroecosystems and presents a multi-disciplinary problem with direct physical impacts (e.g. soil loss), other less tangible impacts (e.g. loss of ecosystem productivity), and indirect downstream effects that necessitate an integrated approach to effectively address the problem. Climate is also likely to increase susceptibility of soil to erosion. Beyond physical response, the consequences of erosion on soil biota have hitherto been ignored, yet biota play a fundamental role in ecosystem service provision. To our knowledge few studies have addressed the gap between erosion and consequent impacts on soil biota. Transport and redistribution of soil biota by erosion is poorly understood, as is the concomitant impact on biodiversity and ability of soil to deliver the necessary range of ecosystem services to maintain function. To investigate impacts of erosion on soil biota a two-fold research approach is suggested. Physical processes involved in redistribution should be characterised and rates of transport and redistribution quantified. Similarly, cumulative and long-term impacts of biota erosion should be considered. Understanding these fundamental aspects will provide a basis upon which mitigation strategies can be considered.

  7. The Reduction of Partitioned Wind and Water Erosion by Conservation Agriculture

    USDA-ARS?s Scientific Manuscript database

    Soil loss due to wind and water erosion degrades the soil and results in environmental problems downstream and downwind of the source field. Wind and water erosion may both occur to varying extents particularly in semi-arid environments. Soil conservation strategies require information about the p...

  8. Mapping Soil Erosion Factors and Potential Erosion Risk for the National Park "Central Balkan"

    NASA Astrophysics Data System (ADS)

    Ilieva, Diliana; Malinov, Ilia

    2014-05-01

    Soil erosion is widely recognised environmental problem. The report aims at presenting the main results from assessment and mapping of the factors of sheet water erosion and the potential erosion risk on the territory of National Park "Central Balkan". For this purpose, the Universal Soil Loss Equation (USLE) was used for predicting soil loss from erosion. The influence of topography (LS-factor) and soil erodibility (K-factor) was assessed using small-scale topographic and soil maps. Rainfall erosivity (R-factor) was calculated from data of rainfalls with amounts exceeding 9.5 mm from 14 hydro-meteorological stations. The values of the erosion factors (R, K and LS) were presented for the areas of forest, sub-alpine and alpine zones. Using the methods of GIS, maps were plotted presenting the area distribution among the classes of the soil erosion factors and the potential risk in the respective zones. The results can be used for making accurate decisions for soil conservation and sustainable land management in the park.

  9. Is research on soil erosion hazard and mitigation in the Global South still needed? (Alexander von Humbold Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Poesen, Jean

    2016-04-01

    Soil erosion represents a geomorphological and geological hazard that may cause environmental damage (land degradation), property damage, loss of livelihoods and services as well as social and economic disruption. Erosion not only lowers the quality of our soils on site, resulting in a drastic reduction of their ecosystem functions that play a vital role in daily life, but causes also significant sediment-related problems off site. To curb soil erosion problems, a range of soil conservation techniques and strategies have been designed and are being applied. Worldwide, ca. 62 000 research papers on soil erosion and 116 000 on soil conservation have been published (Web of Science, Dec. 2015). The number of such papers dealing with the Global South represents less than 20 % of all papers, despite the fact that many regions in this part of the world face significant soil erosion problems, aggravated by a rapidly growing population and major environmental changes. Given the large number of research papers on this topic, one might therefore conclude that we now know almost everything about the various soil erosion processes and rates, their factors and consequences as well as their control so that little new knowledge can still be added to the vast amount of available information. We refute this conclusion by pointing to some major research gaps that still need to be addressed if we want to use our soils in a more sustainable way. More specifically the following topics need more research attention: 1) improved understanding of both natural and anthropogenic soil erosion processes and their interactions, 2) scaling up soil erosion processes and rates in space and time, and 3) innovative techniques and strategies to prevent or reduce erosion rates. This will be illustrated with case studies from the Global South. If future research focuses on these research gaps, we will 1) better understand processes and their interactions operating at a range of spatial and temporal scales, their rates as well as their on-site and off-site impacts, which is crucial for better targeting erosion control measures and which is academically spoken rewarding, and 2) we will also be in a better position to select the most appropriate and effective soil erosion control techniques and strategies which are badly needed for a sustainable use of our soils in the Anthropocene and for the improvement of environmental conditions worldwide.

  10. Modelling Soil Erosion in the Densu River Basin Using RUSLE and GIS Tools.

    PubMed

    Ashiagbori, G; Forkuo, E K; Laari, P; Aabeyir, R

    2014-07-01

    Soil erosion involves detachment and transport of soil particles from top soil layers, degrading soil quality and reducing the productivity of affected lands. Soil eroded from the upland catchment causes depletion of fertile agricultural land and the resulting sediment deposited at the river networks creates river morphological change and reservoir sedimentation problems. However, land managers and policy makers are more interested in the spatial distribution of soil erosion risk than in absolute values of soil erosion loss. The aim of this paper is to model the spatial distribution of soil erosion in Densu River Basin of Ghana using RUSLE and GIS tools and to use the model to explore the relationship between erosion susceptibility, slope and land use/land cover (LULC) in the Basin. The rainfall map, digital elevation model, soil type map, and land cover map, were input data in the soil erosion model developed. This model was then categorized into four different erosion risk classes. The developed soil erosion map was then overlaid with the slope and LULC maps of the study area to explore their effects on erosion susceptibility of the soil in the Densu River Basin. The Model, predicted 88% of the basin as low erosion risk and 6% as moderate erosion risk, 3% as high erosion risk and 3% as severe risk. The high and severe erosion areas were distributed mainly within the areas of high slope gradient and also sections of the moderate forest LULC class. Also, the areas within the moderate forest LULC class found to have high erosion risk, had an intersecting high erodibility soil group.

  11. [Research progress on wind erosion control with polyacrylamide (PAM).

    PubMed

    Li, Yuan Yuan; Wang, Zhan Li

    2016-03-01

    Soil wind erosion is one of the main reasons for soil degradation in the northwest region of China. Polyacrylamide (PAM), as an efficient soil amendment, has gained extensive attention in recent years since it is effective in improving the structure of surface soil due to its special physical and chemical properties. This paper introduced the physical and chemical properties of PAM, reviewed the effects of PAM on soil wind erosion amount and threshold wind velocity, as well as the effect differences of PAM in soil wind erosion control under conditions of various methods and doses. Its effect was proved by comparing with other materials in detail. Furthermore, we analyzed the mecha-nism of wind erosion control with PAM according to its influence on soil physical characteristics. Comprehensive analysis showed that, although some problems existed in wind erosion control with (PAM), PAM as a sand fixation agent, can not only enhance the capacity of the soil resis-tance to wind erosion, but also improve soil physical properties to form better soil conditions. Besides, we proposed that combination of PAM and plant growth would increase the survival rate of plants greatly, control soil wind erosion in wind-erosive areas, and improve the quality of the ecological environment construction. Thus, PAM has practically important significance and wide application prospect in controlling soil wind erosion.

  12. USLE-Based Assessment of Soil Erosion by Water in the Nyabarongo River Catchment, Rwanda

    PubMed Central

    Karamage, Fidele; Zhang, Chi; Kayiranga, Alphonse; Shao, Hua; Fang, Xia; Ndayisaba, Felix; Nahayo, Lamek; Mupenzi, Christophe; Tian, Guangjin

    2016-01-01

    Soil erosion has become a serious problem in recent decades due to unhalted trends of unsustainable land use practices. Assessment of soil erosion is a prominent tool in planning and conservation of soil and water resource ecosystems. The Universal Soil Loss Equation (USLE) was applied to Nyabarongo River Catchment that drains about 8413.75 km2 (33%) of the total Rwanda coverage and a small part of the Southern Uganda (about 64.50 km2) using Geographic Information Systems (GIS) and Remote Sensing technologies. The estimated total annual actual soil loss was approximately estimated at 409 million tons with a mean erosion rate of 490 t·ha−1·y−1 (i.e., 32.67 mm·y−1). The cropland that occupied 74.85% of the total catchment presented a mean erosion rate of 618 t·ha−1·y−1 (i.e., 41.20 mm·y−1) and was responsible for 95.8% of total annual soil loss. Emergency soil erosion control is required with a priority accorded to cropland area of 173,244 ha, which is extremely exposed to actual soil erosion rate of 2222 t·ha−1·y−1 (i.e., 148.13 mm·y−1) and contributed to 96.2% of the total extreme soil loss in the catchment. According to this study, terracing cultivation method could reduce the current erosion rate in cropland areas by about 78%. Therefore, the present study suggests the catchment management by constructing check dams, terracing, agroforestry and reforestation of highly exposed areas as suitable measures for erosion and water pollution control within the Nyabarongo River Catchment and in other regions facing the same problems. PMID:27556474

  13. USLE-Based Assessment of Soil Erosion by Water in the Nyabarongo River Catchment, Rwanda.

    PubMed

    Karamage, Fidele; Zhang, Chi; Kayiranga, Alphonse; Shao, Hua; Fang, Xia; Ndayisaba, Felix; Nahayo, Lamek; Mupenzi, Christophe; Tian, Guangjin

    2016-08-20

    Soil erosion has become a serious problem in recent decades due to unhalted trends of unsustainable land use practices. Assessment of soil erosion is a prominent tool in planning and conservation of soil and water resource ecosystems. The Universal Soil Loss Equation (USLE) was applied to Nyabarongo River Catchment that drains about 8413.75 km² (33%) of the total Rwanda coverage and a small part of the Southern Uganda (about 64.50 km²) using Geographic Information Systems (GIS) and Remote Sensing technologies. The estimated total annual actual soil loss was approximately estimated at 409 million tons with a mean erosion rate of 490 t·ha(-1)·y(-1) (i.e., 32.67 mm·y(-1)). The cropland that occupied 74.85% of the total catchment presented a mean erosion rate of 618 t·ha(-1)·y(-1) (i.e., 41.20 mm·y(-1)) and was responsible for 95.8% of total annual soil loss. Emergency soil erosion control is required with a priority accorded to cropland area of 173,244 ha, which is extremely exposed to actual soil erosion rate of 2222 t·ha(-1)·y(-1) (i.e., 148.13 mm·y(-1)) and contributed to 96.2% of the total extreme soil loss in the catchment. According to this study, terracing cultivation method could reduce the current erosion rate in cropland areas by about 78%. Therefore, the present study suggests the catchment management by constructing check dams, terracing, agroforestry and reforestation of highly exposed areas as suitable measures for erosion and water pollution control within the Nyabarongo River Catchment and in other regions facing the same problems.

  14. Regional soil erosion assessment based on a sample survey and geostatistics

    NASA Astrophysics Data System (ADS)

    Yin, Shuiqing; Zhu, Zhengyuan; Wang, Li; Liu, Baoyuan; Xie, Yun; Wang, Guannan; Li, Yishan

    2018-03-01

    Soil erosion is one of the most significant environmental problems in China. From 2010 to 2012, the fourth national census for soil erosion sampled 32 364 PSUs (Primary Sampling Units, small watersheds) with the areas of 0.2-3 km2. Land use and soil erosion controlling factors including rainfall erosivity, soil erodibility, slope length, slope steepness, biological practice, engineering practice, and tillage practice for the PSUs were surveyed, and the soil loss rate for each land use in the PSUs was estimated using an empirical model, the Chinese Soil Loss Equation (CSLE). Though the information collected from the sample units can be aggregated to estimate soil erosion conditions on a large scale; the problem of estimating soil erosion condition on a regional scale has not been addressed well. The aim of this study is to introduce a new model-based regional soil erosion assessment method combining a sample survey and geostatistics. We compared seven spatial interpolation models based on the bivariate penalized spline over triangulation (BPST) method to generate a regional soil erosion assessment from the PSUs. Shaanxi Province (3116 PSUs) in China was selected for the comparison and assessment as it is one of the areas with the most serious erosion problem. Ten-fold cross-validation based on the PSU data showed the model assisted by the land use, rainfall erosivity factor (R), soil erodibility factor (K), slope steepness factor (S), and slope length factor (L) derived from a 1 : 10 000 topography map is the best one, with the model efficiency coefficient (ME) being 0.75 and the MSE being 55.8 % of that for the model assisted by the land use alone. Among four erosion factors as the covariates, the S factor contributed the most information, followed by K and L factors, and R factor made almost no contribution to the spatial estimation of soil loss. The LS factor derived from 30 or 90 m Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) data worsened the estimation when used as the covariates for the interpolation of soil loss. Due to the unavailability of a 1 : 10 000 topography map for the entire area in this study, the model assisted by the land use, R, and K factors, with a resolution of 250 m, was used to generate the regional assessment of the soil erosion for Shaanxi Province. It demonstrated that 54.3 % of total land in Shaanxi Province had annual soil loss equal to or greater than 5 t ha-1 yr-1. High (20-40 t ha-1 yr-1), severe (40-80 t ha-1 yr-1), and extreme ( > 80 t ha-1 yr-1) erosion occupied 14.0 % of the total land. The dry land and irrigated land, forest, shrubland, and grassland in Shaanxi Province had mean soil loss rates of 21.77, 3.51, 10.00, and 7.27 t ha-1 yr-1, respectively. Annual soil loss was about 207.3 Mt in Shaanxi Province, with 68.9 % of soil loss originating from the farmlands and grasslands in Yan'an and Yulin districts in the northern Loess Plateau region and Ankang and Hanzhong districts in the southern Qingba mountainous region. This methodology provides a more accurate regional soil erosion assessment and can help policymakers to take effective measures to mediate soil erosion risks.

  15. [Conservation tillage systems in North America and their significance for China].

    PubMed

    Yang, Xueming; Zhang, Xiaoping; Fang, Huajun; Liang, Aizhen; Qi, Xiaoning; Wang, Yang

    2004-02-01

    Soil degradation through erosion and desertification reduces soil productivity, and is a serious problem in agricultural production of China. To avert our arable land from further degradation, soil management must be shifted from degrading tillage to conservation practices. Over viewing the technology used in the 20th century for controlling soil degradation from erosion, conservation tillage developed in the United States and adopted in South America and Africa is one of the most successful measures to overcome soil degradation problems. This paper reviewed the historical development and the current situation of conservation tillage systems used in North and South America, with special reference to their effects on soil erosion control and soil quality. The increasing adoption of conservation tillage systems in North and South America and Africa followed an enhanced awareness of the increasing risk of soil erosion and the high cost of fuel associated with conventional tillage. Many crucial points for successfully adopting conservation tillage systems were emphasized, such as equipment/tool development and chemical weed control. Adopting conservation tillage could provide China with low-priced means of reducing soil degradation and improving soil and water quality.

  16. Assessing soil quality indicator under different land use and soil erosion using multivariate statistical techniques.

    PubMed

    Nosrati, Kazem

    2013-04-01

    Soil degradation associated with soil erosion and land use is a critical problem in Iran and there is little or insufficient scientific information in assessing soil quality indicator. In this study, factor analysis (FA) and discriminant analysis (DA) were used to identify the most sensitive indicators of soil quality for evaluating land use and soil erosion within the Hiv catchment in Iran and subsequently compare soil quality assessment using expert opinion based on soil surface factors (SSF) form of Bureau of Land Management (BLM) method. Therefore, 19 soil physical, chemical, and biochemical properties were measured from 56 different sampling sites covering three land use/soil erosion categories (rangeland/surface erosion, orchard/surface erosion, and rangeland/stream bank erosion). FA identified four factors that explained for 82 % of the variation in soil properties. Three factors showed significant differences among the three land use/soil erosion categories. The results indicated that based upon backward-mode DA, dehydrogenase, silt, and manganese allowed more than 80 % of the samples to be correctly assigned to their land use and erosional status. Canonical scores of discriminant functions were significantly correlated to the six soil surface indices derived of BLM method. Stepwise linear regression revealed that soil surface indices: soil movement, surface litter, pedestalling, and sum of SSF were also positively related to the dehydrogenase and silt. This suggests that dehydrogenase and silt are most sensitive to land use and soil erosion.

  17. The use of 137Cs to establish longer-term soil erosion rates on footpaths in the UK.

    PubMed

    Rodway-Dyer, S J; Walling, D E

    2010-10-01

    There is increasing awareness of the damage caused to valuable and often unique sensitive habitats by people pressure as degradation causes a loss of plant species, disturbance to wildlife, on-site and off-site impacts of soil movement and loss, and visual destruction of pristine environments. This research developed a new perspective on the problem of recreational induced environmental degradation by assessing the physical aspects of soil erosion using the fallout radionuclide caesium-137 ((137)Cs). Temporal sampling problems have not successfully been overcome by traditional research methods monitoring footpath erosion and, to date, the (137)Cs technique has not been used to estimate longer-term soil erosion in regard to sensitive recreational habitats. The research was based on-sites within Dartmoor National Park (DNP) and the South West Coast Path (SWCP) in south-west England. (137)Cs inventories were reduced on the paths relative to the reference inventory (control), indicating loss of soil from the path areas. The Profile Distribution Model estimated longer-term erosion rates (ca. 40 years) based on the (137)Cs data and showed that the combined mean soil loss for all the sites on 'paths' was 1.41 kg m(-2) yr(-1) whereas the combined 'off path' soil loss was 0.79 kg m(-2) yr(-1), where natural (non-recreational) soil redistribution processes occur. Recreational pressure was shown to increase erosion in the long-term, as greater soil erosion occurred on the paths, especially where there was higher visitor pressure. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. The effect of community based soil conservation works on runoff and sediment loss in the Ethiopian highlands: case of Birr Watershed

    USDA-ARS?s Scientific Manuscript database

    Soil erosion is a serious problem in the Ethiopian highlands. Conventional erosion control approaches have generally been ineffective in halting this problem. The presented study measured precipitation, sediment yield and stream flow in 2013 and 2014 in the Ene-Chilala subwatershed of the Birr River...

  19. Assessing soil erosion risk using RUSLE through a GIS open source desktop and web application.

    PubMed

    Duarte, L; Teodoro, A C; Gonçalves, J A; Soares, D; Cunha, M

    2016-06-01

    Soil erosion is a serious environmental problem. An estimation of the expected soil loss by water-caused erosion can be calculated considering the Revised Universal Soil Loss Equation (RUSLE). Geographical Information Systems (GIS) provide different tools to create categorical maps of soil erosion risk which help to study the risk assessment of soil loss. The objective of this study was to develop a GIS open source application (in QGIS), using the RUSLE methodology for estimating erosion rate at the watershed scale (desktop application) and provide the same application via web access (web application). The applications developed allow one to generate all the maps necessary to evaluate the soil erosion risk. Several libraries and algorithms from SEXTANTE were used to develop these applications. These applications were tested in Montalegre municipality (Portugal). The maps involved in RUSLE method-soil erosivity factor, soil erodibility factor, topographic factor, cover management factor, and support practices-were created. The estimated mean value of the soil loss obtained was 220 ton km(-2) year(-1) ranged from 0.27 to 1283 ton km(-2) year(-1). The results indicated that most of the study area (80 %) is characterized by very low soil erosion level (<321 ton km(-2) year(-1)) and in 4 % of the studied area the soil erosion was higher than 962 ton km(-2) year(-1). It was also concluded that areas with high slope values and bare soil are related with high level of erosion and the higher the P and C values, the higher the soil erosion percentage. The RUSLE web and the desktop application are freely available.

  20. Estimates of soil erosion using cesium-137 tracer models.

    PubMed

    Saç, M M; Uğur, A; Yener, G; Ozden, B

    2008-01-01

    The soil erosion was studied by 137Cs technique in Yatagan basin in Western Turkey, where there exist intensive agricultural activities. This region is subject to serious soil loss problems and yet there is not any erosion data towards soil management and control guidelines. During the soil survey studies, the soil profiles were examined carefully to select the reference points. The soil samples were collected from the slope facets in three different study areas (Kirtas, Peynirli and Kayisalan Hills). Three different models were applied for erosion rate calculations in undisturbed and cultivated sites. The profile distribution model (PDM) was used for undisturbed soils, while proportional model (PM) and simplified mass balance model (SMBM) were used for cultivated soils. The mean annual erosion rates found using PDM in undisturbed soils were 15 t ha(-1) year(-1) at the Peynirli Hill and 27 t ha(-1) year(-1) at the Kirtas Hill. With the PM and SMBM in cultivated soils at Kayişalan, the mean annual erosion rates were obtained to be 65 and 116 t ha(-1) year(-1), respectively. The results of 137Cs technique were compared with the results of the Universal Soil Loss Equation (USLE).

  1. Field evaluation of hydromulches for water quality and vegetation establishment.

    DOT National Transportation Integrated Search

    2013-03-01

    Soil erosion and sediment pollution can be major problems in and around construction sites due to land disturbing activities that leave areas of : unprotected soil during active construction. Establishing vegetation to control erosion can be difficul...

  2. Review and Future Research Directions about Major Monitoring Method of Soil Erosion

    NASA Astrophysics Data System (ADS)

    LI, Yue; Bai, Xiaoyong; Tian, Yichao; Luo, Guangjie

    2017-05-01

    Soil erosion is a highly serious ecological problem that occurs worldwide. Hence,scientific methods for accurate monitoring are needed to obtain soil erosion data. At present,numerous methods on soil erosion monitoring are being used internationally. In this paper, wepresent a systematic classification of these methods based on the date of establishment andtype of approach. This classification comprises five categories: runoff plot method, erosion pinmethod, radionuclide tracer method, model estimation, and 3S technology combined method.The backgrounds of their establishment are briefly introduced, the history of their developmentis reviewed, and the conditions for their application are enumerated. Their respectiveadvantages and disadvantages are compared and analysed, and future prospects regarding theirdevelopment are discussed. We conclude that the methods of soil erosion monitoring in the past 100 years of their development constantly considered the needs of the time. According to the progress of soil erosion monitoring technology throughout its history, we predict that the future trend in this field would move toward the development of quantitative, precise, and composite methods. This report serves as a valuable reference for scientific and technological workers globally, especially those engaged in soil erosion research.

  3. Soil erosion and sediment production on watershed landscapes: Processes and control

    Treesearch

    Peter F. Ffolliott; Kenneth N. Brooks; Daniel G. Neary; Roberto Pizarro Tapia; Pablo Garcia-Chevesich

    2013-01-01

    Losses of the soil resources from otherwise productive and well functioning watersheds is often a recurring problem confronting hydrologists and watershed managers. These losses of soil have both on-site and off-site effects on the watershed impacted. In addition to the loss of inherent soil resources through erosion processes, on-site effects can include the breakdown...

  4. Soil erosion modeled with USLE, GIS, and remote sensing: a case study of Ikkour watershed in Middle Atlas (Morocco)

    NASA Astrophysics Data System (ADS)

    El Jazouli, Aafaf; Barakat, Ahmed; Ghafiri, Abdessamad; El Moutaki, Saida; Ettaqy, Abderrahim; Khellouk, Rida

    2017-12-01

    The Ikkour watershed located in the Middle Atlas Mountain (Morocco) has been a subject of serious soil erosion problems. This study aimed to assess the soil erosion susceptibility in this mountainous watershed using Universal Soil Loss Equation (USLE) and spectral indices integrated with Geographic Information System (GIS) environment. The USLE model required the integration of thematic factors' maps which are rainfall aggressiveness, length and steepness of the slope, vegetation cover, soil erodibility, and erosion control practices. These factors were calculated using remote sensing data and GIS. The USLE-based assessment showed that the estimated total annual potential soil loss was about 70.66 ton ha-1 year-1. This soil loss is favored by the steep slopes and degraded vegetation cover. The spectral index method, offering a qualitative evaluation of water erosion, showed different degrees of soil degradation in the study watershed according to FI, BI, CI, and NDVI. The results of this study displayed an agreement between the USLE model and spectral index approach, and indicated that the predicted soil erosion rate can be due to the most rugged land topography and an increase in agricultural areas. Indeed, these results can further assist the decision makers in implementation of suitable conservation program to reduce soil erosion.

  5. Gully development processes in the Ethiopian Highlands

    USDA-ARS?s Scientific Manuscript database

    Gully erosion is an important soil degradation process in a range of environments, causing considerable soil losses and producing large volumes of sediment. In Ethiopia, gully erosion is a major problem expanding at alarming rate and devastating cultivated and grazing lands. The objective of the stu...

  6. The Problem of Soil Erosion in Developing Countries--Direct and Indirect Causes and Recommendations for Reducing It to a Sustainable Level.

    ERIC Educational Resources Information Center

    Middlebrook, Cathy H.; Goode, Pamela M.

    1992-01-01

    Presents direct and indirect causes of erosion in developing countries. Identifies soil conservation developments ranging from major international policy reforms to small-scale, local farming programs. Suggests that strategies at all levels, and the political will to implement them, are needed if erosion is to be reduced to a sustainable rate. (23…

  7. Soil erosion - a local and national problem

    Treesearch

    C.G. Bates; O.R. Zeasman

    1930-01-01

    The erosion of soils through the action of rain water and that from melting snow is almost universal in its occurrence. The gradual erosion and levelling of any country is inevitable, being a process which has gone on as long as there has been free water on the face of the earth. Nevertheless, this process is an extremely slow one where the landscape is naturally well...

  8. Use of 137Cs measurements to estimate changes in soil erosion rates associated with changes in soil management practices on cultivated land.

    PubMed

    Schuller, P; Walling, D E; Sepúlveda, A; Trumper, R E; Rouanet, J L; Pino, I; Castillo, A

    2004-05-01

    Intensification of agricultural production in south-central Chile since the 1970s has caused problems of increased soil erosion and associated soil degradation. These problems have prompted a shift from conventional tillage to no-till management practices. Faced with the need to establish the impact of this shift in soil management on rates of soil loss, the use of caesium-137 (137Cs) measurements has been explored. A novel procedure for using measurements of the 137Cs depth distribution to estimate rates of soil loss at a sampling point under the original conventional tillage and after the shift to no-till management has been developed. This procedure has been successfully applied to a study site at Buenos Aires farm near Carahue in the 9th region of Chile. The results obtained indicate that the shift from conventional tillage to no-till management has caused net rates of soil loss to decrease to about 40% of those existing under conventional tillage. This assessment of the impact of introducing no-till management at the study site must, however, be seen as provisional, since only a limited number of sampling points were used. A simplified procedure aimed at documenting the reduction in erosion rates at additional sampling points, based solely on measurements of the 137Cs inventory of bulk cores and the 137Cs activity in the upper part of the soil has been developed and successfully tested at the study site. Previous application of 137Cs measurements to estimate erosion rates has been limited to estimation of medium-term erosion rates during the period extending from the beginning of fallout receipt to the time of sampling. The procedures described in this paper, which permits estimation of the change in erosion rates associated with a shift in land management practices, must be seen as representing a novel application of 137Cs measurements in soil erosion investigations.

  9. Assessment of mercury erosion by surface water in Wanshan mercury mining area.

    PubMed

    Dai, ZhiHui; Feng, Xinbin; Zhang, Chao; Shang, Lihai; Qiu, Guangle

    2013-08-01

    Soil erosion is a main cause of land degradation, and in its accelerated form is also one of the most serious ecological environmental problems. Moreover, there are few studies on migration of mercury (Hg) induced by soil erosion in seriously Hg-polluted districts. This paper selected Wanshan Hg mining area, SW China as the study area. Revised universal soil loss equation (RUSLE) and Geographic information system (GIS) methods were applied to calculate soil and Hg erosion and to classify soil erosion intensity. Our results show that the soil erosion rate can reach up to 600,884tkm(-2)yr(-1). Surfaces associated with very slight and extremely severe erosion include 76.6% of the entire land in Wanshan. Furthermore, the cumulative erosion rates in the area impacted by extremely severe erosion make up 90.5% of the total. On an annual basis, Hg surface erosion load was predicted to be 505kgyr(-1) and the corresponding mean migration flux of Hg was estimated to be 3.02kgkm(-2)yr(-1). The erosion loads of Hg resulting from farmland and meadow soil were 175 and 319kgyr(-1) respectively, which were enhanced compared to other landscape types due to the fact that they are generally located in the steep zones associated with significant reclamation. Contributing to establish a mass balance of Hg in Wanshan Hg mining area, this study supplies a dependable scientific basis for controlling soil and water erosion in the local ecosystems. Land use change is the most effective way for reducing Hg erosion load in Wanshan mining area. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Quantifying the effect of ecological restoration on soil erosion in China's Loess Plateau region: an application of the MMF approach.

    PubMed

    Li, Changbin; Qi, Jiaguo; Feng, Zhaodong; Yin, Runsheng; Guo, Biyun; Zhang, Feng; Zou, Songbing

    2010-03-01

    Land degradation due to erosion is one of the most serious environmental problems in China. To reduce land degradation, the government has taken a number of conservation and restoration measures, including the Sloping Land Conversion Program (SLCP), which was launched in 1999. A logical question is whether these measures have reduced soil erosion at the regional level. The objective of this article is to answer this question by assessing soil erosion dynamics in the Zuli River basin in the Loess Plateau of China from 1999 to 2006. The MMF (Morgan, Morgan and Finney) model was used to simulate changes in runoff and soil erosion over the period of time during which ecological restoration projects were implemented. Some model variables were derived from remotely sensed images to provide improved land surface representation. With an overall accuracy rate of 0.67, our simulations show that increased ground vegetation cover, especially in forestlands and grasslands, has reduced soil erosion by 38.8% on average from 1999 to 2006. During the same time period, however, the change in rainfall pattern has caused a 13.1% +/- 4.3% increase in soil erosion, resulting in a net 25.7% +/- 8.5% reduction in soil erosion. This suggests that China's various ecological restoration efforts have been effective in reducing soil loss.

  11. Tolerable soil erosion in Europe

    NASA Astrophysics Data System (ADS)

    Verheijen, Frank; Jones, Bob; Rickson, Jane; Smith, Celina

    2010-05-01

    Soil loss by erosion has been identified as an important threat to soils in Europe* and is recognised as a contributing process to soil degradation and associated deterioration, or loss, of soil functioning. From a policy perspective, it is imperative to establish well-defined baseline values to evaluate soil erosion monitoring data against. For this purpose, accurate baseline values - i.e. tolerable soil loss - need to be differentiated at appropriate scales for monitoring and, ideally, should take soil functions and even changing environmental conditions into account. The concept of tolerable soil erosion has been interpreted in the scientific literature in two ways: i) maintaining the dynamic equilibrium of soil quantity, and ii) maintaining biomass production, at a location. The first interpretation ignores soil quality by focusing only on soil quantity. The second approach ignores many soil functions by focusing only on the biomass (particularly crop) production function of soil. Considering recognised soil functions, tolerable soil erosion may be defined as 'any mean annual cumulative (all erosion types combined) soil erosion rate at which a deterioration or loss of one or more soil functions does not occur'. Assumptions and problems of this definition will be discussed. Soil functions can generally be judged not to deteriorate as long as soil erosion does not exceed soil formation. At present, this assumption remains largely untested, but applying the precautionary principle appears to be a reasonable starting point. Considering soil formation rates by both weathering and dust deposition, it is estimated that for the majority of soil forming factors in most European situations, soil formation rates probably range from ca. 0.3 - 1.4 t ha-1 yr-1. Although the current agreement on these values seems relatively strong, how the variation within the range is spatially distributed across Europe and how this may be affected by climate, land use and land management change in the future remains largely unexplored. * http://ec.europa.eu/environment/soil/pdf/com_2006_0231_en.pdf

  12. Soil erosion assessment - Mind the gap

    NASA Astrophysics Data System (ADS)

    Kim, Jongho; Ivanov, Valeriy Y.; Fatichi, Simone

    2016-12-01

    Accurate assessment of erosion rates remains an elusive problem because soil loss is strongly nonunique with respect to the main drivers. In addressing the mechanistic causes of erosion responses, we discriminate between macroscale effects of external factors - long studied and referred to as "geomorphic external variability", and microscale effects, introduced as "geomorphic internal variability." The latter source of erosion variations represents the knowledge gap, an overlooked but vital element of geomorphic response, significantly impacting the low predictability skill of deterministic models at field-catchment scales. This is corroborated with experiments using a comprehensive physical model that dynamically updates the soil mass and particle composition. As complete knowledge of microscale conditions for arbitrary location and time is infeasible, we propose that new predictive frameworks of soil erosion should embed stochastic components in deterministic assessments of external and internal types of geomorphic variability.

  13. The WEPP Model Application in a Small Watershed in the Loess Plateau

    PubMed Central

    Han, Fengpeng; Ren, Lulu; Zhang, Xingchang; Li, Zhanbin

    2016-01-01

    In the Loess Plateau, soil erosion has not only caused serious ecological and environmental problems but has also impacted downstream areas. Therefore, a model is needed to guide the comprehensive control of soil erosion. In this study, we introduced the WEPP model to simulate soil erosion both at the slope and watershed scales. Our analyses showed that: the simulated values at the slope scale were very close to the measured. However, both the runoff and soil erosion simulated values at the watershed scale were higher than the measured. At the slope scale, under different coverage, the simulated erosion was slightly higher than the measured. When the coverage is 40%, the simulated results of both runoff and erosion are the best. At the watershed scale, the actual annual runoff of the Liudaogou watershed is 83m3; sediment content is 0.097 t/m3, annual erosion sediment 8.057t and erosion intensity 0.288 t ha-1 yr-1. Both the simulated values of soil erosion and runoff are higher than the measured, especially the runoff. But the simulated erosion trend is relatively accurate after the farmland is returned to grassland. We concluded that the WEPP model can be used to establish a reasonable vegetation restoration model and guide the vegetation restoration of the Loess Plateau. PMID:26963704

  14. What can we learn from national-scale geodata describing soil erosion?

    NASA Astrophysics Data System (ADS)

    Benaud, Pia; Anderson, Karen; Carvalho, Jason; Evans, Martin; Glendell, Miriam; James, Mike; Lark, Murray; Quine, Timothy; Quinton, John; Rawlins, Barry; Rickson, Jane; Truckell, Ian; Brazier, Richard

    2017-04-01

    The United Kingdom has a rich dataset of soil erosion observations, which have been collected using a wide range of methodologies, across various spatial and temporal scales. Yet, while observations of soil erosion have been carried out along-side agricultural development and intensification, understanding whether or not the UK has a soil erosion problem remains a question to be answered. Furthermore, although good reviews of existing soil erosion rates exist, there is no single resource that brings all of this work together. Therefore, the primary aim of this research was to build a picture of why attempts to quantify erosion rates across the UK empirically have fallen short, through: (1) Collating all available, UK-based and empirically-derived soil erosion datasets into a spatially explicit and open-access database, (2) Developing an understanding of observed magnitudes of erosion, in the UK, (3) Evaluating impact of non-environmental controls on erosion observations i.e. study methodologies, and (4) Exploring trends between environmental controls and erosion rates. To-date, the database holds over 1500 records, which include results from both experimental and natural conditions, across arable, grassland and upland environments. Of the studies contained in the database, erosion has been observed ca. 40% of instances, ranging from <0.01 t.ha-1.yr-1 to 143 t.ha-1.yr-1. However, preliminary analysis has highlighted that over 90% of the studies included in the database only quantify soil loss via visible erosion features, such as rills or gullies, through volumetric assessments. Furthermore, there has been an inherent bias in the UK towards quantifying soil erosion in locations with either a known history or high probability of erosion occurrence. As a consequence, we conclude that such databases, may not be used to make a statistically unbiased assessment of national-scale erosion rates, however, they can highlight maximum likely rates under a wide range of soil, topography and land use conditions. Finally, this work suggests there is a strong argument for a replicable and statistically robust national soil erosion monitoring program to be carried out along-side the proposed sustainable intensification of agriculture.

  15. The evolution of concepts for soil erosion modelling

    NASA Astrophysics Data System (ADS)

    Kirkby, Mike

    2013-04-01

    From the earliest models for soil erosion, based on power laws relating sediment discharge or yield to slope length and gradient, the development of the Universal Soil Loss Equation was a natural step, although one that has long continued to hinder the development of better perceptual models for erosion processes. Key stumbling blocks have been: 1. The failure to go through runoff generation as a key intermediary 2. The failure to separate hydrological and strength parameters of the soil 3. The failure to treat sediment transport along a slope as a routing problem 4. The failure to analyse the nature of the dependence on vegetation Key advances have been in these directions (among others) 1. Improved understanding of the hydrological processes (e.g. infiltration and runoff, sediment entrainment) leading to KINEROS, LISEM,WEPP, PESERA 2. Recognition of selective sediment transport (e.g. transport- or supply-limited removal, grain travel distances) leading e.g. to MAHLERAN 3. Development of models adapted to particular time/space scales Some major remaining problems 1. Failure to integrate geomorphological and agronomic approaches 2. Tillage erosion - Is erosion loss of sediment or lowering of centre of mass? 3. Dynamic change during an event, as rills etc form.

  16. Multi-temporal Soil Erosion Modelling over the Mt Kenya Region with Multi-Sensor Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Symeonakis, Elias; Higginbottom, Thomas

    2015-04-01

    Accelerated soil erosion is the principal cause of soil degradation across the world. In Africa, it is seen as a serious problem creating negative impacts on agricultural production, infrastructure and water quality. Regarding the Mt Kenya region, specifically, soil erosion is a serious threat mainly due to unplanned and unsustainable practices linked to tourism, agriculture and rapid population growth. The soil types roughly correspond with different altitudinal zones and are generally very fertile due to their volcanic origin. Some of them have been created by eroding glaciers while others are due to millions of years of fluvial erosion. The soils on the mountain are easily eroded once exposed: when vegetation is removed, the soil quickly erodes down to bedrock by either animals or humans, as tourists erode paths and local people clear large swaths of forested land for agriculture, mostly illegally. It is imperative, therefore, that a soil erosion monitoring system for the Mt Kenya region is in place in order to understand the magnitude of, and be able to respond to, the increasing number of demands on this renewable resource. In this paper, we employ a simple regional-scale soil erosion modelling framework based on the Thornes model and suggest an operational methodology for quantifying and monitoring water runoff and soil erosion using multi-sensor and multi-temporal remote sensing data in a GIS framework. We compare the estimates of this study with general data on the severity of soil erosion over Kenya and with measured rates of soil loss at different locations over the area of study. The results show that the measured and estimated rates of erosion are generally similar and within the same order of magnitude. They also show that, over the last years, erosion rates are increasing in large parts of the region at an alarming rate, and that mitigation measures are needed to reverse the negative effects of uncontrolled socio-economic practices.

  17. Qualitative comparison of soil erosion, runoff and infiltration coefficients using small portable rainfall simulators in Germany, Spain and France

    NASA Astrophysics Data System (ADS)

    Rodrigo Comino, Jesús; Iserloh, Thomas; Morvan, Xavier; Malam Issa, Oumarou; Naisse, Christophe; Keesstra, Saskia; Cerdà, Artemi; Prosdocimi, Massimo; Arnáez, José; Lasanta, Teodoro; Concepción Ramos, María; José Marqués, María; Ruiz Colmenero, Marta; Bienes, Ramón; Damián Ruiz Sinoga, José; Seeger, Manuel; Ries, Johannes B.

    2016-04-01

    Small portable rainfall simulators are considered as a useful tool to analyze soil erosion processes in cultivated lands. European research groups of Spain (Valencia, Málaga, Lleida, Madrid and La Rioja), France (Reims) or Germany (Trier) have used different rainfall simulators (varying in drop size distribution and fall velocities, kinetic energy, plot forms and sizes, and field of application)to study soil loss, surface flow, runoff and infiltration coefficients in different experimental plots (Valencia, Montes de Málaga, Penedès, Campo Real and La Rioja in Spain, Champagne in France and Mosel-Ruwer valley in Germany). The measurements and experiments developed by these research teams give an overview of the variety in the methodologies with rainfall simulations in studying the problem of soil erosion and describing the erosion features in different climatic environments, management practices and soil types. The aim of this study is: i) to investigate where, how and why researchers from different wine-growing regions applied rainfall simulations with successful results as a tool to measure soil erosion processes; ii) to make a qualitative comparison about the general soil erosion processes in European terroirs; iii) to demonstrate the importance of the development a standard method for soil erosion processes in vineyards, using rainfall simulators; iv) and to analyze the key factors that should be taken into account to carry out rainfall simulations. The rainfall simulations in all cases allowed knowing the infiltration capacity and the susceptibility of the soil to be detached and to generate sediment loads to runoff. Despite using small plots, the experiments were useful to analyze the influence of soil cover to reduce soil erosion and to make comparison between different locations or the influence of different soil characteristics.

  18. Keeping soil in the field - runoff and erosion management in asparagus crops

    NASA Astrophysics Data System (ADS)

    Niziolomski, Joanna; Simmons, Robert; Rickson, Jane; Hann, Mike

    2016-04-01

    Row crop production (including potatoes, onions, carrots, asparagus, bulbs and lettuce) is regarded as one of the most erosive agricultural cropping systems. This is a result of the many practices involved that increase erosion risk including: fine seedbed preparation, a typically short growing season where adequate ground cover protects the soil, permanent bare soil areas between crops, and often intensive harvesting methods that can damage soil structure and result in soil compaction. Sustained exposure of bare soil coupled with onsite compaction on slightly sloping land results in soil and water issues in asparagus production. Asparagus production is a growing British industry covering > 2000 ha and is worth approximately £30 million yr-1. However, no tried and tested erosion control measurements currently exist to manage associated problems. Research has recently been undertaken investigating the effectiveness of erosion control measures suitable for asparagus production systems. These consisted of surface applied wheat straw mulch and shallow soil disturbance (< 350 mm) using several tine configurations: a currently adopted winged tine, a narrow with two shallow leading tines, and a modified para-plough. These treatments were tested individually and in combination (straw mulch with each shallow soil disturbance tine configuration) using triplicated field plots situated on a working asparagus farm in Herefordshire, UK. Testing was conducted between May and November 2013. Rainfall-event based runoff and erosion measurements were taken including; runoff volume, runoff rate and total soil loss. Runoff and soil erosion was observed from all treatments. However, the surface application of straw mulch alone out performed each shallow soil disturbance practice. This suggests that runoff and erosion from asparagus production can be reduced using the simple surface application of straw.

  19. Integration of transport concepts for risk assessment of pesticide erosion.

    PubMed

    Yang, Xiaomei; Van Der Zee, Sjoerd E A T M; Gai, Lingtong; Wesseling, Jan G; Ritsema, Coen J; Geissen, Violette

    2016-05-01

    Environmental contamination by agrochemicals has been a large problem for decades. Pesticides are transported in runoff and remain attached to eroded soil particles, posing a risk to water and soil quality and human health. We have developed a parsimonious integrative model of pesticide displacement by runoff and erosion that explicitly accounts for water infiltration, erosion, runoff, and pesticide transport and degradation in soil. The conceptual framework was based on broadly accepted assumptions such as the convection-dispersion equation and lognormal distributions of soil properties associated with transport, sorption, degradation, and erosion. To illustrate the concept, a few assumptions are made with regard to runoff in relatively flat agricultural fields: dispersion is ignored and erosion is modelled by a functional relationship. A sensitivity analysis indicated that the total mass of pesticide associated with soil eroded by water scouring increased with slope, rain intensity, and water field capacity of the soil. The mass of transported pesticide decreased as the micro-topography of the soil surface became more distinct. The timing of pesticide spraying and rate of degradation before erosion negatively affected the total amount of transported pesticide. The mechanisms involved in pesticide displacement, such as runoff, infiltration, soil erosion, and pesticide transport and decay in the topsoil, were all explicitly accounted for, so the mathematical complexity of their description can be high, depending on the situation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Use of (137)Cs technique for soil erosion study in the agricultural region of Casablanca in Morocco.

    PubMed

    Nouira, A; Sayouty, E H; Benmansour, M

    2003-01-01

    Accelerated erosion and soil degradation currently cause serious problems to the Oued El Maleh basin (Morocco). Furthermore, there is still only limited information on rates of soil loss for optimising strategies for soil conservation. In the present study we have used the (137)Cs technique to assess the soil erosion rates on an agricultural land in Oued el Maleh basin near Casablanca (Morocco). A small representative agricultural field was selected to investigate the soil degradation required by soil managers in this region. The transect approach was applied for sampling to identify the spatial redistribution of (137)Cs. The spatial variability of (137)Cs inventory has provided evidence of the importance of tillage process and the human effects on the redistribution of (137)Cs. The mean (137)Cs inventory was found about 842 Bq m(-2), this value corresponds to an erosion rate of 82 tha(-1) yr(-1) by applying simplified mass balance model in a preliminary estimation. When data on site characteristics were available, the refined mass balance model was applied to highlight the contribution of tillage effect in soil redistribution. The erosion rate was estimated about 50 tha(-1) yr(-1). The aspects related to the sampling procedures and the models for calculation of erosion rates are discussed.

  1. A pan-European quantitative assessment of soil loss by wind

    NASA Astrophysics Data System (ADS)

    Borrelli, Pasqualle; Lugato, Emanuele; Panagos, Panos

    2016-04-01

    Soil erosion by wind is a serious environmental problem often low perceived but resulting in severe soil degradation forms. On the long-term a considerable part of topsoil - rich in nutrient and organic matters - could be removed compromising the agricultural productivity and inducing an increased use of fertilizers. Field scale studies and observations proven that wind erosion is a serious problem in many European sites. The state-of-the-art suggests a scenario where wind erosion locally affects the temperate climate areas of the northern European countries, as well as the semi-arid areas of the Mediterranean region. However, observations, field measurements and modelling assessments are extremely limited and unequally distributed across Europe. It implies a lack of knowledge about where and when wind erosion occurs, limiting policy actions aimed at mitigating land degradation. To gain a better understanding about soil degradation process, the Soil Resource Assessment working group of the Joint Research Centre carried out the first pan-European assessments of wind-erodible fraction of soil (EF) (Geoderma, 232, 471-478, 2014) and land susceptibility to wind erosion (Land Degradation & Development, DOI: 10.1002/ldr.2318). Today's challenge is to integrate the insights archived by these pan-European assessments, local experiments and field-scale models into a new generation of regional-scale wind erosion models. A GIS version of the Revised Wind Erosion Equation (RWEQ) was developed with the aim to i) move a step forward into the aforementioned challenges, and ii) evaluate the soil loss potential due to wind erosion in the agricoltural land of the EU. The model scheme was designed to describe daily soil loss potential, combining spatiotemporal conditions of soil erodibility, crust factor, soil moisture content, vegetation coverage and wind erosivity at 1 km2 resolution. The average soil loss predicted by GIS-RWEQ in the EU arable land ranges from 0 to 39.9 Mg ha-1 yr-1, with a mean value of 0.53 Mg ha-1 yr-1. A cross-country analysis shows highest mean annual soil loss values in Denmark (3 Mg ha-1 yr-1), the Netherland (2.6 Mg ha-1 yr-1), Bulgaria (1.8 Mg ha-1 yr-1) and to a lesser extent in the United Kingdom (1 Mg ha-1 yr-1) and Romania (0.95 Mg ha-1 yr-1). The cross-validation results provides encouraging outcomes in line with the local measurements reported by academic literature. Novel insights into the spatiotemporal dynamics of wind erosion processes have been achieved, providing knowledge and a tool to gain a more comprehensive understanding of wind erosion processes in Europe.

  2. Modeling of soil erosion and sediment transport in the East River Basin in southern China

    USGS Publications Warehouse

    Wu, Yping; Chen, Ji

    2012-01-01

    Soil erosion is a major global environmental problem that has caused many issues involving land degradation, sedimentation of waterways, ecological degradation, and nonpoint source pollution. Therefore, it is significant to understand the processes of soil erosion and sediment transport along rivers, and this can help identify the erosion prone areas and find potential measures to alleviate the environmental effects. In this study, we investigated soil erosion and identified the most seriously eroded areas in the East River Basin in southern China using a physically-based model, Soil and Water Assessment Tool (SWAT). We also introduced a classical sediment transport method (Zhang) into SWAT and compared it with the built-in Bagnold method in simulating sediment transport process along the river. The derived spatial soil erosion map and land use based erosion levels can explicitly illustrate the identification and prioritization of the critical soil erosion areas in this basin. Our results also indicate that erosion is quite sensitive to soil properties and slope. Comparison of Bagnold and Zhang methods shows that the latter can give an overall better performance especially in tracking the peak and low sediment concentrations along the river. We also found that the East River is mainly characterized by sediment deposition in most of the segments and at most times of a year. Overall, the results presented in this paper can provide decision support for watershed managers about where the best management practices (conservation measures) can be implemented effectively and at low cost. The methods we used in this study can also be of interest in sediment modeling for other basins worldwide.

  3. Plutonium as a tracer for soil erosion assessment in northeast China.

    PubMed

    Xu, Yihong; Qiao, Jixin; Pan, Shaoming; Hou, Xiaolin; Roos, Per; Cao, Liguo

    2015-04-01

    Soil erosion is one of the most serious environmental and agricultural problems faced by human society. Assessing intensity is an important issue for controlling soil erosion and improving eco-environmental quality. The suitability of the application of plutonium (Pu) as a tracer for soil erosion assessment in northeast China was investigated by comparing with that of 137Cs. Here we build on preliminary work, in which we investigated the potential of Pu as a soil erosion tracer by sampling additional reference sites and potential erosive sites, along the Liaodong Bay region in northeast China, for Pu isotopes and 137Cs. 240Pu/239Pu atomic ratios in all samples were approximately 0.18, which indicated that the dominant source of Pu was the global fallout. Pu showed very similar distribution patterns to those of 137Cs at both uncultivated and cultivated sites. 239+240Pu concentrations in all uncultivated soil cores followed an exponential decline with soil depth, whereas at cultivated sites, Pu was homogenously distributed in plow horizons. Factors such as planted crop types, as well as methods and frequencies of irrigation and tillage were suggested to influence the distribution of radionuclides in cultivated land. The baseline inventories of 239+240Pu and 137Cs were 88.4 and 1688 Bq m(-2) respectively. Soil erosion rates estimated by 239+240Pu tracing method were consistent with those obtained by the 137Cs method, confirming that Pu is an effective tracer with a similar tracing behavior to that of 137Cs for soil erosion assessment. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Internal erosion during soil pipe flow: Role in gully erosion and hillslope instability

    USDA-ARS?s Scientific Manuscript database

    Many field observations have lead to speculation on the role of piping in embankment failures, landslides, and gully erosion. However, there has not been a consensus on the subsurface flow and erosion processes involved and inconsistent use of terms have exasperated the problem. One such piping proc...

  5. Heterogeneity and topsoil depletion due to tillage erosion and soil co-extraction with root vegetables: a serious threat to sustainable agricultural land use in the UK

    NASA Astrophysics Data System (ADS)

    Quine, Timothy; van Oost, Kristof

    2010-05-01

    The term soil erosion has become almost synonymous with water erosion and yet tillage erosion and soil loss with root crop harvest, although less visible, may be responsible for the majority of the on-site costs of soil erosion in many arable areas of the UK. The study reported here is a first attempt to model soil erosion associated with these processes in England and Wales, at the National scale. A GIS-based modelling approach in the Arc/Info environment is employed in order to meet the requirement for large-scale evaluation of erosion severity. Existing models that have been subject to independent test are used or adapted and widely available data is employed in model parameterisation. Tillage erosion is simulated using a diffusion-type model and a slope curvature index derived from coarse-scale topographic data. The curvature index is calibrated by statistical comparison to curvature values derived from a high resolution digital terrain model. Soil loss with root crop harvest is simulated using information concerning patterns of sugar beet and potato cultivation and estimation of soil moisture during the crop harvest season. Soil loss associated with root crop harvest may be as high as 1 t ha-1 year-1 if land is permanently used for root crops in a 3 year rotation. However, when the arable area of the UK is considered as a whole root crop harvest is responsible for a mean rate of soil loss of approximately 0.1 t ha-1 year-1. Tillage erosion is found to be the dominant process of soil redistribution and onsite erosion on arable land, in comparison with both soil loss through root crop harvest and with long-term water erosion rates. Mean gross rates of tillage erosion were found to be 3.7 t ha-1 year-1, representing approximately 7.4 t ha-1 year-1 erosion and the same rate of deposition. Soil redistribution at these rates is generating an heterogeneous soilscape in which continued functioning for food and fibre production may be jeopardized. These problems may be exacerbated by increased water stress in eroded soils if climate change does, as predicted, result in hotter and drier summers.

  6. An assessment to prioritise the critical erosion-prone sub-watersheds for soil conservation in the Gumti basin of Tripura, North-East India.

    PubMed

    Ahmed, Istak; Das Pan, Nibedita; Debnath, Jatan; Bhowmik, Moujuri

    2017-10-31

    Erosion-induced land degradation problem has emerged as a serious environmental issue across the world. Assessment of this problem through modelling can generate valuable quantitative information for the planners to identify priority areas for proper soil conservation measures. The Gumti River basin of Tripura falls under humid tropical climate and experiences soil erosion for a prolonged period which has turned into a major environmental issue. Increased sediment supply through top soil erosion is one of the major reasons for reduced navigability of this river. Thus, the present study is an attempt to prioritize the sub-watersheds of the Gumti basin by estimating soil loss through the USLE (Universal Soil Loss Equation) model. For that purpose, five parameters of the USLE model were processed, computed and overlaid in a GIS environment. The result shows that potential mean annual soil loss of the Gumti basin ranges between 0.03 and 114.08 t ha -1  year -1 . The resultant values of soil loss were classified into five categories considering the minimum and maximum values. It has been identified that low, moderate, high, very high and severe soil loss categories occupy 68.71, 8.94, 5.86, 5.02 and 11.47% of the basin respectively. Moreover, it has been recognised that sub-watersheds like SW7, SW8, SW12, SW21, SW24 and SW29 fall under very high priority class for which mitigation measures are essential. Therefore, the present study recommends mitigation measures through terrace cultivation, as an alternative of shifting cultivation in the hilly areas and through construction of check dams at the appropriate sites of the erosion prone sub-watersheds. Moreover, proper afforestation programmes that have been implemented successfully in other parts of Tripura through the Japan International Cooperation Agency, Joint Forest Management, and National Afforestation Programme should be initiated in the highly erosion-prone areas of the Gumti River basin.

  7. Comparing Background and Recent Erosion Rates in Degraded Areas of Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Fernandes, N.; Bierman, P. R.; Sosa-Gonzalez, V.; Rood, D. H.; Fontes, R. L.; Santos, A. C.; Godoy, J. M.; Bhering, S.

    2014-12-01

    Soil erosion is a major problem in northwestern Rio de Janeiro State where, during the last three centuries, major land-use changes took place, associated with the replacement of the original rainforest by agriculture and grazing. The combination of steep hillslopes, erodible soils, sparse vegetation, natural and human-induced fires, as well as downslope ploughing, led to an increase in surface runoff and surface erosion on soil-mantled hillslopes; together, these actions and responses caused a decline in soil productivity. In order to estimate changes in erosion rates over time, we compared erosion rates measured at different spatial and temporal scales, both background (natural) and short-term (human-induced during last few decades). Background long-term erosion rates were measured using in-situ produced cosmogenic 10Be in the sand fraction quartz of active river channel sediment in four basins in the northwestern portion of Rio de Janeiro State. In these basins, average annual precipitation varies from 1,200 to 1,300 mm, while drainage areas vary from 15 to 7,200 km2. Short-term erosion rates were measured in one of these basins from fallout 210Pb in soil samples collected along a hillslope transect located in an abandoned agriculture field. In this transect, 190 undisturbed soil samples (three replicates) were collected from the surface to 0.50 m depth (5 cm vertical intervals) in six soil pits. 10Be average background, basin-wide, erosion rates in the area are ~ 13 m/My; over the last decades, time-integrated (210Pb) average hillslope erosion rates are around 1450 m/Myr, with maximum values at the steepest portion of convex hillslopes of about 2000 m/Myr. These results suggest that recent hillslope erosion rates are about 2 orders of magnitude above background rates of sediment generation integrated over many millennia. This unsustainable rate of soil loss has severely decreased soil productivity eventually leading to the abandonment of farming activities in areas where soil loss is severe.

  8. Assessment of Runoff and Sediment Yields Using the AnnAGNPS Model from the Daning River Watershed in Three-Gorge Area of China

    EPA Science Inventory

    Soil erosion has been recognized as one of the major threats to our environment and water quality worldwide, especially in China. To mitigate nonpoint source water quality problems caused by soil erosion, best management practices (BMPs) and/or conservation programs have been ado...

  9. Issues of upscaling in space and time with soil erosion models

    NASA Astrophysics Data System (ADS)

    Brazier, R. E.; Parsons, A. J.; Wainwright, J.; Hutton, C.

    2009-04-01

    Soil erosion - the entrainment, transport and deposition of soil particles - is an important phenomenon to understand; the quantity of soil loss determines the long term on-site sustainability of agricultural production (Pimental et al., 1995), and has potentially important off-site impacts on water quality (Bilotta and Brazier, 2008). The fundamental mechanisms of the soil erosion process have been studied at the laboratory scale, plot scale (Wainwright et al., 2000), the small catchment scale (refs here) and river basin scale through sediment yield and budgeting work. Subsequently, soil erosion models have developed alongside and directly from this empirical work, from data-based models such as the USLE (Wischmeier and Smith, 1978), to ‘physics or process-based' models such as EUROSEM (Morgan et al., 1998) and WEPP (Nearing et al., 1989). Model development has helped to structure our understanding of the fundamental factors that control soil erosion process at the plot and field scale. Despite these advances, however, our understanding of and ability to predict erosion and sediment yield at the same plot, field and also larger catchment scales remains poor. Sediment yield has been shown to both increase and decrease as a function of drainage area (de Vente et al., 2006); the lack of a simple relationship demonstrates complex and scale-dependant process domination throughout a catchment, and emphasises our uncertainty and poor conceptual basis for predicting plot to catchment scale erosion rates and sediment yields (Parsons et al., 2006b). Therefore, this paper presents a review of the problems associated with modelling soil erosion across spatial and temporal scales and suggests some potential solutions to address these problems. The transport-distance approach to scaling erosion rates (Wainwright, et al., 2008) is assessed and discussed in light of alternative techniques to predict erosion across spatial and temporal scales. References Bilotta, G.S. and Brazier, R.E., 2008. Understanding the influence of suspended solids on water quality and aquatic biota. Water Research, 42(12): 2849-2861. de Vente, J., Poesen, J., Bazzoffi, P., Van Ropaey, A.V. and Verstraeten, G., 2006. Predicting catchment sediment yield in Mediterranean environments: the importance of sediment sources and connectivity in Italian drainage basins. Earth Surface Processes And Landforms, 31: 1017-1034. Morgan, R.P.C. et al., 1998. The European soil erosion model (EUROSEM): a dynamic approach for predicting sediment transport from fields to small catchments. Earth Surface Processes And Landforms, 23: 527-544. Nearing, M. A., G. R. Foster, L. J. Lane, and S. C. Finkner. 1989. A process-based soil erosion model for USDA Water Erosion Prediction Project technology. Trans. ASAE 32(5): 1587-1593. Parsons, A.J., Brazier, R.E., Wainwright, J. and Powell, D.M., 2006a. Scale relationships in hillslope runoff and erosion. Earth Surface Processes and Landforms, 31(11): 1384-1393. Parsons, A.J., Wainwright, J., Brazier, R.E. and Powell, D.M., 2006b. Is sediment delivery a fallacy? Earth Surface Processes and Landforms, 31(10): 1325-1328. Pimental, D. et al., 1995. Environmental and economic costs of soil erosion and conservation benefits. Science, 267:1117-1122. Wainwright, J., Parsons, A.J. and Abrahams, A.D., 2000. Plot-scale studies of vegetation, overland flow and erosion interactions: case studies from Arizona and New Mexico. Hydrological Processes, 14(16-17): 2921-2943. Wischmeier, W.H. and Smith, D.D., 1978. Predicting rainfall erosion losses - a guide for conservation planning., 537.

  10. Erodibility of waste (Loess) soils from construction sites under water and wind erosional forces.

    PubMed

    Tanner, Smadar; Katra, Itzhak; Argaman, Eli; Ben-Hur, Meni

    2018-03-01

    Excess soils from construction sites (waste soils) become a problem when exposed to soil erosion by water or wind. Understanding waste soil erodibility can contribute to its proper reuse for various surface applications. The general objective of the study was to provide a better understanding of the effects of soil properties on erodibility of waste soils excavated from various depths in a semiarid region under rainfall and wind erosive forces. Soil samples excavated from the topsoil (0-0.3m) and subsoil layers (0.3-0.9 and >1m depths) were subjected to simulated rainfall and wind. Under rainfall erosive forces, the subsoils were more erodible than the topsoil, in contrast to the results obtained under wind erosive forces. Exchangeable sodium percentage was the main factor controlling soil erodibility (K i ) under rainfall, and a significant logarithmic regression line was found between these two parameters. In addition, a significant, linear regression was found between K i and slaking values for the studied soil samples, suggesting that the former can be predicted from the latter. Soil erodibility under wind erosion force was controlled mainly by the dry aggregate characteristics (mean weight diameter and aggregate density): their higher values in the subsoil layers resulted in lower soil erodibility compared to the topsoil. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Modeling of soil erosion and sediment transport in the East River Basin in southern China.

    PubMed

    Wu, Yiping; Chen, Ji

    2012-12-15

    Soil erosion is a major global environmental problem that has caused many issues involving land degradation, sedimentation of waterways, ecological degradation, and nonpoint source pollution. Therefore, it is significant to understand the processes of soil erosion and sediment transport along rivers, and this can help identify the erosion prone areas and find potential measures to alleviate the environmental effects. In this study, we investigated soil erosion and identified the most seriously eroded areas in the East River Basin in southern China using a physically-based model, Soil and Water Assessment Tool (SWAT). We also introduced a classical sediment transport method (Zhang) into SWAT and compared it with the built-in Bagnold method in simulating sediment transport process along the river. The derived spatial soil erosion map and land use based erosion levels can explicitly illustrate the identification and prioritization of the critical soil erosion areas in this basin. Our results also indicate that erosion is quite sensitive to soil properties and slope. Comparison of Bagnold and Zhang methods shows that the latter can give an overall better performance especially in tracking the peak and low sediment concentrations along the river. We also found that the East River is mainly characterized by sediment deposition in most of the segments and at most times of a year. Overall, the results presented in this paper can provide decision support for watershed managers about where the best management practices (conservation measures) can be implemented effectively and at low cost. The methods we used in this study can also be of interest in sediment modeling for other basins worldwide. Published by Elsevier B.V.

  12. Tackling soil degradation and environmental changes in Lake Manyara Basin, Tanzania to support sustainable landscape/ecosystem management.

    NASA Astrophysics Data System (ADS)

    Munishi, Linus; Mtei, Kelvin; Bode, Samuel; Dume, Bayu; Navas, Ana; Nebiyu, Amsalu; Semmens, Brice; Smith, Hugh; Stock, Brian; Boeckx, Pascal; Blake, Will

    2017-04-01

    The Lake Manyara Basin (LMB), which encompasses Lake Manyara National Park a world ranking World Biosphere Reserve, is of great ecological and socio-economic value because it hosts a small-holder rain fed and extensive irrigation agriculture, grazing grounds for pastoralists, terrestrial and aquatic habitat for wildlife and tourism business contributing to poverty alleviation. Despite these multiple ecosystem services that support the local communities, the LMB is threatened by; (a) siltation from eroded soil fed from the wider catchment and rift escarpment of the basin and (b) declining water levels due to water capture by agriculture and possibly climate change. These threats to the ecosystem and its services are augmented by increasing human population, pollution by agricultural pesticides, poaching, human encroachment and infrastructure development, and illegal fisheries. Despite these challenges, here is a dearth of information on erosion hotspots and to date soil erosion and siltation problems in LMB have been interpreted largely in qualitative terms, and no coherent interpretative framework of these records exists. Despite concerns that modern sediment fluxes to the Lake may exceed long-term fluxes, little is known about erosion sources, how erosion rates and processes vary across the landscape and how erosion rates are influenced by the strong climate gradients in the basin. This contribution describes a soil erosion and sediment management project that aims to deliver a demonstration dataset generated from inter-disciplinary sediment-source tracing technologies and approaches to assess erosion hotspots, processes and spatial patterns of erosion in the area. The work focuses on a sub basin, the Monduli Sub catchment, located within the greater LMB. This is part of efforts to establish an understanding of soil erosion and landscape degradation in the basin as a pathway for generating and developing knowledge, building capacity to assist conservationists, farmers and pastoralists, agro-entrepreneurs, and their support agents to address the problems while feeding the information into the national development policies in Tanzania and the entire East African region.

  13. DESIGN INFORMATION REPORT: PROTECTION OF WASTEWATER LAGOON INTERIOR SLOPES

    EPA Science Inventory

    A problem common to many wastewater treatment and storage lagoons is erosion of the interior slopes. Erosion may be caused by surface runoff and wind-induced wave action. The soils that compose the steep interior slopes of lagoons are especially susceptible to erosion and slumpin...

  14. Advances in wind erosion modelling in Europe

    NASA Astrophysics Data System (ADS)

    Borrelli, Pasquale; Lugato, Emanuele; Alewell, Christine; Montanarella, Luca; Panagos, Panos

    2017-04-01

    Soil erosion by wind is a serious environmental problem often resulting in severe forms of soil degradation. Wind erosion is also a phenomenon relevant for Europe, although this land degradation process has been overlooked until very recently. The state-of-the-art literature presents wind erosion as a process that locally affects the semi-arid areas of the Mediterranean region as well as the temperate climate areas of the northern European countries. Actual observations, field measurements and modelling assessments, however, are all extremely limited and highly unequally distributed across Europe. As a result, we currently lack comprehensive understanding about where and when wind erosion occurs in Europe, and the intensity of erosion that poses a threat to agricultural productivity. Today's challenge is to integrate the insights of local experiments and field-scale models into a new generation of large-scale wind erosion models. While naturally being less accurate than field-scale models, these large-scale modelling approaches still provide essential knowledge about where and when wind erosion occurs and can disclose the level of risk for agricultural productivity in specific areas. Here, we present a geographic information system (GIS) version of the RWEQ (named GIS-RWEQ) to quantitatively assess soil loss by wind over large study areas (Land Degradation & Development, DOI: 10.1002/ldr.2588). The model designed to predict the daily soil loss potential at a ca. 1 km2 spatial resolution shows high consistency with local measurements reported in literature. The average soil loss predicted by GIS-RWEQ for the European arable land totals 62 million Mg yr-1, with an average area-specific soil loss of 0.53 Mg yr-1. The JRC model RUSLE2015, for the same area estimates 295 million Mg yr-1 of soil loss due to water erosion. Notably, soil loss by wind erosion in the European arable land could be as high as 20% of water erosion, even though the areas affected are mainly concentrated in hotspots.

  15. Soil erosion in Iran: Issues and solutions

    NASA Astrophysics Data System (ADS)

    Hamidreza Sadeghi, Seyed; Cerdà, Artemi

    2015-04-01

    Iran currently faces many soil erosion-related problems (see citations below). These issues are resulted from some inherent characteristic and anthropogenic triggering forces. Nowadays, the latter plays more important rule to accelerate the erosion with further emphasis on soil erosion-prone arid and semi arid regions of the country. This contribution attempts to identify and describe the existing main reasons behind accelerated soil erosion in Iran. Appropriate solutions viz. structural and non-structural approaches will be then advised to combat or minimise the problems. Iran can be used as a pilot research site to understand the soil erosion processes in semiarid, arid and mountainous terrain and our research will review the scientific literature and will give an insight of the soil erosion rates in the main factors of the soil erosion in Iran. Key words: Anthropogenic Erosion, Land Degradation; Sediment Management; Sediment Problems Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7-ENV-2013- supported this research. References Aghili Nategh, N., Hemmat, A., & Sadeghi, M. (2014). Assessing confined and semi-confined compression curves of highly calcareous remolded soil amended with farmyard manure. Journal of Terramechanics, 53, 75-82. Arekhi, S., Bolourani, A. D., Shabani, A., Fathizad, H., Ahamdy-Asbchin, S. 2012. Mapping Soil Erosion and Sediment Yield Susceptibility using RUSLE, Remote Sensing and GIS (Case study: Cham Gardalan Watershed, Iran). Advances in Environmental Biology, 6(1), 109-124. Arekhi, S., Shabani, A., Rostamizad, G. 2012. Application of the modified universal soil loss equation (MUSLE) in prediction of sediment yield (Case study: Kengir Watershed, Iran). Arabian Journal of Geosciences, 5(6), 1259-1267.Sadeghi, S. H., Moosavi, V., Karami, A., Behnia, N. 2012. Soil erosion assessment and prioritization of affecting factors at plot scale using the Taguchi method. Journal of Hydrology, 448, 174-180. Asadi, H., Moussavi, A., Ghadiri, H., Rose, C. W. 2011. Flow-driven soil erosion processes and the size selectivity of sediment. Journal of Hydrology, 406(1), 73-81. Asadi, H., Raeisvandi, A., Rabiei, B., Ghadiri, H. 2012. Effect of land use and topography on soil properties and agronomic productivity on calcareous soils of a semiarid region, Iran. Land Degradation & Development, 23(5), 496-504. Ayoubi, S., Ahmadi, M., Abdi, M. R., Abbaszadeh Afshar, F. 2012. Relationships of< sup> 137 Cs inventory with magnetic measures of calcareous soils of hilly region in Iran. Journal of environmental radioactivity, 112, 45-51. Ayoubi, S., Mokhtari Karchegani, P., Mosaddeghi, M. R., Honarjoo, N. 2012. Soil aggregation and organic carbon as affected by topography and land use change in western Iran. Soil and Tillage Research, 121, 18-26. Emadodin, I., Bork, H. R. 2012. Degradation of soils as a result of long-term human-induced transformation of the environment in Iran: an overview. Journal of Land Use Science, 7(2), 203-219. Emadodin, I., Narita, D., Bork, H. R. 2012. Soil degradation and agricultural sustainability: an overview from Iran. Environment, Development and Sustainability, 14(5), 611-625. Haddadchi, A., Nosrati, K., Ahmadi, F. 2014. Differences between the source contribution of bed material and suspended sediments in a mountainous agricultural catchment of western Iran. CATENA, 116, 105-113. Heshmati, M., Arifin, A., Shamshuddin, J., Majid, N. M. 2012. Predicting N, P, K and organic carbon depletion in soils using MPSIAC model at the Merek catchment, Iran. Geoderma, 175, 64-77. Jafari, R., Bakhshandehmehr, L. 2013. Quantitative mapping and assessment of environmentally sensitive areas to desertification in central Iran. Land Degradation & Development.DOI: 10.1002/ldr.2227 Kavian, A., Azmoodeh, A., Solaimani, K. 2014. Deforestation effects on soil properties, runoff and erosion in northern Iran. Arabian Journal of Geosciences, 7(5), 1941-1950. Khaledi Darvishan, A., Sadeghi, S. H., Homaee, M., Arabkhedri, M. 2013. Measuring sheet erosion using synthetic color-contrast aggregates. Hydrological Processes. Mahmoodabadi, M. Cerdà, A. 2013. WEPP calibration for improved predictions on interril erosion in semi-arid to arid enviorments. Geoderma, 204-205,75-83. http://dx.doi.org/10.1016/j.geoderma.2013.04.013, Mehdizade, B., Asadi, H., Shabanpour, M., Ghadiri, H. 2013. Impact of erosion and tillage on the productivity and quality of selected semiarid soils of Iran. International Agrophysics, 27(3), 291-297. Moghadam, B. K., Jabarifar, M., Bagheri, M., Shahbazi, E. 2015. Effects of land use change on soil splash erosion in the semi-arid region of Iran. Geoderma, 241, 210-220. Nosrati, K., Ahmadi, F. 2013. Monitoring of soil organic carbon and nitrogen stocks in different land use under surface water erosion in a semi-arid drainage basin of Iran. Journal of Applied Sciences and Environmental Management, 17(2), 225-230. Nourzadeh, M., Bahrami, H. A., Goossens, D., Fryrear, D. W. 2013. Determining soil erosion and threshold friction velocity at different soil moisture conditions using a portable wind tunnel. Zeitschrift für Geomorphologie, 57(1), 97-109. Sadeghi, S. H. R., Seghaleh, M. B., Rangavar, A. S. 2013. Plot sizes dependency of runoff and sediment yield estimates from a small watershed. Catena, 102, 55-61. Sadeghi, S. H. R., Seghaleh, M. B., Rangavar, A. S. 2013. Plot sizes dependency of runoff and sediment yield estimates from a small watershed. Catena, 102, 55-61. Sadeghi, S. H., Najafi, S., Riyahi Bakhtiari, A., Abdi, P. 2014. Ascribing soil erosion types for sediment yield using composite fingerprinting technique. Hydrological Sciences Journal, 59(9), 1753-1762. Taghizadeh-Mehrjardi, R., Minasny, B., Sarmadian, F., Malone, B. P. 2014. Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma, 213, 15-28.

  16. Internal Erosion During Soil PipeFlow: State of Science for Experimental and Numerical Analysis

    EPA Science Inventory

    Many field observations have led to speculation on the role of piping in embankment failures, landslides, and gully erosion. However, there has not been a consensus on the subsurface flow and erosion processes involved, and inconsistent use of terms have exacerbated the problem. ...

  17. Evaluating ephemeral gully erosion impact on Zea mays L. yield and economics using AnnAGNPS

    USDA-ARS?s Scientific Manuscript database

    Ephemeral gully erosion causes serious water quality and economic problems in the Midwest United States. A critical barrier to soil conservation practice adoption is often the implementation cost, although it is recognized that erosion reduces farm income. Yet few, if any, understand the relationshi...

  18. Integrated process-based hydrologic and ephemeral gully modeling for better assessment of soil erosion in small watersheds

    NASA Astrophysics Data System (ADS)

    Sheshukov, A. Y.; Karimov, V. R.

    2017-12-01

    Excessive soil erosion in agriculturally dominated watersheds causes degradation of arable land and affects agricultural productivity. Structural and soil-quality best management practices can be beneficial in reducing sheet and rill erosion, however, larger rills, ephemeral gullies, and concentrated flow channels still remain to be significant sources of sediment. A better understanding of channelized soil erosion, underlying physical processes, and ways to mitigate the problem is needed to develop innovative approaches for evaluation of soil losses from various sediment sources. The goal of this study was to develop a novel integrated process-based catchment-scale model for sheet, rill, and ephemeral gully erosion and assess soil erosion mitigation practices. Geospatially, a catchment was divided into ephemeral channels and contributing hillslopes. Surface runoff hydrograph and sheet-rill erosion rates from contributing hillslopes were calculated based on the Water Erosion Prediction Project (WEPP) model. For ephemeral channels, a dynamic ephemeral gully erosion model was developed. Each channel was divided into segments, and channel flow was routed according to the kinematic wave equation. Reshaping of the channel profile in each segment (sediment deposition, soil detachment) was simulated at each time-step according to acting shear stress distribution along the channel boundary and excess shear stress equation. The approach assumed physically-consistent channel shape reconfiguration representing channel walls failure and deposition in the bottom of the channel. Soil erodibility and critical shear stress parameters were dynamically adjusted due to seepage/drainage forces based on computed infiltration gradients. The model was validated on the data obtained from the field study by Karimov et al. (2014) yielding agreement with NSE coefficient of 0.72. The developed model allowed to compute ephemeral gully erosion while accounting for antecedent soil moisture conditions. Results showed significant differences in performance of management practices for initially dry and wet soils. Application of no-till and conversion to grassland significantly reduced the erosion rates compared to conventional tillage for small runoff events, while the efficiency was reduced for large events.

  19. Land degradation, government subsidy, and smallholders' conservation decision: the case of the loess plateau in China.

    PubMed

    Shi, Min-Jun; Chen, Kevin

    2004-12-01

    Land degradation is one of the severe environmental problems in China. In order to combat land degradation, a soil conservation program was introduced since 2000 to reduce soil erosion by converting slope-cultivated land into forestry and pasture. This paper represents the first systematic attempt to investigate the impact of the soil conservation program on land degradation in the loess plateau. The results indicate that the soil conservation program to convert slope fields into forest or pasture is an effective way to combat soil erosion. However, a subsidy that is higher than profit of land use activity of slope fields before their conversion into forest and pasture is needed to encourage farmers to join the conservation program. A policy measure to encourage and assist farmers to develop sedentary livestock by using crops produced from fields as well as fodder and forage grass from the converted slope fields might contribute to combat soil erosion. Increase in off-farm job opportunities may encourage households to reduce cultivation in slope fields. That implies a policy measure to encourage rural urbanization might contribute to combat soil erosion.

  20. Mapping soil erosion hotspots and assessing the potential impacts of land management practices in the highlands of Ethiopia

    NASA Astrophysics Data System (ADS)

    Tamene, Lulseged; Adimassu, Zenebe; Ellison, James; Yaekob, Tesfaye; Woldearegay, Kifle; Mekonnen, Kindu; Thorne, Peter; Le, Quang Bao

    2017-09-01

    An enormous effort is underway in Ethiopia to address soil erosion and restore overall land productivity. Modelling and participatory approaches can be used to delineate erosion hotspots, plan site- and context-specific interventions and assess their impacts. In this study, we employed a modelling interface developed based on the Revised Universal Soil Loss Equation adjusted by the sediment delivery ratio to map the spatial distribution of net soil loss and identify priority areas of intervention. Using the modelling interface, we also simulated the potential impacts of different soil and water conservation measures in reducing net soil loss. Model predictions showed that net soil loss in the study area ranges between 0.4 and 88 t ha- 1 yr- 1 with an average of 12 t ha- 1 yr- 1. The dominant soil erosion hotspots were associated with steep slopes, gullies, communal grazing and cultivated areas. The average soil loss observed in this study is higher than the tolerable soil loss rate estimated for the highland of Ethiopia. The scenario analysis results showed that targeting hotspot areas where soil loss exceeds 10 t ha- 1 yr- 1 could reduce net soil loss to the tolerable limit (< 2 t ha- 1 yr- 1). The spatial distribution of soil loss and the sediment yield reduction potential of different options provided essential information to guide prioritization and targeting. In addition, the results can help promoting awareness within the local community of the severity of the soil erosion problem and the potential of management interventions. Future work should include cost-benefit and tradeoff analyses of the various management options for achieving a given level of erosion reduction.

  1. Application of a modeling approach to designate soil and soil organic carbon loss to wind erosion on long-term monitoring sites (BDF) in Northern Germany

    NASA Astrophysics Data System (ADS)

    Nerger, Rainer; Funk, Roger; Cordsen, Eckhard; Fohrer, Nicola

    2017-04-01

    Soil organic carbon (SOC) loss is a serious problem in maize monoculture areas of Northern Germany. Sites of the soil monitoring network (SMN) "Boden-Dauerbeobachtung" show long-term soil and SOC losses, which cannot be explained by conventional SOC balances nor by other non-Aeolian causes. Using a process-based model, the main objective was to determine whether these losses can be explained by wind erosion. In the long-term context of 10 years, wind erosion was not measured directly but often observed. A suitable estimation approach linked high-quality soil/farming monitoring data with wind erosion modeling results. The model SWEEP, validated for German sandy soils, was selected using 10-minute wind speed data. Two similar local SMN study sites were compared, however, site A was characterized by high SOC loss and often affected by wind erosion, while the reference site B was not. At site A soil mass and SOC stock decreased by 49.4 and 2.44 kg m-2 from 1999 to 2009. Using SWEEP, a total soil loss of 48.9 kg m-2 resulted for 16 erosion events (max. single event 12.6 kg m-2). A share of 78% was transported by suspension with a SOC enrichment ratio (ER) of 2.96 (saltation ER 0.98), comparable to the literature. At the reference site measured and modeled topsoil losses were minimal. The good agreement between monitoring and modeling results suggested that wind erosion caused significant long-term soil and SOC losses. The approach uses results of prior studies and is applicable to similar well-studied sites without other noteworthy SOC losses.

  2. How does slope form affect erosion in CATFLOW-SED?

    NASA Astrophysics Data System (ADS)

    Gabelmann, Petra; Wienhöfer, Jan; Zehe, Erwin

    2016-04-01

    Erosion is a severe environmental problem in agro-ecosystems with highly erodible loess soils. It is controlled by various factors, e.g. rainfall intensity, initial wetness conditions, soil type, land use and tillage practice. Furthermore slope form and gradient have been shown to influence erosion amounts to a large extent. Within the last fifty years, various erosion models have been developed to describe the erosion process, estimate erosion amounts and identify erosion-prone areas. These models differ in terms of complexity, the processes which are considered, and the data required for model calibration and they can be categorised into empirical or statistical, conceptual, and physically-based models. CATFLOW-SED is a process-based hydrology and erosion model that can operate on catchment and hillslope scales. Soil water dynamics are described by the Richards equation including effective approaches for preferential flow. Evapotranspiration is simulated using an approach based on the Penman-Monteith equation. The model simulates overland flow using the diffusion wave equation. Soil detachment is related to the attacking forces of rainfall and overland flow, and the erosion resistance of soil. Sediment transport capacity and sediment deposition are related to overland flow velocity using the equation of Engelund and Hansen and the sinking velocity of grain sizes respectively. We performed a study to analyse the erosion process on different virtual hillslopes, with varying slope gradient and slope form, using the CATFLOW-SED model. We explored the role of landform on erosion and sedimentation, particularly we look for forms that either maximise or minimise erosion. Results indicate the importance to performing the process implementation within physically meaningful limits and choose appropriate model parameters respectively.

  3. Using synthetic polymers to reduce soil erosion after forest fires in Mediterranean soils

    NASA Astrophysics Data System (ADS)

    Lado, Marcos; Ben-Hur, Meni; Inbar, Assaf

    2010-05-01

    Forest fires are a major environmental problem in the Mediterranean region because they result in a loss of vegetation cover, changes in biodiversity, increases in greenhouse gasses emission and a potential increase of runoff and soil erosion. The large increases in runoff and sediment yields after high severity fires have been attributed to several factors, among them: increase in soil water repellency; soil sealing by detached particles and by ash particles, and the loss of a surface cover. The presence of a surface cover increases infiltration, and decreases runoff and erosion by several mechanisms which include: rainfall interception, plant evapotranspiration, preservation of soil structure by increasing soil organic matter, and increasing surface roughness. The loss of vegetation cover as a result of fire leaves the surface of the soil exposed to the direct impact of the raindrops, and therefore the sensitivity of the soil to runoff generation and soil loss increases. In this work, we propose a new method to protect soils against post-fire erosion based on the application of synthetic polymers to the soil. Laboratory rainfall simulations and field runoff plots were used to analyze the suitability of the application of synthetic polymers to reduce soil erosion and stabilize soil structure in Mediterranean soils. The combination of these two processes will potentially favor a faster recovery of the vegetation structure. This method has been successfully applied in arable land, however it has not been tested in burnt forests. The outcome of this study may provide important managerial tools for forest management following fires.

  4. China: A sleeping giant awakens to environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni Shaoxiang

    1995-07-01

    This article discusses the approach the Chinese government is taking to environmental issues. Included are the following topics: pollution abatement; improved rural environment by curbing the production and use of highly toxic pesticides; limiting erosion; natural reserves. Problems awaiting solutions are also discussed: air pollution (particularly coal combustion); water pollution; solid-waste pollution; rural pollution; soil erosion; desertification; soil salinization; deforestation; grassland deterioration; natural disasters.

  5. Internal erosion during soil pipeflow: state of science for experimental and numerical analysis

    USDA-ARS?s Scientific Manuscript database

    Many field observations have lead to speculation on the role of piping in embankment failures, landslides, and gully erosion. However, there has not been a consensus on the subsurface flow and erosion processes involved and inconsistent use of terms have exasperated the problem. One such piping proc...

  6. Distribution of rock fragments and their effects on hillslope soil erosion in purple soil, China

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyan

    2017-04-01

    Purple soil is widely distributed in Sichuan Basin and Three Gorges Reservoir Area. Purple soil region is abundant in soil fertility and hydrothermal resources, playing an important role in the agricultural development of China. Soil erosion has long been recognized as a major environmental problem in the purple soil region where the population is large and slope farming is commonly practiced, and rainstorm is numerous. The existence of rock fragments is one of the most important characteristics of purple soil. Rock fragments at the soil surface or in the soil layer affect soil erosion processes by water in various direct and indirect ways, thus the erosion processes of soil containing rock fragments have unique features. Against the severe soil degradation by erosion of purple soil slope, carrying out the research about the characteristics of purple soil containing rock fragments and understanding the influence of rock fragments on soil erosion processes have important significance, which would promote the rational utilization of purple soil slope land resources and accurate prediction of purple soil loss. Therefore, the aims of this study were to investigate the distribution of rock fragments in purple soil slope and the impact of rock fragment content on soil physical properties and soil erosion. First, field sampling methods were used to survey the spatial variability of rock fragments in soil profiles and along slope and the physical properties of soils containing rock fragments. Secondly, indoor simulated rainfall experiments were used to exam the effect of rock fragments in the soil layer on soil erosion processes and the relationships between rainfall infiltration, change of surface flow velocity, surface runoff volume and sediment on one hand, and rock fragment content (Rv, 0% 30%, which was determined according the results of field investigation for rock fragment distribution) on the other were investigated. Thirdly, systematic analysis about the influence of rock fragment cover on purple soil slope erosion process were carried on, under different conditions with two kind of rock fragment positions (resting on soil surface and embedded into top soil layer), varied rock fragment coverage (Rc, 0% 40%), two kind of soils with textural porosity or structural porosity, and three kind of rainfall intensities (I, 1 mm/min, 1.5 mm/min and 2 mm/min). Simulated rainfall experiments in situ plots in the field, combined with simulated rainfall experiments in soil pans indoor, were used. The main conclusions of this dissertation are as following: 1. The spatial distribution characteristics of rock fragments in purple soil slope and its effects on the soil physical properties were clarified basically. 2. The mechanism of influence of rock fragments within top soil layer on soil erosion processes was understood and a threshold of rock fragment content on the infiltration was figured out. 3. The relationships between surface rock fragment cover and hillslope soil erosion in purple soil under different conditions with varied rock fragment positions, soil structures and rainfall intensities were obtained and the soil and water conservation function of surface rock fragment cover on reducing soil loss was affirmed.

  7. Using (137)Cs measurements to estimate soil erosion rates in the Pčinja and South Morava River Basins, southeastern Serbia.

    PubMed

    Petrović, Jelena; Dragović, Snežana; Dragović, Ranko; Đorđević, Milan; Đokić, Mrđan; Zlatković, Bojan; Walling, Desmond

    2016-07-01

    The need for reliable assessments of soil erosion rates in Serbia has directed attention to the potential for using (137)Cs measurements to derive estimates of soil redistribution rates. Since, to date, this approach has not been applied in southeastern Serbia, a reconnaissance study was undertaken to confirm its viability. The need to take account of the occurrence of substantial Chernobyl fallout was seen as a potential problem. Samples for (137)Cs measurement were collected from a zone of uncultivated soils in the watersheds of Pčinja and South Morava Rivers, an area with known high soil erosion rates. Two theoretical conversion models, the profile distribution (PD) model and diffusion and migration (D&M) model were used to derive estimates of soil erosion and deposition rates from the (137)Cs measurements. The estimates of soil redistribution rates derived by using the PD and D&M models were found to differ substantially and this difference was ascribed to the assumptions of the simpler PD model that cause it to overestimate rates of soil loss. The results provided by the D&M model were judged to more reliable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Facing the scaling problem: A multi-methodical approach to simulate soil erosion at hillslope and catchment scale

    NASA Astrophysics Data System (ADS)

    Schmengler, A. C.; Vlek, P. L. G.

    2012-04-01

    Modelling soil erosion requires a holistic understanding of the sediment dynamics in a complex environment. As most erosion models are scale-dependent and their parameterization is spatially limited, their application often requires special care, particularly in data-scarce environments. This study presents a hierarchical approach to overcome the limitations of a single model by using various quantitative methods and soil erosion models to cope with the issues of scale. At hillslope scale, the physically-based Water Erosion Prediction Project (WEPP)-model is used to simulate soil loss and deposition processes. Model simulations of soil loss vary between 5 to 50 t ha-1 yr-1 dependent on the spatial location on the hillslope and have only limited correspondence with the results of the 137Cs technique. These differences in absolute soil loss values could be either due to internal shortcomings of each approach or to external scale-related uncertainties. Pedo-geomorphological soil investigations along a catena confirm that estimations by the 137Cs technique are more appropriate in reflecting both the spatial extent and magnitude of soil erosion at hillslope scale. In order to account for sediment dynamics at a larger scale, the spatially-distributed WaTEM/SEDEM model is used to simulate soil erosion at catchment scale and to predict sediment delivery rates into a small water reservoir. Predicted sediment yield rates are compared with results gained from a bathymetric survey and sediment core analysis. Results show that specific sediment rates of 0.6 t ha-1 yr-1 by the model are in close agreement with observed sediment yield calculated from stratigraphical changes and downcore variations in 137Cs concentrations. Sediment erosion rates averaged over the entire catchment of 1 to 2 t ha-1 yr-1 are significantly lower than results obtained at hillslope scale confirming an inverse correlation between the magnitude of erosion rates and the spatial scale of the model. The study has shown that the use of multiple methods facilitates the calibration and validation of models and might provide a more accurate measure for soil erosion rates in ungauged catchments. Moreover, the approach could be used to identify the most appropriate working and operational scales for soil erosion modelling.

  9. Testing the control of mineral supply rates on chemical erosion in the Klamath Mountains

    NASA Astrophysics Data System (ADS)

    West, N.; Ferrier, K.

    2017-12-01

    The relationship between rates of chemical erosion and mineral supply is central to many problems in Earth science, including the role of tectonics in the global carbon cycle, nutrient supply to soils and streams via soil production, and lithologic controls on landscape evolution. We aim to test the relationship between mineral supply rates and chemical erosion in the forested uplands of the Klamath mountains, along a latitudinal transect of granodioritic plutons that spans an expected gradient in mineral supply rates associated with the geodynamic response to the migration of the Mendocino Triple Junction. We present 10Be-derived erosion rates and Zr-derived chemical depletion factors, as well as bulk soil and rock geochemistry on 10 ridgetops along the transect to test hypotheses about supply-limited and kinetically-limited chemical erosion. Previous studies in this area, comparing basin-averaged erosion rates and modeled uplift rates, suggest this region may be adjusted to an approximate steady state. Our preliminary results suggest that chemical erosion at these sites is influenced by both mineral supply rates and dissolution kinetics.

  10. An integrated assessment of soil erosion dynamics with special emphasis on gully erosion: Case studies from South Africa and Iran

    NASA Astrophysics Data System (ADS)

    Maerker, Michael; Sommer, Christian; Zakerinejad, Reza; Cama, Elena

    2017-04-01

    Soil erosion by water is a significant problem in arid and semi arid areas of large parts of Iran. Water erosion is one of the most effective phenomena that leads to decreasing soil productivity and pollution of water resources. Especially in semiarid areas like in the Mazayjan watershed in the Southwestern Fars province as well as in the Mkomazi catchment in Kwa Zulu Natal, South Africa, gully erosion contributes to the sediment dynamics in a significant way. Consequently, the intention of this research is to identify the different types of soil erosion processes acting in the area with a stochastic approach and to assess the process dynamics in an integrative way. Therefore, we applied GIS, and satellite image analysis techniques to derive input information for the numeric models. For sheet and rill erosion the Unit Stream Power-based Erosion Deposition Model (USPED) was utilized. The spatial distribution of gully erosion was assessed using a statistical approach which used three variables (stream power index, slope, and flow accumulation) to predict the spatial distribution of gullies in the study area. The eroded gully volumes were estimated for a multiple years period by fieldwork and Google Earth high resolution images as well as with structure for motion algorithm. Finally, the gully retreat rates were integrated into the USPED model. The results show that the integration of the SPI approach to quantify gully erosion with the USPED model is a suitable method to qualitatively and quantitatively assess water erosion processes in data scarce areas. The application of GIS and stochastic model approaches to spatialize the USPED model input yield valuable results for the prediction of soil erosion in the test areas. The results of this research help to develop an appropriate management of soil and water resources in the study areas.

  11. Wind erosion in semiarid landscapes: Predictive models and remote sensing methods for the influence of vegetation

    NASA Technical Reports Server (NTRS)

    Musick, H. Brad; Truman, C. Randall; Trujillo, Steven M.

    1992-01-01

    Wind erosion in semi-arid regions is a significant problem for which the sheltering effect of rangeland vegetation is poorly understood. Individual plants may be considered as porous roughness elements which absorb or redistribute the wind's momentum. The saltation threshold is the minimum wind velocity at which soil movement begins. The dependence of the saltation threshold on geometrical parameters of a uniform roughness array was studied in a wind tunnel. Both solid and porous elements were used to determine relationships between canopy structure and the threshold velocity for soil transport. The development of a predictive relation for the influence of vegetation canopy structure on wind erosion of soil is discussed.

  12. Effectiveness Of Miraba an Indigenous Soil and Water Conservation Measures On Reducing Runoff And Soil Loss In Arable Land Of Western Usambara Mountains

    NASA Astrophysics Data System (ADS)

    Msita, H. B.; Kimaro, D. N.; Mtakwa, P. W.; Msanya, B. M.; Dondyene, S.; Poesen, J.; Deckers, J.

    2012-04-01

    Soil erosion by water is rampant mainly in mountainous areas of Tanzania leading to environmental hazards, low land productivity, low income and increased poverty. Despite the severity of the soil erosion problem, there is not much quantitative data on the erosion effects and effectiveness of indigenous soil and water conservation (SWC) measures. The consequence is that indigenous knowledge in SWC planning is ignored. The on-farm field experiment was conducted for three years in Migambo village, Lushoto district in Tanzania, to determine the effectiveness of improved Miraba (IM) an indigenous soil erosion control measure on reducing runoff and soil loss. Management practices were tested viz: control that is without any soil conservation measure (C), Miraba alone (M), Miraba with farmyard manure and mulching (MFM) replicated three times in CRD setting. Maize (Zea mays) and beans (Phaseolus vulgaris) were used as test crops, due to their importance as food crops and the high erosion rates on fields with these crops. The crops were planted in rotation, maize and beans in short and long rains respectively. Gerlach troughs and runoff plots were used to evaluate the physical effectiveness. Results show significant effects of IM against control on crop yields, soil loss, surface runoff and moisture retention. MFM is the most effective measure in reducing soil and water losses followed by MF and M. The results further showed that these management practices can be implemented to reduce soil erosion and nutrient losses in the study area and areas with similar ecological setting. To facilitate adoption of these practices further research works is recommended for identifying economically feasible indigenous SWC measures under different biophysical and socio-economic conditions.

  13. Use of multi-temporal SPOT-5 satellite images for land degradation assessment in Cameron Highlands, Malaysia using Geospatial techniques

    NASA Astrophysics Data System (ADS)

    Nampak, Haleh; Pradhan, Biswajeet

    2016-07-01

    Soil erosion is the common land degradation problem worldwide because of its economic and environmental impacts. Therefore, land-use change detection has become one of the major concern to geomorphologists, environmentalists, and land use planners due to its impact on natural ecosystems. The objective of this paper is to evaluate the relationship between land use/cover changes and land degradation in the Cameron highlands (Malaysia) through multi-temporal remotely sensed satellite images and ancillary data. Land clearing in the study area has resulted increased soil erosion due to rainfall events. Also unsustainable development and agriculture, mismanagement and lacking policies contribute to increasing soil erosion rates. The LULC distribution of the study area was mapped for 2005, 2010, and 2015 through SPOT-5 satellite imagery data which were classified based on object-based classification. A soil erosion model was also used within a GIS in order to study the susceptibility of the areas affected by changes to overland flow and rain splash erosion. The model consists of four parameters, namely soil erodibility, slope, vegetation cover and overland flow. The results of this research will be used in the selection of the areas that require mitigation processes which will reduce their degrading potential. Key words: Land degradation, Geospatial, LULC change, Soil erosion modelling, Cameron highlands.

  14. Use of dendrochronological method in Pinus halepensis to estimate the soil erosion in the South East of Madrid (Spain).

    PubMed

    Pérez-Rodríguez, Raquel; Marques, Maria Jose; Bienes, Ramón

    2007-05-25

    The rate of soil erosion in pine forests (Pinus halepensis) located in the Southeast of Madrid has been estimated using dendrochronological analysis based on the change in ring-growth pattern from concentric to eccentric when the root is exposed. Using 49 roots spread across five inclined areas, it has been found that the length and direction of the hillsides, as well as their vegetation cover affect the rate of erosion, while the slope itself does not. The erosion rates found for the different areas studied vary between 3.5 and 8.8 mm year(-1), that is between 40 and 101 t ha(-1) year(-1) respectively. These values are between 2 and 3 times greater than those predicted by USLE, for which this equation underestimates soil loss for Central Spain's Mediterranean conditions. Nonetheless, both methods (using dendrochronology to determine actual soil loss and theoretical prediction with USLE) are able to establish the same significant differences among the areas studied, allowing for the comparative estimate of the severity of the area's erosion problem.

  15. Watershed Sediment Losses to Lakes Accelerating Despite Agricultural Soil Conservation Efforts

    PubMed Central

    Heathcote, Adam J.; Filstrup, Christopher T.; Downing, John A.

    2013-01-01

    Agricultural soil loss and deposition in aquatic ecosystems is a problem that impairs water quality worldwide and is costly to agriculture and food supplies. In the US, for example, billions of dollars have subsidized soil and water conservation practices in agricultural landscapes over the past decades. We used paleolimnological methods to reconstruct trends in sedimentation related to human-induced landscape change in 32 lakes in the intensively agricultural region of the Midwestern United States. Despite erosion control efforts, we found accelerating increases in sediment deposition from erosion; median erosion loss since 1800 has been 15.4 tons ha−1. Sediment deposition from erosion increased >6-fold, from 149 g m−2 yr−1 in 1850 to 986 g m−2 yr−1 by 2010. Average time to accumulate one mm of sediment decreased from 631 days before European settlement (ca. 1850) to 59 days mm−1 at present. Most of this sediment was deposited in the last 50 years and is related to agricultural intensification rather than land clearance or predominance of agricultural lands. In the face of these intensive agricultural practices, traditional soil conservation programs have not decelerated downstream losses. Despite large erosion control subsidies, erosion and declining water quality continue, thus new approaches are needed to mitigate erosion and water degradation. PMID:23326454

  16. Watershed sediment losses to lakes accelerating despite agricultural soil conservation efforts.

    PubMed

    Heathcote, Adam J; Filstrup, Christopher T; Downing, John A

    2013-01-01

    Agricultural soil loss and deposition in aquatic ecosystems is a problem that impairs water quality worldwide and is costly to agriculture and food supplies. In the US, for example, billions of dollars have subsidized soil and water conservation practices in agricultural landscapes over the past decades. We used paleolimnological methods to reconstruct trends in sedimentation related to human-induced landscape change in 32 lakes in the intensively agricultural region of the Midwestern United States. Despite erosion control efforts, we found accelerating increases in sediment deposition from erosion; median erosion loss since 1800 has been 15.4 tons ha(-1). Sediment deposition from erosion increased >6-fold, from 149 g m(-2) yr(-1) in 1850 to 986 g m(-2) yr(-1) by 2010. Average time to accumulate one mm of sediment decreased from 631 days before European settlement (ca. 1850) to 59 days mm(-1) at present. Most of this sediment was deposited in the last 50 years and is related to agricultural intensification rather than land clearance or predominance of agricultural lands. In the face of these intensive agricultural practices, traditional soil conservation programs have not decelerated downstream losses. Despite large erosion control subsidies, erosion and declining water quality continue, thus new approaches are needed to mitigate erosion and water degradation.

  17. [Advance in researches on vegetation cover and management factor in the soil erosion prediction model].

    PubMed

    Zhang, Yan; Yuan, Jianping; Liu, Baoyuan

    2002-08-01

    Vegetation cover and land management are the main limiting factors of soil erosion, and quantitative evaluation on the effect of different vegetation on soil erosion is essential to land use and soil conservation planning. The vegetation cover and management factor (C) in the universal soil loss equation (USLE) is an index to evaluate this effect, which has been studied deeply and used widely. However, the C factor study is insufficient in China. In order to strengthen the research of C factor, this paper reviewed the developing progress of C factor, and compared the methods of estimating C value in different USLE versions. The relative studies in China were also summarized from the aspects of vegetation canopy coverage, soil surface cover, and root density. Three problems in C factor study were pointed out. The authors suggested that cropland C factor research should be furthered, and its methodology should be unified in China to represent reliable C values for soil loss prediction and conservation planning.

  18. Soil conservation in Central America and Panama: current problems.

    PubMed

    Popenoe, H

    1976-06-01

    Soil conservation measures in Central America go back to the Maya civilization, in which terracing was employed. After the Spanish conquest, plowing, livestock raising, and the succession of social and political changes all contributed to accelerate erosion. Through the past few decades, awareness of the need for soil conservation has again increased; El Salvador and Costa Rica began efforts in that direction in 1943. For sometime, the use of machinery and chemical fertilizers has masked the loss of topsoil, but under recent increases in population pressures, soil conservation measures are gaining in importance. Important agents of erosion in the tropics are heavy seasonal rains at high elevations, alternating with long dry seasons; wind erosion; and landslides after saturation of the soil during prolonged rains. Modern machinery often hastens soil removal, as do also overgrazing, deforestation and vertical crop rows. Under the present energy crisis, human labor is becoming again a significant element in crop production, and soil conservation becomes thereby more feasible and more important.

  19. 7 CFR 610.2 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NRCS. This program is designed to: (1) Reduce soil losses from erosion; (2) Help solve soil, water, and agricultural waste management problems; (3) Bring about adjustments in land use as needed; (4) Reduce damage...

  20. Land susceptibility to soil erosion in Orashi Catchment, Nnewi South, Anambra State, Nigeria

    NASA Astrophysics Data System (ADS)

    Odunuga, Shakirudeen; Ajijola, Abiodun; Igwetu, Nkechi; Adegun, Olubunmi

    2018-02-01

    Soil erosion is one of the most critical environmental hazards that causes land degradation and water quality challenges. Specifically, this phenomenon has been linked, among other problems, to river sedimentation, groundwater pollution and flooding. This paper assesses the susceptibility of Orashi River Basin (ORB) to soil erosion for the purpose of erosion control measures. Located in the South Eastern part of Nigeria, the ORB which covers approximately 413.61 km2 is currently experiencing one of the fastest population growth rate in the region. Analysis of the soil erosion susceptibility of the basin was based on four factors including; rainfall, Land use/Land cover change (LULC), slope and soil erodibility factor (k). The rainfall was assumed to be a constant and independent variable, slope and soil types were categorised into ten (10) classes each while the landuse was categorised into five classes. Weight was assigned to the classes based on the degree of susceptibility to erosion. An overlay of the four variables in a GIS environment was used to produce the basin susceptibility to soil erosion. This was based on the weight index of each factors. The LULC analysis revealed that built-up land use increased from 26.49 km2 (6.4 %) in year 1980 to 79.24 km2 (19.16 %) in 2015 at an average growth rate of 1.51 km2 per annum while the light forest decreased from 336.41 km2 (81.33 %) in 1980 to 280.82 km2 (67.89 %) in 2015 at an average rate 1.59 km2 per annum. The light forest was adjudged to have the highest land cover soil erosion susceptibility. The steepest slope ranges between 70 and 82° (14.34 % of the total land area) and was adjudged to have the highest soil susceptibility to erosion. The total area covered of the loamy soil is 112.37 km2 (27.07 %) with erodibility of 0.7. In all, the overlay of all the variables revealed that 106.66 km2 (25.70 %) and 164.80 km2 (39.7 %) of the basin has a high and very high susceptibility to soil erosion. The over 50 % high susceptibility of catchment has serious negative implications on the surface water in terms of water quality and downstream siltation with great consequences on biodiversity and ecosystem services including domestic and industrial usage.

  1. Mississippi River Headwaters Lakes in Minnesota. Feasibility Study. Appendices.

    DTIC Science & Technology

    1982-09-01

    CONTENTS ITEM PAGE INTRODUCTION A-1 PROBLEM 1 - HEADWATERS LAKES OPERATING PLANS A-1 BACKGROUND A-1 GEOLOGY AND SOILS A-3 STREAM CHARACTERISTICS A- 7...HEADWATERS LAKES A-134 BACKGROUND A- 134 GEOLOGY AND SOILS A-135 HYDROLOGY AND HYDRAULIC STUDIES A- 135 COST ESTIMATE A- 142 RECOMMENDED ACT ION A...143 PLATE SUMMARY A-144 PROBLEM 3 - EROSION PROBLEMS DOWNSTREAM OF POKEGAMA DAM A-158 BACKGROUND A- 158 GEOLOGY AND SOILS A- 158 HYDROLOGY AND HYDRAULIC

  2. Optimal land use management for soil erosion control by using an interval-parameter fuzzy two-stage stochastic programming approach.

    PubMed

    Han, Jing-Cheng; Huang, Guo-He; Zhang, Hua; Li, Zhong

    2013-09-01

    Soil erosion is one of the most serious environmental and public health problems, and such land degradation can be effectively mitigated through performing land use transitions across a watershed. Optimal land use management can thus provide a way to reduce soil erosion while achieving the maximum net benefit. However, optimized land use allocation schemes are not always successful since uncertainties pertaining to soil erosion control are not well presented. This study applied an interval-parameter fuzzy two-stage stochastic programming approach to generate optimal land use planning strategies for soil erosion control based on an inexact optimization framework, in which various uncertainties were reflected. The modeling approach can incorporate predefined soil erosion control policies, and address inherent system uncertainties expressed as discrete intervals, fuzzy sets, and probability distributions. The developed model was demonstrated through a case study in the Xiangxi River watershed, China's Three Gorges Reservoir region. Land use transformations were employed as decision variables, and based on these, the land use change dynamics were yielded for a 15-year planning horizon. Finally, the maximum net economic benefit with an interval value of [1.197, 6.311] × 10(9) $ was obtained as well as corresponding land use allocations in the three planning periods. Also, the resulting soil erosion amount was found to be decreased and controlled at a tolerable level over the watershed. Thus, results confirm that the developed model is a useful tool for implementing land use management as not only does it allow local decision makers to optimize land use allocation, but can also help to answer how to accomplish land use changes.

  3. Optimal Land Use Management for Soil Erosion Control by Using an Interval-Parameter Fuzzy Two-Stage Stochastic Programming Approach

    NASA Astrophysics Data System (ADS)

    Han, Jing-Cheng; Huang, Guo-He; Zhang, Hua; Li, Zhong

    2013-09-01

    Soil erosion is one of the most serious environmental and public health problems, and such land degradation can be effectively mitigated through performing land use transitions across a watershed. Optimal land use management can thus provide a way to reduce soil erosion while achieving the maximum net benefit. However, optimized land use allocation schemes are not always successful since uncertainties pertaining to soil erosion control are not well presented. This study applied an interval-parameter fuzzy two-stage stochastic programming approach to generate optimal land use planning strategies for soil erosion control based on an inexact optimization framework, in which various uncertainties were reflected. The modeling approach can incorporate predefined soil erosion control policies, and address inherent system uncertainties expressed as discrete intervals, fuzzy sets, and probability distributions. The developed model was demonstrated through a case study in the Xiangxi River watershed, China's Three Gorges Reservoir region. Land use transformations were employed as decision variables, and based on these, the land use change dynamics were yielded for a 15-year planning horizon. Finally, the maximum net economic benefit with an interval value of [1.197, 6.311] × 109 was obtained as well as corresponding land use allocations in the three planning periods. Also, the resulting soil erosion amount was found to be decreased and controlled at a tolerable level over the watershed. Thus, results confirm that the developed model is a useful tool for implementing land use management as not only does it allow local decision makers to optimize land use allocation, but can also help to answer how to accomplish land use changes.

  4. Application of ERTS-1 imagery to detecting and mapping modern erosion features and to monitoring erosional changes, in southern Arizona

    NASA Technical Reports Server (NTRS)

    Morrison, R. B. (Principal Investigator); Cooley, M. E.

    1973-01-01

    The author has identified the following significant results. The chief results during the reporting period were three 1:1,000,000 scale maps made from one ERTS-1 frame (1085-17330, 16 October 1972) showing: (1) the three most important types of materials in terms of the modern erosion problem: the readily erodible soils, gravel piedmonts and basin-fill areas, and consolidated rocks; (2) alluvial fans (dissected and relatively undissected); and (3) (as an additional bonus) linear structural features. Eight key areas (small parts of the whole study area) were selected for detailed study, and mapping was started in two of them, by interpretation of ultrahigh (U-2 and RB-57) airphotos, supplemented by field studies. In these areas detailed mapping was done not only on the modern erosion phenomena (arroyos, gullies, modern flood plains and terraces, and areas of sheet erosion and deposition), but also other features pertinent to the erosion problem, such as slope-local relief, landforms rock units, soil particle size and erodibility, and classes of vegetative cover.

  5. The Laws of Diminishing Yields in the Tropics

    Treesearch

    R. Derpsch; M. Florentín; K. Moriya

    2006-01-01

    The key problem of conventional agriculture in the tropics and subtropics is the steady decline in soil fertility, which is closely correlated with the duration of soil use. The reason for this can be found primarily in the occurrence of soil erosion, the loss of organic matter, leaching of nutrients into deeper soil layers, and soil physical degradation associated...

  6. Soil Bioengineering Application and Practices in Nepal

    NASA Astrophysics Data System (ADS)

    Dhital, Yam Prasad; Kayastha, Rijan Bhakta; Shi, Jiancheng

    2013-02-01

    The small mountainous country Nepal is situated in the central part of the Himalayas. Its climate varies from tropical in the south to arctic in the north; and natural vegetation follows the pattern of climate and altitude. Water-induced disaster problems including soil erosion, debris flow, landslides and flooding are common due to the unstable landscape. Soil erosion is the most important driving force for the degradation of upland and mountain ecosystems. Soil bioengineering has been used in Nepal for nearly 30 years to deal with erosion problems on slopes, in high way construction and riverbank stabilization. The main soil bioengineering techniques used in Nepal are brush layering, palisades, live check dams, fascines and vegetative stone pitching. This study is based on the geology, climate and vegetation of Nepal and briefly summarizes the application of soil bioengineering on slopes and stream banks, with especial attention to the role of vegetation on slope and stream bank stabilization. Furthermore, this paper addresses the role of community participation and responsibility for successful application of vegetation-based techniques in management, maintenance and utility aspects for the future. In recent years, soil bioengineering techniques are extensively used due to their cost-effectiveness, using locally available materials and low-cost labour in comparison to more elaborate civil engineering works. However, scientific implementation and record-keeping and evaluation of the work are indeed essential.

  7. Soil bioengineering application and practices in Nepal.

    PubMed

    Dhital, Yam Prasad; Kayastha, Rijan Bhakta; Shi, Jiancheng

    2013-02-01

    The small mountainous country Nepal is situated in the central part of the Himalayas. Its climate varies from tropical in the south to arctic in the north; and natural vegetation follows the pattern of climate and altitude. Water-induced disaster problems including soil erosion, debris flow, landslides and flooding are common due to the unstable landscape. Soil erosion is the most important driving force for the degradation of upland and mountain ecosystems. Soil bioengineering has been used in Nepal for nearly 30 years to deal with erosion problems on slopes, in high way construction and riverbank stabilization. The main soil bioengineering techniques used in Nepal are brush layering, palisades, live check dams, fascines and vegetative stone pitching. This study is based on the geology, climate and vegetation of Nepal and briefly summarizes the application of soil bioengineering on slopes and stream banks, with especial attention to the role of vegetation on slope and stream bank stabilization. Furthermore, this paper addresses the role of community participation and responsibility for successful application of vegetation-based techniques in management, maintenance and utility aspects for the future. In recent years, soil bioengineering techniques are extensively used due to their cost-effectiveness, using locally available materials and low-cost labour in comparison to more elaborate civil engineering works. However, scientific implementation and record-keeping and evaluation of the work are indeed essential.

  8. Rainfall erosivity factor estimation in Republic of Moldova

    NASA Astrophysics Data System (ADS)

    Castraveš, Tudor; Kuhn, Nikolaus

    2017-04-01

    Rainfall erosivity represents a measure of the erosive force of rainfall. Typically, it is expressed as variable such as the R factor in the Universal Soil Loss Equation (USLE) (Wischmeier and Smith, 1965, 1978) or its derivates. The rainfall erosivity index for a rainfall event (EI30) is calculated from the total kinetic energy and maximum 30 minutes intensity of individual events. However, these data are often unavailable for wide regions and countries. Usually, there are three issues regarding precipitation data: low temporal resolution, low spatial density and limited access to the data. This is especially true for some of postsoviet countries from Eastern Europe, such as Republic of Moldova, where soil erosion is a real and persistent problem (Summer, 2003) and where soils represents the main natural resource of the country. Consequently, researching and managing soil erosion is particularly important. The purpose of this study is to develop a model based on commonly available rainfall data, such as event, daily or monthly amounts, to calculate rainfall erosivity for the territory of Republic of Moldova. Rainfall data collected during 1994-2015 period at 15 meteorological stations in the Republic of Moldova, with 10 minutes temporal resolution, were used to develop and calibrate a model to generate an erosivity map of Moldova. References 1. Summer, W., (2003). Soil erosion in the Republic of Moldova — the importance of institutional arrangements. Erosion Prediction in Ungauged Basins: Integrating Methods and Techniques (Proceedings of symposium HS01 held during IUGG2003 at Sapporo. July 2003). IAHS Publ. no. 279. 2. Wischmeier, W.H., and Smith, D.D. (1965). Predicting rainfall-erosion losses from cropland east of the Rocky Mountains. Agr. Handbook No. 282, U.S. Dept. Agr., Washington, DC 3. Wischmeier, W.H., and Smith, D.D. (1978). Predicting rainfall erosion losses. Agr. handbook No. 537, U.S. Dept. of Agr., Science and Education Administration.

  9. Evaluation of compost blankets for erosion control from disturbed lands.

    PubMed

    Bhattarai, Rabin; Kalita, Prasanta K; Yatsu, Shotaro; Howard, Heidi R; Svendsen, Niels G

    2011-03-01

    Soil erosion due to water and wind results in the loss of valuable top soil and causes land degradation and environmental quality problems. Site specific best management practices (BMP) are needed to curb erosion and sediment control and in turn, increase productivity of lands and sustain environmental quality. The aim of this study was to investigate the effectiveness of three different types of biodegradable erosion control blankets- fine compost, mulch, and 50-50 mixture of compost and mulch, for soil erosion control under field and laboratory-scale experiments. Quantitative analysis was conducted by comparing the sediment load in the runoff collected from sloped and tilled plots in the field and in the laboratory with the erosion control blankets. The field plots had an average slope of 3.5% and experiments were conducted under natural rainfall conditions, while the laboratory experiments were conducted at 4, 8 and 16% slopes under simulated rainfall conditions. Results obtained from the field experiments indicated that the 50-50 mixture of compost and mulch provides the best erosion control measures as compared to using either the compost or the mulch blanket alone. Laboratory results under simulated rains indicated that both mulch cover and the 50-50 mixture of mulch and compost cover provided better erosion control measures compared to using the compost alone. Although these results indicate that the 50-50 mixtures and the mulch in laboratory experiments are the best measures among the three erosion control blankets, all three types of blankets provide very effective erosion control measures from bare-soil surface. Results of this study can be used in controlling erosion and sediment from disturbed lands with compost mulch application. Testing different mixture ratios and types of mulch and composts, and their efficiencies in retaining various soil nutrients may provide more quantitative data for developing erosion control plans. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Farmers' perceptions of land degradation and their investments in land management: a case study in the Central Rift Valley of Ethiopia.

    PubMed

    Adimassu, Zenebe; Kessler, Aad; Yirga, Chilot; Stroosnijder, Leo

    2013-05-01

    To combat land degradation in the Central Rift Valley (CRV) of Ethiopia, farmers are of crucial importance. If farmers perceive land degradation as a problem, the chance that they invest in land management measures will be enhanced. This study presents farmers' perceptions of land degradation and their investments in land management, and to what extent the latter are influenced by these perceptions. Water erosion and fertility depletion are taken as main indicators of land degradation, and the results show that farmers perceive an increase in both indicators over the last decade. They are aware of it and consider it as a problem. Nevertheless, farmers' investments to control water erosion and soil fertility depletion are very limited in the CRV. Results also show that farmers' awareness of both water erosion and soil fertility decline as a problem is not significantly associated with their investments in land management. Hence, even farmers who perceive land degradation on their fields and are concerned about its increase over the last decade do not significantly invest more in water erosion and soil fertility control measures than farmers who do not perceive these phenomena. Further research is needed to assess which other factors might influence farmers' investments in land management, especially factors related to socioeconomic characteristics of farm households and plot characteristics which were not addressed by this study.

  11. Ascribing soil erosion of hillslope components to river sediment yield.

    PubMed

    Nosrati, Kazem

    2017-06-01

    In recent decades, soil erosion has increased in catchments of Iran. It is, therefore, necessary to understand soil erosion processes and sources in order to mitigate this problem. Geomorphic landforms play an important role in influencing water erosion. Therefore, ascribing hillslope components soil erosion to river sediment yield could be useful for soil and sediment management in order to decrease the off-site effects related to downstream sedimentation areas. The main objectives of this study were to apply radionuclide tracers and soil organic carbon to determine relative contributions of hillslope component sediment sources in two land use types (forest and crop field) by using a Bayesian-mixing model, as well as to estimate the uncertainty in sediment fingerprinting in a mountainous catchment of western Iran. In this analysis, 137 Cs, 40 K, 238 U, 226 Ra, 232 Th and soil organic carbon tracers were measured in 32 different sampling sites from four hillslope component sediment sources (summit, shoulder, backslope, and toeslope) in forested and crop fields along with six bed sediment samples at the downstream reach of the catchment. To quantify the sediment source proportions, the Bayesian mixing model was based on (1) primary sediment sources and (2) combined primary and secondary sediment sources. The results of both approaches indicated that erosion from crop field shoulder dominated the sources of river sediments. The estimated contribution of crop field shoulder for all river samples was 63.7% (32.4-79.8%) for primary sediment sources approach, and 67% (15.3%-81.7%) for the combined primary and secondary sources approach. The Bayesian mixing model, based on an optimum set of tracers, estimated that the highest contribution of soil erosion in crop field land use and shoulder-component landforms constituted the most important land-use factor. This technique could, therefore, be a useful tool for soil and sediment control management strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Dust and chemical erosion biases in cosmogenic nuclide studies: A factor-of-ten problem that could mask strong climatic effects on landscape evolution

    NASA Astrophysics Data System (ADS)

    Riebe, C. S.; Arvin, L.; Ferrier, K.; Aciego, S.

    2017-12-01

    Cosmogenic nuclides have been widely used to quantify erosion in mountain ranges around the world, creating a global database of erosion rates from climatically and lithologically diverse sites, and providing vital clues about how mountain landscape evolution is coupled to Earth's carbon cycle and thus global climate change over geologic timescales. Despite this wealth of data, few studies have observed the widely expected strong control of erosion rates by climatic factors such as precipitation and temperature. Here we show that cosmogenic nuclide studies are prone to biases due to dust deposition and chemical erosion, which together can obscure strong relationships between climate and erosion rates. Erosion rates of sites exposed to intense chemical weathering can be underestimated by two-fold due to chemical enrichment of the cosmogenic target mineral quartz — a result of its high chemical erosion resistance, which increases its residence time and thus reduces its apparent erosion rate compared to other soil minerals. Meanwhile, erosion rates of sites with rapid dust deposition can be overestimated by more than ten-fold, due to dust's contributions to soil mass and target mineral abundance. Compilations of dust fluxes and cosmogenic nuclide data suggest that steep climatic trends in erosion rates, ranging from slow erosion rates in dry settings to twenty-fold faster erosion rates in wet settings, could be largely masked by the combined effects of dust deposition and chemical erosion. We argue that these effects need to be quantified in many cosmogenic nuclide studies of erosion rates. Doing so will require dust input rates; soil depth and density; quartz-enrichment ratios in both saprolite relative to bedrock and soil relative to saprolite; and quartz concentrations in deposited dust. Failure to quantify these crucial parameters can lead to misinterpretation of the strength — and even the sign — of feedbacks between climate and erosion rates in mountain landscapes.

  13. Characteristics of Soil and Organic Carbon Loss Induced by Water Erosion on the Loess Plateau in China

    PubMed Central

    Li, Zhongwu; Nie, Xiaodong; Chang, Xiaofeng; Liu, Lin; Sun, Liying

    2016-01-01

    Soil erosion has been a common environmental problem in the Loess Plateau in China. This study aims to better understand the losses of soil organic carbon (SOC) induced by water erosion. Laboratory-simulated rainfall experiments were conducted to investigate the characteristics of SOC loss induced by water erosion. The applied treatments included two rainfall intensities (90 and 120 mm h-1), four slope gradients (10°, 15°, 20°, and 25°), and two typical soil types- silty clay loam and silty loam. Results showed that the sediment OC enrichment ratios (ERoc) in all the events were relative stable with values ranged from 0.85 to1.21 and 0.64 to 1.52 and mean values of 0.98 and 1.01 for silty clay loam and silty loam, respectively. Similar to the ERoc, the proportions of different sized particles in sediment showed tiny variations during erosion processes. No significant correlation was observed between ERoc values and the proportions of sediment particles. Slope, rainfall intensity and soil type almost had no impact on ERoc. These results indicate that the transportation of SOC during erosion processes was nonselective. While the mean SOC loss rates for the events of silty clay loam and silty loam were 0.30 and 0.08 g m-2 min-1, respectively. Greater differences in SOC loss rates were found in events among different soil types. Meanwhile, significant correlations between SOC loss and soil loss for all the events were observed. These results indicated that the amount of SOC loss was influenced primarily by soil loss and the SOC content of the original soil. Erosion pattern and original SOC content are two main factors by which different soils can influence SOC loss. It seems that soil type has a greater impact on SOC loss than rainfall characteristics on the Loess Plateau of China. However, more kinds of soils should be further studied due to the special formation processes in the Loess Plateau. PMID:27124482

  14. Characteristics of Soil and Organic Carbon Loss Induced by Water Erosion on the Loess Plateau in China.

    PubMed

    Li, Zhongwu; Nie, Xiaodong; Chang, Xiaofeng; Liu, Lin; Sun, Liying

    2016-01-01

    Soil erosion has been a common environmental problem in the Loess Plateau in China. This study aims to better understand the losses of soil organic carbon (SOC) induced by water erosion. Laboratory-simulated rainfall experiments were conducted to investigate the characteristics of SOC loss induced by water erosion. The applied treatments included two rainfall intensities (90 and 120 mm h-1), four slope gradients (10°, 15°, 20°, and 25°), and two typical soil types- silty clay loam and silty loam. Results showed that the sediment OC enrichment ratios (ERoc) in all the events were relative stable with values ranged from 0.85 to1.21 and 0.64 to 1.52 and mean values of 0.98 and 1.01 for silty clay loam and silty loam, respectively. Similar to the ERoc, the proportions of different sized particles in sediment showed tiny variations during erosion processes. No significant correlation was observed between ERoc values and the proportions of sediment particles. Slope, rainfall intensity and soil type almost had no impact on ERoc. These results indicate that the transportation of SOC during erosion processes was nonselective. While the mean SOC loss rates for the events of silty clay loam and silty loam were 0.30 and 0.08 g m-2 min-1, respectively. Greater differences in SOC loss rates were found in events among different soil types. Meanwhile, significant correlations between SOC loss and soil loss for all the events were observed. These results indicated that the amount of SOC loss was influenced primarily by soil loss and the SOC content of the original soil. Erosion pattern and original SOC content are two main factors by which different soils can influence SOC loss. It seems that soil type has a greater impact on SOC loss than rainfall characteristics on the Loess Plateau of China. However, more kinds of soils should be further studied due to the special formation processes in the Loess Plateau.

  15. Soil erosion measurements under organic and conventional land use treatments and different tillage systems using micro-scale runoff plots and a portable rainfall simulator

    NASA Astrophysics Data System (ADS)

    Seitz, Steffen; Goebes, Philipp; Song, Zhengshan; Wittwer, Raphaël; van der Heijden, Marcel; Scholten, Thomas

    2015-04-01

    Soil erosion is a major environmental problem of our time and negatively affects soil organic matter (SOM), aggregate stability or nutrient availability for instance. It is well known that agricultural practices have a severe influence on soil erosion by water. Several long-term field trials show that the use of low input strategies (e.g. organic farming) instead of conventional high-input farming systems leads to considerable changes of soil characteristics. Organic farming relies on crop rotation, absence of agrochemicals, green manure and weed control without herbicides. As a consequence, SOM content in the top soil layer is usually higher than on arable land under conventional use. Furthermore, the soil surface is better protected against particle detachment and overland flow due to a continuous vegetation cover and a well-developed root system increases soil stability. Likewise, tillage itself can cause soil erosion on arable land. In this respect, conservation and reduced tillage systems like No-Till or Ridge-Till provide a protecting cover from the previous year's residue and reduce soil disturbance. Many studies have been carried out on the effect of farming practices on soil erosion, but with contrasting results. To our knowledge, most of those studies rely on soil erosion models to calculate soil erosion rates and replicated experimental field measurement designs are rarely used. In this study, we performed direct field assessment on a farming system trial in Rümlang, Switzerland (FAST: Farming System and Tillage experiment Agroscope) to investigate the effect of organic farming practises and tillage systems on soil erosion. A portable single nozzle rainfall simulator and a light weight tent have been used with micro-scale runoff plots (0.4 m x 0.4 m). Four treatments (Conventional/Tillage, Conventional/No-Tillage, Organic/Tillage, Organic/Reduced-tillage) have been sampled with 8 replications each for a total of 32 runoff plots. All plots have been distributed randomly within the treatments. Linear mixed effect modelling was used to examine the effects of the treatments on sediment discharge and surface runoff. Results were compared with recent findings from erosion models and laboratory studies. Results show that sediment discharge is significantly higher (59 %, p=0.018) on conventional treatments (31.8 g/m2/h) than on organic treatments (20.0 g/m2/h). This finding supports results from several studies, which found soil erosion rates from 18 % to 184 % higher on conventional than on organic treatments. Under both farming systems, ploughed treatments show higher sediment discharge (conventional farming: 104 %, organic farming: 133 %, p=0.004) than treatments with reduced or no tillage. Runoff volume did not show significant effects in our treatments. An interaction between the farming practice and the tillage system could not be found, which strengthens the importance of both. With the help of a well-replicated micro-scale runoff plot design and a portable rainfall simulator we were able to gather reliable soil erosion data in situ in short term and without external parameterization. Our field assessment shows that organic farming and reduced tillage practices protect agricultural land best against soil erosion.

  16. Determination of Soil Erosion Risk in the Mustafakemalpasa River Basin, Turkey, Using the Revised Universal Soil Loss Equation, Geographic Information System, and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Ozsoy, Gokhan; Aksoy, Ertugrul; Dirim, M. Sabri; Tumsavas, Zeynal

    2012-10-01

    Sediment transport from steep slopes and agricultural lands into the Uluabat Lake (a RAMSAR site) by the Mustafakemalpasa (MKP) River is a serious problem within the river basin. Predictive erosion models are useful tools for evaluating soil erosion and establishing soil erosion management plans. The Revised Universal Soil Loss Equation (RUSLE) function is a commonly used erosion model for this purpose in Turkey and the rest of the world. This research integrates the RUSLE within a geographic information system environment to investigate the spatial distribution of annual soil loss potential in the MKP River Basin. The rainfall erosivity factor was developed from local annual precipitation data using a modified Fournier index: The topographic factor was developed from a digital elevation model; the K factor was determined from a combination of the soil map and the geological map; and the land cover factor was generated from Landsat-7 Enhanced Thematic Mapper (ETM) images. According to the model, the total soil loss potential of the MKP River Basin from erosion by water was 11,296,063 Mg year-1 with an average soil loss of 11.2 Mg year-1. The RUSLE produces only local erosion values and cannot be used to estimate the sediment yield for a watershed. To estimate the sediment yield, sediment-delivery ratio equations were used and compared with the sediment-monitoring reports of the Dolluk stream gauging station on the MKP River, which collected data for >41 years (1964-2005). This station observes the overall efficiency of the sediment yield coming from the Orhaneli and Emet Rivers. The measured sediment in the Emet and Orhaneli sub-basins is 1,082,010 Mg year-1 and was estimated to be 1,640,947 Mg year-1 for the same two sub-basins. The measured sediment yield of the gauge station is 127.6 Mg km-2 year-1 but was estimated to be 170.2 Mg km-2 year-1. The close match between the sediment amounts estimated using the RUSLE-geographic information system (GIS) combination and the measured values from the Dolluk sediment gauge station shows that the potential soil erosion risk of the MKP River Basin can be estimated correctly and reliably using the RUSLE function generated in a GIS environment.

  17. Manure and tillage use in remediation of eroded land and impacts on soil chemical properties

    USDA-ARS?s Scientific Manuscript database

    Soil loss through wind and water erosion is an ongoing problem in semiarid regions. A thin layer of top soil loss over a hectare of cropland could be corresponding to tons of productive soil loss per hectare. The objectives of this study were to evaluate the influence of beef feedlot manure, tilla...

  18. Evaluation and field verification of strength and structural improvement of chemically stabilized subgrade soil.

    DOT National Transportation Integrated Search

    2008-07-01

    Often subgrade soils exhibit properties, particularly strength and/or volume change properties that limit their performance as a support element for pavements. : Typical problems include shrink-swell, settlement, collapse, erosion or simply insuffici...

  19. Communicating and Visualizing Erosion-associated Risks to Infrastructure

    NASA Astrophysics Data System (ADS)

    Hewett, Caspar; Simpson, Carolyn; Wainwright, John

    2016-04-01

    Soil erosion is a major problem worldwide, affecting agriculture, the natural environment and urban areas through its impact on flood risk, water quality, loss of nutrient-rich upper soil layers, eutrophication of water bodies, sedimentation of waterways and sediment-related damage to roads, buildings and infrastructure such as water, gas and electricity supply networks. This study focuses on risks to infrastructure associated with erosion and the interventions needed to reduce those risks. Deciding on what interventions to make means understanding better which parts of the landscape are most susceptible to erosion and which measures are most effective in reducing it. Effective ways of communicating mitigation strategies to stakeholders such as farmers, land managers and policy-makers are then essential if interventions are to be implemented. Drawing on the Decision-Support Matrix (DSM) approach which combines a set of hydrological principles with Participatory Action Research (PAR), a decision-support tool for Communicating and Visualizing Erosion-Associated Risks to Infrastructure (CAVERTI) was developed. The participatory component was developed with the Wear Rivers Trust, focusing on a case-study area in the North East of England. The CAVERTI tool brings together process understanding gained from modelling with knowledge and experience of a variety of stakeholders to address directly the problem of sediment transport. Development of the tool was a collaborative venture, ensuring that the problems and solutions presented are easily recognised by practitioners and decision-makers. This recognition, and ease of access via a web-based interface, in turn help to ensure that the tools get used. The web-based tool developed helps to assess, manage and improve understanding of risk from a multi-stakeholder perspective and proposes solutions to problems. We argue that visualization and communication tools co-developed by researchers and stakeholders are the best means of ensuring that mitigation measures are undertaken across the landscape to reduce soil erosion. The CAVERTI tool has proven to be an effective means of encouraging farmers and land owners to act to reduce erosion, providing multiple benefits from protecting local infrastructure to reducing pollution of waterways.

  20. Topographic changes detection through Structure-from-Motion in agricultural lands affected by erosion processes

    NASA Astrophysics Data System (ADS)

    Prosdocimi, Massimo; Pradetto Sordo, Nicoletta; Burguet, Maria; Di Prima, Simone; Terol Esparza, Enric; Tarolli, Paolo; Cerdà, Artemi

    2016-04-01

    Throughout the world, soil erosion by water is a serious problem, especially in semi-arid and semi-humid areas (Cerdà et al., 2009; Cerdan et al., 2010; García-Ruiz, 2010). Although soil erosion by water consists of physical processes that vary significantly in severity and frequency according to when and where they occur, they are also strongly influenced by anthropic factors such as land-use changes on large scales and unsustainable farming practices (Boardman et al., 1990; Cerdà 1994; Montgomery, 2007). Tillage operations, combined with weather conditions, are recognized to primarily influence soil erosion rates. If, on one hand, tillage operations cause uniform changes based on the tool used, on the other, weather conditions, such as rainfalls, produce more random changes, less easily traceable (Snapir et al., 2014). Within this context, remote-sensing technologies can facilitate the detection and quantification of these topographic changes. In particular, a real opportunity and challenge is offered by the low-cost and flexible photogrammetric technique, called 'Structure-from-Motion' (SfM), combined with the use of smartphones (Micheletti et al., 2014; Prosdocimi et al., 2015). This represents a significant advance compared with more expensive technologies and applications (e.g. Terrestrial Laser Scanner - TLS) (Tarolli, 2014). This work wants to test the Structure from Motion to obtain high-resolution topography for the detection of topographic changes in agricultural lands affected by erosion processes. Two case studies were selected: i) a tilled plot characterized by bare soil and affected by rill erosion located in the hilly countryside of Marche region (central Italy), and ii) a Mediterranean vineyard located within the province of Valencia (south eastern Spain) where rainfall simulation experiments were carried out. Extensive photosets were obtained by using one standalone reflex digital camera and one smartphone built-in digital camera. Digital Terrain Models (DTMs) derived from the smartphone reveled to be comparable to DTMs derived from the reflex camera. The results underlined the effectiveness of SfM for detecting topographic changes in agricultural lands affected by erosion processes, even when pictures are taken from a smartphone. This methodology could be very useful for farmers and/or technician for post-event analyses of erosion processes to implement technical measures to mitigate the problem of soil erosion by water. Acknowledgements The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603498 (RECARE project) References Boardman, J., Foster, I.D.L., Dearing, J.A., 1990. Soil Erosion on Agricultural Land. John Wiley and Sons Ltd., Chichester. Cerdà, A., 1994. The response of abandoned terraces to simulated rain, in: Rickson, R.J., (Ed.), Conserving Soil Resources: European Perspective, CAB International, Wallingford, pp. 44-55. Cerdà, A., Flanagan, D.C., Le Bissonnais, Y., Boardman, J., 2009. Soil erosion and agriculture. Soil & Tillage Research 106, 107-108. Cerdan, O., Govers, G., Le Bissonnais, Y., Van Oost, K., Poesen, J., Saby, N., Gobin, A., Vacca, A., Quinton, J., Auerwald, K., Klik, A., Kwaad, F.J.P.M., Raclot, D., Ionita, I., Rejman, J., Rousseva, S., Muxart, T., Roxo, M.J., Dostal, T., 2010. Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology 122, 167-177. Garcìa-Ruiz, J.M., 2010. The effects of land uses on soil erosion in Spain: A review. Catena 81, 1-11. Micheletti, N., Chandler, J.H., Lane, S.N., 2014. Investigating the geomorphological potential of freely available and accessible Structure-from-Motion photogrammetry using a smartphone. Earth Surface Processes and Landforms 40(4), 473-486. DOI: 10.1002/esp.3648 Montgomery, D.R., 2007. Soil erosion and agricultural sustainability. PNAS 104, 13268-13272. Prosdocimi, M., Calligaro, S., Sofia, G., Dalla Fontana, G., Tarolli, P., 2015. Bank rosion in agricultural drainage networks: new challenges from structure-from-motion photogrammetry for post-event analysis. Earth Surface Prosses and Landform 40(14), 1891-1906. DOI: 10.1002/esp.3767. Snapir, B., Hobbs, S., Waine, T.W., 2014. Roughness measurements over an agricultural soil surface with Structure from Motion. ISPRS Journal of Photogrammetry and Remote Sensing 96, 210-223. Tarolli, P., 2014. High-resolution topography for understanding Earth surface processes: opportunities and challenges. Geomorphology 216, 295-312.

  1. Utilisation of Indian Remote Sensing Satellite (IRS) data for assessment of soil erosion process of a watershed in Chhotanagpur plateau region, India

    NASA Astrophysics Data System (ADS)

    Pramod Krishna, Akhouri

    A watershed in Chhotanagpur plateau region was investigated utilizing space data from Indian Remote Sensing (IRS) Satellite towards spatial and temporal soil erosion process study. Geomorphologically, this plateau region is an undulating pediplain. The watershed namely Potpoto river watershed covering an area of 8160 hectares is situated in the vicinity of Ranchi, capital city of newly created Jharkahnd state. As per the national watershed atlas, Potpoto river is a tributary of Subarnarekha river system within the Upper Subarnarekha river basin under watershed no. 4H3C8. This rural to semi-urban watershed is important towards various services to Ranchi city as well as experiencing direct or indirect pressures of development. Drivers of land use changes at ground level are responsible for change in soil erosion rates in any watershed in coupled human-environment systems. This may adversely affect the soil cover of such watersheds depicted through changed rates of erosion. In a rural to semi-urban watershed like this, there are general tendencies of land use and thereby land cover changes from forests to agricultural lands, within agricultural land in terms of cropping pattern changes to cash-crops, orchards, commercial plantations and conversions to other land use categories as well towards infrastructure expansions. Universal Soil Loss Equation (USLE) was used as a basis to observe the intensity of erosion using remote sensing, rainfall data, soil data and land use/land cover map. IRS1C LISSIII and IRSP6 LISSIII data were used to identify land use status for the years 1996 and 2004 respectively. LISSIII sensor provides data in the visible to near infrared (Bands 2, 3, 4) as well as short wave infrared (Band 5) range of electromagnetic spectrum. In this study, bands 2 (0.52-0.59 microns), 3 (0.62-0.68 microns) and 4 (0.77-0.86 microns) were used with spatial resolution of 23.5 meters at nadir. Digital image processing was carried out using ERDAS Imagine software. Based on maximum likelihood classifier, the study area was classified into suitable land use/land cover classes. Digital elevation model (DEM) was created through contour heights from topographic maps. Watershed based erosion estimation was carried out including assessment of soil erosion due to land use land cover changes. This provides predictive assessment capability in soil erosion studies particularly with methods such as USLE. Soil erosion problem varies largely depending upon climate, topography, soil and land use etc. Multi-factor computations on rainfall erosivity, soil erodibility, topographic, cover and management, and conservation practice were carried out. Quantified details on soil erosion rates were generated in terms of land use land cover classes of the watershed for the years 1996 and 2004. Annual average soil loss for the watershed was calculated and erosion intensity maps were generated. Thus, space data utilized from the satellites IRS1C LISSIII and IRSP6 LISSIII greatly helped in important research assessment of an important land surface process like soil erosion spatially as well as temporally for a watershed under pressures of development, land use changes and land cover fragmentations.

  2. Applications of WEPS and SWEEP to non-agricultural lands

    USDA-ARS?s Scientific Manuscript database

    Soil erosion by wind is a serious problem on agricultural lands throughout the United States and the world. Dust from wind erosion obscures visibility and pollutes the air. It fills road ditches where it can impact water quality, causes automobile accidents, fouls machinery, and imperils animal an...

  3. Spatial distribution and hazard degree of soil erosion of sloping croplands in northeast China

    NASA Astrophysics Data System (ADS)

    Zhang, T.

    2017-12-01

    Soil erosion is causing damage to the sloping croplands of northeast China and threatening the food security of the nation. However, little is known about the problem in macro scale. This study aims to investigate the area, slope gradient, soil erosion rate and year limit of erosion of the sloping croplands in whole northeast China and different geomorphologic regions, soil types, watersheds and administrative divisions of it, to estimate quantitatively the necessity and urgency of soil conservation and to offer advices. Meteorological data, topography data, geomorphology data, soil data and landuse data were collected. The China Soil Loss Equation was applied. The results indicated that: (1) Total area of the sloping croplands of northeast China is 195000 km2. They mainly distributed in Changbai mountainous region, eastern Songnen plain and Daxinganling mountainous region, with dark-brown earth, black soil and brown earth as main soil types. Total area of the sloping croplands steeper than 5 degree is 31000 km2. They mainly distributed in the mountain regions, with dark-brown earth and brown earth as main soil types. (2) The soil erosion rates of 92% of the sloping croplands have exceeded the soil loss tolerance in the national standard (0.15 mm/a). These croplands need to be conserved. The A horizon depths of 66% of the sloping croplands are less than 30 cm , while the year limit of A horizon erosion of 59% of the sloping croplands are less than 100 a. These croplands need to be conserved immediately. (3) Contour farming is suitable to 84% of the sloping croplands and deserves more attention. The sloping croplands steeper than 15 degree and those located in the aeolian sandy soil and some others soil types contributed little in grain production with high hazard degrees of erosion and should be reused for other purposes, as soon as possible. (4) The Changbai mountainous region, Daxinganling mountainous region, the dark-brown earth region and the brown earth region are the key regions, difficult regions and priority regions of the conversation work and deserve more attention. (5) The load, difficulty and urgency of the conservation work varies widely among counties. Therefore, each county should be dealt with on its individual merits, but not as the same case.

  4. Evaluation of a model framework to estimate soil and soil organic carbon redistribution by water and tillage using 137Cs in two U.S. Midwest agricultural fields

    USGS Publications Warehouse

    Young, Claudia J.; Liu, Shuguang; Schumacher, Joseph A.; Schumacher, Thomas E.; Kaspar, Thomas C.; McCarty, Gregory W.; Napton, Darrell; Jaynes, Dan B.

    2014-01-01

    Cultivated lands in the U.S. Midwest have been affected by soil erosion, causing soil organic carbon (SOC) redistribution in the landscape and other environmental and agricultural problems. The importance of SOC redistribution on soil productivity and crop yield, however, is still uncertain. In this study, we used a model framework, which includes the Unit Stream Power-based Erosion Deposition (USPED) and the Tillage Erosion Prediction (TEP) models, to understand the soil and SOC redistribution caused by water and tillage erosion in two agricultural fields in the U.S. Midwest. This model framework was evaluated for different digital elevation model (DEM) spatial resolutions (10-m, 24-m, 30-m, and 56-m) and topographic exponents (m = 1.0–1.6 and n = 1.0–1.3) using soil redistribution rates from 137Cs measurements. The results showed that the aggregated 24-m DEM, m = 1.4 and n = 1.0 for rill erosion, and m = 1.0 and n = 1.0 for sheet erosion, provided the best fit with the observation data at both sites. Moreover, estimated average SOC redistributions were 1.3 ± 9.8 g C m− 2 yr− 1 in field site 1 and 3.6 ± 14.3 g C m− 2 yr− 1 in field site 2. Spatial distribution patterns showed SOC loss (negative values) in the eroded areas and SOC gain (positive value) in the deposition areas. This study demonstrated the importance of the spatial resolution and the topographic exponents to estimate and map soil redistribution and the SOC dynamics throughout the landscape, helping to identify places where erosion and deposition from water and tillage are occurring at high rates. Additional research is needed to improve the application of the model framework for use in local and regional studies where rainfall erosivity and cover management factors vary. Therefore, using this model framework can help to improve the information about the spatial distribution of soil erosion across agricultural landscapes and to gain a better understanding of SOC dynamics within eroding and previously eroded fields.

  5. 7Be and hydrological model for more efficient implementation of erosion control measure

    NASA Astrophysics Data System (ADS)

    Al-Barri, Bashar; Bode, Samuel; Blake, William; Ryken, Nick; Cornelis, Wim; Boeckx, Pascal

    2014-05-01

    Increased concern about the on-site and off-site impacts of soil erosion in agricultural and forested areas has endorsed interest in innovative methods to assess in an unbiased way spatial and temporal soil erosion rates and redistribution patterns. Hence, interest in precisely estimating the magnitude of the problem and therefore applying erosion control measures (ECM) more efficiently. The latest generation of physically-based hydrological models, which fully couple overland flow and subsurface flow in three dimensions, permit implementing ECM in small and large scales more effectively if coupled with a sediment transport algorithm. While many studies focused on integrating empirical or numerical models based on traditional erosion budget measurements into 3D hydrological models, few studies evaluated the efficiency of ECM on watershed scale and very little attention is given to the potentials of environmental Fallout Radio-Nuclides (FRNs) in such applications. The use of FRN tracer 7Be in soil erosion/deposition research proved to overcome many (if not all) of the problems associated with the conventional approaches providing reliable data for efficient land use management. This poster will underline the pros and cones of using conventional methods and 7Be tracers to evaluate the efficiency of coconuts dams installed as ECM in experimental field in Belgium. It will also outline the potentials of 7Be in providing valuable inputs for evolving the numerical sediment transport algorithm needed for the hydrological model on field scale leading to assess the possibility of using this short-lived tracer as a validation tool for the upgraded hydrological model on watershed scale in further steps. Keywords: FRN, erosion control measures, hydrological modes

  6. The use of pruned chipped branches to increase the soil infiltration capacity and reduce the soil losses on citrus orchards in Eastern Spain

    NASA Astrophysics Data System (ADS)

    González-Pelayo, Óscar; Llovet, Joan; Giménez-Morera, Antonio; Jordán, Antonio; Pereira, Paulo; Novara, Agata; García-Orenes, Fuensanta; Cerdà, Artemi

    2015-04-01

    Soil water erosion is causing problems on the agriculture land of the world. The high erosion rates registered in the agriculture land are due to the lack of a vegetation cover that protects the soil. High erosion rates in agriculture lands are found in Africa, Europe, Asia, and any other continent. Soil erosion on citrus orchards has been researched recently and shown huge erosion rates in the Mediterranean and in China. All this research findings allow us to confirm that the soil erosion rates on citrus orchards are not sustainable and strategies to control the soil erosion should be applied. The increasing erosion rates are due to the bare soils, but also are due to the soil structure degradation and soil organic matter exhaustion. Some authors applied cover on crops to avoid the raindrop impact and the surfaces wash but there is a need to develop new strategies to reduce soil losses and keep sustainable the citrus productions. The agriculture production also results in a large amount of residues than can be a resource to improve the soil cover. This has been done in road embankments, in forest land affected by wildfires and on afforestation. As a consequence of the mechanization of the agriculture, and the reduction of the draft animals (mainly horses, mules, donkeys and oxen), the straw and the pruned branches are being a residue instead of a resource in many developed countries. Straw was used as a forage and the pruned branches as a source of heat and energy but both can be used as a mulch to control the soil erosion. The pruned branches can contribute with a valuable source of nutrients and a good soil protection. The leaves of the trees, and some parts of the plants, once harvest can contribute to reduce the soil losses. Our goal is to test if a residue such as the chipped pruned branches can be transformed as a resource that will help to control the soil erosion rates. Straw has been seen as a very efficient to reduce the water losses in agriculture land, the soil losses in fire affected land, improving soil properties, but very little is done in active citrus orchards plantations. On this study, forty rainfall simulations under 55 mm h-1 rainfall intensity during one hour, were carried out on 0,25 m2 microplots: bare (n=20) and covered with chipped pruned branches (n=20). The plots covered with the chipped branches had different mulch cover; ranging from 0 to 100 % cover and from 0 g m2 to 465 g m2. The results show a positive effect of the chipped pruned branches that reduce the soil losses to 10 % of the bare soils after a mulch cover of 25 %. It shows an exponential relation between the straw cover and weight, with the sediment yield. Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and RECARE FP7 n° 603498 supported this research.

  7. Relative contributions of wind and water erosion to total soil loss and its effect on soil properties in sloping croplands of the Chinese Loess Plateau.

    PubMed

    Tuo, Dengfeng; Xu, Mingxiang; Gao, Guangyao

    2018-08-15

    Wind and water erosion are two dominant types of erosion that lead to soil and nutrient losses. Wind and water erosion may occur simultaneously to varying extents in semi-arid regions. The contributions of wind and water erosion to total erosion and their effects on soil quality, however, remains elusive. We used cesium-137 ( 137 Cs) inventories to estimate the total soil erosion and used the Revised Universal Soil Loss Equation (RUSLE) to quantify water erosion in sloping croplands. Wind erosion was estimated from the subtraction of the two. We also used 137 Cs inventories to calculate total soil erosion and validate the relationships of the soil quality and erosion at different slope aspects and positions. The results showed that wind erosion (1460tkm -2 a -1 ) on northwest-facing slope was responsible for approximately 39.7% of the total soil loss, and water erosion (2216tkm -2 a -1 ) accounted for approximately 60.3%. The erosion rates were 58.8% higher on northwest- than on southeast-facing slopes. Northwest-facing slopes had lower soil organic carbon, total nitrogen, clay, and silt contents than southeast-facing slopes, and thus, the 137 Cs inventories were lower, and the total soil erosions were higher on the northwest-facing slopes. The variations in soil physicochemical properties were related to total soil erosion. The lowest 137 Cs inventories and nutrient contents were recorded at the upper positions on the northwest-facing slopes due to the successive occurrence of more severe wind and water erosion at the same site. The results indicated that wind and water could accelerate the spatial variability of erosion rate and soil properties and cause serious decreases in the nutrient contents in sloping fields. Our research could help researchers develop soil strategies to reduce soil erosion according to the dominant erosion type when it occurs in a hilly agricultural area. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. A Biogeotechnical engineering approach to Combat Desertification

    NASA Astrophysics Data System (ADS)

    Chang, I.; Im, J.; Cho, G. C.; Lee, S. J.

    2016-12-01

    The acceleration of global warming is not only inducing rising sea levels and abnormal climate problems, but also geotechnical hazards such as desertification. Recently, 30% of Earth's dry land has been affected by desertification, and approximately 850 million people are suffering due to famine, poverty, and hygiene problems induced by desertification. Global warming and unsustainable land development are known to be major triggers promoting desertification. Numerous global agencies and companies are thus contributing to anti-desertification movements. However, tree planting alone is not an ideal solution given that it takes approximately 2 3 years for stabilization. It is thus imperative to develop innovative technology that can promote vegetation growth and improve soil erosion resistance. In this study, a unique soil treatment and anti-desertification method is developed using microbial biopolymers. Biopolymers can effectively strengthen soil and improve durability. In particular, anionic-hydrophilic biopolymers delay water evaporation, thereby retaining a higher soil moisture condition compared to non-treated soil. Results of this study show that microbial biopolymer treatment is highly effective in improving both vegetation growth (3 times faster) and soil erosion resistance (less than 2%), compared to untreated earth surfaces.

  9. Soil erosion evolution and spatial correlation analysis in a typical karst geomorphology using RUSLE with GIS

    NASA Astrophysics Data System (ADS)

    Zeng, Cheng; Wang, Shijie; Bai, Xiaoyong; Li, Yangbing; Tian, Yichao; Li, Yue; Wu, Luhua; Luo, Guangjie

    2017-07-01

    Although some scholars have studied soil erosion in karst landforms, analyses of the spatial and temporal evolution of soil erosion and correlation analyses with spatial elements have been insufficient. The lack of research has led to an inaccurate assessment of environmental effects, especially in the mountainous area of Wuling in China. Soil erosion and rocky desertification in this area influence the survival and sustainability of a population of 0.22 billion people. This paper analyzes the spatiotemporal evolution of soil erosion and explores its relationship with rocky desertification using GIS technology and the revised universal soil loss equation (RUSLE). Furthermore, this paper analyzes the relationship between soil erosion and major natural elements in southern China. The results are as follows: (1) from 2000 to 2013, the proportion of the area experiencing micro-erosion and mild erosion was at increasing risk in contrast to areas where moderate and high erosion are decreasing. The area changes in this time sequence reflect moderate to high levels of erosion tending to convert into micro-erosion and mild erosion. (2) The soil erosion area on the slope, at 15-35°, accounted for 60.59 % of the total erosion area, and the corresponding soil erosion accounted for 40.44 %. (3) The annual erosion rate in the karst region decreased much faster than in the non-karst region. Soil erosion in all of the rock outcrop areas indicates an improving trend, and dynamic changes in soil erosion significantly differ among the various lithological distribution belts. (4) The soil erosion rate decreased in the rocky desertification regions, to below moderate levels, but increased in the severe rocky desertification areas. The temporal and spatial variations in soil erosion gradually decreased in the study area. Differences in the spatial distribution between lithology and rocky desertification induced extensive soil loss. As rocky desertification became worse, the erosion modulus decreased and the decreasing rate of annual erosion slowed.

  10. NASA applications project in Miami County, Indiana

    NASA Technical Reports Server (NTRS)

    Fernandez, R. Norberto; Lozano-Garcia, D. Fabian; Wyss, Phillip J.; Johannsen, Chris J.

    1989-01-01

    The study site selection is intended to serve all of the different research areas within the project, i.e., soil conditions, soil management, etc. There are seven major soil associations or soils formed on similar landscapes in the Miami Co., and over 38 soil series that were mapped. Soil sampling was conducted in some sites because of its variability in soils and cover types, variable topography, and presence of erosion problems. Results from analysis of these soil data is presented.

  11. Study On The Application Of CBERS-02B To Quantitative Soil Erosion Monitoring

    NASA Astrophysics Data System (ADS)

    Shi, Mingchang; Xu, Jing; Wang, Lei; Wang, Xiaoyun; Mu, Jing

    2010-10-01

    Currently, the reduction of soil erosion is an important prerequisite for achieving ecological security. Since real-time and quantitative evaluation on regional soil erosion plays a significant role in reducing the soil erosion, soil erosion models are more and more widely used. Based on RUSLE model, this paper carries out the quantitative soil erosion monitoring in the Xi River Basin and its surrounding areas by using CBERS-02B CCD, DEM, TRMM and other data. Besides, it performs the validation for monitoring results by using remote sensing investigation results in 2005. The monitoring results show that in 2009, the total amount of soil erosion in the study area was 1.94×106t, the erosion area was 2055.2km2 (54.06% of the total area), and the average soil erosion modulus was 509.7t km-2 a-1. As a case using CBERS-02B data for quantitative soil erosion monitoring, this study provides experience on the application of CBERS-02B data in the field of quantitative soil erosion monitoring and also for local soil erosion management.

  12. Rainfall simulation and Structure-from-Motion photogrammetry for the analysis of soil water erosion in Mediterranean vineyards.

    PubMed

    Prosdocimi, Massimo; Burguet, Maria; Di Prima, Simone; Sofia, Giulia; Terol, Enric; Rodrigo Comino, Jesús; Cerdà, Artemi; Tarolli, Paolo

    2017-01-01

    Soil water erosion is a serious problem, especially in agricultural lands. Among these, vineyards deserve attention, because they constitute for the Mediterranean areas a type of land use affected by high soil losses. A significant problem related to the study of soil water erosion in these areas consists in the lack of a standardized procedure of collecting data and reporting results, mainly due to a variability among the measurement methods applied. Given this issue and the seriousness of soil water erosion in Mediterranean vineyards, this works aims to quantify the soil losses caused by simulated rainstorms, and compare them with each other depending on two different methodologies: (i) rainfall simulation and (ii) surface elevation change-based, relying on high-resolution Digital Elevation Models (DEMs) derived from a photogrammetric technique (Structure-from-Motion or SfM). The experiments were carried out in a typical Mediterranean vineyard, located in eastern Spain, at very fine scales. SfM data were obtained from one reflex camera and a smartphone built-in camera. An index of sediment connectivity was also applied to evaluate the potential effect of connectivity within the plots. DEMs derived from the smartphone and the reflex camera were comparable with each other in terms of accuracy and capability of estimating soil loss. Furthermore, soil loss estimated with the surface elevation change-based method resulted to be of the same order of magnitude of that one obtained with rainfall simulation, as long as the sediment connectivity within the plot was considered. High-resolution topography derived from SfM revealed to be essential in the sediment connectivity analysis and, therefore, in the estimation of eroded materials, when comparing them to those derived from the rainfall simulation methodology. The fact that smartphones built-in cameras could produce as much satisfying results as those derived from reflex cameras is a high value added for using SfM. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Possibilities of the particle finite element method for fluid-soil-structure interaction problems

    NASA Astrophysics Data System (ADS)

    Oñate, Eugenio; Celigueta, Miguel Angel; Idelsohn, Sergio R.; Salazar, Fernando; Suárez, Benjamín

    2011-09-01

    We present some developments in the particle finite element method (PFEM) for analysis of complex coupled problems in mechanics involving fluid-soil-structure interaction (FSSI). The PFEM uses an updated Lagrangian description to model the motion of nodes (particles) in both the fluid and the solid domains (the later including soil/rock and structures). A mesh connects the particles (nodes) defining the discretized domain where the governing equations for each of the constituent materials are solved as in the standard FEM. The stabilization for dealing with an incompressibility continuum is introduced via the finite calculus method. An incremental iterative scheme for the solution of the non linear transient coupled FSSI problem is described. The procedure to model frictional contact conditions and material erosion at fluid-solid and solid-solid interfaces is described. We present several examples of application of the PFEM to solve FSSI problems such as the motion of rocks by water streams, the erosion of a river bed adjacent to a bridge foundation, the stability of breakwaters and constructions sea waves and the study of landslides.

  14. Determination of soil erosion risk in the Mustafakemalpasa River Basin, Turkey, using the revised universal soil loss equation, geographic information system, and remote sensing.

    PubMed

    Ozsoy, Gokhan; Aksoy, Ertugrul; Dirim, M Sabri; Tumsavas, Zeynal

    2012-10-01

    Sediment transport from steep slopes and agricultural lands into the Uluabat Lake (a RAMSAR site) by the Mustafakemalpasa (MKP) River is a serious problem within the river basin. Predictive erosion models are useful tools for evaluating soil erosion and establishing soil erosion management plans. The Revised Universal Soil Loss Equation (RUSLE) function is a commonly used erosion model for this purpose in Turkey and the rest of the world. This research integrates the RUSLE within a geographic information system environment to investigate the spatial distribution of annual soil loss potential in the MKP River Basin. The rainfall erosivity factor was developed from local annual precipitation data using a modified Fournier index: The topographic factor was developed from a digital elevation model; the K factor was determined from a combination of the soil map and the geological map; and the land cover factor was generated from Landsat-7 Enhanced Thematic Mapper (ETM) images. According to the model, the total soil loss potential of the MKP River Basin from erosion by water was 11,296,063 Mg year(-1) with an average soil loss of 11.2 Mg year(-1). The RUSLE produces only local erosion values and cannot be used to estimate the sediment yield for a watershed. To estimate the sediment yield, sediment-delivery ratio equations were used and compared with the sediment-monitoring reports of the Dolluk stream gauging station on the MKP River, which collected data for >41 years (1964-2005). This station observes the overall efficiency of the sediment yield coming from the Orhaneli and Emet Rivers. The measured sediment in the Emet and Orhaneli sub-basins is 1,082,010 Mg year(-1) and was estimated to be 1,640,947 Mg year(-1) for the same two sub-basins. The measured sediment yield of the gauge station is 127.6 Mg km(-2) year(-1) but was estimated to be 170.2 Mg km(-2) year(-1). The close match between the sediment amounts estimated using the RUSLE-geographic information system (GIS) combination and the measured values from the Dolluk sediment gauge station shows that the potential soil erosion risk of the MKP River Basin can be estimated correctly and reliably using the RUSLE function generated in a GIS environment.

  15. Dynamics of Soil Organic Carbon and Microbial Biomass Carbon in Relation to Water Erosion and Tillage Erosion

    PubMed Central

    Xiaojun, Nie; Jianhui, Zhang; Zhengan, Su

    2013-01-01

    Dynamics of soil organic carbon (SOC) are associated with soil erosion, yet there is a shortage of research concerning the relationship between soil erosion, SOC, and especially microbial biomass carbon (MBC). In this paper, we selected two typical slope landscapes including gentle and steep slopes from the Sichuan Basin, China, and used the 137Cs technique to determine the effects of water erosion and tillage erosion on the dynamics of SOC and MBC. Soil samples for the determination of 137Cs, SOC, MBC and soil particle-size fractions were collected on two types of contrasting hillslopes. 137Cs data revealed that soil loss occurred at upper slope positions of the two landscapes and soil accumulation at the lower slope positions. Soil erosion rates as well as distribution patterns of the <0.002-mm clay shows that water erosion is the major process of soil redistribution in the gentle slope landscape, while tillage erosion acts as the dominant process of soil redistribution in the steep slope landscape. In gentle slope landscapes, both SOC and MBC contents increased downslope and these distribution patterns were closely linked to soil redistribution rates. In steep slope landscapes, only SOC contents increased downslope, dependent on soil redistribution. It is noticeable that MBC/SOC ratios were significantly lower in gentle slope landscapes than in steep slope landscapes, implying that water erosion has a negative effect on the microbial biomass compared with tillage erosion. It is suggested that MBC dynamics are closely associated with soil redistribution by water erosion but independent of that by tillage erosion, while SOC dynamics are influenced by soil redistribution by both water erosion and tillage erosion. PMID:23717530

  16. Creating a Bio-Inspired Solution to Prevent Erosion

    NASA Astrophysics Data System (ADS)

    Reher, R.; Martinez, A.; Cola, J.; Frost, D.

    2016-12-01

    Through the study of geophysical sciences, lessons can be developed which allow for the introduction of bio-inspired design and art concepts to K-5 elementary students. Students are placed into an engineering mindset in which they must apply the concepts of bio-geotechnics to observe how we can use nature to prevent and abate erosion. Problems are staged for students using realistic engineering scenarios such as erosion prevention through biomimicry and the study of anchorage characteristics of root structures in regard to stability of soil. Specifically, a lesson is introduced where students research, learn, and present information about bio-inspired designs to understand these concepts. They lean how plant roots differ in size and shape to stabilize soil. In addition, students perform a series of hands-on experiments which demonstrate how bio-cements and roots can slow erosion.

  17. Estimation of Annual Average Soil Loss, Based on Rusle Model in Kallar Watershed, Bhavani Basin, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Rahaman, S. Abdul; Aruchamy, S.; Jegankumar, R.; Ajeez, S. Abdul

    2015-10-01

    Soil erosion is a widespread environmental challenge faced in Kallar watershed nowadays. Erosion is defined as the movement of soil by water and wind, and it occurs in Kallar watershed under a wide range of land uses. Erosion by water can be dramatic during storm events, resulting in wash-outs and gullies. It can also be insidious, occurring as sheet and rill erosion during heavy rains. Most of the soil lost by water erosion is by the processes of sheet and rill erosion. Land degradation and subsequent soil erosion and sedimentation play a significant role in impairing water resources within sub watersheds, watersheds and basins. Using conventional methods to assess soil erosion risk is expensive and time consuming. A comprehensive methodology that integrates Remote sensing and Geographic Information Systems (GIS), coupled with the use of an empirical model (Revised Universal Soil Loss Equation- RUSLE) to assess risk, can identify and assess soil erosion potential and estimate the value of soil loss. GIS data layers including, rainfall erosivity (R), soil erodability (K), slope length and steepness (LS), cover management (C) and conservation practice (P) factors were computed to determine their effects on average annual soil loss in the study area. The final map of annual soil erosion shows a maximum soil loss of 398.58 t/ h-1/ y-1. Based on the result soil erosion was classified in to soil erosion severity map with five classes, very low, low, moderate, high and critical respectively. Further RUSLE factors has been broken into two categories, soil erosion susceptibility (A=RKLS), and soil erosion hazard (A=RKLSCP) have been computed. It is understood that functions of C and P are factors that can be controlled and thus can greatly reduce soil loss through management and conservational measures.

  18. Estimate Soil Erodibility Factors Distribution for Maioli Block

    NASA Astrophysics Data System (ADS)

    Lee, Wen-Ying

    2014-05-01

    The natural conditions in Taiwan are poor. Because of the steep slopes, rushing river and fragile geology, soil erosion turn into a serious problem. Not only undermine the sloping landscape, but also created sediment disaster like that reservoir sedimentation, river obstruction…etc. Therefore, predict and control the amount of soil erosion has become an important research topic. Soil erodibility factor (K) is a quantitative index of distinguish the ability of soil to resist the erosion separation and handling. Taiwan soil erodibility factors have been calculated 280 soil samples' erodibility factors by Wann and Huang (1989) use the Wischmeier and Smith nomorgraph. 221 samples were collected at the Maioli block in Miaoli. The coordinates of every sample point and the land use situations were recorded. The physical properties were analyzed for each sample. Three estimation methods, consist of Kriging, Inverse Distance Weighted (IDW) and Spline, were applied to estimate soil erodibility factors distribution for Maioli block by using 181 points data, and the remaining 40 points for the validation. Then, the SPSS regression analysis was used to comparison of the accuracy of the training data and validation data by three different methods. Then, the best method can be determined. In the future, we can used this method to predict the soil erodibility factors in other areas.

  19. An Establishment of Rainfall-induced Soil Erosion Index for the Slope Land in Watershed

    NASA Astrophysics Data System (ADS)

    Tsai, Kuang-Jung; Chen, Yie-Ruey; Hsieh, Shun-Chieh; Shu, Chia-Chun; Chen, Ying-Hui

    2014-05-01

    With more and more concentrated extreme rainfall events as a result of climate change, in Taiwan, mass cover soil erosion occurred frequently and led to sediment related disasters in high intensity precipiton region during typhoons or torrential rain storms. These disasters cause a severely lost to the property, public construction and even the casualty of the resident in the affected areas. Therefore, we collected soil losses by using field investigation data from the upstream of watershed where near speific rivers to explore the soil erosion caused by heavy rainfall under different natural environment. Soil losses induced by rainfall and runoff were obtained from the long-term soil depth measurement of erosion plots, which were established in the field, used to estimate the total volume of soil erosion. Furthermore, the soil erosion index was obtained by referring to natural environment of erosion test plots and the Universal Soil Loss Equation (USLE). All data collected from field were used to compare with the one obtained from laboratory test recommended by the Technical Regulation for Soil and Water Conservation in Taiwan. With MATLAB as a modeling platform, evaluation model for soil erodibility factors was obtained by golden section search method, considering factors contributing to the soil erosion; such as degree of slope, soil texture, slope aspect, the distance far away from water system, topography elevation, and normalized difference vegetation index (NDVI). The distribution map of soil erosion index was developed by this project and used to estimate the rainfall-induced soil losses from erosion plots have been established in the study area since 2008. All results indicated that soil erodibility increases with accumulated rainfall amount regardless of soil characteristics measured in the field. Under the same accumulated rainfall amount, the volume of soil erosion also increases with the degree of slope and soil permeability, but decreases with the shear strength of top soil within 30 cm and the coverage of vegetation. The slope plays more important role than the soil permeability on soil erosion. However, soil losses are not proportional to the hardness of top soil or subsurface soil. The empirical formula integrated with soil erosion index map for evaluating soil erodibility obtained from optimal numerical search method can be used to estimate the soil losses induced by rainfall and runoff erosion on slope land in Taiwan. Keywords: Erosion Test Plot, Soil Erosion, Optimal Numerical Search, Universal Soil Loss Equation.

  20. Generalizing a complex model for gully threshold identification in the Mediterranean environment

    NASA Astrophysics Data System (ADS)

    Torri, D.; Borselli, L.; Iaquinta, P.; Iovine, G.; Poesen, J.; Terranova, O.

    2012-04-01

    Among the physical processes leading to land degradation, soil erosion by water is the most important and gully erosion may contribute, at places, to 70% of the total soil loss. Nevertheless, gully erosion has often been neglected in water soil erosion modeling, whilst more prominence has been given to rill and interrill erosion. Both to facilitate the processing by agricultural machinery and to take advantage of all the arable land, gullies are commonly removed at each crop cycle, with significant soil losses due to the repeated excavation of the channel by the successive rainstorm. When the erosive forces of overland flow exceed the strength of the soil particles to detachment and displacement, water erosion occurs and usually a channel is formed. As runoff is proportional to the local catchment area, a relationship between local slope, S, and contributing area, A, is supposed to exists. A "geomorphologic threshold" scheme is therefore suitable to interpret the physical process of gully initiation: accordingly, a gully is formed when a hydraulic threshold for incision exceeds the resistance of the soil particles to detachment and transport. Similarly, it appears reasonable that a gully ends when there is a reduction of slope, or the concentrated flow meets more resistant soil-vegetation complexes. This study aims to predict the location of the beginning of gullies in the Mediterranean environment, based on an evaluation of S and A by means of a mathematical model. For the identification of the areas prone to gully erosion, the model employs two empirical thresholds relevant to the head (Thead) and to the end (Tend) of the gullies (of the type SA^ b>Thead, SA^ b

  1. Use of dust storm observations on satellite images to identify areas vulnerable to severe wind erosion

    USGS Publications Warehouse

    Breed, C.S.; McCauley, J.F.

    1986-01-01

    Blowing dust is symptomatic of severe wind erosion and deterioration of soils in areas undergoing dessication and/or devegetation. Dust plumes on satellite images can commonly be traced to sources in marginally arable semiarid areas where protective lag gravels or vegetation have been removed and soils are dry, as demonstrated for the Portales Valley, New Mexico. Images from Landsat and manned orbiters such as Skylab and the Space Shuttle are useful for illustrating the regional relations of airborne dust plumes to source areas. Geostationary satellites such as GOES are useful in tracking the time-histories of episodic dust storms. These events sometimes go unrecognized by weather observers and are the precursors of long-term land degradation trends. In areas where soil maps and meteorological data are inadequate, satellite images provide a means for identifying problem areas where measures are needed to control or mitigate wind erosion. ?? 1986 D. Reidel Publishing Company.

  2. Living more safely in the chaparral-urban interface

    Treesearch

    Klaus W. H. Radtke

    1983-01-01

    Urban encroachment into chaparral areas has accelerated the fire-flood-erosion cycle. Preventative maintenance measures can help reduce the damage from fire and flood. This report describes the chaparral environment; how to cope with problems in watershed management, how to landscape for fire and soil erosion control, how to plan for home safety from fire, how to treat...

  3. Soil erosion and sediment yield, a double barrel problem in South Africa's only large river network without a dam

    NASA Astrophysics Data System (ADS)

    Le Roux, Jay

    2016-04-01

    Soil erosion not only involves the loss of fertile topsoil but is also coupled with sedimentation of dams, a double barrel problem in semi-arid regions where water scarcity is frequent. Due to increasing water requirements in South Africa, the Department of Water and Sanitation is planning water resource development in the Mzimvubu River Catchment, which is the only large river network in the country without a dam. Two dams are planned including a large irrigation dam and a hydropower dam. However, previous soil erosion studies indicate that large parts of the catchment is severely eroded. Previous studies, nonetheless, used mapping and modelling techniques that represent only a selection of erosion processes and provide insufficient information about the sediment yield. This study maps and models the sediment yield comprehensively by means of two approaches over a five-year timeframe between 2007 and 2012. Sediment yield contribution from sheet-rill erosion was modelled with ArcSWAT (a graphical user interface for SWAT in a GIS), whereas gully erosion contributions were estimated using time-series mapping with SPOT 5 imagery followed by gully-derived sediment yield modelling in a GIS. Integration of the sheet-rill and gully results produced a total sediment yield map, with an average of 5 300 t km-2 y-1. Importantly, the annual average sediment yield of the areas where the irrigation dam and hydropower dam will be built is around 20 000 t km-2 y-1. Without catchment rehabilitation, the life expectancy of the irrigation dam and hydropower dam could be 50 and 40 years respectively.

  4. Soil erosion transport through multiple rainfall events in the presence of stone cover: Laboratory flume experiments and analysis with the Hairsine-Rose model

    NASA Astrophysics Data System (ADS)

    Jomaa, S.; Barry, D. A.; Brovelli, A.; Heng, B. P.; Sander, G. C.; Parlange, J.

    2011-12-01

    Soil erosion is a major environmental problem that can lead to loss of fertility and degradation of agricultural fields. In order to develop efficient strategies to mitigate the impact of precipitation and reduce the erosion rate, a process-based understanding of the mechanisms that govern sediment transport and delivery is necessary. Soil state and physical properties prior to a precipitation event can affect significantly the erosion rate. Among the most important soil variables are moisture content, compaction and infiltration capacity. Additionally, the presence of stones on the topsoil surface retards the overland flow discharge, reduces runoff generation as well as the sediment delivery and prevents the development of a surface seal, which in turn maintains the infiltration rate. The aim of this study was to examine in detail the effect of surface stones, soil compaction and sealing for a sequence of rainfall events on soil erosion. Experiments were conducted using the EPFL erosion flume, which was divided into two identical flumes (one with stone and one without). The experiment involved four rainfall events with the precipitation rates: 28, 74, 74 and 28 mm h-1. After each 2-h event, the soil was allowed to air dry for 22 h. The total sediment concentration, the concentration of seven sediment size classes and the flow discharge were measured during each event at the outlet of each flume. Experimental results were analyzed using the Hairsine and Rose (H-R) soil erosion model. Results showed that (i) within each precipitation event, the proportion of each size class for the bare/stone-covered flume pairs at steady state were similar, whereas the initial response differed significantly; (ii) in all cases the effluent was enriched in finer particles relative to the original soil; and (iii) the effluent sediment composition was different from that of the original soil, and there was no clear trend towards the parent soil sediment size composition with time. The H-R model was able to reproduce well the events with high precipitation rate (events 2 and 3) with the same parameter set, while the match was less satisfactory for the low precipitation events. A possible explanation for this is that the initial soil compaction/sealing/development of the deposited layer combined to yield a surface that eroded similarly for identical rainfall conditions. Changes in the precipitation rate modifies the soil surface (the deposited layer in particular) and thus the erosion rates. Model application further suggested that over the course of the rainfall events, the contribution of the original soil to the eroded sediment decreased gradually, while that of the deposited layer increased.

  5. Dynamic Analysis of Soil Erosion in Songhua River Watershed

    NASA Astrophysics Data System (ADS)

    Zhang, Yujuan; Li, Xiuhai; Wang, Qiang; Liu, Jiang; Liang, Xin; Li, Dan; Ni, Chundi; Liu, Yan

    2018-01-01

    In this paper, based on RS and GIS technology and Revised Universal Soil Loss Equation (RUSLE), the soil erosion dynamic changes during the two periods of 1990 and 2010 in Bin County was analyzed by using the Landsat TM data of the two periods, so as to reveal the soil erosion spatial distribution pattern and spatial and temporal dynamic evolution rule in the region. The results showed that: the overall patterns of soil erosion were basically the same in both periods, mainly featuring slight erosion and mild erosion, with the area proportions of 80.68% and 74.71% respectively. The slight and extremely intensive erosion changing rates showed a narrowing trend; mild, moderate and intensive erosion was increasing, with a trend of increased soil erosion; mild and intensive erosion were developing towards moderate erosion and moderate and extremely intensive erosion were progressing towards intensive erosion.

  6. Predicting of soil erosion with regarding to rainfall erosivity and soil erodibility

    NASA Astrophysics Data System (ADS)

    Suif, Zuliziana; Razak, Mohd Amirun Anis Ab; Ahmad, Nordila

    2018-02-01

    The soil along the hill and slope are wearing away due to erosion and it can take place due to occurrence of weak and heavy rainfall. The aim of this study is to predict the soil erosion degree in Universiti Pertahanan Nasional Malaysia (UPNM) area focused on two major factor which is soil erodibility and rainfall erosivity. Soil erodibility is the possibilities of soil to detach and carried away during rainfall and runoff. The "ROM" scale was used in this study to determine the degree of soil erodibility, namely low, moderate, high, and very high. As for rainfall erosivity, the erosive power caused by rainfall that cause soil loss. A daily rainfall data collected from January to April was analyzed by using ROSE index classification to identify the potential risk of soil erosion. The result shows that the soil erodibilty are moderate at MTD`s hill, high at behind of block Lestari and Landslide MTD hill, and critical at behind the mess cadet. While, the highest rainfall erosivity was recorded in March and April. Overall, this study would benefit the organization greatly in saving cost in landslide protection as relevant authorities can take early measures repairing the most affected area of soil erosion.

  7. A preliminary assessment of the impact of landslide, earthflow, and gully erosion on soil carbon stocks in New Zealand

    NASA Astrophysics Data System (ADS)

    Basher, Les; Betts, Harley; Lynn, Ian; Marden, Mike; McNeill, Stephen; Page, Mike; Rosser, Brenda

    2018-04-01

    In geomorphically active landscapes such as New Zealand, quantitative data on the relationship between erosion and soil carbon (C) are needed to establish the effect of erosion on past soil C stocks and future stock changes. The soil C model currently used in New Zealand for soil C stock reporting does not account for erosion. This study developed an approach to characterise the effect of erosion suitable for soil C stock reporting and provides an initial assessment of the magnitude of the effect of erosion. A series of case studies were used to establish the local effect of landslide, earthflow, and gully erosion on soil C stocks and to compare field measurements of soil C stocks with model estimates. Multitemporal erosion mapping from orthophotographs was used to characterise erosion history, identify soil sampling plot locations, and allow soil C stocks to be calculated accounting for erosion. All eroded plots had lower soil C stocks than uneroded (by mass movement and gully erosion) plots sampled at the same sites. Landsliding reduces soil C stocks at plot and landscape scale, largely as a result of individual large storms. After about 70 years, soil C stocks were still well below the value measured for uneroded plots (by 40% for scars and 20-30% for debris tails) indicating that the effect of erosion is very persistent. Earthflows have a small effect on estimates of baseline (1990) soil C stocks and reduce soil C stocks at landscape scale. Gullies have local influence on soil C stocks but because they cover a small proportion of the landscape have little influence at landscape scale. At many of the sites, the soil C model overestimates landscape-scale soil C stocks.

  8. Time compression of soil erosion by the effect of largest daily event. A regional analysis of USLE database.

    NASA Astrophysics Data System (ADS)

    Gonzalez-Hidalgo, J. C.; Batalla, R.; Cerda, A.; de Luis, M.

    2009-04-01

    When Thornes and Brunsden wrote in 1977 "How often one hears the researcher (and no less the undergraduate) complain that after weeks of observation "nothing happened" only to learn that, the day after his departure, a flood caused unprecedent erosion and channel changes!" (Thornes and Brunsden, 1977, p. 57), they focussed on two different problems in geomorphological research: the effects of extreme events and the temporal compression of geomorphological processes. The time compression is one of the main characteristic of erosion processes. It means that an important amount of the total soil eroded is produced in very short temporal intervals, i.e. few events mostly related to extreme events. From magnitude-frequency analysis we know that few events, not necessarily extreme by magnitude, produce high amount of geomorphological work. Last but not least, extreme isolated events are a classical issue in geomorphology by their specific effects, and they are receiving permanent attention, increased at present because of scenarios of global change. Notwithstanding, the time compression of geomorphological processes could be focused not only on the analysis of extreme events and the traditional magnitude-frequency approach, but on new complementary approach based on the effects of largest events. The classical approach define extreme event as a rare event (identified by its magnitude and quantified by some deviation from central value), while we define largest events by the rank, whatever their magnitude. In a previous research on time compression of soil erosion, using USLE soil erosion database (Gonzalez-Hidalgo et al., EGU 2007), we described a relationship between the total amount of daily erosive events recorded by plot and the percentage contribution to total soil erosion of n-largest aggregated daily events. Now we offer a further refined analysis comparing different agricultural regions in USA. To do that we have analyzed data from 594 erosion plots from USLE database with different record periods, and located in different climatic regions. Results indicate that there are no significant differences in the mean contribution of aggregated 5-largest daily erosion events between different agricultural divisions (i.e. different regional climate), and the differences detected can be attributed to specific site and plots conditions. Expected contribution of 5-largest daily event for 100 total daily events recorded is estimated around 40% of total soil erosion. We discuss the possible causes of such results and the applicability of them to the design of field research on soil erosion plots.

  9. Effectiveness assessment of soil conservation measures in reducing soil erosion in Baiquan County of Northeastern China by using (137)Cs techniques.

    PubMed

    Zhang, Qing-Wen; Li, Yong

    2014-05-01

    Accelerated soil erosion is considered as a major land degradation process resulting in increased sediment production and sediment-associated nutrient inputs to the rivers. Over the last decade, several soil conservation programs for erosion control have been conducted throughout Northeastern China. Reliable information on soil erosion rates is an essential prerequisite to assess the effectiveness of soil conservation measures. A study was carried out in Baiquan County of Northeastern China to assess the effectiveness of soil conservation measures in reducing soil erosion using the (137)Cs tracer technique and related techniques. This study reports the use of (137)Cs measurements to quantify medium-term soil erosion rates in traditional slope farmland, contour cropping farmland and terrace farmland in the Dingjiagou catchment and the Xingsheng catchment of Baiquan County. The (137)Cs reference inventory of 2532 ± 670 Bq m(-2) was determined. Based on the principle of the (137)Cs tracer technique, soil erosion rates were estimated. The results showed that severe erosion on traditional slope farmland is the dominant soil erosion process in the area. The terrace measure reduced soil erosion rates by 16% for the entire slope. Typical net soil erosion rates are estimated to be 28.97 Mg per hectare per year for traditional slope farmland and 25.04 Mg per hectare per year for terrace farmland in the Dingjiagou catchment. In contrast to traditional slope farmland with a soil erosion rate of 34.65 Mg per hectare per year, contour cultivation reduced the soil erosion rate by 53% resulting in a soil erosion rate of 22.58 Mg per hectare per year in the Xingsheng catchment. These results indicated that soil losses can be controlled by changing tillage practices from the traditional slope farmland cultivation to the terrace or contour cultivation.

  10. Soil Erosion as a stochastic process

    NASA Astrophysics Data System (ADS)

    Casper, Markus C.

    2015-04-01

    The main tools to provide estimations concerning risk and amount of erosion are different types of soil erosion models: on the one hand, there are empirically based model concepts on the other hand there are more physically based or process based models. However, both types of models have substantial weak points. All empirical model concepts are only capable of providing rough estimates over larger temporal and spatial scales, they do not account for many driving factors that are in the scope of scenario related analysis. In addition, the physically based models contain important empirical parts and hence, the demand for universality and transferability is not given. As a common feature, we find, that all models rely on parameters and input variables, which are to certain, extend spatially and temporally averaged. A central question is whether the apparent heterogeneity of soil properties or the random nature of driving forces needs to be better considered in our modelling concepts. Traditionally, researchers have attempted to remove spatial and temporal variability through homogenization. However, homogenization has been achieved through physical manipulation of the system, or by statistical averaging procedures. The price for obtaining this homogenized (average) model concepts of soils and soil related processes has often been a failure to recognize the profound importance of heterogeneity in many of the properties and processes that we study. Especially soil infiltrability and the resistance (also called "critical shear stress" or "critical stream power") are the most important empirical factors of physically based erosion models. The erosion resistance is theoretically a substrate specific parameter, but in reality, the threshold where soil erosion begins is determined experimentally. The soil infiltrability is often calculated with empirical relationships (e.g. based on grain size distribution). Consequently, to better fit reality, this value needs to be corrected experimentally. To overcome this disadvantage of our actual models, soil erosion models are needed that are able to use stochastic directly variables and parameter distributions. There are only some minor approaches in this direction. The most advanced is the model "STOSEM" proposed by Sidorchuk in 2005. In this model, only a small part of the soil erosion processes is described, the aggregate detachment and the aggregate transport by flowing water. The concept is highly simplified, for example, many parameters are temporally invariant. Nevertheless, the main problem is that our existing measurements and experiments are not geared to provide stochastic parameters (e.g. as probability density functions); in the best case they deliver a statistical validation of the mean values. Again, we get effective parameters, spatially and temporally averaged. There is an urgent need for laboratory and field experiments on overland flow structure, raindrop effects and erosion rate, which deliver information on spatial and temporal structure of soil and surface properties and processes.

  11. Soil erosion studies in western Europe from the early 1980s

    NASA Astrophysics Data System (ADS)

    Boardman, John; Favis-Mortlock, David

    2013-04-01

    Before the early 1980s, scientific interest in soil erosion in western Europe was minimal. On British soils, for example, high rates of erosion were considered unlikely: "[Soil erosion in Britain] cannot in any way be regarded as a national menace, as can erosion in some other countries" (Jacks, 1954). There was some truth in this perception. By comparison with (for example) the USA, European rainfall was seen as relatively modest in terms of amount and intensity; and European land usage was still generally based on traditional practices which rather rarely left land vulnerable to erosion. However, studies from the late 1970s and early 1980s revealed a growing erosion problem. The earliest UK studies were opportunistic descriptions of large and unusual erosion events which lacked statistical rigour. They led, however, to a growing scientific appreciation of the potential for soil erosion even in those areas which were not previously thought to be erosion-prone e.g. Evans and Northcliff (1978), Boardman (1983). These studies were followed by more ambitious attempts to assess erosion over larger spatial and longer temporal scales: Evans, 1982-86 in England and Wales; Boardman , 1982-91 on the South Downs. Along with this move from considering only single events was a growing appreciation that the most damaging impact of European erosion, in contrast with erosion in the US mid-west and in the tropics, was not on-site but off-site. During these more ambitious monitoring exercises data was also collected on off-site damage by muddy runoff. This led to the realisation that such off-site impacts could be the product of frequent, low magnitude events. This insight has led directly to current concerns regarding agricultural impacts on freshwater systems as exemplified in the Water Framework Directive. These changes in emphasis necessitated a change in experimental and observational approach from small plot to the field scale. The early 1980s also saw the development of erosion models that adapted the USLE to local conditions (e.g. SLEMSA) or incorporated new process-based information into models e.g. EPIC, CREAMS, WEPP and in the UK/Europe, the Morgan, Morgan and Finney model and EUROSEM. Later evaluations focused on the limitations of erosion models e.g. the GCTE exercise (Boardman and Favis-Mortlock, 1998). Since the early 1990s, model development seems to have stalled despite the continued need for progress particularly in the area of erosion-climate change relationships.

  12. Application of fuzzy logic approach for wind erosion hazard mapping in Laghouat region (Algeria) using remote sensing and GIS

    NASA Astrophysics Data System (ADS)

    Saadoud, Djouher; Hassani, Mohamed; Martin Peinado, Francisco José; Guettouche, Mohamed Saïd

    2018-06-01

    Wind erosion is one of the most serious environmental problems in Algeria that threatens human activities and socio-economic development. The main goal of this study is to apply a fuzzy logic approach to wind erosion sensitivity mapping in the Laghouat region, Algeria. Six causative factors, obtained by applying fuzzy membership functions to each used parameter, are considered: soil, vegetation cover, wind factor, soil dryness, land topography and land cover sensitivity. Different fuzzy operators (AND, OR, SUM, PRODUCT, and GAMMA) are applied to generate wind-erosion hazard map. Success rate curves reveal that the fuzzy gamma (γ) operator, with γ equal to 0.9, gives the best prediction accuracy with an area under curve of 85.2%. The resulting wind-erosion sensitivity map delineates the area into different zones of five relative sensitivity classes: very high, high, moderate, low and very low. The estimated result was verified by field measurements and the high statistically significant value of a chi-square test.

  13. Application of spatial Markov chains to the analysis of the temporal-spatial evolution of soil erosion.

    PubMed

    Liu, Ruimin; Men, Cong; Wang, Xiujuan; Xu, Fei; Yu, Wenwen

    Soil and water conservation in the Three Gorges Reservoir Area of China is important, and soil erosion is a significant issue. In the present study, spatial Markov chains were applied to explore the impacts of the regional context on soil erosion in the Xiangxi River watershed, and Thematic Mapper remote sensing data from 1999 and 2007 were employed. The results indicated that the observed changes in soil erosion were closely related to the soil erosion levels of the surrounding areas. When neighboring regions were not considered, the probability that moderate erosion transformed into slight and severe erosion was 0.8330 and 0.0049, respectively. However, when neighboring regions that displayed intensive erosion were considered, the probabilities were 0.2454 and 0.7513, respectively. Moreover, the different levels of soil erosion in neighboring regions played different roles in soil erosion. If the erosion levels in the neighboring region were lower, the probability of a high erosion class transferring to a lower level was relatively high. In contrast, if erosion levels in the neighboring region were higher, the probability was lower. The results of the present study provide important information for the planning and implementation of soil conservation measures in the study area.

  14. Erosion in Mediterranean landscapes: Changes and future challenges

    NASA Astrophysics Data System (ADS)

    García-Ruiz, José M.; Nadal-Romero, Estela; Lana-Renault, Noemí; Beguería, Santiago

    2013-09-01

    Intense erosion processes are widespread in the Mediterranean region, and include sheet wash erosion, rilling, gullying, shallow landsliding, and the development of large and active badlands in both subhumid and semi-arid areas. This review analyses the main environmental and human features related to soil erosion processes, and the main factors that explain the extreme variability of factors influencing soil erosion, particularly recent land use changes. The importance of erosion in the Mediterranean is related to the long history of human activity in a region characterized by low levels of annual precipitation, the occurrence of intense rainstorms and long-lasting droughts, high evapotranspiration, the presence of steep slopes and the occurrence of recent tectonic activity, together with the recurrent use of fire, overgrazing and farming. These factors have resulted in a complex landscape in which intensification and abandonment, wealth and poverty can co-exist. The changing conditions of national and international markets and the evolution of population pressure are now the main drivers explaining land use changes, including farmland abandonment in mountain areas, the expansion of some subsidized crops to marginal lands, and the development of new terraces affected by landslides and intense soil erosion during extreme rainstorm events. The occurrence of human-related forest fires affecting thousands of hectares each year is a significant problem in both the northern and southern areas of the Mediterranean basin. Here, we highlight the rise of new scientific challenges in controlling the negative consequences of soil erosion in the Mediterranean region: 1) to reduce the effects and extent of forest fires, and restructure the spatial organization of abandoned landscapes; 2) to provide guidance for making the EU agricultural policy more adapted to the complexity and fragility of Mediterranean environments; 3) to develop field methods and models to improve the identification of runoff and sediment contributing areas; 4) to contribute to the conservation of landscapes (i.e. bench-terraced fields) having high cultural and productivity values; 5) to improve knowledge of the hydrological and geomorphological functioning of badlands, with the aim of reducing sediment yield and accessibility; 6) to better understand the effect of climate change on soil erosion in the Mediterranean region; and 7) to improve quantitative information on long-term soil erosion.

  15. Scenario Analysis of Soil and Water Conservation in Xiejia Watershed Based on Improved CSLE Model

    NASA Astrophysics Data System (ADS)

    Liu, Jieying; Yu, Ming; Wu, Yong; Huang, Yao; Nie, Yawen

    2018-01-01

    According to the existing research results and related data, use the scenario analysis method, to evaluate the effects of different soil and water conservation measures on soil erosion in a small watershed. Based on the analysis of soil erosion scenarios and model simulation budgets in the study area, it is found that all scenarios simulated soil erosion rates are lower than the present situation of soil erosion in 2013. Soil and water conservation measures are more effective in reducing soil erosion than soil and water conservation biological measures and soil and water conservation tillage measures.

  16. The effects of mulching on soil erosion by water. A review based on published data

    NASA Astrophysics Data System (ADS)

    Prosdocimi, Massimo; Jordán, Antonio; Tarolli, Paolo; Cerdà, Artemi

    2016-04-01

    Among the soil conservation practices that have been recently implemented, mulching has been successfully applied in different contexts (Jordán et al., 2011), such as agricultural lands (García-Orenes et al. 2009; Prosdocimi et al., 2016), fire-affected areas (Prats et al., 2014; Robichaud et al., 2013) and anthropic sites (Hayes et al., 2005), to reduce water and soil losses rates. In these contexts, soil erosion by water is a serious problem, especially in semi-arid and semi-humid areas of the world (Cerdà et al., 2009; Cerdan et al., 2010; Sadeghi et al., 2015). Although soil erosion by water consists of physical processes that vary significantly in severity and frequency according to when and where they occur, they are also strongly influenced by anthropic factors such as unsustainable farming practices and land-use changes on large scales (Cerdà, 1994; Montgomery, 2007). Although the beneficial effects of mulching are known, their quantification needs further research, especially in those areas where soil erosion by water represents a severe threat. In literature, there are still some uncertainties about how to maximize the effectiveness of mulching in the reduction of soil and water loss rates. First, the type of choice of the vegetative residues is fundamental and drives the application rate, cost, and consequently, its effectiveness. Second, it is important to assess application rates suitable for site-specific soil and environment conditions. The percentage of area covered by mulch is another important aspect to take into account, because it has proven to influence the reduction of soil loss. And third, the role played by mulching at catchment scale, where it plays a key role as barrier for breaking sediment and runoff connectivity. Given the seriousness of soil erosion by water and the uncertainties that still concern the correct use of mulching, this work aims to evaluate the effects of mulching on soil erosion rates and water losses in agricultural lands, post-fire affected areas and anthropic sites. Data published in literature have been collected. The results proved the beneficial effects of mulching on soil erosion by water in all the contexts considered, with reduction rates in average sediment concentration, soil loss and runoff volume that, in some cases, exceeded 90%. Furthermore, in most cases, mulching confirmed to be a relatively inexpensive soil conservation practice that allowed to reduce soil erodibility and surface immediately after its application. References Cerdà, A., 1994. The response of abandoned terraces to simulated rain, in: Rickson, R.J., (Ed.), Conserving Soil Resources: European Perspective, CAB International, Wallingford, pp. 44-55. Cerdà, A., Flanagan, D.C., Le Bissonnais, Y., Boardman, J., 2009. Soil erosion and agriculture. Soil & Tillage Research 106, 107-108. Cerdan, O., Govers, G., Le Bissonnais, Y., Van Oost, K., Poesen, J., Saby, N., Gobin, A., Vacca, A., Quinton, J., Auerwald, K., Klik, A., Kwaad, F.J.P.M., Raclot, D., Ionita, I., Rejman, J., Rousseva, S., Muxart, T., Roxo, M.J., Dostal, T., 2010. Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology 122, 167-177. García-Orenes, F., Roldán A., Mataix-Solera, J, Cerdà, A., Campoy M, Arcenegui, V., Caravaca F. 2009. Soil structural stability and erosion rates influenced by agricultural management practices in a semi-arid Mediterranean agro-ecosystem. Soil Use and Management 28: 571-579. Hayes, S.A., McLaughlin, R.A., Osmond, D.L., 2005. Polyacrylamide use for erosion and turbidity control on construction sites. Journal of soil and water conservation 60(4):193-199. Jordán, A., Zavala, L.M., Muñoz-Rojas, M., 2011. Mulching, effects on soil physical properties. In: Gliński, J., Horabik, J., Lipiec, J. (Eds.), Encyclopedia of Agrophysics. Springer, Dordrecht, pp. 492-496. Montgomery, D.R., 2007. Soil erosion and agricultural sustainability. PNAS 104, 13268-13272. Prats, S.A., dos Santons Martins MA, Malvar MC, Ben-Hur M, Keizer JJ. 2014. Polyacrylamide application versus forest residue mulching for reducing post-fire runoff and soil erosion. Science of the Total Environment 468: 464-474. Prosdocimi, M., Jordán, A., Tarolli, P., Keesstra, S., Novara, A., Cerdà A., 2016. The immediate effectiveness of barley Straw mulch in reducing soil erodibility and Surface runoff generation in Mediterranean vineyards. Science of the Total Environment 547: 323-330. Robichaud, P.R., Lewis, S.A., Wagenbrenner, J.W., Ashmun, L.E., Brown, R.E., 2013. Post-fire mulching for runoff and erosion mitigation. Part I: Effectiveness at reducing hillslope erosion rates. Catena 105: 75-92. Sadeghi, S.H.R., Gholami, L., Homaee, M., Khaledi Darvishan, A., 2015. Reducing sediment concetration and soil loss using organic and inorganic amendments at plot scale. Soild Earth 6: 1-8.

  17. Soil erosion risk assessment using interviews, empirical soil erosion modeling (RUSLE) and fallout radionuclides in a volcanic crater lake watershed subjected to land use change, western Uganda

    NASA Astrophysics Data System (ADS)

    De Crop, Wannes; Ryken, Nick; Tomma Okuonzia, Judith; Van Ranst, Eric; Baert, Geert; Boeckx, Pascal; Verschuren, Dirk; Verdoodt, Ann

    2017-04-01

    Population pressure results in conversion of natural vegetation to cropland within the western Ugandan crater lake watersheds. These watersheds however are particularly prone to soil degradation and erosion because of the high rainfall intensity and steep topography. Increased soil erosion losses expose the aquatic ecosystems to excessive nutrient loading. In this study, the Katinda crater lake watershed, which is already heavily impacted by agricultural land use, was selected for an explorative study on its (top)soil characteristics - given the general lack of data on soils within these watersheds - as well as an assessment of soil erosion risks. Using group discussions and structured interviews, the local land users' perceptions on land use, soil quality, soil erosion and lake ecology were compiled. Datasets on rainfall, topsoil characteristics, slope gradient and length, and land use were collected. Subsequently a RUSLE erosion model was run. Results from this empirical erosion modeling approach were validated against soil erosion estimates based on 137Cs measurements.

  18. [Dynamics of soil erosion at upper reaches of Minjiang River based on GIS].

    PubMed

    He, Xingyuan; Hu, Zhibi; Li, Yuehui; Hu, Yuanman

    2005-12-01

    Based on TM and ETM imagines, and employing GIS technique and empirical Revised Universal Soil Loss Equation (RUSLE) model, this paper studied the dynamics of soil erosion at the upper reaches of Minjiang River during three typical periods, with the main affecting factors analyzed. The results showed that the soil erosion area was increased by 1.28%, 1.84 % and 1.70% in 1986, 1995 and 2000, respectively. The average erosion modulus was increased from 832.64 t x km(-2) x yr(-1) in 1986 to 1048.74 t x km(-2) yr(-2) in 1995 and reached 1362.11 t x km(-2) yr(-1) in 2000, and soil loss was mainly of slight and light erosion, companying with a small quantity of middling erosion. The area of soil erosion was small, and the degree was light. There was a significant correlation between slope and soil loss, which mainly happened in the regions with a slope larger than 25 degrees, and accounted for 93.65%, 93.81% and 92.71% of the total erosion in 1986, 1995 and 2000, respectively. As for the altitude, middling, semi-high and high mountains and dry valley were liable to soil erosion, which accounted for 98.21%, 97.63% and 99.27% of the total erosion in 1986, 1995 and 2000, respectively. Different vegetation had a significant effect on soil erosion, and shrub and newly restored forest were the main erosion area. Excessive depasture not only resulted in the degradation of pasture, but also led to slight soil erosion. Land use type and soil type also contributed to soil loss, among which, dry-cinnamon soil and calcic gray-cinnamon soil were the most dangerous ones needing more protection. Soil loss was also linearly increased with increasing population and households, which suggested that the increase of population and households was the driving factor for soil loss increase in this area.

  19. Riparian erosion vulnerability model based on environmental features.

    PubMed

    Botero-Acosta, Alejandra; Chu, Maria L; Guzman, Jorge A; Starks, Patrick J; Moriasi, Daniel N

    2017-12-01

    Riparian erosion is one of the major causes of sediment and contaminant load to streams, degradation of riparian wildlife habitats, and land loss hazards. Land and soil management practices are implemented as conservation and restoration measures to mitigate the environmental problems brought about by riparian erosion. This, however, requires the identification of vulnerable areas to soil erosion. Because of the complex interactions between the different mechanisms that govern soil erosion and the inherent uncertainties involved in quantifying these processes, assessing erosion vulnerability at the watershed scale is challenging. The main objective of this study was to develop a methodology to identify areas along the riparian zone that are susceptible to erosion. The methodology was developed by integrating the physically-based watershed model MIKE-SHE, to simulate water movement, and a habitat suitability model, MaxEnt, to quantify the probability of presences of elevation changes (i.e., erosion) across the watershed. The presences of elevation changes were estimated based on two LiDAR-based elevation datasets taken in 2009 and 2012. The changes in elevation were grouped into four categories: low (0.5 - 0.7 m), medium (0.7 - 1.0 m), high (1.0 - 1.7 m) and very high (1.7 - 5.9 m), considering each category as a studied "species". The categories' locations were then used as "species location" map in MaxEnt. The environmental features used as constraints to the presence of erosion were land cover, soil, stream power index, overland flow, lateral inflow, and discharge. The modeling framework was evaluated in the Fort Cobb Reservoir Experimental watershed in southcentral Oklahoma. Results showed that the most vulnerable areas for erosion were located at the upper riparian zones of the Cobb and Lake sub-watersheds. The main waterways of these sub-watersheds were also found to be prone to streambank erosion. Approximatively 80% of the riparian zone (streambank included) has up to 30% probability to experience erosion greater than 1.0 m. By being able to identify the most vulnerable areas for stream and riparian sediment mobilization, conservation and management practices can be focused on areas needing the most attention and resources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Simwe model application on susceptibility analysis to linear erosion: a case study in Alto Douro wine region.

    NASA Astrophysics Data System (ADS)

    Fernandes, Joana; Bateira, Carlos; Soares, Laura; Faria, Ana; Moura, Rui; Gonçalves, José

    2016-04-01

    The wine production in Alto Douro Wine Region - one of the world's oldest regulated and demarcated wine region - is based on a slope system organized in agricultural terraces once supported exclusively by dry stone walls. It has been undergoing the necessary changes for the introduction of technological innovations partially associated to the mechanization of vineyards work. In this sense, different forms of terrain framing have been implemented, namely the substitution of stone walls by earth embankments. This evolution raises a group of problems related to the hydric soil erosion and landscape preservation, since Alto Douro Wine Region is classified as UNESCO World Heritage Site since 2001. The study area is mostly occupied by vineyards planted in the agriculture terraces without continuous vegetation, the flow proceeds superficially influenced by the weak infiltration capacity and hydraulic conductivity. So, because of this conditioning factor the erosive features present non-significant depth, and the length thereof is limited essentially by the slope of the land, where was registered 64 gullies and 78 rills This paper focuses on the evaluation of susceptibility to linear erosion, through the application of SIMWE (SIMulated Water Erosion), (Mitas and Mitasova, 1998), using a digital elevation model, with pixel of one square meter of spatial resolution, created through detail aerial photographs, (side pixel of 50 cm), submitted to automatic stereo-correlation procedures in Agisoft PhotoScan software. The results provided by the model are compared with hydrological characteristics of the soil, (infiltration capacity, and hydraulic conductivity), soil texture, and soil structure parameters (identified by electrical resistivity measurement) where obtained from field monitoring. This approach demonstrates an association between the spatial distribution of erosive features with high values of soil saturation, and reduced water discharge (10-110 cm3/s), that are consistent with the lower values of electrical resistivity. The areas with the highest amount of erosive features are related to medium sediment flux values, (13.8-334.2 g/ms), medium or high transport capacity (250.3g/ms - 9.4 kg/ms), and sediment concentration with medium or very high classes where register more than 70% of gullies. These values, combined with low hydraulic conductivity with average Ks values 0.0004 cm3/s, and soil infiltration capacity with values from 0.11 to 0.36 cm/min, derives from the fine texture of soils - gravel (18.8 - 47.9%), sand (10.8 - 20.5%) and silt/clay (32.1 - 64.9%), induce an increased runoff and the development of linear erosion. The obtained results seem to indicate a good performance of the SIMWE model in the identification of the areas more susceptible to the hydric erosion of the soils, indeed, the most critical areas show the connection between the inventoried erosive forms. Keywords: Water Erosion, SIMWE, Agricultural Terraces, Alto Douro Wine Region References Mitas, H. e Mitasova, L. (1998). Distribuited Soil Erosion Simulation for effective erosion prevention. Water Resources Research, Vol. 34(3), pp. 505-516.

  1. A field method for soil erosion measurements in agricultural and natural lands

    Treesearch

    Y.P. Hsieh; K.T. Grant; G.C. Bugna

    2009-01-01

    Soil erosion is one of the most important watershed processes in nature, yet quantifying it under field conditions remains a challenge. The lack of soil erosion field data is a major factor hindering our ability to predict soil erosion in a watershed. We present here the development of a simple and sensitive field method that quantifies soil erosion and the resulting...

  2. Understanding soil erosion impacts in temperate agroecosystems: bridging the gap between geomorphology and soil ecology using nematodes as a model organism

    NASA Astrophysics Data System (ADS)

    Baxter, C.; Rowan, J. S.; McKenzie, B. M.; Neilson, R.

    2013-11-01

    Soil is a key asset of natural capital, providing a myriad of goods and ecosystem services that sustain life through regulating, supporting and provisioning roles, delivered by chemical, physical and biological processes. One of the greatest threats to soil is accelerated erosion, which raises a natural process to unsustainable levels, and has downstream consequences (e.g.~economic, environmental and social). Global intensification of agroecosystems is a recognised major cause of soil erosion which, in light of predicted population growth and increased demand for food security, will continue or increase. Transport and redistribution of biota by soil erosion has hitherto been ignored and thus is poorly understood. With the move to sustainable intensification this is a key knowledge gap that needs to be addressed. Here we highlight the erosion-energy and effective-erosion-depth continuum in soils, differentiating between different forms of soil erosion, and argue that nematodes are an appropriate model taxa to investigate impacts of erosion on soil biota across scales. We review the different known mechanisms of soil erosion that impact on soil biota in general, and nematodes in particular, and highlight the few detailed studies, primarily from tropical regions, that have considered soil biota. Based on the limited literature and using nematodes as a model organism we outline future research priorities to initially address the important interrelationships between soil erosion processes and soil biota.

  3. Soil erosion in humid regions: a review

    Treesearch

    Daniel J. Holz; Karl W.J. Williard; Pamela J. Edwards; Jon E. Schoonover

    2015-01-01

    Soil erosion has significant implications for land productivity and surface water quality, as sediment is the leading water pollutant worldwide. Here, erosion processes are defined. The dominant factors influencing soil erosion in humid areas are reviewed, with an emphasis on the roles of precipitation, soil moisture, soil porosity, slope steepness and length,...

  4. Detection of soil erosion within pinyon-juniper woodlands using Thematic Mapper (TM) data

    NASA Technical Reports Server (NTRS)

    Price, Kevin P.

    1993-01-01

    Multispectral measurements collected by Landsat Thematic Mapper (TM) were correlated with field measurements, direct soil loss estimates, and Universal Soil Loss Equation (USLE) estimates to determine the sensitivity of TM data to varying degrees of soil erosion in pinyon-juniper woodland in central Utah. TM data were also evaluated as a predictor of the USLE Crop Management C factor for pinyon-juniper woodlands. TM spectral data were consistently better predictors of soil erosion factors than any combination of field factors. TM data were more sensitive to vegetation variations than the USLE C factor. USLE estimates showed low annual rates of erosion which varied little among the study sites. Direct measurements of rate of soil loss using the SEDIMENT (Soil Erosion DIrect measureMENT) technique, indicated high and varying rates of soil loss among the sites since tree establishment. Erosion estimates from the USLE and SEDIMENT methods suggest that erosion rates have been severe in the past, but because significant amounts of soil have already been eroded, and the surface is now armored by rock debris, present erosion rates are lower. Indicators of accelerated erosion were still present on all sites, however, suggesting that the USLE underestimated erosion within the study area.

  5. Evaluating the new soil erosion map of Hungary

    NASA Astrophysics Data System (ADS)

    Waltner, István; Centeri, Csaba; Takács, Katalin; Pirkó, Béla; Koós, Sándor; László, Péter; Pásztor, László

    2017-04-01

    With growing concerns on the effects of climate change and land use practices on our soil resources, soil erosion by water is becoming a significant issue internationally. Since the 1964 publication of the first soil erosion map of Hungary, there have been several attempts to provide a countrywide assessment of erosion susceptibility. However, there has been no up-to-date map produced in the last decade. In 2016, a new, 1:100 000 scale soil erosion map was published, based on available soil, elevation, land use and meteorological data for the extremely wet year of 2010. The map utilized combined outputs for two spatially explicit methods: the widely used empirical Universal Soil Loss Equation (USLE) and the process-based Pan-European Soil Erosion Risk Assessment (PESERA) models. The present study aims to provide a detailed analysis of the model results. In lieu of available national monitoring data, information from other sources were used. The Soil Degradation Subsystem (TDR) of the National Environmental Information System (OKIR) is a digital database based on a soil survey and farm dairy data collected from representative farms in Hungary. During the survey all kind of degradation forms - including soil erosion - were considered. Agricultural and demographic data was obtained from the Hungarian Central Statistical Office (KSH). Data from an interview-based survey was also used in an attempt to assess public awareness of soil erosion risks. Point-based evaluation of the model results was complemented with cross-regional assessment of soil erosion estimates. This, combined with available demographic information provides us with an opportunity to address soil erosion on a community level, with the identification of regions with the highest risk of being affected by soil erosion.

  6. Relationships between slope erosion processes and aggregate stability of Ultisols from subtropical China during rainstorms

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Xiao, Hai; Liu, Puling

    2017-04-01

    Soil aggregates, being a key soil structural unit, influence several soil physical properties such as water infiltration, runoff and erosion. The relationship between soil aggregate stability and interrill and rill erodibility is unclear but critical to process-based erosion prediction models. One obvious reason is that it is hard to distinguish between interrill and rill-eroded sediment during the erosion process. This study was designed to partition interrill and rill erosion rates and relates them to the aggregate stability of Ultisols in subtropical China. Six kinds of rare earth element (REE) were applied as tracers mixed with two cultivated soils derived from the Quaternary red clay soil and the shale soil at six slope positions. Soil aggregate stability was determined by the Le Bissonnais (LB)-method. Simulated rainfall with three intensities (60, 90 and 120 mm/h) were applied to a soil plot (2.25 m long, 0.5 m wide, 0.2 m deep) at three slope gradients (10°, 20° and 30°) with duration of 30 min after runoff initiation. The results indicated that interrill and rill erosion increased with increasing rainfall intensity and slope gradient for both types of soil. Rill and interrill erosion rates of the shale soil were much higher than those of the Quaternary red clay soil. Rill erosion contribution enhanced with increasing rainfall intensity and slope gradient for both soils. Percentage of the downslope area erosion to total erosion was the largest, followed by the mid-slope area and then upslope area. Equations using an aggregate stability index As to replace the erodibility factor of interrill and rill erosion in the Water Erosion Prediction Project (WEPP) model were constructed after analyzing the relationships between estimated and measured rill and interrill erosion data. It was shown that these equations based on the stability index, As, have the potential to improve methods for assessing interrill and rill erosion erodibility synchronously for the subtropical Ultisols by using REE tracing method.

  7. Prediction of Soil Erosion Rates in Japan where Heavily Forested Landscape with Unstable Terrain

    NASA Astrophysics Data System (ADS)

    Nanko, K.; Oguro, M.; Miura, S.; Masaki, T.

    2016-12-01

    Soil is fundamental for plant growth, water conservation, and sustainable forest management. Multidisciplinary interest in the role of the soil in areas such as biodiversity, ecosystem services, land degradation, and water security has been growing (Miura et al., 2015). Forest is usually protective land use from soil erosion because vegetation buffers rainfall power and erosivity. However, some types of forest in Japan show high susceptibility to soil erosion due to little ground cover and steep slopes exceeding thirty degree, especially young Japanese cypress (Chamaecyparis obtusa) plantations (Miura et al., 2002). This is a critical issue for sustainable forest management because C. obtusaplantations account for 10% of the total forest coverage in Japan (Forestry Agency, 2009). Prediction of soil erosion rates on nationwide scale is necessary to make decision for future forest management plan. To predict and map soil erosion rates across Japan, we applied three soil erosion models, RUSLE (Revised Universal Soil Loss Equation, Wischmeier and Smith, 1978), PESERA (Pan-European Soil Erosion Risk Assessment, Kirkby et al., 2003), and RMMF (Revised Morgan-Morgan-Finney, Morgan, 2001). The grid scale is 1-km. RUSLE and PESERA are most widely used erosion models today. RMMF includes interactions between rainfall and vegetation, such as canopy interception and ratio of canopy drainage in throughfall. Evaporated rainwater by canopy interception, generally accounts for 15-20% in annual rainfall, does not contribute soil erosion. Whereas, larger raindrops generated by canopy drainage produced higher splash erosion rates than gross rainfall (Nanko et al., 2008). Therefore, rainfall redistribution process in canopy should be considered to predict soil erosion rates in forested landscape. We compared the results from three erosion models and analyze the importance of environmental factors for the prediction of soil erosion rates. This research was supported by the Environment Research and Technology Development Fund (S15-2-2) of the Ministry of the Environment, Japan.

  8. Evaluating the Soil Vulnerability Index (SVI), an index to characterize inherent vulnerability of croplands to runoff and leaching

    USDA-ARS?s Scientific Manuscript database

    Soil erosion and nutrient loss from surface runoff and sub-surface flows are critical problems for croplands in the United States. Assessing cropland vulnerability to runoff and leaching is needed for watershed or regional land use and land management planning and conservation resources allocation. ...

  9. Evaluation of Karst Soil Erosion and Nutrient Loss Based on RUSLE Model in Guizhou Province

    NASA Astrophysics Data System (ADS)

    Zeng, Cheng; Li, Yangbing; Bai, Xiaoyong; Luo, Guangjie

    2018-01-01

    Based on GIS technology and RUSLE model, the spatial variation characteristics of soil erosion were analyzed in karst areas, and the relationship between soil erosion and soil nutrient loss was discussed. The results showed that the soil differences in spatial variation between nutrient losses. The results illustrate the total soil erosion in is 10316.31 × 104t • a-1, accounting for 84.95% of the total land area in Guizhou Province. The spatial distribution of soil erosion showing the characteristics of the southeast to the northwest strip. The annual average soil erosion modulu is 691.94 t • km-2 • a-1, of which karst is 720.28t • km-2 • a-1 and non-karst is 689.53 t • km-2 • a-1. The total nutrient losses such as soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP) and total potassium (TK) were 596.72 × 104t • a-1 due to soil erosion, and SOC, TN and TP and TK were 38.13, 1.61, 0.41 and 14.70t • km-2 • a-1, respectively. The average amount of loss and total loss are the largest in non-karst, and four kinds of nutrient is the smallest in karst gorge. The spatial variation of soil erosion in the study area is the process of increasing the erosion area with the increase of the erosion rate, and the difference of the spatial distribution of soil erosion determines the spatial distribution of soil nutrient loss.

  10. Soil Erosion. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Buydos, John F., Comp.

    Soil erosion is the detachment and movement of topsoil or soil material from the upper part of the soil profile. It may occur in the form of rill, gully, sheet, or wind erosion. Agents of erosion may be water, wind, glacial ice, agricultural implements, machinery, and animals. Soil conservation measures require a thorough understanding of the…

  11. Soil erosion assessment on hillslope of GCE using RUSLE model

    NASA Astrophysics Data System (ADS)

    Islam, Md. Rabiul; Jaafar, Wan Zurina Wan; Hin, Lai Sai; Osman, Normaniza; Din, Moktar Aziz Mohd; Zuki, Fathiah Mohamed; Srivastava, Prashant; Islam, Tanvir; Adham, Md. Ibrahim

    2018-06-01

    A new method for obtaining the C factor (i.e., vegetation cover and management factor) of the RUSLE model is proposed. The method focuses on the derivation of the C factor based on the vegetation density to obtain a more reliable erosion prediction. Soil erosion that occurs on the hillslope along the highway is one of the major problems in Malaysia, which is exposed to a relatively high amount of annual rainfall due to the two different monsoon seasons. As vegetation cover is one of the important factors in the RUSLE model, a new method that accounts for a vegetation density is proposed in this study. A hillslope near the Guthrie Corridor Expressway (GCE), Malaysia, is chosen as an experimental site whereby eight square plots with the size of 8× 8 and 5× 5 m are set up. A vegetation density available on these plots is measured by analyzing the taken image followed by linking the C factor with the measured vegetation density using several established formulas. Finally, erosion prediction is computed based on the RUSLE model in the Geographical Information System (GIS) platform. The C factor obtained by the proposed method is compared with that of the soil erosion guideline Malaysia, thereby predicted erosion is determined by both the C values. Result shows that the C value from the proposed method varies from 0.0162 to 0.125, which is lower compared to the C value from the soil erosion guideline, i.e., 0.8. Meanwhile predicted erosion computed from the proposed C value is between 0.410 and 3.925 t ha^{-1 } yr^{-1} compared to 9.367 to 34.496 t ha^{-1} yr^{-1 } range based on the C value of 0.8. It can be concluded that the proposed method of obtaining a reasonable C value is acceptable as the computed predicted erosion is found to be classified as a very low zone, i.e. less than 10 t ha^{-1 } yr^{-1} whereas the predicted erosion based on the guideline has classified the study area as a low zone of erosion, i.e., between 10 and 50 t ha^{-1 } yr^{-1}.

  12. Monitoring as a partially observable decision problem

    Treesearch

    Paul L. Fackler; Robert G. Haight

    2014-01-01

    Monitoring is an important and costly activity in resource man-agement problems such as containing invasive species, protectingendangered species, preventing soil erosion, and regulating con-tracts for environmental services. Recent studies have viewedoptimal monitoring as a Partially Observable Markov Decision Pro-cess (POMDP), which provides a framework for...

  13. Erosion of soil organic carbon: implications for carbon sequestration

    USGS Publications Warehouse

    Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.; McPherson, B.J.; Sundquist, E.T.

    2009-01-01

    Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.

  14. Qualitative Erosion and Sedimentation Investigation Maline Creek, City and County of St. Louis, Missouri.

    DTIC Science & Technology

    1985-07-30

    Flooding of Maline Creek in and around St. Louis, Missouri has been a problem. In an effort to provide significant flood damage mitigation, increase...miles of environmental/recreational trails. The sediment transport characteristics of Maline Creek , were qualitatively evaluated and the effect of...erosion and sedimentation of loess soils since they are common to the Maline Creek watershed.

  15. Water erosion susceptibility mapping by applying Stochastic Gradient Treeboost to the Imera Meridionale River Basin (Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Angileri, Silvia Eleonora; Conoscenti, Christian; Hochschild, Volker; Märker, Michael; Rotigliano, Edoardo; Agnesi, Valerio

    2016-06-01

    Soil erosion by water constitutes a serious problem affecting various countries. In the last few years, a number of studies have adopted statistical approaches for erosion susceptibility zonation. In this study, the Stochastic Gradient Treeboost (SGT) was tested as a multivariate statistical tool for exploring, analyzing and predicting the spatial occurrence of rill-interrill erosion and gully erosion. This technique implements the stochastic gradient boosting algorithm with a tree-based method. The study area is a 9.5 km2 river catchment located in central-northern Sicily (Italy), where water erosion processes are prevalent, and affect the agricultural productivity of local communities. In order to model soil erosion by water, the spatial distribution of landforms due to rill-interrill and gully erosion was mapped and 12 environmental variables were selected as predictors. Four calibration and four validation subsets were obtained by randomly extracting sets of negative cases, both for rill-interrill erosion and gully erosion models. The results of validation, based on receiving operating characteristic (ROC) curves, showed excellent to outstanding accuracies of the models, and thus a high prediction skill. Moreover, SGT allowed us to explore the relationships between erosion landforms and predictors. A different suite of predictor variables was found to be important for the two models. Elevation, aspect, landform classification and land-use are the main controlling factors for rill-interrill erosion, whilst the stream power index, plan curvature and the topographic wetness index were the most important independent variables for gullies. Finally, an ROC plot analysis made it possible to define a threshold value to classify cells according to the presence/absence of the two erosion processes. Hence, by heuristically combining the resulting rill-interrill erosion and gully erosion susceptibility maps, an integrated water erosion susceptibility map was created. The adopted method offers the advantages of an objective and repeatable procedure, whose result is useful for local administrators to identify the areas that are most susceptible to water erosion and best allocate resources for soil conservation strategies.

  16. Soil erosion in mountainous areas: how far can we go?

    NASA Astrophysics Data System (ADS)

    Egli, Markus

    2017-04-01

    Erosion is the counter part of soil formation, is a natural process and cannot be completely impeded. With respect to soil protection, the term of tolerable soil erosion, having several definitions, has been created. Tolerable erosion is often equalled to soil formation or production. It is therefore crucial that we know the rates of soil formation when discussing sustainability of soil use and management. Natural rates of soil formation or production are determined by mineral weathering or transformation of parent material into soil, dust deposition and organic matter incorporation. In mountain areas where soil depth is a main limiting factor for soil productivity, the use and management of soils must consider how to preserve them from excessive depth loss and consequent degradation of their physical, chemical and biological properties. Even under natural conditions, landscape surfaces and soils are known to evolve in complex, non-linear ways over time. As a result, soil production and erosion change substantially with time. The fact that soil erosion and soil production processes are discontinuous over time is an aspect that is in most cases completely neglected. To conserve a given situation, tolerable values should take these dynamics into account. Measurements of long and short-term physical erosion rates, total denudation, weathering rates and soil production have recently become much more widely available through cosmogenic and fallout nuclide techniques. In addition to this, soil chronosequences deliver a precious insight into the temporal aspect of soil formation and production. Examples from mountainous and alpine areas demonstrate that soil production rates strongly vary as a function of time (with young soils and eroded surfaces having distinctly higher rates than old soils). Extensive erosion promotes rejuvenation of the surface and, therefore, accelerates chemical weathering and soil production - the resulting soil thickness will however be shallow. The comparison of soil production and erosion rates indicates that the present-day management of grassland soils in several alpine and mountain regions will lead in the long-term to very shallow soils (showing the characteristics of young soils). Shallow soils go along with high 'tolerable' erosion rates. It is, however, strongly doubtful whether this matches the deeper sense of sustainability.

  17. Predicting risk of rill initiation in a sub-catchment of Lake Balaton, Hungary

    NASA Astrophysics Data System (ADS)

    Hausner, C.; Sisák, I.

    2009-04-01

    Rill erosion is an accelerated form of soil degradation. It removes much more soil and nutrients from the agricultural land than sheet erosion. Soils in the southern sub-watershed of Lake Balaton are especially prone to rill erosion and they contribute to siltation of ditches, to muddy floods and to eutrofication of the lake. The parent material in this region is mainly (sandy) loess and the soils are already moderately or strongly eroded thus, the low tolerance of loess against erosion determines erodibility. Identification of soils with high risk of rill erosion is crucial to plan mitigation measures. Soil erodibility has been investigated in this study in the catchment of Tetves stream. The USLE soil erodibility factor and soil slaking are widely accepted indicators for soil erosion. Both of them are published for all soil texture classes in handbooks of soil mapping. We have found that erodibility derived from our physical model has a close linear correlation with the product of the USLE soil erodibility factor and soil slaking grade thus, USLE could be directly used to assess parameters for physical based models. Rill erosion is highly probable if the product of KUSLE X slaking grade is above 2. Digital maps were produced to delineate soils with high potential for rill erosion. The basic data for the soil properties were drawn from the 1:10,000 soil map. Soil texture classes were used to assign KUSLE and slaking grade to the soil units. Beyond soil properties, other factors also influence rill formation: slope, surface cover, rainfall intensity. However, identifying soil properties, which make soils prone to rill erosion, is an important initial step for the reduction of diffuse agricultural loads to Lake Balaton. It might be the objective of River Basin Management Plans in the Water Framework Directive to prevent rill erosion and our study provides scientific evidence for targeting this policy.

  18. Effect of Erosion on Productivity in Subtropical Red Soil Hilly Region: A Multi-Scale Spatio-Temporal Study by Simulated Rainfall

    PubMed Central

    Li, Zhongwu; Huang, Jinquan; Zeng, Guangming; Nie, Xiaodong; Ma, Wenming; Yu, Wei; Guo, Wang; Zhang, Jiachao

    2013-01-01

    The effects of water erosion (including long-term historical erosion and single erosion event) on soil properties and productivity in different farming systems were investigated. A typical sloping cropland with homogeneous soil properties was designed in 2009 and then protected from other external disturbances except natural water erosion. In 2012, this cropland was divided in three equally sized blocks. Three treatments were performed on these blocks with different simulated rainfall intensities and farming methods: (1) high rainfall intensity (1.5 - 1.7 mm min−1), no-tillage operation; (2) low rainfall intensity (0.5 - 0.7 mm min−1), no-tillage operation; and (3) low rainfall intensity, tillage operation. All of the blocks were divided in five equally sized subplots along the slope to characterize the three-year effects of historical erosion quantitatively. Redundancy analysis showed that the effects of long-term historical erosion significantly caused most of the variations in soil productivity in no-tillage and low rainfall erosion intensity systems. The intensities of the simulated rainfall did not exhibit significant effects on soil productivity in no-tillage systems. By contrast, different farming operations induced a statistical difference in soil productivity at the same single erosion intensity. Soil organic carbon (SOC) was the major limiting variable that influenced soil productivity. Most explanations of long-term historical erosion for the variation in soil productivity arose from its sharing with SOC. SOC, total nitrogen, and total phosphorus were found as the regressors of soil productivity because of tillage operation. In general, this study provided strong evidence that single erosion event could also impose significant constraints on soil productivity by integrating with tillage operation, although single erosion is not the dominant effect relative to the long-term historical erosion. Our study demonstrated that an effective management of organic carbon pool should be the preferred option to maintain soil productivity in subtropical red soil hilly region. PMID:24147090

  19. Assessment of Soil Erosion in a Cultivated Landscape Using Repeated Measurements of 137Cs

    USDA-ARS?s Scientific Manuscript database

    Soil erosion is a major environmental concern with the potential to severely impact soil and water quality. Assessments of soil erosion are normally carried out using model predictions. Cesium-137 can be used to provide estimates of soil erosion at a landscape scale, and it remains the best tool to ...

  20. Changes in soil erosion and sediment transport based on the RUSLE model in Zhifanggou watershed, China

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Qian, Ju; Qi, Wen-Yan; Li, Sheng-Shuang; Chen, Jian-Long

    2018-04-01

    In this paper, changes of sediment yield and sediment transport were assessed using the Revised Universal Soil Loss Equation (RUSLE) and Geographical Information Systems (GIS). This model was based on the integrated use of precipitation data, Landsat images in 2000, 2005 and 2010, terrain parameters (slope gradient and slope length) and soil composition in Zhifanggou watershed, Gansu Province, Northwestern China. The obtained results were basically consistent with the measured values. The results showed that the mean modulus of soil erosion is 1224, 1118 and 875 t km-2 yr-1 and annual soil loss is 23 130, 21 130 and 16 536 in 2000, 2005 and 2010 respectively. The measured mean erosion modulus were 1581 and 1377 t km-2 yr-1, and the measured annual soil loss were 29 872 and 26 022 t in 2000 and 2005. From 2000 to 2010, the amount of soil erosion was reduced yearly. Very low erosion and low erosion dominated the soil loss status in the three periods, and moderate erosion followed. The zones classified as very low erosion were increasing, whereas the zones with low or moderate erosion were decreasing. In 2010, no zones were classified as high or very high soil erosion.

  1. Impacts of vehicles on natural terrain at seven sites in the San Francisco Bay area

    USGS Publications Warehouse

    Wilshire, H.G.; Nakata, J.K.; Shipley, S.; Prestegaard, K.

    1978-01-01

    The impacts of off-road vehicles on vegetation and soil were investigated at seven representative sites in the San Francisco Bay area. Plant cover of grass and chaparral (with shrubs to 4 m tall) have been stripped by the two- and four-wheel vehicles in use. Impacts on loamy soils include increased surface strength (as much as 275 bars), increased bulk density (averaging 18%) to depths of 90 cm or more, reduction of soil moisture by an average 43% to 30 cm depths, greatly reduced infiltration, extension of the diurnal temperature range by as much as 12??C, and reduction of organic carbon by an average 33% in exposed soils. Very sandy soils respond similarly to vehicular use except that moisture is increased and surface strength of beach sand is decreased. These physical and chemical impacts reduce the land's capability of restoring its vegetative cover, which in turn adversely affects animal populations. Both the loss of plant cover and the physical changes caused by vehicles promote erosion. Measured soil and substrate losses from vehicular use zones range from 7 to 1180 kg/m2. The estimated erosion rate of the Chabot Park site exceeds the rate of erosion considered a serious problem by a factor 30, it exceeds United States Soil Conservation Service tolerance values by a factor of 46, and it exceeds average San Francisco Bay area erosion rates by a factor of 17. The resulting soil losses are effectively permanent. Neither the increased sediment yield nor the increased runoff is accomodated on the sites of use, and both are causing adverse effects to neighboring properties. ?? 1978 Springer-Verlag New York Inc.

  2. Land degradation assessment by geo-spatially modeling different soil erodibility equations in a semi-arid catchment.

    PubMed

    Saygın, Selen Deviren; Basaran, Mustafa; Ozcan, Ali Ugur; Dolarslan, Melda; Timur, Ozgur Burhan; Yilman, F Ebru; Erpul, Gunay

    2011-09-01

    Land degradation by soil erosion is one of the most serious problems and environmental issues in many ecosystems of arid and semi-arid regions. Especially, the disturbed areas have greater soil detachability and transportability capacity. Evaluation of land degradation in terms of soil erodibility, by using geostatistical modeling, is vital to protect and reclaim susceptible areas. Soil erodibility, described as the ability of soils to resist erosion, can be measured either directly under natural or simulated rainfall conditions, or indirectly estimated by empirical regression models. This study compares three empirical equations used to determine the soil erodibility factor of revised universal soil loss equation prediction technology based on their geospatial performances in the semi-arid catchment of the Saraykoy II Irrigation Dam located in Cankiri, Turkey. A total of 311 geo-referenced soil samples were collected with irregular intervals from the top soil layer (0-10 cm). Geostatistical analysis was performed with the point values of each equation to determine its spatial pattern. Results showed that equations that used soil organic matter in combination with the soil particle size better agreed with the variations in land use and topography of the catchment than the one using only the particle size distribution. It is recommended that the equations which dynamically integrate soil intrinsic properties with land use, topography, and its influences on the local microclimates, could be successfully used to geospatially determine sites highly susceptible to water erosion, and therefore, to select the agricultural and bio-engineering control measures needed.

  3. Reduction in soil aggregate size distribution due to wind erosion

    NASA Astrophysics Data System (ADS)

    Swet, Nitzan; Katra, Itzhak

    2017-04-01

    Soil erosion process by wind causes emission of fine soil particles, and thus alters the topsoil's properties, fertility, and erodibility. Topsoil resistance to erosion depends on its physicochemical properties, especially on the soil aggregation. Although the key role of aggregates in soil erodibility, quantitative information on the relations between soil aggregate size distribution (ASD) and erosion is still lucking. This study focuses on ASD analyses before and after soil erosion by wind. Wind tunnel experiments and soil analyses were conducted on semiarid loess topsoils with different initial conditions of aggregation. The results show that in all initial soil conditions saltation of sand particles caused the breakdown of macro-aggregates > 500 µm, resulting in increase of micro-aggregates (63-250 µm). The micro-aggregate production increases with the wind shear velocity (up to 0.61 m s-1) for soils with available macro-aggregates. The findings highlight dynamics in soil aggregation in response to erosion process, and therefore the significance of ASD in quantifying soil degradation and soil loss potential.

  4. Vegetation effects on soil water erosion rates and nutrient losses at Santa Catarina highlands, south Brazil

    NASA Astrophysics Data System (ADS)

    Bertol, I.; Barbosa, F. T.; Vidal Vázquez, E.; Paz Ferreiro, J.

    2009-04-01

    Water erosion involves three main processes: detachment, transport and deposition of soil particles. The main factors affecting water erosion are rainfall, soil, topography, soil management and land cover and use. Soil erosion potential is increased if the soil has no or very little vegetative cover of plants and/or crop residues, whereas plant and residue cover substantially decrease rates of soil erosion. Plant and residue cover protects the soil from raindrop impact and splash, tends to slow down the movement of surface runoff and allows excess surface water to infiltrate. Moreover, plant and residue cover improve soil physical, chemical and biological properties. Soils with improved structure have a greater resistance to erosion. By contrast, accelerated soil erosion is accentuated by deforestation, biomass burning, plowing and disking, cultivation of open-row crops, etc. The erosion-reducing effectiveness of plant and/or residue covers depends on the type, extent and quantity of cover. Vegetation and residue combinations that completely cover the soil are the most efficient in controlling soil. Partially incorporated residues and residual roots are also important, as these provide channels that allow surface water to move into the soil. The effectiveness of any crop, management system or protective cover also depends on how much protection is available at various periods during the year, relative to the amount of erosive rainfall that falls during these periods. Most of the erosion on annual row crop land can be reduced by leaving a residue cover greater after harvest and over the winter months, or by inter-seeding a forage crop. Soil erosion potential is also affected by tillage operations and tillage system. Conservation tillage reduces water erosion in relation to conventional tillage by increasing soil cover and soil surface roughness. Here, we review the effect of vegetation on soil erosion in the Santa Catarina highlands, south of Brazil, under subtropical climatic conditions. The area cropped under no tillage in Brazil has increased rapidly since 1990, especially in the southern region. This practice was first introduced in the 1970s as a strategy to control soil erosion and continuous declines in land productivity under conventional tillage systems. No tillage almost entirely keeps the previous crop residue on the surface. In the last 15 years soil and water losses by water erosion have been quantified for different soil tillage systems, diverse crop rotations and successive crop stages under simulated and natural rain conditions. Plot experiments showed that soil losses under no tillage systems with a vegetative cover were 98% lower when compared with conventionally tilled bare soil. Moreover water losses were 60% lower for these conditions. Conventional tillage (plowing + harrowing) in the presence of vegetative cover reduced soil losses and water losses by 80% and 50%, respectively, taken the uncultivated bare soil as a reference. The review includes the effect of vegetative cover on nutrient losses at the studied sites in the Santa Catarina highlands.

  5. Modeling winter hydrological processes under differing climatic conditions: Modifying WEPP

    NASA Astrophysics Data System (ADS)

    Dun, Shuhui

    Water erosion is a serious and continuous environmental problem worldwide. In cold regions, soil freeze and thaw has great impacts on infiltration and erosion. Rain or snowmelt on a thawing soil can cause severe water erosion. Of equal importance is snow accumulation and snowmelt, which can be the predominant hydrological process in areas of mid- to high latitudes and forested watersheds. Modelers must properly simulate winter processes to adequately represent the overall hydrological outcome and sediment and chemical transport in these areas. Modeling winter hydrology is presently lacking in water erosion models. Most of these models are based on the functional Universal Soil Loss Equation (USLE) or its revised forms, e.g., Revised USLE (RUSLE). In RUSLE a seasonally variable soil erodibility factor (K) was used to account for the effects of frozen and thawing soil. Yet the use of this factor requires observation data for calibration, and such a simplified approach cannot represent the complicated transient freeze-thaw processes and their impacts on surface runoff and erosion. The Water Erosion Prediction Project (WEPP) watershed model, a physically-based erosion prediction software developed by the USDA-ARS, has seen numerous applications within and outside the US. WEPP simulates winter processes, including snow accumulation, snowmelt, and soil freeze-thaw, using an approach based on mass and energy conservation. However, previous studies showed the inadequacy of the winter routines in the WEPP model. Therefore, the objectives of this study were: (1) To adapt a modeling approach for winter hydrology based on mass and energy conservation, and to implement this approach into a physically-oriented hydrological model, such as WEPP; and (2) To assess this modeling approach through case applications to different geographic conditions. A new winter routine was developed and its performance was evaluated by incorporating it into WEPP (v2008.9) and then applying WEPP to four study sites at different spatial scales under different climatic conditions, including experimental plots in Pullman, WA and Morris, MN, two agricultural drainages in Pendleton, OR, and a forest watershed in Mica Creek, ID. The model applications showed promising results, indicating adequacy of the mass- and energy-balance-based approach for winter hydrology simulation.

  6. Combined impacts of land use and soil property changes on soil erosion in a mollisol area under long-term agricultural development.

    PubMed

    Ouyang, Wei; Wu, Yuyang; Hao, Zengchao; Zhang, Qi; Bu, Qingwei; Gao, Xiang

    2018-02-01

    Soil erosion exhibits special characteristics in the process of agricultural development. Understanding the combined impacts of land use and soil property changes on soil erosion, especially in the area under long-term agricultural cultivations, is vital to watershed agricultural and soil management. This study investigated the temporal-spatial patterns of the soil erosion based on a modified version of Universal Soil Loss Equation (USLE) and conducted a soil erosion contribution analysis. The land use data were interpreted from Landsat series images, and soil properties were obtained from field sampling, laboratory tests and SPAW (Soil-Plant-Atmosphere-Water) model calculations. Over a long period of agricultural development, the average erosion modulus decreased from 187.7tkm -2 a -1 in 1979 to 158.4tkm -2 a -1 in 2014. The land use types were transformed mainly in the reclamation of paddy fields and the shrinking of wetlands on a large scale. Most of the soils were converted to loam from silty or clay loam and the saturated hydraulic conductivity (K s ) of most soil types decreased by 1.11% to 43.6%. The rapidly increasing area of 49.8km 2 of paddy fields together with the moderate decrease of 14.0km 2 of forests, as well as K s values explained 87.4% of the total variance in soil erosion. Although changes in soil physical and water characteristics indicated that soil erosion loads should have become higher, the upsurge in paddy fields played an important role in mitigating soil erosion in this study area. These results demonstrated that land use changes had more significant impacts than soil property changes on soil erosion. This study suggested that rational measures should be taken to extend paddy fields and control the dry land farming. These findings will benefit watershed agricultural targeting and management. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A method for modeling the effects of climate and land use changes on erosion and sustainability of soil in a Mediterranean watershed (Languedoc, France).

    PubMed

    Paroissien, Jean-Baptiste; Darboux, Frédéric; Couturier, Alain; Devillers, Benoît; Mouillot, Florent; Raclot, Damien; Le Bissonnais, Yves

    2015-03-01

    Global climate and land use changes could strongly affect soil erosion and the capability of soils to sustain agriculture and in turn impact regional or global food security. The objective of our study was to develop a method to assess soil sustainability to erosion under changes in land use and climate. The method was applied in a typical mixed Mediterranean landscape in a wine-growing watershed (75 km(2)) within the Languedoc region (La Peyne, France) for two periods: a first period with the current climate and land use and a second period with the climate and land use scenarios at the end of the twenty-first century. The Intergovernmental Panel on Climate Change A1B future rainfall scenarios from the Météo France General circulation model was coupled with four contrasting land use change scenarios that were designed using a spatially-explicit land use change model. Mean annual erosion rate was estimated with an expert-based soil erosion model. Soil life expectancy was assessed using soil depth. Soil erosion rate and soil life expectancy were combined into a sustainability index. The median simulated soil erosion rate for the current period was 3.5 t/ha/year and the soil life expectancy was 273 years, showing a low sustainability of soils. For the future period with the same land use distribution, the median simulated soil erosion rate was 4.2 t/ha/year and the soil life expectancy was 249 years. The results show that soil erosion rate and soil life expectancy are more sensitive to changes in land use than to changes in precipitation. Among the scenarios tested, institution of a mandatory grass cover in vineyards seems to be an efficient means of significantly improving soil sustainability, both in terms of decreased soil erosion rates and increased soil life expectancies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Revisiting classic water erosion models in drylands: The strong impact of biological soil crusts

    USGS Publications Warehouse

    Bowker, M.A.; Belnap, J.; Bala, Chaudhary V.; Johnson, N.C.

    2008-01-01

    Soil erosion and subsequent degradation has been a contributor to societal collapse in the past and is one of the major expressions of desertification in arid regions. The revised universal soil loss equation (RUSLE) models soil lost to water erosion as a function of climate erosivity (the degree to which rainfall can result in erosion), topography, soil erodibility, and land use/management. The soil erodibility factor (K) is primarily based upon inherent soil properties (those which change slowly or not at all) such as soil texture and organic matter content, while the cover/management factor (C) is based on several parameters including biological soil crust (BSC) cover. We examined the effect of two more precise indicators of BSC development, chlorophyll a and exopolysaccharides (EPS), upon soil stability, which is closely inversely related to soil loss in an erosion event. To examine the relative influence of these elements of the C factor to the K factor, we conducted our investigation across eight strongly differing soils in the 0.8 million ha Grand Staircase-Escalante National Monument. We found that within every soil group, chlorophyll a was a moderate to excellent predictor of soil stability (R2 = 0.21-0.75), and consistently better than EPS. Using a simple structural equation model, we explained over half of the variance in soil stability and determined that the direct effect of chlorophyll a was 3?? more important than soil group in determining soil stability. Our results suggest that, holding the intensity of erosive forces constant, the acceleration or reduction of soil erosion in arid landscapes will primarily be an outcome of management practices. This is because the factor which is most influential to soil erosion, BSC development, is also among the most manageable, implying that water erosion in drylands has a solution. ?? 2008 Elsevier Ltd.

  9. An Assessment of the Impact of Urbanization on Soil Erosion in Inner Mongolia.

    PubMed

    Wang, Li-Yan; Xiao, Yi; Rao, En-Ming; Jiang, Ling; Xiao, Yang; Ouyang, Zhi-Yun

    2018-03-19

    Inner Mongolia, an autonomous region of the People's Republic of China, has experienced severe soil erosion following a period of rapid economic development and urbanization. To investigate how urbanization has influenced the extent of soil erosion in Inner Mongolia, we used urbanization and soil erosion data from 2000 through 2010 to determine the relationship between urbanization and soil erosion patterns. Two empirical equations-the Revised Universal Soil Loss Equation (RUSLE) and the Revised Wind Erosion Equation (RWEQ)-were used to estimate the intensity of soil erosion, and we performed backward linear regression to model how it changed with greater urbanization. There was an apparent increase in the rate of urbanization and a decrease in the area affected by soil erosion in 2010 compared to the corresponding values for 2000. The urban population stood at 11.32 million in 2010, which represented a 16.47% increase over that in 2000. The area affected by soil erosion in 2000 totaled 704,817 km², yet it had decreased to 674,135 km² by 2010. However, a path of modest urban development (rural-urban mitigation) and reasonable industrial structuring (the development of GDP-2) may partially reduce urbanization's ecological pressure and thus indirectly reduce the threat of soil erosion to human security. Therefore, to better control soil erosion in Inner Mongolia during the process of urbanization, the current model of economic development should be modified to improve the eco-efficiency of urbanization, while also promoting new modes of urbanization that are environmentally sustainable, cost-effective, and conserve limited resources.

  10. An Assessment of the Impact of Urbanization on Soil Erosion in Inner Mongolia

    PubMed Central

    Xiao, Yi; Rao, En-Ming; Jiang, Ling; Xiao, Yang; Ouyang, Zhi-Yun

    2018-01-01

    Inner Mongolia, an autonomous region of the People’s Republic of China, has experienced severe soil erosion following a period of rapid economic development and urbanization. To investigate how urbanization has influenced the extent of soil erosion in Inner Mongolia, we used urbanization and soil erosion data from 2000 through 2010 to determine the relationship between urbanization and soil erosion patterns. Two empirical equations—the Revised Universal Soil Loss Equation (RUSLE) and the Revised Wind Erosion Equation (RWEQ)—were used to estimate the intensity of soil erosion, and we performed backward linear regression to model how it changed with greater urbanization. There was an apparent increase in the rate of urbanization and a decrease in the area affected by soil erosion in 2010 compared to the corresponding values for 2000. The urban population stood at 11.32 million in 2010, which represented a 16.47% increase over that in 2000. The area affected by soil erosion in 2000 totaled 704,817 km2, yet it had decreased to 674,135 km2 by 2010. However, a path of modest urban development (rural–urban mitigation) and reasonable industrial structuring (the development of GDP-2) may partially reduce urbanization’s ecological pressure and thus indirectly reduce the threat of soil erosion to human security. Therefore, to better control soil erosion in Inner Mongolia during the process of urbanization, the current model of economic development should be modified to improve the eco-efficiency of urbanization, while also promoting new modes of urbanization that are environmentally sustainable, cost-effective, and conserve limited resources. PMID:29562707

  11. Use of palm-mat geotextiles for rainsplash erosion control

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, R.; Fullen, M. A.; Davies, K.; Booth, C. A.

    2010-07-01

    Soil detachment by raindrop action (rainsplash erosion) is a very important subprocess of erosion by water. It is a particular problem in the UK as most soils are sandy or loamy sand in texture and lands have gentle to medium slope. However, few studies report potential rainsplash erosion control options under field conditions. Hence, the utilization of palm-mat geotextiles as a rainsplash erosion control technique was investigated at Hilton, east Shropshire, U.K. (52°33'5.7″ N, 2°19'18.3″ W). Geotextile-mats constructed from Borassus aethiopum (Borassus palm of West Africa) and Mauritia flexuosa (Buriti palm of South America) leaves are termed Borassus mats and Buriti mats, respectively. Two-year field experiments were conducted at Hilton to study the effects of emplacing Borassus and Buriti mats on rainsplash erosion of a loamy sand soil. Two sets (12 plots each) of experiments were established to study the effects of these mats on splash height and splash erosion. Splash height needs to be known to assess the transport mechanism of major soil fraction and its constituents on sloping land by rainsplash. In both sets, six randomly-selected plots were covered with mats, and the rest were bare. Results (during 22/01/2007‒23/01/2009; total precipitation = 1731.5 mm) show that Borassus mat-covered plots had ˜ 89% ( P < 0.001) less total splash erosion (2.97 kg m - 2 ) than bare plots (27.02 kg m - 2 ). Comparatively, mean splash height from Borassus mat-covered plots (0.12 m) was significantly ( P < 0.001) less than the bare plots, by ˜ 54%. However, Buriti mat-cover on bare plots had no significant ( P > 0.05) effect in rainsplash erosion control during that period, although plots with Buriti mats significantly ( P < 0.05) decreased splash height (by ˜ 18%) compared with bare plots (0.26 m). Buriti mats, probably due to their ˜ 43, 62 and 50% lower cover percentage (44%), mass per unit area (413 g - 2 ) and thickness (10 mm), respectively, compared with Borassus mats, were not effective in rainsplash erosion control. Both mats did not significantly ( P > 0.05) improve selected soil properties (i.e., soil organic matter, particle size distribution, aggregate stability and total soil carbon) as soil organic matter (SOM) input from mat-decomposition was much less than total SOM content. However, the changes in fine and medium sand contents (after 2 years) in the Borassus covered plots were significantly ( P < 0.05; n = 6) related to the total rainsplash erosion during 2007‒2009. Emplacement of Borassus and Buriti mats on bare soils did not decrease SOM contents after 2 years, indicating that improvements in some soil properties might occur over longer durations. After ˜ 10 months, Buriti mats lost ˜ 70% of their initial weight ( P < 0.001) and their initial cover percentage ( C, %) decreased drastically ( P < 0.05); whereas, Borassus mats maintained similar C to the initial condition, although mass per unit area decreased by ˜ 20% ( P < 0.05). Moreover, the functional longevity of Borassus mats was ˜ 2 years against only 1 year for Buriti mats. Hence, use of Borassus mats is highly effective for rainsplash erosion control in the UK.

  12. Soil erodibility for water erosion: A perspective and Chinese experiences

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Zheng, Fenli; Römkens, Mathias J. M.; Darboux, Frédéric

    2013-04-01

    Knowledge of soil erodibility is an essential requirement for erosion prediction, conservation planning, and the assessment of sediment related environmental effects of watershed agricultural practices. This paper reviews the status of soil erodibility evaluations and determinations based on 80 years of upland area erosion research mainly in China and the USA. The review synthesizes the general research progress made by discussing the basic concepts of erodibility and its evaluation, determination, and prediction as well as knowledge of its spatio-temporal variations. The authors found that soil erodibility is often inappropriately or inaccurately applied in describing soil loss caused by different soil erosion component processes and mechanisms. Soil erodibility indicators were related to intrinsic soil properties and exogenic erosional forces, measurements, and calculations. The present review describes major needs including: (1) improved definition of erodibility, (2) modified erodibility determinations in erosion models, especially for specific geographical locations and in the context of different erosion sub-processes, (3) advanced methodologies for quantifying erodibilities of different soil erosion sub-processes, and (4) a better understanding of the mechanism that causes temporal variations in soil erodibility. The review also provides a more rational basis for future research on soil erodibility and supports predictive modeling of soil erosion processes and the development of improved conservation practices.

  13. 75 FR 75961 - Notice of Implementation of the Wind Erosion Prediction System for Soil Erodibility System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... Wind Erosion Prediction System for Soil Erodibility System Calculations for the Natural Resources... Erosion Prediction System (WEPS) for soil erodibility system calculations scheduled for implementation for... computer model is a process-based, daily time-step computer model that predicts soil erosion via simulation...

  14. Bio-engineering for land stabilization : executive summary report.

    DOT National Transportation Integrated Search

    2010-06-30

    Soil-bioengineering, or simply : bioengineering, is the use of vegetation for : slope stabilization. Currently, a large : number of slopes near Ohio highways are : experiencing stability problems. These : failures usually begin as local erosion...

  15. Analysis of Actual Soil Degradation by Erosion Using Satellite Imagery and Terrain Attributes in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Zizala, Daniel

    2015-04-01

    Soil water and wind erosion (possibly tillage erosion) is the most significant soil degradation factor in the Czech Republic. Moreover, this phenomenon also affects seriously quality of water sources., About 50 % of arable land are endangered by water erosion and about 10 % of arable land are endangered wind erosion in the Czech Republic. These processes have been accelerated by human activity. Specific condition of agriculture land in the Czech Republic including highland relief and particularly size of land parcel and intensification of agriculture does not enable to reduce flow of runoff water. Insufficient protection against accelerated erosion processes is related to lack of landscape and hydrographic elements and large area of agricultural plots. Currently, this issue is solved at plot scale by field investigation or at regional scale using numerical and empirical erosion models. Nevertheless, these models enable only to predict the potential of soil erosion. Large scale assessment of actual degradation level of soils is based on expert knowledge. However, there are still many uncertainties in this issue. Therefore characterization of actual degradation level of soil is required especially for assessment of long-term impact of soil erosion on soil fertility. Soil degradation by erosion can be effectively monitored or quantified by modern tools of remote sensing with variable level of detail accessible. Aims of our study is to analyse the applicability of remote sensing for monitoring of actual soil degradation by erosion. Satellite and aerial image data (multispectral and hyperspectral), terrain attributes and data from field investigation are the main source for this analyses. The first step was the delimitation of bare soils using supervised classification of the set of Landsat scenes from 2000 - 2014. The most suitable period of time for obtaining spectral image data with the lowest vegetation cover of soil was determined. The results were verified by statistical data of areas under farm crops from Czech Statistical Office. Information on number of scenes where bare soils are identified for each land parcel is available. This set of images with bare soils is used for assessment of soil degradation stage. Some land parcels were found without vegetation cover up to 40 times. Analysis was performed on 5 test sites in the Czech Republic and also using data from database of Soil Erosion Monitoring of Agricultural Land. Currently, more than 500 erosion events are registered in this database. Additional remote sensing data (Hyperion data, aerial hyperspectral data) was used for detailed analysis on the test sites. Results reveal that satellite imagery set, soil maps, terrain attributes and erosion modelling can be successfully applied in assessment of actual soil degradation by erosion. The research has been supported by the project no. QJ330118 "Using Remote Sensing for Monitoring of Soil Degradation by Erosion and Erosion Effects" funding by Ministry of Agriculture.

  16. Introduction to tillage erosion

    USDA-ARS?s Scientific Manuscript database

    Tillage as a source of erosion Tillage erosion is the downslope movement of soil by tillage. During tillage, soil is lifted and gravity moves soil downslope. Soil movement by tillage increases with slope steepness. However, net soil transport by tillage is determined by the change in slope. Soil mov...

  17. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Equations for predicting soil loss due to water... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R × K...

  18. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Equations for predicting soil loss due to water... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R × K...

  19. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Equations for predicting soil loss due to water... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R × K...

  20. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Equations for predicting soil loss due to water... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R × K...

  1. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Equations for predicting soil loss due to water... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R × K...

  2. Risk assessment of watershed erosion at Naesung Stream, South Korea.

    PubMed

    Ji, Un; Velleux, Mark; Julien, Pierre Y; Hwang, Manha

    2014-04-01

    A three-tiered approach was used to assess erosion risks within the Nakdong River Basin in South Korea and included: (1) a screening based on topography and land use; (2) a lumped parameter analysis using RUSLE; and (3) a detailed analysis using TREX, a fully distributed watershed model. These tiers span a range of spatial and temporal scales, with each tier providing increasing detail and resolution. The first two tiers were applied to the entire Nakdong River Basin and the Naesung Stream watershed was identified as having the highest soil erosion risk and potential for sedimentation problems. For the third tier, the TREX watershed model simulated runoff, channel flow, soil erosion, and stream sediment transport in the Naesung Stream watershed at very high resolution. TREX was calibrated for surface flows and sediment transport, and was used to simulate conditions for a large design storm. Highly erosive areas were identified along ridgelines in several headwater areas, with the northeast area of Songriwon having a particularly high erosion potential. Design storm simulations also indicated that sediment deposition of up to 55 cm could occur. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Snowmelt water drives higher soil erosion than rainfall water in a mid-high latitude upland watershed

    NASA Astrophysics Data System (ADS)

    Wu, Yuyang; Ouyang, Wei; Hao, Zengchao; Yang, Bowen; Wang, Li

    2018-01-01

    The impacts of precipitation and temperature on soil erosion are pronounced in mid-high latitude areas, which lead to seasonal variations in soil erosion. Determining the critical erosion periods and the reasons behind the increased erosion loads are essential for soil management decisions. Hence, integrated approaches combining experiments and modelling based on field investigations were applied to investigate watershed soil erosion characteristics and the dynamics of water movement through soils. Long-term and continuous data for surface runoff and soil erosion variation characteristics of uplands in a watershed were observed via five simulations by the Soil and Water Assessment Tool (SWAT). In addition, laboratory experiments were performed to quantify the actual soil infiltrabilities in snowmelt seasons (thawed treatment) and rainy seasons (non-frozen treatment). The results showed that over the course of a year, average surface runoff and soil erosion reached peak values of 31.38 mm and 1.46 t ha-1 a-1, respectively, in the month of April. They also ranked high in July and August, falling in the ranges of 23.73 mm to 24.91 mm and 0.55 t ha-1 a-1 to 0.59 t ha-1 a-1, respectively. With the infiltration time extended, thawed soils showed lower infiltrabilities than non-frozen soils, and the differences in soil infiltration amounts between these two were considerable. These results highlighted that soil erosion was very closely and positively correlated with surface runoff. Soil loss was higher in snowmelt periods than in rainy periods due to the higher surface runoff in early spring, and the decreased soil infiltrability in snowmelt periods contributed much to this higher surface runoff. These findings are helpful for identification of critical soil erosion periods when making soil management before critical months, especially those before snowmelt periods.

  4. Estimating soil erosion risk and evaluating erosion control measures for soil conservation planning at Koga watershed in the highlands of Ethiopia

    NASA Astrophysics Data System (ADS)

    Molla, Tegegne; Sisheber, Biniam

    2017-01-01

    Soil erosion is one of the major factors affecting sustainability of agricultural production in Ethiopia. The objective of this paper is to estimate soil erosion using the universal soil loss equation (RUSLE) model and to evaluate soil conservation practices in a data-scarce watershed region. For this purpose, soil data, rainfall, erosion control practices, satellite images and topographic maps were collected to determine the RUSLE factors. In addition, measurements of randomly selected soil and water conservation structures were done at three sub-watersheds (Asanat, Debreyakob and Rim). This study was conducted in Koga watershed at upper part of the Blue Nile basin which is affected by high soil erosion rates. The area is characterized by undulating topography caused by intensive agricultural practices with poor soil conservation practices. The soil loss rates were determined and conservation strategies have been evaluated under different slope classes and land uses. The results showed that the watershed is affected by high soil erosion rates (on average 42 t ha-1 yr-1), greater than the maximum tolerable soil loss (18 t ha-1 yr-1). The highest soil loss (456 t ha-1 yr-1) estimated from the upper watershed occurred on cultivated lands of steep slopes. As a result, soil erosion is mainly aggravated by land-use conflicts and topographic factors and the rugged topographic land forms of the area. The study also demonstrated that the contribution of existing soil conservation structures to erosion control is very small due to incorrect design and poor management. About 35 % out of the existing structures can reduce soil loss significantly since they were constructed correctly. Most of the existing structures were demolished due to the sediment overload, vulnerability to livestock damage and intense rainfall. Therefore, appropriate and standardized soil and water conservation measures for different erosion-prone land uses and land forms need to be implemented in Koga watershed.

  5. How does soil erosion influence the terrestrial carbon cycle and the impacts of land use and land cover change?

    NASA Astrophysics Data System (ADS)

    Naipal, V.; Wang, Y.; Ciais, P.; Guenet, B.; Lauerwald, R.

    2017-12-01

    The onset of agriculture has accelerated soil erosion rates significantly, mobilizing vast quantities of soil organic carbon (SOC) globally. Studies show that at timescales of decennia to millennia this mobilized SOC can significantly alter previously estimated carbon emissions from land use and land cover change (LULCC). However, a full understanding of the impact of soil erosion on land-atmosphere carbon exchange is still missing. The aim of our study is to better constrain the terrestrial carbon fluxes by developing methods, which are compatible with earth system models (ESMs), and explicitly represent the links between soil erosion and carbon dynamics. For this we use an emulator that represents the carbon cycle of ORCHIDEE, which is the land component of the IPSL ESM, in combination with an adjusted version of the Revised Universal Soil Loss Equation (RUSLE) model. We applied this modeling framework at the global scale to evaluate how soil erosion influenced the terrestrial carbon cycle in the presence of elevated CO2, regional climate change and land use change. Here, we focus on the effects of soil detachment by erosion only and do not consider sediment transport and deposition. We found that including soil erosion in the SOC dynamics-scheme resulted in two times more SOC being lost during the historical period (1850-2005 AD). LULCC is the main contributor to this SOC loss, whose impact on the SOC stocks is significantly amplified by erosion. Regionally, the influence of soil erosion varies significantly, depending on the magnitude of the perturbations to the carbon cycle and the effects of LULCC and climate change on soil erosion rates. We conclude that it is necessary to include soil erosion in assessments of LULCC, and to explicitly consider the effects of elevated CO2 and climate change on the carbon cycle and on soil erosion, for better quantification of past, present, and future LULCC carbon emissions.

  6. Spatial distribution and temporal trends of rainfall erosivity in mainland China for 1951-2010

    Treesearch

    Wei Qin; Qiankun Guo; Changqing Zuo; Zhijie Shan; Liang Ma; Ge Sun

    2016-01-01

    Rainfall erosivity is an important factor for estimating soil erosion rates. Understanding the spatial distributionand temporal trends of rainfall erosivity is especially critical for soil erosion risk assessment and soil conservationplanning in mainland China. However, reports on the spatial distribution and temporal trends of rainfall...

  7. Effects of soil management techniques on soil water erosion in apricot orchards.

    PubMed

    Keesstra, Saskia; Pereira, Paulo; Novara, Agata; Brevik, Eric C; Azorin-Molina, Cesar; Parras-Alcántara, Luis; Jordán, Antonio; Cerdà, Artemi

    2016-05-01

    Soil erosion is extreme in Mediterranean orchards due to management impact, high rainfall intensities, steep slopes and erodible parent material. Vall d'Albaida is a traditional fruit production area which, due to the Mediterranean climate and marly soils, produces sweet fruits. However, these highly productive soils are left bare under the prevailing land management and marly soils are vulnerable to soil water erosion when left bare. In this paper we study the impact of different agricultural land management strategies on soil properties (bulk density, soil organic matter, soil moisture), soil water erosion and runoff, by means of simulated rainfall experiments and soil analyses. Three representative land managements (tillage/herbicide/covered with vegetation) were selected, where 20 paired plots (60 plots) were established to determine soil losses and runoff. The simulated rainfall was carried out at 55mmh(-1) in the summer of 2013 (<8% soil moisture) for one hour on 0.25m(2) circular plots. The results showed that vegetation cover, soil moisture and organic matter were significantly higher in covered plots than in tilled and herbicide treated plots. However, runoff coefficient, total runoff, sediment yield and soil erosion were significantly higher in herbicide treated plots compared to the others. Runoff sediment concentration was significantly higher in tilled plots. The lowest values were identified in covered plots. Overall, tillage, but especially herbicide treatment, decreased vegetation cover, soil moisture, soil organic matter, and increased bulk density, runoff coefficient, total runoff, sediment yield and soil erosion. Soil erosion was extremely high in herbicide plots with 0.91Mgha(-1)h(-1) of soil lost; in the tilled fields erosion rates were lower with 0.51Mgha(-1)h(-1). Covered soil showed an erosion rate of 0.02Mgha(-1)h(-1). These results showed that agricultural management influenced water and sediment dynamics and that tillage and herbicide treatment should be avoided. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Annotated bibliography on soil erosion and erosion control in subarctic and high-latitude regions of North America.

    Treesearch

    C.W. Slaughter; J.W. Aldrich

    1989-01-01

    This annotated bibliography emphasizes the physical processes of upland soil erosion, prediction of soil erosion and sediment yield, and erosion control. The bibliography is divided into two sections: (1) references specific to Alaska, the Arctic and subarctic, and similar high-latitude settings; and (2) references relevant to understanding erosion, sediment production...

  9. Determining Consistency of Tillage Direction with Soil Erosion Protection Requirements as The Element of Decision-Making Process in Planning and Applying Land Consolidation

    NASA Astrophysics Data System (ADS)

    Bozek, Piotr; Janus, Jaroslaw; Taszakowski, Jaroslaw; Glowacka, Agnieszka

    2016-10-01

    Water erosion is one of the factors which have negative effect on soil productivity. It often leads to irreversible soil degradation, making soil worthless for agricultural activities. One way of preventing water erosion is making the direction of cultivation perpendicular to the direction of rainwater run-off. Matching the direction with the shape of parcels boundaries in small and extended ones is often possible only through changes in the configuration of property boundaries, which is possible only in the process of land consolidation. The article presents methodology of qualifying the areas for changes in boundaries configuration and cultivation direction in view of existing erosion risk. A computation process was suggested that uses, among others, LIDAR data to model the terrain shape precisely as well as cadastral data that defines the geometry of parcels and, resulting from it, the direction of cultivation and form of use. The suggested process includes also the information on the texture of soil upper horizons from soil agricultural maps. The RUSLE erosion model was applied and the computation process took place in ArcGIS environment with the use of dedicated algorithms suggested and implemented to solve the formulated problem. Computations were conducted for test area of several hundred hectares which was characterized by vast diversity of soil types and landforms. The results prove the usefulness of the suggested method as an element of systems that support decision-making processes used in the stage of determining objects chosen for the realization of consolidating processes (including local consolidation, which covers only chosen fragment of a village). They can also be used in the stage of completing detailed plans of parcels distribution in land consolidation process. The importance of the method is particularly seen in the analysis of areas where land fragmentation indices are unfavourable. Especially in these cases, without the reorganization of boundaries, it is impossible to adapt the direction of cultivation to the requirements of protection against erosion.

  10. Wind tunnel experimental study on the effect of PAM on soil wind erosion control.

    PubMed

    He, Ji-Jun; Cai, Qiang-Guo; Tang, Ze-Jun

    2008-10-01

    In recent years, high-molecular-weight anionic polyacrylamide (PAM) have been widely tested on a variety of soils, primarily in water erosion control. However, little information is available regarding the effectiveness of PAM on preventing soil loss from wind erosion. The research adopted room wind tunnel experiment, two kinds of soils were used which were from the agro-pastoral area of Inner Mongolia, the northwest of China, the clay content of soils were 22.0 and 13.7%, respectively. For these tests, all the treatments were performed under the condition of wind velocity of 14 m s(-1) and a blown angle of 8.75%, according to the actual situation of experimented area. The study results indicated that using PAM on the soil surface could enhance the capability of avoiding the wind erosion, at the same time, the effect of controlling wind soil erosion with 4 g m(-2) PAM was better than 2 g m(-2) PAM's. Economically, the 2 g m(-2) PAM used in soil surface can control wind erosion effectively in this region. The prophase PAM accumulated in soil could not improve the capability of avoiding the wind erosion, owing to the degradation of PAM in the soil and the continual tillage year after year. The texture of soil is a main factor influencing the capability of soil avoiding wind erosion. Soil with higher clay content has the higher capability of preventing soil from wind erosion than one with the opposite one under the together action of PAM and water.

  11. Use of USLE/GIS methodology for predicting soil loss in a semiarid agricultural watershed.

    PubMed

    Erdogan, Emrah H; Erpul, Günay; Bayramin, Ilhami

    2007-08-01

    The Universal Soil Loss Equation (USLE) is an erosion model to estimate average soil loss that would generally result from splash, sheet, and rill erosion from agricultural plots. Recently, use of USLE has been extended as a useful tool predicting soil losses and planning control practices in agricultural watersheds by the effective integration of the GIS-based procedures to estimate the factor values in a grid cell basis. This study was performed in the Kazan Watershed located in the central Anatolia, Turkey, to predict soil erosion risk by the USLE/GIS methodology for planning conservation measures in the site. Rain erosivity (R), soil erodibility (K), and cover management factor (C) values of the model were calculated from erosivity map, soil map, and land use map of Turkey, respectively. R values were site-specifically corrected using DEM and climatic data. The topographical and hydrological effects on the soil loss were characterized by LS factor evaluated by the flow accumulation tool using DEM and watershed delineation techniques. From resulting soil loss map of the watershed, the magnitude of the soil erosion was estimated in terms of the different soil units and land uses and the most erosion-prone areas where irreversible soil losses occurred were reasonably located in the Kazan watershed. This could be very useful for deciding restoration practices to control the soil erosion of the sites to be severely influenced.

  12. An empirical approach to estimate soil erosion risk in Spain.

    PubMed

    Martín-Fernández, Luis; Martínez-Núñez, Margarita

    2011-08-01

    Soil erosion is one of the most important factors in land degradation and influences desertification worldwide. In 2001, the Spanish Ministry of the Environment launched the 'National Inventory of Soil Erosion (INES) 2002-2012' to study the process of soil erosion in Spain. The aim of the current article is to assess the usefulness of this National Inventory as an instrument of control, measurement and monitoring of soil erosion in Spain. The methodology and main features of this National Inventory are described in detail. The results achieved as of the end of May 2010 are presented, together with an explanation of the utility of the Inventory as a tool for planning forest hydrologic restoration, soil protection, erosion control, and protection against desertification. Finally, the authors make a comparative analysis of similar initiatives for assessing soil erosion in other countries at the national and European levels. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Assessing soil erosion using USLE model and MODIS data in the Guangdong, China

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Wang, Yunpeng; Yang, Jingxue

    2017-07-01

    In this study, soil erosion in the Guangdong, China during 2012 was quantitatively assessed using Universal Soil Loss Equation (USLE). The parameters of the model were calculated using GIS and MODIS data. The spatial distribution of the average annual soil loss on grid basis was mapped. The estimated average annual soil erosion in Guangdong in 2012 is about 2294.47t/ (km2.a). Four high sensitive area of soil erosion in Guangdong in 2012 was found. The key factors of these four high sensitive areas of soil erosion were significantly contributed to the land cover types, rainfall and Economic development and human activities.

  14. Gully erosion in Madagascar: causes and impacts

    NASA Astrophysics Data System (ADS)

    Raveloson, Andrea; Székely, Balázs; Visnovitz, Ferenc

    2017-04-01

    Soil erosion has been recognized as the main cause of land degradation worldwide and gully erosion is currently considered as one of the most impressive and striking erosion type. This global environmental problem has numerous causes (both natural and anthropogenic) and inflict serious socio-economic problems all around the world. The present study aims to discuss the occurrence and environmental issues related to lavakization in Madagascar and its impact on landscape (badland formation), land use management, flora and fauna, infrastructures, soil properties and human life itself. We assembled and reviewed lavaka researches since 1953. Exact location of the field surveys, cited triggering factors and results of these scientific papers have been studied in detail and compared with our data collected using satellite imagery. Lavaka distribution was analyzed using GIS methods and the relation between their density and different factors was studied. An overview of the many contributing factors (climate, topography, geology, vegetation cover, fault systems, tectonism and land use including inappropriate cultivation and irrigation systems) is given in order to better understand lavaka formation, distribution and impacts. Synthesis of previous researches might help us define area susceptible to gully formation. This can be used to determine prevention priorities for farmers, to manage their lands sustainably. This is ILARG contribution 18.

  15. Large-scale assessment of soil erosion in Africa: satellites help to jointly account for dynamic rainfall and vegetation cover

    NASA Astrophysics Data System (ADS)

    Vrieling, Anton; Hoedjes, Joost C. B.; van der Velde, Marijn

    2015-04-01

    Efforts to map and monitor soil erosion need to account for the erratic nature of the soil erosion process. Soil erosion by water occurs on sloped terrain when erosive rainfall and consequent surface runoff impact soils that are not well-protected by vegetation or other soil protective measures. Both rainfall erosivity and vegetation cover are highly variable through space and time. Due to data paucity and the relative ease of spatially overlaying geographical data layers into existing models like USLE (Universal Soil Loss Equation), many studies and mapping efforts merely use average annual values for erosivity and vegetation cover as input. We first show that rainfall erosivity can be estimated from satellite precipitation data. We obtained average annual erosivity estimates from 15 yr of 3-hourly TRMM Multi-satellite Precipitation Analysis (TMPA) data (1998-2012) using intensity-erosivity relationships. Our estimates showed a positive correlation (r = 0.84) with long-term annual erosivity values of 37 stations obtained from literature. Using these TMPA erosivity retrievals, we demonstrate the large interannual variability, with maximum annual erosivity often exceeding two to three times the mean value, especially in semi-arid areas. We then calculate erosivity at a 10-daily time-step and combine this with vegetation cover development for selected locations in Africa using NDVI - normalized difference vegetation index - time series from SPOT VEGETATION. Although we do not integrate the data at this point, the joint analysis of both variables stresses the need for joint accounting for erosivity and vegetation cover for large-scale erosion assessment and monitoring.

  16. 7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Equations for predicting soil loss due to wind erosion... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a) The...

  17. 7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Equations for predicting soil loss due to wind erosion... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a) The...

  18. 7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Equations for predicting soil loss due to wind erosion... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a) The...

  19. 7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Equations for predicting soil loss due to wind erosion... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a) The...

  20. 7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Equations for predicting soil loss due to wind erosion... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a) The...

  1. [Assessment of the impacts of soil erosion on water environment based on the integration of soil erosion process and landscape pattern].

    PubMed

    Liu, Yu; Wu, Bing-Fang; Zeng, Yuan; Zhang, Lei

    2013-09-01

    The integration of the effects of landscape pattern to the assessment of the impacts of soil erosion on eco-environmental is of practical significance in methodological prospect, being able to provide an approach for identifying water body's sediment source area, assessing the potential risks of sediment export of on-site soil erosion to the target water body, and evaluating the capacity of regional landscape pattern in preventing soil loss. In this paper, the RUSLE model was applied to simulate the on-site soil erosion rate. With the consideration of the soil retention potential of vegetation cover and topography, a quantitative assessment was conducted on the impacts of soil erosion in the water source region of the middle route for South-to-North Water Transfer Project on rivers and reservoirs by delineating landscape pattern at point (or cell) scale and sub-watershed level. At point (or grid cell) scale, the index of soil erosion impact intensity (I) was developed as an indicator of the potential risk of sediment export to the water bodies. At sub-watershed level, the landscape leakiness index (LI) was employed to indicate the sediment retention capacity of a given landscape pattern. The results revealed that integrating the information of landscape pattern and the indices of soil erosion process could spatially effectively reflect the impact intensity of in situ soil erosion on water bodies. The LI was significantly exponentially correlated to the mean sediment retention capacity of landscape and the mean vegetation coverage of watershed, and the sediment yield at sub-watershed scale was significantly correlated to the LI in an exponential regression. It could be concluded that the approach of delineating landscape pattern based on soil erosion process and the integration of the information of landscape pattern with its soil retention potential could provide a new approach for the risk evaluation of soil erosion.

  2. Soil erosion under climate change in Great Britain: long-term simulations using high-resolution regional models

    NASA Astrophysics Data System (ADS)

    Ciampalini, Rossano; Kendon, Elizabeth; Constantine, José Antonio; Schindewolf, Marcus; Hall, Ian

    2016-04-01

    Twenty-first century climate change simulations for Great Britain reveal an increase in heavy precipitation that may lead to widespread soil loss and reduced soil carbon stores by increasing the likelihood of surface runoff. We find the quality and resolution of the simulated rainfall used to drive soil loss variation can widely influence the results. Hourly high definition rainfall simulations from a 1.5km resolution regional climate model are used to examine the soil erosion response in two UK catchments. The catchments have different sensitivity to soil erosion. "Rother" in West Sussex, England, reports some of the most erosive events that have been observed during the last 50 years in the UK. "Conwy" in North Wales, is resilient to soil erosion because of the abundant natural vegetation cover and very limited agricultural practises. We modelled with Erosion3D to check variations in soil erosion as influenced by climate variations for the periods 1996-2009 and 2086-2099. Our results indicate the Rother catchment is the most erosive, while the Conwy catchment is confirmed as the more resilient to soil erosion. The values of the reference-base period are consistent with the values of those locally observed in the previous decades. A soil erosion comparison for the two periods shows an increasing of sediment production (off-site erosion) for the end of the century at about 27% in the Rother catchment and about 50% for the Conwy catchment. The results, thanks to high-definition rainfall predictions, throw some light on the effect of climatic change effects in Great Britain.

  3. Gully erosion: A comparison of contributing factors in two catchments in South Africa

    NASA Astrophysics Data System (ADS)

    Mararakanye, Ndifelani; Sumner, Paul D.

    2017-07-01

    Gully erosion is an environmental, agricultural and social problem requiring extensive research and mitigation actions to control. This study assesses the influence of factors contributing to gully erosion using Geographic Information System (GIS) and Information Value (InfVal) statistics from two catchments coded X12 and W55 in the Mpumalanga province of South Africa. Existing spatial data representing contributing factors; soil, geology, vegetation and land use were analyzed. Topographic variables were extracted from a 10 m Digital Elevation Model (DEM) interpolated from map contours, and gullies were mapped from aerial photos with 0.5 m spatial resolution. A zonal approach was used to extract the proportion of gullies in each of the contributing factor classes using GIS software packages, and InfVal weighting was performed to determine the influence of each class. Comparison of the results shows the variation in the level of influence of factors contributing to gully erosion. The findings in catchment X12 support a commonly held assumption that gully formation is influenced by duplex soils underlain by colluvium and alluvial deposits on a lower slope position where overland flow converges and accumulates, resulting in high soil moisture. Gullies were also influenced by soils developed over weathered granite, gneiss and ultramafic rocks. The influence of a granite rock was further highlighted in catchment W55 where there is a variable thickness of very deep Hutton dominant soil form and shallow Lithosols with sandy texture, on an area of moderate to steep slopes where overland flow converges and accumulates, with high stream power in overgrazed grassland. An understanding of these factors will assist future modelling of the vulnerability to gully erosion over a wider geographical area.

  4. Can we manipulate root system architecture to control soil erosion?

    NASA Astrophysics Data System (ADS)

    Ola, A.; Dodd, I. C.; Quinton, J. N.

    2015-03-01

    Soil erosion is a major threat to soil functioning. The use of vegetation to control erosion has long been a topic for research. Much of this research has focused on the above ground properties of plants, demonstrating the important role that canopy structure and cover plays in the reduction of water erosion processes. Less attention has been paid to plant roots. Plant roots are a crucial yet under-researched factor for reducing water erosion through their ability to alter soil properties, such as aggregate stability, hydraulic function and shear strength. However, there have been few attempts to manipulate plant root system properties to reduce soil erosion. Therefore, this review aims to explore the effects that plant roots have on soil erosion and hydrological processes, and how plant root architecture might be manipulated to enhance its erosion control properties. We clearly demonstrate the importance of root system architecture for the control of soil erosion. We also demonstrate that some plant species respond to nutrient enriched patches by increasing lateral root proliferation. The soil response to root proliferation will depend upon its location: at the soil surface dense mats of roots may block soil pores thereby limiting infiltration, enhancing runoff and thus erosion; whereas at depth local increases in shear strength may reinforce soils against structural failure at the shear plane. Additionally, in nutrient deprived regions, root hair development may be stimulated and larger amounts of root exudates released, thereby improving aggregate stability and decreasing erodibility. Utilising nutrient placement at depth may represent a potentially new, easily implemented, management strategy on nutrient poor agricultural land or constructed slopes to control erosion, and further research in this area is needed.

  5. A study of sediment transport and erosion in the Fourchon area of south Louisiana

    NASA Technical Reports Server (NTRS)

    Self, R. P.

    1973-01-01

    Aerial photography in the form of color infrared and color positive transparencies were used as aids in evaluating the rate and effect of erosion and sediment transport in Bay Champagne, a coastal marshland of Louisiana. Problems were found in the aerial photography method used. Vegetational differences do not always reflect sediment differences. Only areas containing different soils and sediments are easily defined with aerial photography. The shoreline erosion rate is 75 to 100 ft/yr. Areas which are undergoing erosion shift due to changes in wave refraction. In canals and channels with strong currents, erosion also occurs at a rapid rate. It is recommended that drainage patterns be studied carefully before breaches are made as man-made breaches could reverse drainage.

  6. Soil erosion assessment using the Universal Soil Loss Equation (USLE) in a GIS framework: A case study of Zacatecas, México

    NASA Astrophysics Data System (ADS)

    Betanzos Arroyo, L. I.; Prol Ledesma, R. M.; da Silva Pinto da Rocha, F. J. P.

    2014-12-01

    The Universal Soil Loss Equation (USLE), which is considered to be a contemporary approach in soil loss assessment, was used to assess soil erosion hazard in the Zacatecas mining district. The purpose of this study is to produce erosion susceptibility maps for an area that is polluted with mining tailings which are susceptible to erosion and can disperse the particles that contain heavy metals and other toxic elements. USLE method is based in the estimation of soil loss per unit area and takes into account specific parameters such as precipitation data, topography, soil erodibility, erosivity and runoff. The R-factor (rainfall erosivity) was calculated from monthly and annual precipitation data. The K-factor (soil erodibility) was estimated using soil maps available from the CONABIO at a scale of 1:250000. The LS-factor (slope length and steepness) was determined from a 30-m digital elevation model. A raster-based Geographic Information System (GIS) was used to interactively calculate soil loss and map erosion hazard. The results show that estimated erosion rates ranged from 0 to 4770.48 t/ha year. Maximum proportion of the total area of the Zacatecas mining district have nil to very extremely slight erosion severity. Small areas in the central and south part of the study area shows the critical condition requiring sustainable land management.

  7. [Empirical study on non-point sources pollution based on landscape pattern & ecological processes theory: a case of soil water loss on the Loess Plateau in China].

    PubMed

    Suo, An-ning; Wang, Tian-ming; Wang, Hui; Yu, Bo; Ge, Jian-ping

    2006-12-01

    Non-point sources pollution is one of main pollution modes which pollutes the earth surface environment. Aimed at soil water loss (a typical non-point sources pollution problem) on the Losses Plateau in China, the paper applied a landscape patternevaluation method to twelve watersheds of Jinghe River Basin on the Loess Plateau by means of location-weighted landscape contrast index(LCI) and landscape slope index(LSI). The result showed that LSI of farm land, low density grass land, forest land and LCI responded significantly to soil erosion modulus and responded to depth of runoff, while the relationship between these landscape index and runoff variation index and erosion variation index were not statistically significant. This tell us LSI and LWLCI are good indicators of soil water loss and thus have big potential in non-point source pollution risk evaluation.

  8. Measuring, understanding and implementing (or at least trying) soil and water conservation in agricultural areas in Mediterranean conditions

    NASA Astrophysics Data System (ADS)

    Gómez, Jose Alfonso; Burguet, María; Castillo, Carlos; de Luna, Elena; Guzmán, Gema; Lora, Ángel; Lorite, Ignacio; Mora, José; Pérez, Rafael; Soriano, María A.; Taguas, Encarnación V.

    2015-04-01

    Understanding soil erosion processes is the first step for designing and implementing effective soil conservation strategies. In agricultural areas, spatially in arid and semiarid conditions, water conservation is interlinked with soil conservation, and usually need to be addressed simultaneously to achieve success in their use by farmers. This is so for different reasons, but usually because some reduction in runoff is required to prevent soil erosion or to the need to design soil conservation systems that do maintain a favourable water balance for the crop to prevent yield reductions. The team presenting this communication works around both issues in Southern Spain, interconnecting several lines of research with the final objective of contribute to reverse some severe issues relating soil conservation in agricultural areas, mostly on tree crops (olives and vineyards). One of these lines is long-term experiments measuring, runoff and sediment losses at plot and small catchment scale. In these experiments we test the effect of different soil management alternatives on soil and water conservation. We also measured the evolution of soil properties and, in some cases, the evolution of soil moisture as well as nutrient and carbon losses with runoff and sediment. We also tests in these experiments new cover crops, from species better adapted to the rainfall regime of the region to mixes with several species to increase biodiversity. We complement these studies with surveys of soil properties in commercial farms. I some of these farms we follow the introduction by farmers of the cover crop strategies previously developed in our experimental fields. These data are invaluable to elaborate, calibrate and validate different runoff generation, water balance, and water erosion models and hillslope and small catchment scale. This allows us to elaborate regional analysis of the effect of different strategies to soil and water conservation in olive growing areas, and to refine these strategies under predicted climate change scenarios in a few decades from now. The models are also used to evaluate historical erosion rates, and the long-term impact of soil erosion on olive yield due to the loss of soil profile. This is our second major line of research. Our their key line of research is the analysis of gully erosion processes, from field based observation to evaluation at regional scale, and the development of cost-effective strategies for gully control at farm scale. This includes the testing of some of these strategies with farmers. We integrate the use of vegetation in gully erosion control strategies to enhance biodiversity and landscape values; both severely degraded in many agricultural areas in the Mediterranean. The fourth, and last, major line of research is the development or improvement of technologies for soil erosion studies. Among them is the use of rainfall simulations, laboratory flumes, photoreconstruction techniques for 3D model, improved sampling devices, etc. Within this line we have improved the use of sediment tracers to understand the processes of sediment mobilization within the landscape, or at plot scale. This greatly improves our understanding of erosion processes and the actual effectiveness of erosion control strategies. The results of these lines of research are put together in the form of Good Agricultural Practices, and technical notes, software, for implementation by farmers and technicians working at the fields that are disseminated through seminars, cooperation with government and non-government agencies and other documents such as videos or web sites. In this communication we mention some of the our research in order to highlight the major problems and questions that are faced when trying to develop viable soil and water conservation techniques, specially the need for transdisciplinary research and the cooperation, form the start, with key stakeholders, specially farmers.

  9. Detecting Anthropogenic Disturbance on Weathering and Erosion Processes

    NASA Astrophysics Data System (ADS)

    Vanacker, V.; Schoonejans, J.; Bellin, N.; Ameijeiras-Mariño, Y.; Opfergelt, S.; Christl, M.

    2014-12-01

    Anthropogenic disturbance of natural vegetation can profoundly alter the physical, chemical and biological processes within soils. Rapid removal of topsoil during intense farming can result in an imbalance between soil production through chemical weathering and physical erosion, with direct implications on local biogeochemical cycling. However, the feedback mechanisms between soil erosion, chemical weathering and biogeochemical cycling in response to anthropogenic forcing are not yet fully understood. In this paper, we analyze dynamic soil properties for a rapidly changing anthropogenic landscape in the Spanish Betic Cordillera; and focus on the coupling between physical erosion, soil production and soil chemical weathering. Modern erosion rates were quantified through analysis of sediment deposition volumes behind check dams, and represent catchment-average erosion rates over the last 10 to 50 years. Soil production rates are derived from in-situ produced 10Be nuclide concentrations, and represent long-term flux rates. In each catchment, soil chemical weathering intensities were calculated for two soil-regolith profiles. Although Southeast Spain is commonly reported as the European region that is most affected by land degradation, modern erosion rates are low (140 t ha-1 yr-1). About 50 % of the catchments are losing soils at a rate of less than 60 t km-2 yr-1. Our data show that modern erosion rates are roughly of the same magnitude as the long-term or cosmogenically-derived erosion rates in the Betic Cordillera. Soils developed on weathered metamorphic rocks have no well-developed profile characteristics, and are generally thin and stony. Nevertheless, soil chemical weathering intensities are high; and question the occurrence of past soil truncation.

  10. Tree species and functional traits but not species richness affect interrill erosion processes in young subtropical forests

    NASA Astrophysics Data System (ADS)

    Seitz, S.; Goebes, P.; Song, Z.; Bruelheide, H.; Härdtle, W.; Kühn, P.; Li, Y.; Scholten, T.

    2016-01-01

    Soil erosion is seriously threatening ecosystem functioning in many parts of the world. In this context, it is assumed that tree species richness and functional diversity of tree communities can play a critical role in improving ecosystem services such as erosion control. An experiment with 170 micro-scale run-off plots was conducted to investigate the influence of tree species and tree species richness as well as functional traits on interrill erosion in a young forest ecosystem. An interrill erosion rate of 47.5 Mg ha-1 a-1 was calculated. This study provided evidence that different tree species affect interrill erosion differently, while tree species richness did not affect interrill erosion in young forest stands. Thus, different tree morphologies have to be considered, when assessing soil erosion under forest. High crown cover and leaf area index reduced interrill erosion in initial forest ecosystems, whereas rising tree height increased it. Even if a leaf litter cover was not present, the remaining soil surface cover by stones and biological soil crusts was the most important driver for soil erosion control. Furthermore, soil organic matter had a decreasing influence on interrill erosion. Long-term monitoring of soil erosion under closing tree canopies is necessary, and a wide range of functional tree traits should be considered in future research.

  11. Monitoring and Assessment of Water Retention Measures in Agricultural Land

    NASA Astrophysics Data System (ADS)

    Výleta, Roman; Danáčová, Michaela; Škrinár, Andrej; Fencík, Róbert; Hlavčová, Kamila

    2017-12-01

    One of the most interesting events, from the environmental impact point of view, is the huge storm rainfall at which soil degradation processes occur. In Slovakia, agricultural areas with a higher slope have been recently increasingly denudated by water erosion processes. Areas having regular problems with muddy floods and denudation of soil particles have been currently identified. This phenomenon has long-term adverse consequences in the agricultural landscape, especially the decline in soil fertility, the influence on soil type and the reduction of depth of the soil profile. In the case of storm rainfall or long-term precipitation, soil particles are being transported and deposited at the foot of the slope, but in many cases the large amounts of sediment are transported by water in the form of muddy floods, while putting settlements and industrial zones at risk, along with contamination and clogging of watercourses and water reservoirs. These unfavourable phenomena may be prevented by appropriate management and application of technical measures, such as water level ditches, erosion-control weirs, terraces and others. The study deals with determination of the soil loss and denudation of soil particles caused by water erosion, as well as with determination of the volume of the surface runoff created by the regional torrential rains in the area of the village of Sobotište. The research is based on the analysis of flood and erosion-control measures implemented in this area. Monitoring of these level ditches for protection against muddy floods has been carried out since 2015 using UAV technology and terrestrial laser scanning. Monitoring is aimed on determination of the volume of the ditch, changes in its capacity and shape in each year. The study evaluates both the effectiveness of these measures to reduce the surface runoff as well as the amount of eroded soil particles depending on climatological conditions. The results of the research point to the good efficiency of these measures; however, in conjunction with belt crops cultivation they could form a comprehensive flood and erosion-control protection to eliminate the muddy floods and protect the settlements from surrounding slopes.

  12. Erosion

    USDA-ARS?s Scientific Manuscript database

    Erosion is the detachment of soil particles and transportation to another location. Wind erosion occurs when wind speed exceeds a critical threshold level, and loose soil particles or soil particles removed by abrasion then move in one of three ways: creep, saltation, and suspension. Erosion by wate...

  13. Hydrologic Drivers of Soil Organic Carbon Erosion and Burial: Insights from a Spatially-explicit Model of a Degraded Landscape at the Calhoun Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Dialynas, Y. G.; Bras, R. L.; Richter, D. D., Jr.

    2017-12-01

    Soil erosion and burial of organic material may constitute a substantial sink of atmospheric CO2. Attempts to quantify impacts of soil erosion on the soil-atmosphere C exchange are limited by difficulties in accounting for the fate of eroded soil organic carbon (SOC), a key factor in estimating of the net effect of erosion on the C cycle. Processes that transport SOC are still inadequately represented in terrestrial carbon (C) cycle models. This study investigates hydrologic controls on SOC redistribution across the landscape focusing on dynamic feedbacks between watershed hydrology, soil erosional processes, and SOC burial. We use tRIBS-ECO (Triangulated Irregular Network-based Real-time Integrated Basin Simulator-Erosion and Carbon Oxidation), a spatially-explicit model of SOC dynamics coupled with a physically-based hydro-geomorphic model. tRIBS-ECO systematically accounts for the fate of eroded SOC across the watershed: Rainsplash erosion and sheet erosion redistribute SOC from upland sites to depositional environments, altering depth-dependent soil biogeochemical properties in diverse soil profiles. Eroded organic material is transferred with sediment and can be partially oxidized upon transport, or preserved from decomposition by burial. The model was applied in the Calhoun Critical Zone Observatory (CZO), a site that is recovering from some of the most serious agricultural erosion in North America. Soil biogeochemical characteristics at multiple soil horizons were used to initialize the model and test performance. Remotely sensed soil moisture data (NASA SMAP) were used for model calibration. Results show significant rates of hydrologically-induced burial of SOC at the Calhoun CZO. We find that organic material at upland eroding soil profiles is largely mobilized by rainsplash erosion. Sheet erosion mainly drives C transport in lower elevation clayey soils. While SOC erosion and deposition rates declined with recent reforestation at the study site, the erosional potential of the degraded landscape remains significant.

  14. Modeling the reduction in soil loss due to soil armouring caused by rainfall erosion

    USDA-ARS?s Scientific Manuscript database

    Surface soil properties can change as a result of soil disturbances, erosion, or deposition. One process that can significantly change surface soil properties is soil armouring, which is the selective removal of finer particles by rill or interrill erosion, leaving an armoured layer of coarser parti...

  15. Changes in micro-relief during different water erosive stages of purple soil under simulated rainfall.

    PubMed

    Luo, Jian; Zheng, Zicheng; Li, Tingxuan; He, Shuqin

    2018-02-22

    This study investigated the variation characteristics of micro-topography during successive erosive stages of water erosion: splash erosion (SpE), sheet erosion (ShE), and rill erosion (RE). Micro-topography was quantified using surface elevation change, soil roughness (SR) and multifractal model. Results showed that the area of soil surface elevation decay increased gradually with the development of water erosion. With rainfall, the combined effects of the detachment by raindrop impact and the transport of runoff decreased SR, whereas rill erosion contributed to increase SR. With the increase in slope gradient, soil erosion area gradually decreased at the splash erosion stage. By contrast, soil erosion area initially decreased and then increased at the sheet and rill erosion stages. The width of the D q spectra (ΔD) values increased at the splash erosion stage and then decreased at the sheet and rill erosion stages on the 10° slope, opposite to that on the 15° slope. The ΔD values decreased with the evolution of water erosive stages on the 20° slope. The slope had an enhancing effect on the evolution of water erosion. In this study, we clarified the essence of micro-topography and laid a theoretical foundation for further understanding diverse hydrological processes.

  16. Ecological site-based assessments of wind and water erosion: informing accelerated soil erosion management in rangelands

    USGS Publications Warehouse

    Webb, Nicholas P.; Herrick, Jeffrey E.; Duniway, Michael C.

    2014-01-01

    Accelerated soil erosion occurs when anthropogenic processes modify soil, vegetation or climatic conditions causing erosion rates at a location to exceed their natural variability. Identifying where and when accelerated erosion occurs is a critical first step toward its effective management. Here we explore how erosion assessments structured in the context of ecological sites (a land classification based on soils, landscape setting and ecological potential) and their vegetation states (plant assemblages that may change due to management) can inform systems for reducing accelerated soil erosion in rangelands. We evaluated aeolian horizontal sediment flux and fluvial sediment erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Across the ecological sites, plots in shrub-encroached and shrub-dominated vegetation states were consistently susceptible to aeolian sediment flux and fluvial sediment erosion. Both processes were found to be highly variable for grassland and grass-succulent states across the ecological sites at the plot scale (0.25 Ha). We identify vegetation thresholds that define cover levels below which rapid (exponential) increases in aeolian sediment flux and fluvial sediment erosion occur across the ecological sites and vegetation states. Aeolian sediment flux and fluvial erosion in the study area can be effectively controlled when bare ground cover is 100 cm in length is less than ~35%. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of areas to erosion. Land use impacts that are constrained within the range of natural variability should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds identified here will enable identification of areas susceptible to accelerated soil erosion and the development of practical management solutions.

  17. Boreal forest soil erosion and soil-atmosphere carbon exchange

    NASA Astrophysics Data System (ADS)

    Billings, S. A.; Harden, J. W.; O'Donnell, J.; Sierra, C. A.

    2013-12-01

    Erosion may become an increasingly important agent of change in boreal systems with climate warming, due to enhanced ice wedge degradation and increases in the frequency and intensity of stand-replacing fires. Ice wedge degradation can induce ground surface subsidence and lateral movement of mineral soil downslope, and fire can result in the loss of O horizons and live roots, with associated increases in wind- and water-promoted erosion until vegetation re-establishment. It is well-established that soil erosion can induce significant atmospheric carbon (C) source and sink terms, with the strength of these terms dependent on the fate of eroded soil organic carbon (SOC) and the extent to which SOC oxidation and production characteristics change with erosion. In spite of the large SOC stocks in the boreal system and the high probability that boreal soil profiles will experience enhanced erosion in the coming decades, no one has estimated the influence of boreal erosion on the atmospheric C budget, a phenomenon that can serve as a positive or negative feedback to climate. We employed an interactive erosion model that permits the user to define 1) profile characteristics, 2) the erosion rate, and 3) the extent to which each soil layer at an eroding site retains its pre-erosion SOC oxidation and production rates (nox and nprod=0, respectively) vs. adopts the oxidation and production rates of previous, non-eroded soil layers (nox and nprod=1, respectively). We parameterized the model using soil profile characteristics observed at a recently burned site in interior Alaska (Hess Creek), defining SOC content and turnover times. We computed the degree to which post-burn erosion of mineral soil generates an atmospheric C sink or source while varying erosion rates and assigning multiple values of nox and nprod between 0 and 1, providing insight into the influence of erosion rate, SOC oxidation, and SOC production on C dynamics in this and similar profiles. Varying nox and nprod did not induce meaningful changes in model estimates of atmospheric C source or sink strength, likely due to the low turnover rate of SOC in this system. However, variation in mineral soil erosion rates induced large shifts in the source and sink strengths for atmospheric C; after 50 y of mineral soil erosion at 5 cm y-1, we observed a maximum C source of 35 kg C m-2 and negligible sink strength. Doubling the erosion rate approximately doubled the source strength. Scaling these estimates to the region requires estimates of the area undergoing mineral soil erosion in forests similar to those modeled. We suggest that erosion is an important but little studied feature of fire-driven boreal systems that will influence atmospheric CO2 budgets.

  18. Soil stabilization linked to plant diversity and environmental context in coastal wetlands.

    PubMed

    Ford, Hilary; Garbutt, Angus; Ladd, Cai; Malarkey, Jonathan; Skov, Martin W

    2016-03-01

    Plants play a pivotal role in soil stabilization, with above-ground vegetation and roots combining to physically protect soil against erosion. It is possible that diverse plant communities boost root biomass, with knock-on positive effects for soil stability, but these relationships are yet to be disentangled. We hypothesize that soil erosion rates fall with increased plant species richness, and test explicitly how closely root biomass is associated with plant diversity. We tested this hypothesis in salt marsh grasslands, dynamic ecosystems with a key role in flood protection. Using step-wise regression, the influences of biotic (e.g. plant diversity) and abiotic variables on root biomass and soil stability were determined for salt marshes with two contrasting soil types: erosion-resistant clay (Essex, southeast UK) and erosion-prone sand (Morecambe Bay, northwest UK). A total of 132 (30-cm depth) cores of natural marsh were extracted and exposed to lateral erosion by water in a re-circulating flume. Soil erosion rates fell with increased plant species richness ( R 2  = 0.55), when richness was modelled as a single explanatory variable, but was more important in erosion-prone ( R 2  = 0.44) than erosion-resistant ( R 2  = 0.18) regions. As plant species richness increased from two to nine species·m -2 , the coefficient of variation in soil erosion rate decreased significantly ( R 2  = 0.92). Plant species richness was a significant predictor of root biomass ( R 2  = 0.22). Step-wise regression showed that five key variables accounted for 80% of variation in soil erosion rate across regions. Clay-silt fraction and soil carbon stock were linked to lower rates, contributing 24% and 31%, respectively, to variation in erosion rate. In regional analysis, abiotic factors declined in importance, with root biomass explaining 25% of variation. Plant diversity explained 12% of variation in the erosion-prone sandy region. Our study indicates that soil stabilization and root biomass are positively associated with plant diversity. Diversity effects are more pronounced in biogeographical contexts where soils are erosion-prone (sandy, low organic content), suggesting that the pervasive influence of biodiversity on environmental processes also applies to the ecosystem service of erosion protection.

  19. Environmental refugees in a globally warmed world

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, N.

    1993-12-01

    This paper examines the complex problem of environmental refugees as among the most serious of all the effects of global warming. Shoreline erosion, coastal flooding, and agricultural disruption from drought, soil erosion and desertification are factors now and in the future in creating a group of environmental refugees. Estimates are that at least 10 million such refugees exist today. A preliminary analysis is presented here as a first attempt to understand the full character and extent of the problem. Countries with large delta and coastal areas and large populations are at particular risk from sea-level rise of as little asmore » .5 - 1 meter, compounded by storm surge and salt water intrusions. Bangladesh, Egypt, China, and India are discussed in detail along with Island states at risk. Other global warming effects such as shifts in monsoon systems and severe and persistent droughts make agriculture particularly vulnerable. Lack of soil moisture is during the growing season will probably be the primary problem. Additional and compounding environmental problems are discussed, and an overview of the economic, sociocultural and political consequences is given. 96 refs., 1 tab.« less

  20. Effect of land use land cover change on soil erosion potential in an agricultural watershed.

    PubMed

    Sharma, Arabinda; Tiwari, Kamlesh N; Bhadoria, P B S

    2011-02-01

    Universal soil loss equation (USLE) was used in conjunction with a geographic information system to determine the influence of land use and land cover change (LUCC) on soil erosion potential of a reservoir catchment during the period 1989 to 2004. Results showed that the mean soil erosion potential of the watershed was increased slightly from 12.11 t ha(-1) year(-1) in the year 1989 to 13.21 t ha(-1) year(-1) in the year 2004. Spatial analysis revealed that the disappearance of forest patches from relatively flat areas, increased in wasteland in steep slope, and intensification of cultivation practice in relatively more erosion-prone soil were the main factors contributing toward the increased soil erosion potential of the watershed during the study period. Results indicated that transition of other land use land cover (LUC) categories to cropland was the most detrimental to watershed in terms of soil loss while forest acted as the most effective barrier to soil loss. A p value of 0.5503 obtained for two-tailed paired t test between the mean erosion potential of microwatersheds in 1989 and 2004 also indicated towards a moderate change in soil erosion potential of the watershed over the studied period. This study revealed that the spatial location of LUC parcels with respect to terrain and associated soil properties should be an important consideration in soil erosion assessment process.

  1. Erosion Prediction Analysis and Landuse Planning in Gunggung Watershed, Bali, Indonesia

    NASA Astrophysics Data System (ADS)

    Trigunasih, N. M.; Kusmawati, T.; Yuli Lestari, N. W.

    2018-02-01

    The purpose of this research is to predict the erosion that occurs in Gunggung watershed and sustainable landuse management plan. This research used the USLE (Universal Soil Loss Equation) methodology. The method used observation / field survey and soil analysis at the Soil Laboratory of Faculty of Agriculture, Udayana University. This research is divided into 5 stages, (1) land unit determination, (2) Field observation and soil sampling, (3) Laboratory analysis and data collection, (4) Prediction of erosion using USLE (Universal Soil Loss Equation) method, (5) The permissible erosion determination (EDP) then (6) determines the level of erosion hazard based on the depth of the soil, as well as the soil conservation plan if the erosion is greater than the allowed erosion, and (7) determining landuse management plan for sustainable agriculture. Erosion which value is smaller than soil loss tolerance can be exploited in a sustainable manner, while erosion exceeds allowable erosion will be conservation measures. Conservation action is the improvement of vegetation and land management. Land management like improvements the terrace, addition of organic matter, increase plant density, planting ground cover and planting layered header system will increase the land capability classes. Land use recommended after management is mixed plantation high density with forest plants, mix plantation high density with patio bench construction, seasonal cultivation and perennial crops, cultivation of perennial crops and cultivation of seasonal crops.

  2. Assessing Vulnerability of Lake Erie Landscapes to Soil Erosion: Modelled and Measured Approaches

    NASA Astrophysics Data System (ADS)

    Joosse, P.; Laamrani, A.; Feisthauer, N.; Li, S.

    2017-12-01

    Loss of soil from agricultural landscapes to Lake Erie via water erosion is a key transport mechanism for phosphorus bound to soil particles. Agriculture is the dominant land use in the Canadian side of the Lake Erie basin with approximately 75% of the 2.3 million hectares under crop or livestock production. The variable geography and diversity of agricultural production systems and management practices makes estimating risk of soil erosion from agricultural landscapes in the Canadian Lake Erie basin challenging. Risk of soil erosion depends on a combination of factors including the extent to which soil remains bare, which differs with crop type and management. Two different approaches of estimating the vulnerability of landscapes to soil erosion will be compared among Soil Landscapes of Canada in the Lake Erie basin: a modelling approach incorporating farm census and soil survey data, represented by the 2011 Agriculture and Agri-Food Canada Agri-Environmental Indicator for Soil Erosion Risk; and, a measured approach using remotely sensed data that quantifies the magnitude of bare and covered soil across the basin. Results from both approaches will be compared by scaling the national level (1:1 million) Soil Erosion Risk Indicator and the remotely sensed data (30x30 m resolution) to the quaternary watershed level.

  3. Comparison of runoff and soil loss in different tillage systems in the Mollisol region of Northeast China

    USDA-ARS?s Scientific Manuscript database

    Longitudinal ridge tillage is the conventional tillage method in the cold, Mollisol region of Northeast China in which furrows are oriented up and down the slope. Soil erosion is a serious problem in this region in part due to the use of this tillage system with long slope lengths. It is unclear wha...

  4. Can we manipulate root system architecture to control soil erosion?

    NASA Astrophysics Data System (ADS)

    Ola, A.; Dodd, I. C.; Quinton, J. N.

    2015-09-01

    Soil erosion is a major threat to soil functioning. The use of vegetation to control erosion has long been a topic for research. Much of this research has focused on the above-ground properties of plants, demonstrating the important role that canopy structure and cover plays in the reduction of water erosion processes. Less attention has been paid to plant roots. Plant roots are a crucial yet under-researched factor for reducing water erosion through their ability to alter soil properties, such as aggregate stability, hydraulic function and shear strength. However, there have been few attempts to specifically manipulate plant root system properties to reduce soil erosion. Therefore, this review aims to explore the effects that plant roots have on soil erosion and hydrological processes, and how plant root architecture might be manipulated to enhance its erosion control properties. We demonstrate the importance of root system architecture for the control of soil erosion. We also show that some plant species respond to nutrient-enriched patches by increasing lateral root proliferation. The erosional response to root proliferation will depend upon its location: at the soil surface dense mats of roots may reduce soil erodibility but block soil pores thereby limiting infiltration, enhancing runoff. Additionally, in nutrient-deprived regions, root hair development may be stimulated and larger amounts of root exudates released, thereby improving aggregate stability and decreasing erodibility. Utilizing nutrient placement at specific depths may represent a potentially new, easily implemented, management strategy on nutrient-poor agricultural land or constructed slopes to control erosion, and further research in this area is needed.

  5. Contemporary and long-term erosion in the Kruger National Park, Lowveld Savanna, South Africa. First results.

    NASA Astrophysics Data System (ADS)

    Baade, Jussi; Rheinwarth, Bastian; Glotzbach, Christoph

    2017-04-01

    Human-induced soil erosion as a consequence of the transformation of landscapes to pasture or arable land is a function of natural conditions (relief and soil properties), natural drivers (climate) as well as land use and management. It is common understanding that humans have accelerated erosion of landscapes by modifying land surface characteristics, like vegetation cover and soil properties, among others. But the magnitude of the acceleration is not yet well established. Partly, the uncertainty about the magnitude of the problem is due to the fact that baseline values, i.e., data on rates of natural erosion from uncultivated land under current climate conditions, are difficult to find. Against this background, we conducted an assessment of contemporary and long-term erosion in the Kruger National Park (KNP), South Africa. The KNP has been set aside for the recovery of wildlife in the early 20th century and was spared from agricultural practices even before that. Concerning soil properties and vegetation cover the KNP can thus be considered to represent a rather pristine savanna environment. In order to secure water provision to wildlife a number of reservoirs was established in the 1930s to 1970s with catchment areas entirely within the KNP boundaries. The size of the catchments varies from 4 to 100 km2. Volumetric mapping and dry bulk density measurements of reservoir deposits provided average minimum sediment yield rates for observation periods of 30 to 80 years. Hydrological modelling was used to assess the trap efficiency of the reservoirs and to estimate the most likely sediment yield rates. At the same time this exercise provided evidence for the stochastic nature of runoff and erosion events in this semi-arid environment and the need to evaluate contemporary erosion based on long observation periods. Measuring cosmogenic 10Be in quartz sand samples collected at the inlet of the reservoirs provided the corresponding average long-term erosion rates for periods of a few 100,000 years. This presentation provides first results based on more than 10 investigated reservoirs and compares contemporary and long-term erosion rates.

  6. Acoustic measurements of soil-pipeflow and internal erosion

    USDA-ARS?s Scientific Manuscript database

    Internal erosion of soil pipes can lead to embankment failures, landslides, and gully erosion. Therefore, non-intrusive methods are needed to detect and monitor soil pipeflow and the resulting internal erosion. This paper presents a laboratory study using both active and passive acoustic techniques ...

  7. Acoustic measurements of soil pipeflow and internal erosion

    USDA-ARS?s Scientific Manuscript database

    Internal erosion of soil pipes can lead to embankment failures, landslides, and gully erosion therefore non-intrusive methods are needed to detect and monitor soil pipeflow and the resulting internal erosion. This paper presents a laboratory study using both active and passive acoustic techniques to...

  8. Cropping system effects on wind erosion potential

    USDA-ARS?s Scientific Manuscript database

    Wind erosion of soil is a destructive process impacting crop productivity and human health and safety. The mechanics of wind erosion and soil properties that influence erosion are well understood. Less well-studied are the effects that cropping intensity has upon those soil properties. We collected ...

  9. Sustainable agriculture, soil management and erosion from prehistoric times to 2100

    NASA Astrophysics Data System (ADS)

    Vanwalleghem, Tom; Gómez, Jose Alfonso; Infante Amate, Juan; González Molina, Manuel; Fernández, David Soto; Guzmán, Gema; Vanderlinden, Karl; Laguna, Ana; Giráldez, Juan Vicente

    2015-04-01

    The rational use of soil requires the selection of management practices to take profit of the beneficial functions of plant growth, water and nutrient storage, and pollutants removal by filtering and decomposition without altering its properties. However, the first evidence of important and widespread erosion peaks can generally be found with the arrival of the first farmers all over the world. In areas with a long land-use history such as the Mediterranean, clear signs indicating the advanced degradation status of the landscape, such as heavily truncated soils, are visible throughout. Soil conservation practices are then aimed at reducing erosion to geological rates, in equilibrium with long-term soil formation rates, while maximizing agricultural production. The adoption of such practices in most areas of the world are as old as the earliest soil erosion episodes themselves. This work firstly reviews historical evidence linking soil management and soil erosion intensity, with examples from N Europe and the Mediterranean. In particular, work by the authors in olive orchards will be presented that shows how significant variations in soil erosion rates between could be linked to the historical soil management. The potential of historical documents for calibrating a soil erosion model is shown as the model, in this case RUSLE-based and combining tillage and water erosion, adequately represents the measured erosion rate dynamics. Secondly, results from present-day, long-term farm experiments in the EU are reviewed to evaluate the effect of different soil management practices on physical soil properties, such as bulk density, penetration resistance, aggregate stability, runoff coefficient or sediment yield. Finally, we reflect upon model and field data that indicate how future global climate change is expected to affect soil management and erosion and how the examples used above hold clues about sustainable historical management practices that can be used successfully in the future.

  10. A GIS-based estimation of soil erosion parameters for soil loss potential and erosion hazard in the city of Kinshasa, the Democratic Republic of Congo

    NASA Astrophysics Data System (ADS)

    Tshikeba Kabantu, Martin; Muamba Tshimanga, Raphael; Onema Kileshye, Jean Marie; Gumindoga, Webster; Tshimpampa Beya, Jules

    2018-05-01

    Soil erosion has detrimental impacts on socio economic life, thus increasing poverty. This situation is aggravated by poor planning and lack of infrastructure especially in developing countries. In these countries, efforts to planning are challenged by lack of data. Alternative approaches that use remote sensing and geographical information systems are therefore needed to provide decision makers with the so much needed information for planning purposes. This helps to curb the detrimental impacts of soil erosion, mostly emanating from varied land use conditions. This study was carried out in the city of Kinshasa, the Democratic Republic of Congo with the aim of using alternative sources of data, based on earth observation resources, to determine the spatial distribution of soil loss and erosion hazard in the city of Kinshasa. A combined approach based on remote sensing skills and rational equation of soil erosion estimation was used. Soil erosion factors, including rainfall-runoff erosivity R), soil erodibility (K), slope steepness and length (SL), crop/vegetation and management (C) were calculated for the city of Kinshasa. Results show that soil loss in Kinshasa ranges from 0 to 20 t ha-1 yr-1. Most of the south part of the urban area were prone to erosion. From the total area of Kinshasa (996 500 ha), 25 013 ha (2.3 %) is of very high ( > 15 t ha-1 yr-1) risk of soil erosion. Urban areas consist of 4.3 % of the area with very high ( > 15 t ha-1 yr-1) risk of soil erosion compared to a very high risk of 2.3 % ( > 15 t ha-1 yr-1) in the rural area. The study shows that the soil loss in the study area is mostly driven by slope, elevation, and informal settlements.

  11. Soil Erosion: Advanced Crop and Soil Science. A Course of Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The course of study represents the last of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil erosion. Upon completion of the two day lesson, the student will be able to: (1) define conservation, (2) understand how erosion takes place, and (3) list ways of controlling wind and water erosion.…

  12. Effects of slaking and mechanical breakdown on disaggregation and splash erosion

    USDA-ARS?s Scientific Manuscript database

    The contributions of different aggregate breakdown mechanisms to splash erosion are still obscure. This study was designed to investigate the effects of different soil disaggregation mechanisms on splash erosion. Loam clay soil, clay loam soil, and sandy loam soil were used in this study. Soil aggre...

  13. Soil erosion-runoff relationships: insights from laboratory studies

    NASA Astrophysics Data System (ADS)

    Mamedov, Amrakh; Warrington, David; Levy, Guy

    2016-04-01

    Understanding the processes and mechanisms affecting runoff generation and subsequent soil erosion in semi-arid regions is essential for the development of improved soil and water conservation management practices. Using a drip type laboratory rain simulator, we studied runoff and soil erosion, and the relationships between them, in 60 semi-arid region soils varying in their intrinsic properties (e.g., texture, organic matter) under differing extrinsic conditions (e.g., rain properties, and conditions prevailing in the field soil). Both runoff and soil erosion were significantly affected by the intrinsic soil and rain properties, and soil conditions within agricultural fields or watersheds. The relationship between soil erosion and runoff was stronger when the rain kinetic energy was higher rather than lower, and could be expressed either as a linear or exponential function. Linear functions applied to certain limited cases associated with conditions that enhanced soil structure stability, (e.g., slow wetting, amending with soil stabilizers, minimum tillage in clay soils, and short duration exposure to rain). Exponential functions applied to most of the cases under conditions that tended to harm soil stability (e.g., fast wetting of soils, a wide range of antecedent soil water contents and rain kinetic energies, conventional tillage, following biosolid applications, irrigation with water of poor quality, consecutive rain simulations). The established relationships between runoff and soil erosion contributed to a better understanding of the mechanisms governing overland flow and soil loss, and could assist in (i) further development of soil erosion models and research techniques, and (ii) the design of more suitable management practices for soil and water conservation.

  14. Sustainable development: a regional perspective.

    PubMed

    Icamina, P

    1988-12-01

    This article discusses sustainable development in Asia and current environmental problems in this region. Droughts and rainy seasons pose a major concern indicating environmental limitations: India's 1987 drought halted world grain production and China suffered US $435 million in flooding damage. Deforestation and land degradation are consequences of a rising population's demand for agriculture, fuelwood, irrigation, and hydroelectric projects; 1815 million hectares of forest are cleared/year and 40% of the land could possible be subjected to soil erosion. Although population growth is declining in some Asian countries, the continent inhabits the greatest proportion of world population; 300 million are underfed. Food production remains a problem for this region because of bad weather, highly populated areas, less cropland, soil erosion, and limited water supply. Efforts currently employed to conserve natural resources include community reforestation, providing available drinking water, substituting firewood for fuelwood, and delivering primary health care.

  15. Soil erosion and causative factors at Vandenberg Air Force Base, California

    NASA Technical Reports Server (NTRS)

    Butterworth, Joel B.

    1988-01-01

    Areas of significant soil erosion and unvegetated road cuts were identified and mapped for Vandenberg Air Force Base. One hundred forty-two eroded areas (most greater than 1.2 ha) and 51 road cuts were identified from recent color infrared aerial photography and ground truthed to determine the severity and causes of erosion. Comparison of the present eroded condition of soils (as shown in the 1986 photography) with that in historical aerial photography indicates that most erosion on the base took place prior to 1928. However, at several sites accelerated rates of erosion and sedimentation may be occurring as soils and parent materials are eroded vertically. The most conspicuous erosion is in the northern part of the base, where severe gully, sheet, and mass movement erosion have occurred in soils and in various sedimentary rocks. Past cultivation practices, compounded by highly erodible soils prone to subsurface piping, are probably the main causes. Improper range management practices following cultivation may have also increased runoff and erosion. Aerial photography from 1986 shows that no appreciable headward erosion or gully sidewall collapse have occurred in this area since 1928.

  16. Soil erosion under multiple time-varying rainfall events

    NASA Astrophysics Data System (ADS)

    Heng, B. C. Peter; Barry, D. Andrew; Jomaa, Seifeddine; Sander, Graham C.

    2010-05-01

    Soil erosion is a function of many factors and process interactions. An erosion event produces changes in surface soil properties such as texture and hydraulic conductivity. These changes in turn alter the erosion response to subsequent events. Laboratory-scale soil erosion studies have typically focused on single independent rainfall events with constant rainfall intensities. This study investigates the effect of multiple time-varying rainfall events on soil erosion using the EPFL erosion flume. The rainfall simulator comprises ten Veejet nozzles mounted on oscillating bars 3 m above a 6 m × 2 m flume. Spray from the nozzles is applied onto the soil surface in sweeps; rainfall intensity is thus controlled by varying the sweeping frequency. Freshly-prepared soil with a uniform slope was subjected to five rainfall events at daily intervals. In each 3-h event, rainfall intensity was ramped up linearly to a maximum of 60 mm/h and then stepped down to zero. Runoff samples were collected and analysed for particle size distribution (PSD) as well as total sediment concentration. We investigate whether there is a hysteretic relationship between sediment concentration and discharge within each event and how this relationship changes from event to event. Trends in the PSD of the eroded sediment are discussed and correlated with changes in sediment concentration. Close-up imagery of the soil surface following each event highlight changes in surface soil structure with time. This study enhances our understanding of erosion processes in the field, with corresponding implications for soil erosion modelling.

  17. Interrill Erodibility of P and C on conventially and organically farmed Devon soils

    NASA Astrophysics Data System (ADS)

    Kuhn, N. J.

    2012-04-01

    Soil erosion can have significant off-site effects on water quality and thus human and habitat health. Apart from sedimentation, the transfer of nutrients, both dissolved and particulate, is a major concern. The particulate transfer of nutrients from agricultural land can occur either by rill or interrill erosion. Rill erosion is non-selective and affects only a limited extent of agricultural land. Interrill processes such as crusting, splash and raindrop-impacted wash, on the other hand, act on all cropland and affect the quality of the water from all areas generating runoff. A significant amount of phosphorus (P) is contained in the surface soil layer transformed by interrill processes annually. In the EU, the P content of a crusted (2 mm) surface layer corresponds to 4 to 40 kg ha-1 of P on arable land (1.094 mil km2). Therefore, the role of interrill processes and erosion for regional nutrient cycling requires close attention. Interrill erosion is a complex phenomenon, involving the detachment, transport and deposition of soil particles by raindrop impacted flow. Resistance to interrill erosion varies between soils depending on their physical, chemical and mineralogical properties. In addition, significant changes in soil resistance to interrill erosion occur during storms as a result of changes in surface roughness, cohesion and particle size. As a consequence, erosion on interrill areas is selective, moving the most easily detached small and/or light soil particles which are often enriched in clay, P and organic C. Commonly, the risk of erosion associated with organically farmed soils is lower than those farmed in a conventional way. This is attributed to greater aggregate stability and thus greater infiltration and lower erodibility. Erosion of nutrients on organically farmed soils is therefore considered to be reduced by the same order of magnitude than the amount of eroded soil compared to conventionally farmed soils. However, the selective nature of interrill erosion potentially counteracts this effect by the preferential removal of fine particles enriched in nutrients and soil organic matter. In this study, an experiment comparing the erodibility of P and C on organically and conventially farmed soils from Devon is presented. The results show a disproportional increase of P in sediment from the organically farmed soil, reducing the perceived benefit of organic farming on nutrient erosion by 80%. The pronounced P enrichment in the organically farmed soil is attributed to the higher concentrations of C and P as well as lower densities of the small particle fraction. The results, while very preliminary, indicate that the impact of soil management on off-site effects of erosion such as water quality can only be fully assessed when we understand the relevant erosion processes. They also indicate that some less than expected positive effects of changing soil management to improve water quality might be caused by the preferential erosion of P-bearing soil particles.

  18. RUSLE2015, GIS-RWEQ and CENTURY: new modelling integration for soil loss and carbon fluxes at European scale

    NASA Astrophysics Data System (ADS)

    Panagos, Panos; Borrelli, Pasquale; Lugato, Emanuele

    2016-04-01

    Land degradation through erosion has been identified as major threat to European soils and agriculture. During the last years, the Directorates General for Agriculture and for Environment (plus EUROSTAT) require formal assessments and indicators on the state of soil erosion for the European Union. Moreover, the European Soil Data Centre (ESDAC) is the main data repository for soil threats at European scale. To meet these needs we have worked with recognized research institutes and scientists to develop a series of pan-EU modelling tools that estimate soil erosion by water and wind. Over the past three years, the European Commission Joint Research Centre has worked to develop a modified RUSLE modelling approach, named RUSLE2015 and the necessary input factors. These have all been peer reviewed and published as individual papers in different refereed journals. The published soil erodibility map for Europe has been modelled with the latest state of the art soil data (LUCAS) and a robust geo-statistical model (Science of Total Environment, 479-480: 189-200). Rainfall erosivity has been modelled after an extensive data collection of high temporal resolution rainfall data and the compilation of Rainfall Erosivity Database at European Scale (REDES) (Science of Total Environment, 511: 801-814). Cover-Management factor has been modelled taking into account crop composition, management practices (reduced tillage, plant residues, cover crops) and remote sensing data on vegetation density (Land Use policy, 48C: 38-50). Topography has been modelled with the recently published Digital Elevation Model at 25m resolution (Geosciences, 5: 117-126). Conservation and support practices have included the Good Agricultural Environmental Condition (GAEC database) and the 270,000 earth observations of LUCAS survey (Environmental Science & Policy 51: 23-34). The new assessment of soil erosion by water in Europe has been recently published (Environmental Science & Policy. 54: 438-447) and subsequently the core message focusing on soil erosion in agricultural lands was published in a recent correspondence in Nature (Nature, 526, 195). Additionally, the soil erosion potential for the European Union's forests was modelled using the high-resolution Global Forest Cover Loss map (2000-2012) and taking into consideration the lodging, forest cuts and forest fires (Ecological Indicators, 60:1208-1220). The first qualitative assessment of wind erosion at European scale has been done using the Index of Land Susceptibility to Wind Erosion (ILSWE) (Sustainability, 7(7): 8823-8836). The wind-erodible fraction of soil (EF) is one of the key parameters for estimating the susceptibility of soil to wind erosion (Geoderma, 232-234: 471-478). ILSWE was created by combining spatiotemporal variations of the most influential wind erosion factors such as climatic erosivity, soil erodibility, vegetation cover and landscape roughness) (Land Degradation & Development, 10.1002/ldr.2318). The quantitative assessment of wind erosion has been concluded recently using Revised Wind Erosion Equation (GIS-RWEQ). Modelling the lateral carbon fluxes due to soil erosion both at national scale (Land Use Policy, 50: 408-421) and at European scale (Global Change Biology, 10.1111/gcb.13198) is an important milestone in climate change perspective. We coupled soil erosion into a biogeochemistry model, running at 1 km2 resolution across the agricultural soils of the European Union (EU). In the future, the soil erosion (by water and wind) modelling activities will incorporate temporal variability, sediment transport and economic assessments of land degradation.

  19. East African Soil Erosion Recorded in a 300 Year old Coral Colony From Kenya

    NASA Astrophysics Data System (ADS)

    Dunbar, R. B.; Fleitmann, D.; McCulloch, M.; Mudelsee, M.; Vuille, M.; McClanahan, T.; Cole, J.; Eggins, S.

    2006-12-01

    Soil erosion threatens the food security of 2.6 billion people worldwide. The situation is particularly dire in East and Sub-Saharan Africa where per capita food production has declined over the past 45 years. Erosion and the resultant loss of fertile soil is a key socio-economic and ecological problem in Kenya, affecting all sectors of its economy and damaging marine and terrestrial ecosystems. The temporal pattern of soil erosion is almost unknown and currently only sparse and rather anecdotal information exists. To aid in filling this gap of knowledge, we present a 300-year long Barium record from two Kenyan coral colonies (Porites sp., 3°15'S, 40°9' E; Malindi Marine National Park) that documents a dynamic history of soil erosion in the Sabaki river drainage basin. To reconstruct Sabaki River sediment flux to the Malindi coral reef Ba/Ca ratios were measured in the skeleton of two Porites colonies (Mal 96-1 and Mal 95-3). Well-developed annual bands allow us to develop annually precise chronologies. Ba/Ca ratios were measured in core Mal 96-1 at continuous 40 μm intervals (~400 to 500 samples yr-1) using laser-ablation inductively coupled plasma mass spectrometry (LA- ICP-MS). To test for reproducibility and accuracy of the Mal 96-1 Ba/Ca profile, coral core Mal 95-3 was analyzed at lower resolution (1 to 12 samples yr-1) using discrete micro-drill sampling and isotope dilution ICP-MS. The close similarity between both coral Ba/Ca profiles, in absolute values as well as general pattern, underscores the accuracy of the LA-ICP-MS technique and adds confidence to our interpretation of the 300 year long Mal 96-1 Ba/Ca profile. The Ba/Ca coral proxy record shows that while the sediment flux from the Sabaki River is nearly constant between 1700 and 1900, a continuous rise in sediment flux is observed since 1900, reflecting steadily increasing demographic pressure on land use. The peak in suspended sediment load and hence soil erosion recorded at the Malindi reef occurred between 1974 and 1980 where there is a five to tenfold increase relative to natural levels. This is attributed to the combined effects of dramatically increasing population, unregulated land use, deforestation and severe droughts in the early 1970s. It is concluded that despite laudable attempts to instigate soil conservation measures, it is unlikely that in Kenya there will be a sustainable reduction in soil erosion without a significant improvement in socio-economic conditions.

  20. Climate change impact on soil erosion in the Mandakini River Basin, North India

    NASA Astrophysics Data System (ADS)

    Khare, Deepak; Mondal, Arun; Kundu, Sananda; Mishra, Prabhash Kumar

    2017-09-01

    Correct estimation of soil loss at catchment level helps the land and water resources planners to identify priority areas for soil conservation measures. Soil erosion is one of the major hazards affected by the climate change, particularly the increasing intensity of rainfall resulted in increasing erosion, apart from other factors like landuse change. Changes in climate have an adverse effect with increasing rainfall. It has caused increasing concern for modeling the future rainfall and projecting future soil erosion. In the present study, future rainfall has been generated with the downscaling of GCM (Global Circulation Model) data of Mandakini river basin, a hilly catchment in the state of Uttarakhand, India, to obtain future impact on soil erosion within the basin. The USLE is an erosion prediction model designed to predict the long-term average annual soil loss from specific field slopes in specified landuse and management systems (i.e., crops, rangeland, and recreational areas) using remote sensing and GIS technologies. Future soil erosion has shown increasing trend due to increasing rainfall which has been generated from the statistical-based downscaling method.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The US loses about five billion tons of soil a year from erosion, and scientists estimate that from 20 to 50% of world cropland suffers from excessive erosion. The effect of erosion is a loss in both land and water productivity. When combined with the problems of overpopulation, overgrazing, and deforestation, the environmental impacts are very serious. There are some signs that countries are beginning to adopt conservation tilling techniques, but even cooperative government programs in the US such as the 1983 Payment-in-Kind (PIK) program have had only partial success because of expanded production on marginal farmlands. 20 reference 5more » figures.« less

  2. Biogeochemistry: The soil carbon erosion paradox

    NASA Astrophysics Data System (ADS)

    Sanderman, Jonathan; Berhe, Asmeret Asefaw

    2017-04-01

    Erosion is typically thought to degrade soil resources. However, the redistribution of soil carbon across the landscape, caused by erosion, can actually lead to a substantial sink for atmospheric CO2.

  3. SSEM: A model for simulating runoff and erosion of saline-sodic soil slopes under coastal reclamation

    NASA Astrophysics Data System (ADS)

    Liu, Dongdong; She, Dongli

    2018-06-01

    Current physically based erosion models do not carefully consider the dynamic variations of soil properties during rainfall and are unable to simulate saline-sodic soil slope erosion processes. The aim of this work was to build upon a complete model framework, SSEM, to simulate runoff and erosion processes for saline-sodic soils by coupling dynamic saturated hydraulic conductivity Ks and soil erodibility Kτ. Sixty rainfall simulation rainfall experiments (2 soil textures × 5 sodicity levels × 2 slope gradients × 3 duplicates) provided data for model calibration and validation. SSEM worked very well for simulating the runoff and erosion processes of saline-sodic silty clay. The runoff and erosion processes of saline-sodic silt loam were more complex than those of non-saline soils or soils with higher clay contents; thus, SSEM did not perform very well for some validation events. We further examined the model performances of four concepts: Dynamic Ks and Kτ (Case 1, SSEM), Dynamic Ks and Constant Kτ (Case 2), Constant Ks and Dynamic Kτ (Case 3) and Constant Ks and Constant Kτ (Case 4). The results demonstrated that the model, which considers dynamic variations in soil saturated hydraulic conductivity and soil erodibility, can provide more reasonable runoff and erosion prediction results for saline-sodic soils.

  4. Divergent taxonomic and functional responses of microbial communities to field simulation of aeolian soil erosion and deposition.

    PubMed

    Ma, Xingyu; Zhao, Cancan; Gao, Ying; Liu, Bin; Wang, Tengxu; Yuan, Tong; Hale, Lauren; Nostrand, Joy D Van; Wan, Shiqiang; Zhou, Jizhong; Yang, Yunfeng

    2017-08-01

    Aeolian soil erosion and deposition have worldwide impacts on agriculture, air quality and public health. However, ecosystem responses to soil erosion and deposition remain largely unclear in regard to microorganisms, which are the crucial drivers of biogeochemical cycles. Using integrated metagenomics technologies, we analysed microbial communities subjected to simulated soil erosion and deposition in a semiarid grassland of Inner Mongolia, China. As expected, soil total organic carbon and plant coverage were decreased by soil erosion, and soil dissolved organic carbon (DOC) was increased by soil deposition, demonstrating that field simulation was reliable. Soil microbial communities were altered (p < .039) by both soil erosion and deposition, with dramatic increase in Cyanobacteria related to increased stability in soil aggregates. amyA genes encoding α-amylases were specifically increased (p = .01) by soil deposition and positively correlated (p = .02) to DOC, which likely explained changes in DOC. Surprisingly, most of microbial functional genes associated with carbon, nitrogen, phosphorus and potassium cycling were decreased or unaltered by both erosion and deposition, probably arising from acceleration of organic matter mineralization. These divergent responses support the necessity to include microbial components in evaluating ecological consequences. Furthermore, Mantel tests showed strong, significant correlations between soil nutrients and functional structure but not taxonomic structure, demonstrating close relevance of microbial function traits to nutrient cycling. © 2017 John Wiley & Sons Ltd.

  5. Bottomland Hardwood Forest Influence on Floodplain Hydrology and Stream Bank Stability in an Urbanizing Watershed of the Central U.S

    NASA Astrophysics Data System (ADS)

    Hubbart, J. A.; Zell, C.; Huang, D.

    2012-12-01

    Conversion of bottomland hardwood forest (BHF) to agricultural and urban land uses in the 19th and 20th centuries altered the hydrology of streams, floodplains, and remnant BHF. Broadened and steepened stream channels lead to increased channel instability, accelerated erosion, and reduced floodplain hydrologic connectivity. A case study was implemented to investigate floodplain and stream hydrogeomorphological processes comparing a remnant BHF and Ag site (sites = 0.90 km apart). 120 m2 grids were established to estimate canopy cover (LAI = 3.1), soil characteristics by the soil core method at depths of 0, 15, 30, 50, 75 and 100 cm (n = 302), and surface soil infiltration capacity (n = 42). 80 m2 grids (each site) were implemented with nine equally spaced piezometers to estimate shallow groundwater depth and flow. Stream bank erosion study sites were located adjacent to BHF and agricultural floodplain study sites using the erosion pin method (10 pin plots, n = 342 pins). Results indicate average porosity (n = 150) of 0.56 (SD = 0.04) and 0.59 (SD = 0.04) in agricultural and BHF sites, respectively. Average infiltration capacity was 44 cm/hr (SD = 38 cm/hr) and 59 cm/hr (SD = 54 cm/hr) in agricultural and BHF sites, respectively. Depth integrated calculations of equivalent depth of soil water (EDSW) were significantly different (CI = 99%) 33.3 cm/m (SD = 2.24 cm/m) and 36.9 cm/m (SD = 2.68 cm/m) between Ag and BHF sites, respectively. Shallow groundwater analyses (Water Year 2011) indicated that average head at the BHF and Ag sites increased by approximately 0.25 m, and 0.50 m, respectively 90 m inland from the streambank. Stream bank erosion results showed that during a drier (762 mm) than average (10yr avg = 1077 mm) rainfall year (Water Year 2011), 15.7 and 177.8 tonnes of soil erosion occurred on the right side (facing downstream) stream banks of the BHF and Ag sites, respectively. Average bank erosion depth measured at the BHF and Ag sites was 18 and 112 mm/yr respectively. The greatest average depth of erosion occurred during the winter season (44.7 mm), followed by summer (13.1 mm) and spring (6.3 mm) and fall with the lowest average erosion depth (1.1 mm). Results demonstrate the potential benefit of sustaining or re-establishing floodplain forests to enhance soil infiltration capacity, soil storage capacity, floodwave attenuation, and consumptive water use, thereby reducing flooding and mitigating stormwater runoff problems in rapidly developing urban environments. In addition, results hold important implications for land-use managers wishing to reduce bank erosion and improve land-use practices, water quality and aquatic natural resource sustainability in dynamic urbanizing watersheds.

  6. Connecting the cycles: impact of farming practices, Carbon and nutrient erosion on GHG emissions

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.

    2013-04-01

    This study focuses on identifying links between GHG emissions, soil management and soil erosion that are not considered in the commonly applied emission calculations associated with farming and soil erosion. The role of agriculture in generating GHG emissions through the use of fertilizers and fossil fuels is well documented. The negative impacts of soil erosion on agricultural land and its productivity have also been studied extensively. The lateral movement of soil through terrestrial ecosystems has also been recognized as a significant flux of C within the global C cycle. Soil erosion removes approximately 0.5 Gt of C per year from agricultural land. Much of this C is deposited in the landscape, effectively burying the organic matter from the atmosphere and taking it, at least for an unspecified time, out of the C exchange between soil and atmosphere. Such calculations raise the notion that soil erosion generates an unintentional benefit for climate, owing to the long-term burial of soil organic Carbon. But limiting the assessment of the impact of soil erosion on climate change to organic carbon burial ignores, apart from economic and social damages, the coupling between biogeochemical cycles. For example, the eroded nitrogen has to be replaced, at least in part by artificial fertilizers, to maintain soil fertility. At this point the sediment, Carbon and nitrogen cycles meet, because the production of fertilizer generates greenhouse gases. The production of one ton of fertilizer generates on the order of 850 kg of carbon dioxide. Applying this number to the 0.5 GT C erosion estimate, the amount of nitrogen lost owing to erosion each year yields carbon dioxide emissions of 0.02-0.04 Pg per year. These emissions correspond to 15-30% of the organic carbon buried owing to soil erosion. In this presentation, the full complexity of biogeochemical cycling on agricultural land is explored and connections between cycles which require consideration for a full GHG emission balance of soil erosion on agricultural land are identified. A first analysis of the data available on a full account of erosion-related emissions is presented. Apart from identifying a potentially significant source of GHG emissions associated with soil erosion that has not been considered for impact assessment so far, the study also shows that separating emission accounting between the industry producing the fertilizer and the agricultural sector, i.e. the grey emissions associated with farming, does not reflect the actual mechanism between erosion, farming practices and emissions.

  7. Risk assessment of pesticide transport with water erosion: A conceptual model

    NASA Astrophysics Data System (ADS)

    Yang, Xiaomei; Van Der Zee, Sjoerd E. A. T. M.; Gai, Lingtong; Wesseling, Jan G.; Ritsema, Coen J.; Geissen, Violette

    2017-04-01

    Pesticides are widely used in agriculture, horticulture, and forestry, and pesticide pollution has become an important issue worldwide. Entraining in runoff and being attached to eroded soil particles, posing a risk to water and soil quality and human health. In order to assess the risk of pesticide during water erosion processes, a simple integrative model of pesticide transport by runoff and erosion was developed. Taking soil hydrological and pesticide behaviour into account, such as water infiltration, erosion, runoff, and pesticide transport and degradation in soil, the conceptual framework was based on the known assumptions such as the convection-dispersion equation and lognormal distributions of soil properties associated with transport, sorption, degradation, and erosion. A sensitivity analysis was conducted and the results indicated that the total amount of pesticide related to soil eroded by water washing increased with slope gradient, rainfall intensity, and water field capacity of the soil. The mass of transported pesticide decreased as the micro-topography of the soil surface became obviously and the time from pesticide sprayed to erosion occurring associated with pesticide degradation negatively influenced the total amount of transported pesticide. The mechanisms involved in pesticide transport, such as runoff, infiltration, soil erosion, and pesticide transport and decay in the topsoil, thus can be well accounted for pesticide risk assessment especially in the region with intensive pesticide use and soil water erosion events.

  8. The history of soil erosion: Interpreting historical sources, buried soils and colluvial sediments as archives of past soil erosion and human-environment interactions in the Longue Durée

    NASA Astrophysics Data System (ADS)

    Dotterweich, Markus

    2015-04-01

    Soil erosion threatens the environment and the sustainability of agricultural practices since the earliest societies started modifying their natural environment in the Neolithic. Almost all farming-based cultures in the world, from large civilizations to peasant groups on little islands, have suffered from soil erosion by water. The amounts of soil erosion varied largely through time and space, and extreme events have left a wide variety of imprints on the landscape over millennia. Eroded hillslopes and gullies, deposited sediments in sinks like lakes, footslopes, valleys, floodplains, and river deltas are geomorphic legacies that have been linked to changes in land use and climate by many studies during the last decades. However, a standardized analysis and interpretation of these geomorphic legacies is problematic because of the variety of methodological approaches and the nonlinearity between soil erosion, climate, and land use. Cascading effects, land use structures, soil management, soil conservation strategies, and long-term system changes have produced different signals over time. Historical records are crucial and an invaluable source to provide alternative proxies about soil erosion in the past. Direct observations of individual soil erosion events may restrict the deposition of a distinct sediment package to a certain time span. They also expand the range of alternative interpretations, particularly with respect to the long-term effects of soil erosion to ecosystem services and socioeconomic processes. However, historical records also need critical analyses regarding their origin, intention, and quality. They were often created in the context of personal interests or political issues rather than being based on scientific facts; and it is often unclear if they represent certain events, narratives, or vague assumptions. This presentation will present and discuss examples of geomorphic evidences and historical records of past soil erosion for the deciphering of human-environment interactions in the Longue Durée.

  9. Characterisation of soil microtopography effects on runoff and soil erosion rates under simulated rainfall

    USDA-ARS?s Scientific Manuscript database

    Soil surface roughness is commonly identified as one of the dominant factors governing runoff and interrill erosion. Yet, because of difficulties in acquiring the data, most studies pay little attention to soil surface roughness. This is particularly true for soil erosion models which commonly don't...

  10. Natural and anthropogenic rates of soil erosion

    USDA-ARS?s Scientific Manuscript database

    Regions of land that are brought into crop production from native vegetation typically undergo a period of soil erosion instability, and long term erosion rates are greater than for natural lands as long as the land continues being used for crop production. Average rates of soil erosion under natur...

  11. Quantifying and modeling soil erosion and sediment export from construction sites in southern California

    NASA Astrophysics Data System (ADS)

    Wernet, A. K.; Beighley, R. E.

    2006-12-01

    Soil erosion is a power process that continuously alters the Earth's landscape. Human activities, such as construction and agricultural practices, and natural events, such as forest fires and landslides, disturb the landscape and intensify erosion processes leading to sudden increases in runoff sediment concentrations and degraded stream water quality. Understanding soil erosion and sediment transport processes is of great importance to researchers and practicing engineers, who routinely use models to predict soil erosion and sediment movement for varied land use and climate change scenarios. However, existing erosion models are limited in their applicability to constructions sites which have highly variable soil conditions (density, moisture, surface roughness, and best management practices) that change often in both space and time. The goal of this research is to improve the understanding, predictive capabilities and integration of treatment methodologies for controlling soil erosion and sediment export from construction sites. This research combines modeling with field monitoring and laboratory experiments to quantify: (a) spatial and temporal distribution of soil conditions on construction sites, (b) soil erosion due to event rainfall, and (c) potential offsite discharge of sediment with and without treatment practices. Field sites in southern California were selected to monitor the effects of common construction activities (ex., cut/fill, grading, foundations, roads) on soil conditions and sediment discharge. Laboratory experiments were performed in the Soil Erosion Research Laboratory (SERL), part of the Civil and Environmental Engineering department at San Diego State University, to quantify the impact of individual factors leading to sediment export. SERL experiments utilize a 3-m by 10-m tilting soil bed with soil depths up to 1 m, slopes ranging from 0 to 50 percent, and rainfall rates up to 150 mm/hr (6 in/hr). Preliminary modeling, field and laboratory results are presented.

  12. Subannual spatiotemporal patterns of potential erosion hotspots on full island scale (Mauritius, Indian Ocean): Foci for agrodiversity and ecosystem buffer regions

    NASA Astrophysics Data System (ADS)

    Rijsdijk, K. F.; Seijmonsbergen, A. C.; Kamminga, T.; Koon, A.; Assenjee, A.; Goolaup, P.

    2009-04-01

    Economic and agricultural growth on Mauritius has resulted in severe environmental pressure during the last decades. Forest fragmentation (>98%), agricultural intervention, prolonged bare soil periods and changing soil properties in combination with a short rainy cyclone season has led to an increase in surface erosion processes and loss of soil fertility. The sensitivity to soil erosion depends on spatial differences in surface conditions. To reveal hot spots of erosion, the Revised Universal Soil Loss Equation (RUSLE) model was applied for the whole of Mauritius (scale 1:50 000) through ArcGIS algorithms. Although RUSLE is not designed to calculate monthly potential erosion we demonstrate it may indicate realistic spatiotemporal patterns. Subannual soil loss values in 2005 and averaged for a 30 yrs period between 1978-2008, were reclassified into six potential soil erosion categories, from very low to extremely high. In 2005 peaks in potential erosion values in February and March (>1.5t ha-1 month-1) coincide with the cyclone season and very low potential soil loss values from October through December (<0.05t ha-1 month-1) relate to the dry season, which confirms the influence of the R-factor. The calculated values and patterns of potential soil erosion hot spots compare realistically with available soil loss data for various land cover units. Hotspots that would otherwise masked by the annual mean of the annual based RUSLE equation. The outcome provide essential subannual spatiotemporal information to identify areas with increased vulnerability to soil erosion that should prioritized for taking effective measures against future soil loss. In a monocrop setting subannual RUSLE analyses can provide regional and temporal foci to base agrodiversity strategies upon. Further it helps to identify vulnerable spots in buffer zones of threatened ecosystems.

  13. Soil erosion and sediment yield and their relationships with vegetation cover in upper stream of the Yellow River.

    PubMed

    Ouyang, Wei; Hao, Fanghua; Skidmore, Andrew K; Toxopeus, A G

    2010-12-15

    Soil erosion is a significant concern when considering regional environmental protection, especially in the Yellow River Basin in China. This study evaluated the temporal-spatial interaction of land cover status with soil erosion characteristics in the Longliu Catchment of China, using the Soil and Water Assessment Tool (SWAT) model. SWAT is a physical hydrological model which uses the RUSLE equation as a sediment algorithm. Considering the spatial and temporal scale of the relationship between soil erosion and sediment yield, simulations were undertaken at monthly and annual temporal scales and basin and sub-basin spatial scales. The corresponding temporal and spatial Normalized Difference Vegetation Index (NDVI) information was summarized from MODIS data, which can integrate regional land cover and climatic features. The SWAT simulation revealed that the annual soil erosion and sediment yield showed similar spatial distribution patterns, but the monthly variation fluctuated significantly. The monthly basin soil erosion varied from almost no erosion load to 3.92 t/ha and the maximum monthly sediment yield was 47,540 tones. The inter-annual simulation focused on the spatial difference and relationship with the corresponding vegetation NDVI value for every sub-basin. It is concluded that, for this continental monsoon climate basin, the higher NDVI vegetation zones prevented sediment transport, but at the same time they also contributed considerable soil erosion. The monthly basin soil erosion and sediment yield both correlated with NDVI, and the determination coefficients of their exponential correlation model were 0.446 and 0.426, respectively. The relationships between soil erosion and sediment yield with vegetation NDVI indicated that the vegetation status has a significant impact on sediment formation and transport. The findings can be used to develop soil erosion conservation programs for the study area. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Evaluation of the rusle and disturbed wepp erosion models for predicting soil loss in the first year after wildfire in NW Spain.

    PubMed

    Fernández, Cristina; Vega, José A

    2018-05-04

    Severe fire greatly increases soil erosion rates and overland-flow in forest land. Soil erosion prediction models are essential for estimating fire impacts and planning post-fire emergency responses. We evaluated the performance of a) the Revised Universal Soil Loss Equation (RUSLE), modified by inclusion of an alternative equation for the soil erodibility factor, and b) the Disturbed WEPP model, by comparing the soil loss predicted by the models and the soil loss measured in the first year after wildfire in 44 experimental field plots in NW Spain. The Disturbed WEPP has not previously been validated with field data for use in NW Spain; validation studies are also very scarce in other areas. We found that both models underestimated the erosion rates. The accuracy of the RUSLE model was low, even after inclusion of a modified soil erodibility factor accounting for high contents of soil organic matter. We conclude that neither model is suitable for predicting soil erosion in the first year after fire in NW Spain and suggest that soil burn severity should be given greater weighting in post-fire soil erosion modelling. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Mapping regional soil water erosion risk in the Brittany-Loire basin for water management agency

    NASA Astrophysics Data System (ADS)

    Degan, Francesca; Cerdan, Olivier; Salvador-Blanes, Sébastien; Gautier, Jean-Noël

    2014-05-01

    Soil water erosion is one of the main degradation processes that affect soils through the removal of soil particles from the surface. The impacts for environment and agricultural areas are diverse, such as water pollution, crop yield depression, organic matter loss and reduction in water storage capacity. There is therefore a strong need to produce maps at the regional scale to help environmental policy makers and soil and water management bodies to mitigate the effect of water and soil pollution. Our approach aims to model and map soil erosion risk at regional scale (155 000 km²) and high spatial resolution (50 m) in the Brittany - Loire basin. The factors responsible for soil erosion are different according to the spatial and time scales considered. The regional scale entails challenges about homogeneous data sets availability, spatial resolution of results, various erosion processes and agricultural practices. We chose to improve the MESALES model (Le Bissonnais et al., 2002) to map soil erosion risk, because it was developed specifically for water erosion in agricultural fields in temperate areas. The MESALES model consists in a decision tree which gives for each combination of factors the corresponding class of soil erosion risk. Four factors that determine soil erosion risk are considered: soils, land cover, climate and topography. The first main improvement of the model consists in using newly available datasets that are more accurate than the initial ones. The datasets used cover all the study area homogeneously. Soil dataset has a 1/1 000 000 scale and attributes such as texture, soil type, rock fragment and parent material are used. The climate dataset has a spatial resolution of 8 km and a temporal resolution of mm/day for 12 years. Elevation dataset has a spatial resolution of 50 m. Three different land cover datasets are used where the finest spatial resolution is 50 m over three years. Using these datasets, four erosion factors are characterized and quantified: the soil factors (soil sealing, erodibility and runoff), the rate of land cover over three years for each season and for 77 land use classes, the topographic factor (slope and drainage area) and the climate hazard (seasonal amount and rainfall erosivity). These modifications of the original MESALES model allow to better represent erosion risk for arable and bare land. We validated model results by stakeholder consultations and meetings over all the study area. The model has finally been modified taking into account validation results. Results are provided with a spatial resolution of 1 km, and then integrated into 2121 catchments. An erosion risk map for each season and an annual erosion risk map are produced. These new maps allow to organize in hierarchy 2121 catchments into three erosion risk classes. In the annual erosion risk map, 347 catchments have the highest erosion risk, which corresponds to 16 % of total Brittany-Loire basin area. Water management agency now uses these maps to identify priority areas and to plan specific preservation practices.

  16. Remote sensing data applied to the evaluation of soil erosion caused by land-use. Ribeirao Anhumas Basin Area: A case study. [Brazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Dosanjosferreirapinto, S.; Kux, H. J. H.

    1980-01-01

    Formerly covered by a tropical forest, the study area was deforested in the early 40's for coffee plantation and cattle raising, which caused intense gully erosion problems. To develop a method to analyze the relationship between land use and soil erosion, visual interpretations of aerial photographs (scale 1:25.000), MSS-LANDSAT imagery (scale 1:250,000), as well as automatic interpretation of computer compatible tapes by IMAGE-100 system were carried out. From visual interpretation the following data were obtained: land use and cover tapes, slope classes, ravine frequency, and a texture sketch map. During field work, soil samples were collected for texture and X-ray analysis. The texture sketch map indicate that the areas with higher slope angles have a higher susceptibilty to the development of gullies. Also, the over carriage of pastureland, together with very friable lithologies (mainly sandstone) occuring in that area, seem to be the main factors influencing the catastrophic extension of ravines in the study site.

  17. Erosivity, surface runoff, and soil erosion estimation using GIS-coupled runoff-erosion model in the Mamuaba catchment, Brazil.

    PubMed

    Marques da Silva, Richarde; Guimarães Santos, Celso Augusto; Carneiro de Lima Silva, Valeriano; Pereira e Silva, Leonardo

    2013-11-01

    This study evaluates erosivity, surface runoff generation, and soil erosion rates for Mamuaba catchment, sub-catchment of Gramame River basin (Brazil) by using the ArcView Soil and Water Assessment Tool (AvSWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. Daily rainfall data between 1969 and 1989 from six rain gauges were used, and the monthly rainfall erosivity of each station was computed for all the studied years. In order to evaluate the calibration and validation of the model, monthly runoff data between January 1978 and April 1982 from one runoff gauge were used as well. The estimated soil loss rates were also realistic when compared to what can be observed in the field and to results from previous studies around of catchment. The long-term average soil loss was estimated at 9.4 t ha(-1) year(-1); most of the area of the catchment (60%) was predicted to suffer from a low- to moderate-erosion risk (<6 t ha(-1) year(-1)) and, in 20% of the catchment, the soil erosion was estimated to exceed > 12 t ha(-1) year(-1). Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the catchment was divided into four priority categories (low, moderate, high and very high) for conservation intervention. The study demonstrates that the AvSWAT model provides a useful tool for soil erosion assessment from catchments and facilitates the planning for a sustainable land management in northeastern Brazil.

  18. The consequences of land-cover changes on soil erosion distribution in Slovakia

    NASA Astrophysics Data System (ADS)

    Cebecauer, Tomáš; Hofierka, Jaroslav

    2008-06-01

    Soil erosion is a complex process determined by mutual interaction of numerous factors. The aim of erosion research at regional scales is a general evaluation of the landscape susceptibility to soil erosion by water, taking into account the main factors influencing this process. One of the key factors influencing the susceptibility of a region to soil erosion is land cover. Natural as well as human-induced changes of landscape may result in both the diminishment and acceleration of soil erosion. Recent studies of land-cover changes indicate that during the last decade more than 4.11% of Slovak territory has changed. The objective of this study is to assess the influence of land-cover and crop rotation changes over the 1990-2000 period on the intensity and spatial pattern of soil erosion in Slovakia. The assessment is based on principles defined in the Universal Soil Loss Equation (USLE) modified for application at regional scale and the use of the CORINE land cover (CLC) databases for 1990 and 2000. The C factor for arable land has been refined using statistical data on the mean crop rotation and the acreage of particular agricultural crops in the districts of Slovakia. The L factor has been calculated using sample areas with parcels identified by LANDSAT TM data. The results indicate that the land-cover and crop rotation changes had a significant influence on soil erosion pattern predominately in the hilly and mountainous parts of Slovakia. The pattern of soil erosion changes exhibits high spatial variation with overall slightly decreased soil erosion risks. These changes are associated with ongoing land ownership changes, changing structure of crops, deforestation and afforestation.

  19. Lateral transport of soil carbon and land−atmosphere CO2 flux induced by water erosion in China

    PubMed Central

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G. L.; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof

    2016-01-01

    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land−atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y−1 of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y−1, equivalent to 8–37% of the terrestrial carbon sink previously assessed in China. Interestingly, the “hotspots,” largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m−2⋅y−1), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty. PMID:27247397

  20. Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China

    NASA Astrophysics Data System (ADS)

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G. L.; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof

    2016-06-01

    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land-atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt Cṡy-1 of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt Cṡy-1, equivalent to 8-37% of the terrestrial carbon sink previously assessed in China. Interestingly, the “hotspots,” largely distributed in mountainous regions in the most intensive sink areas (>40 g Cṡm-2ṡy-1), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty.

  1. Challenges in soil erosion research and prediction model development

    USDA-ARS?s Scientific Manuscript database

    Quantification of soil erosion has been traditionally considered as a surface hydrologic process with equations for soil detachment and sediment transport derived from the mechanics and hydraulics of the rainfall and surface flow. Under the current erosion modeling framework, the soil has a constant...

  2. Investigation of Soil Erosion and Phosphorus Transport within an Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Klik, A.; Jester, W.; Muhar, A.; Peinsitt, A.; Rampazzo, N.; Mentler, A.; Staudinger, B.; Eder, M.

    2003-04-01

    In a 40 ha agricultural used watershed in Austria, surface runoff, soil erosion and nutrient losses are measured spatially distributed with 12 small erosion plots. Crops during growing season 2002 are canola, corn, sunflower, winter wheat, winter barley, rye, sugar beets, and pasture. Canopy height and canopy cover are observed in 14-day intervals. Four times per year soil water content, shear stress and random roughness of the surface are measured in a 25 x 25 m grid (140 points). The same raster is sampled for soil texture analyses and content of different phosphorus fractions in the 0-10 cm soil depth. Spatially distributed data are used for geostatistical analysis. Along three transects hydrologic conditions of the hillslope position (top, middle, foot) are investigated by measuring soil water content and soil matrix potential. After erosive events erosion features (rills, deposition, ...) are mapped using GPS. All measured data will be used as input parameters for the Limburg Soil Erosion Model (LISEM).

  3. Assessing and mapping the severity of soil erosion using the 30-m Landsat multispectral satellite data in the former South African homelands of Transkei

    NASA Astrophysics Data System (ADS)

    Seutloali, Khoboso E.; Dube, Timothy; Mutanga, Onisimo

    2017-08-01

    Soil erosion is increasingly recognised as the principal cause of land degradation, loss of agricultural land area and siltation of surrounding water waterbodies. Accurate and up-to-date soil erosion mapping is key in understanding its severity if these negative impacts are to be minimised and affected areas rehabilitated. The aim of this work was to map the severity of soil erosion, based on the 30-m Landsat series multispectral satellite data in the former South African homelands of Transkei between the year 1994 and 2010. Further, the study assessed if the observed soil erosion trends and morphology that existed in this area could be explained by biophysical factors (i.e. slope, stream erosivity, topographic wetness index) retrieved from the 30-m ASTER Digital Elevation Model (DEM). The results of this study indicate that the Transkei region experiences varying erosion levels from moderate to very severe. The large portion of the land area under the former homelands was largely affected by rill erosion with approximately 74% occurring in the year 1984 and 54% in 2010. The results also revealed specific thresholds of soil erosion drivers. These include steeper areas (≥30°), high stream power index greater than 2.0 (stream erosivity), relatively lower vegetation cover (≤15%) and low topographic wetness index (≤5%). The results of this work demonstrate the severity of soil erosion in the Southern African former homelands of Transkei for the year 1984 and 2010. Additionally, this work has demonstrated the significance of the 30-m Landsat multispectral sensor in examining soil erosion occurrence at a regional scale where in-depth field work still remains a challenging task.

  4. Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models.

    PubMed

    Teng, Hongfen; Liang, Zongzheng; Chen, Songchao; Liu, Yong; Viscarra Rossel, Raphael A; Chappell, Adrian; Yu, Wu; Shi, Zhou

    2018-04-18

    Soil erosion by water is accelerated by a warming climate and negatively impacts water security and ecological conservation. The Tibetan Plateau (TP) has experienced warming at a rate approximately twice that observed globally, and heavy precipitation events lead to an increased risk of erosion. In this study, we assessed current erosion on the TP and predicted potential soil erosion by water in 2050. The study was conducted in three steps. During the first step, we used the Revised Universal Soil Equation (RUSLE), publicly available data, and the most recent earth observations to derive estimates of annual erosion from 2002 to 2016 on the TP at 1-km resolution. During the second step, we used a multiple linear regression (MLR) model and a set of climatic covariates to predict rainfall erosivity on the TP in 2050. The MLR was used to establish the relationship between current rainfall erosivity data and a set of current climatic and other covariates. The coefficients of the MLR were generalised with climate covariates for 2050 derived from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) models to estimate rainfall erosivity in 2050. During the third step, soil erosion by water in 2050 was predicted using rainfall erosivity in 2050 and other erosion factors. The results show that the mean annual soil erosion rate on the TP under current conditions is 2.76tha -1 y -1 , which is equivalent to an annual soil loss of 559.59×10 6 t. Our 2050 projections suggested that erosion on the TP will increase to 3.17tha -1 y -1 and 3.91tha -1 y -1 under conditions represented by RCP2.6 and RCP8.5, respectively. The current assessment and future prediction of soil erosion by water on the TP should be valuable for environment protection and soil conservation in this unique region and elsewhere. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. A multi-sensor approach to assess erosion risk in low mountain range landscapes - a comparative case study in western Germany

    NASA Astrophysics Data System (ADS)

    Seeling, S.; Buddenbaum, H.; Seeger, M.; Löhnertz, M.

    2009-04-01

    In this presentation we summarize our experience in the derivation of variables for identification of erosion and areas endagered of erosion from different remote sensing sensors. The field study is situated at the "Zemmer-Plateau" (north-east from Trier) and was undertaken to compare the ability of different, passive and active, remote sensing sensors to derive several process parameters of soil erosion in agricultural landscapes. Additionally the added value of sensor combinations was investigated. Backscatter of C-Band microwave instruments is known to be sensitive to soil roughness and surface soil moisture. If landuse and roughness is approximately constant, backscatter is mostly affected by temporal changes in soil moisture. For the test site multitemporal imagery from the ASAR and ERS2 sensors was available. For the identification of areas prone to waterlogging an approach based on principal component analysis was used. Multitemporal imagery from optical sensors like Landsat and SPOT HRV allow the assessment of slow changes within the landscape and annual changes of vegetation cover. We used Landsat imagery from 1975, 1984 and 2000 to map the changes in landuse and associated soil development, multi temporal imagery from SPOT 4 and 5 satellites was used to identify different crop types. Additionally we investigated which areas that are prone to erosion by their topography position, have, due to maladjusted land management, not been protected by vegetation cover during the main annual rainfall season in 2003. Airborne Laser Scanning (ALS) data is well suited for discovering areas susceptible of erosion. Even under forest canopies ALS can provide high-resolution terrain models that can be used for identifying trenches, linear features, steep hills and other terrain features, which trigger erosion or are even results of erosion. ALS-derived DTMs usually have a spatial resolution of about 1 m, while DTMs from other data sources are much coarser. A key problem when working with ALS is finding the echoes that have really been reflected by the ground and not by buildings or vegetation. This is achieved by filtering the last and only return laser points. The investigations were aided be the analyses of two Quickbird datasets. The information layers derived from different sensors were merged into a preliminary erosion information system. This data base allows the identification of areas prone to erosion risk. Furthermore the results allow setting the focus on the most effective methods for further investigations.

  6. [Impact of wind-water alternate erosion on the characteristics of sediment particles].

    PubMed

    Tuo, Deng-Feng; Xu, Ming-Xiang; Ma, Xin-Xin; Zheng, Shi-Qing

    2014-02-01

    Wind and water are the two dominant erosion agents that caused soil and water losses in the wind-water alternate erosion region on the Loess Plateau. It is meaningful to study the impact of wind-water alternate erosion on the characteristics of soil particles for understanding the response of soil quality and environment to erosion. Through wind tunnel combined rainfall simulation, this paper studied the characteristics of the erosive sediment particles under the effect of wind-water alternate erosion. The results showed that the particles of 0-1 cm soil were coarsened by wind erosion at the wind speeds of 11 and 14 m x s(-1) compared with no wind erosion. Soil fine particles (< 0.01 mm) decreased by 9.8%-10.8%, and coarse particles (> 0.05 mm) increased by 16.8%-20.8%. The physical property of surface soil was changed by the wind erosion, which, in turn, caused an increase in finer particles content in the sediment. Compared with no wind erosion, fine particles (< 0.01 mm) in sediment under the water-wind alternate erosion increased by 2.7%-18.9% , and coarse particles (> 0.05 mm) decreased by 3.7%-9.3%. However, the changing trend of erosive sediment particles after the wind erosion at wind speeds of 11 and 14 m x s(-1) was different along with the rainfall intensity and duration. The erosive sediment particles at the rainfall intensities of 60, 80, 100 mm x h(-1) changed to greater extents than at the 150 mm x h(-1) rainfall intensity with longer than 15 min runoff flowing.

  7. Evaluation of soil erosion risk using Analytic Network Process and GIS: a case study from Spanish mountain olive plantations.

    PubMed

    Nekhay, Olexandr; Arriaza, Manuel; Boerboom, Luc

    2009-07-01

    The study presents an approach that combined objective information such as sampling or experimental data with subjective information such as expert opinions. This combined approach was based on the Analytic Network Process method. It was applied to evaluate soil erosion risk and overcomes one of the drawbacks of USLE/RUSLE soil erosion models, namely that they do not consider interactions among soil erosion factors. Another advantage of this method is that it can be used if there are insufficient experimental data. The lack of experimental data can be compensated for through the use of expert evaluations. As an example of the proposed approach, the risk of soil erosion was evaluated in olive groves in Southern Spain, showing the potential of the ANP method for modelling a complex physical process like soil erosion.

  8. Remote sensing for environmental protection of the eastern Mediterranean rugged mountainous areas, Lebanon

    NASA Astrophysics Data System (ADS)

    Khawlie, M.; Awad, M.; Shaban, A.; Bou Kheir, R.; Abdallah, C.

    Lying along the eastern Mediterranean coast with elevated mountain chains higher than 2500 m straddling its terrain, Lebanon is a country of natural beauty and is thus attracting tourism. However, with a population density exceeding 800/km 2 and a rugged steep sloping land, problems abound in the country calling for holistic-approach studies. Only remote sensing, whose use is new in Lebanon can secure such needed studies within a scientific and pragmatic framework. The paper demonstrates for the concerned themes, the innovative use of remote sensing in such a difficult terrain, giving three examples of major environmental problems in the coastal mountains. Only few studies have so far focused on those mountains, notably application of remote sensing. The rugged mountainous terrain receives considerable rain, but the water is quickly lost running on the steep slopes, or infiltrating through fractures and the karstic conduits into the subsurface. Field investigations are difficult to achieve, therefore, remote sensing helps reveal various surface land features important in reflecting water feeding into the subsurface. Optical, radar and thermal infrared remotely sensed data cover a wide spectrum serving that purpose. A map of preferential groundwater accumulation potential is produced. It can serve for better water exploitation as well as protection. Because the terrain is karstic and rugged, the subsurface water flow is difficult to discern. Any pollution at a certain spot would certainly spread around. This constitutes the second example of environmental problems facing the mountainous areas in Lebanon. An integrated approach using remote sensing and geographic information systems (GIS) gives good results in finding out the likelihood of how pollution, or contaminants, can selectively move in the subsurface. A diagnostic analysis with a GIS-type software acts as a guide producing indicative maps for the above purpose. The third example given deals with the problem of losing soil, which is a very vital source in such mountainous land. With steep slopes, torrential rain and improper human interference, run-off is high and water-soil erosion is continuously deteriorating the land cover. Remote sensing can facilitate studying the factors enhancing the process, such as soil type, slope gradient, drainage, geology and land cover. Digital elevation models created from SAR imagery contribute significantly to assessing vulnerability of hydric-soil erosion over such a difficult terrain. GIS layers of the above factors are integrated with erosional criteria to produce a risk map of soil erosion. Results indicate that 36% of the Lebanese terrain is under threat of high-level erosion, and 52% of that is concentrated in the rugged mountainous regions.

  9. Developing a Terrestrial Biogeochemical Cycle Modeling System to Support the Management of Fort Benning and its Surrounding Areas

    DTIC Science & Technology

    2010-12-01

    Soil Survey Geographic database USDA U.S. Department of Agriculture USLE Universal Soil Loss Equation USPED Unit-Stream-Power Erosion and...2003). A suite of models has been developed to simulate soil erosion and deposition, ranging from empirical (e.g., USLE and MUSLE at http... Soil Erosion and Deposition 4.4.1 USPED The algorithm for the simulation of soil erosion in USPED is similar to that of the USLE or RUSLE model

  10. Soil tillage and windbreak effects on millet and cowpea: I. Wind speed, evaporation, and wind erosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banzhaf, J.; Leihner, D.E.; Buerkert, A.

    Deforestation, overgrazing, and declining soil regeneration periods have resulted in increased wind erosion problems in dry areas of the West African Sahel, but little is known about the bio-physical factors involved. This research was conducted to determine the effects of ridging and four different windbreak spacings on wind erosion, potential evaporation, and soil water reserves. A field trial was conducted from 1985 to 1987 on 12 ha of a Psammentic Paleustalf in Southern Niger. Millet, Pennisetum glaucum (L.), and cowpea, Vigna unguiculata (L.) Walp., were seeded in strips on flat and ridged soil. Windbreaks of savannah vegetation were spaced atmore » 6, 20, 40, and 90 m. The effects of ridging on wind speed, evaporation, and wind erosion were small and mostly non-significant. However, average wind speed at 0.3 m above ground in the center of cowpea and millet strips was significantly reduced from 2.8 to 2.1 m s[sup [minus]1] as windbreak distances narrowed from 90 to 6 m. As a consequence, potential evaporation declined by 15% and the amount of windblown soil particles by 50% in ridged and by 70% in flat treatments. Despite reduced potential evaporation, average subsoil water reserves were 14 mm smaller in the 6- than in the 20-m windbreak spacing indicating excessive water extraction by the windbreak vegetation. Thus, establishing windbreaks with natural savannah vegetation may require a careful consideration of the agronomic benefits and costs to competing crops. 21 refs., 5 figs.« less

  11. The age of vines as a controlling factor of soil erosion processes in Mediterranean vineyards.

    PubMed

    Rodrigo-Comino, Jesús; Brevik, Eric C; Cerdà, Artemi

    2018-03-01

    Vineyards incur the highest soil and water losses among all Mediterranean agricultural fields. The state-of-the-art shows that soil erosion in vineyards has been primarily surveyed with topographical methods, soil erosion plots and rainfall simulations, but these techniques do not typically assess temporal changes in soil erosion. When vines are planted they are about 30cm high×1cm diameter without leaves, the root system varies from 2 to over 40cm depth, and sometimes the lack of care used during transplanting can result in a field with highly erodible bare soils. This means that the time since vine plantation plays a key role in soil erosion rates, but very little attention has been paid to this by the scientific community. Thus, the main goal of this research was to estimate soil losses and assess soil erosion processes in two paired vineyard plantations of different ages. To achieve this goal, the improved stock unearthing method (ISUM) was applied to vineyards on colluvial parent materials with similar soil properties, topographical characteristics and land managements in the Les Alcusses Valley, southwestern Valencia province, Spain. Our findings suggested that the old vineyards showed lower erosion rates (-1.61Mgha -1 yr -1 ) than those that were recently planted (-8.16Mgha -1 yr -1 ). This is because of the damage that the plantation of the vines causes to soil. Tillage after planting (4 times per year) resulted in changes in the inter-row and row morphology, promoting the development of a ridge underneath the vines that disconnected the inter-rows and reduced soil losses with time. After the second year and until the 25th year after plantation, soil erosion was approximately 1Mgha -1 y -1 , which means that most of the erosion took place during the first two years after the plantation. Soil conservation strategies should be applied immediately after the plantation works to allow sustainable grape production. That is when soil erosion most needs to be controlled. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Soil aggregation, erodibility, and erosion rates in mountain soils (NW Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Stanchi, S.; Falsone, G.; Bonifacio, E.

    2015-04-01

    Erosion is a relevant soil degradation factor in mountain agrosilvopastoral ecosystems that can be enhanced by the abandonment of agricultural land and pastures left to natural evolution. The on-site and off-site consequences of soil erosion at the catchment and landscape scale are particularly relevant and may affect settlements at the interface with mountain ecosystems. RUSLE (Revised Universal Soil Loss Equation) estimates of soil erosion consider, among others, the soil erodibility factor (K), which depends on properties involved in structure and aggregation. A relationship between soil erodibility and aggregation should therefore be expected. However, erosion may limit the development of soil structure; hence aggregates should not only be related to erodibility but also partially mirror soil erosion rates. The aim of the research was to evaluate the agreement between aggregate stability and erosion-related variables and to discuss the possible reasons for discrepancies in the two kinds of land use considered (forest and pasture). Topsoil horizons were sampled in a mountain catchment under two vegetation covers (pasture vs. forest) and analyzed for total organic carbon, total extractable carbon, pH, and texture. Soil erodibility was computed, RUSLE erosion rate was estimated, and aggregate stability was determined by wet sieving. Aggregation and RUSLE-related parameters for the two vegetation covers were investigated through statistical tests such as ANOVA, correlation, and regression. Soil erodibility was in agreement with the aggregate stability parameters; i.e., the most erodible soils in terms of K values also displayed weaker aggregation. Despite this general observation, when estimating K from aggregate losses the ANOVA conducted on the regression residuals showed land-use-dependent trends (negative average residuals for forest soils, positive for pastures). Therefore, soil aggregation seemed to mirror the actual topsoil conditions better than soil erodibility. Several hypotheses for this behavior were discussed. A relevant effect of the physical protection of the organic matter by the aggregates that cannot be considered in K computation was finally hypothesized in the case of pastures, while in forests soil erodibility seemed to keep trace of past erosion and depletion of finer particles. A good relationship between RUSLE soil erosion rates and aggregate stability occurred in pastures, while no relationship was visible in forests. Therefore, soil aggregation seemed to capture aspects of actual vulnerability that are not visible through the erodibility estimate. Considering the relevance and extension of agrosilvopastoral ecosystems partly left to natural colonization, further studies on litter and humus protective action might improve the understanding of the relationship among erosion, erodibility, and structure.

  13. Testing the Control of Mineral Supply Rates on Chemical Erosion Rates in the Klamath Mountains

    NASA Astrophysics Data System (ADS)

    West, N.; Ferrier, K.

    2016-12-01

    The relationship between rates of chemical erosion and mineral supply is central to many problems in Earth science, including how tightly Earth's climate should be coupled to tectonics, how strongly nutrient supply to soils and streams depends on soil production, and how much lithology affects landscape evolution. Despite widespread interest in this relationship, there remains no consensus on how closely coupled chemical erosion rates should be to mineral supply rates. To address this, we have established a network of field sites in the Klamath Mountains along a latitudinal transect that spans an expected gradient in mineral supply rates associated with the geodynamic response to the migration of the Mendocino Triple Junction. Here, we present new measurements of regolith geochemistry and topographic analyses that will be compared with cosmogenic 10Be measurements to test hypotheses about supply-limited and kinetically-limited chemical erosion on granodioritic ridgetops. Previous studies in this area suggest a balance between rock uplift rates and basin wide erosion rates, implying the study ridgetops may have adjusted to an approximate steady state. Preliminary data are consistent with a decrease in chemical depletion fraction (CDF) with increasing ridgetop curvature. To the extent that ridgetop curvature reflects ridgetop erosion rates, this implies that chemical erosion rates at these sites are influenced by both mineral supply rates and dissolution kinetics.

  14. Influence of climate and land use changes on recent trend of soil erosion within the Russian Plain

    NASA Astrophysics Data System (ADS)

    Golosov, Valentin; Yermolaev, Oleg; Rysin, Ivan; Litvin, Leonid; Kiryukhina, Zoya; Safina, Guzel

    2016-04-01

    The Russian Plain is one of the largest plains with an area of 460 × 106 ha. Soil erosion during snow-melting and rainstorms occurs mostly on arable lands at the Russian Plain. The relative contribution of different types of soil erosion changes from the central part of the Russian Plain to the south. Sheet and rill soil erosion during snow-melting and rainfall are practically equal in the forest zone, while rainfall erosion prevails in the forest-steppe zone and the northern part of the steppe zone. Mostly rainfall erosion is observed in the southern part of the steppe zone. Mean annual soil losses from cultivated lands change in the range from 1 to 3 t ha-1 within lowlands to 6 to 8 t ha-1 at uplands with the maximum (10 t ha-1) observed near the Caucasus Mountains in the Stavropolskiy Krai. The intensity of gully erosion is relatively low during the last two decades. The collapse of the Soviet Union in 1991 caused a serious crisis in the agriculture because of financial problems and structural reorganization. As a result, the area of arable lands decreased in the southern half of the Russian Plain in 1991 - 2003. To a greater extent it was observed in the south of the forest zone because of the low productivity of its soils compared with chernozem. More than one third of the arable lands were abandoned in the dry steppe - semi-desert zones because these lands were irrigated during the Soviet period. The reduction of the arable land occurred in the forest-steppe and steppe zones mostly because of funding limitations during the 1990s. Recently the area of arable lands in the steppe zone was practically restored to its pre-1991 size. Simultaneously the last 25 years are characterized by unusual warm winters - in particular, in the southern half of the Russian Plain because of the global warming. As a result, the coefficient of surface snow-melting runoff considerably decreased for both cultivated fields and compacted fields after harvesting. Accordingly, spring flood levels decreased considerably - in particular, in small rivers. This is confirmed by a serious decrease of floodplain sedimentation rates since 1986 compared with the period from 1964 to 1986. As a result of both positive trend of extreme rainfall and negative trend of surface snow melting runoff, the proportion of sediments eroded from cultivated slopes and delivered by surface runoff to river channels decreased considerably during the last few decades in the southern part of the Russian Plain. Complex assessment of different erosion factors changes is undertaken for the different landscape zones of the Russian Plain. Given analysis allows evaluating of recent trend in erosion rates from cultivated lands. The other indicators of sediment redistribution dynamic (gully head retreat rate, floodplain sedimentation) are also used for assessment of soil erosion rate dynamic under land use and climate changes during last 25-30 years.

  15. Disaggregating soil erosion processes within an evolving experimental landscape

    USDA-ARS?s Scientific Manuscript database

    Soil-mantled landscapes subjected to rainfall, runoff events, and downstream base level adjustments will erode and evolve in time and space. Yet the precise mechanisms for soil erosion also will vary, and such variations may not be adequately captured by soil erosion prediction technology. This st...

  16. Coupling of phenological information and simulated vegetation index time series: Limitations and potentials for the assessment and monitoring of soil erosion risk

    USDA-ARS?s Scientific Manuscript database

    Monitoring of agricultural used soils at frequent intervals is needed to get a sufficient understanding of soil erosion processes. This is crucial to support decision making and refining soil policies especially in the context of climate change. Along with rainfall erosivity, soil coverage by vegeta...

  17. Extending the timescale for using beryllium 7 measurements to document soil redistribution by erosion

    NASA Astrophysics Data System (ADS)

    Walling, D. E.; Schuller, P.; Zhang, Y.; Iroumé, A.

    2009-02-01

    The need for spatially distributed information on soil mobilization, transfer, and deposition within the landscape by erosion has focused attention on the potential for using fallout radionuclides (i.e., 137Cs, excess 210Pb, and 7Be) to document soil redistribution rates. Whereas 137Cs and excess 210Pb are used to estimate medium- and longer-term erosion rates (i.e., approximately 45 years and 100 years, respectively), 7Be, by virtue of its short half-life (53 days), provides potential for estimating short-term soil redistribution on bare soils. However, the approach commonly used with this radionuclide means that it can only be applied to individual events or short periods of heavy rain. In addition, it is also frequently difficult to ensure that the requirement for spatially uniform 7Be inventories across the study area immediately prior to the study period is met. If the existing approach is applied to longer periods with several rainfall events (e.g., several weeks or more) soil redistribution is likely to be substantially underestimated. These problems limit the potential for using the 7Be approach, particularly in investigations where there is a need to assemble representative information on soil redistribution occurring during the entire wet season. This paper reports the development of a new or refined model for converting radionuclide measurements to estimates of soil redistribution (conversion model) for use with 7Be measurements, which permits much longer periods to be studied. This refined model aims to retain much of the simplicity of the existing approach, but takes account of the temporal distribution of both 7Be fallout and erosion during the study period and of the evolution of the 7Be depth distribution during this period. The approach was successfully tested using 7Be measurements from a study of short-term soil redistribution undertaken within an area of recently harvested forest located near Valdivia in Southern Chile. The study period extended over about 3 months and included the main part of the winter wet season of 2006. The estimates of soil redistribution obtained using the new conversion model were consistent with those obtained from erosion pins deployed within the same study area and were two to three times greater than those obtained using the approach and conversion model employed in existing studies.

  18. Terraced landscape: from an old best practice to a rising land abandoned-related soil erosion risk

    NASA Astrophysics Data System (ADS)

    Tarolli, Paolo; Preti, Federico; Romano, Nunzio

    2013-04-01

    Among the most evident landscape signatures of human fingerprint during the Holocene, the terraces related to agricultural activities deserve a great importance. Landscape terracing probably represents one of the oldest best practice primarily for crop production, but also for mitigating soil erosion and stabilizing hillslopes in landforms dominated by steep slopes. This technique is widely used in various parts of the world even under different environmental conditions. In some zones, terraced landscapes, because of their history and locations, can also be considered a historical heritage and a sort of "cultural landscape" to preserve, an absolutely value for tourism. To preserve their original role of soil erosion prevention, terraces should be properly designed built according to specific and sustainable engineering rules. Then, their maintenance is the most critical issue to deal with. It is well known from literature that terraced landscapes subject to abandonment would result in an increasing of terrace failure and related land degradation. If not maintained, a progressively increasing of gully erosion affects the structure of the walls. The results of this process is the increasing of connectivity and runoff. During the last few years and partly because of changing in the society perspective and migration toward metropolitan areas, some Countries have been affected by a serious and wider land abandonment with an increasing of soil erosion and derived landslide risk. Italy is one example. In this work, we consider three typical case studies of a terraced landscape where the lack of maintenance characterizing the last few years, increased the landslide risk with several problems to the population. The first case study is located along the renowed "Amalfi Coast" (a portion of land located near Salerno, southern Italy), the second is placed in the north of Toscana (a region located in Central Italy), and the third one along the so-called "Cinque Terre" (a region located near La Spezia, in Central Italy). The goals are to present the state of the art of such issue by integrating historical and cultural point of views, to land use and hydrogeomorphological analysis, also through remotely sensed technologies such LiDAR. Only with a fully integrated approach it is possible to mitigate such problem, planning new sustainable soil conservation practices, and at the same way maintaining agricultural activities.

  19. Scaling up from field to region for wind erosion prediction using a field-scale wind erosion model and GIS

    USGS Publications Warehouse

    Zobeck, T.M.; Parker, N.C.; Haskell, S.; Guoding, K.

    2000-01-01

    Factors that affect wind erosion such as surface vegetative and other cover, soil properties and surface roughness usually change spatially and temporally at the field-scale to produce important field-scale variations in wind erosion. Accurate estimation of wind erosion when scaling up from fields to regions, while maintaining meaningful field-scale process details, remains a challenge. The objectives of this study were to evaluate the feasibility of using a field-scale wind erosion model with a geographic information system (GIS) to scale up to regional levels and to quantify the differences in wind erosion estimates produced by different scales of soil mapping used as a data layer in the model. A GIS was used in combination with the revised wind erosion equation (RWEQ), a field-scale wind erosion model, to estimate wind erosion for two 50 km2 areas. Landsat Thematic Mapper satellite imagery from 1993 with 30 m resolution was used as a base map. The GIS database layers included land use, soils, and other features such as roads. The major land use was agricultural fields. Data on 1993 crop management for selected fields of each crop type were collected from local government agency offices and used to 'train' the computer to classify land areas by crop and type of irrigation (agroecosystem) using commercially available software. The land area of the agricultural land uses was overestimated by 6.5% in one region (Lubbock County, TX, USA) and underestimated by about 21% in an adjacent region (Terry County, TX, USA). The total estimated wind erosion potential for Terry County was about four times that estimated for adjacent Lubbock County. The difference in potential erosion among the counties was attributed to regional differences in surface soil texture. In a comparison of different soil map scales in Terry County, the generalised soil map had over 20% more of the land area and over 15% greater erosion potential in loamy sand soils than did the detailed soil map. As a result, the wind erosion potential determined using the generalised soil map Was about 26% greater than the erosion potential estimated by using the detailed soil map in Terry County. This study demonstrates the feasibility of scaling up from fields to regions to estimate wind erosion potential by coupling a field-scale wind erosion model with GIS and identifies possible sources of error with this approach.

  20. Impact of cornstalk buffer strip on hillslope soil erosion and its hydrodynamic understanding

    USDA-ARS?s Scientific Manuscript database

    Soil erosion is still a serious concern on the Loess Plateau despite extensive soil conservation measures. Cornstalk buffer strip is not well utilized on the Loess Plateau, and there is little information on the hydrodynamic understanding of this soil erosion control practice. A simulated rainfall e...

  1. Determining erosion relevant soil characteristics with a small-scale rainfall simulator

    NASA Astrophysics Data System (ADS)

    Schindewolf, M.; Schmidt, J.

    2009-04-01

    The use of soil erosion models is of great importance in soil and water conservation. Routine application of these models on the regional scale is not at least limited by the high parameter demands. Although the EROSION 3D simulation model is operating with a comparable low number of parameters, some of the model input variables could only be determined by rainfall simulation experiments. The existing data base of EROSION 3D was created in the mid 90s based on large-scale rainfall simulation experiments on 22x2m sized experimental plots. Up to now this data base does not cover all soil and field conditions adequately. Therefore a new campaign of experiments would be essential to produce additional information especially with respect to the effects of new soil management practices (e.g. long time conservation tillage, non tillage). The rainfall simulator used in the actual campaign consists of 30 identic modules, which are equipped with oscillating rainfall nozzles. Veejet 80/100 (Spraying Systems Co., Wheaton, IL) are used in order to ensure best possible comparability to natural rainfalls with respect to raindrop size distribution and momentum transfer. Central objectives of the small-scale rainfall simulator are - effectively application - provision of comparable results to large-scale rainfall simulation experiments. A crucial problem in using the small scale simulator is the restriction on rather small volume rates of surface runoff. Under this conditions soil detachment is governed by raindrop impact. Thus impact of surface runoff on particle detachment cannot be reproduced adequately by a small-scale rainfall simulator With this problem in mind this paper presents an enhanced small-scale simulator which allows a virtual multiplication of the plot length by feeding additional sediment loaded water to the plot from upstream. Thus is possible to overcome the plot length limited to 3m while reproducing nearly similar flow conditions as in rainfall experiments on standard plots. The simulator is extensively applied to plots of different soil types, crop types and management systems. The comparison with existing data sets obtained by large-scale rainfall simulations show that results can adequately be reproduced by the applied combination of small-scale rainfall simulator and sediment loaded water influx.

  2. Soil erosion assessment and its correlation with landslide events using remote sensing data and GIS: a case study at Penang Island, Malaysia.

    PubMed

    Pradhan, Biswajeet; Chaudhari, Amruta; Adinarayana, J; Buchroithner, Manfred F

    2012-01-01

    In this paper, an attempt has been made to assess, prognosis and observe dynamism of soil erosion by universal soil loss equation (USLE) method at Penang Island, Malaysia. Multi-source (map-, space- and ground-based) datasets were used to obtain both static and dynamic factors of USLE, and an integrated analysis was carried out in raster format of GIS. A landslide location map was generated on the basis of image elements interpretation from aerial photos, satellite data and field observations and was used to validate soil erosion intensity in the study area. Further, a statistical-based frequency ratio analysis was carried out in the study area for correlation purposes. The results of the statistical correlation showed a satisfactory agreement between the prepared USLE-based soil erosion map and landslide events/locations, and are directly proportional to each other. Prognosis analysis on soil erosion helps the user agencies/decision makers to design proper conservation planning program to reduce soil erosion. Temporal statistics on soil erosion in these dynamic and rapid developments in Penang Island indicate the co-existence and balance of ecosystem.

  3. Wildfire in the Critical Zone: Pyro-Geomorphic Feedbacks in Upland Forests

    NASA Astrophysics Data System (ADS)

    Sheridan, G. J.; Inbar, A.; Metzen, D.; Van der Sant, R.; Lane, P. N. J.; Nyman, P.

    2017-12-01

    Wildfire often triggers a dramatic geomorphic response, with erosion rates several orders of magnitude greater than background rates. The fact that wildfire is linked to increased soil erosion is well established, but could it also work the other way around? Is it possible that, over time, soil erosion could lead to an increase in wildfire? The proposed mechanism for this is a potential positive feedback between post-fire soil erosion, soil depth, and forest flammability. More fire-related erosion may, over time, lead to less soil water holding capacity, more open vegetation with drier fuels, more fire, and in turn more fire related erosion. These pyro-geomorphic feedbacks may help explain the co-evolved soil-vegetation-fire systems that are observed in the landscape. More broadly, the concept of "wildfire in the critical zone", with a greater emphasis on the interactions between fire, vegetation, hydrology, and geomorphology, may help us understand and predict the trajectory of change as the vegetation-soil-fire system responds and adjusts to the new climate forcing. This presentation will combine an extensive soil, vegetation, and post fire erosion experimental dataset, with conceptual and numerical modelling, to evaluate the significance of the potential pyro-geomorphic feedbacks described above.

  4. Estimation of soil erosion risk within an important agricultural sub-watershed in Bursa, Turkey, in relation to rapid urbanization.

    PubMed

    Ozsoy, Gokhan; Aksoy, Ertugrul

    2015-07-01

    This paper integrates the Revised Universal Soil Loss Equation (RUSLE) with a GIS model to investigate the spatial distribution of annual soil loss and identify areas of soil erosion risk in the Uluabat sub-watershed, an important agricultural site in Bursa Province, Turkey. The total soil loss from water erosion was 473,274 Mg year(-1). Accordingly, 60.3% of the surveyed area was classified into a very low erosion risk class while 25.7% was found to be in high and severe erosion risk classes. Soil loss had a close relationship with land use and topography. The most severe erosion risk typically occurs on ridges and steep slopes where agriculture, degraded forest, and shrubs are the main land uses and cover types. Another goal of this study was to use GIS to reveal the multi-year urbanization status caused by rapid urbanization that constitutes another soil erosion risk in this area. Urbanization has increased by 57.7% and the most areal change was determined in class I lands at a rate of 80% over 25 years. Urbanization was identified as one of the causes of excessive soil loss in the study area.

  5. Stable carbon isotopes as an indicator for soil degradation in an alpine environment (Urseren Valley, Switzerland).

    PubMed

    Schaub, Monika; Alewell, Christine

    2009-05-01

    Analyses of soil organic carbon (SOC) content and stable carbon isotope signatures (delta(13)C) of soils were assessed for their suitability to detect early stage soil erosion. We investigated the soils in the alpine Urseren Valley (southern central Switzerland) which are highly impacted by soil erosion. Hill slope transects from uplands (cambisols) to adjacent wetlands (histosols and histic to mollic gleysols) differing in their intensity of visible soil erosion, and reference wetlands without erosion influence were sampled. Carbon isotopic signature and SOC content of soil depth profiles were determined. A close correlation of delta(13)C and carbon content (r > 0.80) is found for upland soils not affected by soil erosion, indicating that depth profiles of delta(13)C of these upland soils mainly reflect decomposition of SOC. Long-term disturbance of an upland soil is indicated by decreasing correlation of delta(13)C and SOC (r

  6. Modelling soil erosion at European scale: towards harmonization and reproducibility

    NASA Astrophysics Data System (ADS)

    Bosco, C.; de Rigo, D.; Dewitte, O.; Poesen, J.; Panagos, P.

    2015-02-01

    Soil erosion by water is one of the most widespread forms of soil degradation. The loss of soil as a result of erosion can lead to decline in organic matter and nutrient contents, breakdown of soil structure and reduction of the water-holding capacity. Measuring soil loss across the whole landscape is impractical and thus research is needed to improve methods of estimating soil erosion with computational modelling, upon which integrated assessment and mitigation strategies may be based. Despite the efforts, the prediction value of existing models is still limited, especially at regional and continental scale, because a systematic knowledge of local climatological and soil parameters is often unavailable. A new approach for modelling soil erosion at regional scale is here proposed. It is based on the joint use of low-data-demanding models and innovative techniques for better estimating model inputs. The proposed modelling architecture has at its basis the semantic array programming paradigm and a strong effort towards computational reproducibility. An extended version of the Revised Universal Soil Loss Equation (RUSLE) has been implemented merging different empirical rainfall-erosivity equations within a climatic ensemble model and adding a new factor for a better consideration of soil stoniness within the model. Pan-European soil erosion rates by water have been estimated through the use of publicly available data sets and locally reliable empirical relationships. The accuracy of the results is corroborated by a visual plausibility check (63% of a random sample of grid cells are accurate, 83% at least moderately accurate, bootstrap p ≤ 0.05). A comparison with country-level statistics of pre-existing European soil erosion maps is also provided.

  7. Driving Forces of Dynamic Changes in Soil Erosion in the Dahei Mountain Ecological Restoration Area of Northern China Based on GIS and RS

    PubMed Central

    Li, Xiao; Niu, Xiang; Wang, Bing; Gao, Peng; Liu, Yu

    2016-01-01

    Dynamic change in soil erosion is an important focus of regional ecological restoration research. Here, the dynamic changes of soil erosion and its driving forces in the Dahei Mountain ecological restoration area of northern China were analyzed by LANDSAT TM remote sensing captured via geographic information system (GIS) technologies during three typical periods in 2004, 2008 and 2013. The results showed the following: (1) a decrease in intensive erosion and moderate erosion areas, as well as an increase in light erosion areas, was observed during two periods: one from 2004 to 2008 and the other from 2008 to 2013. (2) Between 2004 and 2008, the variation in the range of slight erosion was the largest (24.28%), followed by light erosion and intensive erosion; between 2008 and 2013, the variation in the range of intensive erosion area was the largest (9.89%), followed by slight erosion and moderate erosion. (3) Socioeconomic impact, accompanied by natural environmental factors, was the main driving force underlying the change in soil erosion within the ecological restoration area. In particular, the socioeconomic factors of per capita forest area and land reclamation rate, as well as the natural environmental factor of terrain slope, significantly influenced soil erosion changes within the ecological restoration area. PMID:26981637

  8. Modelling soil erosion and associated sediment yield for small headwater catchments of the Daugava spillway valley, Latvia

    NASA Astrophysics Data System (ADS)

    Soms, Juris

    2015-04-01

    The accelerated soil erosion by water and associated fine sediment transfer in river catchments has various negative environmental as well as economic implications in many EU countries. Hence, the scientific community had recognized and ranked soil erosion among other environmental problems. Moreover, these matters might worsen in the near future in the countries of the Baltic Region, e.g. Latvia considering the predicted climate changes - more precisely, the increase in precipitation and shortening of return periods of extreme rainfall events, which in their turn will enable formation of surface runoff, erosion and increase of sediment delivery to receiving streams. Thereby it is essential to carry out studies focused on these issues in order to obtain reliable data in terms of both scientific and applied aims, e.g. environmental protection and sustainable management of soils as well as water resources. During the past decades, many of such studies of soil erosion had focused on the application of modelling techniques implemented in a GIS environment, allowing indirectly to estimate the potential soil losses and to quantify related sediment yield. According to research results published in the scientific literature, this approach currently is widely used all over the world, and most of these studies are based on the USLE model and its revised and modified versions. Considering that, the aim of this research was to estimate soil erosion rates and sediment transport under different hydro-climatic conditions in south-eastern Latvia by application of GIS-based modelling. For research purposes, empirical RUSLE model and ArcGIS software were applied, and five headwater catchments were chosen as model territories. The selected catchments with different land use are located in the Daugava spillway valley, which belongs to the upper Daugava River drainage basin. Considering lithological diversity of Quaternary deposits, a variety of soils can be identified, i.e., Stagnic Albeluvisols, Albic Rubic Arenosols and Albic Stagnic Podzols with stony loamy - clayey diamicton to coarse sand textures prevail in the selected catchments. The results of modelling were validated through obtaining data on suspended sediment load directly during episodic runoff events caused by different scenarios of runoff formation. In order to get comparable values of suspended sediment load from gully catchments that differ in size, an area-specific daily suspended sediment yield was derived. The obtained results indicate that modelled area-specific sediment yield from the catchments to river greatly varies from 0.001 to 97.2 t ha-1 yr-1; the average soil loss predicted by RUSLE for the each of five catchments calculated for a 1 × 1 m cell grid totals 0.81; 1.36; 0.96; 1.05 and 1.55 t ha-1 yr-1 respectively. Notably, despite the presence of forest vegetation that cover more than 40% of area of three of these catchments, sizable plots of soils are potentially prone to erosion rates above the tolerable threshold, i.e. 0.3 t ha-1 yr-1. Comparison of modelled vs. measured values indicates that the applied RUSLE model underestimates real sediment delivery, which shortly can reach values 213.75 kg ha-1 day-1 during intense snow melting in spring. Nevertheless, results of GIS modelling can be reasonably used to estimate the spatial distribution of soil erosion risk and to identify potential erosion hotspots.

  9. Runoff and soil erosion of field plots in a subtropical mountainous region of China

    NASA Astrophysics Data System (ADS)

    Fang, N. F.; Wang, L.; Shi, Z. H.

    2017-09-01

    Anthropogenic pressure coupled with strong precipitation events and a mountainous landscape have led to serious soil erosion and associated problems in the subtropical climate zone of China. This study analyzes 1576 rainfall-runoff-soil loss events at 36 experimental plots (a total of 148 plot-years of data) under a wide range of conditions in subtropical mountainous areas of China where slope farming is commonly practiced. The plots, which have standardized dimensions, represent five common types of land use and have four different slopes. Event-based analyses show that almost half of the total rainfall caused soil erosion in the study area. The dominant factor controlling the runoff coefficient is the slope gradient rather than the land use type. The maximum soil lossfor crop plots under steep tillage (35°) is 5004 t km-2 for a single event. Among the common local crops, the average soil loss values increase in the following order: buckwheat < mung bean < sesame. Among the most widespread grasses, orchards and crops, the soil loss increase in the following order: red clover < nectarine < orange < maize. A large proportion of the soil loss is caused by a small number of extreme events. The annual average soil loss of the 44 plots ranges from 19 to 4090 t km-2 year-1. The annual soil loss of plots of different land use types decrease in the following order: bare land (1533 t km-2 year-1) > cropland (1179 t km-2 year-1) > terraced cropland (1083 t km-2 year-1) > orchard land (1020 t km-2 year-1) > grassland (762 t km-2 year-1) > terraced orchard land (297 t km-2 year-1) > forest and grassland (281 t km-2 year-1).

  10. Human-induced geomorphic change across environmental gradients

    NASA Astrophysics Data System (ADS)

    Vanacker, V.; Molina, A.; Bellin, N.; Christl, M.

    2016-12-01

    Human-induced land cover changes are causing important adverse effects on the ecological services rendered by mountain ecosystems, and the number of case-studies of the impact of humans on soil erosion and sediment yield has mounted rapidly. Anthropogenic disturbance of natural vegetation can profoundly alter the physical, chemical and biological processes within soils. Rapid removal of topsoil during intense farming can result in an imbalance between soil production through chemical weathering and physical soil erosion, with direct implications on nutrient cycling, soil fertility and agricultural production. In this study, we present a conceptual model for assessing human-induced erosion for a wide variety of environmental settings and pose that human-induced geomorphic change cannot be assessed solely based on modern erosion rates as natural or baseline erosion rates can be important in e.g. mountainous terrain. As such, we assess the vulnerability of a given ecosystem to human-induced land cover change by quantifying the change in catchment-wide erosion rates resulting from anthropogenic changes in vegetation cover. Human-induced erosion is here approximated by the ratio of the total specific sediment yield to the natural erosional mass flux, and is dimensionless. The conceptual model is applied to three contrasting environmental settings where data on soil production, physical soil erosion and long-term denudation are available: the tropical Andes, subtropical southern Brazil, and semi-arid Spanish Cordillera. The magnitude of human-induced geomorphic change strongly differs between the three regions. The data suggest that the sensitivity to human-induced erosion is ecosystem dependent, and related to soil erosivity and potential vegetation cover disturbances as a result of human impact. It may therefore be expected that the potential for erosion regulation is larger in well-vegetated ecosystem where strong differences may exist in vegetation cover between human disturbed and undisturbed or restored sites.

  11. Detection of soil erosion within pinyon-juniper woodlands using Thematic Mapper (TM) satellite data

    NASA Technical Reports Server (NTRS)

    Price, Kevin P.; Ridd, Merrill K.

    1991-01-01

    The sensitivity of Landsat TM data for detecting soil erosion within pinyon-juniper woodlands, and the potential of the spectral data for assigning the universal soil loss equation (USLE) crop managemnent (C) factor to varying cover types within the woodlands are assessed. Results show greatly accelerated rates of soil erosion on pinyon-juniper sites. Percent cover by pinyon-juniper, total soil-loss, and total nonliving ground cover accounted for nearly 70 percent of the variability in TM channels 2, 3, 4, and 5. TM spectral data were consistently better predictors of soil erosion than the biotic and abiotic field variables. Satellite data were more sensitive to vegetation variation than the USLE C factor, and USLE was found to be a poor predictor of soil loss on pinyon-juniper sites. A new string-to-ground soil erosion prediction technique is introduced.

  12. Nonmonotonic and spatial-temporal dynamic slope effects on soil erosion during rainfall-runoff processes

    NASA Astrophysics Data System (ADS)

    Wu, Songbai; Yu, Minghui; Chen, Li

    2017-02-01

    The slope effect on flow erosivity and soil erosion still remains a controversial issue. This theoretical framework explained and quantified the direct slope effect by coupling the modified Green-Ampt equation accounting for slope effect on infiltration, 1-D kinematic wave overland flow routing model, and WEPP soil erosion model. The flow velocity, runoff rate, shear stress, interrill, and rill erosion were calculated on 0°-60° isotropic slopes with equal horizontal projective length. The results show that, for short-duration rainfall events, the flow erosivity and erosion amounts exhibit a bell-shaped trend which first increase with slope gradient, and then decrease after a critical slope angle. The critical slope angles increase significantly or even vanish with increasing rainfall duration but are nearly independent of the slope projective length. The soil critical shear stress, rainfall intensity, and temporal patterns have great influences on the slope effect trend, while the other soil erosion parameters, soil type, hydraulic conductivity, and antecedent soil moisture have minor impacts. Neglecting the slope effect on infiltration would generate smaller erosion and reduce critical slope angles. The relative slope effect on soil erosion in physically based model WEPP was compared to those in the empirical models USLE and RUSLE. The trends of relative slope effect were found quite different, but the difference may diminish with increasing rainfall duration. Finally, relatively smaller critical slope angles could be obtained with the equal slope length and the range of variation provides a possible explanation for the different critical slope angles reported in previous studies.

  13. Integrated Universal Soil Loss Equation (USLE) and Geographical Information System (GIS) for Soil Erosion Measurement in basin of Asap river, Central Vietnam

    NASA Astrophysics Data System (ADS)

    Pham Gia, Tung; Degener, Jan; Kappas, Martin

    2017-04-01

    The study was conducted in Asap river basin, A Luoi district, Thua Thien Hue Province, Vietnam, using the Universal Soil Loss Equation (USLE) and Geographical Information System (GIS) to determine the soil erosion status. The results show strong effect of the heavy rainfall and high slope on the erosion level in the research area. More than 40% of land area lost over 10 tons/ha/year. The natural forest land lost the most by averagely is 38.4 tons/ha/year, while the agricultural land showed less with 2.79 tons for paddy rice land use type and 7.58 tons for upland crops yearly. Comparison between some places of Vietnam and the Southeast Asia showed that soil erosion in watersheds of Asap is more serious. We have been proposed a recommendation on changing the classification system of land use type in Vietnam for more accurate in soil erosion measurement. Keywords: Land use type, Soil erosion, USLE, Central Vietnam.

  14. Fates of eroded soil organic carbon: Mississippi Basin case study

    USGS Publications Warehouse

    Smith, S.V.; Sleezer, R.O.; Renwick, W.H.; Buddemeier, R.W.

    2005-01-01

    We have developed a mass balance analysis of organic carbon (OC) across the five major river subsystems of the Mississippi (MS) Basin (an area of 3.2 ?? 106 km2). This largely agricultural landscape undergoes a bulk soil erosion rate of ???480 t??km -2??yr-1 (???1500 ?? 106 t/yr, across the MS Basin), and a soil organic carbon (SOC) erosion rate of ???7 t??km-2??yr-1 (???22 ?? 106 t/yr). Erosion translocates upland SOC to alluvial deposits, water impoundments, and the ocean. Soil erosion is generally considered to be a net source of CO2 release to the atmosphere in global budgets. However, our results indicate that SOC erosion and relocation of soil apparently can reduce the net SOC oxidation rate of the original upland SOC while promoting net replacement of eroded SOC in upland soils that were eroded. Soil erosion at the MS Basin scale is, therefore, a net CO2 sink rather than a source. ?? 2005 by the Ecological Society of America.

  15. Sediment detachment and transport processes associated with internal erosion of soil pipes: Often overlooked processes of gully erosion

    USDA-ARS?s Scientific Manuscript database

    Subsurface flow can be an important process in gully erosion through its impact on decreasing soil cohesion and erosion resistance as soil water content or pressure increases and more directly by the effects of seepage forces on particle detachment and piping. The development of perched water tables...

  16. Global rainfall erosivity assessment based on high-temporal resolution rainfall records

    USDA-ARS?s Scientific Manuscript database

    Rainfall erosivity quantifies the climatic effect on water erosion. In the framework of the Universal Soil Loss Equation, rainfall erosivity, also known as the R-factor, is defined as the mean annual sum of event erosivity values. For a new global soil erosion assessment, also in the broad context...

  17. Critical Source Area Delineation: The representation of hydrology in effective erosion modeling.

    NASA Astrophysics Data System (ADS)

    Fowler, A.; Boll, J.; Brooks, E. S.; Boylan, R. D.

    2017-12-01

    Despite decades of conservation and millions of conservation dollars, nonpoint source sediment loading associated with agricultural disturbance continues to be a significant problem in many parts of the world. Local and national conservation organizations are interested in targeting critical source areas for control strategy implementation. Currently, conservation practices are selected and located based on the Revised Universal Soil Loss Equation (RUSLE) hillslope erosion modeling, and the National Resource Conservation Service will soon be transiting to the Watershed Erosion Predict Project (WEPP) model for the same purpose. We present an assessment of critical source areas targeted with RUSLE, WEPP and a regionally validated hydrology model, the Soil Moisture Routing (SMR) model, to compare the location of critical areas for sediment loading and the effectiveness of control strategies. The three models are compared for the Palouse dryland cropping region of the inland northwest, with un-calibrated analyses of the Kamiache watershed using publicly available soils, land-use and long-term simulated climate data. Critical source areas were mapped and the side-by-side comparison exposes the differences in the location and timing of runoff and erosion predictions. RUSLE results appear most sensitive to slope driving processes associated with infiltration excess. SMR captured saturation excess driven runoff events located at the toe slope position, while WEPP was able to capture both infiltration excess and saturation excess processes depending on soil type and management. A methodology is presented for down-scaling basin level screening to the hillslope management scale for local control strategies. Information on the location of runoff and erosion, driven by the runoff mechanism, is critical for effective treatment and conservation.

  18. Gully erosion in Moldova: evolution, importance and control

    NASA Astrophysics Data System (ADS)

    Leah, Tamara

    2017-04-01

    Soil erosion and landslides are major environmental problems in the Republic of Moldova, resulting in long-term impacts on land productivity and sustainable development of rural areas. Soil erosion occurs on about 1.5 million hectares of agricultural land. Erosion possible limits on agricultural land range from 3 t/ha to 180 t/ha. The weighted average in the country is 18.5 t/ ha/year. But once in 50-100 years the mentioned limits may be exceeded. Combination the physical-geographical complicate conditions with intensive agricultural activities on the slopes led to the development of linear (depth) erosion, from initial sheet and rills to entire systems of gullies and ravines. Depth erosion affects most powerful the slope land (60%) of southern steppe and central silvo-steppe zones of Moldova. Gullies refers to erosion forms named "agrierosional", which forms most often on slopes with a length of 500 m and inclination greater than 3°, pants occupied with vineyards and orchards. Annually on these slopes are formed 700-800 new gullies, with length of 50-70 km and an area of 300 hectares. As a result of the inadequate soil cultivation the gullies parameters are increased, that concentrates water runoff, intensifies soil erosion, forming corrugation on the soil surface and increase land and environment degradation. The first gullies inventory in Moldova was carried out in 1911, the following in 1965 and 1982. After this period their area was annual included in the land cadastral sheet. If in the 1911 the total number of gullies made up 9543 with an area of 14434 hectares, in 1965 was increased on average by 3.5 times and in the southern areas more than 10 times. Gullies density of the republic made up in 1911 - 0.42 unites/km2, in 1965 increased by 3 times and in some districts by 5-6 times. After 1965, a part of the land affected by gullies was gradually transformed from farmland into forest resources. This measure contributed to significant changes in agricultural land by reducing sudden decrease to the 1982 the index by gullies affection. The study of gullies intensity growth was achieved from 1966 in the main regions of Moldova. From 256 objects (gullies): 30% constitute those with weak growth (up to 0.3 m per year); 25% - with moderate growth (0.3-0.5 m) and 45% - with strong growth (0.5-1.5 m). There is no gully where would deprive their expansion process. Multiannual average growths of gullies are in large ranges - from 0.53 m on the Dniester Plateau to 1.48 m on the South Moldavian Plain. On the 1 January 2016 in the Republic of Moldova was registered 12031 hectares with gullies. Following active growth of depth erosion their total area annually increases with 300 hectares and the total destroyed land with 450-500 hectares. Linear and volume growth forecast of ravines (gullies) in different natural conditions of Moldova will be taken into consideration in designing of hydro-technical antierosion constructions and schemes to combat gullies erosion. Consequently, there is a need for erosion monitoring, special researches, experimental and modelling studies of gullies as a basis for predicting the effects of environmental change on gully erosion rates, implementation of measures to combat soil depth erosion in Moldova. Keywords: Agriculture activities, Erosion control, Gully erosion, Slope, Republic of Moldova

  19. Advances in soil erosion modelling through remote sensing data availability at European scale

    NASA Astrophysics Data System (ADS)

    Panagos, Panos; Karydas, Christos; Borrelli, Pasqualle; Ballabio, Cristiano; Meusburger, Katrin

    2014-08-01

    Under the European Union's Thematic Strategy for Soil Protection, the European Commission's Directorate-General for the Environment (DG Environment) has identified the mitigation of soil losses by erosion as a priority area. Policy makers call for an overall assessment of soil erosion in their geographical area of interest. They have asked that risk areas for soil erosion be mapped under present land use and climate conditions, and that appropriate measures be taken to control erosion within the legal and social context of natural resource management. Remote sensing data help to better assessment of factors that control erosion, such as vegetation coverage, slope length and slope angle. In this context, the data availability of remote sensing data during the past decade facilitates the more precise estimation of soil erosion risk. Following the principles of the Universal Soil Loss Equation (USLE), various options to calculate vegetative cover management (C-factor) have been investigated. The use of the CORINE Land Cover dataset in combination with lookup table values taken from the literature is presented as an option that has the advantage of a coherent input dataset but with the drawback of static input. Recent developments in the Copernicus programme have made detailed datasets available on land cover, leaf area index and base soil characteristics. These dynamic datasets allow for seasonal estimates of vegetation coverage, and their application in the G2 soil erosion model which represents a recent approach to the seasonal monitoring of soil erosion. The use of phenological datasets and the LUCAS land use/cover survey are proposed as auxiliary information in the selection of the best methodology.

  20. Soil erosion modelled with USLE and PESERA using QuickBird derived vegetation parameters in an alpine catchment

    NASA Astrophysics Data System (ADS)

    Meusburger, K.; Konz, N.; Schaub, M.; Alewell, C.

    2010-06-01

    The focus of soil erosion research in the Alps has been in two categories: (i) on-site measurements, which are rather small scale point measurements on selected plots often constrained to irrigation experiments or (ii) off-site quantification of sediment delivery at the outlet of the catchment. Results of both categories pointed towards the importance of an intact vegetation cover to prevent soil loss. With the recent availability of high-resolution satellites such as IKONOS and QuickBird options for detecting and monitoring vegetation parameters in heterogeneous terrain have increased. The aim of this study is to evaluate the usefulness of QuickBird derived vegetation parameters in soil erosion models for alpine sites by comparison to Cesium-137 (Cs-137) derived soil erosion estimates. The study site (67 km 2) is located in the Central Swiss Alps (Urseren Valley) and is characterised by scarce forest cover and strong anthropogenic influences due to grassland farming for centuries. A fractional vegetation cover (FVC) map for grassland and detailed land-cover maps are available from linear spectral unmixing and supervised classification of QuickBird imagery. The maps were introduced to the Pan-European Soil Erosion Risk Assessment (PESERA) model as well as to the Universal Soil Loss Equation (USLE). Regarding the latter model, the FVC was indirectly incorporated by adapting the C factor. Both models show an increase in absolute soil erosion values when FVC is considered. In contrast to USLE and the Cs-137 soil erosion rates, PESERA estimates are low. For the USLE model also the spatial patterns improved and showed "hotspots" of high erosion of up to 16 t ha -1 a -1. In conclusion field measurements of Cs-137 confirmed the improvement of soil erosion estimates using the satellite-derived vegetation data.

  1. Monitoring and assessment of soil erosion at micro-scale and macro-scale in forests affected by fire damage in northern Iran.

    PubMed

    Akbarzadeh, Ali; Ghorbani-Dashtaki, Shoja; Naderi-Khorasgani, Mehdi; Kerry, Ruth; Taghizadeh-Mehrjardi, Ruhollah

    2016-12-01

    Understanding the occurrence of erosion processes at large scales is very difficult without studying them at small scales. In this study, soil erosion parameters were investigated at micro-scale and macro-scale in forests in northern Iran. Surface erosion and some vegetation attributes were measured at the watershed scale in 30 parcels of land which were separated into 15 fire-affected (burned) forests and 15 original (unburned) forests adjacent to the burned sites. The soil erodibility factor and splash erosion were also determined at the micro-plot scale within each burned and unburned site. Furthermore, soil sampling and infiltration studies were carried out at 80 other sites, as well as the 30 burned and unburned sites, (a total of 110 points) to create a map of the soil erodibility factor at the regional scale. Maps of topography, rainfall, and cover-management were also determined for the study area. The maps of erosion risk and erosion risk potential were finally prepared for the study area using the Revised Universal Soil Loss Equation (RUSLE) procedure. Results indicated that destruction of the protective cover of forested areas by fire had significant effects on splash erosion and the soil erodibility factor at the micro-plot scale and also on surface erosion, erosion risk, and erosion risk potential at the watershed scale. Moreover, the results showed that correlation coefficients between different variables at the micro-plot and watershed scales were positive and significant. Finally, assessment and monitoring of the erosion maps at the regional scale showed that the central and western parts of the study area were more susceptible to erosion compared with the western regions due to more intense crop-management, greater soil erodibility, and more rainfall. The relationships between erosion parameters and the most important vegetation attributes were also used to provide models with equations that were specific to the study region. The results of this paper can be useful for better understanding erosion processes at the micro-scale and macro-scale in any region having similar vegetation attributes to the forests of northern Iran.

  2. Nutrient and dust enrichment in Danish wind erosion sediments for different tillage directions

    NASA Astrophysics Data System (ADS)

    Mohammadian Behbahani, Ali; Fister, Wolfgang; Heckrath, Goswin; Kuhn, Nikolaus J.

    2015-04-01

    More than 80% of the soil types in Denmark have a sandy texture. Denmark is also subject to strong offshore and onshore winds, therefore, Danish soils are considered especially vulnerable to wind erosion. Where conventional tillage operations are applied on poorly aggregated soils, tillage ridges are more or less the only roughness element that can be used to protect soils against wind erosion until crop plants are large enough to provide sufficient breaks. Since wind erosion is a selective process, it can be assumed that increasing erosion rates are associated with increasing loss of dust sized particles and nutrients. However, selective erosion is strongly affected by the orientation and respective trapping efficiency of tillage ridges and furrows. The main objective of this study, therefore, was to determine the effect of tillage direction on nutrient mobilization by wind erosion from agricultural land in Denmark. In order to assess the relationship between the enrichment ratio of specific particle sizes and the amount of eroded nutrients, three soils with loamy sand texture, but varying amounts of sand-sized particles, were selected. In addition, a soil with slightly less sand, but much higher organic matter content was chosen. The soils were tested with three different soil surface scenarios (flat surface, parallel tillage, perpendicular tillage) in a wind tunnel simulation. The parallel tillage operation experienced the greatest erosion rates, independent of soil type. Particles with D50 between 100-155 µm showed the greatest risk of erosion. However, due to a greater loss of dust sized particles from perpendicularly tilled surfaces, this wind-surface arrangement showed a significant increase in nutrient enrichment ratio compared to parallel tillage and flat surfaces. The main reason for this phenomenon is most probably the trapping of larger particles in the perpendicular furrows. This indicates that the highest rate of soil protection does not necessarily coincide with lowest soil nutrient losses and dust emissions. For the evaluation of protection measures on these soil types in Denmark it is, therefore, important to differentiate between their effectivity to reduce total soil erosion amount, dust emission, and nutrient loss.

  3. Process-oriented modelling to identify main drivers of erosion-induced carbon fluxes

    NASA Astrophysics Data System (ADS)

    Wilken, Florian; Sommer, Michael; Van Oost, Kristof; Bens, Oliver; Fiener, Peter

    2017-05-01

    Coupled modelling of soil erosion, carbon redistribution, and turnover has received great attention over the last decades due to large uncertainties regarding erosion-induced carbon fluxes. For a process-oriented representation of event dynamics, coupled soil-carbon erosion models have been developed. However, there are currently few models that represent tillage erosion, preferential water erosion, and transport of different carbon fractions (e.g. mineral bound carbon, carbon encapsulated by soil aggregates). We couple a process-oriented multi-class sediment transport model with a carbon turnover model (MCST-C) to identify relevant redistribution processes for carbon dynamics. The model is applied for two arable catchments (3.7 and 7.8 ha) located in the Tertiary Hills about 40 km north of Munich, Germany. Our findings indicate the following: (i) redistribution by tillage has a large effect on erosion-induced vertical carbon fluxes and has a large carbon sequestration potential; (ii) water erosion has a minor effect on vertical fluxes, but episodic soil organic carbon (SOC) delivery controls the long-term erosion-induced carbon balance; (iii) delivered sediments are highly enriched in SOC compared to the parent soil, and sediment delivery is driven by event size and catchment connectivity; and (iv) soil aggregation enhances SOC deposition due to the transformation of highly mobile carbon-rich fine primary particles into rather immobile soil aggregates.

  4. Spatio-temporal assessment of soil erosion risk in different agricultural zones of the Inle Lake region, southern Shan State, Myanmar.

    PubMed

    Htwe, Thin Nwe; Brinkmann, Katja; Buerkert, Andreas

    2015-10-01

    Myanmar is one of Southeast Asia's climatically most diverse countries, where sheet, rill, and gully erosion affect crop yields and subsequently livelihood strategies of many people. In the unique wetland ecosystem of Inle Lake, soil erosion in surrounding uplands lead to sedimentation and pollution of the water body. The current study uses the Revised Universal Soil Loss Equation (RUSLE) to identify soil erosion risks of the Inle Lake region in space and time and to assess the relationship between soil erosion and degradation for different agricultural zones and cropping systems. Altogether, 85% of soil losses occurred on barren land along the steep slopes. The hotspot of soil erosion risk is situated in the western uplands characterized by unsustainable land use practices combined with a steep topography. The estimated average soil losses amounted to 19.9, 10.1, and 26.2 t ha(-1) yr(-1) in 1989, 2000, and 2009, respectively. These fluctuations were mainly the results of changes in precipitation and land cover (deforestation (-19%) and expansion of annual cropland (+35%) from 1989 to 2009). Most farmers in the study area have not yet adopted effective soil protection measures to mitigate the effects of soil erosion such as land degradation and water pollution of the lake reservoir. This urgently needs to be addressed by policy makers and extension services.

  5. Long-term effects of grazing management and buffer strips on soil erosion from pastures

    USDA-ARS?s Scientific Manuscript database

    High grazing pressure can lead to soil erosion in pastures by compacting soil and increasing runoff and sediment delivery to waterways. Limited information exists on the effects of grazing management and best management practices (BMPs), such as buffer strips, on soil erosion from pastures. The obje...

  6. Infiltration and soil erosion modelling on Lausatian post mine sites

    NASA Astrophysics Data System (ADS)

    Kunth, Franziska; Schmidt, Jürgen

    2013-04-01

    Land management of reclaimed lignite mine sites requires long-term and safe structuring of recultivation areas. Erosion by water leads to explicit soil losses, especially on heavily endangered water repellent and non-vegetated soil surfaces. Beyond that, weathering of pyrite-containing lignite burden dumps causes sulfuric acid-formation, and hence the acidification of groundwater, seepage water and surface waters. Pyrite containing sediment is detached by precipitation and transported into worked-out open cuts by draining runoff. In addition to ground water influence, erosion processes are therefore involved in acidification of surface waters. A model-based approach for the conservation of man-made slopes of post mining sites is the objective of this ongoing study. The study shall be completed by modeling of the effectiveness of different mine site recultivation scenarios. Erosion risks on man-made slopes in recultivation areas should be determined by applying the physical, raster- and event based computer model EROSION 2D/3D (Schmidt, 1991, 1992; v. Werner, 1995). The widely used erosion model is able to predict runoff as well as detachment, transport and deposition of sediments. Lignite burden dumps contain hydrophobic substances that cover soil particles. Consequently, these soils show strong water repellency, which influences the processes of infiltration and soil erosion on non-vegetated, coal containing dump soils. The influence of water repellency had to be implemented into EROSION 2D/3D. Required input data for soil erosion modelling (e.g. physical soil parameters, infiltration rates, calibration factors, etc.) were gained by soil sampling and rainfall experiments on non-vegetated as well as recultivated reclaimed mine sites in the Lusatia lignite mining region (southeast of Berlin, Germany). The measured infiltration rates on the non-vegetated water repellent sites were extremely low. Therefore, a newly developed water repellency-factor was applied to depict infiltration and erosion processes on water repellent dump soils. For infiltration modelling with EROSION 2D calibration factors (e.g. water repellency factor, skin-factor, etc.) were determined in different steps by calibrating computer modelled infiltration, respectively volume rate of flow to the measured data.

  7. Use of a (137)Cs re-sampling technique to investigate temporal changes in soil erosion and sediment mobilisation for a small forested catchment in southern Italy.

    PubMed

    Porto, Paolo; Walling, Des E; Alewell, Christine; Callegari, Giovanni; Mabit, Lionel; Mallimo, Nicola; Meusburger, Katrin; Zehringer, Markus

    2014-12-01

    Soil erosion and both its on-site and off-site impacts are increasingly seen as a serious environmental problem across the world. The need for an improved evidence base on soil loss and soil redistribution rates has directed attention to the use of fallout radionuclides, and particularly (137)Cs, for documenting soil redistribution rates. This approach possesses important advantages over more traditional means of documenting soil erosion and soil redistribution. However, one key limitation of the approach is the time-averaged or lumped nature of the estimated erosion rates. In nearly all cases, these will relate to the period extending from the main period of bomb fallout to the time of sampling. Increasing concern for the impact of global change, particularly that related to changing land use and climate change, has frequently directed attention to the need to document changes in soil redistribution rates within this period. Re-sampling techniques, which should be distinguished from repeat-sampling techniques, have the potential to meet this requirement. As an example, the use of a re-sampling technique to derive estimates of the mean annual net soil loss from a small (1.38 ha) forested catchment in southern Italy is reported. The catchment was originally sampled in 1998 and samples were collected from points very close to the original sampling points again in 2013. This made it possible to compare the estimate of mean annual erosion for the period 1954-1998 with that for the period 1999-2013. The availability of measurements of sediment yield from the catchment for parts of the overall period made it possible to compare the results provided by the (137)Cs re-sampling study with the estimates of sediment yield for the same periods. In order to compare the estimates of soil loss and sediment yield for the two different periods, it was necessary to establish the uncertainty associated with the individual estimates. In the absence of a generally accepted procedure for such calculations, key factors influencing the uncertainty of the estimates were identified and a procedure developed. The results of the study demonstrated that there had been no significant change in mean annual soil loss in recent years and this was consistent with the information provided by the estimates of sediment yield from the catchment for the same periods. The study demonstrates the potential for using a re-sampling technique to document recent changes in soil redistribution rates. Copyright © 2014. Published by Elsevier Ltd.

  8. Misrepresentation of hydro-erosional processes in rainfall simulations using disturbed soil samples

    NASA Astrophysics Data System (ADS)

    Thomaz, Edivaldo L.; Pereira, Adalberto A.

    2017-06-01

    Interrill erosion is a primary soil erosion process which consists of soil detachment by raindrop impact and particle transport by shallow flow. Interill erosion affects other soil erosion sub-processes, e.g., water infiltration, sealing, crusting, and rill initiation. Interrill erosion has been widely studied in laboratories, and the use of a sieved soil, i.e., disturbed soil, has become a standard method in laboratory experiments. The aims of our study are to evaluate the hydro-erosional response of undisturbed and disturbed soils in a laboratory experiment, and to quantify the extent to which hydraulic variables change during a rainstorm. We used a splash pan of 0.3 m width, 0.45 m length, and 0.1 m depth. A rainfall simulation of 58 mm h- 1 lasting for 30 min was conducted on seven replicates of undisturbed and disturbed soils. During the experiment, several hydro-physical parameters were measured, including splashed sediment, mean particle size, runoff, water infiltration, and soil moisture. We conclude that use of disturbed soil samples results in overestimation of interrill processes. Of the nine assessed parameters, four displayed greater responses in the undisturbed soil: infiltration, topsoil shear strength, mean particle size of eroded particles, and soil moisture. In the disturbed soil, five assessed parameters displayed greater responses: wash sediment, final runoff coefficient, runoff, splash, and sediment yield. Therefore, contextual soil properties are most suitable for understanding soil erosion, as well as for defining soil erodibility.

  9. A step towards a holistic assessment of soil degradation in Europe: Coupling on-site erosion with sediment transfer and carbon fluxes.

    PubMed

    Borrelli, P; Van Oost, K; Meusburger, K; Alewell, C; Lugato, E; Panagos, P

    2018-02-01

    Soil degradation due to erosion is connected to two serious environmental impacts: (i) on-site soil loss and (ii) off-site effects of sediment transfer through the landscape. The potential impact of soil erosion processes on biogeochemical cycles has received increasing attention in the last two decades. Properly designed modelling assumptions on effective soil loss are a key pre-requisite to improve our understanding of the magnitude of nutrients that are mobilized through soil erosion and the resultant effects. The aim of this study is to quantify the potential spatial displacement and transport of soil sediments due to water erosion at European scale. We computed long-term averages of annual soil loss and deposition rates by means of the extensively tested spatially distributed WaTEM/SEDEM model. Our findings indicate that soil loss from Europe in the riverine systems is about 15% of the estimated gross on-site erosion. The estimated sediment yield totals 0.164 ± 0.013Pgyr -1 (which corresponds to 4.62 ± 0.37Mgha -1 yr -1 in the erosion area). The greatest amount of gross on-site erosion as well as soil loss to rivers occurs in the agricultural land (93.5%). By contrast, forestland and other semi-natural vegetation areas experience an overall surplus of sediments which is driven by a re-deposition of sediments eroded from agricultural land. Combining the predicted soil loss rates with the European soil organic carbon (SOC) stock, we estimate a SOC displacement by water erosion of 14.5Tg yr -1 . The SOC potentially transferred to the riverine system equals to 2.2Tgyr -1 (~15%). Integrated sediment delivery-biogeochemical models need to answer the question on how carbon mineralization during detachment and transport might be balanced or even off-set by carbon sequestration due to dynamic replacement and sediment burial. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Evaluation of radiocaesium wash-off by soil erosion from various land uses using USLE plots.

    PubMed

    Yoshimura, Kazuya; Onda, Yuichi; Kato, Hiroaki

    2015-01-01

    Radiocaesium wash-off associated with soil erosion in different land use was monitored using USLE plots in Kawamata, Fukushima Prefecture, Japan after the Fukushima Dai-ichi Nuclear Power Plant accident. Parameters and factors relating to soil erosion and (137)Cs concentration in the eroded soil were evaluated based on the field monitoring and presented. The erosion of fine soil, which is defined as the fraction of soil overflowed along with discharged water from a sediment-trap tank, constituted a large proportion of the discharged radiocaesium. This indicated that the quantitative monitoring of fine soil erosion is greatly important for the accurate evaluation of radiocaesium wash-off. An exponential relationship was found between vegetation cover and the amount of eroded soil. Moreover, the radiocaesium concentrations in the discharged soil were greatly affected by the land use. These results indicate that radiocaesium wash-off related to vegetation cover and land use is crucially important in modelling radiocaesium migration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. [Effects and mechanisms of plant roots on slope reinforcement and soil erosion resistance: a research review].

    PubMed

    Xiong, Yan-Mei; Xia, Han-Ping; Li, Zhi-An; Cai, Xi-An

    2007-04-01

    Plant roots play an important role in resisting the shallow landslip and topsoil erosion of slopes by raising soil shear strength. Among the models in interpreting the mechanisms of slope reinforcement by plant roots, Wu-Waldron model is a widely accepted one. In this model, the reinforced soil strength by plant roots is positively proportional to average root tensile strength and root area ratio, the two most important factors in evaluating slope reinforcement effect of plant roots. It was found that soil erosion resistance increased with the number of plant roots, though no consistent quantitative functional relationship was observed between them. The increase of soil erosion resistance by plant roots was mainly through the actions of fiber roots less than 1 mm in diameter, while fiber roots enhanced the soil stability to resist water dispersion via increasing the number and diameter of soil water-stable aggregates. Fine roots could also improve soil permeability effectively to decrease runoff and weaken soil erosion.

  12. Rainfall erosivity: An historical review

    USDA-ARS?s Scientific Manuscript database

    Rainfall erosivity is the capability of rainfall to cause soil loss from hillslopes by water. Modern definitions of rainfall erosivity began with the development of the Universal Soil Loss Equation (USLE), where rainfall characteristics were statistically related to soil loss from thousands of plot...

  13. Estimating erosion in a riverine watershed: Bayou Liberty-Tchefuncta River in Louisiana.

    PubMed

    Martin, August; Gunter, James T; Regens, James L

    2003-01-01

    GOAL, SCOPE, BACKGROUND: Sheet erosion from agricultural, forest and urban lands may increase stream sediment loads as well as transport other pollutants that adversely affect water quality, reduce agricultural and forest production, and increase infrastructure maintenance costs. This study uses spatial analysis techniques and a numerical modeling approach to predict areas with the greatest sheet erosion potential given different soils disturbance scenarios. A Geographic Information System (GIS) and the Universal Soil Loss Equation (USLE) were used to estimate sheet erosion from 0.64 ha parcels of land within the watershed. The Soil Survey of St. Tammany Parish, Louisiana was digitized, required soil attributes entered into the GIS database, and slope factors determined for each 80 x 80 meter parcel in the watershed. The GIS/USLE model used series-specific erosion K factors, a rainfall factor of 89, and a GIS database of scenario-driven cropping and erosion control practice factors to estimate potential soil loss due to sheet erosion. A general trend of increased potential sheet erosion occurred for all land use categories (urban, agriculture/grasslands, forests) as soil disturbance increases from cropping, logging and construction activities. Modeling indicated that rapidly growing urban areas have the greatest potential for sheet erosion. Evergreen and mixed forests (production forest) had lower sheet erosion potentials; with deciduous forests (mostly riparian) having the least sheet erosion potential. Erosion estimates from construction activities may be overestimated because of the value chosen for the erosion control practice factor. This study illustrates the ease with which GIS can be integrated with the Universal Soil Loss Equation to identify areas with high sheet erosion potential for large scale management and policy decision making. The GIS/USLE modeling approach used in this study offers a quick and inexpensive tool for estimating sheet erosion within watersheds using publicly available information. This method can quickly identify discrete locations with relatively precise spatial boundaries (approximately 80 meter resolution) that have a high sheet erosion potential as well as areas where management interventions might be appropriate to prevent or ameliorate erosion.

  14. Evaluating of the spatial heterogeneity of soil loss tolerance and its effects on erosion risk in the carbonate areas of southern China

    NASA Astrophysics Data System (ADS)

    Li, Yue; Bai, Xiao Yong; Jie Wang, Shi; Qin, Luo Yi; Chao Tian, Yi; Jie Luo, Guang

    2017-05-01

    Soil loss tolerance (T value) is one of the criteria in determining the necessity of erosion control measures and ecological restoration strategy. However, the validity of this criterion in subtropical karst regions is strongly disputed. In this study, T value is calculated based on soil formation rate by using a digital distribution map of carbonate rock assemblage types. Results indicated a spatial heterogeneity and diversity in soil loss tolerance. Instead of only one criterion, a minimum of three criteria should be considered when investigating the carbonate areas of southern China because the one region, one T value concept may not be applicable to this region. T value is proportionate to the amount of argillaceous material, which determines the surface soil thickness of the formations in homogenous carbonate rock areas. Homogenous carbonate rock, carbonate rock intercalated with clastic rock areas and carbonate/clastic rock alternation areas have T values of 20, 50 and 100 t/(km2 a), and they are extremely, severely and moderately sensitive to soil erosion. Karst rocky desertification (KRD) is defined as extreme soil erosion and reflects the risks of erosion. Thus, the relationship between T value and erosion risk is determined using KRD as a parameter. The existence of KRD land is unrelated to the T value, although this parameter indicates erosion sensitivity. Erosion risk is strongly dependent on the relationship between real soil loss (RL) and T value rather than on either erosion intensity or the T value itself. If RL > > T, then the erosion risk is high despite of a low RL. Conversely, if T > > RL, then the soil is safe although RL is high. Overall, these findings may clarify the heterogeneity of T value and its effect on erosion risk in a karst environment.

  15. [Responses of accumulation-loss patterns for soil organic carbon and its fractions to tillage and water erosion in black soil area].

    PubMed

    Zhao, Peng Zhi; Chen, Xiang Wei; Wang, En Heng

    2017-11-01

    Tillage and water erosion have been recognized as the main factors causing degradation in soil organic carbon (SOC) pools of black soil. To further explore the response of SOC and its fractions to different driving forces of erosion (tillage and water), geostatistical methods were used to analyze spatial patterns of SOC and its three fractions at a typical sloping farmland based on tillage and water erosion rates calculated by local models. The results showed that tillage erosion and deposition rates changed according to the slope positions, decreasing in the order: upper-slope > lower-slope > middle-slope > toe-slope and toe-slope > lower-slope > middle-slope > upper-slope, respectively; while the order of water erosion rates decreased in the order: lower-slope > toe-slope > middle-slope > upper-slope. Tillage and water erosion cooperatively triggered intense soil loss in the lower-slope areas with steep slope gradient. Tillage erosion could affect C cycling through the whole slope at different levels, although the rate of tillage erosion (0.02-7.02 t·hm -2 ·a -1 ) was far less than that of water erosion (5.96-101.17 t·hm -2 ·a -1 ) in black soil area. However, water erosion only played a major role in controlling C dynamics in the runoff-concentrated lower slope area. Affected by water erosion and tillage erosion-deposition disturbance, the concentrations of SOC, particulate organic carbon and dissolved organic carbon in depositional areas were higher than in erosional areas, however, microbial biomass carbon showed an opposite trend. Tillage erosion dominated SOC dynamic by depleting particulate organic carbon.

  16. Developing relations between soil erodibilty factors in two different soil erosion prediction models (USLE/RUSLE and wWEPP) and fludization bed technique for mechanical soil cohesion

    USDA-ARS?s Scientific Manuscript database

    Soil erosion models are valuable analysis tools that scientists and engineers use to examine observed data sets and predict the effects of possible future soil loss. In the area of water erosion, a variety of modeling technologies are available, ranging from solely qualitative models, to merely quan...

  17. Evaluating the efficacy of wood shreds for mitigating erosion

    Treesearch

    Randy B. Foltz; Natalie S. Copeland

    2009-01-01

    An erosion control product made by shredding on-site woody materials was evaluated for mitigating erosion through a series of rainfall simulations. Tests were conducted on bare soil and soil with 30, 50, and 70% cover on a coarse and a fine-grained soil. Results indicated that the wood product known as wood shreds reduced runoff and soil loss from both soil types....

  18. Soil erosion in a man-made landscape: the Mediterranean

    NASA Astrophysics Data System (ADS)

    Cerdà, A.; Ruiz Sinoga, J. D.; Cammeraat, L. H.

    2012-04-01

    Mediterranean-type ecosystems are characterised by a seasonally contrasted distribution of precipitation, by the coincidence of the driest and hottest season in summer, by an often-mountainous terrain, and by a long history of intense human occupation, especially around the Mediterranean Sea. The history of the Mediterranean lands is the history of human impacts on the soil system, and soil erosion is the most intense and widespread impact on this land where high intensity and uneven rainfall is found. A review of the soil erosion rates measured in the Mediterranean basin will be shown. The measurements done by means of erosion pins, topographical measurements, rainfall simulators, Gerlach collectors in open or close plots, watershed/basin measurements, reservoirs siltation and historical data will be shown. A review of the soil erosion models applied in the Mediterranean will be shown. The tentative approach done until October 2011 show that the soil erosion rates on Mediterranean type ecosystems are not as high as was supposed by the pioneers in the 70's. And this is probably due to the fact that the soils are very shallow and sediments are not available after millennia of high erosion rates. This is related to the large amount of rock fragments are covering the soil, and the rock outcrops that are found in the upper slope trams and the summits. Soil erosion in the Mediterranean is seasonal due to the rainfall concentration in winter, and highly variable within years as the high intensity rainfall events control the sediment production. Natural vegetation is adapted to the Mediterranean environmental conditions, and they are efficient to control the soil losses. An example are the forest fire that increase the soil losses but this is a temporal change as after 2-4 years the soil erosion rates are similar to the pre-fire period. Agriculture lands are the source of sediments although the highest erosion rates are found in badland areas that cover a small part of the Mediterranean lands. The methods applied to measure or estimate the soil erosion should be improved to make them comparable. An agreement is necessary to decide the size of the plots, the material and equipment to be used and the future research topics. This research study is being supported by the the research project CGL2008-02879/BTE

  19. Searching for plant root traits to improve soil cohesion and resist soil erosion

    NASA Astrophysics Data System (ADS)

    De Baets, Sarah; Smyth, Kevin; Denbigh, Tom; Weldon, Laura; Higgins, Ben; Matyjaszkiewicz, Antoni; Meersmans, Jeroen; Chenchiah, Isaac; Liverpool, Tannie; Quine, Tim; Grierson, Claire

    2017-04-01

    Soil erosion poses a serious threat to future food and environmental security. Soil erosion protection measures are therefore of great importance for soil conservation and food security. Plant roots have proven to be very effective in stabilizing the soil and protecting the soil against erosion. However, no clear insights are yet obtained into the root traits that are responsible for root-soil cohesion. This is important in order to better select the best species for soil protection. Research using Arabidopsis mutants has made great progress towards explaining how root systems are generated by growth, branching, and responses to gravity, producing mutants that affect root traits. In this study, the performance of selected Arabidopsis mutants is analyzed in three root-soil cohesion assays. Measurements of detachment, uprooting force and soil detachment are here combined with the microscopic analysis of root properties, such as the presence, length and density of root hairs in this case. We found that Arabidopsis seedlings with root hairs (wild type, wer myb23, rsl4) were more difficult to detach from gel media than hairless (cpc try) or short haired (rsl4, rhd2) roots. Hairy roots (wild type, wer myb23) on mature, non-reproductive rosettes were more difficult to uproot from compost or clay soil than hairless roots (cpc try). At high root densities, erosion rates from soils with hairless roots (cpc try) were as much as 10 times those seen from soils occupied by roots with hairs (wer myb23, wild type). We find therefore root hairs play a significant role in root-soil cohesion and in minimizing erosion. This framework and associated suite of experimental assays demonstrates its ability to measure the effect of any root phenotype on the effectiveness of plant roots in binding substrates and reducing erosion.

  20. Runoff and soil erosion for an undisturbed tropical woodland in the Brazilian Cerrado

    NASA Astrophysics Data System (ADS)

    Oliveira, Paulo Tarso S.; Nearing, Mark; Wendland, Edson

    2015-04-01

    The Brazilian Cerrado is a large and important economic and environmental region that is experiencing major loss of its natural landscapes due to pressures of food and energy production, which has caused large increases in soil erosion. However the magnitude of the soil erosion increases in this region is not well understood, in part because scientific studies of surface runoff and soil erosion are scarce or nonexistent in undisturbed Cerrado vegetation. In this study we measured natural rainfall-driven rates of runoff and soil erosion for an undisturbed tropical woodland classified as "cerrado sensu stricto denso" and bare soil to compute the Universal Soil Loss Equation (USLE) cover and management factor (C-factor) to help evaluate the likely effects of land use change on soil erosion rates. Replicated data on precipitation, runoff, and soil loss on plots (5 x 20 m) under bare soil and cerrado were collected for 55 erosive storms occurring in 2012 and 2013. The measured annual precipitation was 1247.4 mm and 1113.0 mm for 2012 and 2013, resulting in a rainfall erosivity index of 4337.1 MJ mm ha-1 h-1 and 3546.2 MJ mm ha-1 h-1, for each year respectively. The erosive rainfall represented 80concentrated in the wet season, which generally runs from October through March. In the plots on bare soil, the runoff coefficient for individual rainfall events (total runoff divided by total rainfall) ranged from 0.003 to 0.860 with an average value and standard deviation of 0.212 ± 0.187. Moreover, the runoff coefficient found for the bare soil plots (~20infiltration capacity. In forest areas the leaf litter and the more porous soil tend to promote the increase of infiltration and water storage, rather than rapid overland flow. Indeed, runoff coefficients ranged from 0.001 to 0.030 with an average of less than 1under undisturbed cerrado. The soil losses measured under bare soil and cerrado were 15.68 t ha-1yr-1 and 0.24 t ha-1 yr-1 in 2012, and 14.82 t ha-1 yr-1, 0.11 t ha-1 yr-1 in 2013, respectively, with means of total soil loss during the study period of 15.25 t ha-1 yr-1 and 0.17 t ha-1 yr-1. The erosivity-weighted C-factor for the undisturbed cerrado vegetation was 0.013. Previous studies have shown that, in general, the C-factors for Brazilian crops cover an approximate 10-fold range, from 2 to 39-times greater than the C-factor for undisturbed cerrado. Our results suggest that though soil erosion under undisturbed Cerrado is important, shifts in land use from the native to cultivated vegetation may result in orders of magnitude increases in soil loss rates. These results provide benchmark values that will be useful to evaluate past and future land use changes using soil erosion models and measurements.

  1. The Effect of Land Use on Soil Erosion in the Guadiana Watershed in Puerto Rico

    Treesearch

    TANIA DEL MAR LÓPEZ; T. MITCHELL AIDE; SCATENA F. N.

    1998-01-01

    The Revised Universal Soil Loss Equation (RUSLE) was used in conjunction with a Geographic Information System to determine the influence of land use and other environmental factors on soil erosion in the Guadiana watershed in Puerto Rico. Mean annual erosion, suspended sediment discharge, and the rainfall-erosion factor of the RUSLE increased with annual rainfall....

  2. Validation of Erosion 3D in Lower Saxony - Comparison between modelled soil erosion events and results of a long term monitoring project

    NASA Astrophysics Data System (ADS)

    Bug, Jan; Mosimann, Thomas

    2013-04-01

    Since 2000 water erosion has been surveyed on 400 ha arable land in three different regions of Lower Saxony (Mosimann et al. 2009). The results of this long-term survey are used for the validation of the soil erosion models such as USLE and Erosion 3D. The validation of the physically-based model Erosion 3D (Schmidt & Werner 2000) is possible because the survey analyses the effects (soil loss, sediment yield, deposition on site) of single thunder storm events and also maps major factors of soil erosion (soil, crop, tillage). A 12.5 m Raster DEM was used to model the soil erosion events.Rainfalldata was acquired from climate stations. Soil and landuse parameters were derived from the "Parameterkatalog Sachsen"(Michael et al. 1996). During thirteen years of monitoring, high intensity storms fell less frequently than expected. High intensity rainfalls with a return period of five or ten years usually occurred during periods of maximum plant cover.Winter events were ruled out because dataon snow melt and rainfallwere not measured. The validation is therefore restricted to 80 events. The validation consists of three parts. The first part compares the spatial distribution of the mapped soil erosion with the model results. The second part calculates the difference in the amount of redistributed soil. The third part analyses off-site effects such as sediment yield and pollution of water bodies. The validation shows that the overall result of erosion 3D is quite good. Spatial hotspots of soil erosion and of off-site effects are predicted correctly in most cases. However, quantitative comparison is more problematic, because the mapping allows only the quantification of rillerosion and not of sheet erosion. So as a rule,the predicted soil loss is higher than the mapped. The prediction of rill development is also problematic. While the model is capable of predicting rills in thalwegs, the modelling of erosion in tractor tracks and headlands is more complicated. In order to obtain better results, the DEM needs a higher resolution, and soil and landuse parameters have to been optimized in tractor tracks and headlands (higher bulk density, less coverage). Other models like LINERO (Bug &Mosimann 2012) can help to get an overview over the location of erosion forms and the soil loss due to rill erosion. References: Bug J., & T. Mosimann (2012): Modellierung der linearen Bodenerosion. Entwicklung eines entscheidungsbasierten Modells zur flächenhaften Prognose der linearen Erosionsaktivität, Geosynthesis 15, Hannover, 105 S. Michael, A., Schmidt, J. & W. A. Schmidt (1996): EROSION 2D/3D - Ein Computermodell zur Simulation der Bodenerosion durch Wasser. Parameterkatalog Sachsen, Freiberg. Mosimann, T., Bug, J. Sanders, S. & F. Beisiegel (2009): Bodenerosionsdauerbeobachtung in Niedersachsen 2000-2008. Methodik, Erosionsgeschehen, Bodenabträge und Anwendung der Ergebnisse, Geosynthesis 14, Hannover, 101 S. Schmidt, J., & M. v. Werner (2000): Modeling sediment and heavy metal yields of drinking water reservoirs in the Osterzgebirge region of Saxony (Germany). In: Schmidt, J. (Ed.), Soil Erosion—Application of Physically Based Models. Springer, Berlin, Heidelberg, New York, pp. 93- 108.

  3. Particle transport patterns of short-distance soil erosion by wind-driven rain, rain and wind

    NASA Astrophysics Data System (ADS)

    Marzen, Miriam; Iserloh, Thomas; de Lima, João L. M. P.; Ries, Johannes B.

    2015-04-01

    Short distance erosion of soil surface material is one of the big question marks in soil erosion studies. The exact measurement of short-distance transported soil particles, prior to the occurrence of overland flow, is a challenge to soil erosion science due to the particular requirements of the experimental setup and test procedure. To approach a quantification of amount and distance of each type of transport, we applied an especially developed multiple-gutter system installed inside the Trier Portable Wind and Rainfall Simulator (PWRS). We measured the amount and travel distance of soil particles detached and transported by raindrops (splash), wind-driven rain (splash-saltation and splash-drift) and wind (saltation). The test setup included three different erosion agents (rain/ wind-driven rain/ wind), two substrates (sandy/ loamy), three surface structures (grain roughness/ rills lengthwise/ rills transversal) and three slope angles (0°/+7°/-7°). The results present detailed transport patterns of the three erosion agents under the varying soil and surface conditions up to a distance of 1.6 m. Under the applied rain intensity and wind velocity, wind-driven rain splash generates the highest erosion. The erodibility and travel distance of the two substrates depend on the erosion agent. The total erosion is slightly higher for the slope angle -7° (downslope), but for wind-driven rain splash, the inclination is not a relevant factor. The effect of surface structures (rills) changes with traveling distance. The wind driven rain splash generates a much higher amount of erosion and a further travel distance of the particles due to the combined action of wind and rain. The wind-driven rain factor appears to be much more significant than the other factors. The study highlights the effects of different erosion agents and surface parameters on short-distance particle transport and the powerful impact of wind-driven rain on soil erosion.

  4. Soil erosion and the global carbon budget.

    PubMed

    Lal, R

    2003-07-01

    Soil erosion is the most widespread form of soil degradation. Land area globally affected by erosion is 1094 million ha (Mha) by water erosion, of which 751 Mha is severely affected, and 549 Mha by wind erosion, of which 296 Mha is severely affected. Whereas the effects of erosion on productivity and non-point source pollution are widely recognized, those on the C dynamics and attendant emission of greenhouse gases (GHGs) are not. Despite its global significance, erosion-induced carbon (C) emission into the atmosphere remains misunderstood and an unquantified component of the global carbon budget. Soil erosion is a four-stage process involving detachment, breakdown, transport/redistribution and deposition of sediments. The soil organic carbon (SOC) pool is influenced during all four stages. Being a selective process, erosion preferentially removes the light organic fraction of a low density of <1.8 Mg/m(3). A combination of mineralization and C export by erosion causes a severe depletion of the SOC pool on eroded compared with uneroded or slightly eroded soils. In addition, the SOC redistributed over the landscape or deposited in depressional sites may be prone to mineralization because of breakdown of aggregates leading to exposure of hitherto encapsulated C to microbial processes among other reasons. Depending on the delivery ratio or the fraction of the sediment delivered to the river system, gross erosion by water may be 75 billion Mg, of which 15-20 billion Mg are transported by the rivers into the aquatic ecosystems and eventually into the ocean. The amount of total C displaced by erosion on the earth, assuming a delivery ratio of 10% and SOC content of 2-3%, may be 4.0-6.0 Pg/year. With 20% emission due to mineralization of the displaced C, erosion-induced emission may be 0.8-1.2 Pg C/year on the earth. Thus, soil erosion has a strong impact on the global C cycle and this component must be considered while assessing the global C budget. Adoption of conservation-effective measures may reduce the risks of C emission and sequester C in soil and biota.

  5. Climate-driven reduction in soil loss due to the dynamic role of vegetation

    NASA Astrophysics Data System (ADS)

    Constantine, J. A.; Ciampalini, R.; Walker-Springett, K.; Hales, T. C.; Ormerod, S.; Gabet, E. J.; Hall, I. R.

    2016-12-01

    Simulations of 21st century climate change predict increases in seasonal precipitation that may lead to widespread soil loss and reduced soil carbon stores by increasing the likelihood of surface runoff. Vegetation may counteract this increase through its dynamic response to climate change, possibly mitigating any impact on soil erosion. Here, we document for the first time the potential for vegetation to prevent widespread soil loss by surface-runoff mechanisms (i.e., rill and inter-rill erosion) by implementing a process-based soil erosion model across catchments of Great Britain with varying land-cover, topographic, and soil characteristics. Our model results reveal that, even under a significantly wetter climate, warmer air temperatures can limit soil erosion across areas with permanent vegetation cover because of its role in enhancing primary productivity, which improves leaf interception, soil infiltration-capacity, and the erosive resistance of soil. Consequently, any increase in air temperature associated with climate change will increase the threshold change in rainfall required to accelerate soil loss, and rates of soil erosion could therefore decline by up to 50% from 2070-2099 compared to baseline values under the IPCC-defined medium-emissions scenario SRES A1B. We conclude that enhanced primary productivity due to climate change can introduce a negative-feedback mechanism that limits soil loss by surface runoff as vegetation-induced impacts on soil hydrology and erodibility offset precipitation increases, highlighting the need to expand areas of permanent vegetation cover to reduce the potential for climate-driven soil loss.

  6. A simple enrichment correction factor for improving erosion estimation by rare earth oxide tracers

    USDA-ARS?s Scientific Manuscript database

    Spatially distributed soil erosion data are needed to better understanding soil erosion processes and validating distributed erosion models. Rare earth element (REE) oxides were used to generate spatial erosion data. However, a general concern on the accuracy of the technique arose due to selective ...

  7. Soil carbon storages and erosional exports along a forested denudation gradient in the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Yoo, K.; Wang, X.; Mudd, S. M.; Weinman, B.; Gutknecht, J.; Gabet, E. J.

    2017-12-01

    Eroding uplands not only provide physically mixed soil zones where OC and minerals actively interact but also are the significant sources of suspended sediments and organic carbon (OC) to rivers. Here our goal is to quantify the extents that erosion affects soils' capacities to store OC in different degrees of mineral-association and to facilitate the exports of minerals that might capture OC on their reactive surfaces. We examined a tributary basin to the Middle Folk Feather River in California, where knickpoint migration has created a series of hillslopes with erosion rates varying from 35 to 250 mm kyr-1. Other than erosion rates, the studied hillslopes within the tributary basin shared similar environmental factors. Soil samples were collected from select hillslopes that differ in their relative positions to knikpoints and were subject to size and density fractionation. Despite the substantial difference in erosion rates, concentrations of particulate OC (POC) and mineral-associated OC (MOC) and soil thickness varied little. Instead, considerable increase in coarse rock contents positively associated with erosion rate was responsible for the reduction of soil OC inventories by 37% with increasing erosion rate. In contrast to consistent MOC concentrations across the erosion gradient, clay contents in soils are negatively correlated with erosion rates. This seemingly contradictory result, however, is consistent with BET mineral specific surface area that remains insensitive to erosion rates. OC coverage on mineral surface was found to be less than < 50%, indicating that eroded minerals would have a significant, and currently unknown, capacity to adsorb additional OC during their transport to sediment sinks. This study thus reveals that mineral weathering acts as an important filter through which erosion affects the soil carbon cycle.

  8. Piping dynamics in mid-altitude mountains under a temperate climate: the Bieszczady Mts., the Eastern Carpathians

    NASA Astrophysics Data System (ADS)

    Bernatek-Jakiel, Anita; Jakiel, Michał; Krzemień, Kazimierz

    2017-04-01

    Soil erosion is caused not only by overland flow, but also by subsurface flow. Piping which is a process of mechanical removal of soil particles by concentrated subsurface flow is frequently being overlooked and not accounted for in soil erosion studies. However, it seems that it is far more widespread than it has often been supposed. Furthermore, our knowledge about piping dynamics and its quantification currently relies on a limited number of data available for mainly loess-mantled areas and marl badlands. Therefore, this research aims to recognize piping dynamics in mid-altitude mountains under a temperate climate, where piping occurs in Cambisols, not previously considered as piping-prone soils. The survey was carried out in the Bereźnica Wyżna catchment (305 ha), in the Bieszczady Mts. (the Eastern Carpathians, Poland), where 188 collapsed pipes were mapped. The research was based on the monitoring of selected piping systems located within grasslands (1971-1974, 2013-2016). The development of piping systems is mainly induced by the elongation of pipes and creation of new collapses (closed depressions and sinkholes), rather than by the enlargement of existing piping forms, or the deepening of pipes. It draws attention to the role of dense vegetation (grasslands) in the delay of pipe collapses and, also, to the boundary of pipe development (soil-bedrock interface). The obtained results reveal an episodic, and even stochastic nature of piping activity, expressed by varied one-year and short-term (3 years) erosion rates, and pipe elongation. Changes in soil loss vary significantly between different years (up to 27.36 t ha-1 y-1), reaching the rate of 1.34 t ha-1 y-1 for the 45-year study period. The elongation of pipes also differs, from no changes to 36 m during one year. The results indicate that soil loss due to piping can cause high soil loss even in highly vegetated lands (grasslands), which are generally considered as areas without a significant erosion problem. The scale of piping in the study area is at least by three orders of magnitude higher than surface erosion rates (i.e. sheet and rill erosion) under a similar land use (grasslands), and it is comparable to the scale of surface soil erosion on arable lands. It means that piping is an important sediment source for fluvial systems, and it leads to significant soil loss in mid-altitude mountains under a temperate climate. This study is supported by the National Science Centre of Poland, as a part of the first author's project - PRELUDIUM 3 (DEC-2012/05/N/ST10/03926). The first author was also granted the ETIUDA 3 doctoral scholarship (UMO-2015/16/T/ST10/00505) financed by the National Science Centre of Poland.

  9. Quantifying the Spatial Distribution of Hill Slope Erosion Using a 3-D Laser Scanner

    NASA Astrophysics Data System (ADS)

    Scholl, B. N.; Bogonko, M.; He, Y.; Beighley, R. E.; Milberg, C. T.

    2007-12-01

    Soil erosion is a complicated process involving many interdependent variables including rainfall intensity and duration, drop size, soil characteristics, ground cover, and surface slope. The interplay of these variables produces differing spatial patterns of rill versus inter-rill erosion by changing the effective energy from rain drop impacts and the quantities and timing of sheet and shallow, concentrated flow. The objective of this research is to characterize the spatial patterns of rill and inter-rill erosion produced from simulated rainfall on different soil densities and surface slopes using a 3-D laser scanner. The soil used in this study is a sandy loam with bulk density due to compaction ranging from 1.25-1.65 g/cm3. The surface slopes selected for this study are 25, 33, and 50 percent and represent common slopes used for grading on construction sites. The spatial patterns of soil erosion are measured using a Trimble GX DR 200+ 3D Laser Scanner which employs a time of flight calculation averaged over 4 points using a class 2, pulsed, 532 nm, green laser at a distance of 2 to 11 m from the surface. The scanner measures point locations on an approximately 5 mm grid. The pre- and post-erosion scan surfaces are compared to calculate the change in volume and the dimensions of rills and inter-rill areas. The erosion experiments were performed in the Soil Erosion Research Laboratory (SERL), part of the Civil and Environmental Engineering department at San Diego State University. SERL experiments utilize a 3-m by 10-m tilting soil bed with a soil depth of 0.5 meters. Rainfall is applied to the soil surface using two overhead Norton ladder rainfall simulators, which produce realistic rain drop diameters (median = 2.25 mm) and impact velocities. Simulated storm events used in this study consist of rainfall intensities ranging from 5, 10 to 15 cm/hr for durations of 20 to 30 minutes. Preliminary results are presented that illustrate a change in runoff processes and erosion patterns as soil density increases and reduces infiltration characteristics. Total soil loss measured from the bottom of the erosion bed is compared to the volume of soil loss determined using the laser scanner. Due to soil consolidation during the experiment, the accuracy of measured soil loss from the laser scanner increases with increasing soil density. Ratios of rill and inter-rill erosions for each experiment are also presented. URL: http://spatialhydro.sdsu.edu

  10. Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition

    NASA Astrophysics Data System (ADS)

    Liu, Shuguang; Bliss, Norman; Sundquist, Eric; Huntington, Thomas G.

    2003-06-01

    Soil erosion and deposition may play important roles in balancing the global atmospheric carbon budget through their impacts on the net exchange of carbon between terrestrial ecosystems and the atmosphere. Few models and studies have been designed to assess these impacts. In this study, we developed a general ecosystem model, Erosion-Deposition-Carbon-Model (EDCM), to dynamically simulate the influences of rainfall-induced soil erosion and deposition on soil organic carbon (SOC) dynamics in soil profiles. EDCM was applied to several landscape positions in the Nelson Farm watershed in Mississippi, including ridge top (without erosion or deposition), eroding hillslopes, and depositional sites that had been converted from native forests to croplands in 1870. Erosion reduced the SOC storage at the eroding sites and deposition increased the SOC storage at the depositional areas compared with the site without erosion or deposition. Results indicated that soils were consistently carbon sources to the atmosphere at all landscape positions from 1870 to 1950, with lowest source strength at the eroding sites (13 to 24 gC m-2 yr-1), intermediate at the ridge top (34 gC m-2 yr-1), and highest at the depositional sites (42 to 49 gC m-2 yr-1). During this period, erosion reduced carbon emissions via dynamically replacing surface soil with subsurface soil that had lower SOC contents (quantity change) and higher passive SOC fractions (quality change). Soils at all landscape positions became carbon sinks from 1950 to 1997 due to changes in management practices (e.g., intensification of fertilization and crop genetic improvement). The sink strengths were highest at the eroding sites (42 to 44 gC m-2 yr-1), intermediate at the ridge top (35 gC m-2 yr-1), and lowest at the depositional sites (26 to 29 gC m-2 yr-1). During this period, erosion enhanced carbon uptake at the eroding sites by continuously taking away a fraction of SOC that can be replenished with enhanced plant residue input. Overall, soil erosion and deposition reduced CO2 emissions from the soil into the atmosphere by exposing low carbon-bearing soil at eroding sites and by burying SOC at depositional sites. The results suggest that failing to account for the impact of soil erosion and deposition may potentially contribute to an overestimation of both the total historical carbon released from soils owing to land use change and the contemporary carbon sequestration rates at the eroding sites.

  11. Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition

    USGS Publications Warehouse

    Liu, S.; Bliss, N.; Sundquist, E.; Huntington, T.G.

    2003-01-01

    Soil erosion and deposition may play important roles in balancing the global atmospheric carbon budget through their impacts on the net exchange of carbon between terrestrial ecosystem and the atmosphere. Few models and studies have been designed to assess these impacts. In this study, we developed a general ecosystem model, Erosion-Deposition-Carbon-Model (EDCM), to dynamically simulate the influences of rainfall-induced soil erosion and deposition on soil organic carbon (SOC) dynamics in soil profiles. EDCM was applied to several landscape positions in the Nelson Farm watershed in Mississippi, including ridge top (without erosion or deposition), eroding hillslopes, and depositional sites that had been converted from native forests to croplands in 1870. Erosion reduced the SOC storage at the eroding sites and deposition increased the SOC storage at the depositional areas compared with the site without erosion or deposition. Results indicated that soils were consistently carbon sources to the atmosphere at all landscape positions from 1870 to 1950, with lowest source strength at the eroding sites (13 to 24 gC m-2 yr-1), intermediate at the ridge top (34 gC m-2 yr-1), and highest at the depositional sites (42 to 49 gC m-2 yr-1). During this period, erosion reduced carbon emissions via dynamically replacing surface soil with subsurface soil that had lower SOC contents (quantity change) and higher passive SOC fractions (quality change). Soils at all landscape positions became carbon sinks from 1950 to 1997 due to changes in management practices (e.g., intensification of fertilization and crop genetic improvement). The sink strengths were highest at the eroding sites (42 to 44 gC m-2 yr-1 , intermediate at the ridge top (35 gC m-2 yr-1), and lowest at the depositional sites (26 to 29 gC m-2 yr-1). During this period, erosion enhanced carbon uptake at the eroding sites by continuously taking away a fraction of SOC that can be replenished with enhanced plant residue input. Overall, soil erosion and deposition reduced CO2 emissions from the soil into the atmosphere by exposing low carbon-bearing soil at eroding sites and by burying SOC at depositional sites. The results suggest that failing to account for the impact of soil erosion and deposition may potentially contribute to an overestimation of both the total historical carbon released from soils owing to land use change and the contemporary carbon sequestration rates at the eroding sites.

  12. Post-wildfire soil erosion in the Mediterranean: Review and future research directions

    NASA Astrophysics Data System (ADS)

    Shakesby, R. A.

    2011-04-01

    Wildfires increased dramatically in frequency and extent in the European Mediterranean region from the 1960s, aided by a general warming and drying trend, but driven primarily by socio-economic changes, including rural depopulation, land abandonment and afforestation with flammable species. Published research into post-wildfire hydrology and soil erosion, beginning during the 1980s in Spain, has been followed by studies in other European Mediterranean countries together with Israel and has now attained a sufficiently large critical mass to warrant a major review. Although variations in climate, vegetation, soil, topography and fire severity cause differences in Mediterranean post-wildfire erosion, the long history of human landscape impact up to the present day is responsible for some its distinctive characteristics. This paper highlights these characteristics in reviewing wildfire impacts on hydrology, soil properties and soil erosion by water. The 'mosaic' nature of many Mediterranean landscapes (e.g. an intricate land-use pattern, abandoned terraces and tracks interrupting slopes) may explain sometimes conflicting post-fire hydrological and erosional responses at different sites and spatial scales. First-year post-wildfire soil losses at point- (average, 45-56 t ha - 1 ) and plot-scales (many < 1 t ha - 1 and the majority < 10 t ha - 1 in the first year) are similar to or even lower than those reported for fire-affected land elsewhere or other disturbed (e.g. cultivated) and natural poorly-vegetated (e.g. badlands, rangeland) land in the Mediterranean. The few published losses at larger-scales (hillslope and catchment) are variable. Thin soil and high stone content can explain supply-limited erosion preceding significant protection by recovering vegetation. Peak erosion can sometimes be delayed for years, largely through slow vegetation recovery and temporal variability of erosive storms. Preferential removal of organic matter and nutrients in the commonly thin, degraded soils is arguably just as if not more important than the total soil loss. Aspect is important, with more erosion reported for south- than north-facing slopes, which is attributed to greater fire frequency, slower vegetation recovery on the former and with soil characteristics more prone to erosion (e.g. lower aggregate stability). Post-fire wind erosion is a potentially important but largely neglected process. Gauging the degradational significance of wildfires has relied on comparison with unburnt land, but the focus for comparison should be switched to other agents of soil disturbance and/or currently poorly understood soil renewal rates. Human impact on land use and vegetation may alter expected effects (increased fire activity and post-wildfire erosion) arising from future climatic change. Different future wildfire mitigation responses and likely erosional consequences are outlined. Research gaps are identified, and more research effort is suggested to: (1) improve assessment of post-wildfire erosion impact on soil fertility, through further quantification of soil nutrient depletion resulting from single and multiple fire cycles, and on soil longevity; (2) investigate prescribed fire impacts on carbon release, air pollution and nutrient losses as well as on soil loss; (3) isolate hillslope- and catchment-scale impacts of soil water repellency under Mediterranean post-wildfire conditions; (4) test and refine application of cosmogenic radionuclides to post-wildfire hillslope-scale soil redistribution at different temporal scales; (5) use better temporal resolution of sedimentary sequences to understand palaeofire-erosion-sedimentation links; (6) quantify post-wildfire wind erosion; (7) improve the integration of wildfire into an overall assessment of the processes and impacts of land degradation in the Mediterranean; and (8) raise public awareness of wildfire impact on soil degradation.

  13. Wind, rain and soil erosion rates on bare and plant covered agriculture plots at the experimental station of El Teularet -Sierra de Enguera, Eastern Spain

    NASA Astrophysics Data System (ADS)

    Cerdà, A.; Azorin-Molina, C.; Iserloh, Th.

    2012-04-01

    Soil erosion is being scientifically researched for more tan one century, but there is some knowledge lacks that should be researched. Within the factors of the soil erosion wind and rain were studied, but little is know about the impact of the combination of both. Soil erosion by wind was mainly studied on drylands and agriculture land (Sterk and Spaan, 1997; Bielders et al., 2002; Rajot et al., 2003; Zobeck et al., 2003). Soil erosion by water was studied in many ecosystems but it is especially active on agriculture land (Cerdà et al., 2009) and under Mediterranean climatic conditions (Cerdà et al., 2010). The importance of wind on soil erosion is base in the fact that rainstorms occurs with wind, adding a driving component to the falling raindrops. The influence of wind on raindrops is clear, but there is not measurements and there is no information of this influence under field conditions with natural rainfall events.This paper aims to determine the interaction between wind and rain as factors of the soil losses under Mediterranean climatic conditions and different agriculture managements and land uses. Since 2003, the El Teularet-Serra de Enguera Soil Erosion Experimental Station located in Eastern Spain is measuring the soil losses in plots under different land uses and land managements. The station is devoted to study the soil water erosion processes under rain-fed agriculture fields and the rangelands by means of simulated rainfall experiments and plots of different sizes. The soil erosion measure ments are done by means of 13 plots, each of them composed of 5 subplots of 1, 2, 4, 16 and 48 m2 under different land uses and managements. Two plots are covered by two different types of shrubs: Quercus coccifera and Ulex parviflorus, respectively. Three plots reproduce the use of herbicides, one is ploughed, and three plots follow conservation practices (oats and beans with no-tillage, with tillage, and with a vege- tation cover of weeds). Other plots are covered with straw, chipped branches of olive and with a geotextil developed specifically to control erosion on agricultural fields. The Soil Erosion Experimental Station of the El Teularet-Serra de Enguera is located in Eastern Spain. The station is devoted to study the soil water erosion processes under rain-fed agriculture fields and the rangelands. Agriculture is the main source of sedi ments on the mountainous areas of Spain due to the current management. The exper imental station of the El Teularet-Sierra de Enguera is composed also of a meteorological station with tipping-bucket raingauges (0.2 mm), and sensors that measure soil and air moisture and temperature, wind direction and speed and the sun radiation connected to a data-logger that record these data every five minutes. This paper will review the data collected during the period 2004 to 2011 in order to determine if the wind direction and wind speed determined the soil erosion rates. In this way it will be clarified the infliuence of wind on the soil erosion processes.The results will be compared to the measurement collected at the Montesa experimental station devoted to the study of soil erosion on citrus orchards. The experimental setup within the citrus plantation is being supported by the research project CGL2008- 02879/BTE.

  14. Soil erosion by snow gliding - a first quantification attempt in a sub-alpine area, Switzerland

    NASA Astrophysics Data System (ADS)

    Meusburger, K.; Leitinger, G.; Mabit, L.; Mueller, M. H.; Walter, A.; Alewell, C.

    2014-03-01

    Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as soil erosion agent for four different land use/land cover types in a sub-alpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide deposits, the fallout radionuclide 137Cs, and modelling with the Revised Universal Soil Loss Equation (RUSLE). The RUSLE model is suitable to estimate soil loss by water erosion, while the 137Cs method integrates soil loss due to all erosion agents involved. Thus, we hypothesise that the soil erosion rates determined with the 137Cs method are higher and that the observed discrepancy between the soil erosion rate of RUSLE and the 137Cs method is related to snow gliding and sediment concentrations in the snow glide deposits. Cumulative snow glide distance was measured for the sites in the winter 2009/10 and modelled for the surrounding area with the Spatial Snow Glide Model (SSGM). Measured snow glide distance ranged from 2 to 189 cm, with lower values at the north facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is important information with respect to conservation planning and expected land use changes in the Alps. Our hypothesis was confirmed: the difference of RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2= 0.64; p < 0.005) and snow sediment yields (R2 = 0.39; p = 0.13). A high difference (lower proportion of water erosion compared to total net erosion) was observed for high snow glide rates and vice versa. The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding is a key process impacting soil erosion pattern and magnitude in sub-alpine areas with similar topographic and climatic conditions.

  15. Analytical method for determining rill detachment of purple soil as compared with that of loess soil

    USDA-ARS?s Scientific Manuscript database

    Rills are commonly found on sloping farmlands in both the loess and purple soil regions of China. Rill erosion is an important component of slope water erosion, and primary sediment sources in small catchments in the areas. A comparative study on rill erosion on loess and purple soils is important t...

  16. Using high-resolution radar images to determine vegetation cover for soil erosion assessments.

    PubMed

    Bargiel, D; Herrmann, S; Jadczyszyn, J

    2013-07-30

    Healthy soils are crucial for human well-being. Because soils are threatened worldwide, politicians recognize the need for soil protection. For example, the European Commission has launched the Thematic Strategy for Soil Protection, which requests the European member states to identify high risk areas for soil degradation. Most states use the Universal Soil Loss Equation (USLE) to assess soil erosion risk at the national scale. The USLE includes different factors, one of them is the vegetation cover and management factor (C factor). Modern satellite-based radar sensors now provide highly accurate vegetation cover data, enabling opportunities to improve the accuracy of the C factor. The presented study proves the suitability for C factor determination based on a multi-temporal classification of high-resolution radar images. Further USLE factors were derived from existing data sources (meteorological data, soil maps, digital elevation model) to conduct an USLE-based soil erosion assessment. The resulting map illustrates a qualitative assessment for soil erosion risk within a plot of about 7*12 km in an agricultural region in Poland that is very susceptible to soil erosion processes. A high erosion risk of more than 10 tonnes per ha and year was assessed to occur on 13.6% (646 ha) of the agricultural areas within the investigated plot. Further 7.8% (372 ha) of agricultural land is threaten by a medium risk of 5-10 tonnes per ha and year. Such a spatial information about areas of high or medium soil erosion risk are crucial for the development of strategies for the protection of soils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. The success of recent land management efforts to reduce soil erosion in northern France

    NASA Astrophysics Data System (ADS)

    Frankl, Amaury; Prêtre, Vincent; Nyssen, Jan; Salvador, Pierre-Gil

    2018-02-01

    Soil erosion is an important problem in open-field agricultural landscapes. With almost no permanent vegetation in small headwater catchments, and with few physical obstacles to reduce runoff velocities, runoff concentration along linear landscape elements (plot boundaries) or thalwegs frequently causes ephemeral gullies to form - the latter reflecting the poor hydrogeomorphic condition of the land- and soilscape. To address this problem, and to remediate negative on- and off-site effects, land management efforts have multiplied over the past decades in many regions. This includes, amongst other measures, the implementation of vegetation barriers called 'fascines'. In the loess-dominated Aa River basin of northern France, where cropland accounts for 67% of the cover, we investigated the effect of fascines on ephemeral gully erosion dynamics, together with rainfall characteristics and cropland management. This was accomplished through a spatially explicit study of 269 sites prone to ephemeral gullying using a diachronic analysis of historical aerial photographs. Between 1947 and 2012, ephemeral gully densities at the scale of the Aa River basin (643 km2) varied between 0.39 and 1.31 m ha- 1 (long-term average of 0.68 m ha- 1 (with local maxima up to 9.35 m ha- 1). Densities are, however, much higher when only considering the most erosion-vulnerable municipalities (long-term average of 2.23-4.30 m ha- 1); those values should be used when comparing results from this study to other reports of ephemeral gully erosion. Fascines were introduced in 2001 and were present in 30% of the gully erosion sites by 2012. Although the presence of fascines has an effect on gully length reduction, spatial and temporal variations in gully length were mainly driven by cumulative precipitation. Measurement of sediment deposition at 29 fascines in 2016 showed that only 47% of the fascines functioned as sediment sinks. They stored on average 1.7 Mg of sediment per winter half-year, corresponding to 0.009 Mg ha- 1. The results suggest that fascines positively impact the landscape's resilience and reduce ephemeral gully erosion rates. The use of vegetation barriers such as fascines are increasingly implemented for erosion control in western Europe, but pose problems for the management of open-field landscapes.

  18. Erosion control in orchards and vineyards by a new soil and cover crop management method

    NASA Astrophysics Data System (ADS)

    Hartl, Wilfried; Guettler, Hans; Auer, Karl; Erhart, Eva

    2016-04-01

    Cover crops are the basis for an erosion-free soil management in orchards and vineyards. The soil cover provided by the foliage and the intensive root formation counteract erosion. Cover crops provide the soil microfauna with fresh organic matter which improves soil structure and porosity. The water demand of cover crops, however, may pose problems for the water supply of the trees and vines in dry seasons. Therefore it is necessary to adjust the growth of the cover crops to the actual water conditions. In years with ample precipitation cover crops may be allowed lush vegetative growth till flowering and formation of seeds. In dry years, the growth of the cover crop must be restricted to stop the competition for water, sometimes even by cutting off the cover crop roots. The course of the weather is incalculable and rainfall may be very variable during the year, so it is sometimes necessary to adust the cover crop management several times a year. A new special equipment, which can perform all the tasks necessary for the flexible cover crop management has been developed together with the agricultural machinery manufacturers Bodenwerkstatt Ertl-Auer GmbH and Güttler GmbH. The GreenManager® device consists of three modules, namely a specific type of cultivator, a harrow and a prismatic roller with seeding equipment, which can be used separately or in combination. The GreenManager® can reduce cover crops by flattening the plants in the whole row middle, by bringing down the cover crops with the harrow, or by horizontally cutting the cover crop roots a few centimetres beneath the soil surface in the central part of the row middle or in the whole row middle. These measures reduce the water competition by cover crops without generating further losses of soil moisture through intensive soil cultivation. At the same time the risk of soil erosion is kept to a minimum, because the soil remains covered by dead plant biomass. In one passage the GreenManager® can direct-drill large-grain cover crop seeds and simultaneously cut the roots of the standing vegetation in the row middle, plus at the same time sow small-grain seeds over the whole middle. The large grains are placed several centimetres deep with the cultivator, while the small grains are spread on the surface in a seedbed prepared by the prismatic roller or the harrow module. So it is secured that on rewetting of the soil the next generation of cover crops will be established straight away. In all cases, however, the soil remains covered with living or dead plant biomass, so that the erosion risk is minimized. Uppermost goals of the flexible cover crop management are the well-being of the fruit trees and vines and maximum erosion protection of the soil.

  19. Participatory assessment of soil erosion severity and performance of mitigation measured using stakeholders' workshops in Koga catchment, Ethiopia

    NASA Astrophysics Data System (ADS)

    Lakew, Walle; Baartman, Jantiene; Ritsema, Coen

    2016-04-01

    There has been little effort to systematically document the experiences and perceptions of farmers on soil erosion and soil and water conservation (SWC) even though a wealth of SWC knowledge and information exists, and there is a great demand to access it. Sustainable Land Management (SLM) has largely evolved through local traditional practices than being adopted on basis of scientific evidence. This research aimed to document the experiences of farmers on soil erosion and conservation, and to increase awareness and participation of the local community in SWC. Participatory stakeholders' workshops were undertaken at local level focused on experiences and perceptions of farmers. The workshops included group discussion and field monitoring of sheet erosion indicators, profiles of rills and gullies and impacts of SWC strategies. Systematic descriptions of the status of soil erosion, soil fertility and yield were used to assess the performances of SWC strategies. Results show that farmers were aware of the harmful effects of ongoing soil erosion and impacts of mitigation strategies on their farms. Sheet erosion was found to be the most damaging form of erosion while rill damage was critical on cereal cultivated farms on steep slopes. Farmers perceived that the desired impacts of SWC practices were attained in general: runoff and soil loss rates decreased, while soil fertility and production increased. The performance of SWC measures were found to be highly affected by the design quality and management strategies on the farm. Comparatively graded stone-faced soil bunds revealed maximum desired impacts and were liked by farmers whereas all level bunds caused water logging and traditional ditches begun incising and affected production of cereals. Bund maintenance practices were low and also distracted the stability of bunds. This calls for further improvement of design of SWC technologies and their maintenance. Further research should integrate the local knowledge for assessment of soil erosion and SWC strategies.

  20. Impacts of rainfall and inflow on rill formation and erosion processes on steep hillslopes

    NASA Astrophysics Data System (ADS)

    Tian, Pei; Xu, Xinyi; Pan, Chengzhong; Hsu, Kuolin; Yang, Tiantian

    2017-05-01

    Limited information has isolated the impacts of rainfall on rill formation and erosion on steep hillslopes where upslope inflow simultaneously exists. Field simulation experiments were conducted on steep hillslopes (26°) under rainfall (60 mm h-1), inflow (6, 12, 18, 24, 30, 36 L min-1 m-1), and combination of rainfall and inflow to explore the impacts of rainfall on rill formation, and the interaction between rainfall and inflow on soil erosion. Rainfall decreased soil infiltration rate (10%-26%) mainly due to soil crust by raindrop impact. Rainfall strengthened rill formation, which behaved in the increment in rill width (5%-26%), length (4%-22%), and depth (3%-22%), but this increment decreased as inflow rates increased. Additionally, the contribution of rainfall on rill formation was most significant at the initial stage, followed by the final stage and active period of rill development. Rainfall increased rill erosion (8%-80%) and interrill erosion (36%-64%), but it played a dominant role in increasing interrill erosion under relatively high inflow rates. The most sensitive hydrodynamic parameter to soil erosion was shear stress and stream power under inflow and 'inflow + rainfall' conditions, respectively. For the lowest inflow rate, the reduction in soil loss by interaction between rainfall and inflow accounted for 20% of total soil loss, indicating a negative interaction. However, such interaction became positive with increasing inflow rates. The contribution rate to rill erosion by the interaction was greater than that of interrill erosion under relatively low inflow rates. Our results provide a better understanding of hillslope soil erosion mechanism.

  1. [Splash erosion of black soil with different reclamation years and its relations to soil aggregates selective characteristics].

    PubMed

    Zhou, Yi-Yang; Wang, En-Heng; Chen, Xiang-Wei

    2009-10-01

    Taking the typical black soil with a reclamation history of 8, 30, and 50 years and the un-reclaimed secondary forest land as test objects, a simulation study was made on the process of splash erosion and the selective characteristics of soil aggregates under artificial rainfall condition, with the effects of reclamation on the splash erosion in black soil region analyzed. The splash amount of reclaimed black soil was evidently higher than that of un-reclaimed secondary forest land, and increased with increasing reclamation years, with a variation range of 0.95-7.06 g x cm(-1). There was a significant exponential correlation between splash amount and splash distance, and the percentages of small size water-stable aggregates increased with increasing splash distance. The critical particle size of soil aggregates for the enrichment and depletion of splash erosion was 1.0 mm. Soil water-stable aggregates larger than 2 mm and smaller than 0.25 mm in size and soil organic matter content were the main factors affecting the splash erosion characteristics of typical black soil.

  2. A simplified Excel tool for implementation of RUSLE2 in vineyards for stakeholders with limited dataset

    NASA Astrophysics Data System (ADS)

    Gomez, Jose Alfonso; Biddoccu, Marcella; Guzmán, Gema; Cavallo, Eugenio

    2016-04-01

    Analysis with simulation models is in many situations the only way to evaluate the impact of changes in soil management on soil erosion risk, and the Revised Universal Soil Loss Equation RUSLE (Renard et al. 1997, Dabney et al. 2012) remains as the most widely used. Even with their relative simplicity compared to other, more process based, erosion models proper RUSLE calibration for a given situation outside the modelling community can be challenging, especially in situations outside of those widely covered in the USA. An approach pursued by Gómez et al. (2003) to overcome this problems for calibrating RUSLE, specially the cover-management factor, C, was to build a summary model using the equations defined by the RUSLE manual (Renard et al. 1997) but considering that the basic information required to calibrate the subfactors, such as soil surface roughness and ground cover, soil moisture, … were calculated (or taken from available sources) elsewhere and added to the summary model instead of calculated by the RUSLE software. This strategy simplified the calibration process as well as the understanding and interpretation of the RUSLE parameters and model behavior by on-expert users for its application in olive orchards under a broad range of management conditions. Gómez et al. (2003) build this summary model in Excel and demonstrated the ability to calibrate RUSLE for a broad range of management conditions. Later on several studies (Vanwalleghem et al., 2011, Marin, 2013) demonstrated how this summary model successfully predicted soil losses at hillslope scale close to those determined experimentally. Vines are one of the most extended tree crops covering a wide range of environmental and management conditions, and conceptually present in terms of soil conservation several analogies with olives especially in relation to soil management (Gomez et al., 2011). In vine growing areas, besides topographic and rainfall characteristics, the soil management practices adopted in vineyards could favor erosion. Cultivation with rows running up-and-down the slope on sloping vineyards, maintenance of bare soil, compaction due to high traffic of machinery are some of the vineyard's management practices that expose soil to degradation, favoring runoff and soil erosion processes. On the other side, the adoption of grass cover in vineyards has a fundamental role in soil protection against erosion, in case of high rainfall intensity and erosivity. This communication presents a preliminary version of a summary model to calibrate RUSLE for vines under different soil management options following an approach analogous to that used by Gómez et al. (2003) for olive orchards in a simplified situation of an homogeneous hillslope, including the latest RUSLE conceptual updates (RUSLE2, Dabney et al., 2012). It also presents preliminary results for different values of the C factor under different soil management and environmental conditions, as well as its impact on predicted soil losses in the long term in vineyards located in Southern Spain and N Italy. Keywords: vines, erosion, soil management, RUSLE, model. References Dabney, S.M. Yoder, D.C. Yoder, Vieira, D.A.N. 2012. The application of the Revised Universal Soil Loss Equation, Version 2, to evaluate the impacts of alternative climate change scenarios on runoff and sediment yield. Journal of Soil and Water Conservation 67: 343 - 353. Gómez, J.A., Battany, M., Renschler, C.S., Fereres, E. 2003. Evaluating the impact of soil management on soil loss in olive orchards. Soil Use Manage. 19: 127- 134. Gómez, J.A., Llewellyn, C., Basch, G, Sutton, P.B., Dyson, J.S., Jones, C.A. 2011. The effects of cover crops and conventional tillage on soil and runoff loss in vineyards and olive groves in several Mediterranean countries. Soil Use and Management 27 502 - 514 Marín, V. 2013. Interfaz gráfica para la valoración de la pérdida de suelo en parcelas de olivar. Final Degree project. University of Cordoba. Vanwalleghem, T., Infante, J.A., González, M., Soto, D., Gómez, J.A. 2011. Quantifying the effect of historical soil management on soil erosion rates in Mediterranean olive orchards. Agriculture, Ecosystems & Environment 142: 341-351.

  3. Climate change impacts on soil erosion in the Great Lakes Region

    USDA-ARS?s Scientific Manuscript database

    Quantifying changes in potential soil erosion under projections of changing climate is important for the sustainable management of land resources, especially for regions dominated by agricultural land use, as soil loss estimates will be helpful in identifying areas susceptible to erosion, targeting ...

  4. Gaining insights into interrill soil erosion processes using rare earth element tracers

    USDA-ARS?s Scientific Manuscript database

    Increasing interest in developing process-based erosion models requires better understanding of the relationships among soil detachment, transportation, and deposition. The objectives are to 1) identify the limiting process between soil detachment and sediment transport for interrill erosion, 2) und...

  5. Wind erosion reduces soil organic carbon sequestration falsely indicating ineffective management practices

    NASA Astrophysics Data System (ADS)

    Chappell, Adrian; Baldock, Jeffrey A.

    2016-09-01

    Improved management of agricultural land has the potential to reduce greenhouse gas emissions and to reduce atmospheric CO2 via soil carbon sequestration. However, SOC stocks are reduced by soil erosion which is commonly omitted from calculations of crop production, C cycling, C sequestration and C accounting. We used fields from the wind eroded dryland cropping region of Western Australia to demonstrate the global implications for C sequestration and C accounting of omitting soil erosion. For the fields we previously estimated mean net (1950s-1990) soil erosion of 1.2 ± 1.0 t ha-1 y-1. The mean net (1990-2013) soil erosion increased by nearly four times to 4.4 ± 2.1 t ha-1 y-1. Conservation agriculture has evidently not reduced wind erosion in this region. The mean net (1990-2013) SOC erosion was up to 0.2 t C ha-1 y-1 across all sampled fields and similar to measured sequestration rates in the region (up to 0.5 t C ha-1 y-1; 10 years) for many management practices recommended for building SOC stocks. The minimum detectable change (MDC; 10 years) of SOC without erosion was up to 0.2 t C ha-1 y-1 whilst the MDC of SOC with erosion was up to 0.4 t C ha-1 y-1. These results illustrate the generally applicable outcome: (i) if SOC erosion is equal to (or greater than) the increase in SOC due to management practices, the change will not be detectable (or a loss will be evident); (ii) without including soil erosion in SOC sequestration calculations, the monitoring of SOC stocks will lead to, at best the inability to detect change and, at worst the false impression that management practices have failed to store SOC. Furthermore, continued omission of soil erosion in crop production, C accounting and C sequestration will most likely undermine confidence in policy designed to encourage adoption of C farming and the attendant benefits for soil stewardship and food security.

  6. Characteristics of pulsed runoff-erosion events under typical rainstorms in a small watershed on the Loess Plateau of China.

    PubMed

    Wu, Lei; Jiang, Jun; Li, Gou-Xia; Ma, Xiao-Yi

    2018-02-27

    The pulsed events of rainstorm erosion on the Loess Plateau are well-known, but little information is available concerning the characteristics of superficial soil erosion processes caused by heavy rainstorms at the watershed scale. This study statistically evaluated characteristics of pulsed runoff-erosion events based on 17 observed rainstorms from 1997-2010 in a small loess watershed on the Loess Plateau of China. Results show that: 1) Rainfall is the fundamental driving force of soil erosion on hillslopes, but the correlations of rainfall-runoff and rainfall-sediment in different rainstorms are often scattered due to infiltration-excess runoff and soil conservation measures. 2) Relationships between runoff and sediment for each rainstorm event can be regressed by linear, power, logarithmic and exponential functions. Cluster Analysis is helpful in classifying runoff-erosion events and formulating soil conservation strategies for rainstorm erosion. 3) Response characteristics of sediment yield are different in different levels of pulsed runoff-erosion events. Affected by rainfall intensity and duration, large changes may occur in the interactions between flow and sediment for different flood events. Results provide new insights into runoff-erosion processes and will assist soil conservation planning in the loess hilly region.

  7. Depth and areal extent of sheet and rill erosion based on radionuclides in soils and suspended sediment

    NASA Astrophysics Data System (ADS)

    Whiting, Peter J.; Bonniwell, E. Chris; Matisoff, Gerald

    2001-12-01

    Sheetwash and rilling are two important mechanisms of soil erosion by runoff. The relative contribution of each mechanism has been a vexing question because measuring thin sheet erosion is difficult. Fortuitously, various fallout radionuclides have distinct distributions in the soil column; thus, different depths of erosion produce suspended sediment with unique radionuclide signatures. Those signatures can be used to estimate the depth and areal extent of sheet and rill erosion. We developed a model to execute multiple mass balances on soil and radionuclides to quantify these erosion mechanisms. Radionuclide activities (7Be, 137Cs, 210Pb) in the soil of a 6.03 ha agricultural field near Treynor, Iowa, and in suspended sediment washed off the field during thunderstorm runoff were determined by gamma spectroscopy. Using the model, we examined 15.5 million possible combinations of the depth and areal extent of rill and sheet erosion. The best solution to the mass balances corresponded to rills eroding 0.38% of the basin to a depth of 35 mm and sheetwash eroding 37% of the basin to a depth of 0.012 mm. Rill erosion produced 29 times more sediment than sheet erosion.

  8. Projected climate change impacts in rainfall erosivity over Brazil.

    PubMed

    Almagro, André; Oliveira, Paulo Tarso S; Nearing, Mark A; Hagemann, Stefan

    2017-08-15

    The impacts of climate change on soil erosion may bring serious economic, social and environmental problems. However, few studies have investigated these impacts on continental scales. Here we assessed the influence of climate change on rainfall erosivity across Brazil. We used observed rainfall data and downscaled climate model output based on Hadley Center Global Environment Model version 2 (HadGEM2-ES) and Model for Interdisciplinary Research On Climate version 5 (MIROC5), forced by Representative Concentration Pathway 4.5 and 8.5, to estimate and map rainfall erosivity and its projected changes across Brazil. We estimated mean values of 10,437 mm ha -1  h -1 year -1 for observed data (1980-2013) and 10,089 MJ mm ha -1  h -1 year -1 and 10,585 MJ mm ha -1  h -1 year -1 for HadGEM2-ES and MIROC5, respectively (1961-2005). Our analysis suggests that the most affected regions, with projected rainfall erosivity increases ranging up to 109% in the period 2007-2040, are northeastern and southern Brazil. Future decreases of as much as -71% in the 2071-2099 period were estimated for the southeastern, central and northwestern parts of the country. Our results provide an overview of rainfall erosivity in Brazil that may be useful for planning soil and water conservation, and for promoting water and food security.

  9. Reassessment of soil erosion on the Chinese loess plateau: were rates overestimated?

    NASA Astrophysics Data System (ADS)

    Zhao, Jianlin; Govers, Gerard

    2014-05-01

    Several studies have estimated regional soil erosion rates (rill and interrill erosion) on the Chinese loess plateau using an erosion model such as the RUSLE (e.g. Fu et al., 2011; Sun et al., 2013). However, the question may be asked whether such estimates are realistic: studies have shown that the use of models for large areas may lead to significant overestimations (Quinton et al., 2010). In this study, soil erosion rates on the Chinese loess plateau were reevaluated by using field measured soil erosion data from erosion plots (216 plots and 1380 plot years) in combination with a careful extrapolation procedure. Data analysis showed that the relationship between slope and erosion rate on arable land could be well described by erosion-slope relationships reported in the literature (Nearing, 1997). The increase of average erosion rate with slope length was clearly degressive, as could be expected from earlier research. However, for plots with permanent vegetation (grassland, shrub, forest) no relationship was found between erosion rates and slope gradient and/or slope length. This is important, as it implies that spatial variations of erosion on permanently vegetated areas cannot be modeled using topographical functions derived from observations on arable land. Application of relationships developed for arable land will lead to a significant overestimation of soil erosion rates. Based on our analysis we estimate the total soil erosion rate in the Chinese Loess plateau averages ca. 6.78 t ha-1 yr-1 for the whole loess plateau, resulting in a total sediment mobilisation of ca. 0.38 Gt yr-1. Erosion rates on arable land average ca. 15.10 t ha-1 yr-1. These estimates are 2 to 3 times lower than previously published estimates. The main reason why previous estimates are likely to be too high is that the values of (R)USLE parameters such as K, P and LS factor were overestimated. Overestimations of the K factor are due to the reliance of nomograph calculations, resulting in significantly higher erodibility values than those obtained from field data. Overestimations of the P and LS factors are mainly due to the fact that erosion control measures such as terracing are not accounted for and that erroneous scaling functions are used on permanently vegetated areas. Our findings have not only important implications with respect to the mobilization of sediments by agricultural erosion: we will also need to reassess the impact of erosion on biogeochemicaly cycling and crop productivity. Fu, B., Liu, Y., Lü, Y., He, C., Zeng, Y., & Wu, B. (2011). Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecological Complexity, 8(4), 284-293. doi:10.1016/j.ecocom.2011.07.003 Nearing, M. A. (1997). A single, continuous function for slope steepness influence on soil loss. Soil Science Society of American Journal, 61(3), 917-919. Quinton, J. N., Govers, G., Van Oost, K., & Bardgett, R. D. (2010). The impact of agricultural soil erosion on biogeochemical cycling. Nature Geoscience, 3(5), 311-314. doi:10.1038/ngeo838 Sun, W., Shao, Q., & Liu, J. (2013). Soil erosion and its response to the changes of precipitation and vegetation cover on the Loess Plateau. Journal of Geographical Sciences, 23(6), 1091-1106. doi:10.1007/s11442-013-1065-z

  10. Reabilitation of degraded area by erosion, using soil bioengineering techniques in Bacanga river basin, Sao Luis City - Maranhao State, Brazil.

    NASA Astrophysics Data System (ADS)

    Teixeira Guerra, A. J.; Rodrigues Bezerra, J. F.; da Mota Lima, L. D.; Silva Mendonça, J. K.; Vieira Souza, U. D.; Teixeira Guerra, T.

    2009-04-01

    The aim of this paper is to assess the stages of rehabilitation of a degraded site by erosion, in Salina/Sacavém district, São Luís City, considering geomorphologic characteristics and soil bioengineering techniques. This technique has been applied in different situations to rehabilitate degraded areas, with positive results from the use of biodegradable materials (e.g. vegetal fibres, wooden stakes and re-vegetation). These techniques stabilize the soil at low cost and improve the environment. Bioengineering involves the planned and strategic application of selected materials, involving biodegradable materials, often in combination with 'hard engineering' structures constructed from stone, concrete and steel. The settlement of São Luís was established in 1612 and has evolved in distinct phases. Rapid urban growth was associated with industrialization in the second half of the 18th Century. Rapid population and urban growth has intensified problems, compounded by poor planning and improper soil use. São Luís, like many other Brazilian cities, has experienced rapid population growth in recent decades, which has created a series of socio-economic and environmental problems, including accelerated soil erosion. Sacavém is one of these communities where natural and human factors contribute to the severe gully erosion. The local lithology is mainly Tertiary sandstones and, to a lesser extent, shales, argillites and siltstones, all of which belong to the Barreiras Formation. Weathering on these rocks produces erodible soils, including lithosols, latosols, concretionary red/yellow clay soils and concretionary plinthosols. Thus, erodible soils and regolith are subject to high erosion rates, especially on steeper slopes subject to additional human interventions. Furthermore, although regional slopes are quite gentle, there is localized high relative relief. Sacavém vegetation, in the gullied area, consists of brushwood. Secondary mixed forest and brushwood are the dominant vegetal cover adjacent to the urban gullies. The local climate is humid tropical, with average annual temperatures of 26°C, reaching higher values in October to December and lower from April to June. Rainfall distribution throughout the year is irregular, marked by two very distinct seasons (rainy and dry). The highly seasonal erosive rains incise a complex series of soil erosion landforms, mainly gullies in this area. The following procedures have been carried out: fieldwork with monitoring of gully head erosion; Environmental Education Program; handcraft workshop regarding the prodution of geotextiles from Buriti fiber. The rehabilitation of this degraded site, follows these stages: 1. Acquisition of equipment and materials; 2. Contracting workers; 3. Reshaping selected gully walls; 4. Adding organic palm materials to the topsoil and ~30 kg of grass seeds; 5. Application of geotextile anchored on the ground by using wooden stakes; 6. Maintenance work with photographic records; 7. Photo comparison to measure the vegetal cover percentage, with the aid of geoprocessing software. Some of the gully walls presented steep slopes, around 90 degrees, and therefore, it was necessary to reshape them for the application of soil bioengineering techniques. It was selected a sample area of 2.000 m2 to be rehabilitated. The knowledge of soil and geomorphological characteristics was essential to understand surface runoff, considering the direction of water flows. Due to the difficulties in diverting the flows, which would require more extensive engineering works, the channel was maintained, and the base of the slopes was strengthened to support the flows. In the upper part of this area, which had ~8° slope angle, contour lines were surveyed and barriers of wooden stakes were used to retard runoff velocity from adjacent vegetated slopes. Some slopes in this part had a 45° slope angle, due to the local topography. However, this angle is considered too steep for the application of palm-mats. In some parts of gully, work was completed to reshape the gullies and construct the ~12 m high terraces using the gully material. Tractor work was impeded, because on the second terrace the tractor had difficulty in working, because of the high sand content, which made the slope unstable. These terraces are crossed by a flow convergence area, which was formed by men inserting sand bags, decomposing palm leaves and grass seeds, to form a vegetated channel after grass growth. Key-words: Rehabilitation, gully, geotextile, soil bioengineering.

  11. Differences in hydrological responses for different vegetation types on a steep slope on the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Duan, Liangxia; Huang, Mingbin; Zhang, Luodan

    2016-06-01

    Extensive vegetation restoration practices have been implemented to control soil erosion on the Loess Plateau, China. However, no strict guidelines are available to determine the most suitable plant species for vegetation restoration within a given area. The objective of this study was to quantify the changes of each component (soil water storage, surface runoff, and actual evapotranspiration) of a water balance model and soil loss over time under eight different vegetation types, and to further determine the optimal vegetation type for soil and water conservation and sustainable ecological restoration on the steep slopes (>25°) on the Loess Plateau. The results indicated that vegetation type substantially affected soil water storage and that the greatest soil water storage in both the shallow (0-2 m) and the deep soil layers (2-5 m) occurred under Bothriochloa ischaemum L. (BOI). Vegetation type also affected surface runoff and soil losses. The most effective vegetation types for reducing soil erosion were BOI and Sea-buckthorn (Hippophae rhamnoides L.), while Chinese pine (Pinus tabulaeformis Carr.) and Chinese pine + Black locust (Robinia pseudoacacia L.) were the most ineffective types. Soil water dynamics and evapotranspiration varied considerably among the different vegetation types. A soil water surplus was only found under BOI, while insufficient water replenishment existed under the other seven vegetation types. The higher water consumption rates of the seven vegetation types could result in soil desiccation, which could lead to severe water stresses that would adversely affect plant growth. This study suggested that both vegetation type and its effect on controlling soil erosion should be considered when implementing vegetation restoration and that BOI should be highly recommended for vegetation restoration on the steep slopes of the Loess Plateau. A similar approach to the one used in this study could be applied to other regions of the world confronted by the same problems of water scarcity along with the need for vegetation restoration.

  12. Remontant erosion in desert soils of Tamaulipas, México.

    NASA Astrophysics Data System (ADS)

    Rivera-Ortiz, P.; Andrade-Limas, E.; De la Garza-Requena, F.; Castro-Meza, B.

    2012-04-01

    REMONTANT EROSION IN DESERT SOILS OF TAMAULIPAS MÉXICO Rivera-Ortiz, P.1; Andrade-Limas, E.1; De la Garza-Requena, F.1 and Castro-Meza, B.1 1Facultad de Ingeniería y Ciencias, Universidad Autónoma de Tamaulipas, México The degradation of soil reduces the capacity of soils to produce food and sustain life. Erosion is one of the main types of soil degradation. Hydric erosion of remontant type can occur in soils located close to the channel of a river through the expansion of a gully that begins as a fluvial incision over the ravine of one side of the river. The incision takes place at the point of greatest flow of runoff from areas adjacent to empty into the river. The depth of the incision causes the growth of the gully by collapse to move their heads back, upstream. The soil loss by remontant erosion on land use in agriculture and livestock was estimated in order to understand the evolution of gullies formed by this type of erosion. Through measurements on satellite images and GPS (Global Positioning System) two gullies, developed on alluvial soils which drain into the river Chihue, were studied. The investigation was conducted during 2003 to 2010 period in the municipality of Jaumave, Tamaulipas, in northeastern Mexico. Soil loss in gullies developed by remontant erosion was large and it was caused by soil collapse and drag of soil on the headers. The estimated loss of soil by remontant erosion was 3500 t in the deeper gully during 2010 and nearly 1200 t per year in the period 2003-2009. New sections of gully of about 20 m length, with more than 3 m deep and up to 13 m wide, were formed each year. This degradation has significantly reduced the productive surface of soil that for many years has been used to the cultivation of maize (Zea mays) and beans (Phaseolus vulgaris) as well as pasture production.

  13. A new perspective on soil erosion: exploring a thermodynamic approach in a small area of the River Inn catchment

    NASA Astrophysics Data System (ADS)

    Reid, Lucas; Scherer, Ulrike; Zehe, Erwin

    2016-04-01

    Soil erosion modeling has always struggled with compensating for the difference in time and spatial scale between model, data and the actual processes involved. This is especially the case with non-event based long-term models based on the Universal Soil Loss Equation (USLE), yet USLE based soil erosion models are among the most common and widely used for they have rather low data requirements and can be applied to large areas. But the majority of mass from soil erosion is eroded within short periods of times during heavy rain events, often within minutes or hours. Advancements of the USLE (eg. the Modified Universal Soil Loss Equation, MUSLE) allow for a daily time step, but still apply the same empirical methods derived from the USLE. And to improve the actual quantification of sediment input into rivers soil erosion models are often combined with a Sediment Delivery Ratio (SDR) to get results within the range of measurements. This is still a viable approach for many applications, yet it leaves much to be desired in terms of understanding and reproducing the processes behind soil erosion and sediment input into rivers. That's why, instead of refining and retuning the existing methods, we explore a more comprehensive, physically consistent description on soil erosion. The idea is to describe soil erosion as a dissipative process (Kleidon et al., 2013) and test it in a small sub-basin of the River Inn catchment area in the pre-Alpine foothills. We then compare the results to sediment load measurements from the sub-basin and discuss the advantages and issues with the application of such an approach.

  14. Advances in modeling soil erosion after disturbance on rangelands

    USDA-ARS?s Scientific Manuscript database

    Research has been undertaken to develop process based models that predict soil erosion rate after disturbance on rangelands. In these models soil detachment is predicted as a combination of multiple erosion processes, rain splash and thin sheet flow (splash and sheet) detachment and concentrated flo...

  15. Pore water effects on soil erodibility and its implication in ephemeral gully erosion modeling

    USDA-ARS?s Scientific Manuscript database

    Ephemeral gully erosion is the main source of sediment from the agricultural landscape, unfortunately, it has been overlooked in traditional soil erosion assessment. Field observations, and subsequent support from controlled lab experiments, have shown the linkage between transient soil hydraulic co...

  16. Effects of soil surface roughness on interrill erosion processes and sediment particle size distribution

    USDA-ARS?s Scientific Manuscript database

    Soil surface roughness significantly impacts runoff and erosion under rainfall. Few previous studies on runoff generation focused on the effects of soil surface roughness on the sediment particle size distribution (PSD), which greatly affects interrill erosion and sedimentation processes. To address...

  17. Agriculture’s Soil Conservation Programs Miss Full Potential in the Fight against Soil Erosion.

    DTIC Science & Technology

    1983-11-28

    Soil Loss Equation ( USLE ) and Wind Erosion Equation can be used with a reasonable degree of accuracy. It is the intention of ASCS to expand VC/SL to...HD-R37 495 AGRICULTURE’S SOIL CONSERVATION PROGRAMS MISS FULL i/i POTENTIAL IN THE FIGHT.(U) GENERAL ACCOUNTING OFFICE WASHINGTON DC RESOURCES...GENERAL Report To The Congress OF THE UNITED STATES Agriculture’s Soil Conservation Programs Miss Full Potential In The Fight Against Soil Erosion

  18. Interaction of vesicular-arbuscular mycorrhizal fungi with erosion in an oxisol.

    PubMed

    Habte, M; Fox, R L; Aziz, T; El-Swaify, S A

    1988-04-01

    The development of vesicular-arbuscular mycorrhizal (VAM) symbiosis was monitored in Leucaena leucocephala grown in an Oxisol subjected to incremental simulated erosion. The density of VAM infective propagules in the soil diminished as the level of simulated erosion (removal of surface soil) was increased from 0 to 50 cm. The level of infection on L. leucocephala roots observed at harvest was not significantly influenced by simulated erosion unless removal of surface soil exceeded 25 cm. Inoculation of this soil and the uneroded soil with Glomus aggregatum enhanced the early onset of infection but did not significantly influence the level of infection observed at the time of harvest. Simulated erosion in excess of 7.5 cm of surface soil removal significantly delayed the development of VAM effectiveness monitored in terms of the P status of L. leucocephala subleaflets and also curtailed the level of maximum effectiveness observed. Decreases in VAM effectiveness were significantly correlated with decreases in soil chemical constituents. However, VAM effectiveness in a soil subjected to 30 cm of surface soil removal was not restored to a significant extent unless the soil was amended with P, even though other nutrients were restored to sufficiency levels. Our results demonstrate that the development of VAM effectiveness is the phase of the VAM symbiosis that is most adversely influenced by simulated erosion and that this effect appears to be caused primarily by insufficient P in the soil solution.

  19. Quantification and site-specification of the support practice factor when mapping soil erosion risk associated with olive plantations in the Mediterranean island of Crete.

    PubMed

    Karydas, Christos G; Sekuloska, Tijana; Silleos, Georgios N

    2009-02-01

    Due to inappropriate agricultural management practices, soil erosion is becoming one of the most dangerous forms of soil degradation in many olive farming areas in the Mediterranean region, leading to significant decrease of soil fertility and yield. In order to prevent further soil degradation, proper measures are necessary to be locally implemented. In this perspective, an increase in the spatial accuracy of remote sensing datasets and advanced image analysis are significant tools necessary and efficient for mapping soil erosion risk on a fine scale. In this study, the Revised Universal Soil Loss Equation (RUSLE) was implemented in the spatial domain using GIS, while a very high resolution satellite image, namely a QuickBird image, was used for deriving cover management (C) and support practice (P) factors, in order to map the risk of soil erosion in Kolymvari, a typical olive farming area in the island of Crete, Greece. The results comprised a risk map of soil erosion when P factor was taken uniform (conventional approach) and a risk map when P factor was quantified site-specifically using object-oriented image analysis. The results showed that the QuickBird image was necessary in order to achieve site-specificity of the P factor and therefore to support fine scale mapping of soil erosion risk in an olive cultivation area, such as the one of Kolymvari in Crete. Increasing the accuracy of the QB image classification will further improve the resulted soil erosion mapping.

  20. Participatory assessment of soil erosion severity and performance of mitigation measures using stakeholder workshops in Koga catchment, Ethiopia.

    PubMed

    Jemberu, Walle; Baartman, Jantiene E M; Fleskens, Luuk; Ritsema, Coen J

    2018-02-01

    Farmers possess a wealth of knowledge regarding soil erosion and soil and water conservation (SWC), and there is a great demand to access it. However, there has been little effort to systematically document farmers' experiences and perceptions of SWC measures. Sustainable Land Management (SLM) has largely evolved through local traditional practices rather than adoption based on scientific evidence. This research aimed to assess soil erosion and performance of different SWC measures from the farmers' perspective by documenting their perceptions and experiences in Koga catchment, Ethiopia. To this aim, workshops were organised in three sub-catchments differing in slopes and SWC measures. Workshops included group discussions and field monitoring of erosion indicators and systematically describing the status of soil erosion, soil fertility and yield to assess the performance of SWC measures. Results show that farmers are aware of the harmful effects of ongoing soil erosion and of the impacts of mitigation measures on their farms. Sheet erosion was found to be the most widespread form of erosion while rill damage was critical on plots cultivated to cereals on steep slopes. The average rill erosion rates were 24.2 and 47.3 t/ha/y in treated and untreated farmlands, respectively. SWC reduced rill erosion on average by more than 48%. However, the impacts of SWC measures varied significantly between sub-watersheds, and farmers believed that SWC measures did not prevent erosion completely. Comparatively, graded stone-faced soil bunds revealed maximum desired impacts and were most appreciated by farmers, whereas level bunds caused water logging. Most traditional ditches were highly graded and begun incising and affected production of cereals. Despite the semi-quantitative nature of the methodology, using farmers' perceptions and experiences to document land degradation and the impacts of SWC measures is crucial as they are the daily users of the land and therefore directly affecting the success or failure of SWC measures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Process based modelling of soil organic carbon redistribution on landscape scale

    NASA Astrophysics Data System (ADS)

    Schindewolf, Marcus; Seher, Wiebke; Amorim, Amorim S. S.; Maeso, Daniel L.; Jürgen, Schmidt

    2014-05-01

    Recent studies have pointed out the great importance of erosion processes in global carbon cycling. Continuous erosion leads to a massive loss of top soils including the loss of organic carbon accumulated over long time in the soil humus fraction. Lal (2003) estimates that 20% of the organic carbon eroded with top soils is emitted into atmosphere, due to aggregate breakdown and carbon mineralization during transport by surface runoff. Furthermore soil erosion causes a progressive decrease of natural soil fertility, since cation exchange capacity is associated with organic colloids. As a consequence the ability of soils to accumulate organic carbon is reduced proportionately to the drop in soil productivity. The colluvial organic carbon might be protected from further degradation depending on the depth of the colluvial cover and local decomposing conditions. Some colluvial sites can act as long-term sinks for organic carbon. The erosional transport of organic carbon may have an effect on the global carbon budget, however, it is uncertain, whether erosion is a sink or a source for carbon in the atmosphere. Another part of eroded soils and organic carbon will enter surface water bodies and might be transported over long distances. These sediments might be deposited in the riparian zones of river networks. Erosional losses of organic carbon will not pass over into atmosphere for the most part. But soil erosion limits substantially the potential of soils to sequester atmospheric CO2 by generating humus. The present study refers to lateral carbon flux modelling on landscape scale using the process based EROSION 3D soil loss simulation model, using existing parameter values. The selective nature of soil erosion results in a preferentially transport of fine particles while less carbonic larger particles remain on site. Consequently organic carbon is enriched in the eroded sediment compared to the origin soil. For this reason it is essential that EROSION 3D provides the grain size distribution (clay, silt and sand) of the transported sediment. A test slope is modeled covering certain land use and soil management scenarios referring to different rainfall events. Results allow first insights on carbon loss and depletion on sediment delivery areas as well as carbon gains and enrichments on deposition areas on landscape scale. Lal, R. (2003). Soil erosion and the global carbon budget. Environment International vol. 29: 437-450.

  2. Using Unmanned Aerial Vehicle (UAV) for spatio-temporal monitoring of soil erosion and roughness in Chania, Crete, Greece

    NASA Astrophysics Data System (ADS)

    Alexakis, Dimitrios; Seiradakis, Kostas; Tsanis, Ioannis

    2016-04-01

    This article presents a remote sensing approach for spatio-temporal monitoring of both soil erosion and roughness using an Unmanned Aerial Vehicle (UAV). Soil erosion by water is commonly known as one of the main reasons for land degradation. Gully erosion causes considerable soil loss and soil degradation. Furthermore, quantification of soil roughness (irregularities of the soil surface due to soil texture) is important and affects surface storage and infiltration. Soil roughness is one of the most susceptible to variation in time and space characteristics and depends on different parameters such as cultivation practices and soil aggregation. A UAV equipped with a digital camera was employed to monitor soil in terms of erosion and roughness in two different study areas in Chania, Crete, Greece. The UAV followed predicted flight paths computed by the relevant flight planning software. The photogrammetric image processing enabled the development of sophisticated Digital Terrain Models (DTMs) and ortho-image mosaics with very high resolution on a sub-decimeter level. The DTMs were developed using photogrammetric processing of more than 500 images acquired with the UAV from different heights above the ground level. As the geomorphic formations can be observed from above using UAVs, shadowing effects do not generally occur and the generated point clouds have very homogeneous and high point densities. The DTMs generated from UAV were compared in terms of vertical absolute accuracies with a Global Navigation Satellite System (GNSS) survey. The developed data products were used for quantifying gully erosion and soil roughness in 3D as well as for the analysis of the surrounding areas. The significant elevation changes from multi-temporal UAV elevation data were used for estimating diachronically soil loss and sediment delivery without installing sediment traps. Concerning roughness, statistical indicators of surface elevation point measurements were estimated and various parameters such as standard deviation of DTM, deviation of residual and standard deviation of prominence were calculated directly from the extracted DTM. Sophisticated statistical filters and elevation indices were developed to quantify both soil erosion and roughness. The applied methodology for monitoring both soil erosion and roughness provides an optimum way of reducing the existing gap between field scale and satellite scale. Keywords : UAV, soil, erosion, roughness, DTM

  3. Effects of Revegetation on Soil Organic Carbon Storage and Erosion-Induced Carbon Loss under Extreme Rainstorms in the Hill and Gully Region of the Loess Plateau

    PubMed Central

    Li, Yujin; Jiao, Juying; Wang, Zhijie; Cao, Binting; Wei, Yanhong; Hu, Shu

    2016-01-01

    Background: The Loess Plateau, an ecologically vulnerable region, has long been suffering from serious soil erosion. Revegetation has been implemented to control soil erosion and improve ecosystems in the Loess Plateau region through a series of ecological recovery programs. However, the increasing atmospheric CO2 as a result of human intervention is affecting the climate by global warming, resulting in the greater frequency and intensity of extreme weather events, such as storms that may weaken the effectiveness of revegetation and cause severe soil erosion. Most research to date has evaluated the effectiveness of revegetation on soil properties and soil erosion of different land use or vegetation types. Here, we study the effect of revegetation on soil organic carbon (SOC) storage and erosion-induced carbon loss related to different plant communities, particularly under extreme rainstorm events. Materials and methods: The erosion-pin method was used to quantify soil erosion, and soil samples were taken at soil depths of 0–5 cm, 5–10 cm and 10–20 cm to determine the SOC content for 13 typical hillside revegetation communities in the year of 2013, which had the highest rainfall with broad range, long duration and high intensity since 1945, in the Yanhe watershed. Results and discussion: The SOC concentrations of all plant communities increased with soil depth when compared with slope cropland, and significant increases (p < 0.05) were observed for most shrub and forest communities, particularly for natural ones. Taking the natural secondary forest community as reference (i.e., soil loss and SOC loss were both 1.0), the relative soil loss and SOC loss of the other 12 plant communities in 2013 ranged from 1.5 to 9.4 and 0.30 to 1.73, respectively. Natural shrub and forest communities showed greater resistance to rainstorm erosion than grassland communities. The natural grassland communities with lower SOC content produced lower SOC loss even with higher soil loss, natural secondary forest communities produced higher SOC loss, primarily because of their higher SOC content, and the artificial R. pseudoacacia community with greater soil loss produced higher SOC loss. Conclusions: These results indicate that natural revegetation is more effective in enhancing SOC storage and reducing soil erosion than artificial vegetative recovery on hillsides. However, natural secondary forest communities, with higher SOC content and storage capacity, may also contribute to larger SOC loss under extreme rainstorms. PMID:27136573

  4. Effects of Revegetation on Soil Organic Carbon Storage and Erosion-Induced Carbon Loss under Extreme Rainstorms in the Hill and Gully Region of the Loess Plateau.

    PubMed

    Li, Yujin; Jiao, Juying; Wang, Zhijie; Cao, Binting; Wei, Yanhong; Hu, Shu

    2016-04-29

    The Loess Plateau, an ecologically vulnerable region, has long been suffering from serious soil erosion. Revegetation has been implemented to control soil erosion and improve ecosystems in the Loess Plateau region through a series of ecological recovery programs. However, the increasing atmospheric CO₂ as a result of human intervention is affecting the climate by global warming, resulting in the greater frequency and intensity of extreme weather events, such as storms that may weaken the effectiveness of revegetation and cause severe soil erosion. Most research to date has evaluated the effectiveness of revegetation on soil properties and soil erosion of different land use or vegetation types. Here, we study the effect of revegetation on soil organic carbon (SOC) storage and erosion-induced carbon loss related to different plant communities, particularly under extreme rainstorm events. The erosion-pin method was used to quantify soil erosion, and soil samples were taken at soil depths of 0-5 cm, 5-10 cm and 10-20 cm to determine the SOC content for 13 typical hillside revegetation communities in the year of 2013, which had the highest rainfall with broad range, long duration and high intensity since 1945, in the Yanhe watershed. The SOC concentrations of all plant communities increased with soil depth when compared with slope cropland, and significant increases (p < 0.05) were observed for most shrub and forest communities, particularly for natural ones. Taking the natural secondary forest community as reference (i.e., soil loss and SOC loss were both 1.0), the relative soil loss and SOC loss of the other 12 plant communities in 2013 ranged from 1.5 to 9.4 and 0.30 to 1.73, respectively. Natural shrub and forest communities showed greater resistance to rainstorm erosion than grassland communities. The natural grassland communities with lower SOC content produced lower SOC loss even with higher soil loss, natural secondary forest communities produced higher SOC loss, primarily because of their higher SOC content, and the artificial R. pseudoacacia community with greater soil loss produced higher SOC loss. These results indicate that natural revegetation is more effective in enhancing SOC storage and reducing soil erosion than artificial vegetative recovery on hillsides. However, natural secondary forest communities, with higher SOC content and storage capacity, may also contribute to larger SOC loss under extreme rainstorms.

  5. Quantification Of Erosion Rates Of Agriculturally Used Soils By Artificial

    NASA Astrophysics Data System (ADS)

    Jha, Abhinand

    2010-05-01

    0.0.1 1. Introduction to soil erosion measurement by radionuclides Soil erosion by water, wind and tillage affects both agriculture and the natural environment. Studying this phenomenon would be one of the advancements in science. Soil erosion occurs worldwide and since the last two decades it has been a main topic of discussion all over the world. The use of environmental radionuclides such as 90Sr, 137Cs to study medium term soil erosion (40 yrs) started in the early 1990's. Using these new techniques better knowledge about erosion can be gained and this knowledge can be implemented for erosion risk management. The erosion and sedimentation study by using man-made and natural radioisotopes is a key technique, which has developed over the past 30 years. Fallout 137Cs and Cosmogenic 7Be are radionuclides that have been used to provide independent measurements of soil-erosion and sediment-deposition rates and patterns [1] [2] [3] [4]. Erosion measurements using radionuclides 137Cs, 7Be Caesium-137 from atmospheric nuclear-weapons tests in the 1950s and 1960s (Fig.1) is a unique tracer of erosion and sedimentation, since there are no natural sources of 137Cs. Unique events such as the Chernobyl accident in April 1986 caused regional dispersal of 137Cs that affects the total global deposition budget. This yearly pattern of fallout can be used to develop a chronology of deposition horizons in lakes, reservoirs, and floodplains. 137Cs can be easily measured by gamma spectroscopy. Using 137Cs is a fast and cheap method to study erosion-deposition processes compared to the traditional methods like silt bags. PIC Figure 1: Global 137Cs fallout (Modified from SAAS Bulletin 353, Part E, DDR, 1986) When 137Cs, 7Be reach the soil surface by wet and dry deposition, they are quickly and strongly adsorbed by ion exchange and are essentially non exchangeable in most environments. Each radionuclide is distributed differently in the soil because of differences in half-lives (30 yrs for 137Cs and 53 days for 7Be), delivery rates, delivery histories, and land use (Fig. 2). An Physical processes, such as water and wind, are the dominant factors moving 137Cs, 7Be tagged soil particles within and between landscape compartments. PIC Figure 2: Generalized sketch illustrating the distributions of 137Cs and 7Be in tilled and undisturbed soils 2 Erosion study at Young Moraine regions of Germany Recently, a study had been performed to evaluate erosion rates in a typical pattern of landscapes in the Young Moraine regions of North-East Germany [5]. The 137Cs concentrations were measured at selected sampling points of various study sites. Among the areas selected for sampling was Basedow, which is a cultivated area, situated north of Berlin. During a master thesis study at university of Bremen in the academic year 2008-2009 [6] a second sampling campaign was performed at the same study site and 137Cs and 7Be concentrations were measured. Two mathematical models (a proportional model and a mass balance model) were applied to estimate erosion or deposition rates giving a distinction between uncultivated or essentially undisturbed soils and cultivated or soils under permanent pasture (Fig.3A). An improved depositional model was developed during this study. The simulation results from this model are presented in Fig.4. Due to the half-life (53.2 days) of 7Be, a mass balance model was developed and used to calculate erosion rates from 7Be (Fig.3B). PIC Figure 3: A: Erosion rates for 137Cs calculated by mass balance model. B: Erosion rates calculated with mass balance model using the 7Be data at Basedow (2008). The results verify that there is long term erosion as a result of wind, water and agricultural practices. The annual erosion rates at Basedow calculated using a mass balance and a proportional model were in the range between 30-50 t ha-1yr-1. These values were comparable to the erosion rates calculated in the previous study [5] by the models mentioned above. PIC Figure 4: Profiles of sediment calculated for different erosion rates by Cs-137 within the ploughed soil 3 Conclusions and outlook Erosion rates for agricultural soils at Young Moraine regions of North-East Germany were determined by using two radionuclides, 137Cs and 7Be. In combination, the two radionuclides provide a valuable means of investigating soil erosion and assessing erosion risk in the study area. Potentials and limitations of the erosion measurement techniques using radiotracers are discussed in this study. The models used to quantify erosion rates using 137Cs and 7Be were studied. Erosion rates calculated by theses models are difficult to measure over a period of 50 years. A validation of these erosion rates for the time period (50 years) used in the 137Cs-based models will give a new perspective to the use of soil erosion modeling. Most of the regions in India are suffering from high erosion rates [7]. By using the new techniques in erosion quantification the land management practices can be improved and the erosion risk can be reduced in India.

  6. Improved Soil Erosion and Sediment Transport in GSSHA

    DTIC Science & Technology

    2010-08-01

    the USLE soil erodibility factor (0-1), soil cropping factor (0-1) and conservation factor (0-1) in the development by Julien (1995). The use of one...factor K represents a departure from Julien (1995), who used all three factors from the Universal Soil Loss Equation ( USLE ). This departure is justi...runoff using a research-quality data set. BACKGROUND: GSSHA simulates overland soil erosion and outputs erosion and deposition for any size class of

  7. Relationship between the erosion properties of soils and other parameters

    USDA-ARS?s Scientific Manuscript database

    Soil parameters are essential for erosion process prediction and ultimately improved model development, especially as they relate to dam and levee failure. Soil parameters including soil texture and structure, soil classification, soil compaction, moisture content, and degree of saturation can play...

  8. Potential impacts of climate change on rainfall erosivity and water availability in China in the next 100 years

    Treesearch

    Ge Sun; Steven G. McNulty; Jennifer Moore; Corey Bunch; Jian Ni

    2002-01-01

    Soil erosion and water shortages threaten China’s social and economic development in the 21st century. This paper examines how projected climate change could affect soil erosion and water availability across China. We used both historical climate data (1961-1980) and the UKMO Hadley3 climate scenario (1960-2099) to drive regional hydrology and soil erosivity models....

  9. Soil erosion modelling for NSW coastal catchments using RUSLE in a GIS environment

    NASA Astrophysics Data System (ADS)

    Yang, Xihua; Chapman, Greg

    2006-10-01

    In this study, hillslope erosion risk has been estimated for all eastern New South Wales (NSW) catchments, Australia using Revised Universal Soil Loss Equation (RUSLE) in a geographic information system (GIS) environment. Rainfall-runoff erosivity (R) factor was interpolated from NSW rainfall-erosivity contour (isoerodent) data. Soil erodibility (K) factor was based on the soil regolith stability and sediment yield classification. The classification was derived from soil landscape and related soil map data. The slope length and steepness (LS) factor was derived from high resolution digital elevation model (DEM). A fully-automated program using Arc Macro Language (AML) produced RUSLE-based LS factor grids for all coastal catchments. The outputs are comparable to the range of LS values summarised in the literature. Cover and management (C) factor and conservation support-practices (P) factor were set to one. They are intended to be allocated according to land use, ground cover and erosion control provisions for particular land management actions. The resulting erosion risk map, with pixel size of 25-m, provides unprecedented resolution of relative expected sheet and rill erosion across all NSW costal catchments and can be adapted for a range of erosion control purposes such as bushfire hazard reduction and comprehensive costal assessment.

  10. Antecedent moisture content and soil texture effects on infiltration and erosion

    NASA Astrophysics Data System (ADS)

    Mamedov, A. I.; Huang, C.; Levy, G. J.

    2006-12-01

    Water infiltration, seal formation, runoff and erosion depend on the soil's inherent properties and surface conditions. Most erosion models consider only soil inherent properties (mainly texture) in assessing infiltration and erosion without consideration of spatial and temporary variation in the surface condition, particularly the antecedent moisture content. We studied the interaction of two different surface conditions, i.e. antecedent moisture content (AMC) and aging (timing after wetting) on infiltration (IR), seal formation (runoff generation) and erosion in four soils varying from loam to clay. Soil samples were packed in erosion box and wetted with different amounts of water (0, 1, 2, 3, 4, 6, 8, or 16 mm) to obtain a wide moisture range (i.e., pF 0-6.2, or from air dry to full saturation). The boxes were put in plastic bags and allowed to age for 0.01, 1, 3, or 7 days. Then the soil in the erosion box exposed to 60 mm of rain. At no aging final IR of soils did not change significantly, but runoff volume (a measure for seal development) and soil loss increased with an increase in AMC mainly because of aggregate breakdown. For any given aging, the highest IR and smallest runoff volume and soil loss were obtained at the intermediate AMC levels (pF 2.4-4.2, between wilting point and field capacity). For instance, in the clay soil to which 3 mm of water (pF~2.7) was added, as aging increased from one to seven days, final IR increased from 5.3 to 7.9 mm h-1, while runoff and soil loss decreased from 34 mm to 22 mm, and from 630 to 360 g m2 respectively. At this AMC range, increasing aging time resulted in up to 40% increase in IR and decrease in runoff or soil loss. This tendency significantly more pronounced for clay soils because water-filled pores in the clay fabric were considered active in the stabilization process and the development of cohesive bonds between and within particles during the aging period. The results of this study are important for soil erosion modeling. In order to improve the prediction capabilities of erosion models, temporal and spatial variation of soil moisture content (AMC, wetting and aging) prior to erosive rainstorms should be considered and or incorporated. In addition, management practices could be adapted to diminish the severe soil moisture variation, where ever possible, (minimum till or no-till with known residue) to maintain the soil surface at a desired AMC level prior to expected rainstorms in order to decrease soil susceptibility to seal formation, runoff and soil loss.

  11. Impact of erosion and tillage on the productivity and quality of selected semiarid soils of Iran

    NASA Astrophysics Data System (ADS)

    Mehdizade, B.; Asadi, H.; Shabanpour, M.; Ghadiri, H.

    2013-09-01

    This greenhouse research was carried out to study the effects of water and tillage erosion on agricultural productivity and soil quality in soil samples from a semiarid region of Iran. A factorial experiment of complete randomized block design was used to compare the effects of soil erosion (eroded and non-eroded soils), slope position, water stress and fertilizer (N-P-K) on yield and yield components of wheat as soil productivity index. The results showed that erosion ie water and tillage erosion has a significant effect (p<0.01) in decreasing soil productivity due to its negative impact on soil organic matter, nutrients (N and K) and hydraulic conductivity. Complete N-P-K fertilization and water stress had significant effects on increasing and decreasing of wheat yield, respectively. The effect of water stress in particular was so high that it could eclipse the erosion impact on yield reduction. Wheat dry matter and grain mass on foot and mid slopes were significantly higher than that on upslope positions where total N and available K were the lowest and equivalent calcium carbonate the highest. Saturated hydraulic conductivity and total nitrogen were found to be the most important soil properties as far as their correlations to wheat yield are concerned.

  12. Assessment of runoff and sediment yields using the AnnAGNPS model in a Three-Gorge watershed of China.

    PubMed

    Hua, Lizhong; He, Xiubin; Yuan, Yongping; Nan, Hongwei

    2012-05-01

    Soil erosion has been recognized as one of the major threats to our environment and water quality worldwide, especially in China. To mitigate nonpoint source water quality problems caused by soil erosion, best management practices (BMPs) and/or conservation programs have been adopted. Watershed models, such as the Annualized Agricultural Non-Point Source Pollutant Loading model (AnnAGNPS), have been developed to aid in the evaluation of watershed response to watershed management practices. The model has been applied worldwide and proven to be a very effective tool in identifying the critical areas which had serious erosion, and in aiding in decision-making processes for adopting BMPs and/or conservation programs so that cost/benefit can be maximized and non-point source pollution control can be achieved in the most efficient way. The main goal of this study was to assess the characteristics of soil erosion, sediment and sediment delivery of a watershed so that effective conservation measures can be implemented. To achieve the overall objective of this study, all necessary data for the 4,184 km(2) Daning River watershed in the Three-Gorge region of the Yangtze River of China were assembled. The model was calibrated using observed monthly runoff from 1998 to 1999 (Nash-Sutcliffe coefficient of efficiency of 0.94 and R(2) of 0.94) and validated using the observed monthly runoff from 2003 to 2005 (Nash-Sutcliffe coefficient of efficiency of 0.93 and R(2) of 0.93). Additionally, the model was validated using annual average sediment of 2000-2002 (relative error of -0.34) and 2003-2004 (relative error of 0.18) at Wuxi station. Post validation simulation showed that approximately 48% of the watershed was under the soil loss tolerance released by the Ministry of Water Resources of China (500 t·km(-2)·y(-1)). However, 8% of the watershed had soil erosion of exceeding 5,000 t·km(-2)·y(-1). Sloping areas and low coverage areas are the main source of soil loss in the watershed.

  13. Assessment of Runoff and Sediment Yields Using the AnnAGNPS Model in a Three-Gorge Watershed of China

    PubMed Central

    Hua, Lizhong; He, Xiubin; Yuan, Yongping; Nan, Hongwei

    2012-01-01

    Soil erosion has been recognized as one of the major threats to our environment and water quality worldwide, especially in China. To mitigate nonpoint source water quality problems caused by soil erosion, best management practices (BMPs) and/or conservation programs have been adopted. Watershed models, such as the Annualized Agricultural Non-Point Source Pollutant Loading model (AnnAGNPS), have been developed to aid in the evaluation of watershed response to watershed management practices. The model has been applied worldwide and proven to be a very effective tool in identifying the critical areas which had serious erosion, and in aiding in decision-making processes for adopting BMPs and/or conservation programs so that cost/benefit can be maximized and non-point source pollution control can be achieved in the most efficient way. The main goal of this study was to assess the characteristics of soil erosion, sediment and sediment delivery of a watershed so that effective conservation measures can be implemented. To achieve the overall objective of this study, all necessary data for the 4,184 km2 Daning River watershed in the Three-Gorge region of the Yangtze River of China were assembled. The model was calibrated using observed monthly runoff from 1998 to 1999 (Nash-Sutcliffe coefficient of efficiency of 0.94 and R2 of 0.94) and validated using the observed monthly runoff from 2003 to 2005 (Nash-Sutcliffe coefficient of efficiency of 0.93 and R2 of 0.93). Additionally, the model was validated using annual average sediment of 2000–2002 (relative error of −0.34) and 2003–2004 (relative error of 0.18) at Wuxi station. Post validation simulation showed that approximately 48% of the watershed was under the soil loss tolerance released by the Ministry of Water Resources of China (500 t·km−2·y−1). However, 8% of the watershed had soil erosion of exceeding 5,000 t·km−2·y−1. Sloping areas and low coverage areas are the main source of soil loss in the watershed. PMID:22754480

  14. Prescribed Fire Effects on Runoff, Erosion, and Soil Water Repellency on Steeply-Sloped Sagebrush Rangeland over a Five Year Period

    NASA Astrophysics Data System (ADS)

    Williams, C. J.; Pierson, F. B.; Al-Hamdan, O. Z.

    2014-12-01

    Fire is an inherent component of sagebrush steppe rangelands in western North America and can dramatically affect runoff and erosion processes. Post-fire flooding and erosion events pose substantial threats to proximal resources, property, and human life. Yet, prescribed fire can serve as a tool to manage vegetation and fuels on sagebrush rangelands and to reduce the potential for large catastrophic fires and mass erosion events. The impact of burning on event hydrologic and erosion responses is strongly related to the degree to which burning alters vegetation, ground cover, and surface soils and the intensity and duration of precipitation. Fire impacts on hydrologic and erosion response may be intensified or reduced by inherent site characteristics such as topography and soil properties. Parameterization of these diverse conditions in predictive tools is often limited by a lack of data and/or understanding for the domain of interest. Furthermore, hydrologic and erosion functioning change as vegetation and ground cover recover in the years following burning and few studies track these changes over time. In this study, we evaluated the impacts of prescribed fire on vegetation, ground cover, soil water repellency, and hydrologic and erosion responses 1, 2, and 5 yr following burning of a mountain big sagebrush community on steep hillslopes with fine-textured soils. The study site is within the Reynolds Creek Experimental Watershed, southwestern Idaho, USA. Vegetation, ground cover, and soil properties were measured over plot scales of 0.5 m2 to 9 m2. Rainfall simulations (0.5 m2) were used to assess the impacts of fire on soil water repellency, infiltration, runoff generation, and splash-sheet erosion. Overland flow experiments (9 m2) were used to assess the effects of fire-reduced ground cover on concentrated-flow runoff and erosion processes. The study results provide insight regarding fire impacts on runoff, erosion, and soil water repellency in the immediate and short-term post-fire recovery years for steeply-sloped sagebrush sites with fine-textured soils. The study results also serve to inform development and enhancement of the Rangeland Hydrology and Erosion Model for predicting runoff and erosion responses from disturbed and undisturbed sagebrush rangelands.

  15. Uncertainty of climate change impacts on soil erosion from cropland in central Oklahoma

    USDA-ARS?s Scientific Manuscript database

    Impacts of climate change on soil erosion and the potential need for additional conservation actions are typically estimated by applying a hydrologic and soil erosion model under present and future climate conditions defined by an emission scenario. Projecting future climate conditions harbors sever...

  16. Model development and applications at the USDA-ARS National Soil Erosion Research Laboratory

    USDA-ARS?s Scientific Manuscript database

    The United States Department of Agriculture (USDA) has a long history of development of soil erosion prediction technology, initially with empirical equations like the Universal Soil Loss Equation (USLE), and more recently with process-based models such as the Water Erosion Prediction Project (WEPP)...

  17. A Simple Close Range Photogrammetry Technique to Assess Soil Erosion in the Field

    USDA-ARS?s Scientific Manuscript database

    Evaluating the performance of a soil erosion prediction model depends on the ability to accurately measure the gain or loss of sediment in an area. Recent development in acquiring detailed surface elevation data (DEM) makes it feasible to assess soil erosion and deposition spatially. Digital photogr...

  18. The development of U.S. soil erosion prediction and modeling

    USDA-ARS?s Scientific Manuscript database

    Soil erosion prediction technology began over 70 years ago when Austin Zingg published a relationship between soil erosion (by water) and land slope and length, followed shortly by a relationship that expanded this equation to include conservation practices. But, it was nearly 20 years before this w...

  19. Soil Organic Carbon Redistribution by Water Erosion – The Role of CO2 Emissions for the Carbon Budget

    PubMed Central

    Wang, Xiang; Cammeraat, Erik L. H.; Romeijn, Paul; Kalbitz, Karsten

    2014-01-01

    A better process understanding of how water erosion influences the redistribution of soil organic carbon (SOC) is sorely needed to unravel the role of soil erosion for the carbon (C) budget from local to global scales. The main objective of this study was to determine SOC redistribution and the complete C budget of a loess soil affected by water erosion. We measured fluxes of SOC, dissolved organic C (DOC) and CO2 in a pseudo-replicated rainfall-simulation experiment. We characterized different C fractions in soils and redistributed sediments using density fractionation and determined C enrichment ratios (CER) in the transported sediments. Erosion, transport and subsequent deposition resulted in significantly higher CER of the sediments exported ranging between 1.3 and 4.0. In the exported sediments, C contents (mg per g soil) of particulate organic C (POC, C not bound to soil minerals) and mineral-associated organic C (MOC) were both significantly higher than those of non-eroded soils indicating that water erosion resulted in losses of C-enriched material both in forms of POC and MOC. The averaged SOC fluxes as particles (4.7 g C m−2 yr−1) were 18 times larger than DOC fluxes. Cumulative emission of soil CO2 slightly decreased at the erosion zone while increased by 56% and 27% at the transport and depositional zone, respectively, in comparison to non-eroded soil. Overall, CO2 emission is the predominant form of C loss contributing to about 90.5% of total erosion-induced C losses in our 4-month experiment, which were equal to 18 g C m−2. Nevertheless, only 1.5% of the total redistributed C was mineralized to CO2 indicating a large stabilization after deposition. Our study also underlines the importance of C losses by particles and as DOC for understanding the effects of water erosion on the C balance at the interface of terrestrial and aquatic ecosystems. PMID:24802350

  20. Designing a national soil erosion monitoring network for England and Wales

    NASA Astrophysics Data System (ADS)

    Lark, Murray; Rawlins, Barry; Anderson, Karen; Evans, Martin; Farrow, Luke; Glendell, Miriam; James, Mike; Rickson, Jane; Quine, Timothy; Quinton, John; Brazier, Richard

    2014-05-01

    Although soil erosion is recognised as a significant threat to sustainable land use and may be a priority for action in any forthcoming EU Soil Framework Directive, those responsible for setting national policy with respect to erosion are constrained by a lack of robust, representative, data at large spatial scales. This reflects the process-orientated nature of much soil erosion research. Recognising this limitation, The UK Department for Environment, Food and Rural Affairs (Defra) established a project to pilot a cost-effective framework for monitoring of soil erosion in England and Wales (E&W). The pilot will compare different soil erosion monitoring methods at a site scale and provide statistical information for the final design of the full national monitoring network that will: provide unbiased estimates of the spatial mean of soil erosion rate across E&W (tonnes ha-1 yr-1) for each of three land-use classes - arable and horticultural grassland upland and semi-natural habitats quantify the uncertainty of these estimates with confidence intervals. Probability (design-based) sampling provides most efficient unbiased estimates of spatial means. In this study, a 16 hectare area (a square of 400 x 400 m) positioned at the centre of a 1-km grid cell, selected at random from mapped land use across E&W, provided the sampling support for measurement of erosion rates, with at least 94% of the support area corresponding to the target land use classes. Very small or zero erosion rates likely to be encountered at many sites reduce the sampling efficiency and make it difficult to compare different methods of soil erosion monitoring. Therefore, to increase the proportion of samples with larger erosion rates without biasing our estimates, we increased the inclusion probability density in areas where the erosion rate is likely to be large by using stratified random sampling. First, each sampling domain (land use class in E&W) was divided into strata; e.g. two sub-domains within which, respectively, small or no erosion rates, and moderate or larger erosion rates are expected. Each stratum was then sampled independently and at random. The sample density need not be equal in the two strata, but is known and is accounted for in the estimation of the mean and its standard error. To divide the domains into strata we used information on slope angle, previous interpretation of erosion susceptibility of the soil associations that correspond to the soil map of E&W at 1:250 000 (Soil Survey of England and Wales, 1983), and visual interpretation of evidence of erosion from aerial photography. While each domain could be stratified on the basis of the first two criteria, air photo interpretation across the whole country was not feasible. For this reason we used a two-phase random sampling for stratification (TPRS) design (de Gruijter et al., 2006). First, we formed an initial random sample of 1-km grid cells from the target domain. Second, each cell was then allocated to a stratum on the basis of the three criteria. A subset of the selected cells from each stratum were then selected for field survey at random, with a specified sampling density for each stratum so as to increase the proportion of cells where moderate or larger erosion rates were expected. Once measurements of erosion have been made, an estimate of the spatial mean of the erosion rate over the target domain, its standard error and associated uncertainty can be calculated by an expression which accounts for the estimated proportions of the two strata within the initial random sample. de Gruijter, J.J., Brus, D.J., Biekens, M.F.P. & Knotters, M. 2006. Sampling for Natural Resource Monitoring. Springer, Berlin. Soil Survey of England and Wales. 1983 National Soil Map NATMAP Vector 1:250,000. National Soil Research Institute, Cranfield University.

  1. Modelling rainfall erosion resulting from climate change

    NASA Astrophysics Data System (ADS)

    Kinnell, Peter

    2016-04-01

    It is well known that soil erosion leads to agricultural productivity decline and contributes to water quality decline. The current widely used models for determining soil erosion for management purposes in agriculture focus on long term (~20 years) average annual soil loss and are not well suited to determining variations that occur over short timespans and as a result of climate change. Soil loss resulting from rainfall erosion is directly dependent on the product of runoff and sediment concentration both of which are likely to be influenced by climate change. This presentation demonstrates the capacity of models like the USLE, USLE-M and WEPP to predict variations in runoff and erosion associated with rainfall events eroding bare fallow plots in the USA with a view to modelling rainfall erosion in areas subject to climate change.

  2. Soil erosion and effluent particle size distribution under different initial conditions and rock fragment coverage

    NASA Astrophysics Data System (ADS)

    Jomaa, S.; Barry, D. A.; Brovelli, A.; Heng, B. C. P.; Sander, G. C.; Parlange, J.-Y.

    2012-04-01

    It is well known that the presence of rock fragments on the soil surface and the soil's initial characteristics (moisture content, surface roughness, bulk density, etc.) are key factors influencing soil erosion dynamics and sediment delivery. In addition, the interaction of these factors increases the complexity of soil erosion patterns and makes predictions more difficult. The aim of this study was (i) to investigate the effect of soil initial conditions and rock fragment coverage on soil erosion yields and effluent particle size distribution and (ii) to evaluate to what extent the rock fragment coverage controls this relationship. Three laboratory flume experiments with constant precipitation rate of 74 mm/h on a loamy soil parcel with a 2% slope were performed. Experiments with duration of 2 h were conducted using the 6-m × 2-m EPFL erosion flume. During each experiment two conditions were considered, a bare soil and a rock fragment-protected (with 40% coverage) soil. The initial soil surface state was varied between the three experiments, from a freshly re-ploughed and almost dry condition to a compacted soil with a well-developed shield layer and high moisture content. Experiments were designed so that rain splash was the primary driver of soil erosion. Results showed that the amount of eroded mass was highly controlled by the initial soil conditions and whether the steady-state equilibrium was un-, partially- or fully- developed during the previous event. Additionally, results revealed that sediment yields and particle size composition in the initial part of an erosion event are more sensitive to the erosion history than the long-time behaviour. This latter appears to be mainly controlled by rainfall intensity. If steady-state was achieved for a previous event, then the next event consistently produced concentrations for each size class that peaked rapidly, and then declined gradually to steady-state equilibrium. If steady state was not obtained, then different and more complex behaviour was observed in the next event, with large differences found between fine, medium and coarse size classes. The presence of rock fragments on the topsoil reduced the time needed to reach steady state compared with the bare soil. This was attributed to the reduction of rain splash erosion caused by the rapid development of the overland flow, as a result of rock fragments reducing the flow cross-sectional area.

  3. Uncertainties in assessing tillage erosion - how appropriate are our measuring techniques?

    NASA Astrophysics Data System (ADS)

    Fiener, Peter; Deumlich, Detlef; Gómez, José A.; Guzmán, Gema; Hardy, Robert; Jague, Emilien A.; Quinton, John; Sommer, Michael; van Oost, Kristof; Wexler, Robert; Wilken, Florian

    2017-04-01

    In undulating arable landscapes tillage erosion is one of the dominant processes initiating lateral transfer of soil and soil constituents. Especially, in relatively dry regions, where tillage erosion can be much larger than water erosion, the associated changes in soil hydraulic properties might have substantial effects upon the sustainable use of soil resources. There have been some studies using different techniques to determine tillage erosion which build the basis for tillage erosion modelling approaches. However, tillage erosion is rather understudied compared to water erosion. The goal of this study was to bring together experts using different techniques to determine tillage erosion in an experimental set-up and to analyse the different results and assess the uncertainties associated with typical model inputs. Tillage erosion on a 50 x 10 m plot was determined after two phases of seven tillage passes performed within a week (simulating 10-14 yrs of tillage). As tracers, two different micro-tracers (magnetite mixed with soil and fluorescent sand) and one macro-tracer (passive Radio-Frequency Identification (RFID) transponders; dia. 3 mm, length 20 mm) were used. Moreover, tillage induced changes in topography were spatially determined for the entire plot with two different terrestrial laser scanners and an UAV-based structure by motion topography analysis. Topography changes were also evaluated at 12 points using buried concrete flagstones as reference. A preliminary analysis of tracer movement indicates substantial differences in tillage induced translocation depending on type of tracer. While the mean translocation of the RFIDs was 0.47 m per pass the mean movement of the micro-tracers was 0.70 m. Substantial differences were also found for the different techniques to determine changes in topography. Overall the experiment underlines the importance of tillage erosion for the lateral transfer of soil and soil constituents, but also shows the large discrepancies between measurements based on different techniques. The latter introduces substantial uncertainties in any existing tillage erosion modelling approach.

  4. The comparison of various approach to evaluation erosion risks and design control erosion measures

    NASA Astrophysics Data System (ADS)

    Kapicka, Jiri

    2015-04-01

    In the present is in the Czech Republic one methodology how to compute and compare erosion risks. This methodology contain also method to design erosion control measures. The base of this methodology is Universal Soil Loss Equation (USLE) and their result long-term average annual rate of erosion (G). This methodology is used for landscape planners. Data and statistics from database of erosion events in the Czech Republic shows that many troubles and damages are from local episodes of erosion events. An extent of these events and theirs impact are conditional to local precipitation events, current plant phase and soil conditions. These erosion events can do troubles and damages on agriculture land, municipally property and hydro components and even in a location is from point of view long-term average annual rate of erosion in good conditions. Other way how to compute and compare erosion risks is episodes approach. In this paper is presented the compare of various approach to compute erosion risks. The comparison was computed to locality from database of erosion events on agricultural land in the Czech Republic where have been records two erosion events. The study area is a simple agriculture land without any barriers that can have high influence to water flow and soil sediment transport. The computation of erosion risks (for all methodology) was based on laboratory analysis of soil samples which was sampled on study area. Results of the methodology USLE, MUSLE and results from mathematical model Erosion 3D have been compared. Variances of the results in space distribution of the places with highest soil erosion where compared and discussed. Other part presents variances of design control erosion measures where their design was done on based different methodology. The results shows variance of computed erosion risks which was done by different methodology. These variances can start discussion about different approach how compute and evaluate erosion risks in areas with different importance.

  5. Rapid Erosion Modeling in a Western Kenya Watershed using Visible Near Infrared Reflectance, Classification Tree Analysis and 137Cesium.

    PubMed

    deGraffenried, Jeff B; Shepherd, Keith D

    2009-12-15

    Human induced soil erosion has severe economic and environmental impacts throughout the world. It is more severe in the tropics than elsewhere and results in diminished food production and security. Kenya has limited arable land and 30 percent of the country experiences severe to very severe human induced soil degradation. The purpose of this research was to test visible near infrared diffuse reflectance spectroscopy (VNIR) as a tool for rapid assessment and benchmarking of soil condition and erosion severity class. The study was conducted in the Saiwa River watershed in the northern Rift Valley Province of western Kenya, a tropical highland area. Soil 137 Cs concentration was measured to validate spectrally derived erosion classes and establish the background levels for difference land use types. Results indicate VNIR could be used to accurately evaluate a large and diverse soil data set and predict soil erosion characteristics. Soil condition was spectrally assessed and modeled. Analysis of mean raw spectra indicated significant reflectance differences between soil erosion classes. The largest differences occurred between 1,350 and 1,950 nm with the largest separation occurring at 1,920 nm. Classification and Regression Tree (CART) analysis indicated that the spectral model had practical predictive success (72%) with Receiver Operating Characteristic (ROC) of 0.74. The change in 137 Cs concentrations supported the premise that VNIR is an effective tool for rapid screening of soil erosion condition.

  6. Regional modeling of wind erosion in the North West and South West of Iran

    NASA Astrophysics Data System (ADS)

    Mirmousavi, S. H.

    2016-08-01

    About two-thirds of the Iran's area is located in the arid and semiarid region. Lack of soil moisture and vegetation is poor in most areas can lead to soil erosion caused by wind. So that the annual suffered severe damage to large areas of rich soils. Modeling studies of wind erosion in Iran is very low and incomplete. Therefore, this study aimed to wind erosion modeling, taking into three factors: wind speed, vegetation and soil types have been done. Wind erosion sensitivity was modeled using the key factors of soil sensitivity, vegetation cover and wind erodibility as proxies. These factors were first estimated separately by factor sensitivity maps and later combined by fuzzy logic into a regional-scale wind erosion sensitivity map. Large areas were evaluated by using publicly available datasets of remotely sensed vegetation information, soil maps and meteorological data on wind speed. The resulting estimates were verified by field studies and examining the economic losses from wind erosion as compensated by the state insurance company. The spatial resolution of the resulting sensitivity map is suitable for regional applications, as identifying sensitive areas is the foundation for diverse land development control measures and implementing management activities.

  7. A (137)Cs erosion model with moving boundary.

    PubMed

    Yin, Chuan; Ji, Hongbing

    2015-12-01

    A novel quantitative model of the relationship between diffused concentration changes and erosion rates using assessment of soil losses was developed. It derived from the analysis of surface soil (137)Cs flux variation under persistent erosion effect and based on the principle of geochemistry kinetics moving boundary. The new moving boundary model improves the basic simplified transport model (Zhang et al., 2008), and mainly applies to uniform rainfall areas which show a long-time soil erosion. The simulation results for this kind of erosion show under a long-time soil erosion, the influence of (137)Cs concentration will decrease exponentially with increasing depth. Using the new model fit to the measured (137)Cs depth distribution data in Zunyi site, Guizhou Province, China which has typical uniform rainfall provided a good fit with R(2) = 0.92. To compare the soil erosion rates calculated by the simple transport model and the new model, we take the Kaixian reference profile as example. The soil losses estimated by the previous simplified transport model are greater than those estimated by the new moving boundary model, which is consistent with our expectations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Validation of Water Erosion Prediction Project (WEPP) model for low-volume forest roads

    Treesearch

    William Elliot; R. B. Foltz; Charlie Luce

    1995-01-01

    Erosion rates of recently graded nongravel forest roads were measured under rainfall simulation on five different soils. The erosion rates observed on 24 forest road erosion plots were compared with values predicted by the Water Erosion Prediction Project (WEPP) Model, Version 93.1. Hydraulic conductivity and soil erodibility values were predicted from methods...

  9. Assessment of soil erosion and deposition rates in a Moroccan agricultural field using fallout 137Cs and 210Pbex.

    PubMed

    Benmansour, M; Mabit, L; Nouira, A; Moussadek, R; Bouksirate, H; Duchemin, M; Benkdad, A

    2013-01-01

    In Morocco land degradation - mainly caused by soil erosion - is one of the most serious agroenvironmental threats encountered. However, only limited data are available on the actual magnitude of soil erosion. The study site investigated was an agricultural field located in Marchouch (6°42' W, 33° 47' N) at 68 km south east from Rabat. This work demonstrates the potential of the combined use of (137)Cs, (210)Pb(ex) as radioisotopic soil tracers to estimate mid and long term erosion and deposition rates under Mediterranean agricultural areas. The net soil erosion rates obtained were comparable, 14.3 t ha(-1) yr(-1) and 12.1 ha(-1) yr(-1) for (137)Cs and (210)Pb(ex) respectively, resulting in a similar sediment delivery ratio of about 92%. Soil redistribution patterns of the study field were established using a simple spatialisation approach. The resulting maps generated by the use of both radionuclides were similar, indicating that the soil erosion processes has not changed significantly over the last 100 years. Over the previous 10 year period, the additional results provided by the test of the prediction model RUSLE 2 provided results of the same order of magnitude. Based on the (137)Cs dataset established, the contribution of the tillage erosion impact has been evaluated with the Mass Balance Model 3 and compared to the result obtained with the Mass Balance Model 2. The findings highlighted that water erosion is the leading process in this Moroccan cultivated field, tillage erosion under the experimental condition being the main translocation process within the site without a significant and major impact on the net erosion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Laboratory Jet Erosion Tests on the Lower American River Soil Samples, Sacramento, CA- Phase 2

    DTIC Science & Technology

    2017-05-01

    ER D C/ G SL T R- 17 -8 Laboratory Jet Erosion Tests on the Lower American River Soil Samples, Sacramento, CA – Phase 2 G eo te ch ni...Jet Erosion Tests on the Lower American River Soil Samples, Sacramento, CA – Phase 2 Johannes L. Wibowo and Bryant A. Robbins Geotechnical and...Appendix B: Soil Mechanics Data ........................................................................................................... 71

  11. Soil maps as data input for soil erosion models: errors related to map scales

    NASA Astrophysics Data System (ADS)

    van Dijk, Paul; Sauter, Joëlle; Hofstetter, Elodie

    2010-05-01

    Soil erosion rates depend in many ways on soil and soil surface characteristics which vary in space and in time. To account for spatial variations of soil features, most distributed soil erosion models require data input derived from soil maps. Ideally, the level of spatial detail contained in the applied soil map should correspond to the objective of the modelling study. However, often the model user has only one soil map available which is then applied without questioning its suitability. The present study seeks to determine in how far soil map scale can be a source of error in erosion model output. The study was conducted on two different spatial scales, with for each of them a convenient soil erosion model: a) the catchment scale using the physically-based Limbourg Soil Erosion Model (LISEM), and b) the regional scale using the decision-tree expert model MESALES. The suitability of the applied soil map was evaluated with respect to an imaginary though realistic study objective for both models: the definition of erosion control measures at strategic locations at the catchment scale; the identification of target areas for the definition of control measures strategies at the regional scale. Two catchments were selected to test the sensitivity of LISEM to the spatial detail contained in soil maps: one catchment with relatively little contrast in soil texture, dominated by loess-derived soil (south of the Alsace), and one catchment with strongly contrasted soils at the limit between the Alsatian piedmont and the loess-covered hills of the Kochersberg. LISEM was run for both catchments using different soil maps ranging in scale from 1/25 000 to 1/100 000 to derive soil related input parameters. The comparison of the output differences was used to quantify the map scale impact on the quality of the model output. The sensitivity of MESALES was tested on the Haut-Rhin county for which two soil maps are available for comparison: 1/50 000 and 1/100 000. The order of resulting target areas (communes) was compared to evaluate the error induced by using the coarser soil data at 1/100 000. Results shows that both models are sensitive to the soil map scale used for model data input. A low sensitivity was found for the catchment with relatively homogeneous soil textures and the use of 1/100 000 soil maps seems allowed. The results for the catchment with strong soil texture variations showed significant differences depending on soil map scale on 75% of the catchment area. Here, the use of 1/100 000 soil map will indeed lead to wrong erosion diagnostics and will hamper the definition of a sound erosion control strategy. The regional scale model MESALES proved to be very sensitive to soil information. The two soil related model parameters (crusting sensitivity, and soil erodibility) reacted very often in the same direction therewith amplifying the change in the final erosion hazard class. The 1/100 000 soil map yielded different results on 40% of the sloping area compared to the 1/50 000 map. Significant differences in the order of target areas were found as well. The present study shows that the degree of sensitivity of the model output to soil map scale is rather variable and depends partly on the spatial variability of soil texture within the study area. Soil (textural) diversity needs to be accounted for to assure a fruitful use of soil erosion models. In some situations this might imply that additional soil data need to be collected in the field to refine the available soil map.

  12. Influence of development stage and disturbance of physical and biological soil crusts on soil water erosion

    NASA Astrophysics Data System (ADS)

    Chamizo, S.; Cantón, Y.; Lázaro, R.; Solé-Benet, A.; Calvo-Cases, A.; Miralles, I.; Domingo, F.

    2009-04-01

    Most soils exposed to rainfall are prone to sealing and crusting processes causing physical soil crusts (PSCs). When climate and soil stability conditions are suitable, PSCs can be consolidated by a complex community consisting of cyanobacteria, bacteria, green algae, microfungi, lichens and bryophytes, which are collectively known as biological soil crust (BSC). The influence of soil crusts on erosion processes is complex: crusts may reduce detachment, increasing soil stability and protecting soil against raindrop impact, although that protection will depend on the type of soil crust and the stage of development; they can also build up runoff, suggesting that downstream erosion may actually be increased or favoured water harvesting to vegetated areas. On the other hand, BSCs have been demonstrated to be very vulnerable to disturbance which in turn can lead to accelerate soil erosion and other forms of land degradation. Incorporation of the response of different type of soil crusts and the effects of their disturbance is highly likely to improve the prediction of runoff and water erosion models in arid and semi-arid catchments. The objective of this work is to analyse the erosional response of PSCs and BSCs in different stages of their development and subject to distinct disturbances when extreme rainfalls intensities are applied at plot scale in semiarid environments. Small plots on the most representative crust types, corresponding to different stages of crust development, in two semiarid ecosystems in SE Spain, El Cautivo (in the Tabernas Desert) and Amoladeras (in the Natural Park Cabo de Gata-Níjar), were selected and three disturbance treatments were applied on each crust type: a) no disturbance (control), b) trampling, stepping 100 times over the crust and c) scraping. Two consecutive rainfall simulation experiments (50 mm/h rainfall intensity) were carried out on each plot: the first on dry soil and the second, 30 minutes later, on wet soil conditions. Samples of runoff were collected regularly during the rainfall simulation and sediments in runoff extracted later in laboratory. Erosion rates were significantly different at both sites, being lower in Amoladeras than in El Cautivo due to a flatter topography and a higher infiltration capacity of the sandy soils with higher organic matter content. There were not significant differences on total erosion rates between the first and the second rainfall event, as consequence of the increase of runoff under wet conditions. In El Cautivo, the erosion rates significantly decreased as crust development stage increased. However, in Amoladeras, the erosion was low in all crust types and there were not significant differences on erosion rates among the crust development stages. Among treatments, in El Cautivo, scraping and trampling promoted significant higher erosion rates than undisturbed crust, but no significant differences were found between both treatments, except for the lichen-dominated crust. In Amoladeras, no significant differences on erosion rates between the undisturbed and the trampled crust were found since in this area trampling did not have an important effect. Although the removal of the crust in semiarid environments, at local scale, always increased erosion, the effects of crust disturbance on erosion varied depending on the ecosystem, with stronger erosional effects in badland areas with a silty substrate and steep topography than in areas with a flat topography and a coarser soil texture.

  13. [Influences of land using patterns on the anti-wind erosion of meadow grassland].

    PubMed

    Zhou, Yao-Zhi; Wang-Xu; Yang, Gui-Xia; Xin, Xiao-Ping

    2008-05-01

    In order to analyse the effects of the human disturbances to the ability of anti-wind erosion of the Hulunbuir meadow grassland, the methods of vegetation investigation and the wind tunnel experiment were made to research the changes of vegetation and the abilities of anti-wind erosion of meadow grassland under different using patterns of meadow grassland. The results indicate that, under different grazing intensities of meadow grassland, the critical wind velocity of soil erosion (v) changes with the vegetation cover according to the relation of second power function. Along with the grazing intensities increasing and the vegetation cover reducing, the velocity of soil erosion rapidly increased on the condition of similar wind velocity which is speedier than the critical wind velocity of soil erosion. When the meadow grassland is mildly grazed which the vegetation cover maintains 63%, the velocity of soil erosion is small even there is gale that the wind velocity reach 25 m/s. When the vegetation cover of meadow grassland reduced to less than 35%, the velocity of soil erosion rapidly increased with the vegetation cover's reducing on the condition of the wind velocity is among 20-25 m/s. And owing to the no-tillage cropland of meadow grassland is completely far from the protection of the vegetation, the soil wind erosion quantity achieves 682.1 kg/hm2 in a minute when the wind velocity is 25 m/s, which approaches the average formation quantity of soil (1 000 kg/hm2) in a year.

  14. Effects of land clearing techniques and tillage systems on runoff and soil erosion in a tropical rain forest in Nigeria.

    PubMed

    Ehigiator, O A; Anyata, B U

    2011-11-01

    This work reports runoff and soil loss from each of 14 sub-watersheds in a secondary rain forest in south-western Nigeria. The impact of methods of land clearing and post-clearing management on runoff and soil erosion under the secondary forest is evaluated. These data were acquired eighteen years after the deforestation of primary vegetation during the ' West bank' project of the International Institute for Tropical Agriculture (IITA). These data are presented separately for each season; however, statistical analyses for replicates were not conducted due to differences in their past management. Soil erosion was affected by land clearing and tillage methods. The maximum soil erosion was observed on sub-watersheds that were mechanically cleared with tree-pusher/root-rake attachments and tilled conventionally. A high rate of erosion was observed even when graded-channel terraces were constructed to minimize soil erosion. In general there was much less soil erosion on manually cleared than on mechanically cleared sub-watersheds (2.5 t ha(-1) yr(-1) versus 13.8 t ha(-1) yr(-1)) and from the application of no-tillage methods than from conventionally plowed areas (6.5 t ha(-1) yr(-1) versus 12.1 t ha(-1) yr(-1)). The data indicate that tillage methods and appropriate management of soils and crops play an important role in soil and water conservation and in decreasing the rate of decline of soil quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. The littoral zone in the Three Gorges Reservoir, China: challenges and opportunities.

    PubMed

    Yuan, Xing-zhong; Zhang, Yue-wei; Liu, Hong; Xiong, Sen; Li, Bo; Deng, Wei

    2013-10-01

    For flood control purpose, the water level of the Three Gorges Reservoir (TGR) varies significantly. The annual reservoir surface elevation amplitude is about 30 m behind the dam. Filling of the reservoir has created about 349 km(2) of newly flooded riparian zone. The average flooding period lasts for more than 6 months, from mid-October to late April. The dam and its associated reservoir provide flood control, power generation, and navigation, but there are also many environmental challenges. The littoral zone is the important part of the TGR, once its eco-health and stability are damaged,which will directly endanger the ecological safety of the whole reservoir area and even the Yangtze River Basin. So, understanding the great ecological opportunities which are hidden in littoral zone of TGR (LZTGR) and putting forward approaches to solve the environmental problems are very important. LZTGR involves a wide field of problems, such as the landslides, potential water pollution, soil erosion, biodiversity loss, land cover changes, and other issues. The Three Gorges dam (TGD) is a major trigger of environmental change in the Yangtze River. The landslides, water quality, soil erosion, loss of biodiversity, dam operation, and challenge for land use are closely interrelated across spatial and temporal scales. Therefore, the ecological and environmental impacts caused by TGD are necessarily complex and uncertain. LZTGR is not only a great environmental challenge but also an ecological opportunity for us. In fact, LZTGR is an important structural unit of TGR ecosystem and has special ecosystem services function. Vegetation growing in LZTGR is therefore a valuable resource due to accumulation of carbon and nutrients. Everyone thinks that the ecological approach to the problem is needed. If properly designed, dike-pond systems, littoral woods systems, and re-created waterfowl habitats will have the capacity to capture nutrients from uplands and obstruct soil erosion. Ecological engineering approaches can therefore reduce environmental impacts of LZTGR and optimize ecological services. In view of the current situation and existing ecological problems of LZTGR, according to function demands such as environmental purification, biodiversity conservation, and vegetation carbon sink enhancement, we should explore the eco-friendly utilization mode of resources in LZTGR. Ecological engineering approaches might minimize the impacts or optimize the ecological services. Natural regeneration and ecological restoration in LZTGR are valuable for soil erosion decrease, pollutant purification, biodiversity conservation, carbon sink increase, and ecosystem health maintenance in TGR.

  16. Modeling of technical soil-erosion control measures and its impact on soil erosion off-site effects within urban areas

    NASA Astrophysics Data System (ADS)

    Dostal, Tomas; Devaty, Jan

    2013-04-01

    The paper presents results of surface runoff, soil erosion and sediment transport modeling using Erosion 3D software - physically based mathematical simulation model, event oriented, fully distributed. Various methods to simulate technical soil-erosion conservation measures were tested, using alternative digital elevation models of different precision and resolution. Ditches and baulks were simulated by three different approaches, (i) by change of the land-cover parameters to increase infiltration and decrease flow velocity, (ii) by change of the land-cover parameters to completely infiltrate the surface runoff and (iii) by adjusting the height of the digital elevation model by "burning in" the channels of the ditches. Results show advantages and disadvantages of each approach and conclude suitable methods for combinations of particular digital elevation model and purpose of the simulations. Further on a set of simulations was carried out to model situations before and after technical soil-erosion conservation measures application within a small catchment of 4 km2. These simulations were focused on quantitative and qualitative assessment of technical soil-erosion control measures impact on soil erosion off-site effects within urban areas located downstream of intensively used agricultural fields. The scenarios were built upon a raster digital elevation model with spatial resolution of 3 meters derived from LiDAR 5G vector point elevation data. Use of this high-resolution elevation model allowed simulating the technical soil-erosion control measures by direct terrain elevation adjustment. Also the structures within the settlements were emulated by direct change in the elevation of the terrain model. The buildings were lifted up to simulate complicated flow behavior of the surface runoff within urban areas, using approach of Arévalo (Arévalo, 2011) but focusing on the use of commonly available data without extensive detailed editing. Application of the technical soil-erosion control measures induced strong change in overall amount of eroded/deposited material as well as spatial erosion/deposition patterns within the settlement areas. Validation of modeled scenarios and effects on measured data was not possible as no real runoff event was recorded in the target area so the conclusions were made by comparing the different modeled scenarios. Advantages and disadvantages of used approach to simulate technical soil-erosion conservation measures are evaluated and discussed as well as the impact of use of high-resolution elevation data on the intensity and spatial distribution of soil erosion and deposition. Model approved ability to show detailed distribution of damages over target urban area, which is very sensitive for off-site effects of surface runoff, soil erosion and sediment transport and also high sensitivity to input data, especially to DEM, which affects surface runoff pattern and therefore intensity of harmful effects. Acknowledgement: This paper has been supported by projects: Ministry of the interior of the CR VG 20122015092, and project NAZV QI91C008 TPEO.

  17. Soil Production and Erosion Rates and Processes in Mountainous Landscapes

    NASA Astrophysics Data System (ADS)

    Heimsath, A. M.; DiBiase, R. A.; Whipple, K. X.

    2012-12-01

    We focus here on high-relief, steeply sloped landscapes from the Nepal Himalaya to the San Gabriels of California that are typically thought to be at a critical threshold of soil cover. Observations reveal that, instead, there are significant areas mantled with soil that fit the conceptual framework of a physically mobile layer derived from the underlying parent material with some locally-derived organic content. The extent and persistence of such soils depends on the long-term balance between soil production and erosion despite the perceived discrepancy between high erosion and low soil production rates. We present cosmogenic Be-10-derived soil production and erosion rates that show that soil production increases with catchment-averaged erosion, suggesting a feedback that enhances soil-cover persistence, even in threshold landscapes. Soil production rates do decline systematically with increasing soil thickness, but hint at the potential for separate soil production functions for different erosional regimes. We also show that a process transistion to landslide-dominated erosion results in thinner, patchier soils and rockier topography, but find that there is no sudden transition to bedrock landscapes. Our landslide modeling is combined with a detailed quantification of bedrock exposure for these steep, mountainous landscapes. We also draw an important conclusion connecting the physical processes producing and transporting soil and the chemical processes weathering the parent material by measuring parent material strength across three different field settings. We observe that parent material strength increases with overlying soil thickness and, therefore, the weathered extent of the saprolite. Soil production rates, thus, decrease with increasing parent material competence. These observation highlight the importance of quantifying hillslope hydrologic processes where such multi-facted measurements are made.

  18. Ecological-site based assessments of wind and water erosion: informing management of accelerated soil erosion in rangelands

    NASA Astrophysics Data System (ADS)

    Webb, N.; Herrick, J.; Duniway, M.

    2013-12-01

    This work explores how soil erosion assessments can be structured in the context of ecological sites and site dynamics to inform systems for managing accelerated soil erosion. We evaluated wind and water erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Our results show that wind and water erosion can be highly variable within and among ecological sites. Plots in shrub-encroached and shrub-dominated states were consistently susceptible to both wind and water erosion. However, grassland plots and plots with a grass-succulent mix had a high indicated susceptibility to wind and water erosion respectively. Vegetation thresholds for controlling erosion are identified that transcend the ecological sites and their respective states. The thresholds define vegetation cover levels at which rapid (exponential) increases in erosion rates begin to occur, suggesting that erosion in the study ecosystem can be effectively controlled when bare ground cover is <20% of a site or total ground cover is >50%. Similarly, our results show that erosion can be controlled when the cover of canopy interspaces >50 cm in length reaches ~50%, the cover of canopy interspaces >100 cm in length reaches ~35% or the cover of canopy interspaces >150 cm in length reaches ~20%. This process-based understanding can be applied, along with knowledge of the differential sensitivity of vegetation states, to improve erosion management systems. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of sites to erosion. Land use impacts that are constrained within the natural variability of sites should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds and natural variability of ecological sites will enable improved identification of where and when accelerated soil erosion occurs and the development of practical management solutions.

  19. Rainfall and sheet power equation for interrill erosion on steep hillslope

    USDA-ARS?s Scientific Manuscript database

    Splash and sheet erosion processes dominate on most undisturbed hillslopes of rangeland. Interrill soil erosion should consider the influence of both raindrop and sheet flow to work of soil particles detached by raindrop impact and transported by rainfall-disturbed sheet flow. Interrill erosion equa...

  20. Advances in soil erosion research: processes, measurement, and modeling

    USDA-ARS?s Scientific Manuscript database

    Soil erosion by the environmental agents of water and wind is a continuing global menace that threatens the agricultural base that sustains our civilization. Members of ASABE have been at the forefront of research to understand erosion processes, measure erosion and related processes, and model very...

  1. Determination of soil erosion in a steep hill slope with different land-use types: a case study in Mertesdorf (Ruwertal/Germany).

    PubMed

    Hacisalihoglu, Sezgin

    2007-04-01

    Inappropriate land use is one of the main reasons for soil erosion and land degradation. Vine growing plays an important role in many semiarid regions all over the world as a permanent plant cover in terms of preventing erosion, sustainable use of land and water resources, defense against desertification and settling population in rural areas. In this paper, in a steep hill slope of the village Mertesdorf (Ruwertal/Germany), Algemeine boden abtrags gleichung (ABAG) have been applied to determine and compare the soil erosion amounts between the different land use types such as vine growing, forest lands, grasslands, shrubs and new forestations. The results show that the soil erosion amounts differs in a high ratio between the land use types. Soil erosion amounts in the vine growing areas are the highest (6.47 t/ha/year), then comes with 1.19 t/ha/year the over grazed grasslands and the lowest erosion amounts have been determined, as expected, in the forest lands (0.66 t/ha/year).

  2. Terrace effects on soil erosion processes in a watershed of the loess plateau

    USDA-ARS?s Scientific Manuscript database

    Terraces in crop fields are one of the most important soil and water conservation measures that affect runoff and erosion processes in a watershed. In this paper, terrace effects on soil erosion and sediment transport in the upstream and middle sections of the Weihe River basin in the Loess Plateau ...

  3. Application of the Wind Erosion Prediction System in the AIRPACT regional air quality modeling framework

    USDA-ARS?s Scientific Manuscript database

    Wind erosion of soil is a major concern of the agricultural community as it removes the most fertile part of the soil and thus degrades soil productivity. Furthermore, dust emissions due to wind erosion contribute to poor air quality, reduce visibility, and cause perturbations to regional radiation ...

  4. Soil response to skidder trafficking and slash application

    Treesearch

    Brian M. Parkhurst; W. Michael Aust; M. Chad Bolding; Scott M. Barrett; Emily A. Carter

    2018-01-01

    Ground-based timber harvesting systems are common in the United States. Harvesting machinery can negatively influence soils by increasing erosion and decreasing site productivity. Skid trails can become compacted and erosive. Slash applications to skid trails are effective for erosion control, yet few investigations have examined effects of slash on soil physical...

  5. Cropping and tillage systems effects on soil erosion under climate change in Oklahoma

    USDA-ARS?s Scientific Manuscript database

    Soil erosion under future climate change is very likely to increase due to projected increases in frequency and magnitude of heavy storms. The objective of this study is to quantify the effects of common cropping and tillage systems on soil erosion and surface runoff during 2010-2039 in central Okl...

  6. Towards new-generation soil erosion modeling: Building a unified omnivorous model

    USDA-ARS?s Scientific Manuscript database

    Soil erosion is a global threat to agricultural production, and results in off-site sediment and nutrient losses that negatively impact water and air quality. Models are mathematical equations used to estimate the amount of soil lost from a land air, due to the erosive forces of water or wind. Early...

  7. Effectiveness of soil conservation strategies on erosion in Morocco

    NASA Astrophysics Data System (ADS)

    Benmansour, Moncef; Mabit, Lionel; Moussadek, Rachid; Yassin, Mohamed; Nouira, Asmae; Zouagui, Anis; Mrabet, Rachid; Iaaich, Hamza; Hajib, Said

    2016-04-01

    - In Morocco, reducing soil erosion and land degradation is a national priority for improving soil quality and protecting downstream water quality and quantity. The combined use of Cs-137 and Be-7 techniques permit to estimate long and short term erosion and deposition magnitudes under different agro-environment and climatic conditions and then to evaluate the effectiveness of soil conservation practices. Case studies using Cs-137 and Be-7 were carried out in three Moroccan agricultural sites: Marchouch, Harchane and Oued Mellah located in Rabat, Tétouan and Chaouia-Ouardigha regions, respectively. In these sites, fallout Cs-137 measurements allowed a retrospective assessment of long term (50-60 years) soil redistribution rates while fallout Be-7 (half-life of 53 days) was used to document short term soil erosion associated with rainfall events for different tillage systems and land uses. Long term soil erosion rates of the three regions evaluated by the Cs-137 method, ranged from 8 to 58 t/ha/yr. Mostly located in the upslope part of the fields, the eroding zones represented more than 70% of the total area. For the experimental sites in Rabat and Tétouan, the results obtained using Be-7 indicated that soil loss has been reduced significantly under no-till as compared to conventional tillage. Indeed, soil erosion rates were lowered by 50% for the Marchouch site and by 40% for the Harchane site. Concerning the Oued Mellah watershed, the results highlighted that high density Atriplex plantations have reduced soil loss by approximately 60 to 80%, while for the site under fruit plantations and cereals, soil erosion has been decreased by 58%.

  8. Comparison of SWAT and GeoWEPP model in predicting the impact of stone bunds on runoff and erosion processes in the Northern Ethiopian Highlands

    NASA Astrophysics Data System (ADS)

    Demelash, Nigus; Flagler, Jared; Renschler, Chris; Strohmeier, Stefan; Holzmann, Hubert; Feras, Ziadat; Addis, Hailu; Zucca, Claudio; Bayu, Wondimu; Klik, Andreas

    2017-04-01

    Soil degradation is a major issue in the Ethiopian highlands which are most suitable for agriculture and, therefore, support a major part of human population and livestock. Heavy rainstorms during the rainy season in summer create soil erosion and runoff processes which affect soil fertility and food security. In the last years programs for soil conservation and afforestation were initiated by the Ethiopian government to reduce erosion risk, retain water in the landscape and improve crop yields. The study was done in two adjacent watersheds in the Northwestern highlands of Ethiopia. One of the watersheds is developed by soil and water conservation structures (stone bunds) in 2011 and the other one is without soil and water conservation structures. Spatial distribution of soil textures and other soil properties were determined in the field and in the laboratory and a soil map was derived. A land use map was evaluated based on satellite images and ground truth data. A Digital Elevation Model of the watershed was developed based on conventional terrestrial surveying using a total station. At the outlet of the watersheds weirs with cameras were installed to measure surface runoff. During each event runoff samples were collected and sediment concentration was analyzed. The objective of this study is 1) to assess the impact of stone bunds on runoff and erosion processes by using simulation models, and 2) to compare the performance of two soil erosion models in predicting the measurements. The selected erosion models were the Soil and Water Assessment Tool (SWAT) and the Geospatial Interface to the Water Erosion Prediction Project (GeoWEPP). The simulation models were calibrated/verified for the 2011-2013 periods and validated with 2014-2015 data. Results of this comparison will be presented.

  9. Viewpoint: Sustainability of piñon-juniper ecosystems - A unifying perspective of soil erosion thresholds

    USGS Publications Warehouse

    Davenport, David W.; Breshears, D.D.; Wilcox, B.P.; Allen, Craig D.

    1998-01-01

    Many pinon-juniper ecosystem in the western U.S. are subject to accelerated erosion while others are undergoing little or no erosion. Controversy has developed over whether invading or encroaching pinon and juniper species are inherently harmful to rangeland ecosystems. We developed a conceptual model of soil erosion in pinon-jumper ecosystems that is consistent with both sides of the controversy and suggests that the diverse perspectives on this issue arise from threshold effects operating under very different site conditions. Soil erosion rate can be viewed as a function of (1) site erosion potential (SEP), determined by climate, geomorphology and soil erodibility; and (2) ground cover. Site erosion potential and cove act synergistically to determine soil erosion rates, as evident even from simple USLE predictions of erosion. In pinon-juniper ecosystem with high SEP, the erosion rate is highly sensitive to ground cover and can cross a threshold so that erosion increases dramatically in response to a small decrease in cover. The sensitivity of erosion rate to SEP and cover can be visualized as a cusp catastrophe surface on which changes may occur rapidly and irreversibly. The mechanisms associated with a rapid shift from low to high erosion rate can be illustrated using percolation theory to incorporate spatial, temporal, and scale-dependent patterns of water storage capacity on a hillslope. Percolation theory demonstrates how hillslope runoff can undergo a threshold response to a minor change in storage capacity. Our conceptual model suggests that pinion and juniper contribute to accelerated erosion only under a limited range of site conditions which, however, may exist over large areas.

  10. Accumulation of moisture and soil erosion in the territory of social vole ( Microtus socialis) settlements in the northern Caspian Lowland

    NASA Astrophysics Data System (ADS)

    Bykov, A. V.; Kolesnikov, A. V.; Kulakova, N. Yu.; Shabanova, N. P.

    2008-08-01

    In the clay semidesert of the Caspian Lowland, the surface runoff is transformed to soil runoff due to the presence of a system of social vole ( Microtus socialis Pall.) passageways in the soils that promotes the retention of soil moisture and prevents the development of soil erosion. A quantitative assessment of this process is given. We describe the mechanism of intense soil erosion arising after the disturbance of vole underground passageways responsible for the formation of specific relief elements and plant communities.

  11. Highly erodible terrain in agriculture land against chipped pruned branches. Or how to stop the soil erosion with low investment

    NASA Astrophysics Data System (ADS)

    Cerdà, A.

    2009-04-01

    The session on "Soil erosion and sediment control with vegetation and bioengineering on severely eroded terrain" pays special attention to the severe soil erosion suffered on steep slopes and erodible parent materials and soils. Within the last 20 years, in the Mediterranean lands, the citrus orchards were reallocated on steep slopes due to the urban development and better climatic and management conditions of the new plantations. The lack of vegetation cover on the new slope plantations of citrus resulted in high erosion rates. Those non-sustainable soil losses were measured by means of rainfall simulation experiments, Gerlach collectors, geomorphological transect and topographical measurements. The October 2007 and October 2008 rainy periods resulted in sheet, rill and gully erosion. Some recently planted orchards (2005) had the first pruning season in 2008. The pruned chipped branches reduced the soil losses to 50 % of the expected, although the litter (pruned branches) covered 4.67 % of the soil. This is why a research was developed by means of simulated rainfall experiments to determine the vegetation cover (litter, mainly leaves) to protect the soil to reach a sustainable erosion rate. Rainfall simulation experiments at 43 mm h-1 where performed on 1 m2 plots covered with 0, 3, 7, 15, 30, 45, 60, 80 and 100 % litter cover (pruned chipped branches) to determine the sustainable litter cover to avoid the soil losses. The results show that more that 45 % litter cover almost reduces the soil losses to negligible rates. The results confirm that 4 % of vegetation cover reduces the soil losses to 50 %. Key words: Agriculture land, erodible terrain, land management, citrus, erosion, Spain, Valencia, herbicides. Acknowledgements, We thanks the financial support of the Ministerio de Ciencia e Innovación by means of the project CGL2008-02879/BTE, "PERDIDA DE SUELO EN NUEVAS EXPLOTACIONES CITRICOLAS EN PENDIENTE. ESTRATEGIAS PARA EL CONTROL DE LA EROSION HIDRICA"

  12. Comprehensive assessment of soil erosion risk for better land use planning in river basins: Case study of the Upper Blue Nile River.

    PubMed

    Haregeweyn, Nigussie; Tsunekawa, Atsushi; Poesen, Jean; Tsubo, Mitsuru; Meshesha, Derege Tsegaye; Fenta, Ayele Almaw; Nyssen, Jan; Adgo, Enyew

    2017-01-01

    In the drought-prone Upper Blue Nile River (UBNR) basin of Ethiopia, soil erosion by water results in significant consequences that also affect downstream countries. However, there have been limited comprehensive studies of this and other basins with diverse agroecologies. We analyzed the variability of gross soil loss and sediment yield rates under present and expected future conditions using a newly devised methodological framework. The results showed that the basin generates an average soil loss rate of 27.5tha -1 yr -1 and a gross soil loss of ca. 473Mtyr -1 , of which, at least 10% comes from gully erosion and 26.7% leaves Ethiopia. In a factor analysis, variation in agroecology (average factor score=1.32) and slope (1.28) were the two factors most responsible for this high spatial variability. About 39% of the basin area is experiencing severe to very severe (>30tha -1 yr -1 ) soil erosion risk, which is strongly linked to population density. Severe or very severe soil erosion affects the largest proportion of land in three subbasins of the UBNR basin: Blue Nile 4 (53.9%), Blue Nile 3 (45.1%), and Jema Shet (42.5%). If appropriate soil and water conservation practices targeted ca. 77.3% of the area with moderate to severe erosion (>15tha -1 yr -1 ), the total soil loss from the basin could be reduced by ca. 52%. Our methodological framework identified the potential risk for soil erosion in large-scale zones, and with a more sophisticated model and input data of higher spatial and temporal resolution, results could be specified locally within these risk zones. Accurate assessment of soil erosion in the UBNR basin would support sustainable use of the basin's land resources and possibly open up prospects for cooperation in the Eastern Nile region. Copyright © 2016 Office national des forêts. Published by Elsevier B.V. All rights reserved.

  13. Uncertainties in assessing tillage erosion - How appropriate are our measuring techniques?

    NASA Astrophysics Data System (ADS)

    Fiener, P.; Wilken, F.; Aldana-Jague, E.; Deumlich, D.; Gómez, J. A.; Guzmán, G.; Hardy, R. A.; Quinton, J. N.; Sommer, M.; Van Oost, K.; Wexler, R.

    2018-03-01

    Tillage erosion on arable land is a very important process leading to a net downslope movement of soil and soil constitutes. Tillage erosion rates are commonly in the same order of magnitude as water erosion rates and can be even higher, especially under highly mechanized agricultural soil management. Despite its prevalence and magnitude, tillage erosion is still understudied compared to water erosion. The goal of this study was to bring together experts using different techniques to determine tillage erosion and use the different results to discuss and quantify uncertainties associated with tillage erosion measurements. The study was performed in northeastern Germany on a 10 m by 50 m plot with a mean slope of 8%. Tillage erosion was determined after two sequences of seven tillage operations. Two different micro-tracers (magnetic iron oxide mixed with soil and fluorescent sand) and one macro-tracer (passive radio-frequency identification transponders (RFIDs), size: 4 × 22 mm) were used to directly determine soil fluxes. Moreover, tillage induced changes in topography were measured for the entire plot with two different terrestrial laser scanners and an unmanned aerial system for structure from motion topography analysis. Based on these elevation differences, corresponding soil fluxes were calculated. The mean translocation distance of all techniques was 0.57 m per tillage pass, with a relatively wide range of mean soil translocation distances ranging from 0.39 to 0.72 m per pass. A benchmark technique could not be identified as all used techniques have individual error sources, which could not be quantified. However, the translocation distances of the macro-tracers used were consistently smaller than the translocation distances of the micro-tracers (mean difference = - 26 ± 12%), which questions the widely used assumption of non-selective soil transport via tillage operations. This study points out that tillage erosion measurements, carried out under almost optimal conditions, are subject to major uncertainties that are far from negligible.

  14. From plot to regional scales: Effect of land use and soil type on soil erosion in the southern Amazon

    NASA Astrophysics Data System (ADS)

    Schindewolf, Marcus; Schultze, Nico; Amorim, Ricardo S. S.; Schmidt, Jürgen

    2015-04-01

    The corridor along the Brazilian Highway 163 in the Southern Amazon is affected by radical changes in land use patterns. In order to enable a model based assessment of erosion risks on different land use and soil types a transportable disc type rainfall simulator is applied to identify the most important infiltration and erosion parameters of the EROSION 3D model. Since particle detachment highly depends on experimental plot length, a combined runoff supply is used for the virtually extension of the plot length to more than 20 m. Simulations were conducted on the most common regional land use, soil management and soil types for dry and wet runs. The experiments are characterized by high final infiltration rates (0.3 - 2.5 mm*min^-1), low sediment concentrations (0.2-6.5 g*L^-1) and accordingly low soil loss rates (0.002-50 Kg*m^-2), strongly related to land use, applied management and soil type. Ploughed pastures and clear cuts reveal highest soil losses whereas croplands are less affected. Due to higher aggregate stabilities Ferrasols are less endangered than Acrisols. Derived model parameters are plausible, comparable to existing data bases and reproduce the effects of land use and soil management on soil loss. Thus it is possible to apply the EROSION 3D soil loss model in Southern Amazonia for erosion risk assessment and scenario simulation under changing climate and land use conditions.

  15. Soil erosion model predictions using parent material/soil texture-based parameters compared to using site-specific parameters

    Treesearch

    R. B. Foltz; W. J. Elliot; N. S. Wagenbrenner

    2011-01-01

    Forested areas disturbed by access roads produce large amounts of sediment. One method to predict erosion and, hence, manage forest roads is the use of physically based soil erosion models. A perceived advantage of a physically based model is that it can be parameterized at one location and applied at another location with similar soil texture or geological parent...

  16. Comparing simple and complex approaches to simulate the impacts of soil water repellency on runoff and erosion in burnt Mediterranean forest slopes

    NASA Astrophysics Data System (ADS)

    Nunes, João Pedro; Catarina Simões Vieira, Diana; Keizer, Jan Jacob

    2017-04-01

    Fires impact soil hydrological properties, enhancing soil water repellency and therefore increasing the potential for surface runoff generation and soil erosion. In consequence, the successful application of hydrological models to post-fire conditions requires the appropriate simulation of the effects of soil water repellency on soil hydrology. This work compared three approaches to model soil water repellency impacts on soil hydrology in burnt eucalypt and pine forest slopes in central Portugal: 1) Daily approach, simulating repellency as a function of soil moisture, and influencing the maximum soil available water holding capacity. It is based on the Thornthwaite-Mather soil water modelling approach, and is parameterized with the soil's wilting point and field capacity, and a parameter relating soil water repellency with water holding capacity. It was tested with soil moisture data from burnt and unburnt hillslopes. This approach was able to simulate post-fire soil moisture patterns, which the model without repellency was unable to do. However, model parameters were different between the burnt and unburnt slopes, indicating that more research is needed to derive standardized parameters from commonly measured soil and vegetation properties. 2) Seasonal approach, pre-determining repellency at the seasonal scale (3 months) in four classes (from none to extreme). It is based on the Morgan-Morgan-Finney (MMF) runoff and erosion model, applied at the seasonal scale and is parameterized with a parameter relating repellency class with field capacity. It was tested with runoff and erosion data from several experimental plots, and led to important improvements on runoff prediction over an approach with constant field capacity for all seasons (calibrated for repellency effects), but only slight improvements in erosion predictions. In contrast with the daily approach, the parameters could be reproduced between different sites 3) Constant approach, specifying values for soil water repellency for the three years after the fire, and keeping them constant throughout the year. It is based on a daily Curve Number (CN) approach, and was incorporated directly in the Soil and Water Assessment Tool (SWAT) model and tested with erosion data from a burnt hillslope. This approach was able to successfully reproduce soil erosion. The results indicate that simplified approaches can be used to adapt existing models for post-fire simulation, taking repellency into account. Taking into account the seasonality of repellency seems more important to simulate surface runoff than erosion, possibly since simulating the larger runoff rates correctly is sufficient for erosion simulation. The constant approach can be applied directly in the parameterization of existing runoff and erosion models for soil loss and sediment yield prediction, while the seasonal approach can readily be developed as a next step, with further work being needed to assess if the approach and associated parameters can be applied in multiple post-fire environments.

  17. Rainfall erosivity: An overview of methodologies and applications

    USDA-ARS?s Scientific Manuscript database

    The rainfall erosivity factor (R-factor) is one of six erosion factors in the Universal Soil Loss Equation (USLE), together which reflect the combined effects that cause soil loss by rill and interrill erosion on hillslopes by precipitation. It is defined as the summation of event EI30 (the product ...

  18. Utilising Structure-From-Motion Approaches to Develop a Spatial Understanding of Soil Erosion Processes, in an Experimental Setting.

    NASA Astrophysics Data System (ADS)

    Benaud, P.; Anderson, K.; Quine, T. A.; James, M. R.; Quinton, J.; Brazier, R. E.

    2016-12-01

    While total sediment capture can accurately quantify soil loss via water erosion, it isn't practical at the field scale and provides little information on the spatial nature of soil erosion processes. Consequently, high-resolution, remote sensing, point cloud data provide an alternative method for quantifying soil loss. The accessibility of Structure-from-Motion Multi-Stereo View (SfM) and the potential for multi-temporal applications, offers an exciting opportunity to spatially quantify soil erosion. Accordingly, published research provides examples of the successful quantification of large erosion features and events, to centimetre accuracy. Through rigorous control of the camera and image network geometry, the centimetre accuracy achievable at the field scale, can translate to sub-millimetre accuracies within a laboratory environment. Accordingly, this study looks to understand how the ultra-high-resolution spatial information on soil surface topography, derived from SfM, can be integrated with a multi-element sediment tracer to develop a mechanistic understanding of rill and inter-rill erosion, under experimental conditions. A rainfall simulator was used to create three soil surface conditions; compaction and rainsplash, inter-rill erosion, and rill erosion, at two experimental scales (0.15 m2 and 3 m2). Total sediment capture was the primary validation for the experiments, allowing the comparison between structurally and volumetrically derived change, and true soil loss. A Terrestrial Laser Scanner (resolution of ca. 0.8mm) has been employed to assess spatial discrepancies within the SfM data sets and to provide an alternative measure of volumetric change. Preliminary results show the SfM approach used can achieve a ground resolution of less than 0.2 mm per pixel, and a RMSE of less than 0.3 mm. Consequently, it is expected that the ultra-high-resolution SfM point clouds can be utilised to provide a detailed assessment of soil loss via water erosion processes.

  19. High natural erosion rates are the backdrop for enhanced anthropogenic soil erosion in the Middle Hills of Nepal

    NASA Astrophysics Data System (ADS)

    West, A. J.; Arnold, M.; Aumaître, G.; Bourlès, D. L.; Keddadouche, K.; Bickle, M.; Ojha, T.

    2014-08-01

    Although agriculturally accelerated soil erosion is implicated in the unsustainable environmental degradation of mountain environments, such as in the Himalaya, the effects of land use can be difficult to quantify in many mountain settings because of the high and variable natural background rates of erosion. In this study, we present new long-term denudation rates, derived from cosmogenic 10Be analysis of quartz in river sediment from the Likhu Khola, a small agricultural river basin in the Middle Hills of central Nepal. Calculated long-term denudation rates, which reflect background natural erosion processes over 1000+ years prior to agricultural intensification, are similar to present-day sediment yields and to soil loss rates from terraces that are well-maintained. Similarity in short- and long-term catchment-wide erosion rates for the Likhu is consistent with data from elsewhere in the Nepal Middle Hills, but contrasts with the very large increases in short-term erosion rates seen in agricultural catchments in other steep mountain settings. Our results suggest that the large sediment fluxes exported from the Likhu and other Middle Hills rivers in the Himalaya are derived in large part from natural processes, rather than from soil erosion as a result of agricultural activity. Because of the high natural background rates, simple comparison of short- and long-term rates may not reveal unsustainable soil degradation, particularly if much of the catchment-scale erosion flux derives from mass wasting. Correcting for the mass wasting contribution in the Likhu implies minimum catchment-averaged soil production rates of ~0.25-0.35 mm yr-1. The deficit between these production rates and soil losses suggests that terraced agriculture in the Likhu may not be associated with a large systematic soil deficit, at least when terraces are well maintained, but that poorly managed terraces, forest and scrubland may lead to rapid depletion of soil resources.

  20. Dust and nutrient enrichment by wind erosion from Danish soils in dependence of tillage direction

    NASA Astrophysics Data System (ADS)

    Mohammadian Behbahani, Ali; Fister, Wolfgang; Heckrath, Goswin; Kuhn, Nikolaus J.

    2016-04-01

    Wind erosion is a selective process, which promotes erosion of fine particles. Therefore, it can be assumed that increasing erosion rates are generally associated with increasing loss of dust sized particles and nutrients. However, this selective process is strongly affected by the orientation and respective trapping efficiency of tillage ridges and furrows. Since tillage ridges are often the only protection measure available on poorly aggregated soils in absence of a protective vegetation cover, it is very important to know which orientation respective to the dominant wind direction provides best protection. This knowledge could be very helpful for planning erosion protection measures on fields with high wind erosion susceptibility. The main objective of this study, therefore, was to determine the effect of tillage direction on dust and nutrient mobilization by wind, using wind tunnel simulations. In order to assess the relationship between the enrichment ratio of specific particle sizes and the amount of eroded nutrients, three soils with loamy sand texture, but varying amounts of sand-sized particles, were selected. In addition, a soil with slightly less sand, but much higher organic matter content was chosen. The soils were tested with three different soil surface scenarios - flat surface, parallel tillage, perpendicular tillage. The parallel tillage operation experienced the greatest erosion rates, independent of soil type. Particles with D50 between 100-155 μm showed the greatest risk of erosion. However, due to a greater loss of dust sized particles from perpendicularly tilled surfaces, this wind-surface arrangement showed a significant increase in nutrient enrichment ratio compared to parallel tillage and flat surfaces. The main reason for this phenomenon is most probably the trapping of larger particles in the perpendicular furrows. This indicates that the highest rate of soil protection does not necessarily coincide with lowest soil nutrient losses and dust emissions. For the evaluation of protection measures on these soil types in Denmark it is, therefore, important to differentiate between their effectivity to reduce total soil erosion amount, dust emission, and nutrient loss.

  1. Assessment of soil erosion risk in Komering watershed, South Sumatera, using SWAT model

    NASA Astrophysics Data System (ADS)

    Salsabilla, A.; Kusratmoko, E.

    2017-07-01

    Changes in land use watershed led to environmental degradation. Estimated loss of soil erosion is often difficult due to some factors such as topography, land use, climate and human activities. This study aims to predict soil erosion hazard and sediment yield using the Soil and Water Assessment Tools (SWAT) hydrological model. The SWAT was chosen because it can simulate the model with limited data. The study area is Komering watershed (806,001 Ha) in South Sumatera Province. There are two factors land management intervention: 1) land with agriculture, and 2) land with cultivation. These factors selected in accordance with the regulations of spatial plan area. Application of the SWAT demonstrated that the model can predict surface runoff, soil erosion loss and sediment yield. The erosion risk for each watershed can be classified and predicted its changes based on the scenarios which arranged. In this paper, we also discussed the relationship between the distribution of erosion risk and watershed's characteristics in a spatial perspective.

  2. Wind erosion potential of a winter wheat-summer fallow rotation after land application of biosolids

    NASA Astrophysics Data System (ADS)

    Pi, Huawei; Sharratt, Brenton; Schillinger, William F.; Bary, Andrew I.; Cogger, Craig G.

    2018-06-01

    Conservation tillage is a viable management strategy to control soil wind erosion, but other strategies such as land application of biosolids that enhance soil quality may also reduce wind erosion. No studies have determined the effects of biosolids on wind erosion. Wind erosion potential of a silt loam was assessed using a portable wind tunnel after applying synthetic and biosolids fertilizer to traditional (disk) and conservation (undercutter) tillage practices during the summer fallow phase of a winter wheat-summer fallow (WW-SF) rotation in 2015 and 2016 in east-central Washington. Soil loss ranged from 12 to 61% lower for undercutter than disk tillage, possibly due to retention of more biomass on the soil surface of the undercutter versus disk tillage treatment. In contrast, soil loss was similar to or lower for biosolids as compared with synthetic fertilizer treatment. Our results suggest that biosolids applications to agricultural lands will have minimal impact on wind erosion.

  3. Characterizing soil erosion potential using electrical resistivity imaging : final report.

    DOT National Transportation Integrated Search

    2017-04-01

    The erosion rate, or erodibility, of soil depends on many soil characteristics including: plasticity, : water content, grain size, percent clay, compaction, and shear strength. Many of these characteristics also : influence soil in situ bulk electric...

  4. Characterizing soil erosion potential using electrical resistivity imaging : technical summary.

    DOT National Transportation Integrated Search

    2017-04-01

    The erosion rate, or erodibility, of soil depends on many soil characteristics : including: plasticity, water content, grain size, percent clay, compaction, and shear : strength. Many of these characteristics also influence soil in situ bulk electric...

  5. Climate change and predicting soil loss from rainfall

    NASA Astrophysics Data System (ADS)

    Kinnell, Peter

    2017-04-01

    Conceptually, rainfall has a certain capacity to cause soil loss from an eroding area while soil surfaces have a certain resistance to being eroded by rainfall. The terms "rainfall erosivity' and "soil erodibility" are frequently used to encapsulate the concept and in the Revised Universal Soil Loss Equation (RUSLE), the most widely used soil loss prediction equation in the world, average annual values of the R "erosivity" factor and the K "erodibility" factor provide a basis for accounting for variation in rainfall erosion associated with geographic variations of climate and soils. In many applications of RUSLE, R and K are considered to be independent but in reality they are not. In RUSLE2, provision has been made to take account of the fact that K values determined using soil physical factors have to be adjusted for variations in climate because runoff is not directly included as a factor in determining R. Also, the USLE event erosivity index EI30 is better related to accounting for event sediment concentration than event soil loss. While the USLE-M, a modification of the USLE which includes runoff as a factor in determining the event erosivity index provides better estimates of event soil loss when event runoff is known, runoff prediction provides a challenge to modelling event soil loss as climate changes

  6. Effect of topographic characteristics on compound topographic index for identification of gully channel initiation locations

    USDA-ARS?s Scientific Manuscript database

    Sediment loads from gully erosion can be a significant sediment source within watershed resulting in major contributions to water quality problems, reduction of crop productivity by removal of nutrient rich top soil, and damaging downstream ecosystems. Areas containing a high probability of forming ...

  7. National Food Strategy: Kenya’s Approach to the Problem of Feeding the Nation

    DTIC Science & Technology

    1990-02-01

    intercropping, agroforestry , preven- tion of soil erosion and rural afforestation. The new Arid and Semi Arid Lands Authority (ASAL) will establish irrigation...international organizations such as the International Council for Research in Agroforestry (ICRAF) has been beneficial. 13 To preserve Kenya’s forests, the

  8. Soil erosion increases soil microbial activity at the depositional position of eroding slopes

    NASA Astrophysics Data System (ADS)

    Meng, Xu; Cardenas, Laura M.; Donovan, Neil; Zhang, Junling; Murray, Phil; Zhang, Fusuo; Dungait, Jennifer A. J.

    2016-04-01

    Soil erosion is the most widespread form of soil degradation. Estimation of the impact of agricultural soil erosion on global carbon cycle is a topic of scientific debate, with opposing yet similar magnitude estimates of erosion as a net source or sink of atmospheric carbon. The transport and deposition of eroded agricultural soils affects not only the carbon cycle but other nutrient cycles as well. It has been estimated that erosion-induced lateral fluxes of nitrogen (N) and phosphorus (P) could be similar in magnitude to those from fertilizer application and crop removal (Quinton et al., 2010). In particular, the dynamics of soil N in eroding slopes need to be considered because the management of soil N has profound influences on the functioning of soil microorganisms, which are generally considered as the main biotic driver of soil C efflux. Carbon dioxide (CO2) emissions tend to increase in deposition positions of eroded slopes, diminishing the sink potential of eroded soils C (. As the global warming potential of nitrous oxide (N2O) is 310 times relative to that of CO2, the sink potential of agricultural erosion could easily be negated with a small increase in N2O emissions. Therefore, an investigation of the potential emissions of greenhouse gases, and especially N2O from soils affected by agricultural erosion, are required. In the present study, a field experiment was established with contrasting cultivation techniques of a C4 crop (Zea mays; δ13C = -12.2‰) to introduce 13C-enriched SOC to a soil previously cropped with C3 plants (δ13C = -29.3‰). Soils sampled from the top, middle, bottom and foot slope positions along a distinct erosion pathway were analyzed using 13C-phospholipid fatty acid (PLFA) analysis and incubated to investigate the responses of microorganisms and associated potential emissions of greenhouse gases (GHG). The total C and N contents were greatest in soils at the top slope position, whereas soil mineral N (NO3--N and NH4+-N) contents were greater at the bottom and foot slope positions. The biomarker PLFAs for Gram positive bacteria and fungi were relatively 13C-enriched, indicating the incorporation of C from Zea mays residues compared with 13C-depletion in biomarker PLFA in Actinobacteria indicating utilization of SOC. An average of 72% C incorporated by the all microbial groups was derived from SOC at the slope foot, suggesting a large amount of SOC was mineralized at the depositional position. We observed the highest emissions of N2O and CO2 from the incubated soils sampled from the bottom slope position. We conclude that the conditions in the depositional positions of eroding slopes can promote GHG emissions reducing the previously reported sink capacity of soil erosion. Quinton et al (2010) The impact of agricultural soil erosion on biogeochemical cycling. Nature Geoscience 3, 311 - 314.

  9. Modeling of Soil Erosion by IntErO model: The Case Study of the Novsicki Potok Watershed, of the Prokletije high mountains of Montenegro

    NASA Astrophysics Data System (ADS)

    Spalevic, Velibor; Al-Turki, Ali M.; Barovic, Goran; Leandro Naves Silva, Marx; Djurovic, Nevenka; Soares Souza, Walisson; Veloso Gomes Batista, Pedro; Curovic, Milic

    2016-04-01

    The application of soil conservation programs to combat erosion and sedimentation are significantly contributing to the protection of the natural resources. Watershed management practices include the assessment of Physical-Geographical, Climate, Geological, Pedological characteristics, including the analysis of Land Use of the regions concerned. The policy makers are increasingly looking for the different land uses and climatic scenarios that can be used for valuable projections for watershed management. To increase knowledge about those processes, use of hydrological and soil erosion models is needed and that is allowing quantification of soil redistribution and sediment productions. We focused on soil erosion processes in one of Northern Montenegrin mountain watersheds, the Novsicki Potok Watershed of the Polimlje River Basin, using modeling techniques: the IntErO model for calculation of runoff and soil loss. The model outcomes were validated through measurements of lake sediment deposition at the Potpec hydropower plant dam. Our findings indicate a medium potential of soil erosion risk. With 464 m³ yr-1 of annual sediment yield, corresponding to an area-specific sediment yield of 270 m³km-2 yr-1, the Novsicki Potok drainage basin belongs to the Montenegrin basins with the medium sediment discharge; according to the erosion type, it is surface erosion. The value of the Z coefficient was calculated on 0.403, what indicates that the river basin belongs to 3rd destruction category (of five). Our results suggest that the calculated peak discharge from the river basin was 82 m3s-1 for the incidence of 100 years. According to our analysis there is a possibility for large flood waves to appear in the studied river basin. With this research we, to some extent, improved the knowledge on the status of sediment yield and runoff of the river basins of Montenegro, where the map of Soil erosion is still not prepared. The IntErO model we used in this study is relatively novel concept and is highly recommended for soil erosion modelling in other river basins similar to the studied watershed, because of its simple identification of critical areas affected by the soil loss caused by soil erosion.

  10. Soil erosion in developing countries: A politicoeconomic explanation

    NASA Astrophysics Data System (ADS)

    Thapa, Gopal B.; Weber, Karl E.

    1991-07-01

    Soil erosion is accelerating in developing countries of Asia, Africa, and Latin America. It has threatened the livelihood of millions of peasants, for agriculture is their economic mainstay. A probe into the forces causing erosion reveals that the elite’s resolve to accumulate ever more wealth and to maintain, consolidate, or expand their sociopolitical power and the necessity of the poor to fulfill their requirements of food, fuelwood, and fodder are the two major factors accelerating soil erosion. Unless the vast masses of poor people are integrated into the national mainstream through the implementation of equitable and redistributive development policies, it is impossible to control the accelerating rate of soil erosion and thus to achieve the objective of sustainable development.

  11. Simulations of wind erosion along the Qinghai-Tibet Railway in north-central Tibet

    NASA Astrophysics Data System (ADS)

    Jiang, Yingsha; Gao, Yanhong; Dong, Zhibao; Liu, Benli; Zhao, Lin

    2018-06-01

    Wind erosion along the Qinghai-Tibet Railway causes sand hazard and poses threats to the safety of trains and passengers. A coupled land-surface erosion model (Noah-MPWE) was developed to simulate the wind erosion along the railway. Comparison with the data from the 137Cs isotope analysis shows that this coupled model could simulate the mean erosion amount reasonably. The coupled model was then applied to eight sites along the railway to investigate the wind-erosion distribution and variations from 1979 to 2012. Factors affecting wind erosion spatially and temporally were assessed as well. Majority wind erosion occurs in the non-monsoon season from December to April of the next year except for the site located in desert. The region between Wudaoliang and Tanggula has higher wind erosion occurrences and soil lose amount because of higher frequency of strong wind and relatively lower soil moisture than other sites. Inter-annually, all sites present a significant decreasing trend of annual soil loss with an average rate of -0.18 kg m-2 a-1 in 1979-2012. Decreased frequency of strong wind, increased precipitation and soil moisture contribute to the reduction of wind erosion in 1979-2012. Snow cover duration and vegetation coverage also have great impact on the occurrence of wind erosion.

  12. Investigation of the Impact of Stone Bunds on Erosion and Deposition Processes combining Conventional and Tracer Methodology in the Gumara Maksegnit Watershed, Northern Highlands of Ethiopia

    NASA Astrophysics Data System (ADS)

    Obereder, Eva Maria; Wakolbinger, Stefanie; Guzmán, Gema; Strohmeier, Stefan; Demelash, Nigus; Gomez, José Alfonso; Klik, Andreas

    2016-04-01

    Ethiopia is one of the poorest countries of the word, with over 85 % of total population dependent from agriculture. Massive deforestation in the past and missing soil and water conservation (SWC) measures cause severe soil erosion problems in the northern highlands of Ethiopia. Different SWC methods are supposed to prevent ongoing land degradation, which is triggered by rainfall driven soil erosion in the Ethiopian agricultural lands. Common technologies for soil and water conservation are stone bunds, which reduce surface runoff and sediment loss. In June 2015 two field experiments were set up in the Gumara-Maksegnit watershed in Northern Ethiopia. The objective of this study was to evaluate the impact of graded stone bunds on surface runoff and sediment yield by using conventional and tracing approaches. Three consecutive runoff plots of 20 x 4 m length and width, respectively were established along the maximum slope direction. Each one was separated to the downstream one by a stone bund. The experimental setup allowed the measurement of surface runoff along each stone bund and the measurement of overflow over the lowest stone bund. To assess the pathway and the spatial distribution of the sediments a different tracer (Magnetite, Hematite and Goethite) was applied in a 40 cm wide strip at the top of each one of the plots. The second tracer experiment was conducted on the same hillslope. It consisted of a 20 m long hillslope without borders in which a 4 m long and 40 cm wide Magnetite strip was placed at the top. At the end of August 2015 soil samples of 0-2 cm depth were taken in a 1.5 x 1.5 m grid within the area of the hillslope. Soil samples parallel to the stone bund (above and underneath) were taken along 16 m to assess the soil movement/deposition. Tracer concentrations of soil and sediment samples in both trials were analysed. Runoff and sediment were collected in weekly intervals from July to September. Runoff and erosion data, as well as the evaluation of the tracer experiments are presented. Preliminary results give an insight of the spatial pattern of sediment flow paths and accumulation areas to understand sediment dynamics within these systems. Gained knowledge on erosion processes provides information about the efficiency of the stone bunds as a SWC measure, very useful to optimize their design which affect indirectly to soil fertility and therefore to crop yield.

  13. Modeling soil erosion and transport on forest landscape

    Treesearch

    Ge Sun; Steven G McNulty

    1998-01-01

    Century-long studies on the impacts of forest management in North America suggest sediment can cause major reduction on stream water quality. Soil erosion patterns in forest watersheds are patchy and heterogeneous. Therefore, patterns of soil erosion are difficult to model and predict. The objective of this study is to develop a user friendly management tool for land...

  14. Soil erosion from harvested sites versus streamside management zone sediment deposition in the Piedmont of Virginia

    Treesearch

    William A. Lakel; W. Michael Aust; C. Andrew Dolloff; Amy W. Easterbrook

    2006-01-01

    Forestry best management practices were primarily developed to address two major issues related to soil erosion: water quality and site productivity. Sixteen watersheds managed as loblolly pine plantations in the piedmont region were monitored for soil erosion and water quality prior to treatment. Subsequently, all watersheds were harvested with clearcutting, ground-...

  15. Modeling climate change effects on runoff and soil erosion in southeastern Arizona rangelands and implications for mitigation with rangeland conservation practices

    USDA-ARS?s Scientific Manuscript database

    Climate change is expected to impact runoff and soil erosion on rangelands in the southwestern United States. This study was done to evaluate the potential impacts of precipitation changes on soil erosion and surface runoff in southeastern Arizona using seven GCM models with three emission scenarios...

  16. Effects of cropping and tillage systems on soil erosion under climate change in Oklahoma

    USDA-ARS?s Scientific Manuscript database

    Soil erosion under future climate change is very likely to increase due to projected increases in frequency and magnitude of heavy storms. The objective of this study is to quantify the effects of common cropping and tillage systems on soil erosion and surface runoff during 2010-2039 in central Okl...

  17. Hillslope erosion rates in the oak savannas of the southwestern borderlands region

    Treesearch

    Aaron T. Kauffman; Cody L. Stropki; Peter F. Ffolliott; Gerald J. Gottfried; Daniel G. Neary

    2007-01-01

    Hillslope soil erosion on watershed landscapes can lower the productivity of upland sites and adversely impact water quality and downstream (off-site) areas. It is not surprising, therefore, that excessive soil erosion and the consequent sedimentation can represent significant costs to the land and people that are affected. The first known estimates of hillslope soil...

  18. Land use and climate change impacts on runoff and soil erosion at the hillslope scale in the Brazilian Cerrado.

    PubMed

    Anache, Jamil A A; Flanagan, Dennis C; Srivastava, Anurag; Wendland, Edson C

    2018-05-01

    Land use and climate change can influence runoff and soil erosion, threatening soil and water conservation in the Cerrado biome in Brazil. The adoption of a process-based model was necessary due to the lack of long-term observed data. Our goals were to calibrate the WEPP (Water Erosion Prediction Project) model for different land uses under subtropical conditions in the Cerrado biome; predict runoff and soil erosion for these different land uses; and simulate runoff and soil erosion considering climate change. We performed the model calibration using a 5-year dataset (2012-2016) of observed runoff and soil loss in four different land uses (wooded Cerrado, tilled fallow without plant cover, pasture, and sugarcane) in experimental plots. Selected soil and management parameters were optimized for each land use during the WEPP model calibration with the existing field data. The simulations were conducted using the calibrated WEPP model components with a 100-year climate dataset created with CLIGEN (weather generator) based on regional climate statistics. We obtained downscaled General Circulation Model (GCM) projections, and runoff and soil loss were predicted with WEPP using future climate scenarios for 2030, 2060, and 2090 considering different Representative Concentration Pathways (RCPs). The WEPP model had an acceptable performance for the subtropical conditions. Land use can influence runoff and soil loss rates in a significant way. Potential climate changes, which indicate the increase of rainfall intensities and depths, may increase the variability and rates of runoff and soil erosion. However, projected climate changes did not significantly affect the runoff and soil erosion for the four analyzed land uses at our location. Finally, the runoff behavior was distinct for each land use, but for soil loss we found similarities between pasture and wooded Cerrado, suggesting that the soil may attain a sustainable level when the land management follows conservation principles. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The history of human-induced soil erosion: Geomorphic legacies, early descriptions and research, and the development of soil conservation—A global synopsis

    NASA Astrophysics Data System (ADS)

    Dotterweich, Markus

    2013-11-01

    This paper presents a global synopsis about the geomorphic evidence of soil erosion in humid and semihumid areas since the beginning of agriculture. Historical documents, starting from ancient records to data from the mid-twentieth century and numerous literature reviews form an extensive assortment of examples that show how soil erosion has been perceived previously by scholars, land surveyors, farmers, land owners, researchers, and policy makers. Examples have been selected from ancient Greek and Roman Times and from central Europe, southern Africa, North America, the Chinese Loess Plateau, Australia, New Zealand, and Easter Island. Furthermore, a comprehensive collection on the development of soil erosion research and soil conservation has been provided, with a particular focus on Germany and the USA. Geomorphic evidence shows that most of the agriculturally used slopes in the Old and New Worlds had already been affected by soil erosion in earlier, prehistoric times. Early descriptions of soil erosion are often very vague. With regard to the Roman Times, geomorphic evidence shows seemingly opposing results, ranging from massive devastation to landscapes remaining stable for centuries. Unfortunately, historical documentation is lacking. In the following centuries, historical records become more frequent and more precise and observations on extreme soil erosion events are prominent. Sometimes they can be clearly linked to geomorphic evidence in the field. The advent of professional soil conservation took place in the late eighteenth century. The first extensive essay on soil conservation known to the Western world was published in Germany in 1815. The rise of professional soil conservation occurred in the late nineteenth and early twentieth centuries. Soil remediation and flood prevention programs were initiated, but the long-term success of these actions remains controversial. In recent years, increasing interest is to recover any traditional knowledge of soil management in order to incorporate it into modern soil conservation strategies. The study shows that local and regional variations in natural settings, cultural traditions, and socioeconomic conditions played a major role for the dynamics and the rates of soil erosion on a long-term perspective. Geomorphic evidence and historical sources can often complement each other, but there should be also an awareness of new pitfalls when using them together.

  20. Root characteristics of cover crops and their erosion-reducing potential during concentrated runoff

    NASA Astrophysics Data System (ADS)

    de Baets, S.; Poesen, J.

    2009-04-01

    In the loam region in central Belgium, a lot of research has been conducted on the effects of cover crops for preventing splash and interrill erosion and on their nutrient pumping effectiveness. As this is a very effective erosion and environment conservation technique, planting cover crops during the winter season is widely applied in the loess belt. Most of these cover crops freeze at the beginning of the winter period. Consequently, the above-ground biomass becomes less effective in protecting the soil from water erosion. Apart from the effects of the above-ground biomass in protecting the soil against raindrop impacts and reducing flow velocities by the retarding effects of their stems, plant roots also play an important role in improving soil strength. Previous research showed that roots contribute to a large extent to the resistance of topsoils against concentrated flow erosion. Unfortunately, information on root properties of common cover crops (e.g. Sinapis alba, Phacelia tanacetifoli, Lolium perenne, Avena sativa, Secale cereale, Raphanus sativus subsp. oleiferus) is very scarce. Therefore, root density distribution with depth and their erosion-reducing effects during concentrated flow erosion were assessed by conducting root auger measurements and concentrated flow experiments at the end of the growth period (December). The preliminary results indicate that the studied cover crops are not equally effective in preventing soil loss by concentrated flow erosion at the end of the growing season. Cover crops with thick roots, such as Sinapis alba and Raphanus sativus subsp. oleiferus are less effective than cover crops with fine-branched roots such as Phacelia tanacetifoli, Lolium perenne (Ryegrass), Avena sativa (Oats) and Secale cereale (Rye) in preventing soil losses by concentrated flow erosion. These results enable soil managers to select the most suitable crops and maximize soil protection.

  1. Assessment of soil erosion sensitivity and post-timber-harvesting erosion response in a mountain environment of Central Italy

    NASA Astrophysics Data System (ADS)

    Borrelli, Pasquale; Schütt, Brigitta

    2014-01-01

    This study aimed to assess the effects of forest management on the occurrence of accelerated soil erosion by water. The study site is located in a mountainous area of the Italian Central Apennines. Here, forest harvesting is a widespread forestry activity and is mainly performed on the moderate to steep slopes of the highlands. Through modeling operations based on data on soil properties and direct monitoring of changes in the post-forest-harvesting soil surface level at the hillslope scale, we show that the observed site became prone to soil erosion after human intervention. Indeed, the measured mean soil erosion rate of 49 t ha- 1 yr- 1 for the harvested watershed is about 21 times higher than the rate measured in its neighboring undisturbed forested watershed (2.3 t ha- 1 yr- 1). The erosive response is greatly aggravated by exposing the just-harvested forest, with very limited herbaceous plant cover, to the aggressive attack of the heaviest annual rainfall without adopting any conservation practices. The erosivity of the storms during the first four months of field measurements was 1571 MJ mm h- 1 ha- 1 in total (i.e., from September to December 2008). At the end of the experiment (16 months), 18.8%, 26.1% and 55.1% of the erosion monitoring sites in the harvested watershed recorded variations equal or greater than 0-5, 5-10 and > 10 mm, respectively. This study also provides a quantification of Italian forestland surfaces with the same pedo-lithological characteristics exploited for wood supply. Within a period of ten years (2002-2011), about 9891 ha of coppice forest changes were identified and their potential soil erosion rates modeled.

  2. Bioengineering Technology to Control River Soil Erosion using Vetiver (Vetiveria Zizaniodes)

    NASA Astrophysics Data System (ADS)

    Sriwati, M.; Pallu, S.; Selintung, M.; Lopa, R.

    2018-04-01

    Erosion is the action of surface processes (such as water flow or wind) that removes soil, rock or dissolved material from one location on the earth’s crust, and then transport it away to another location. Bioengineering is an attempt to maximise the use of vegetation components along riverbanks to cope with landslides and erosion of river cliffs and another riverbank damage. This study aims to analyze the bioengineering of Vetiver as a surface layer for soil erosion control using slope of 100, 200, and 300. This study is conducted with 3 variations of rain intensity (I), at 103 mm/hour, 107 mm/hour, and 130 mm/hour by using rainfall simulator tool. In addition, the USLE (Universal Soil Loss Equation) method is used in order to measure the rate of soil erosion. In this study, there are few USLE model parameters were used such as rainfall erosivity factor, soil erodibility factor, length-loss slope and stepness factor, cover management factor, and support practise factor. The results demonstrated that average of reduction of erosion rate using Vetiver, under 3 various rainfalls, namely rainfall intensity 103 mm/hr had reduced 84.971%, rainfall intensity 107 mm/hr had reduced 86.583 %, rainfall intensity 130 mm/hr had reduced 65.851%.

  3. Surface runoff and soil erosion by difference of surface cover characteristics using by an oscillating rainfall simulator

    NASA Astrophysics Data System (ADS)

    Kim, J. K.; Kim, M. S.; Yang, D. Y.

    2017-12-01

    Sediment transfer within hill slope can be changed by the hydrologic characteristics of surface material on hill slope. To better understand sediment transfer of the past and future related to climate changes, studies for the changes of soil erosion due to hydrological characteristics changes by surface materials on hill slope are needed. To do so, on-situ rainfall simulating test was conducted on three different surface conditions, i.e. well covered with litter layer condition (a), undisturbed bare condition (b), and disturbed bare condition (c) and these results from rainfall simulating test were compared with that estimated using the Limburg Soil Erosion Model (LISEM). The result from the rainfall simulating tests showed differences in the infiltration rate (a > b > c) and the highest soil erosion rate was occurred on c condition. The result from model also was similar to those from rainfall simulating tests, however, the difference from the value of soil erosion rate between two results was quite large on b and c conditions. These results implied that the difference of surface conditions could change the surface runoff and soil erosion and the result from the erosion model might significantly underestimate on bare surface conditions rather than that from rainfall simulating test.

  4. RUSLE2015: Modelling soil erosion at continental scale using high resolution input layers

    NASA Astrophysics Data System (ADS)

    Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Poesen, Jean; Ballabio, Cristiano; Lugato, Emanuele; Montanarella, Luca; Alewell, Christine

    2016-04-01

    Soil erosion by water is one of the most widespread forms of soil degradation in the Europe. On the occasion of the 2015 celebration of the International Year of Soils, the European Commission's Joint Research Centre (JRC) published the RUSLE2015, a modified modelling approach for assessing soil erosion in Europe by using the best available input data layers. The objective of the recent assessment performed with RUSLE2015 was to improve our knowledge and understanding of soil erosion by water across the European Union and to accentuate the differences and similarities between different regions and countries beyond national borders and nationally adapted models. RUSLE2015 has maximized the use of available homogeneous, updated, pan-European datasets (LUCAS topsoil, LUCAS survey, GAEC, Eurostat crops, Eurostat Management Practices, REDES, DEM 25m, CORINE, European Soil Database) and have used the best suited approach at European scale for modelling soil erosion. The collaboration of JRC with many scientists around Europe and numerous prominent European universities and institutes resulted in an improved assessment of individual risk factors (rainfall erosivity, soil erodibility, cover-management, topography and support practices) and a final harmonized European soil erosion map at high resolution. The mean soil loss rate in the European Union's erosion-prone lands (agricultural, forests and semi-natural areas) was found to be 2.46 t ha-1 yr-1, resulting in a total soil loss of 970 Mt annually; equal to an area the size of Berlin (assuming a removal of 1 meter). According to the RUSLE2015 model approximately 12.7% of arable lands in the European Union is estimated to suffer from moderate to high erosion(>5 t ha-1 yr-1). This equates to an area of 140,373 km2 which equals to the surface area of Greece (Environmental Science & Policy, 54, 438-447; 2015). Even the mean erosion rate outstrips the mean formation rate (<1.4 tonnes per ha annually). The recent RUSLE2015 estimated that the policy interventions (i.e. reduced tillage, crop residues, grass margins, cover crops, stone walls and contouring) through the common agricultural policy (CAP) during last decade have reduced the rate of soil loss in the EU by an average of 9.5% overall, and by 20% for arable lands (NATURE, 526, 195). Latest developments in RUSLE2015 allow to incorporate the forthcoming intensification of rainfall (climate changes) and land use changes such as afforestation, land abandonment and arable land expansion. Recently, a module of CENTURY model was coupled with the RUSLE2015 for estimating the effect of erosion in current carbon balance in European agricultural lands.

  5. Potential impacts of climate change on soil erosion vulnerability across the conterminous United States

    Treesearch

    C. Segura; G. Sun; S. McNulty; Y. Zhang

    2014-01-01

    Rainfall runoff erosivity (R) is one key climate factor that controls water erosion. Quantifying the effects of climate change-induced erosivity change is important for identifying critical regions prone to soil erosion under a changing environment. In this study we first evaluate the changes of R from 1970 to 2090 across the United States under nine climate conditions...

  6. Predicting plot soil loss by empirical and process-oriented approaches: A review

    USDA-ARS?s Scientific Manuscript database

    Soil erosion directly affects the quality of the soil, its agricultural productivity and its biological diversity. Many mathematical models have been developed to estimate plot soil erosion at different temporal scales. At present, empirical soil loss equations and process-oriented models are consid...

  7. Soil water erosion on Mediterranean vineyards. A review based on published data

    NASA Astrophysics Data System (ADS)

    Prosdocimi, Massimo; Cerdà, Artemi; Tarolli, Paolo

    2015-04-01

    Soil water erosion on cultivated lands is a severe threat to soil resources in the world (Leh et al., 2013; Zhao et al., 2013). In particular, Mediterranean areas deserve a particular attention because of their edaphic, topographic and climatic conditions. Among the cultivated lands, concerns have arisen about vineyards because, aside representing one of the most important crop in terms of income and employment, they also have proven to be the form of agricultural land that causes one of the highest soil losses (Tropeano et al., 1984; Leonard and Andrieux, 1998; Ferrero et al., 2005; Cerdà et al., 2007; Blavet et al., 2009; Casalí et al., 2009; Novara et al., 2011; Martínez Casasnovas et al., 2013; Ruiz Colmenero et al., 2013; Tarolli et al., 2014). Although the topic of soil water erosion on vineyards has been studied, it still raises uncertainties. These are due to the i) high complexity of processes involved, ii) different methodologies used to analyze them and iii) analyses carried out at different spatial and temporal scales. At this regard, this work aims to evaluate the impact of factors controlling erosion such as rainfall characteristics, topography, soil properties and soil and water conservation techniques. Data derived from experimental plots have been reviewed. At first, what emerges is the difficulty of comparing erosion rates obtained with different methodologies and at different spatial scales. Secondly, all the factors demonstrate to have a strong impact on soil erosion but a 'general rule' upon which to consider one factor always predominant over the others does not come out. Therefore, this work supports the importance of monitoring soil water erosion by field measurements to better understand the relationship between the factors. Variables like rainfall characteristics, topography and soil properties are much more difficult to modify than the soil and water management techniques. Hence, future researches are needed to both recommend the best soil and water management techniques to the farmers and implement soil erosion mitigation policies at appropriate spatial scales. Acknowledgements The RECARE project is funded by the European Commission FP7 program, ENV.2013.6.2-4 "Sustainable land care in Europe". References Blavet, D., De Noni, G., Le Bissonnais, Y., Leonard, M., Maillo, L., Laurent, J.Y., Asseline, J., Leprun, J. C., Arshad, M. A., Roose, E.: Effect of land use and management on the early stages of soil water erosion in French Mediterranean vineyards, Soil & Tillage Research, 106, 124-136, 2009. Brenot, J., Quiquerez, A., Petit, C., Garcia, J.-P., Davy, P.: Soil erosion rates in Burgundian vineyards, Bolletino della Società Geologica Italiana, Volume Speciale 6, 169-174, 2006. Casalí, J., Giménez, R., De Santisteban, L., Alvarez-Mozos, J., Mena, J., Del Valle de Lersundi, J.: Determination of long-term erosion rates in vineyards of Navarre (Spain) using botanical benchmarks, Catena, 78, 12-19, doi:10.1016/ j.catena.2009.02.015, 2009. Cerdà, A., Doerr, S. H.: Soil wettability, runoff and erodibility of major dry-Mediterranean land use types on calcareous soils, Hydrological Processes, 21, 2325-2336, doi: 10.1016/j.catena.2008.03.010, 2007. Ferrero, A., Usowicz, B., Lipiec, J.: Effects of tractor traffic on spatial variability of soil strength and water content in grass covered and cultivated sloping vineyard, Soil & Tillage Research, 84, 127-138, 2005. Leh, M., Bajwa, S., Chaubey, I.: Impact of land use change on erosion risk: and integrated remote sensing geographic information system and modeling methodology, Land Degradation & Development, 24, 409- 421, doi 10.1002/ldr.1137, 2013. Leonard, J., Andrieux, P.: Infiltration characteristics of soils in Mediterranean vineyards in southern France, Catena, 32, 209-223, 1998. Martinez-Casasnovas, J. A., Ramos, M. C., Benites, G.: Soil and water assessment tool soil loss simulation at the sub-basin scale in the Alt Penedès-Anoia vineyard region (NE Spain) in the 2000s, Land Degradation & Development, doi: 10.1002/ldr.2240, 2013. Novara, A., Gristina, L., Saladino, S. S., Santoro, A., Cerdà, A.: Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard, Soil & Tillage Research, 117, 140-147, 2011. Ruiz-Colmenero, M., Bienes, R., Eldridge, D. J., Marques, M. J.: Vegetation cover reduces erosion and enhances soil organic carbon in a vineyard in the central Spain, Catena, 104, 153-160, doi:10.1016/j.catena.2012.11.007, 2013. Tarolli, P., Sofia, G., Calligaro, S., Prosdocimi, M., Preti, F., Dalla Fontana, G.: Vineyards in terraced landscapes: new opportunities from lidar data, Land Degradation & Development, doi:10.1002/ldr.2311, 2014. Tropeano, D.: Rate of soil erosion processes on vineyards in central Piedmont (NW Italy), Earth Surf. Process. Landf., 9, 253- 266, 1984. Zhao, G., Mu, X., Wen, Z., Wang, F., Gao, P.: Soil erosion, conservation, and Eco-environment changes in the Loess Plateau of China, Land Degradation & Development, 24, 499- 510, doi 10.1002/ldr.2246, 2013.

  8. Mapping Erosion Risk in California's Rangelands Using the Universal Soil Loss Equation (USLE)

    NASA Astrophysics Data System (ADS)

    Salls, W. B.; O'Geen, T. T.

    2015-12-01

    Soil loss constitutes a multi-faceted problem for agriculture: in addition to reducing soil fertility and crop yield, it compromises downstream water quality. Sediment itself is a major issue for aquatic ecosystems, but also serves as a vector for transporting nutrients, pesticides, and pathogens. Rangelands are thought to be a contributor to water quality degradation in California, particularly in the northern Coast Range. Though total maximum daily loads (TMDLs) have been imposed in some watersheds, and countless rangeland water quality outreach activities have been conducted, the connection between grazing intensity recommendations and changes in water quality is poorly understood at the state level. This disconnect gives rise to poorly informed regulations and discourages adoption of best management practices by ranchers. By applying the Universal Soil Loss Equation (USLE) at a statewide scale, we highlighted areas most prone to erosion. We also investigated how two different grazing intensity scenarios affect modeled soil loss. Geospatial data layers representing the USLE parameters—rainfall erosivity, soil erodibility, slope length and steepness, and cover—were overlaid to model annual soil loss. Monitored suspended sediment data from a small North Coast watershed with grazing as the predominant land use was used to validate the model. Modeled soil loss values were nearly one order of magnitude higher than monitored values; average soil loss feeding the downstream-most site was modeled at 0.329 t ha-1 yr-1, whereas storm-derived sediment passing the site over two years was calculated to be 0.037 t ha-1 yr-1. This discrepancy may stem from the fact that the USLE models detached sediment, whereas stream monitoring reflects sediment detached and subsequently transported to the waterway. Preliminary findings from the statewide map support the concern that the North Coast is particularly at risk given its combination of intense rain, erodible soils, and relatively steep terrain, though there is a fair degree of variability statewide.

  9. Soil Eroison, T Values, and Sustainability: A Review and Exercise.

    ERIC Educational Resources Information Center

    Beach, Timothy; Gersmehl, Philip

    1993-01-01

    Reviews issues related to soil erosion and soil loss tolerance in the United States. Describes an instructional plan in which students estimate soil loses in three geographical regions using the Universal Soil Loss Equation (USLE). Recommends integrating the geography of soil erosion with broader conceptual questions in physical geography. (CFR)

  10. Spatially explicit rangeland erosion monitoring using high-resolution digital aerial imagery

    USGS Publications Warehouse

    Gillan, Jeffrey K.; Karl, Jason W.; Barger, Nichole N.; Elaksher, Ahmed; Duniway, Michael C.

    2016-01-01

    Nearly all of the ecosystem services supported by rangelands, including production of livestock forage, carbon sequestration, and provisioning of clean water, are negatively impacted by soil erosion. Accordingly, monitoring the severity, spatial extent, and rate of soil erosion is essential for long-term sustainable management. Traditional field-based methods of monitoring erosion (sediment traps, erosion pins, and bridges) can be labor intensive and therefore are generally limited in spatial intensity and/or extent. There is a growing effort to monitor natural resources at broad scales, which is driving the need for new soil erosion monitoring tools. One remote-sensing technique that can be used to monitor soil movement is a time series of digital elevation models (DEMs) created using aerial photogrammetry methods. By geographically coregistering the DEMs and subtracting one surface from the other, an estimate of soil elevation change can be created. Such analysis enables spatially explicit quantification and visualization of net soil movement including erosion, deposition, and redistribution. We constructed DEMs (12-cm ground sampling distance) on the basis of aerial photography immediately before and 1 year after a vegetation removal treatment on a 31-ha Piñon-Juniper woodland in southeastern Utah to evaluate the use of aerial photography in detecting soil surface change. On average, we were able to detect surface elevation change of ± 8−9cm and greater, which was sufficient for the large amount of soil movement exhibited on the study area. Detecting more subtle soil erosion could be achieved using the same technique with higher-resolution imagery from lower-flying aircraft such as unmanned aerial vehicles. DEM differencing and process-focused field methods provided complementary information and a more complete assessment of soil loss and movement than any single technique alone. Photogrammetric DEM differencing could be used as a technique to quantitatively monitor surface change over time relative to management activities.

  11. Field evaluation of support practice (P-factor) for stone walls to control soil erosion in an arid area (Northern Jordan)

    NASA Astrophysics Data System (ADS)

    Gharaibeh, Mamoun; Albalasmeh, Ammar

    2017-04-01

    Stone walls have been adopted for long time to control water erosion in many Mediterranean countries. In soil erosion equations, the support practice factor (P-factor) for stone walls has not been fully studied or rarely taken into account especially in semi-arid and arid regions. Field studies were conducted to evaluate the efficiency of traditional stone walls and to quantify soil erosion in six sites in north and northeastern Jordan. Initial estimates using the Universal Soil Loss Equation (USLE) showed that rainfall erosion was reduced by 65% in areas where stone walls are present. Annual soil loss ranged from 5 to 15 t yr-1. The mean annual soil loss in the absence of stone walls ranged from 10-60 t ha-1 with an average value of 35 t ha-1. Interpolating the slope of thickness of A horizon provided an average initial estimate of 0.3 for P value.

  12. Evaluating soil erodibility dynamics to improve estimates of wind erosion in drylands

    USDA-ARS?s Scientific Manuscript database

    Wind erosion is a key driver of land degradation in the world’s drylands. Soil loss and nutrient decline due to wind erosion increase the sensitivity of drylands to climate stressors. Better understanding the factors controlling wind erosion in drylands will provide a basis for identifying and testi...

  13. Validation of SWEEP for contrasting agricultural land use types in the Tarim Basin

    USDA-ARS?s Scientific Manuscript database

    In order to aid in identifying land management practices with the potential to control soil erosion, models such as the Wind Erosion Prediction System (WEPS) have been developed to assess soil erosion. The objective of this study was to test the performance of the WEPS erosion submodel (the Single-e...

  14. Temporal and spatial variations of rainfall erosivity in Southern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Hsi; Lin, Huan-Hsuan; Chu, Chun-Kuang

    2014-05-01

    Soil erosion models are essential in developing effective soil and water resource conservation strategies. Soil erosion is generally evaluated using the Universal Soil Loss Equation (USLE) with an appropriate regional scale description. Among factors in the USLE model, the rainfall erosivity index (R) provides one of the clearest indications of the effects of climate change. Accurate estimation of rainfall erosivity requires continuous rainfall data; however, such data rarely demonstrate good spatial and temporal coverage. The data set consisted of 9240 storm events for the period 1993 to 2011, monitored by 27 rainfall stations of the Central Weather Bureau (CWB) in southern Taiwan, was used to analyze the temporal-spatial variations of rainfall erosivity. The spatial distribution map was plotted based on rainfall erosivity by the Kriging interpolation method. Results indicated that rainfall erosivity is mainly concentrated in rainy season from June to November typically contributed 90% of the yearly R factor. The temporal variations of monthly rainfall erosivity during June to November and annual rainfall erosivity have increasing trend from 1993 to 2011. There is an increasing trend from southwest to northeast in spatial distribution of rainfall erosivity in southern Taiwan. The results further indicated that there is a higher relationship between elevation and rainfall erosivity. The method developed in this study may also be useful for sediment disasters on Climate Change.

  15. Soil erosion and significance for carbon fluxes in a mountainous Mediterranean-climate watershed.

    PubMed

    Smith, S V; Bullock, S H; Hinojosa-Corona, A; Franco-Vizcaíno, E; Escoto-Rodríguez, M; Kretzschmar, T G; Farfán, L M; Salazar-Ceseña, J M

    2007-07-01

    In topographically complex terrains, downslope movement of soil organic carbon (OC) can influence local carbon balance. The primary purpose of the present analysis is to compare the magnitude of OC displacement by erosion with ecosystem metabolism in such a complex terrain. Does erosion matter in this ecosystem carbon balance? We have used the Revised Universal Soil Loss Equation (RUSLE) erosion model to estimate lateral fluxes of OC in a watershed in northwestern Mexico. The watershed (4900 km2) has an average slope of 10 degrees +/- 9 degrees (mean +/- SD); 45% is >10 degrees, and 3% is >30 degrees. Land cover is primarily shrublands (69%) and agricultural lands (22%). Estimated bulk soil erosion averages 1350 Mg x km(-2) x yr(-1). We estimate that there is insignificant erosion on slopes < 2 degrees and that 20% of the area can be considered depositional. Estimated OC erosion rates are 10 Mg x km(-2) x yr(-1) for areas steeper than 2 degrees. Over the entire area, erosion is approximately 50% higher on shrublands than on agricultural lands, but within slope classes, erosion rates are more rapid on agricultural areas. For the whole system, estimated OC erosion is approximately 2% of net primary production (NPP), increasing in high-slope areas to approximately 3% of NPP. Deposition of eroded OC in low-slope areas is approximately 10% of low-slope NPP. Soil OC movement from erosional slopes to alluvial fans alters the mosaic of OC metabolism and storage across the landscape.

  16. Impact of surface coal mining on soil hydraulic properties

    Treesearch

    X. Liu; J. Q. Wu; P. W. Conrad; S. Dun; C. S. Todd; R. L. McNearny; William Elliot; H. Rhee; P. Clark

    2016-01-01

    Soil erosion is strongly related to soil hydraulic properties. Understanding how surface coal mining affects these properties is therefore important in developing effective management practices to control erosion during reclamation. To determine the impact of mining activities on soil hydraulic properties, soils from undisturbed areas, areas of roughly graded mine...

  17. Soil erosion assessment of a Himalayan river basin using TRMM data

    NASA Astrophysics Data System (ADS)

    Pandey, A.; Mishra, S. K.; Gautam, A. K.; Kumar, D.

    2015-04-01

    In this study, an attempt has been made to assess the soil erosion of a Himalayan river basin, the Karnali basin, Nepal, using rainfall erosivity (R-factor) derived from satellite-based rainfall estimates (TRMM-3B42 V7). Average annual sediment yield was estimated using the well-known Universal Soil Loss Equation (USLE). The eight-year annual average rainfall erosivity factor (R) for the Karnali River basin was found to be 2620.84 MJ mm ha-1 h-1 year-1. Using intensity-erosivity relationships and eight years of the TRMM daily rainfall dataset (1998-2005), average annual soil erosion was also estimated for Karnali River basin. The minimum and maximum values of the rainfall erosivity factor were 1108.7 and 4868.49 MJ mm ha-1 h-1 year-1, respectively, during the assessment period. The average annual soil loss of the Karnali River basin was found to be 38.17 t ha-1 year-1. Finally, the basin area was categorized according to the following scale of erosion severity classes: Slight (0 to 5 t ha-1 year-1), Moderate (5 to 10 t ha-1 year-1), High (10 to 20 t ha-1 year-1), Very High (20 to 40 t ha-1 year-1), Severe (40 to 80 t ha-1 year-1) and Very Severe (>80 t ha-1 year-1). About 30.86% of the river basin area was found to be in the slight erosion class. The areas covered by the moderate, high, very high, severe and very severe erosion potential zones were 13.09%, 6.36%, 11.09%, 22.02% and 16.64% respectively. The study revealed that approximately 69% of the Karnali River basin needs immediate attention from a soil conservation point of view.

  18. (210)Pb as a tracer of soil erosion, sediment source area identification and particle transport in the terrestrial environment.

    PubMed

    Matisoff, Gerald

    2014-12-01

    Although (137)Cs has been used extensively to study soil erosion and particle transport in the terrestrial environment, there has been much less work using excess or unsupported (210)Pb ((210)Pbxs) to study the same processes. Furthermore, since (137)Cs activities in soils are decreasing because of radioactive decay, some locations have an added complication due to the addition of Chernobyl-derived (137)Cs, and the activities of (137)Cs in the southern hemisphere are low, there is a need to develop techniques that use (210)Pbxs to provide estimates of rates of soil erosion and particle transport. This paper reviews the current status of (210)Pbxs methods to quantify soil erosion rates, to identify and partition suspended sediment source areas, and to determine the transport rates of particles in the terrestrial landscape. Soil erosion rates determined using (210)Pbxs are based on the unsupported (210)Pb ((210)Pbxs) inventory in the soil, the depth distribution of (210)Pbxs, and a mass balance calibration ('conversion model') that relates the soil inventory to the erosion rate using a 'reference site' at which neither soil erosion nor soil deposition has occurred. In this paper several different models are presented to illustrate the effects of different model assumptions such as the timing, depth and rates of the surface soil mixing on the calculated erosion rates. The suitability of model assumptions, including estimates of the depositional flux of (210)Pbxs to the soil surface and the post-depositional mobility of (210)Pb are also discussed. (210)Pb can be used as one tracer to permit sediment source area identification. This sediment 'fingerprinting' has been extended far beyond using (210)Pb as a single radioisotope to include numerous radioactive and stable tracers and has been applied to identifying the source areas of suspended sediment based on underlying rock type, land use (roads, stream banks, channel beds, cultivated or uncultivated lands, pasture lands, forested lands, construction sites, undisturbed lands) or style of erosion (sheet wash, rills, bank). The transport time of particles in the terrestrial system can be estimated using (7)Be/(210)Pbxs radionuclide ratios and from mass balance models of (210)Pbxs and/or (7)Be in streams. Watershed residence times can be calculated from the radionuclide inventory and the erosional loss rate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Impacts of terracing on soil erosion control and crop yield in two agro-ecological zones of Rwanda

    NASA Astrophysics Data System (ADS)

    Rutebuka, Jules; Ryken, Nick; Uwimanzi, Aline; Nkundwakazi, Olive; Verdoodt, Ann

    2017-04-01

    Soil erosion remains a serious limiting factor to the agricultural production in Rwanda. Terracing has been widely adopted in many parts of the country in the past years, but its effectiveness is not yet known. Besides the standard radical (bench) terraces promoted by the government, also progressive terraces (with living hedges) become adopted mainly by the farmers. The aim of this study was to measure short-term (two consecutive rainy seasons 2016A and 2016B) run-off and soil losses for existing radical (RT) and progressive (PT) terraces versus non-protected (NP) fields using erosion plots installed in two agro-ecological zones, i.e. Buberuka highlands (site Tangata) and Eastern plateau (site Murehe) and determine their impacts on soil fertility and crop production. The erosion plot experiment started with a topsoil fertility assessment and during the experiment, maize was grown as farmer's cropping preference in the area. Runoff data were captured after each rainfall event and the collected water samples were dried to determine soil loss. Both erosion control measures reduced soil losses in Tangata, with effectiveness indices ranging from 43 to 100% when compared to the NP plots. RT showed the highest effectiveness, especially in season A. In Murehe, RT minimized runoff and soil losses in both seasons. Yet, the PT were largely inefficient, leading to soil losses exceeding those on the NP plots (ineffectiveness index of -78% and -65% in season A and B, respectively). Though topsoil fertility assessment in the erosion plots showed that the soil quality parameters were significantly higher in RT and NP plots compared to the PT plots on both sites, maize grain yield was not correlated with the physical effectiveness of the erosion control measures. Finally, the effectiveness of soil erosion control measures as well as their positive impacts on soil fertility and production differ not only by terracing type but also by agro-ecological zone and the management or maintenance adopted by farmers. Terracing should be complemented by continuous fertility amendments (organic material inputs), use of improved agronomic and management practices considering agro-ecological zone conditions. In general, radical terracing was found to be the most effective soil erosion control measure on both sites.

  20. Soil coverage evolution and wind erosion risk on summer crops under contrasting tillage systems

    NASA Astrophysics Data System (ADS)

    Mendez, Mariano J.; Buschiazzo, Daniel E.

    2015-03-01

    The effectiveness of wind erosion control by soil surface conditions and crop and weed canopy has been well studied in wind tunnel experiments. The aim of this study is to assess the combined effects of these variables under field conditions. Soil surface conditions, crop and weed coverage, plant residue, and non-erodible aggregates (NEA) were measured in the field between the fallow start and the growth period of sunflower (Helianthus annuus) and corn (Zea mays). Both crops were planted on a sandy-loam Entic Haplustoll with conventional-(CT), vertical-(VT) and no-till (NT) tillage systems. Wind erosion was estimated by means of the spreadsheet version the Revised Wind Erosion Equation and the soil coverage was measured each 15 days. Results indicated that wind erosion was mostly negligible in NT, exceeding the tolerable levels (estimated between 300 and 1400 kg ha-1 year-1 by Verheijen et al. (2009)) only in an year with high climatic erosivity. Wind erosion exceeded the tolerable levels in most cases in CT and VT, reaching values of 17,400 kg ha-1. Wind erosion was 2-10 times higher after planting of both crops than during fallows. During the fallows, the soil was mostly well covered with plant residues and NEA in CT and VT and with residues and weeds in NT. High wind erosion amounts occurring 30 days after planting in all tillage systems were produced by the destruction of coarse aggregates and the burying of plant residues during planting operations and rains. Differences in soil protection after planting were given by residues of previous crops and growing weeds. The growth of weeds 2-4 weeks after crop planting contributed to reduce wind erosion without impacting in crops yields. An accurate weeds management in semiarid lands can contribute significantly to control wind erosion. More field studies are needed in order to develop management strategies to reduce wind erosion.

  1. Physical erosion modelling of complex morphodynamics in the upper Val d'Orcia: a combination of EROSION 3D, UAV, SFM and CANUPO

    NASA Astrophysics Data System (ADS)

    Buchholz, Arno; Kaiser, Andreas; Neugirg, Fabian; Schindewolf, Marcus; Schmidt, Jürgen

    2017-04-01

    Throughout the Mediterranean Basin soil erosion is both a widely spread and a landscape shaping process. In order to increase the understanding of morphodynamics inside large Italian badland areas, so called Calanchi, the process based erosion model EROSION 3D was parameterized by artificial rainfall simulations, soil sampling and an UAV based high resolution digital elevation model. Vegetation structures were removed with the CANUPO-classifier in CloudCompare. The rainfall experiments proved to be a convenient but costly tool for deriving the model input parameters. While building up the model, different composition of the inhomogeneous soil surface was considered. A diverse behavior against erosion by water was observed. The results showed that the deposition surfaces of rotational or translational slides, besides calanco depth contour, tend to degrade. Although these deposits present a comparatively low bulk density, they reduce the infiltration due to soil surface clogging and cause less erosion resistances. The differential consideration of erosion sub-processes turns out as particularly challenging. The simulation of a reference year showed an annual soil export from the catchment of 43 t/ha, which corresponds to an average surface lowering of 3 mm. Sheet erosion represents an amount of about 5% of the total erosion of badlands. Furthermore, infiltration depth, amount of runoff, sediment concentration, and grain size composition of the deposits were calculated. This study makes a contribution to the understanding of denudation processes in Calanchi badlands. The presented process-based modeling of badlands is contributing a new aspect to erosion research.

  2. Sediment reallocations due to erosive rainfall events in the Three Gorges Reservoir Area, Central China

    NASA Astrophysics Data System (ADS)

    Stumpf, Felix; Goebes, Philipp; Schmidt, Karsten; Schindewolf, Marcus; Schönbrodt-Stitt, Sarah; Wadoux, Alexandre; Xiang, Wei; Scholten, Thomas

    2017-04-01

    Soil erosion by water outlines a major threat to the Three Gorges Reservoir Area in China. A detailed assessment of soil conservation measures requires a tool that spatially identifies sediment reallocations due to rainfall-runoff events in catchments. We applied EROSION 3D as a physically based soil erosion and deposition model in a small mountainous catchment. Generally, we aim to provide a methodological frame that facilitates the model parametrization in a data scarce environment and to identify sediment sources and deposits. We used digital soil mapping techniques to generate spatially distributed soil property information for parametrization. For model calibration and validation, we continuously monitored the catchment on rainfall, runoff and sediment yield for a period of 12 months. The model performed well for large events (sediment yield>1 Mg) with an averaged individual model error of 7.5%, while small events showed an average error of 36.2%. We focused on the large events to evaluate reallocation patterns. Erosion occurred in 11.1% of the study area with an average erosion rate of 49.9Mgha 1. Erosion mainly occurred on crop rotation areas with a spatial proportion of 69.2% for 'corn-rapeseed' and 69.1% for 'potato-cabbage'. Deposition occurred on 11.0%. Forested areas (9.7%), infrastructure (41.0%), cropland (corn-rapeseed: 13.6%, potatocabbage: 11.3%) and grassland (18.4%) were affected by deposition. Because the vast majority of annual sediment yields (80.3%) were associated to a few large erosive events, the modelling approach provides a useful tool to spatially assess soil erosion control and conservation measures.

  3. The impact of soil erosion on soil fertility and vine vigor. A multidisciplinary approach based on field, laboratory and remote sensing approaches.

    PubMed

    Novara, Agata; Pisciotta, Antonino; Minacapilli, Mario; Maltese, Antonino; Capodici, Fulvio; Cerdà, Artemi; Gristina, Luciano

    2018-05-01

    Soil erosion processes in vineyards, beyond surface runoff and sediment transport, have a strong effect on soil organic carbon (SOC) loss and redistribution along the slope. Variation in SOC across the landscape can determine differences in soil fertility and vine vigor. The goal of this research was to analyze the interactions among vines vigor, sediment delivery and SOC in a sloping vineyard located in Sicily. Six pedons were studied along the slope by digging 6 pits up to 60cm depth. Soil was sampled every 10cm and SOC, water extractable organic carbon (WEOC) and specific ultraviolet absorbance (SUVA) were analyzed. Erosion rates, detachment and deposition areas were measured by the pole height method which allowed mapping of the soil redistribution. The vigor of vegetation, expressed as Normalized Difference Vegetation Index (NDVI), derived from high-resolution satellite multispectral data, was compared with measured pruning weight. Results confirmed that soil erosion, sediment redistribution and SOC across the slope was strongly affected by topographic features, slope and curvature. The erosion rate was 16Mgha -1 y -1 since the time of planting (6years). SOC redistribution was strongly correlated with the detachment or deposition areas as highlighted by pole height measurements. The off-farm SOC loss over six years amounted to 1.2MgCha -1 . SUVA 254 values, which indicate hydrophobic material rich in aromatic constituents of WEOC, decreased significantly along the slope, demonstrating that WEOC in the detachment site is more stable in comparison to deposition sites. The plant vigor was strongly correlated with WEOC constituents. Results demonstrated that high resolution passive remote sensing data combined with soil and plant analyses can survey areas with contrasting SOC, soil fertility, soil erosion and plant vigor. This will allow monitoring of soil erosion and degradation risk areas and support decision-makers in developing measures for friendly environmental management. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Soil erosion by snow gliding - a first quantification attempt in a subalpine area in Switzerland

    NASA Astrophysics Data System (ADS)

    Meusburger, K.; Leitinger, G.; Mabit, L.; Mueller, M. H.; Walter, A.; Alewell, C.

    2014-09-01

    Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as a soil erosion agent for four different land use/land cover types in a subalpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide depositions, the fallout radionuclide 137Cs and modelling with the Revised Universal Soil Loss Equation (RUSLE). RUSLE permits the evaluation of soil loss by water erosion, the 137Cs method integrates soil loss due to all erosion agents involved, and the measurement of snow glide deposition sediment yield can be directly related to snow-glide-induced erosion. Further, cumulative snow glide distance was measured for the sites in the winter of 2009/2010 and modelled for the surrounding area and long-term average winter precipitation (1959-2010) with the spatial snow glide model (SSGM). Measured snow glide distance confirmed the presence of snow gliding and ranged from 2 to 189 cm, with lower values on the north-facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected and ongoing land use changes in the Alps. Snow glide erosion estimated from the snow glide depositions was highly variable with values ranging from 0.03 to 22.9 t ha-1 yr-1 in the winter of 2012/2013. For sites affected by snow glide deposition, a mean erosion rate of 8.4 t ha-1 yr-1 was found. The difference in long-term erosion rates determined with RUSLE and 137Cs confirms the constant influence of snow-glide-induced erosion, since a large difference (lower proportion of water erosion compared to total net erosion) was observed for sites with high snow glide rates and vice versa. Moreover, the difference between RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2 = 0.64; p < 0.005) and to the snow deposition sediment yields (R2 = 0.39; p = 0.13). The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding appears to be a crucial and non-negligible process impacting soil erosion patterns and magnitude in subalpine areas with similar topographic and climatic conditions.

  5. Developing a Spatially Distributed Terrestrial Biogeochemical Cycle Modeling System to Support the Management of Fort Benning and its Surrounding Areas

    DTIC Science & Technology

    2010-12-01

    nitrogen SSURGO Soil Survey Geographic database USDA U.S. Department of Agriculture USLE Universal Soil Loss Equation USPED Unit-Stream-Power...Zaluski et al., 2003). A suite of models has been developed to simulate soil erosion and deposition, ranging from empirical (e.g., USLE and MUSLE at http...Estimating Soil Erosion and Deposition 4.4.1 USPED The algorithm for the simulation of soil erosion in USPED is similar to that of the USLE or RUSLE

  6. Modeling and analysis of Soil Erosion processes by the River Basins model: The Case Study of the Krivacki Potok Watershed, Montenegro

    NASA Astrophysics Data System (ADS)

    Vujacic, Dusko; Barovic, Goran; Mijanovic, Dragica; Spalevic, Velibor; Curovic, Milic; Tanaskovic, Vjekoslav; Djurovic, Nevenka

    2016-04-01

    The objective of this research was to study soil erosion processes in one of Northern Montenegrin watersheds, the Krivacki Potok Watershed of the Polimlje River Basin, using modeling techniques: the River Basins computer-graphic model, based on the analytical Erosion Potential Method (EPM) of Gavrilovic for calculation of runoff and soil loss. Our findings indicate a low potential of soil erosion risk, with 554 m³ yr-1 of annual sediment yield; an area-specific sediment yield of 180 m³km-2 yr-1. The calculation outcomes were validated for the entire 57 River Basins of Polimlje, through measurements of lake sediment deposition at the Potpec hydropower plant dam. According to our analysis, the Krivacki Potok drainage basin is with the relatively low sediment discharge; according to the erosion type, it is mixed erosion. The value of the Z coefficient was calculated on 0.297, what indicates that the river basin belongs to 4th destruction category (of five). The calculated peak discharge from the river basin was 73 m3s-1 for the incidence of 100 years and there is a possibility for large flood waves to appear in the studied river basin. Using the adequate computer-graphic and analytical modeling tools, we improved the knowledge on the soil erosion processes of the river basins of this part of Montenegro. The computer-graphic River Basins model of Spalevic, which is based on the EPM analytical method of Gavrilovic, is highly recommended for soil erosion modelling in other river basins of the Southeastern Europe. This is because of its reliable detection and appropriate classification of the areas affected by the soil loss caused by soil erosion, at the same time taking into consideration interactions between the various environmental elements such as Physical-Geographical Features, Climate, Geological, Pedological characteristics, including the analysis of Land Use, all calculated at the catchment scale.

  7. Seasonal variations of soil erosion in UK under climate change: simulations with the use of high-resolution regional climatic models

    NASA Astrophysics Data System (ADS)

    Ciampalini, Rossano; Kendon, Elizabeth; Constantine, José Antonio; Schindewolf, Marcus; Hall, Ian

    2017-04-01

    Climate change is expected to have a significant impact on the hydrological cycle, twenty-first century climate change simulations for Great Britain forecast an increase of surface runoff and flooding frequency. Once quality and resolution of the simulated rainfall deeply influence the results, we adopted rainfall simulations issued of a high-resolution climate model recently carried out for extended periods (13 years for present-day and future periods 2100) at 1.5 km grid scale over the south of the United Kingdom (simulations, which for the future period use the Intergovernmental Panel on Climate Change RCP 8.5 scenario, Kendon et al., 2014). We simulated soil erosion with 3D soil erosion model Schmidt (1990) on two catchments of Great Britain: the Rother catchment (350 km2) in West Sussex, England, because it has reported some of the most erosive events observed during the last 50 years in the UK, and the Conwy catchment (628 Km2) in North Wales, which is extremely resilient to soil erosion because of the abundant natural vegetation. Estimation of changes in soil moisture, saturation deficit as well as vegetation cover at daily time step have been done with the Joint UK Land Environment Simulator (JULES) (Best et al, 2011). Our results confirm the Rother catchment is the most erosive, while the Conwy catchment is the more resilient to soil erosion. Sediment production is perceived increase in both cases for the end of the century (27% and 50%, respectively). Seasonal disaggregation of the results revels that, while the most part of soil erosion is produced in winter months (DJF), the higher soil erosion variability for future periods is observed in summer (JJA). This behaviour is supported by the rainfall simulation analyse which highlighted this dual behaviour in precipitations.

  8. Land use and climate change impacts on runoff and soil erosion at the hillslope scale in the Brazilian Cerrad

    USDA-ARS?s Scientific Manuscript database

    Changes in land use and climate can influence runoff and soil erosion, threatening soil and water conservation in the Cerrado biome in Brazil. The adoption of a process-based model was necessary due to the lack of long-term observed data. Our goals were to calibrate the WEPP (Water Erosion Predictio...

  9. Effects of stubble and mulching on soil erosion by wind in semi-arid China.

    PubMed

    Cong, Peifei; Yin, Guanghua; Gu, Jian

    2016-07-18

    Soil erosion is a growing challenge for agricultural production in Northern China. To explore the effect of variation in stubble height and mulching biomass on soil erosion caused by wind, we conducted a field experiment using a quadratic rotation combination design. Results showed that the quantity of straw mulch was the dominant factor affecting soil erosion, and stubble height was of secondary importance. The soil water content in stubble and straw mulching treatments was higher than in a control treatment at 0-20 cm soil, and the tendency in the amount of soil water content was opposite to the amount of wind erosion (r = -0.882, n = 10, p < 0.01). The change in soil water content observed in the stubble and mulch treatments at the 15-20 cm depth was higher than the change from 0-5 cm to 5-10 cm. Combined, the influence of a stubble height of 34 cm and mulch quantity of 4260 kg·ha(-1) lowered the amount of erosion to 0.42 t·ha(-1), and increased the corn yield to 11900 kg·ha(-1). We determined that those were the most appropriate levels of stubble height and straw mulch for crop fields in the semi-arid regions of Northern China.

  10. Global Soil and Sediment transfer during the Anthropocene

    NASA Astrophysics Data System (ADS)

    Hoffmann, Thomas; Vanacker, Veerle; Stinchcombe, Gary; Penny, Dan; Xixi, Lu

    2016-04-01

    The vulnerability of soils to human-induced erosion and its downstream effects on fluvial and deltaic ecosystems is highly variable in space and time; dependent on climate, geology, the nature and duration of land use, and topography. Despite our knowledge of the mechanistic relationships between erosion, sediment storage, land-use and climate change, the global patterns of soil erosion, fluvial sediment flux and storage throughout the Holocene remain poorly understood. The newly launched PAGES working group GloSS aims to determine the sensitivity of soil resources and sediment routing systems to varying land use types during the period of agriculture, under contrasting climate regimes and socio-ecological settings. Successfully addressing these questions in relation to the sustainable use of soils, sediments and river systems requires an understanding of past human-landscape interactions. GloSS, therefore, aims to: Develop proxies for, or indices of, human impact on rates of soil erosion and fluvial sediment transfer that are applicable on a global scale and throughout the Holocene; Create a global database of long-term (102-104 years) human-accelerated soil erosion and sediment flux records; Identify hot spots of soil erosion and sediment deposition during the Anthropocene, and Locate data-poor regions where particular socio-ecological systems are not well understood, as strategic foci for future work. This paper will present the latest progress of the PAGES GloSS working group.

  11. Dynamic soil properties in response to anthropogenic disturbance

    NASA Astrophysics Data System (ADS)

    Vanacker, Veerle; Ortega, Raúl

    2013-04-01

    Anthropogenic disturbance of natural vegetation can profoundly alter the physical, chemical and biological processes within soils. Rapid removal of topsoil during intense farming can result in an imbalance between soil production through chemical weathering and physical erosion, with direct implications on local biogeochemical cycling. However, the feedbacks between soil erosion, chemical weathering and biogeochemical cycling in response to anthropogenic forcing are not yet fully understood. Here, we study dynamic soil properties for a rapidly changing anthropogenic landscape, and focus on the coupling between physical erosion, soil production and soil chemical weathering. The archaeological site of Santa Maria de Melque (Toledo, Central Spain) was selected for its remarkably long occupation history dating back to the 7th century AD. As part of the agricultural complex, four retention reservoirs were built in the Early Middle Ages. The sedimentary archive was used to track the evolution in sedimentation rates and geochemical properties of the sediment. Catchment-wide soil erosion rates vary slightly between the various occupation phases (7th century-now), but are of the same magnitude as the cosmogenic nuclide-derived erosion rates. However, there exists large spatial variation in physical erosion rates that are coupled with chemical weathering intensities. The sedimentary records suggest that there are important changes in the spatial pattern of sediment source areas through time as a result of changing land use patterns

  12. Assessing and monitoring soil erosion and land degradation in Malta

    NASA Astrophysics Data System (ADS)

    Symeonakis, Elias; Brearley, James

    2017-04-01

    The United Nations Convention to Combat Desertification (UNCCD) identifies the Mediterranean as one of the most seriously affected by land degradation and desertification (LDD) regions in the World. LDD is a complex process related with a multitude of biogeographical and socioeconomic parameters and is often assessed using proxies or indicators. One of the most important indicators of LDD is soil erosion. Here, we assess the evolution of soil erosion and LDD in the Mediterranean islands of Malta between 1986 and 2002. Soil erosion is estimated using the Revised Soil Loss Equation (RUSLE). For the assessment of LDD, we employ a modification of the Environmentally Sensitive Area Index (ESAI) methodology with Landsat imagery and ancillary GIS datasets. We incorporate 4 vegetation-related indicators, 3 climate-related, 5 soil-related and 3 socio-economic ones in the final assessment of the evolution of LDD. Results show that there has been an increase in soil erosion rates and in the sensitivity to LDD in the areas of San Pawl il-Bahar and Il-Mizieb most likely due to the transition from agricultural use to Mediterranean shrubs. Also, almost the entire country is flagged as belonging to the 'Fragile' and 'Critical' ESAI classes. It is clear that soil erosion and LDD mitigation measures are necessary, especially in the most critical (i.e. 'C3') areas which occupy 10% of Malta.

  13. High natural erosion rates are the backdrop for present-day soil erosion in the agricultural Middle Hills of Nepal

    NASA Astrophysics Data System (ADS)

    West, A. J.; Arnold, M.; AumaItre, G.; Bourles, D. L.; Keddadouche, K.; Bickle, M.; Ojha, T.

    2015-07-01

    Although agriculturally accelerated soil erosion is implicated in the unsustainable environmental degradation of mountain environments, such as in the Himalaya, the effects of land use can be challenging to quantify in many mountain settings because of the high and variable natural background rates of erosion. In this study, we present new long-term denudation rates, derived from cosmogenic 10Be analysis of quartz in river sediment from the Likhu Khola, a small agricultural river basin in the Middle Hills of central Nepal. Calculated long-term denudation rates, which reflect background natural erosion processes over 1000+ years prior to agricultural intensification, are similar to present-day sediment yields and to soil loss rates from terraces that are well maintained. Similarity in short- and long-term catchment-wide erosion rates for the Likhu is consistent with data from elsewhere in the Nepal Middle Hills but contrasts with the very large increases in short-term erosion rates seen in agricultural catchments in other steep mountain settings. Our results suggest that the large sediment fluxes exported from the Likhu and other Middle Hills rivers in the Himalaya are derived in large part from natural processes, rather than from soil erosion as a result of agricultural activity. Catchment-scale erosional fluxes may be similar over short and long timescales if both are dominated by mass wasting sources such as gullies, landslides, and debris flows (e.g., as is evident in the landslide-dominated Khudi Khola of the Nepal High Himalaya, based on compiled data). As a consequence, simple comparison of catchment-scale fluxes will not necessarily pinpoint land use effects on soils where these are only a small part of the total erosion budget, unless rates of mass wasting are also considered. Estimates of the mass wasting contribution to erosion in the Likhu imply catchment-averaged soil production rates on the order of ~ 0.25-0.35 mm yr-1, though rates of mass wasting are poorly constrained. The deficit between our best estimates for soil production rates and measurements of soil loss rates supports conclusions from previous studies that terraced agriculture in the Likhu may not be associated with a large systematic soil deficit, at least when terraces are well maintained, but that poorly managed terraces, forest, and scrubland may lead to rapid depletion of soil resources.

  14. Combining Landsat TM multispectral satellite imagery and different modelling approaches for mapping post-fire erosion changes in a Mediterranean site

    NASA Astrophysics Data System (ADS)

    Petropoulos, George P.; Kairis, Orestis; Karamesouti, Mina; Papanikolaou, Ioannis D.; Kosmas, Constantinos

    2013-04-01

    South European countries are naturally vulnerable to wildfires. Their natural resources such as soil, vegetation and water may be severely affected by wildfires, causing an imminent environmental deterioration due to the complex interdependence among biophysical components. Soil surface water erosion is a natural process essential for soil formation that is affected by such interdependences. Accelerated erosion due to wildfires, constitutes a major restrictive factor for ecosystem sustainability. In 2007, South European countries were severely affected by wildfires, with more than 500,000 hectares of land burnt in that year alone, well above the average of the last 30 years. The present work examines the changes in spatial variability of soil erosion rates as a result of a wildfire event that took place in Greece in 2007, one of the most devastating years in terms of wildfire hazards. Regional estimates of soil erosion rates before and after the fire outbreak were derived from the Revised Universal Soil Loss Equation (RUSLE, Renard et al. 1991) and the Pan-European Soil Erosion Risk Assessment model (PESERA, Kirkby, 1999; Kirkby et al., 2000). Inputs for both models included climatic, land-use, soil type, topography and land use management data. Where appropriate, both models were also fed with input data derived from the analysis of LANDSAT TM satellite imagery available in our study area, acquired before and shortly after the fire suppression. Our study was compiled and performed in a GIS environment. In overall, the loss of vegetation from the fire outbreak caused a substantial increase of soil erosion rates in the affected area, particularly towards the steep slopes. Both tested models were compared to each other and noticeable differences were observed in the soil erosion predictions before and after the fire event. These are attributed to the different parameterization requirements of the 2 models. This quantification of sediment supply through the river network provides also important insights regarding both the present-day sedimentation processes in the study area as well as the potential flooding hazard. Our work underpins that valuable contribution of remote sensing technology, combined with modeling approaches for depicting the spatial distribution of changes in erosion rates after the wildfire. KEYWORDS: erosion risk, RUSLE, PESERA, wildland fires, LANDSAT TM, remote sensing, Geographical Information Systems, Greece.

  15. Interactive Effects of Moss-Dominated Crusts and Artemisia ordosica on Wind Erosion and Soil Moisture in Mu Us Sandland, China

    PubMed Central

    Yang, Yongsheng; Bu, Chongfeng; Mu, Xingmin; Shao, Hongbo; Zhang, Kankan

    2014-01-01

    To better understand the effects of biological soil crusts (BSCs) on soil moisture and wind erosion and study the necessity and feasibility of disturbance of BSCs in the Mu Us sandland, the effects of four treatments, including moss-dominated crusts alone, Artemisia ordosica alone, bare sand, and Artemisia ordosica combined with moss-dominated crusts, on rainwater infiltration, soil moisture, and annual wind erosion were observed. The major results are as follows. (1) The development of moss-dominated crusts exacerbated soil moisture consumption and had negative effects on soil moisture in the Mu Us sandland. (2) Moss-dominated crusts significantly increased soil resistance to wind erosion, and when combined with Artemisia ordosica, this effect became more significant. The contribution of moss-dominated crusts under Artemisia ordosica was significantly lower than that of moss-dominated crusts alone in sites where vegetative coverage > 50%. (3) Finally, an appropriate disturbance of moss-dominated crusts in the rainy season in sites with high vegetative coverage improved soil water environment and vegetation succession, but disturbance in sites with little or no vegetative cover should be prohibited to avoid the exacerbation of wind erosion. PMID:24982973

  16. Interactive effects of moss-dominated crusts and Artemisia ordosica on wind erosion and soil moisture in Mu Us sandland, China.

    PubMed

    Yang, Yongsheng; Bu, Chongfeng; Mu, Xingmin; Shao, Hongbo; Zhang, Kankan

    2014-01-01

    To better understand the effects of biological soil crusts (BSCs) on soil moisture and wind erosion and study the necessity and feasibility of disturbance of BSCs in the Mu Us sandland, the effects of four treatments, including moss-dominated crusts alone, Artemisia ordosica alone, bare sand, and Artemisia ordosica combined with moss-dominated crusts, on rainwater infiltration, soil moisture, and annual wind erosion were observed. The major results are as follows. (1) The development of moss-dominated crusts exacerbated soil moisture consumption and had negative effects on soil moisture in the Mu Us sandland. (2) Moss-dominated crusts significantly increased soil resistance to wind erosion, and when combined with Artemisia ordosica, this effect became more significant. The contribution of moss-dominated crusts under Artemisia ordosica was significantly lower than that of moss-dominated crusts alone in sites where vegetative coverage > 50%. (3) Finally, an appropriate disturbance of moss-dominated crusts in the rainy season in sites with high vegetative coverage improved soil water environment and vegetation succession, but disturbance in sites with little or no vegetative cover should be prohibited to avoid the exacerbation of wind erosion.

  17. Soil water erosion processes in mountain forest catchment - analysis by using terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Dąbek, Paweł; Żmuda, Romuald; Szczepański, Jakub; Ćmielewski, Bartłomiej; Patrzałek, Ciechosław

    2013-04-01

    The paper presents the results of the analysis of the water erosion processes of soil occurring in forestry mountain catchment area in the region of West Sudetes Mountain in Poland. The research was carried out within the experimental area of skid trails (operational trails), which were used to the end of 2010 in obtaining wood and its mechanical transport to the place of storage. As a consequence of forestry works that were carried out it was changing the natural structure of ground and its surface on the wooded slopes, which, combined with the favorable hydro-meteorological conditions contributed to the intensification of the water erosion processes of soil on surface of trails. For the implementation of the research project of the analysis of water erosion processes in the forestry catchment area innovative was used terrestrial laser scanning. Using terrestrial laser scanning has enabled the analysis of the dynamics of erosion processes both in time, as well as in spatial and quantitative terms. Scanning was performed at a resolution of 4 mm, resulting in 62 500 points per 1 square meter. After filtering the data were interpolated to other resolution of 1 cm, which can identify even the smallest linear and surface effects of erosion. While installed on the experimental area, along the skid trails, anti-erosion barriers in order to reduce transport eroded material and allow its accumulation. Allowed to precisely determine the location of areas of accumulation, the rate and amount of accumulated material. The result of the analyses that was carried out is identification areas of denudation of the eroded material, and also determine the intensity of the erosion processes and their quantitative analysis. The long-term researches on hydrological conditions and forest complexes functioning show that forest effectively stores water, limits linear and surface flow and delays water outflow from a catchment. Carried out a research project using the terrestrial laser scanning shows that anthropogenic activities in the form of forest management and their effects in the form of dense network of forest roads and skid trails and obtaining wood diminish correct functioning of a forest or even increase the phenomenon of erosion. Submit the results of the analysis consider the problem of dynamics and intensity of erosion processes in mountain areas, and show the effectiveness of the methodology of research.

  18. Suitability of 239+240Pu and 137Cs as tracers for soil erosion assessment in mountain grasslands.

    PubMed

    Alewell, Christine; Meusburger, Katrin; Juretzko, Gregor; Mabit, Lionel; Ketterer, Michael E

    2014-05-01

    Anthropogenic radionuclides have been distributed globally due to nuclear weapons testing, nuclear accidents, nuclear weapons fabrication, and nuclear fuel reprocessing. While the negative consequences of this radioactive contamination are self-evident, the ubiquitous fallout radionuclides (FRNs) distribution form the basis for the use as tracers in ecological studies, namely for soil erosion assessment. Soil erosion is a major threat to mountain ecosystems worldwide. We compare the suitability of the anthropogenic FRNs, 137Cs and 239+240Pu as soil erosion tracers in two alpine valleys of Switzerland (Urseren Valley, Canton Uri, Central Swiss Alps and Val Piora, Ticino, Southern Alps). We sampled reference and potentially erosive sites in transects along both valleys. 137Cs measurements of soil samples were performed with a Li-drifted Germanium detector and 239+240Pu with ICP-MS. Our data indicates a heterogeneous deposition of the 137Cs, since most of the fallout origins from the Chernobyl April/May 1986 accident, when large parts of the European Alps were still snow-covered. In contrast, 239+240Pu fallout originated mainly from 1950s to 1960s atmospheric nuclear weapons tests, resulting in a more homogenous distribution and thus seems to be a more suitable tracer in mountainous grasslands. Soil erosion assessment using 239+240Pu as a tracer pointed to a huge dynamic and high heterogeneity of erosive processes (between sedimentation of 1.9 and 7 t ha(-1) yr(-1) and erosion of 0.2-16.4 t ha(-1) yr(-1) in the Urseren Valley and sedimentation of 0.4-20.3 t ha(-1) yr(-1) and erosion of 0.1-16.4 t ha(-1) yr(-1) at Val Piora). Our study represents a novel and successful application of 239+240Pu as a tracer of soil erosion in a mountain environment. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Soil dynamics and accelerated erosion: a sensitivity analysis of the LPJ Dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Bouchoms, Samuel; Van Oost, Kristof; Vanacker, Veerle; Kaplan, Jed O.; Vanwalleghem, Tom

    2013-04-01

    It is widely accepted that humans have become a major geomorphic force by disturbing natural vegetation patterns. Land conversion for agriculture purposes removes the protection of soils by the natural vegetation and leads to increased soil erosion by one to two orders of magnitude, breaking the balance that exists between the loss of soils and its production. Accelerated erosion and deposition have a strong influence on evolution and heterogeneity of basic soil characteristics (soil thickness, hydrology, horizon development,…) as well as on organic matter storage and cycling. Yet, since they are operating at a long time scale, those processes are not represented in state-of-art Dynamic Global Vegetation Models, which is a clear lack when exploring vegetation dynamics over past centuries. The main objectives of this paper are (i) to test the sensitivity of a Dynamic Global Vegetation Model, in terms of NPP and organic matter turnover, variations in state variables in response to accelerated erosion and (ii) to assess the performance of the model under the impact of erosion for a case-study in Central Spain. We evaluated the Lund-Postdam-Jena Dynamic Vegetation Model (LPJ DVGM) (Sitch et al, 2003) which simulates vegetation growth and carbon pools at the surface and in the soil based on climatic, pedologic and topographic variables. We assessed its reactions to changes in key soil properties that are affected by erosion such as texture and soil depth. We present the results of where we manipulated soil texture and bulk density while keeping the environmental drivers of climate, slope and altitude constant. For parameters exhibiting a strong control on NPP or SOM, a factorial analysis was conducted to test for interaction effects. The simulations show an important dependence on the clay content, especially for the slow cycling carbon pools and the biomass production, though the underground litter seems to be mostly influenced by the silt content. The fast cycling C pools and/or the surface pools vary with sand and silt richness, the highest values being reached with a combination of 50% silt and 25% sand while the lowest are for a 100% clay soil. Finally, LPJ is run for three cases corresponding to a stable, erosive and depositional soil profile. These simulations show how the model reacts and performs under erosion/deposition conditions which are recreated by changing the soil's texture and soil depth over time. We discuss the performance of the LPJ model in the context of accelerated erosion and conclusions drawn from the sensitivity analysis.

  20. Zonal characterization of hillslope erosion processes in a semi-arid high mountain catchment

    NASA Astrophysics Data System (ADS)

    Torres, Raquel; Millares, Agustín; Aguilar, Cristina; Moñino, Antonio; Ángel Losada, Miguel; José Polo, María

    2013-04-01

    Mediterranean and semi-arid catchments, generally suffer heterogeneous erosive processes at different spatio-temporal scales which produce, in a synergistic manner, a large amount of sediment supply. In mountainous catchments, the influence of pluvio-nival hydrological regime leads to a clear subdivision into homogeneous zones regarding the nature of hillslope processes. Here, a distinction could be addressed with 1) subsurface erosion due to saturated soil by intense snowmelt pulses and 2) steepest mid-mountain soil loss with rill/interrill, small-scale landslides and ephemeral or permanent gullying. Furthermore, the associated channels in these areas are formed by wide alluvial floodplains with important bedload contributions. This complexity conditions the evaluation of erosion and monitoring at catchment scale with elevated costs in time, devices and staff. The catchment of the Guadalfeo river encloses 1200 km², with important presence of snow in the summits height on its right margin, and semiarid low range hills with very erodible soils on its left margin. Gully erosion, landslides and stream bed-load processes, extremely actives in this area, are responsible of a real problem of soil loss and desertification with a high associated cost. This work suggests a methodology for the zonal assessment of different erosive processes taking into account the described heterogeneity and the reduction of research costs. To do this, high resolution bathymetric and topographic surveys supported in a reservoir (110 hm3) allowed the differentiation of bedload and suspended sediments as both are deposited in different locations and hence the validation of the hillslope sediment yield. In parallel, measurements in homogeneous areas were selected in order to obtain zonal results to achieve the representative processes involved. The use of portable samplers allows the remote changing of sampling routines, and thus to capture the temporal scale of the processes and the associated forcing agents. The obtained results validate the proposed methodology with adjustments/fitting between measured suspended sediment regarding the increase of volume registered at the dam. Furthermore, the measures obtained reveal a clear zonal differentiation in sediment yield which represents the heterogeneous dynamic of the processes involved.

  1. Soil Erosion map of Europe based on high resolution input datasets

    NASA Astrophysics Data System (ADS)

    Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Ballabio, Cristiano; Alewell, Christine

    2015-04-01

    Modelling soil erosion in European Union is of major importance for agro-environmental policies. Soil erosion estimates are important inputs for the Common Agricultural Policy (CAP) and the implementation of the Soil Thematic Strategy. Using the findings of a recent pan-European data collection through the EIONET network, it was concluded that most Member States are applying the empirical Revised Universal Soil Loss Equation (RUSLE) for the modelling soil erosion at National level. This model was chosen for the pan-European soil erosion risk assessment and it is based on 6 input factors. Compared to past approaches, each of the factors is modelled using the latest pan-European datasets, expertise and data from Member states and high resolution remote sensing data. The soil erodibility (K-factor) is modelled using the recently published LUCAS topsoil database with 20,000 point measurements and incorporating the surface stone cover which can reduce K-factor by 15%. The rainfall erosivity dataset (R-factor) has been implemented using high temporal resolution rainfall data from more than 1,500 precipitation stations well distributed in Europe. The cover-management (C-factor) incorporates crop statistics and management practices such as cover crops, tillage practices and plant residuals. The slope length and steepness (combined LS-factor) is based on the first ever 25m Digital Elevation Model (DEM) of Europe. Finally, the support practices (P-factor) is modelled for first time at this scale taking into account the 270,000 LUCAS earth observations and the Good Agricultural and Environmental Condition (GAEC) that farmers have to follow in Europe. The high resolution input layers produce the final soil erosion risk map at 100m resolution and allow policy makers to run future land use, management and climate change scenarios.

  2. Heavy metal pollution in soils of abandoned mining areas (SE, Spain)

    NASA Astrophysics Data System (ADS)

    Martínez-Sánchez, M. J.; Pérez-Sirvent, C.; Molina, J.; Tudela, M. L.; Navarro, M. C.; García-Lorenzo, M. L.

    2009-04-01

    Elevated levels of heavy metals can be found in and around disused metalliferous mines due to discharge and dispersion of mine wastes into nearby agricultural soils, food crops and stream systems. Heavy metals contained in the residues from mining and metallurgical operations are often dispersed by wind and/or water after their disposal. These areas have severe erosion problems caused by wind and water runoff in which soil and mine spoil texture, landscape topography and regional and microclimate play an important role. The present study was carried out in the Cabezo Rajao (La Uni

  3. Reduction of soil erosion and mercury losses in agroforestry systems compared to forests and cultivated fields in the Brazilian Amazon.

    PubMed

    Béliveau, Annie; Lucotte, Marc; Davidson, Robert; Paquet, Serge; Mertens, Frédéric; Passos, Carlos J; Romana, Christine A

    2017-12-01

    In addition to causing physical degradation and nutrient depletion, erosion of cultivated soils in the Amazon affects aquatic ecosystems through the release of natural soil mercury (Hg) towards lakes and rivers. While traditional agriculture is generally cited as being among the main causes of soil erosion, agroforestry practices are increasingly appreciated for soil conservation. This study was carried out in family farms of the rural Tapajós region (Brazil) and aimed at evaluating soil erosion and associated Hg release for three land uses. Soils, runoff water and eroded sediments were collected at three sites representing a land cover gradient: a recently burnt short-cycle cropping system (SCC), a 2-year-old agroforestry system (AFS) and a mature forest (F). At each site, two PVC soil erosion plots (each composed of three 2 × 5 m isolated subplots) were implemented on steep and moderate slopes respectively. Sampling was done after each of the 20 rain events that occurred during a 1-month study period, in the peak of the 2011 rain season. Runoff volume and rate, as well as eroded soil particles with their Hg and cation concentrations were determined. Total Hg and cation losses were then calculated for each subplot. Erosion processes were dominated by land use type over rainfall or soil slope. Eroded soil particles, as well as the amount of Hg and cations (CaMgK) mobilized at the AFS site were similar to those at the F site, but significantly lower than those at the SCC site (p < 0.0001). Erosion reduction at the AFS site was mainly attributed to the ground cover plants characterizing the recently established system. Moreover, edaphic change throughout AFS and F soil profiles differed from the SCC site. At the latter site, losses of fine particles and Hg were enhanced towards soil surface, while they were less pronounced at the other sites. This study shows that agroforestry systems, even in their early stages of implementation, are characterized by low erosion levels resembling those of local forest environments, thus contributing to the maintenance of soil integrity and to the reduction of Hg and nutrient mobility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The use of spatial empirical models to estimate soil erosion in arid ecosystems.

    PubMed

    Abdullah, Meshal; Feagin, Rusty; Musawi, Layla

    2017-02-01

    The central objective of this project was to utilize geographical information systems and remote sensing to compare soil erosion models, including Modified Pacific South-west Inter Agency Committee (MPSIAC), Erosion Potential Method (EPM), and Revised Universal Soil Loss Equation (RUSLE), and to determine their applicability for arid regions such as Kuwait. The northern portion of Umm Nigga, containing both coastal and desert ecosystems, falls within the boundaries of the de-militarized zone (DMZ) adjacent to Iraq and has been fenced off to restrict public access since 1994. Results showed that the MPSIAC and EPM models were similar in spatial distribution of erosion, though the MPSIAC had a more realistic spatial distribution of erosion and presented finer level details. The RUSLE presented unrealistic results. We then predicted the amount of soil loss between coastal and desert areas and fenced and unfenced sites for each model. In the MPSIAC and EPM models, soil loss was different between fenced and unfenced sites at the desert areas, which was higher at the unfenced due to the low vegetation cover. The overall results implied that vegetation cover played an important role in reducing soil erosion and that fencing is much more important in the desert ecosystems to protect against human activities such as overgrazing. We conclude that the MPSIAC model is best for predicting soil erosion for arid regions such as Kuwait. We also recommend the integration of field-based experiments with lab-based spatial analysis and modeling in future research.

  5. Wind erosion potential after land application of biosolids

    NASA Astrophysics Data System (ADS)

    PI, H.; Sharratt, B. S.; Schillinger, W. F.; Bary, A.; Cogger, C.

    2017-12-01

    The world population is currently 7.6 billion and, along with continued population growth, comes the challenge of disposing of wastewater and sewage sludge (biosolids). Applying biosolids to agricultural land to replace synthetic fertilizers represents a relatively safe method to recycle or sustainably use biosolids. While land application of biosolids is recognized as a sustainable management practice for enhancing soil health, no studies have determined the effects of biosolids on soil wind erosion. Wind erosion potential of a silt loam was assessed using a portable wind tunnel after applying synthetic and biosolid fertilizer to conventional and conservation tillage practices during the summer fallow phase of a winter wheat-summer fallow rotation in 2015 and 2016 in east-central Washington. Little difference in soil loss was observed between biosolid and synthetic fertilizer treatments, but this result appeared to be dependent on susceptibility of the soil to erosion. Regression analysis between soil loss from fertilizer or tillage treatments indicated that soil loss was lower from biosolid versus synthetic fertilizer and conservation versus conventional tillage at high erosion rates. This suggests that biosolids may reduce wind erosion under highly erodible conditions. Meanwhile, heavy metal concentrations in the windblown sediment were similar for the biosolid and synthetic fertilizer treatments whereas metal loss in windblown sediment was 10% lower from biosolid than synthetic fertilizer. Our results indicate that land application of biosolids did not accelerate the loss of metals or nutrients from soils during high winds. KeywordsLand application of biosolids; wind erosion; wind tunnel; sustainable agriculture

  6. Root development of winter wheat in erosion-affected soils depending on the position in a hummocky ground moraine soil landscape

    NASA Astrophysics Data System (ADS)

    Herbrich, Marcus; Gerke, Horst H.; Sommer, Michael

    2017-04-01

    The soil water uptake by crops is a key process in the hydrological cycle of agricultural ecosystems. In the arable hummocky ground moraines soil landscapes, an erosion-induced spatial differentiation of soil types has been established due to water and tillage erosion. Crop development may reflect soil landscape patterns and erosion-induced soil profile modifications, respectively, by increased or reduced plant and root growth. The objective was analyze field data of the root density and the root lengths of winter wheat for a non-eroded reference soil at the plateau (Albic Luvisol), an extremely eroded soil at steep midslope (Calcaric Regosol), and depositional soil at the footslope (Colluvic Regosol) using the minirhizotron technique. From 9/14 to 8/15 results indicate that root density values were highest for the Colluvic Regosol, followed by the Albic Luvisol and lowest for the Calcaric Regosol. In turn, the lowest maximum root penetration depth was found in the Colluvic Regosol because of the relatively high and fluctuating water table at this landscape position. The analyzed field root data revealed positive relations to above-ground plant parameters and corroborated the hypothesis that the crop root system was reflecting erosion-induced soil profile modifications. When accounting for the position-specific root development, the simulation of water and solute movement suggested differences in the balances as compared to assuming a spatially uniform development.

  7. Soil Production and Erosion on a Low-Relief, Soil-Mantled Landscape in the Pinaleno Mountains, Arizona

    NASA Astrophysics Data System (ADS)

    Foster, M.; Whipple, K. X.; Heimsath, A. M.; Jungers, M.

    2014-12-01

    Soil thickness plays an essential role in hydrology, ecology, biogeochemistry, and erosion and transport processes at the Earth's surface. Controls on soil production rate set this important characteristic, however, relative roles of these controls have not been quantitatively assessed. I take advantage of uniform lithology and climate on anenigmatic perched, low-relief high elevation landscape in the Pinaleno Mountains in southeastern Arizona to examine controls of formation and preservation of the upper, low-relief soil mantled landscape. This landscape is sharply bounded on all sides by steep, rugged terrain where soil cover is patchy but pervasive. Knickpoints appear along channel profiles around the edges of the low-relief landscape, suggesting a transient response to some tectonic disturbance, either due to rock uplift and basin subsidence during Basin and Range tectonic forcing, or more recent base-level drop in adjacent drainage systems. Slow erosion rates recently measured along the flanks of this range support the hypothesis that this upper transient surface has been preserved after a late Miocene-Pliocene basin and range disturbance that has since been followed by slow topographic decay. To shed light on the processes driving weathering, soil production and erosion in this landscape that maintains steep, rocky catchments only below knickpoints on channels draining the upper low-relief landscape, we utilize high-resolution soil thickness measurements coupled with terrestrial cosmogenic nuclide soil production rate measurements. In order to determine soil thicknesses at the high-resolution scale useful to describe hillslope process, we utilize shallow seismic survey data, calibrated by soil pit measurements of soil down through saprolite and fractured bedrock. Broadly applicable, these high-resolution soil thickness measurements coupled with soil production and erosion rate data can be useful disentangle relationships among catchment-mean erosion rate, mean soil thickness, and soil production efficiency.

  8. Effect of Impact Angle on the Erosion Rate of Coherent Granular Soil, with a Chernozemic Soil as an Example

    NASA Astrophysics Data System (ADS)

    Larionov, G. A.; Bushueva, O. G.; Gorobets, A. V.; Dobrovol'skaya, N. G.; Kiryukhina, Z. P.; Krasnov, S. F.; Kobylchenko Kuksina, L. V.; Litvin, L. F.; Sudnitsyn, I. I.

    2018-02-01

    It has been shown in experiments in a hydraulic flume with a knee-shaped bend that the rate of soil erosion more than doubles at the flow impact angles to the channel side from 0° to 50°. At higher channel bends, the experiment could not be performed because of backwater. Results of erosion by water stream approaching the sample surface at angles between 2° and 90° are reported. It has been found that the maximum erosion rate is observed at flow impact angles of about 45°, and the minimum rate at 90°. The minimum soil erosion rate is five times lower than the maximum erosion rate. This is due to the difference in the rate of free water penetration into the upper soil layer, and the impact of the hydrodynamic pressure, which is maximum at the impact angle of 90°. The penetration of water into the interaggregate space results in the breaking of bonds between aggregates, which is the main condition for the capture of particles by the flow.

  9. Soil erosion measurements by means of experimental plots to determine best land management strategies in vineyards and olive orchards

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Keesstra, Saskia; Jordan, Antonio; Brevik, Erik; Nova, Agata; Prosdocimi, Massimo; Azorín-Molina, César; Yazdanpanah, Najme; Mahmoodabadi, Majid; Pereira, Paulo; Burguet, María

    2016-04-01

    In order to design sustainable land management there is a need to have accurate information on the impact this land management strategies have on water and sediment dynamics. This is especially important when a proper management is designed to reduce the soil losses due to the complex interaction of mechanisms that interact within the soil erosion process. Soil erosion is an non-linear process, both spatially and temporally, and as a consequence of that only well-monitored and accurate measurements can give insights in the processes and how these processes can be influenced by management to reduce soil losses (Cerdà, 2007; Ligonja and Shrestha, 2015; Nanko et al., 2015; Seutloali and Beckedahl, 2015). This is necessary at different scales: pedon, slope, and watershed because the governing processes differ at different scale (Keesstra, 2007; Jordán and Martínez Zavala, 2008; Borrelli et al., 2015). Soil erosion plots can give information about the temporal and spatial variability of soil losses. We present here a strategy developed by the Soil Erosion and Degradation Research Group from the University of Valencia to assess the soil erosion rates in Eastern Spain. In 2002 the Soil Erosion Experimental Station in El Teularet-Sierra de Enguera was installed, to assess soil losses in rainfed agriculture orchards, and 73 plots of 1, 2, 4, 16 and 48 m2 were installed. In 2005 6 plots of 300 m2 were installed in the nearby Montesa soil erosion station to assess soil losses in citrus orchards. In 2011 16 plots of 2 m2 where installed in Les Alcusses to determine soil losses in olive orchards, and in 2015 8 plots in Celler del Roure vineyard to assess the impact of land management in vineyards and 8 plots in the El Teularet to study the impact of straw mulch on soil erosion rates. All erosion stations are located in several kilometres distance from each other. This research which we developed since 2002 is complementary to previous research where we used rainfall simulation experiments to assess soil properties under different management (Cerdà, 1997; Cerdà, 1998a; Cerdà 1998b; Cerdà, 2001). The results from the soil erosion plots monitoring demonstrate the positive impact of vegetation to reduce soil loss. In addition, we proved that the use of straw, chipped pruned branches and rock fragments as surface cover reduces soil losses (Cerdà et al., 2015, Pereira et al., 2015; Prosdocimi et al., 2016). Acknowledgements The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603498 (RECARE project) and by the Spanish Government with the research Project CGL2013- 47862-C2-1-R. References Borrelli, P., Märker, M., Schütt, B. 2015. Modelling Post-Tree-Harvesting soil erosion and sediment deposition potential in the turano river basin (Italian central apennine. Land Degradation and Development, 26, 356-366. DOI: 10.1002/ldr.2214 Cerdà, A. 1997.The effect of patchy distribution of Stipa tenacissima L. on runoff and erosion. Journal of Arid Environments, 36 (1), pp. 37-51.DOI: 10.1006/jare.1995.0198 Cerdà, A. 1998a. Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrological Processes, 12 (7), pp. 1031-1042. Cerdà, A. 1998b Soil aggregate stability under different Mediterranean vegetation types. Catena, 32 (2), pp. 73-86. DOI: 10.1016/S0341-8162(98)00041-1 Cerdà, A. 2001. Effects of rock fragment cover on soil infiltration, interrill runoff and erosion. European Journal of Soil Science, 52 (1), pp. 59-68. DOI: 10.1046/j.1365-2389.2001.00354.x Cerdà, A. 2007. Soil water erosion on road embankments in eastern Spain. Science of the Total Environment, 378 (1-2), 151-155. DOI: 10.1016/j.scitotenv.2007.01.041 Cerdà, A., González-Pelayo, O., Giménez-Morera, A., Jordán, A., Pereira, P., Novara, A., Brevik, E.C., Prosdocimi, M., Mahmoodabadi, M., Keesstra, S., García Orenes, F., Ritsema, C., 2015. The use of barley straw residues to avoid high erosion and runoff rates on persimmon plantations in Eastern Spain under low frequency - high magnitude simulated rainfall events. Soil Res. (In press) Jordán, A., & Martínez-Zavala, L. 2008. Soil loss and runoff rates on unpaved forest roads in southern Spain after simulated rainfall. Forest Ecology and Management, 255(3), 913-919. Keesstra, S.D. 2007. Impact of natural reforestation on floodplain sedimentation in the Dragonja basin, SW Slovenia. Earth Surface Processes and Landforms, 32(1): 49-65. DOI: 10.1002/esp.1360 Ligonja, P.J., Shrestha, R.P. 2015. Soil erosion assessment in kondoa eroded area in Tanzania using universal soil loss equation, geographic information systems and socioeconomic approach (2015) Land Degradation and Development, 26 (4), pp. 367-379. DOI: 10.1002/ldr.2215 Nanko, K., Giambelluca, T.W., Sutherland, R.A., Mudd, R.G., Nullet, M.A., Ziegler, A.D. 2015.Erosion potential under miconia calvescens stands on the island of hawai'i. Land Degradation and Development, 26 (3), pp. 218-226. DOI: 10.1002/ldr.2200 Pereira, P., Giménez-Morera, A., Novara, A., Keesstra, S., Jordán, A., Masto, R. E., Brevik, E., Azorin-Molina, C. Cerdà, A. 2015. The impact of road and railway embankments on runoff and soil erosion in eastern Spain. Hydrology and Earth System Sciences Discussions, 12, 12947-12985. Prosdocimi,M., Jordán, A., Tarolli, P., Keesstra, S., Novara, A., Cerdà, A. 2016. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Science of The Total Environment, 547, 15 ,323-330, doi:10.1016/j.scitotenv.2015.12.076 Seutloali, K.E., Beckedahl, H.R. 2015. Understanding the factors influencing rill erosion on roadcuts in the south eastern region of South Africa. Solid Earth, 6 (2) 633-641. DOI: 10.5194/se-6-633-2015

  10. Erosion and Soil Contamination Control Using Coconut Flakes And Plantation Of Centella Asiatica And Chrysopogon Zizanioides

    NASA Astrophysics Data System (ADS)

    Roslan, Rasyikin; Che Omar, Rohayu; Nor Zuliana Baharuddin, Intan; Zulkarnain, M. S.; Hanafiah, M. I. M.

    2016-11-01

    Land degradation in Malaysia due to water erosion and water logging cause of loss of organic matter, biodiversity and slope instability but also land are contaminated with heavy metals. Various alternative such as physical remediation are use but it not showing the sustainability in term of environmental sustainable. Due to that, erosion and soil contamination control using coconut flakes and plantation of Centella asiatica and Chrysopogon zizanioides are use as alternative approach for aid of sophisticated green technology known as phytoremediation and mycoremediation. Soil from cabonaceous phyllite located near to Equine Park, Sri Kembangan are use for monitoring the effect of phytoremediation and mycoremediation in reducing soil contamination and biotechnology for erosion control. Five laboratory scale prototypes were designed to monitor the effect of different proportion of coconut flakes i.e. 10%, 25%, 50% & 100% and plantation of Centella asiatica and Chrysopogon zizanioides to reduce the top soil from eroding and reduce the soil contamination. Prototype have been observe started from first week and ends after 12 weeks. Centella asiatica planted on 10% coconut flakes with 90% soil and Chrysopogon zizanioides planted on 25% coconut flakes with 75% soil are selected proportion to be used as phytoremediation and mycoremediation in reducing soil contamination and biotechnology for erosion control.

  11. How surface mounds and depressions change during rainfall events

    USDA-ARS?s Scientific Manuscript database

    The soil roughness, or microrelief, controls processes occurring on the surface. Although there are numerous studies on how soil roughness affects soil erosion processes, little are focused on quantifying different roughness functions on surface hydrology and erosion, i.e., water diverging and soil...

  12. Soil property effects on wind erosion of organic soils

    USDA-ARS?s Scientific Manuscript database

    Histosols (also known as organic soils, mucks, or peats) are soils that are dominated by organic matter (>20%) in half or more of the upper 80 cm. Forty four states have a total of 21 million ha of histosols in the United States. These soils, when intensively cropped, are subject to wind erosion r...

  13. Soil Property Effects on Wind Erosion of Organic Soils

    USDA-ARS?s Scientific Manuscript database

    Histosols (also known as organic soils, mucks, or peats) are soils that are dominated by organic matter (>20%) in half or more of the upper 80 cm. Forty four states have a total of 21 million ha of histosols in the United States. These soils, when intensively cropped, are subject to wind erosion r...

  14. Impact of snow gliding on soil redistribution for a sub-alpine area in Switzerland

    NASA Astrophysics Data System (ADS)

    Meusburger, K.; Leitinger, G.; Mabit, L.; Mueller, M. H.; Alewell, C.

    2013-07-01

    The aim of this study is to assess the importance of snow gliding as soil erosion agent for four different land use/land cover types in a sub-alpine area in Switzerland. The 14 investigated sites are located close to the valley bottom at approximately 1500 m a.s.l., while the elevation of the surrounding mountain ranges is about 2500 m a.s.l. We used two different approaches to estimate soil erosion rates: the fallout radionuclide 137Cs and the Revised Universal Soil Loss Equation (RUSLE). The RUSLE model is suitable to estimate soil loss by water erosion, while the 137Cs method integrates soil loss due to all erosion agents involved. Thus, we hypothesise that the soil erosion rates determined with the 137Cs method are higher and that the observed discrepancy between the erosion rate of RUSLE and the 137Cs method is related to snow gliding. Cumulative snow glide distance was measured for the sites in the winter 2009/2010 and modelled for the surrounding area with the Spatial Snow Glide Model (SSGM). Measured snow glide distance range from 0 to 189 cm with lower values for the north exposed slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected land use changes in the Alps. Our hypothesis was confirmed, the difference of RUSLE and 137Cs erosion rates was correlated to the measured snow glide distance (R2 = 0.73; p < 0.005). A high difference (lower proportion of water erosion compared to total net erosion) was observed for high snow glide rates and vice versa. The SSGM reproduced the relative difference of the measured snow glide values between different land use/land cover types. The resulting map highlights the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding is a key process impacting soil erosion pattern and magnitude in sub-alpine areas with similar topographic and climatic conditions.

  15. Assessment of spatial distribution of soil loss over the upper basin of Miyun reservoir in China based on RS and GIS techniques.

    PubMed

    Chen, Tao; Niu, Rui-qing; Wang, Yi; Li, Ping-xiang; Zhang, Liang-pei; Du, Bo

    2011-08-01

    Soil conservation planning often requires estimates of the spatial distribution of soil erosion at a catchment or regional scale. This paper applied the Revised Universal Soil Loss Equation (RUSLE) to investigate the spatial distribution of annual soil loss over the upper basin of Miyun reservoir in China. Among the soil erosion factors, which are rainfall erosivity (R), soil erodibility (K), slope length (L), slope steepness (S), vegetation cover (C), and support practice factor (P), the vegetative cover or C factor, which represents the effects of vegetation canopy and ground covers in reducing soil loss, has been one of the most difficult to estimate over broad geographic areas. In this paper, the C factor was estimated based on back propagation neural network and the results were compared with the values measured in the field. The correlation coefficient (r) obtained was 0.929. Then the C factor and the other factors were used as the input to RUSLE model. By integrating the six factor maps in geographical information system (GIS) through pixel-based computing, the spatial distribution of soil loss over the upper basin of Miyun reservoir was obtained. The results showed that the annual average soil loss for the upper basin of Miyun reservoir was 9.86 t ha(-1) ya(-1) in 2005, and the area of 46.61 km(2) (0.3%) experiences extremely severe erosion risk, which needs suitable conservation measures to be adopted on a priority basis. The spatial distribution of erosion risk classes was 66.9% very low, 21.89% low, 6.18% moderate, 2.89% severe, and 1.84% very severe. Thus, by using RUSLE in a GIS environment, the spatial distribution of water erosion can be obtained and the regions which susceptible to water erosion and need immediate soil conservation planning and application over the upper watershed of Miyun reservoir in China can be identified.

  16. Modelling the effect of agricultural management practices on soil organic carbon stocks: does soil erosion matter?

    NASA Astrophysics Data System (ADS)

    Nadeu, Elisabet; Van Wesemael, Bas; Van Oost, Kristof

    2014-05-01

    Over the last decades, an increasing number of studies have been conducted to assess the effect of soil management practices on soil organic carbon (SOC) stocks. At regional scales, biogeochemical models such as CENTURY or Roth-C have been commonly applied. These models simulate SOC dynamics at the profile level (point basis) over long temporal scales but do not consider the continuous lateral transfer of sediment that takes place along geomorphic toposequences. As a consequence, the impact of soil redistribution on carbon fluxes is very seldom taken into account when evaluating changes in SOC stocks due to agricultural management practices on the short and long-term. To address this gap, we assessed the role of soil erosion by water and tillage on SOC stocks under different agricultural management practices in the Walloon region of Belgium. The SPEROS-C model was run for a 100-year period combining three typical crop rotations (using winter wheat, winter barley, sugar beet and maize) with three tillage scenarios (conventional tillage, reduced tillage and reduced tillage in combination with additional crop residues). The results showed that including soil erosion by water in the simulations led to a general decrease in SOC stocks relative to a baseline scenario (where no erosion took place). The SOC lost from these arable soils was mainly exported to adjacent sites and to the river system by lateral fluxes, with magnitudes differing between crop rotations and in all cases lower under conservation tillage practices than under conventional tillage. Although tillage erosion plays an important role in carbon redistribution within fields, lateral fluxes induced by water erosion led to a higher spatial and in-depth heterogeneity of SOC stocks with potential effects on the soil water holding capacity and crop yields. This indicates that studies assessing the effect of agricultural management practices on SOC stocks and other soil properties over the landscape should account for the impact of soil erosion (both by water and tillage).

  17. Choosing the target of adaptive soil erosion management in Mediterranean. Long vs. Extreme erosion, internal vs. external catchment dynamics

    NASA Astrophysics Data System (ADS)

    Smetanova, Anna; Follain, Stéphane; David, Mélodie; Ciampalini, Rossano; Raclot, Damien; Crabit, Armand; Le Bissonnais, Yves

    2017-04-01

    For soil resources protection and regulation of soil erosion off-site effects in Mediterranean, it is inevitable to adjust current land management planning to both, event magnitude and long-term erosion means [2, 3, 5]. Science-based soil protection measures need to be adjusted to spatial and temporal scale of practice differing between stakeholders and management aims, and reflect increasing frequency of torrential rainfalls leading to very high erosion rates in short time [3, 4]. In order to address selection of zero-soil erosion land management target, this study applies modelling approach for comparison of 7 land use scenarios using the LandSoil model [1]. We propose comparison of internal vs. external catchment dynamic at extreme event- and long-term scale as a tool for understanding effect of land management in targeting emerging erosion and connectivity patterns. Our results suggest, that proposed approach can be applied to identify best management scenario practices regarding different management aims of farmers and watershed managers. [1] Ciampalini R, Follain S, Le Bissonnais Y. 2012. LandSoil: A model for analysing the impact of erosion on agricultural landscape evolution. Geomorphology 175-176: 25-37. [2] David M, Follain S, Ciampalini R, Le Bissonnais Y, Couturier A, Walter C. 2014. Simulation of medium-term soil redistributions for different land use and landscape design scenarios within a vineyard landscape in Mediterranean France. Geomorphology 214: 10-21. [3] Smetanová A, Le Bissonnais Y, Raclot D, Nunes JP, Licciardello F, Le Bouteiller C, Latron J, Rodríguez-Caballero E, Mathys N, Klotz S, Mekki I, Gallart F, Solé Benet A, Pérez Gallego N, Andrieux P, Moussa R, Planchon O, Marisa Santos J, Alshihabi O, Chikhaoui M., submitted. Patterns of temporal variability and time compression of sediment yield in small Mediterranean catchments. Soil Use & Management [4] Smetanová A, Paton E, Maynard C, Tindale S, Fernandez-Getino A-P, Marques MJ, Bracken L, Le Bissonnais Y, Keesstra S. submitted -b. Stakeholders' perception of the relevance of water and sediment connectivity in water and land management. Land Degradation & Development [5] Stroosnijder L. 2005. Measurement of erosion: Is it possible? CATENA 64: 162-173.

  18. Multi-decadal impacts of grazing on soil physical and biogeochemical properties in southeast Utah

    USGS Publications Warehouse

    Neff, J.C.; Reynolds, R.L.; Belnap, J.; Lamothe, P.

    2005-01-01

    Many soils in southeastern Utah are protected from surface disturbance by biological soil crusts that stabilize soils and reduce erosion by wind and water. When these crusts are disturbed by land use, soils become susceptible to erosion. In this study, we compare a never-grazed grassland in Canyonlands National Park with two historically grazed sites with similar geologic, geomorphic, and geochemical characteristics that were grazed from the late 1800s until 1974. We show that, despite almost 30 years without livestock grazing, surface soils in the historically grazed sites have 38-43% less silt, as well as 14-51% less total elemental soil Mg, Na, P, and Mn content relative to soils never exposed to livestock disturbances. Using magnetic measurement of soil magnetite content (a proxy for the stabilization of far-traveled eolian dust) we suggest that the differences in Mg, Na, P, and Mn are related to wind erosion of soil fine particles after the historical disturbance by livestock grazing. Historical grazing may also lead to changes in soil organic matter content including declines of 60-70% in surface soil C and N relative to the never-grazed sites. Collectively, the differences in soil C and N content and the evidence for substantial rock-derived nutrient loss to wind erosion implies that livestock grazing could have long-lasting effects on the soil fertility of native grasslands in this part of southeastern Utah. This study suggests that nutrient loss due to wind erosion of soils should be a consideration for management decisions related to the long-term sustainability of grazing operations in arid environments.

  19. Saving the Dust Bowl: "Big Hugh" Bennett's Triumph over Tragedy

    ERIC Educational Resources Information Center

    Smith, Rebecca

    2007-01-01

    In the 1930s, years of injudicious cultivation had devastated 100 million acres of Kansas, Oklahoma, Texas, Colorado, and New Mexico. This was the Dust Bowl, and it exposed a problem that had silently plagued American agriculture for centuries--soil erosion. Farmers, scientists, and the government alike considered it trivial until Hugh Hammond…

  20. Environmental Quality Management in the United States in the 1980s and Beyond: An Appraisal.

    ERIC Educational Resources Information Center

    Bower, Blair T.

    1984-01-01

    Presents an overview of: (1) the institutional context of the environmental pollution sector of environmental quality management (EQM); accomplishments and problems in some representative subsectors (including water quality, soil erosion, air quality, and hazardous wastes); and (3) future prospects. Also considers role of government and…

Top