Science.gov

Sample records for soil moisture analysis

  1. Galvanic Cell Type Sensor for Soil Moisture Analysis.

    PubMed

    Gaikwad, Pramod; Devendrachari, Mruthyunjayachari Chattanahalli; Thimmappa, Ravikumar; Paswan, Bhuneshwar; Raja Kottaichamy, Alagar; Makri Nimbegondi Kotresh, Harish; Thotiyl, Musthafa Ottakam

    2015-07-21

    Here we report the first potentiometric sensor for soil moisture analysis by bringing in the concept of Galvanic cells wherein the redox energies of Al and conducting polyaniline are exploited to design a battery type sensor. The sensor consists of only simple architectural components, and as such they are inexpensive and lightweight, making it suitable for on-site analysis. The sensing mechanism is proved to be identical to a battery type discharge reaction wherein polyaniline redox energy changes from the conducting to the nonconducting state with a resulting voltage shift in the presence of soil moisture. Unlike the state of the art soil moisture sensors, a signal derived from the proposed moisture sensor is probe size independent, as it is potentiometric in nature and, hence, can be fabricated in any shape or size and can provide a consistent output signal under the strong aberration conditions often encountered in soil moisture analysis. The sensor is regenerable by treating with 1 M HCl and can be used for multiple analysis with little read out hysteresis. Further, a portable sensor is fabricated which can provide warning signals to the end user when the moisture levels in the soil go below critically low levels, thereby functioning as a smart device. As the sensor is inexpensive, portable, and potentiometric, it opens up avenues for developing effective and energy efficient irrigation strategies, understanding the heat and water transfer at the atmosphere-land interface, understanding soil mechanics, forecasting the risk of natural calamities, and so on.

  2. Long term analysis of PALS soil moisture campaign measurements for global soil moisture algorithm development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An important component of satellite-based soil moisture algorithm development and validation is the comparison of coincident remote sensing and in situ observations that are typically provided by intensive field campaigns. The planned NASA Soil Moisture Active Passive (SMAP) mission has unique requi...

  3. Multivariate analysis of soil moisture and runoff dynamics for better understanding of catchment moisture state

    NASA Astrophysics Data System (ADS)

    Graeff, Thomas; Bronstert, Axel; Cunha Costa, Alexandre; Zehe, Erwin

    2010-05-01

    Soil moisture is a key state that controls runoff formation, infiltration and portioning of radiation into latent and sensible heat flux. The experimental characterisation of near surface soil moisture patterns and their controls on runoff formation is, however, still largely untapped. Using an intelligent sampling strategy of two TDR clusters installed in the head water of the Wilde Weißeritz catchment (Eastern Ore Mountains, Germany), we investigated how well "the catchment state" may be characterised by means of distributed soil moisture data observed at the field scale. A grassland site and a forested site both located on gentle slopes were instrumented with two Spatial TDR clusters (STDR) that consist of 39 and 32 coated TDR probes of 60 cm length. The interplay of soil moisture and runoff formation was interrogated using discharge data from three nested catchments: the Becherbach with a size of 2 km², the Rehefeld catchment (17 km²) and the superordinate Ammelsdorf catchment (49 km²). Multiple regression analysis and information theory including observations of groundwater levels, soil moisture and rainfall intensity were employed to predict stream flow. On the small scale we found a strong correlation between the average soil moisture and the runoff coefficients of rainfall-runoff events, which almost explains as much variability as the pre-event runoff. There was, furthermore, a strong correlation between surface soil moisture and subsurface wetness. With increasing catchment size, the explanatory power of soil moisture reduced, but it was still in a good accordance to the former results. Combining those results with a recession analysis of soil moisture and discharge we derived a first conceptual model of the dominant runoff mechanisms operating in these catchments, namely subsurface flow, but also by groundwater. The multivariate analysis indicated that the proposed sampling strategy of clustering TDR probes in typical functional units is a promising

  4. Microwave soil moisture measurements and analysis

    NASA Technical Reports Server (NTRS)

    Newton, R. W.; Howell, T. A.; Nieber, J. L.; Vanbavel, C. H. M. (Principal Investigator)

    1980-01-01

    An effort to develop a model that simulates the distribution of water content and of temperature in bare soil is documented. The field experimental set up designed to acquire the data to test this model is described. The microwave signature acquisition system (MSAS) field measurements acquired in Colby, Kansas during the summer of 1978 are pesented.

  5. Soil moisture trends in mountainous areas: a 50-yr analysis of modelled soil moisture over Sierra Nevada Mountains (Spain).

    NASA Astrophysics Data System (ADS)

    José Pérez-Palazón, María; Pimentel, Rafael; Herrero, Javier; José Polo, María

    2016-04-01

    Soil moisture conditions the energy and water fluxes through the ground surface and constitutes a major hydrological state variable in the analysis of environmental processes. Detecting potential changes in soil moisture and analyzing their trend over a long period of study can help to understand its evolution in other similar areas and to estimate its future role. In mountainous areas, the snow distribution highly conditions soil water content and its implications on the local water cycle. Sierra Nevada, Southern Spain, is a linear mountain range, with altitude higher than 3000 m.a.s.l., where Mediterranean and alpine climates coexist. The snow dynamics dominates the hydrological regime, and the medium and long term trends observed in the snow persistence constitute one of the main potential drivers for soil moisture changes both on a seasonal and annual basis. This work presents a 50-yr study of the soil moisture trends in Sierra Nevada (SN); the distributed monthly mean soil moisture evolution during the recent past (1960-2010) is simulated and its relationship with meteorological variables (precipitation and temperature) analyzed in the five head river basins that the SN area comprises. For this, soil water content is simulated throughout the area by means of WiMMed, a distributed and physically based hydrological model developed for Mediterranean regions that includes snow modelling, which had been previously calibrated and validated in the study area. The analysis of soil moisture shows a globally decreasing annual rate, with a mean value of 0.0011 mmṡmm-1ṡyear-1 during the study period averaged over the whole study area, which locally ranges between 0.174 mmṡmm-1ṡyear-1 and 0.0014 mmṡmm-1ṡyear-1. As previous studies reported, the observed trend in precipitation is more influent than temperature on the snowfall regime change; therefore, as expected, the estimated trends of soil moisture are more related to this variable. Moreover, an increase of

  6. Soil Moisture Project Evaluation Workshop

    NASA Technical Reports Server (NTRS)

    Gilbert, R. H. (Editor)

    1980-01-01

    Approaches planned or being developed for measuring and modeling soil moisture parameters are discussed. Topics cover analysis of spatial variability of soil moisture as a function of terrain; the value of soil moisture information in developing stream flow data; energy/scene interactions; applications of satellite data; verifying soil water budget models; soil water profile/soil temperature profile models; soil moisture sensitivity analysis; combinations of the thermal model and microwave; determing planetary roughness and field roughness; how crust or a soil layer effects microwave return; truck radar; and truck/aircraft radar comparison.

  7. McMaster Mesonet soil moisture dataset: description and spatio-temporal variability analysis

    NASA Astrophysics Data System (ADS)

    Kornelsen, K. C.; Coulibaly, P.

    2012-12-01

    This paper introduces and describes the hourly high resolution soil moisture dataset continuously recorded by the McMaster Mesonet located in the Hamilton-Halton Watershed in Southern Ontario, Canada. The McMaster Mesonet consists of a network of time domain reflectometer (TDR) probes collecting hourly soil moisture data at six depths between 10 cm and 100 cm at nine locations per site spread across four sites in the 1250 km2 watershed. The sites for the soil moisture arrays are designed to further improve understanding of soil moisture dynamics in a cold and snowy climate and to capture soil moisture transitions in areas that have different topography, soil and land-cover. The McMaster Mesonet soil moisture constitutes a unique database in Canada because of its high spatio-temporal resolution. In order to provide some insight into the dominant processes at the McMaster Mesonet sites a spatio-temporal and temporal stability analysis were conducted to identify spatio-temporal patterns in the data and to suggest some physical interpretation of soil moisture variability. It was found that the seasonal Canadian climate causes a transition in soil moisture patterns at seasonal time scales. During winter and early spring months, and at the meadow sites, soil moisture distribution is governed by topographic redistribution, whereas following efflorescence in the spring and summer, soil moisture spatial distribution at the forested site was equally dominated by vegetation canopy. Analysis of short-term temporal stability revealed that the relative difference between sites was maintained unless there was significant rainfall (> 20 mm) or wet conditions a priori. Following a disturbance in the spatial soil moisture distribution due to wetting, the relative soil moisture pattern re-emerged in 18 to 24 h. Access to the McMaster Mesonet data can be provided by visiting http://www.hydrology.mcmaster.ca.

  8. McMaster Mesonet soil moisture dataset: description and spatio-temporal variability analysis

    NASA Astrophysics Data System (ADS)

    Kornelsen, K. C.; Coulibaly, P.

    2013-04-01

    This paper introduces and describes the hourly, high-resolution soil moisture dataset continuously recorded by the McMaster Mesonet located in the Hamilton-Halton Watershed in Southern Ontario, Canada. The McMaster Mesonet consists of a network of time domain reflectometer (TDR) probes collecting hourly soil moisture data at six depths between 10 cm and 100 cm at nine locations per site, spread across four sites in the 1250 km2 watershed. The sites for the soil moisture arrays are designed to further improve understanding of soil moisture dynamics in a seasonal climate and to capture soil moisture transitions in areas that have different topography, soil and land cover. The McMaster Mesonet soil moisture constitutes a unique database in Canada because of its high spatio-temporal resolution. In order to provide some insight into the dominant processes at the McMaster Mesonet sites, a spatio-temporal and temporal stability analysis were conducted to identify spatio-temporal patterns in the data and to suggest some physical interpretation of soil moisture variability. It was found that the seasonal climate of the Great Lakes Basin causes a transition in soil moisture patterns at seasonal timescales. During winter and early spring months, and at the meadow sites, soil moisture distribution is governed by topographic redistribution, whereas following efflorescence in the spring and summer, soil moisture spatial distribution at the forested site was also controlled by vegetation canopy. Analysis of short-term temporal stability revealed that the relative difference between sites was maintained unless there was significant rainfall (> 20 mm) or wet conditions a priori. Following a disturbance in the spatial soil moisture distribution due to wetting, the relative soil moisture pattern re-emerged in 18 to 24 h. Access to the McMaster Mesonet data can be provided by visiting www.hydrology.mcmaster.ca/mesonet.

  9. Improving long-term global precipitation dataset using multi-sensor surface soil moisture retrievals and the soil moisture analysis rainfall tool (SMART)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using multiple historical satellite surface soil moisture products, the Kalman Filtering-based Soil Moisture Analysis Rainfall Tool (SMART) is applied to improve the accuracy of a multi-decadal global daily rainfall product that has been bias-corrected to match the monthly totals of available rain g...

  10. Improving long-term, retrospective precipitation datasets using satellite-based surface soil moisture retrievals and the soil moisture analysis rainfall tool (SMART)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using historical satellite surface soil moisture products, the Soil Moisture Analysis Rainfall Tool (SMART) is applied to improve the accuracy of a multi-decadal global daily rainfall product that has been bias-corrected to match the monthly totals of available ground observations. In order to adapt...

  11. Geospatial Analysis of Near-Surface Soil Moisture Time Series Data Over Indian Region

    NASA Astrophysics Data System (ADS)

    Berwal, P.; Murthy, C. S.; Raju, P. V.; Sesha Sai, M. V. R.

    2016-06-01

    The present study has developed the time series database surface soil moisture over India, for June, July and August months for the period of 20 years from 1991 to 2010, using data products generated under Climate Change Initiative Programme of European Space Agency. These three months represent the crop sowing period in the prime cropping season in the country and the soil moisture data during this period is highly useful to detect the drought conditions and assess the drought impact. The time series soil moisture data which is in 0.25 degree spatial resolution was analyzed to generate different indicators. Rainfall data of same spatial resolution for the same period, generated by India Meteorological Department was also procured and analyzed. Geospatial analysis of soil moisture and rainfall derived indicators was carried out to study (1) inter annual variability of soil moisture and rainfall, (2) soil moisture deviations from normal during prominent drought years, (3) soil moisture and rainfall correlations and (4) drought exposure based on soil moisture and rainfall variability. The study has successfully demonstrated the potential of these soil moisture time series data sets for generating regional drought surveillance information products, drought hazard mapping, drought exposure analysis and detection of drought sensitive areas in the crop planting period.

  12. Understanding Soil Moisture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding soil moisture is critical for landscape irrigation management. This landscaep irrigation seminar will compare volumetric and matric potential soil-moisture sensors, discuss the relationship between their readings and demonstrate how to use these data. Soil water sensors attempt to sens...

  13. Soil moisture modeling review

    NASA Technical Reports Server (NTRS)

    Hildreth, W. W.

    1978-01-01

    A determination of the state of the art in soil moisture transport modeling based on physical or physiological principles was made. It was found that soil moisture models based on physical principles have been under development for more than 10 years. However, these models were shown to represent infiltration and redistribution of soil moisture quite well. Evapotranspiration has not been as adequately incorporated into the models.

  14. Analysis of observed soil moisture patterns under different land covers in Western Ghats, India

    NASA Astrophysics Data System (ADS)

    Venkatesh, B.; Lakshman, Nandagiri; Purandara, B. K.; Reddy, V. B.

    2011-02-01

    SummaryAn understanding of the soil moisture variability is necessary to characterize the linkages between a region's hydrology, ecology and physiography. In the changing land use scenario of Western Ghats, India, where deforestation along with extensive afforestation with exotic species is being undertaken, there is an urgent need to evaluate the impacts of these changes on regional hydrology. The objectives of the present study were: (a) to understand spatio-temporal variability of soil water potential and soil moisture content under different land covers in the humid tropical Western Ghats region and (b) to evaluate differences if any in spatial and temporal patterns of soil moisture content as influenced by nature of land cover. To this end, experimental watersheds located in the Western Ghats of Uttara Kannada District, Karnataka State, India, were established for monitoring of soil moisture. These watersheds possessed homogenous land covers of acacia plantation, natural forest and degraded forest. In addition to the measurements of hydro-meteorological parameters, soil matric potential measurements were made at four locations in each watershed at 50 cm, 100 cm and 150 cm depths at weekly time intervals during the period October 2004-December 2008. Soil moisture contents derived from potential measurements collected were analyzed to characterize the spatial and temporal variations across the three land covers. The results of ANOVA ( p < 0.01, LSD) test indicated that there was no significant change in the mean soil moisture across land covers. However, significant differences in soil moisture with depth were observed under forested watershed, whereas no such changes with depth were noticed under acacia and degraded land covers. Also, relationships between soil moisture at different depths were evaluated using correlation analysis and multiple linear regression models for prediction of soil moisture from climatic variables and antecedent moisture condition were

  15. Stratified drought analysis using a stochastic ensemble of simulated and in-situ soil moisture observations

    NASA Astrophysics Data System (ADS)

    Sehgal, Vinit; Sridhar, Venkataramana; Tyagi, Aditya

    2017-02-01

    This study proposes a multi-wavelet Bayesian ensemble of two Land Surface Models (LSMs) using in-situ observations for accurate estimation of soil moisture for Contiguous United States (CONUS). In the absence of a continuous, accurate in-situ soil moisture dataset at high spatial resolution, an ensemble of Noah and Mosaic LSMs is derived by performing a Bayesian Model Averaging (BMA) of several wavelet-based multi-resolution regression models (WR) of the simulated soil moisture from the LSMs and in-situ volumetric soil moisture dataset obtained from the U.S. Climate Reference Network (USCRN) field stations. This provides a proxy to the in-situ soil moisture dataset at 1/8th degree spatial resolution called Hybrid Soil Moisture (HSM) for three soil layers (1-10 cm, 10-40 cm and 40-100 cm) for the CONUS. The derived HSM is used further to study the layer-wise response of soil moisture to drought, highlighting the necessity of the ensemble approach and soil profile perspective for drought analysis. A correlation analysis between HSM, the long-term (PDSI, PHDI, SPI-9, SPI-12 and SPI-24) and the short-term (Palmer Z index, SPI-1 and SPI-6) drought indices is carried out for the nine climate regions of the U.S. indicating a higher sensitivity of soil moisture to drought conditions for the Southern U.S. Furthermore, a layer-wise soil moisture percentile approach is proposed and applied for drought reconstruction in CONUS with a focus on the Southern U.S. for the year 2011.

  16. Multiscale analysis of surface soil moisture dynamics in a mesoscale catchment utilizing an integrated ecohydrological model

    NASA Astrophysics Data System (ADS)

    Korres, W.; Reichenau, T. G.; Schneider, K.

    2012-12-01

    Soil moisture is one of the fundamental variables in hydrology, meteorology and agriculture, influencing the partitioning of solar energy into latent and sensible heat flux as well as the partitioning of precipitation into runoff and percolation. Numerous studies have shown that in addition to natural factors (rainfall, soil, topography etc.) agricultural management is one of the key drivers for spatio-temporal patterns of soil moisture in agricultural landscapes. Interactions between plant growth, soil hydrology and soil nitrogen transformation processes are modeled by using a dynamically coupled modeling approach. The process-based ecohydrological model components of the integrated decision support system DANUBIA are used to identify the important processes and feedbacks determining soil moisture patterns in agroecosystems. Integrative validation of plant growth and surface soil moisture dynamics serves as a basis for a spatially distributed modeling analysis of surface soil moisture patterns in the northern part of the Rur catchment (1100 sq km), Western Germany. An extensive three year dataset (2007-2009) of surface soil moisture-, plant- (LAI, organ specific biomass and N) and soil- (texture, N, C) measurements was collected. Plant measurements were carried out biweekly for winter wheat, maize, and sugar beet during the growing season. Soil moisture was measured with three FDR soil moisture stations. Meteorological data was measured with an eddy flux station. The results of the model validation showed a very good agreement between the modeled plant parameters (biomass, green LAI) and the measured parameters with values between 0.84 and 0.98 (Willmotts index of agreement). The modeled surface soil moisture (0 - 20 cm) showed also a very favorable agreement with the measurements for winter wheat and sugar beet with an RMSE between 1.68 and 3.45 Vol.-%. For maize, the RMSE was less favorable particularly in the 1.5 months prior to harvest. The modeled soil

  17. Passive microwave soil moisture research

    NASA Technical Reports Server (NTRS)

    Schmugge, T.; Oneill, P. E.; Wang, J. R.

    1986-01-01

    During the four years of the AgRISTARS Program, significant progress was made in quantifying the capabilities of microwave sensors for the remote sensing of soil moisture. In this paper, a discussion is provided of the results of numerous field and aircraft experiments, analysis of spacecraft data, and modeling activities which examined the various noise factors such as roughness and vegetation that affect the interpretability of microwave emission measurements. While determining that a 21-cm wavelength radiometer was the best single sensor for soil moisture research, these studies demonstrated that a multisensor approach will provide more accurate soil moisture information for a wider range of naturally occurring conditions.

  18. Soil Moisture Workshop

    NASA Technical Reports Server (NTRS)

    Heilman, J. L. (Editor); Moore, D. G. (Editor); Schmugge, T. J. (Editor); Friedman, D. B. (Editor)

    1978-01-01

    The Soil Moisture Workshop was held at the United States Department of Agriculture National Agricultural Library in Beltsville, Maryland on January 17-19, 1978. The objectives of the Workshop were to evaluate the state of the art of remote sensing of soil moisture; examine the needs of potential users; and make recommendations concerning the future of soil moisture research and development. To accomplish these objectives, small working groups were organized in advance of the Workshop to prepare position papers. These papers served as the basis for this report.

  19. SOIL moisture data intercomparison

    NASA Astrophysics Data System (ADS)

    Kerr, Yann; Rodriguez-Frenandez, Nemesio; Al-Yaari, Amen; Parens, Marie; Molero, Beatriz; Mahmoodi, Ali; Mialon, Arnaud; Richaume, Philippe; Bindlish, Rajat; Mecklenburg, Susanne; Wigneron, Jean-Pierre

    2016-04-01

    The Soil Moisture and Ocean Salinity satellite (SMOS) was launched in November 2009 and started delivering data in January 2010. Subsequently, the satellite has been in operation for over 6 years while the retrieval algorithms from Level 1 to Level 2 underwent significant evolutions as knowledge improved. Other approaches for retrieval at Level 2 over land were also investigated while Level 3 and 4 were initiated. In this présentation these improvements are assessed by inter-comparisons of the current Level 2 (V620) against the previous version (V551) and new products either using neural networks or Level 3. In addition a global evaluation of different SMOS soil moisture (SM) products is performed comparing products with those of model simulations and other satellites (AMSR E/ AMSR2 and ASCAT). Finally, all products were evaluated against in situ measurements of soil moisture (SM). The study demonstrated that the V620 shows a significant improvement (including those at level1 improving level2)) with respect to the earlier version V551. Results also show that neural network based approaches can yield excellent results over areas where other products are poor. Finally, global comparison indicates that SMOS behaves very well when compared to other sensors/approaches and gives consistent results over all surfaces from very dry (African Sahel, Arizona), to wet (tropical rain forests). RFI (Radio Frequency Interference) is still an issue even though detection has been greatly improved while RFI sources in several areas of the world are significantly reduced. When compared to other satellite products, the analysis shows that SMOS achieves its expected goals and is globally consistent over different eco climate regions from low to high latitudes and throughout the seasons.

  20. Analysis of spatiotemporal soil moisture patterns at the catchment scale using a wireless sensor network

    NASA Astrophysics Data System (ADS)

    Bogena, Heye R.; Huisman, Johan A.; Rosenbaum, Ulrike; Weuthen, Ansgar; Vereecken, Harry

    2010-05-01

    Soil water content plays a key role in partitioning water and energy fluxes and controlling the pattern of groundwater recharge. Despite the importance of soil water content, it is not yet measured in an operational way at larger scales. The aim of this paper is to present the potential of real-time monitoring for the analysis of soil moisture patterns at the catchment scale using the recently developed wireless sensor network SoilNet [1], [2]. SoilNet is designed to measure soil moisture, salinity and temperature in several depths (e.g. 5, 20 and 50 cm). Recently, a small forest catchment Wüstebach (~27 ha) has been instrumented with 150 sensor nodes and more than 1200 soil sensors in the framework of the Transregio32 and the Helmholtz initiative TERENO (Terrestrial Environmental Observatories). From August to November 2009, more than 6 million soil moisture measurements have been performed. We will present first results from a statistical and geostatistical analysis of the data. The observed spatial variability of soil moisture corresponds well with the 800-m scale variability described in [3]. The very low scattering of the standard deviation versus mean soil moisture plots indicates that sensor network data shows less artificial soil moisture variations than soil moisture data originated from measurement campaigns. The variograms showed more or less the same nugget effect, which indicates that the sum of the sub-scale variability and the measurement error is rather time-invariant. Wet situations showed smaller spatial variability, which is attributed to saturated soil water content, which poses an upper limit and is typically not strongly variable in headwater catchments with relatively homogeneous soil. The spatiotemporal variability in soil moisture at 50 cm depth was significantly lower than at 5 and 20 cm. This finding indicates that the considerable variability of the top soil is buffered deeper in the soil due to lateral and vertical water fluxes

  1. Dust emission parameterization scheme over the MENA region: Sensitivity analysis to soil moisture and soil texture

    NASA Astrophysics Data System (ADS)

    Gherboudj, Imen; Beegum, S. Naseema; Marticorena, Beatrice; Ghedira, Hosni

    2015-10-01

    The mineral dust emissions from arid/semiarid soils were simulated over the MENA (Middle East and North Africa) region using the dust parameterization scheme proposed by Alfaro and Gomes (2001), to quantify the effect of the soil moisture and clay fraction in the emissions. For this purpose, an extensive data set of Soil Moisture and Ocean Salinity soil moisture, European Centre for Medium-Range Weather Forecasting wind speed at 10 m height, Food Agricultural Organization soil texture maps, MODIS (Moderate Resolution Imaging Spectroradiometer) Normalized Difference Vegetation Index, and erodibility of the soil surface were collected for the a period of 3 years, from 2010 to 2013. Though the considered data sets have different temporal and spatial resolution, efforts have been made to make them consistent in time and space. At first, the simulated sandblasting flux over the region were validated qualitatively using MODIS Deep Blue aerosol optical depth and EUMETSAT MSG (Meteosat Seciond Generation) dust product from SEVIRI (Meteosat Spinning Enhanced Visible and Infrared Imager) and quantitatively based on the available ground-based measurements of near-surface particulate mass concentrations (PM10) collected over four stations in the MENA region. Sensitivity analyses were performed to investigate the effect of soil moisture and clay fraction on the emissions flux. The results showed that soil moisture and soil texture have significant roles in the dust emissions over the MENA region, particularly over the Arabian Peninsula. An inversely proportional dependency is observed between the soil moisture and the sandblasting flux, where a steep reduction in flux is observed at low friction velocity and a gradual reduction is observed at high friction velocity. Conversely, a directly proportional dependency is observed between the soil clay fraction and the sandblasting flux where a steep increase in flux is observed at low friction velocity and a gradual increase is

  2. Field scale spatiotemporal analysis of surface soil moisture for evaluating point-scale in situ networks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture is an intrinsic state variable that varies considerably in space and time. From a hydrologic viewpoint, soil moisture controls runoff, infiltration, storage and drainage. Soil moisture determines the partitioning of the incoming radiation between latent and sensible heat fluxes. Althou...

  3. Estimating error cross-correlations in soil moisture data sets using extended collocation analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consistent global soil moisture records are essential for studying the role of hydrologic processes within the larger earth system. Various studies have shown the benefit of assimilating satellite-based soil moisture data into water balance models or merging multi-source soil moisture retrievals int...

  4. Observed soil moisture-atmosphere interactions in the contiguous US from the Soil Climate Analysis Network (SCAN)

    NASA Astrophysics Data System (ADS)

    Xu, R.; Sheffield, J.

    2013-12-01

    The interactions of water and energy between the land and atmosphere are important in many aspects such as understanding the role of the land in weather and climate, improving seasonal forecasts, and evaluating climate models and their projections. Past studies on land-atmosphere interactions over large regions have generally been carried out with reanalysis, satellite remote sensing and model data. This study focuses on observational data from the Soil Climate Analysis Network (SCAN) to investigate the coupling of air temperature, precipitation and soil moisture at different time scales across the contiguous United States. SCAN data from over 80 sites across the U.S. with data between 2002 and 2012 are quality controlled to remove measurement errors and spurious values. Two main hypotheses regarding land-atmosphere interactions are explored: 1) precipitation is the main driver of soil moisture variation with the strength of coupling dependent on location, soil depth and time scale; 2) lack of soil moisture is related to high temperatures through sensible heating with relationships also dependent on location and scale. The statistical correlation between precipitation and soil moisture at daily, sub-monthly, and monthly scales is examined, and a positive relationship is prominent. Daily and monthly air temperature and soil moisture observations suggest that a control of air temperature by soil moisture exists. Further analysis shows significant negative relationships between the number of hot days (NHD) in summer months and soil moisture. The extent of this relationship (quantified by the slope of linear regression) varies across the U.S., with stronger relationships moving from the humid east to the drier central U.S.. In order to differentiate the sources of temperature changes between local coupling and advection, temperature advection is estimated using data from the North American Land Data Assimilation System-2 (NLDAS-2). The results suggest that local

  5. Soil Moisture Memory in Climate Models

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Suarez, Max J.; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    Water balance considerations at the soil surface lead to an equation that relates the autocorrelation of soil moisture in climate models to (1) seasonality in the statistics of the atmospheric forcing, (2) the variation of evaporation with soil moisture, (3) the variation of runoff with soil moisture, and (4) persistence in the atmospheric forcing, as perhaps induced by land atmosphere feedback. Geographical variations in the relative strengths of these factors, which can be established through analysis of model diagnostics and which can be validated to a certain extent against observations, lead to geographical variations in simulated soil moisture memory and thus, in effect, to geographical variations in seasonal precipitation predictability associated with soil moisture. The use of the equation to characterize controls on soil moisture memory is demonstrated with data from the modeling system of the NASA Seasonal-to-Interannual Prediction Project.

  6. Multifractal and Singularity Maps of soil surface moisture distribution derived from 2D image analysis.

    NASA Astrophysics Data System (ADS)

    Cumbrera, Ramiro; Millán, Humberto; Martín-Sotoca, Juan Jose; Pérez Soto, Luis; Sanchez, Maria Elena; Tarquis, Ana Maria

    2016-04-01

    Soil moisture distribution usually presents extreme variation at multiple spatial scales. Image analysis could be a useful tool for investigating these spatial patterns of apparent soil moisture at multiple resolutions. The objectives of the present work were (i) to describe the local scaling of apparent soil moisture distribution and (ii) to define apparent soil moisture patterns from vertical planes of Vertisol pit images. Two soil pits (0.70 m long × 0.60 m width × 0.30 m depth) were excavated on a bare Mazic Pellic Vertisol. One was excavated in April/2011 and the other pit was established in May/2011 after 3 days of a moderate rainfall event. Digital photographs were taken from each Vertisol pit using a Kodak™ digital camera. The mean image size was 1600 × 945 pixels with one physical pixel ≈373 μm of the photographed soil pit. For more details see Cumbrera et al. (2012). Geochemical exploration have found with increasingly interests and benefits of using fractal (power-law) models to characterize geochemical distribution, using the concentration-area (C-A) model (Cheng et al., 1994; Cheng, 2012). This method is based on the singularity maps of a measure that at each point define areas with self-similar properties that are shown in power-law relationships in Concentration-Area plots (C-A method). The C-A method together with the singularity map ("Singularity-CA" method) define thresholds that can be applied to segment the map. We have applied it to each soil image. The results show that, in spite of some computational and practical limitations, image analysis of apparent soil moisture patterns could be used to study the dynamical change of soil moisture sampling in agreement with previous results (Millán et al., 2016). REFERENCES Cheng, Q., Agterberg, F. P. and Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51, 109-130. Cheng, Q. (2012). Singularity theory and

  7. Spatiotemporal analysis of soil moisture in using active and passive remotely sensed data and ground observations

    NASA Astrophysics Data System (ADS)

    Li, H.; Fang, B.; Lakshmi, V.

    2015-12-01

    Abstract: Soil moisture plays a vital role in ecosystem, biological processes, climate, weather and agriculture. The Soil Moisture Active Passive (SMAP) improves data by combining the advantages and avoiding the limitation of passive microwave remote sensing (low resolution), and active microwave (challenge of soil moisture retrieval). This study will advance the knowledge of the application of soil moisture by using the Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12) data as well as data collected at Walnut Gulch Arizona in August 2015 during SMAPVEX15. Specifically, we will analyze the 5m radar data from Unmanned Airborne Vehicle Synthetic Aperture Radar (UAVSAR) to study spatial variability within the PALS radiometer pixel. SMAPVEX12/15 and SMAP data will also be analyzed to evaluate disaggregation algorithms. The analytical findings will provide valuable information for policy-makers to initiate and adjust protocols and regulations for protecting land resources and improving environmental conditions. Keywords: soil moisture, Remote Sensing (RS), spatial statistic

  8. Analysis of Satellite Retreived Active-Passive Merged Soil Moisture Distribution: A Case Study Over India.

    NASA Astrophysics Data System (ADS)

    Chakravorty, A.; Chahar, B. R.; Sharma, O. P.; Dhanya, C. T.

    2014-12-01

    Soil moisture is the source of water for evapotranspiration over the continents and it participates in both energy and water balance of the earth. Soil moisture participates in the energy cycle by managing the partitioning of the energy budget into latent and sensible heat, there by influencing the hydrological cycle. But to better understand the influence of soil moisture on the hydrological cycle, large scale monitoring is required. The objective of this study is to qualitatively analyze the active-passive merged soil moisture distribution, prepared under the ESA_CCI programme, against two AMSR-E soil moisture distributions, AMSR-E/NSIDC (National Snow and Ice Data Center) and AMSR-E/VUA(Virje Universiet Amstradam) and GLDAS_NOAH model simulations. The ESA_CCI soil moisture distribution is also compared with the GPCC monthly precipitation distribution to observe the representativeness of the precipitation seasonality in the satellite retrieved soil moisture. India has been selected as the study area, esp. the Central Indian region, as it has shown to be a soil moisture hot-spot for land-surface atmosphere interaction. The preliminary study show that both ESA_CCI and AMSR-E/VUA soil moisture distributions capture similar seasonal patterns in addition to processes like rainfall events and inter-annual variations. In addition to this it was also observed that the soil moisture distribution of ESA_CCI and AMSR-E/VUA are linearly related to each other for more than 50% of the land points. In case of ESA_CCI and AMSR-E/NSIDC, the soil moisture distributions are able to capture similar seasonal patterns but not the random events and they also do not show a strong linear relationship. We also analyze the effect of topography and vegetation distribution on the error charactristics of the satellite retrieved soil moisture distributions.

  9. Evaluation of assumptions in soil moisture triple collocation analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triple collocation analysis (TCA) enables estimation of error variances for three or more products that retrieve or estimate the same geophysical variable using mutually-independent methods. Several statistical assumptions regarding the statistical nature of errors (e.g., mutual independence and ort...

  10. Monte Carlo Analysis of the Commissioning Phase Maneuvers of the Soil Moisture Active Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Williams, Jessica L.; Bhat, Ramachandra S.; You, Tung-Han

    2012-01-01

    The Soil Moisture Active Passive (SMAP) mission will perform soil moisture content and freeze/thaw state observations from a low-Earth orbit. The observatory is scheduled to launch in October 2014 and will perform observations from a near-polar, frozen, and sun-synchronous Science Orbit for a 3-year data collection mission. At launch, the observatory is delivered to an Injection Orbit that is biased below the Science Orbit; the spacecraft will maneuver to the Science Orbit during the mission Commissioning Phase. The delta V needed to maneuver from the Injection Orbit to the Science Orbit is computed statistically via a Monte Carlo simulation; the 99th percentile delta V (delta V99) is carried as a line item in the mission delta V budget. This paper details the simulation and analysis performed to compute this figure and the delta V99 computed per current mission parameters.

  11. Error characterization of microwave satellite soil moisture data sets using fourier analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract: Soil moisture is a key geophysical variable in hydrological and meteorological processes. Accurate and current observations of soil moisture over mesoscale to global scales as inputs to hydrological, weather and climate modelling will benefit the predictability and understanding of these p...

  12. Error characterization of microwave satellite soil moisture data sets using fourier analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture is a key geophysical variable in hydrological and meteorological processes. Accurate and current observations of soil moisture over meso to global scales used as inputs to hydrological, weather and climate modelling will benefit the predictability and understanding of these processes. ...

  13. Soil-moisture ground truth, Hand County, South Dakota

    NASA Technical Reports Server (NTRS)

    Jones, E. B.

    1976-01-01

    Soil samples were taken in the field and carefully preserved in taped metal containers for later laboratory gravimetric analysis to determine soil-moisture content. The typical sampling pattern used in this mission is illustrated, and the soil types encountered on the soil-moisture lines are summarized. The actual soil-moisture data were tabulated by range, township and section. Soil-moisture data obtained in fields of winter wheat and spring wheat are briefly summarized.

  14. In-situ soil composition and moisture measurement by surface neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Waring, C.; Smith, C.; Marks, A.

    2009-04-01

    Neutron activation analysis is widely known as a laboratory technique dependent upon a nuclear reactor to provide the neutron flux and capable of precise elemental analysis. Less well known in-situ geochemical analysis is possible with isotopic (252Cf & 241Am) or compact accelerator (D-T, D-D fusion reaction) neutron sources. Prompt gamma neutron activation analysis (PGNAA) geophysical borehole logging has been applied to mining issues for >15 years (CSIRO) using isotopic neutron sources and more recently to environmental and hydro-geological applications by ANSTO. Similarly, sophisticated geophysical borehole logging equipment based on inelastic neutron scattering (INS) has been applied in the oil and gas industry by large oilfield services companies to measure oil saturation indices (carbon/oxygen) using accelerator neutron sources. Recent advances in scintillation detector spectral performance has enabled improved precision and detection limits for elements likely to be present in soil profiles (H, Si, Al, Fe, Cl) and possible detection of many minor to trace elements if sufficiently abundant (Na, K, Mg, Ca, S, N, + ). To measure carbon an accelerator neutron source is required to provide fast neutrons above 4.8 MeV. CSIRO and ANSTO propose building a soil geochemical analysis system based on experience gained from building and applying PGNA borehole logging equipment. A soil geochemical analysis system could effectively map the 2D geochemical composition of the top 50cm of soil by dragging the 1D logging equipment across the ground surface. Substituting an isotopic neutron source for a D-T accelerator neutron source would enable the additional measurement of elemental carbon. Many potential ambiguities with other geophysical proxies for soil moisture may be resolved by direct geochemical measurement of H. Many other applications may be possible including time series in-situ measurements of soil moisture for differential drainage, hydrology, land surface

  15. Soil moisture: Some fundamentals. [agriculture - soil mechanics

    NASA Technical Reports Server (NTRS)

    Milstead, B. W.

    1975-01-01

    A brief tutorial on soil moisture, as it applies to agriculture, is presented. Information was taken from books and papers considered freshman college level material, and is an attempt to briefly present the basic concept of soil moisture and a minimal understanding of how water interacts with soil.

  16. Assessing representative soil moisture at watershed scale of Maqu catchment using spatio-temporal statistical analysis

    NASA Astrophysics Data System (ADS)

    Bhatti, H. A.; Rientjes, T. H. M.; Verhoef, W.

    2012-04-01

    In this study the temporal stability concept by Vachaud et al. (1985) is selected to evaluate a soil moisture measuring network in the Maqu catchment (3200 km2) in the north eastern part of the Tibetan plateau. The network serves for validation of coarse scale (25-50 km) satellite soil moisture products and comprises 20 stations with probes installed at depths of 5, 10, 20, 40, 80 cm. Besides identifying the Representative Mean Soil Moisture (RMSM) station for each respective probe depth, we applied the concept to a time series of satellite based moisture products from the Advance Microwave Scanning Radiometer (AMSR-E) to evaluate if a RMSM pixel can be identified from the pixels that overlay the catchment. Analysis in this study serve to evaluate how well the satellite based moisture estimates match to observation at the RMSM stations for respective depths. We aim to evaluate if the RMSM can be estimated by the satellite product so to broaden the procedure to validate satellite images. We used moisture data for the year 2009 for which data is available at 15 minutes interval using ECH2O EC-TM probes. For each probe depth a Mean Relative Difference (MRD) plot is created to identify stations that are characterized by mean, wet and dry moisture conditions. The spearman non-parametric test and pearson's correlation coefficient test are used to analyze the temporal persistence of the ranks of the measuring stations. The analysis is applied to each probe depth to evaluate the effect of the measuring depth on determining the catchment RMSM. Similar analysis is carried out on the satellite soil moisture observations that cover a full hydrological year to identify a RMSM pixel. The result of the analysis on the network showed that the station that indicates RMSM changes for each probe depth and thus a single station that indicates the catchment RMSM cannot be identified. Results on identifying a RMSM pixel shows that such pixel can be identified, however in our case, a

  17. Passive microwave soil moisture research

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Oneill, P. E.; Wang, J. R.

    1985-01-01

    The AgRISTARS Soil Moisture Project has made significant progress in the quantification of microwave sensor capabilities for soil moisture remote sensing. The 21-cm wavelength has been verified to be the best single channel for radiometric observations of soil moisture. It has also been found that other remote sensing approaches used in conjunction with L-band passive data are more successful than multiple wavelength microwave radiometry in this application. AgRISTARS studies have also improved current understanding of noise factors affecting the interpretability of microwave emission data. The absorption of soil emission by vegetation has been quantified, although this effect is less important than absorption effects for microwave radiometry.

  18. Geostatistical analysis of soil moisture distribution in a part of Solani River catchment

    NASA Astrophysics Data System (ADS)

    Kumar, Kamal; Arora, M. K.; Hariprasad, K. S.

    2016-03-01

    The aim of this paper is to estimate soil moisture at spatial level by applying geostatistical techniques on the point observations of soil moisture in parts of Solani River catchment in Haridwar district of India. Undisturbed soil samples were collected at 69 locations with soil core sampler at a depth of 0-10 cm from the soil surface. Out of these, discrete soil moisture observations at 49 locations were used to generate a spatial soil moisture distribution map of the region. Two geostatistical techniques, namely, moving average and kriging, were adopted. Root mean square error (RMSE) between observed and estimated soil moisture at remaining 20 locations was determined to assess the accuracy of the estimated soil moisture. Both techniques resulted in low RMSE at small limiting distance, which increased with the increase in the limiting distance. The root mean square error varied from 7.42 to 9.77 in moving average method, while in case of kriging it varied from 7.33 to 9.99 indicating similar performance of the two techniques.

  19. Analysis of soil moisture extraction algorithm using data from aircraft experiments

    NASA Technical Reports Server (NTRS)

    Burke, H. H. K.; Ho, J. H.

    1981-01-01

    A soil moisture extraction algorithm is developed using a statistical parameter inversion method. Data sets from two aircraft experiments are utilized for the test. Multifrequency microwave radiometric data surface temperature, and soil moisture information are contained in the data sets. The surface and near surface ( or = 5 cm) soil moisture content can be extracted with accuracy of approximately 5% to 6% for bare fields and fields with grass cover by using L, C, and X band radiometer data. This technique is used for handling large amounts of remote sensing data from space.

  20. Analysis of soil moisture retrieval from airborne passive/active L-band sensor measurements in SMAPVEX 2012

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Song, Hongting; Tan, Lei; Li, Yinan; Li, Hao

    2014-11-01

    Soil moisture is a key component in the hydrologic cycle and climate system. It is an important input parameter for many hydrologic and meteorological models. NASA'S upcoming Soil Moisture Active Passive (SMAP) mission, to be launched in October 2014, will address this need by utilizing passive and active microwave measurements at L-band, which will penetrate moderately dense canopies. In preparation for the SMAP mission, the Soil Moisture Validation Experiment 2012 (SMAPVEX12) was conducted from 6 June to 17 July 2012 in the Carment-Elm Creek area in Manitoba, Canada. Over a period of six weeks diverse land cover types ranging from agriculture over pasture and grassland to forested sites were re-visited several times a week. The Passive/Active L-band Sensor (PALS) provides radiometer products, vertically and horizontally polarized brightness temperatures, and radar products. Over the past two decades, successful estimation of soil moisture has been accomplished using passive and active L-band data. However, remaining uncertainties related to surface roughness and the absorption, scattering, and emission by vegetation must be resolved before soil moisture retrieval algorithms can be applied with known and acceptable accuracy using satellite observations. This work focuses on analyzing the Passive/Active L-band Sensor observations of sites covered during SMAPVEX12, investigating the observed data, parameterizing vegetation covered surface model, modeling inversion algorithm and analyzing observed soil moisture changes over the time period of six weeks. The data and analysis results from this study are aimed at increasing the accuracy and range of validity of SMAP soil moisture retrievals via enhancing the accuracy for soil moisture retrieval.

  1. Early Soil Moisture Field Experiments

    NASA Astrophysics Data System (ADS)

    Schmugge, T.

    2008-12-01

    Before the large scale field experiments described in the call for papers, there were a number of experiments devoted to a single parameter, e.g. soil moisture. In the early 1970's, before the launch of the first microwave radiometer by NASA, there were a number of aircraft experiments to determine utility of these sensors for land observations. For soil moisture, these experiments were conducted in southwestern United States over irrigated agricultural areas which could provide a wide range of moisture conditions on a given day. The radiometers covered the wavelength range from 0.8 to 21 cm. These experiments demonstrated that it is possible to observe soil moisture variations remotely using a microwave radiometer with a sensitivity of about 3 K / unit of soil moisture. The results also showed that the longer wavelengths were better, with a radiometer at the 21 cm wavelength giving the best results. These positive results led to the development of Push Broom Microwave Radiometer (PBMR) and the Electrically Scanned Thinned Array Radiometer (ESTAR) instruments at the 21-cm wavelength. They have been used extensively in the large-scale experiments such as HAPEX-MOBILHY, FIFE, Monsoon90, SMEX, etc. The multi-beam nature of these instruments makes it possible to obtain more extensive coverage and thus to map spatial variations of surface soil moisture. Examples of the early results along with the more recent soil moisture maps will be presented.

  2. A Global Analysis of the Link between Soil Moisture Dynamics and Warm Extremes.

    NASA Astrophysics Data System (ADS)

    Casagrande, E.; Kondapalli, N. K.; Mueller, B.; Miralles, D. G.; Molini, A.

    2014-12-01

    Under future climatic scenarios long-lasting warm extremes, such as heat waves, are expected to become more intense, persistent and frequent for both temperate and arid regions, resulting in diverse but nonetheless significant impacts for the human health, sustainable development and economy of these regions. As the underlying processes responsible for triggering and sustaining warm extremes are extremely variegate and yet not well understood, the occurrence of extreme events such heat waves and prolonged droughts results exceedingly difficult to predict and model. Major uncertainties arise from the fact that warm extremes mainly derive from the interplay of large-scale atmospheric processes and local feedbacks operating across very different spatial and temporal scales, and are characterized by several thresholds, limiting factors and non-linearities determining their deviation from the "classical" extreme-value theory.In this study we explore - from a global point of view - the role of local and synoptic dynamical components in initiating warm extremes and in determining their spatial and temporal clustering. Previous studies have already highlighted the role of large negative soil moisture anomalies in causing and sustaining long periods of dry and hot weather. For this reason we propose here a novel approach to the characterization of warm extremes, based on the conditioning of traditional air temperature quintile statistics to antecedent soil moisture conditions. Case studies from different climatic regimes are shown in order to prove the major and varied role of antecedent soil moisture conditions across the different regions of the world. In addition, we also investigate the connection between regional climate features and large-scale dynamics during warm extremes by the joint usage of classical diagnostic analysis and novel statistics for the detection of cross-scale interactions.

  3. Bistatic radar configuration for soil moisture retrieval: analysis of the spatial coverage.

    PubMed

    Pierdicca, Nazzareno; De Titta, Ludovico; Pulvirenti, Luca; Della Pietra, Giuliano

    2009-01-01

    Some outcomes of a feasibility analysis of a spaceborne bistatic radar mission for soil moisture retrieval are presented in this paper. The study starts from the orbital design of the configuration suitable for soil moisture estimation identified in a previous study. This configuration is refined according to the results of an analysis of the spatial resolution. The paper focuses on the assessment of the spatial coverage i.e., on the verification that an adequate overlap between the footprints of the antennas is ensured and on the duty cycle, that is the fraction of orbital period during which the bistatic data are acquired. A non-cooperating system is considered, in which the transmitter is the C-band Advanced Synthetic Aperture Radar aboard Envisat. The best performances in terms of duty cycle are achieved if the transmitter operates in Wide Swath Mode. The higher resolution Image Swath Modes that comply with the selected configuration have a duty cycle that is never less than 12% and can exceed 21%. When Envisat operates in Wide Swath Mode, the bistatic system covers a wide latitude range across the equator, while in some of the Image Swath Modes, the bistatic measurements, collected from the same orbit, cover mid-latitude areas. In the latter case, it might be possible to achieve full coverage in an Envisat orbit repeat cycle, while, for a very large latitude range such as that covered in Wide Swath Mode, bistatic acquisitions could be obtained over about 65% of the area.

  4. Bistatic Radar Configuration for Soil Moisture Retrieval: Analysis of the Spatial Coverage

    PubMed Central

    Pierdicca, Nazzareno; De Titta, Ludovico; Pulvirenti, Luca; della Pietra, Giuliano

    2009-01-01

    Some outcomes of a feasibility analysis of a spaceborne bistatic radar mission for soil moisture retrieval are presented in this paper. The study starts from the orbital design of the configuration suitable for soil moisture estimation identified in a previous study. This configuration is refined according to the results of an analysis of the spatial resolution. The paper focuses on the assessment of the spatial coverage i.e., on the verification that an adequate overlap between the footprints of the antennas is ensured and on the duty cycle, that is the fraction of orbital period during which the bistatic data are acquired. A non-cooperating system is considered, in which the transmitter is the C-band Advanced Synthetic Aperture Radar aboard Envisat. The best performances in terms of duty cycle are achieved if the transmitter operates in Wide Swath Mode. The higher resolution Image Swath Modes that comply with the selected configuration have a duty cycle that is never less than 12% and can exceed 21%. When Envisat operates in Wide Swath Mode, the bistatic system covers a wide latitude range across the equator, while in some of the Image Swath Modes, the bistatic measurements, collected from the same orbit, cover mid-latitude areas. In the latter case, it might be possible to achieve full coverage in an Envisat orbit repeat cycle, while, for a very large latitude range such as that covered in Wide Swath Mode, bistatic acquisitions could be obtained over about 65% of the area. PMID:22399996

  5. Multi-scale temporal stability analysis of surface and subsurface soil moisture within the Upper Cedar Creek Watershed, Indiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture is a key state variable that varies considerably in space and time. From a hydrologic viewpoint, soil moisture controls runoff, infiltration, storage and drainage. Soil moisture determines the partitioning of the incoming radiation between latent and sensible heat fluxes. Although soil...

  6. First soil moisture values from SMOS over a Sahelian region.

    NASA Astrophysics Data System (ADS)

    Gruhier, Claire; Kerr, Yann; de Rosnay, Patricia; Pellarin, Thierry; Grippa, Manuela

    2010-05-01

    Soil moisture is a crucial variable which influences the land surface processes. Numerous studies shown microwaves at low frequency are particularly performed to access to soil moisture values. SMOS (Soil Moisture and Ocean Salinity), launched the November 2th 2009, is the first space mission dedicated to soil moisture observations. Before SMOS, several soil moisture products were provided, based on active or passive microwaves measurements. Gruhier et al. (2010) analyse five of them over a Sahelian area. The results show that the range of volumetric soil moisture values obtained over Sahel is drastically different depending on the remote sensing approach used to produce soil moisture estimates. Although microwave bands currently available are not optimal, some products are in very good agreement with ground data. The main goal of this study is to introduce the first soil moisture maps from SMOS over West Africa. A first analyse of values over a Sahelian region is investigated. The study area is located in Gourma region in Mali. This site has been instrumented in the context of the AMMA project (African Monsoon Multidisciplinary Analysis) and was specifically designed to address the validation of remotely sensed soil moisture. SMOS soil moisture values was analysed with ground knowledge and placed in the context of previous soil moisture products. The high sensitivity of the L-band used by SMOS should provide very accurate soil moisture values.

  7. Remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Schmugge, T.

    1976-01-01

    The surface emissivity and reflectivity of soil are strong functions of its moisture content. Changes in emissivity, observed by passive microwave techniques (radiometry), and changes in reflectivity, observed by active microwave techniques (radar), can provide information on the moisture content of the 0 to 5 cm surface layer. In addition, the thermal inertia of the surface layer, which can be remotely sensed by observing the diurnal range of surface temperature, is an indicator of soil moisture content. The thermal infrared approach to remote sensing of soil moisture has little utility in the presence of cloud cover, but provides soil moisture data at high spatial resolutions and thermal data which are a potentially useful indicator of crop status. Microwave techniques can penetrate cloud covers. The passive technique has been demonstrated by both aircraft and spacecraft instruments, but spatial resolution is limited by the size of the antenna which can be flown. Active microwave systems offer the possibility of better spatial resolution, but have yet to be demonstrated from aircraft or spacecraft platforms.

  8. Spatio-Temporal Analysis of Surface Soil Moisture in Evaluating Ground Truth Monitoring Sites for Remotely Sensed Observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture is an intrinsic state variable that varies considerably in space and time. Although soil moisture is highly variable, repeated measurements of soil moisture at the field or small watershed scale can often reveal certain locations as being temporally stable and representative of the are...

  9. Inference of Soil Hydrologic Parameters from Soil Moisture Monitoring Records

    NASA Astrophysics Data System (ADS)

    Chandler, D. G.; Seyfried, M. S.; McNamara, J. P.; Hwang, K.

    2015-12-01

    Soil moisture is an important control on hydrologic function, as it governs flux through the soil and responds to and determines vertical fluxes from and to the atmosphere, groundwater recharge and lateral fluxes through the soil. Most physically based hydrologic models require parameters to represent soil physical properties governing flow and retention of vadose water. The presented analysis compares four methods of objective analysis to determine field capacity, plant extraction limit (or permanent wilting point) and field saturated soil moisture content from decadal records of volumetric water content. These values are found as either data attractors or limits in the VWC records and may vary with interannual moisture availability. Results are compared to values from pedotransfer functions and discussed in terms of historic methods of measurement in soil physics.

  10. Multi-profile analysis of soil moisture within the U.S. Climate Reference Network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture estimates are crucial for hydrologic modeling and agricultural decision-support efforts. These measurements are also pivotal for long-term inquiries regarding the impacts of climate change and the resulting droughts over large spatial and temporal scales. However, it has only been t...

  11. Estimation of Surface Soil Moisture Using Fractal

    NASA Astrophysics Data System (ADS)

    Chen, Yen Chang; He, Chun Hsuan

    2016-04-01

    This study establishes the relationship between surface soil moisture and fractal dimension. The surface soil moisture is one of important factors in the hydrological cycle of surface evaporation. It could be used in many fields, such as reservoir management, early drought warning systems, irrigation scheduling and management, and crop yield estimations. Soil surface cracks due to dryness can be used to describe drought conditions. Soil cracking phenomenon and moisture have a certain relationship, thus this study makes used the fractal theory to interpret the soil moisture represented by soil cracks. The fractal dimension of surface soil cracking is a measure of the surface soil moisture. Therefore fractal dimensions can also be used to indicate how dry of the surface soil is. This study used the sediment in the Shimen Reservoir to establish the fractal dimension and soil moisture relation. The soil cracking is created under the control of temperature and thickness of surface soil layers. The results show the increase in fractal dimensions is accompanied by a decreases in surface soil moisture. However the fractal dimensions will approach a constant even the soil moisture continually decreases. The sigmoid function is used to fit the relation of fractal dimensions and surface soil moistures. The proposed method can be successfully applied to estimate surface soil moisture. Only a photo taken from the field is needed and is sufficient to provide the fractal dimension. Consequently, the surface soil moisture can be estimated quickly and accurately.

  12. The determination of soil moisture by extraction and gas chromatography

    NASA Technical Reports Server (NTRS)

    Merek, E. L.; Carle, G. C.

    1974-01-01

    Soil moisture content was determined by extracting soil with methanol and subsequently analyzing the extract for water by gas chromatography. With air-dried mineral soils, this method gave slightly higher moisture content values than those obtained by the oven-dry method. Moisture content was determined quantitatively in soils to which various amounts of water had been added. The complete procedure, including extraction and analysis, requires less than one hour and gives results that closely compare to the oven-dry method.

  13. Soil Moisture and Agromet Models

    DTIC Science & Technology

    1981-03-01

    decade of each month also produces monthly summaries. The Soil Moisture program covers two geographical areas. Area 1, the " Europea |," or "Soviet...American Geophysical Union , 25, 683-693. Thornthwaite, C. W. and J. R. Mather, 1955: The Water Balance. Publicatiuns in Climatology, Drexel Inst. of

  14. Soil Moisture Retrieval from Aquarius

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquarius observations over land offer an unprecedented opportunity to provide a value-added product, land surface soil moisture, which will contribute to a better understanding of the Earth’s climate and water cycle. Additionally, Aquarius will provide the first spaceborne data that can be used to a...

  15. Soil Moisture Estimation Using Hyperspectral SWIR Imagery

    NASA Astrophysics Data System (ADS)

    Lewis, D.

    2007-12-01

    The U.S. Geological Survey (USGS) is engaged with the U.S. Department of Agriculture's (USDA) Agricultural Research Service (ARS) and the University of Georgia's National Environmentally Sound Production Agriculture Laboratory (NESPAL) both in Tifton, Georgia, USA, to develop transformations for medium and high resolution remotely sensed images to generate moisture indicators for soil. The Institute for Technology Development (ITD) is located at the Stennis Space Center in southern Mississippi and has developed hyperspectral sensor systems that, when mounted in aircraft, collect electromagnetic reflectance data of the terrain. The sensor suite consists of sensors for three different sections of the electromagnetic spectrum; the Ultra-Violet (UV), Visible/Near InfraRed (VNIR) and Short Wave InfraRed (SWIR). The USDA/ ARS' Southeast Watershed Research Laboratory has probes that measure and record soil moisture. Data taken from the ITD SWIR sensor and the USDA/ARS soil moisture meters were analyzed to study the informatics relationships between SWIR data and measured soil moisture. The geographic locations of 29 soil moisture meters provided by the USDA/ARS are in the vicinity of Tifton, Georgia. Using USGS Digital Ortho Quads (DOQ), flightlines were drawn over the 29 soil moisture meters. The SWIR sensor was installed into an aircraft. The coordinates for the flightlines were also loaded into the navigational system of the aircraft. This airborne platform was used to collect the data over these flightlines. In order to prepare the data set for analysis, standard preprocessing was performed. These standard processes included sensor calibration, spectral subsetting, and atmospheric calibration. All 60 bands of the SWIR data were collected for each line in the image data, 15 bands of which were stripped from the data set leaving 45 bands of information in the wavelength range of 906 to 1705 nanometers. All the image files were calibrated using the regression equations

  16. Large Scale Evaluation of AMSR-E Soil Moisture Products Based on Ground Soil Moisture Network Measurements

    NASA Astrophysics Data System (ADS)

    Gruhier, C.; de Rosnay, P.; Richaume, P.; Kerr, Y.; Rudiger, C.; Boulet, G.; Walker, J. P.; Mougin, E.; Ceschia, E.; Calvet, J.

    2007-05-01

    This paper presents an evaluation of AMSR-E (Advanced Microwave Scanning Radiometer for EOS) soil moisture products, based on a comparison with three ground soil moisture networks. The selected ground sites are representative of various climatic, hydrologic and environmental conditions in temperate and semi-arid areas. They are located in the south-west of France, south-east of Australia and the Gourma region of the Sahel. These sites were respectively implemented in the framework of the projects SMOSREX (Surface Monitoring Of Soil Reservoir Experiment), SASMAS/GoREx (Scaling and Assimilation of Soil Moisture and Streamflow in the Goulburn River Experimental catchment) and AMMA (African Monsoon Multidisciplinary Analysis). In all cases, the arrangement of the soil moisture measuring sites was specifically designed to address the validation of remotely sensed soil moisture in the context of the preparation of the SMOS (Soil Moisture and Ocean Salinity) project. For the purpose of this study, 25km AMSR-E products were used, including brightness temperatures at 6.9 and 10.7 GHz, and derived soil moisture. The study is focused on the year 2005. It is based on ground soil moisture network measurements from 4 stations for SMOSREX extended to the SUDOUEST project of CESBIO, 12 stations for GoRex, and 4 stations for AMMA. Temporal and spatial features of soil moisture variability and stability is a critical issue to be addressed for remotely sensed soil moisture validation. While ground measurements provide information on soil moisture dynamics at local scale and high temporal resolution (hourly), satellite measurements are sparser in time (up to several days), but cover a larger region (25km x 25km for AMSR-E). First, a statistical analysis, including mean relative difference and Spearman rank, is conducted for the three soil moisture networks. This method is mainly based on the approach proposed by Cosh et al. (2004) for the purpose of the use of ground networks for

  17. Contributions of Precipitation and Soil Moisture Observations to the Skill of Soil Moisture Estimates in a Land Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; Liu, Qing; Bindlish, Rajat; Cosh, Michael H.; Crow, Wade T.; deJeu, Richard; DeLannoy, Gabrielle J. M.; Huffman, George J.; Jackson, Thomas J.

    2011-01-01

    The contributions of precipitation and soil moisture observations to the skill of soil moisture estimates from a land data assimilation system are assessed. Relative to baseline estimates from the Modern Era Retrospective-analysis for Research and Applications (MERRA), the study investigates soil moisture skill derived from (i) model forcing corrections based on large-scale, gauge- and satellite-based precipitation observations and (ii) assimilation of surface soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E). Soil moisture skill is measured against in situ observations in the continental United States at 44 single-profile sites within the Soil Climate Analysis Network (SCAN) for which skillful AMSR-E retrievals are available and at four CalVal watersheds with high-quality distributed sensor networks that measure soil moisture at the scale of land model and satellite estimates. The average skill (in terms of the anomaly time series correlation coefficient R) of AMSR-E retrievals is R=0.39 versus SCAN and R=0.53 versus CalVal measurements. The skill of MERRA surface and root-zone soil moisture is R=0.42 and R=0.46, respectively, versus SCAN measurements, and MERRA surface moisture skill is R=0.56 versus CalVal measurements. Adding information from either precipitation observations or soil moisture retrievals increases surface soil moisture skill levels by IDDeltaR=0.06-0.08, and root zone soil moisture skill levels by DeltaR=0.05-0.07. Adding information from both sources increases surface soil moisture skill levels by DeltaR=0.13, and root zone soil moisture skill by DeltaR=0.11, demonstrating that precipitation corrections and assimilation of satellite soil moisture retrievals contribute similar and largely independent amounts of information.

  18. Soil Moisture State and Hydrologic Process

    NASA Astrophysics Data System (ADS)

    Western, A. W.; Grayson, R. B.; Blöschl, G.; Wilson, D.; Longobardi, A.; Villani, P.; Duncan, M.

    It has long been recognized that soil moisture has a key role in controlling evapo- transpiration during dryer periods, as well as runoff processes, particularly saturation excess runoff. The temporal and spatial variability of moisture can be an important influence on the temporal and spatial characteristics of these processes. More recently, the role of soil moisture in controlling lateral flow processes has re- ceived close attention, with switching between persistent dry and wet states leading to switches between controls on spatial patterns of soil moisture and consequent changes in runoff behaviour. In this paper we will review results on the spatial and temporal variability of soil moisture at the small catchment scale, concentrating in particular on dominant controls and temporal changes in dominant controls. We will discuss the climatic and catchment characteristics under which switching between dominant controls is likely. We will also present results relating spatial soil moisture behaviour to soil moisture state and relating rainfall-runoff response to moisture state: in particular we investi- gated the relationships between the basin soil moisture dynamic and the occurrence of very extreme flood events. The spatial probability density function of soil moisture is bounded by wilting point and porosity. This bounding combined with catchment processes leads to a strong link between spatial variance and spatial mean soil mois- ture, with an initial increase in variance followed by a decrease as mean soil moisture increases from wilting point to saturation. Changes in the spatial control of soil mois- ture and the relationship between soil moisture and terrain also occur as the spatial controls on the soil moisture pattern change in response to mean soil moisture. Strong links between the changes in the spatial characteristics of soil moisture will be demon- strated and the potential of measurements of soil moisture to provide information on catchment state

  19. The Temperature in Microwave Soil Moisture Retrieval

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the near future two dedicated soil moisture satellites will be launched, the Soil Moisture and Ocean Salinity (SMOS) satellite and the Soil Moisture Active Passive (SMAP) satellite that are expected to contribute to our understanding of the global hydrological cycle. It is well known that microwa...

  20. Microstrip Ring Resonator for Soil Moisture Measurements

    NASA Technical Reports Server (NTRS)

    Sarabandi, Kamal; Li, Eric S.

    1993-01-01

    Accurate determination of spatial soil moisture distribution and monitoring its temporal variation have a significant impact on the outcomes of hydrologic, ecologic, and climatic models. Development of a successful remote sensing instrument for soil moisture relies on the accurate knowledge of the soil dielectric constant (epsilon(sub soil)) to its moisture content. Two existing methods for measurement of dielectric constant of soil at low and high frequencies are, respectively, the time domain reflectometry and the reflection coefficient measurement using an open-ended coaxial probe. The major shortcoming of these methods is the lack of accurate determination of the imaginary part of epsilon(sub soil). In this paper a microstrip ring resonator is proposed for the accurate measurement of soil dielectric constant. In this technique the microstrip ring resonator is placed in contact with soil medium and the real and imaginary parts of epsilon(sub soil) are determined from the changes in the resonant frequency and the quality factor of the resonator respectively. The solution of the electromagnetic problem is obtained using a hybrid approach based on the method of moments solution of the quasi-static formulation in conjunction with experimental data obtained from reference dielectric samples. Also a simple inversion algorithm for epsilon(sub soil) = epsilon'(sub r) + j(epsilon"(sub r)) based on regression analysis is obtained. It is shown that the wide dynamic range of the measured quantities provides excellent accuracy in the dielectric constant measurement. A prototype microstrip ring resonator at L-band is designed and measurements of soil with different moisture contents are presented and compared with other approaches.

  1. Soil residue analysis and degradation of saflufenacil as affected by moisture content and soil characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate saflufenacil degradation and persistence in soils from rice regions under field capacity (non-flooded) and saturated (flooded) conditions. Saflufenacil dissolved in acetonitrile was added into pre-incubated samples at the rate of 2000 g ha-1. The amount of...

  2. The Impact of Soil Moisture Anomalies on the General Circulation: A Comprehensive Analysis over North America

    NASA Astrophysics Data System (ADS)

    Koster, R. D.; Chang, Y.; Wang, H.; Schubert, S. D.

    2014-12-01

    Recent work (Koster et al., 2014) has demonstrated the potential for a soil moisture anomaly to influence the general circulation (as characterized by the meridional wind at 250 mb) and to influence thereby the surface meteorological conditions in remote locations, even a thousand kilometers away. An in-depth look at this phenomenon is now afforded by a more comprehensive set of AGCM ensemble experiments. Each experiment is designed to quantify the impact of a specific local dry soil moisture anomaly, prescribed somewhere in North America, on the general circulation. The locations tested in the different experiments span much of the continent, allowing a comprehensive picture of the circulation's sensitivity to soil moisture anomalies. The main result is that while the sensitivity does vary with the imposed anomaly's geographical location, a dry anomaly in general tends to induce, just to the east, a northerly flow at 250 mb, with (at times) consequent impacts on surface meteorological variables. These results tend to be supported by reanalysis data. Koster, R. D., Y. Chang, and S. D. Schubert, 2014: A mechanism for land-atmosphere feedback involving planetary wave structures. J. Climate, 27, 9290-9301.

  3. The Impact of Soil Moisture Anomalies on the General Circulation: A Comprehensive Analysis over North America

    NASA Astrophysics Data System (ADS)

    Koster, R. D.; Chang, Y.; Wang, H.; Schubert, S. D.

    2015-12-01

    Recent work (Koster et al., 2014) has demonstrated the potential for a soil moisture anomaly to influence the general circulation (as characterized by the meridional wind at 250 mb) and to influence thereby the surface meteorological conditions in remote locations, even a thousand kilometers away. An in-depth look at this phenomenon is now afforded by a more comprehensive set of AGCM ensemble experiments. Each experiment is designed to quantify the impact of a specific local dry soil moisture anomaly, prescribed somewhere in North America, on the general circulation. The locations tested in the different experiments span much of the continent, allowing a comprehensive picture of the circulation's sensitivity to soil moisture anomalies. The main result is that while the sensitivity does vary with the imposed anomaly's geographical location, a dry anomaly in general tends to induce, just to the east, a northerly flow at 250 mb, with (at times) consequent impacts on surface meteorological variables. These results tend to be supported by reanalysis data. Koster, R. D., Y. Chang, and S. D. Schubert, 2014: A mechanism for land-atmosphere feedback involving planetary wave structures. J. Climate, 27, 9290-9301.

  4. Spatio-temporal analysis of drought in a typical plain region based on the soil moisture anomaly percentage index.

    PubMed

    Mao, Yun; Wu, Zhiyong; He, Hai; Lu, Guihua; Xu, Huating; Lin, Qingxia

    2017-01-15

    Drought strongly affects the agricultural economy, most severely in plain regions, with prosperous agricultural development, which suffer huge economic losses. An effective index is required to describe the process of drought initiation, development, and alleviation, and soil moisture is a vital variable with respect to agricultural drought as a comprehensive variable. In this study, Jiangsu province was selected as a typical plain region, the VIC (Variable Infiltration Capacity) model was used to simulate soil moisture at a resolution of 0.125°×0.125°, and the soil moisture anomaly percentage index (SMAPI) was established for drought identification and investigation of drought spatio-temporal characteristics between 1956 and 2011. The results show that the VIC model built in our study is feasible, and the simulated 3-layer daily soil moisture database can be used in drought studies as an alternative to measured soil moisture. The droughts in the northern part of the province are more severe than those in the southern part, and Xuzhou is the most frequently affected city. There are no strong trends of drought duration in 13 cities of Jiangsu province. Among the 13 cities, drought intensity decreases as drought duration increases for the same drought area, and drought intensity decreases with drought area for the same drought duration. The methods used here in our study to build the VIC model for plain regions that lack closed basin hydrologic data may be helpful for further studies of VIC, and the regional analysis of drought can provide a powerful reference for regional drought prevention and resistance in Jiangsu province.

  5. Role of soil moisture in maintaining droughts

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Smith, W. E.

    1984-01-01

    The influence of soil moisture on the persistence of an ongoing drought was investigated. The case study of drought of the summer of 1980 was selected. The difference in the simulation of two identical twin runs: one with the climatological normal soil moisture and the other with anomalous soil moisture for drought conditions, were examined on the mean monthly circulation. It is found that a reduction in soil moisture did produce a corresponding reduction in precipitation. The pattern of the rainfall anomaly however, was not identical to the soil moisture (evapotranspiration) anomaly but had a good resemblance with observations.

  6. Modeling soil moisture memory in savanna ecosystems

    NASA Astrophysics Data System (ADS)

    Gou, S.; Miller, G. R.

    2011-12-01

    Antecedent soil conditions create an ecosystem's "memory" of past rainfall events. Such soil moisture memory effects may be observed over a range of timescales, from daily to yearly, and lead to feedbacks between hydrological and ecosystem processes. In this study, we modeled the soil moisture memory effect on savanna ecosystems in California, Arizona, and Africa, using a system dynamics model created to simulate the ecohydrological processes at the plot-scale. The model was carefully calibrated using soil moisture and evapotranspiration data collected at three study sites. The model was then used to simulate scenarios with various initial soil moisture conditions and antecedent precipitation regimes, in order to study the soil moisture memory effects on the evapotranspiration of understory and overstory species. Based on the model results, soil texture and antecedent precipitation regime impact the redistribution of water within soil layers, potentially causing deeper soil layers to influence the ecosystem for a longer time. Of all the study areas modeled, soil moisture memory of California savanna ecosystem site is replenished and dries out most rapidly. Thus soil moisture memory could not maintain the high rate evapotranspiration for more than a few days without incoming rainfall event. On the contrary, soil moisture memory of Arizona savanna ecosystem site lasts the longest time. The plants with different root depths respond to different memory effects; shallow-rooted species mainly respond to the soil moisture memory in the shallow soil. The growing season of grass is largely depended on the soil moisture memory of the top 25cm soil layer. Grass transpiration is sensitive to the antecedent precipitation events within daily to weekly timescale. Deep-rooted plants have different responses since these species can access to the deeper soil moisture memory with longer time duration Soil moisture memory does not have obvious impacts on the phenology of woody plants

  7. Influence of soil moisture on soil respiration

    NASA Astrophysics Data System (ADS)

    Fer, Miroslav; Kodesova, Radka; Nikodem, Antonin; Klement, Ales; Jelenova, Klara

    2015-04-01

    The aim of this work was to describe an impact of soil moisture on soil respiration. Study was performed on soil samples from morphologically diverse study site in loess region of Southern Moravia, Czech Republic. The original soil type is Haplic Chernozem, which was due to erosion changed into Regosol (steep parts) and Colluvial soil (base slope and the tributary valley). Soil samples were collected from topsoils at 5 points of the selected elevation transect and also from the parent material (loess). Grab soil samples, undisturbed soil samples (small - 100 cm3, and large - 713 cm3) and undisturbed soil blocks were taken. Basic soil properties were determined on grab soil samples. Small undisturbed soil samples were used to determine the soil water retention curves and the hydraulic conductivity functions using the multiple outflow tests in Tempe cells and a numerical inversion with HYDRUS 1-D. During experiments performed in greenhouse dry large undisturbed soil samples were wetted from below using a kaolin tank and cumulative water inflow due to capillary rise was measured. Simultaneously net CO2 exchange rate and net H2O exchange rate were measured using LCi-SD portable photosynthesis system with Soil Respiration Chamber. Numerical inversion of the measured cumulative capillary rise data using the HYDRUS-1D program was applied to modify selected soil hydraulic parameters for particular conditions and to simulate actual soil water distribution within each soil column in selected times. Undisturbed soil blocks were used to prepare thin soil sections to study soil-pore structure. Results for all soil samples showed that at the beginning of soil samples wetting the CO2 emission increased because of improving condition for microbes' activity. The maximum values were reached for soil column average soil water content between 0.10 and 0.15 cm3/cm3. Next CO2 emission decreased since the pore system starts filling by water (i.e. aggravated conditions for microbes

  8. Surface Soil Moisture Assimilation with SWAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture is one of the most critical state variables in hydrologic modeling. Certain studies have demonstrated that assimilating observed surface soil moisture into a hydrologic model results in improved predictions of profile soil water content. With the Soil and Water Assessment Tool (SWAT), ...

  9. An integrated GIS application system for soil moisture data assimilation

    NASA Astrophysics Data System (ADS)

    Wang, Di; Shen, Runping; Huang, Xiaolong; Shi, Chunxiang

    2014-11-01

    The gaps in knowledge and existing challenges in precisely describing the land surface process make it critical to represent the massive soil moisture data visually and mine the data for further research.This article introduces a comprehensive soil moisture assimilation data analysis system, which is instructed by tools of C#, IDL, ArcSDE, Visual Studio 2008 and SQL Server 2005. The system provides integrated service, management of efficient graphics visualization and analysis of land surface data assimilation. The system is not only able to improve the efficiency of data assimilation management, but also comprehensively integrate the data processing and analysis tools into GIS development environment. So analyzing the soil moisture assimilation data and accomplishing GIS spatial analysis can be realized in the same system. This system provides basic GIS map functions, massive data process and soil moisture products analysis etc. Besides,it takes full advantage of a spatial data engine called ArcSDE to effeciently manage, retrieve and store all kinds of data. In the system, characteristics of temporal and spatial pattern of soil moiture will be plotted. By analyzing the soil moisture impact factors, it is possible to acquire the correlation coefficients between soil moisture value and its every single impact factor. Daily and monthly comparative analysis of soil moisture products among observations, simulation results and assimilations can be made in this system to display the different trends of these products. Furthermore, soil moisture map production function is realized for business application.

  10. Studying dynamics of soil moisture patterns

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-11-01

    Soil moisture variations in space and time are important to the hydrological cycle. To better understand the dynamics of the various factors affecting soil moisture patterns, Rosenbaum et al. conducted a comprehensive study in the small Wüstebach catchment in Germany, using a wireless sensor network to monitor soil moisture with high temporal and spatial resolution and broad coverage. They found large variations in spatial soil moisture patterns, which depended on soil depth and catchment wetness. Soil moisture patterns also changed seasonally and during single wetting and drying episodes. The authors showed how soil moisture variations are controlled by a wide range of factors including soil properties, topography, vegetation, groundwater, and rainfall. (Water Resources Research, doi:10.1029/2011WR011518, 2012)

  11. Soil Moisture Monitoring at Watershed Scale in Eastern India

    NASA Astrophysics Data System (ADS)

    Panda, R. K.

    2015-12-01

    Understanding the spatio-temporal variation of soil moisture on time scales that range from minute to decades on the watershed scale is important for the hydrological, meteorological and agricultural communities. Lack of reliable, longterm soil moisture datasets in developing countries like India, is a bottleneck for soil moisture analysis and prediction. Recognizing the need of continuous, automated in-situ soil moisture observations, three in-situ soil moisture test-beds have been established in an agricultural watershed of the Eastern India. Test-beds have been specifically designed to capture the root zone soil moisture dynamic at different crop fields under both surplus and water deficit conditions in low, medium and up-lands of the study region. Both volumetric and tensiometric method based sensors, Campbell Scientific soil water content reflectometer (CS650) and matric potential sensor (CS229) are installed at depths of 5, 15, 30, 60 and 100 cm below the surface. GPRS communication modems were installed at each station for remote communication from the data loggers (Campbell Scientific, CR1000) for automatic data collection. To achieve a better understanding of the spatial variation of the soil moisture on watershed scale, the strategic ground-based surface measurements were made in diverse landscape using portable impedance probe. The primary aim of spatial and temporal scale soil moisture measurement is to validate current remote sensing products of Soil Moisture Active Passive (SMAP). In order to improve validation procedure, the soil texture and soil hydraulic parameters are also estimated across the spatial scales to develop dynamic relationship between these parameters. Herein, the strategies for the site selection, calibration of the soil moisture sensors, ground-based soil moisture monitoring, hydraulic properties estimation at spatial scale and the quality assurance techniques applied to the observations are provided.

  12. Depression of soil moisture freezing point

    SciTech Connect

    Fedorov, V.I.

    1996-12-01

    Certain criteria for freezing temperature of clay soil have been found which are a relative moisture content at the soil liquid limit (W/W{sub L}) and maximum hydroscopic moisture (W/W{sub h}). On the strength of test data it has been established that the relative moisture content at the soil liquid limit (W/W{sub L}) may also serve as a criterion on compression pressure and resistance against shearing for soil paste with no structural binding. Linear correlation between the moisture content of natural soil and its paste -- the equation of moisture balance -- has been found which specifies a thermodynamic balance condition. The equation of moisture balance represents a whole set of properties for a certain type of soil, such as strength and compressibility. In this respect, it may be considered as a ``Soil equation`` which allows for further prognosis of its properties.

  13. New Approaches for Soil Moisture Analysis over Complex Arctic Environments with PALSAR/ALOS

    NASA Astrophysics Data System (ADS)

    Longépé, N.; Necsoiu, M.; Tadono, T.; Shimada, M.

    2010-12-01

    Frozen ground is a sensitive indicator of how our home planet is changing. In this study, the relevance of L-band Synthetic Aperture Radar (SAR) data for extracting information on frozen ground is presented. Specifically, the study focused on the characterization of a permafrost active layer using polarimetric ALOS PALSAR imagery in two locations in Alaska: the Kobuk river valley and the Arctic National Wildlife Refuge. The adequacy between polarimetric EM model and radar data has been studied for a long time, especially over bare agricultural fields (Oh et al., 1992). The assessment of residual liquid water can be realized by means of a bare soil EM backscattering model. Over natural wild land areas such as the Arctic tundra, new approaches have to be proposed in order to tackle the effect of the vegetation and other irrelevant effects (sensor calibration, multiple scattering terms, etc.). As a result, traditional soil moisture retrieval has shown limited accuracy for operational use, even though promising methods have been recently investigated (Mattia et al., 2006; Verhoest et al., 2007). Two methodologies based on multi-temporal acquisitions are proposed in this study. In regards to the uncertainties of the vegetation effect or other irrelevant mechanisms, a first methodology is proposed in this study. An optimization on the Oh’s weights (Oh, 2004) and full-polarimetric PALSAR data is carried out by using priori information provided by the Advanced Microwave Scanning Radiometer (AMSR-E) onboard the Aqua satellite. By tuning PALSAR data and Oh’s weights, the effects of vegetation are counterbalanced. This method was tested over the Arctic National Wildlife Refuge (ANWR). The optimization results are found to be in good agreement with theoretical aspects: vegetation induces an increase of cross-polarized channel (anisotropic effect) and a decrease of co-polarized channels (attenuation mechanism). The soil moisture variation can be then retrieved in a

  14. ALOS PALSAR and UAVSAR Soil Moisture in Field Campaigns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As part of our ongoing analysis of L-band radar mapping of soil moisture we are evaluating the role that ALOS PALSAR data can play in the development of radar retrieval algorithms for the future NASA Soil Moisture Active Passive (SMAP) satellite. Differences in configurations must be assessed to det...

  15. Soil-moisture sensors and irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This agricultural irrigation seminar will cover the major classes of soil-moisture sensors; their advantages and disadvantages; installing and reading soil-moisture sensors; and using their data for irrigation management. The soil water sensor classes include the resistance sensors (gypsum blocks, g...

  16. Analysis and modelling of the temporal stability of throughfall and near-surface soil moisture at the plot scale in the Italian pre-Alps

    NASA Astrophysics Data System (ADS)

    Zuecco, Giulia; van Meerveld, Ilja; Penna, Daniele; Hopp, Luisa; Borga, Marco

    2016-04-01

    event and the start of the soil moisture measurements. The temporal stability of soil moisture was larger than the temporal stability of throughfall and they were also not significantly correlated. The patterns of temporal stability were also not related to canopy openness or LAI, suggesting that the spatial variability in throughfall is probably linked to small scale characteristics of the canopy. A soil moisture model was used to test which combination of soil properties and vegetation characteristics leads to uncorrelated patterns of temporal stability of throughfall and soil moisture. The application of the model revealed that a large spatial variability in saturated hydraulic conductivity that is correlated with the spatial variability in LAI and root fraction tends to strongly weaken the correlation between throughfall and soil moisture patterns. The analysis of field data combined with the model application suggests that in this specific forested hillslope the spatial organization of soil moisture is dominated by a combination of soil properties and vegetation characteristics, rather than by the throughfall spatial patterns. Keywords: throughfall; near-surface soil moisture; temporal stability; plot scale; spatial variability; forested hillslope.

  17. Validation of soil moisture ocean salinity (SMOS) satellite soil moisture products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The surface soil moisture state controls the partitioning of precipitation into infiltration and runoff. High-resolution observations of soil moisture will lead to improved flood forecasts, especially for intermediate to large watersheds where most flood damage occurs. Soil moisture is also key in d...

  18. The international soil moisture network: A data hosting facility for global in situ soil moisture measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In situ measurements of soil moisture are invaluable for calibrating and validating land surface models and satellite-based soil moisture retrievals. In addition, long-term time series of in situ soil moisture measurements themselves can reveal trends in the water cycle related to climate or land co...

  19. Soil moisture by extraction and gas chromatography

    NASA Technical Reports Server (NTRS)

    Merek, E. L.; Carle, G. C.

    1973-01-01

    To determine moisture content of soils rapidly and conveniently extract moisture with methanol and determine water content of methanol extract by gas chromatography. Moisture content of sample is calculated from weight of water and methanol in aliquot and weight of methanol added to sample.

  20. Space-time soil moisture variability for two different land use types: analysis at the plot scale

    NASA Astrophysics Data System (ADS)

    Zuecco, Giulia; Borga, Marco; Penna, Daniele; Canone, Davide; Ferraris, Stefano

    2013-04-01

    Understanding space-time soil moisture variability at various scales is a key issue in hydrological research. At the plot scale soil moisture variability is expected to be explained by physical factors such as soil hydraulic properties, local topography and vegetation cover. This study aims to: i) characterize the spatial and temporal variability of soil moisture at the plot scale at two soil depths and for two different types of land use (meadow and vineyard); ii) investigate the role of vegetation cover on the seasonal variability of soil moisture; iii) assess the capability of a dynamic model to explain soil moisture variability and the control exerted by land use. The work is based on soil moisture data collected on a plot (about 200 m2) in Grugliasco (Po River basin, Northern Italy) by means of Time Domain Reflectometry (TDR) measurements. The plot is divided into two subplots: one covered by grapevine plants, the other covered homogeneously by grass. The soil is sandy, the slope is about 1%, and there is a buffer grass area about 20 m wide around the measurement field. The characteristics of the site allow to isolate the contribution of soil hydraulic properties and land use to space-time soil moisture variability. We used the data of 40 probes distributed in the two subplots, vertically inserted into the soil at 0-30 cm and 0-60 cm depths. Precipitation and temperature are recorded continuously on site. Statistics were computed based on soil moisture measurements collected continuously at daily time step over three years (2006-2008). Results show that soil moisture spatial patterns at the two sampling depths are highly correlated for both land uses. Higher values of mean soil moisture at 0-60 cm depth with respect to 0-30 cm for both types of land use likely reflect the evaporation processes affecting more the surface layer. Spatial mean soil moisture is always higher in the vineyard than in the meadow (especially at 0-30 cm depth), implying the influence of

  1. Estimating Surface Soil Moisture in Simulated AVIRIS Spectra

    NASA Technical Reports Server (NTRS)

    Whiting, Michael L.; Li, Lin; Ustin, Susan L.

    2004-01-01

    Soil albedo is influenced by many physical and chemical constituents, with moisture being the most influential on the spectra general shape and albedo (Stoner and Baumgardner, 1981). Without moisture, the intrinsic or matrix reflectance of dissimilar soils varies widely due to differences in surface roughness, particle and aggregate sizes, mineral types, including salts, and organic matter contents. The influence of moisture on soil reflectance can be isolated by comparing similar soils in a study of the effects that small differences in moisture content have on reflectance. However, without prior knowledge of the soil physical and chemical constituents within every pixel, it is nearly impossible to accurately attribute the reflectance variability in an image to moisture or to differences in the physical and chemical constituents in the soil. The effect of moisture on the spectra must be eliminated to use hyperspectral imagery for determining minerals and organic matter abundances of bare agricultural soils. Accurate soil mineral and organic matter abundance maps from air- and space-borne imagery can improve GIS models for precision farming prescription, and managing irrigation and salinity. Better models of soil moisture and reflectance will also improve the selection of soil endmembers for spectral mixture analysis.

  2. Survey of methods for soil moisture determination

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Jackson, T. J.; Mckim, H. L.

    1979-01-01

    Existing and proposed methods for soil moisture determination are discussed. These include: (1) in situ investigations including gravimetric, nuclear, and electromagnetic techniques; (2) remote sensing approaches that use the reflected solar, thermal infrared, and microwave portions of the electromagnetic spectrum; and (3) soil physics models that track the behavior of water in the soil in response to meteorological inputs (precipitation) and demands (evapotranspiration). The capacities of these approaches to satisfy various user needs for soil moisture information vary from application to application, but a conceptual scheme for merging these approaches into integrated systems to provide soil moisture information is proposed that has the potential for meeting various application requirements.

  3. Electrical methods of determining soil moisture content

    NASA Technical Reports Server (NTRS)

    Silva, L. F.; Schultz, F. V.; Zalusky, J. T.

    1975-01-01

    The electrical permittivity of soils is a useful indicator of soil moisture content. Two methods of determining the permittivity profile in soils are examined. A method due to Becher is found to be inapplicable to this situation. A method of Slichter, however, appears to be feasible. The results of Slichter's method are extended to the proposal of an instrument design that could measure available soil moisture profile (percent available soil moisture as a function of depth) from a surface measurement to an expected resolution of 10 to 20 cm.

  4. Evaluating ESA CCI soil moisture in East Africa

    NASA Astrophysics Data System (ADS)

    McNally, Amy; Shukla, Shraddhanand; Arsenault, Kristi R.; Wang, Shugong; Peters-Lidard, Christa D.; Verdin, James P.

    2016-06-01

    To assess growing season conditions where ground based observations are limited or unavailable, food security and agricultural drought monitoring analysts rely on publicly available remotely sensed rainfall and vegetation greenness. There are also remotely sensed soil moisture observations from missions like the European Space Agency (ESA), Soil Moisture and Ocean Salinity (SMOS) and NASA's Soil Moisture Active Passive (SMAP); however, these time series are still too short to conduct studies that demonstrate the utility of these data for operational applications, or to provide historical context for extreme wet or dry events. To promote the use of remotely sensed soil moisture in agricultural drought and food security monitoring, we evaluate the quality of a 30+ year time series of merged active-passive microwave soil moisture from the ESA Climate Change Initiative (CCI-SM) over East Africa. Compared to the Normalized Difference Vegetation index (NDVI) and modeled soil moisture products, we find substantial spatial and temporal gaps in the early part of the CCI-SM record, with adequate data coverage beginning in 1992. From this point forward, growing season CCI-SM anomalies are well correlated (R > 0.5) with modeled soil moisture, and in some regions, NDVI. We use pixel-wise correlation analysis and qualitative comparisons of seasonal maps and time series to show that remotely sensed soil moisture can inform remote drought monitoring that has traditionally relied on rainfall and NDVI in moderately vegetated regions.

  5. SMAP and SMOS soil moisture validation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The SMOS and SMAP satellite missions each produce global soil moisture products using L-band radiometry. Both missions begin with the same fundamental equations in developing their soil moisture retrieval algorithm but implement it differently due to design differences of the instruments. SMOS with ...

  6. Passive microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Kondratyev, K. Y.; Melentyev, V. V.; Rabinovich, Y. I.; Shulgina, E. M.

    1977-01-01

    The theory and calculations of microwave emission from the medium with the depth-dependent physical properties are discussed; the possibility of determining the vertical profiles of temperature and humidity is considered. Laboratory and aircraft measurements of the soil moisture are described; the technique for determining the productive-moisture content in soil, and the results of aircraft measurements are given.

  7. Measuring soil moisture with imaging radars

    NASA Technical Reports Server (NTRS)

    Dubois, Pascale C.; Vanzyl, Jakob; Engman, Ted

    1995-01-01

    An empirical model was developed to infer soil moisture and surface roughness from radar data. The accuracy of the inversion technique is assessed by comparing soil moisture obtained with the inversion technique to in situ measurements. The effect of vegetation on the inversion is studied and a method to eliminate the areas where vegetation impairs the algorithm is described.

  8. Observational Evidence for Coupling Between Soil Moisture and Temperature Extremes Across Climate Regimes from the U.S. Soil Climate Analysis Network (SCAN)

    NASA Astrophysics Data System (ADS)

    Sheffield, J.; Xu, R.

    2014-12-01

    Soil moisture is known to play a key role in controlling surface moisture and heat fluxes, but much of the evidence for this at large scales is based on analysis of data from reanalyses, satellite remote sensing and model data. As such, the relationships are subject to the errors and biases in these data sources. This study evaluates direct observational evidence for land-atmosphere interactions using data from the Soil Climate Analysis Network (SCAN) which hosts monitoring sites for over 100 locations across the U.S. covering a range of climates and land surface contexts. The relationship between warm season soil moisture deficits and temperature extremes is analyzed for 80 sites that have sufficient data. Statistically significant negative correlations are found in many sites between the number of hot days and soil moisture, with the strength of the relationship increasing from the humid east to the drier Midwest. The signal in the inter-mountain west is somewhat mixed. To distinguish the sources of temperature extremes between local coupling and advection, we estimate advection at each site from meteorological data from the North American Land Data Assimilation (NLDAS2). Although the advection estimates are uncertain, they imply that local coupling can play a significant role in temperature extremes during dry periods. We further characterize individual heat waves according to the estimated contribution of advected heat or local coupling to their emergence and persistence. Heat wave events are generally terminated by precipitation events. The results have implications for understanding land-atmosphere coupling across climate regimes and the utility of model-derived estimates to represent observed behavior at large scales.

  9. Soil moisture variability within remote sensing pixels

    SciTech Connect

    Charpentier, M.A.; Groffman, P.M. )

    1992-11-30

    This work is part of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), an international land-surface-atmosphere experiment aimed at improving the way climate models represent energy, water, heat, and carbon exchanges, and improving the utilization of satellite based remote sensing to monitor such parameters. This paper addresses the question of soil moisture variation within the field of view of a remote sensing pixel. Remote sensing is the only practical way to sense soil moisture over large areas, but it is known that there can be large variations of soil moisture within the field of view of a pixel. The difficulty with this is that many processes, such as gas exchange between surface and atmosphere can vary dramatically with moisture content, and a small wet spot, for example, can have a dramatic impact on such processes, and thereby bias remote sensing data results. Here the authors looked at the impact of surface topography on the level of soil moisture, and the interaction of both on the variability of soil moisture sensed by a push broom microwave radiometer (PBMR). In addition the authors looked at the question of whether variations of soil moisture within pixel size areas could be used to assign errors to PBMR generated soil moisture data.

  10. Investigation of remote sensing techniques of measuring soil moisture

    NASA Technical Reports Server (NTRS)

    Newton, R. W. (Principal Investigator); Blanchard, A. J.; Nieber, J. L.; Lascano, R.; Tsang, L.; Vanbavel, C. H. M.

    1981-01-01

    Major activities described include development and evaluation of theoretical models that describe both active and passive microwave sensing of soil moisture, the evaluation of these models for their applicability, the execution of a controlled field experiment during which passive microwave measurements were acquired to validate these models, and evaluation of previously acquired aircraft microwave measurements. The development of a root zone soil water and soil temperature profile model and the calibration and evaluation of gamma ray attenuation probes for measuring soil moisture profiles are considered. The analysis of spatial variability of soil information as related to remote sensing is discussed as well as the implementation of an instrumented field site for acquisition of soil moisture and meteorologic information for use in validating the soil water profile and soil temperature profile models.

  11. Analysis of high resolution temperature observation for spatial and temporal soil moisture variation in an unstable slope

    NASA Astrophysics Data System (ADS)

    Krzeminska, D. M.; Steele-Dunne, S. C.; Rutten, M. M.; Bogaard, T. A.; Sailhac, P.; Géraud, Y.

    2009-04-01

    Hydrological processes control the behaviour of many unstable slopes hence their importance for landslide hazard is generally accepted. The unsaturated zone buffers precipitation and moisture conditions of this zone affect distribution, intensity and time delay of ground water recharges. Therefore, high resolution monitoring of hydrological features of the near surface soil layer is necessary, especially when studying rainfall triggered landslides. The aim of our research is to test the use of temperature as a tracer for soil moisture distribution. Recently, much research attention has been given to the temperature measurements as surveying technique in the hydrological studies. We applied so-called distributed temperature sensing (DTS) fibre optic cable to obtain high resolution soil temperature observation. Two cables were installed in the soil (approximately at 25 cm depth) at different location within the landslide to measure the near surface soil temperature with 2 m spatial resolution and 3 minutes time step. We will present the result obtained during the field campaigns that took place at Super-Sauze landslide, French Alps. Phase and amplitude shifts of temperature signal will be analyzed and related to the soil moisture dynamics. Moreover, the temperature signals will be confronted with the coupled soil heat flux and soil moisture flux model. Furthermore, the temperature data set will be used to evaluate the time variation of the soil moisture content and position of ground water level based on the determination of the soil thermal parameters fluctuation. Our work will discuss the applicability of distributed temperature sensing for hydrological studies, especially to monitor soil moisture distribution and development of preferential flow paths in a landslide area.

  12. On-irrigator pasture soil moisture sensor

    NASA Astrophysics Data System (ADS)

    Eng-Choon Tan, Adrian; Richards, Sean; Platt, Ian; Woodhead, Ian

    2017-02-01

    In this paper, we presented the development of a proximal soil moisture sensor that measured the soil moisture content of dairy pasture directly from the boom of an irrigator. The proposed sensor was capable of soil moisture measurements at an accuracy of  ±5% volumetric moisture content, and at meter scale ground area resolutions. The sensor adopted techniques from the ultra-wideband radar to enable measurements of ground reflection at resolutions that are smaller than the antenna beamwidth of the sensor. An experimental prototype was developed for field measurements. Extensive field measurements using the developed prototype were conducted on grass pasture at different ground conditions to validate the accuracy of the sensor in performing soil moisture measurements.

  13. Soil moisture monitoring for crop management

    NASA Astrophysics Data System (ADS)

    Boyd, Dale

    2015-07-01

    The 'Risk management through soil moisture monitoring' project has demonstrated the capability of current technology to remotely monitor and communicate real time soil moisture data. The project investigated whether capacitance probes would assist making informed pre- and in-crop decisions. Crop potential and cropping inputs are increasingly being subject to greater instability and uncertainty due to seasonal variability. In a targeted survey of those who received regular correspondence from the Department of Primary Industries it was found that i) 50% of the audience found the information generated relevant for them and less than 10% indicted with was not relevant; ii) 85% have improved their knowledge/ability to assess soil moisture compared to prior to the project, with the most used indicator of soil moisture still being rain fall records; and iii) 100% have indicated they will continue to use some form of the technology to monitor soil moisture levels in the future. It is hoped that continued access to this information will assist informed input decisions. This will minimise inputs in low decile years with a low soil moisture base and maximise yield potential in more favourable conditions based on soil moisture and positive seasonal forecasts

  14. A Methodology for Soil Moisture Retrieval from Land Surface Temperature, Vegetation Index, Topography and Soil Type

    NASA Astrophysics Data System (ADS)

    Pradhan, N. R.

    2015-12-01

    Soil moisture conditions have an impact upon hydrological processes, biological and biogeochemical processes, eco-hydrology, floods and droughts due to changing climate, near-surface atmospheric conditions and the partition of incoming solar and long-wave radiation between sensible and latent heat fluxes. Hence, soil moisture conditions virtually effect on all aspects of engineering / military engineering activities such as operational mobility, detection of landmines and unexploded ordinance, natural material penetration/excavation, peaking factor analysis in dam design etc. Like other natural systems, soil moisture pattern can vary from completely disorganized (disordered, random) to highly organized. To understand this varying soil moisture pattern, this research utilized topographic wetness index from digital elevation models (DEM) along with vegetation index from remotely sensed measurements in red and near-infrared bands, as well as land surface temperature (LST) in the thermal infrared bands. This research developed a methodology to relate a combined index from DEM, LST and vegetation index with the physical soil moisture properties of soil types and the degree of saturation. The advantage in using this relationship is twofold: first it retrieves soil moisture content at the scale of soil data resolution even though the derived indexes are in a coarse resolution, and secondly the derived soil moisture distribution represents both organized and disorganized patterns of actual soil moisture. The derived soil moisture is used in driving the hydrological model simulations of runoff, sediment and nutrients.

  15. Value of Available Global Soil Moisture Products for Agricultural Monitoring

    NASA Astrophysics Data System (ADS)

    Mladenova, Iliana; Bolten, John; Crow, Wade; de Jeu, Richard

    2016-04-01

    The first operationally derived and publicly distributed global soil moil moisture product was initiated with the launch of the Advanced Scanning Microwave Mission on the NASA's Earth Observing System Aqua satellite (AMSR-E). AMSR-E failed in late 2011, but its legacy is continued by AMSR2, launched in 2012 on the JAXA Global Change Observation Mission-Water (GCOM-W) mission. AMSR is a multi-frequency dual-polarization instrument, where the lowest two frequencies (C- and X-band) were used for soil moisture retrieval. Theoretical research and small-/field-scale airborne campaigns, however, have demonstrated that soil moisture would be best monitored using L-band-based observations. This consequently led to the development and launch of the first L-band-based mission-the ESA's Soil Moisture Ocean Salinity (SMOS) mission (2009). In early 2015 NASA launched the second L-band-based mission, the Soil Moisture Active Passive (SMAP). These satellite-based soil moisture products have been demonstrated to be invaluable sources of information for mapping water stress areas, crop monitoring and yield forecasting. Thus, a number of agricultural agencies routinely utilize and rely on global soil moisture products for improving their decision making activities, determining global crop production and crop prices, identifying food restricted areas, etc. The basic premise of applying soil moisture observations for vegetation monitoring is that the change in soil moisture conditions will precede the change in vegetation status, suggesting that soil moisture can be used as an early indicator of expected crop condition change. Here this relationship was evaluated across multiple microwave frequencies by examining the lag rank cross-correlation coefficient between the soil moisture observations and the Normalized Difference Vegetation Index (NDVI). A main goal of our analysis is to evaluate and inter-compare the value of the different soil moisture products derived using L-band (SMOS

  16. Soil moisture mapping for aquarius

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquarius is the first satellite to provide both passive and active L-band observations of the Earth. In addition, the instruments on Satelite de Aplicaciones Cientificas-D (SAC-D) provide complementary information for analysis and retrieval algorithms. Our research focuses on the retrieval of soil m...

  17. Remote sensing of soil moisture using airborne hyperspectral data

    USGS Publications Warehouse

    Finn, M.; Lewis, M.; Bosch, D.; Giraldo, Mario; Yamamoto, K.; Sullivan, D.; Kincaid, R.; Luna, R.; Allam, G.; Kvien, Craig; Williams, M.

    2011-01-01

    Landscape assessment of soil moisture is critical to understanding the hydrological cycle at the regional scale and in broad-scale studies of biophysical processes affected by global climate changes in temperature and precipitation. Traditional efforts to measure soil moisture have been principally restricted to in situ measurements, so remote sensing techniques are often employed. Hyperspectral sensors with finer spatial resolution and narrow band widths may offer an alternative to traditional multispectral analysis of soil moisture, particularly in landscapes with high spatial heterogeneity. This preliminary research evaluates the ability of remotely sensed hyperspectral data to quantify soil moisture for the Little River Experimental Watershed (LREW), Georgia. An airborne hyperspectral instrument with a short-wavelength infrared (SWIR) sensor was flown in 2005 and 2007 and the results were correlated to in situ soil moisture values. A significant statistical correlation (R2 value above 0.7 for both sampling dates) for the hyperspectral instrument data and the soil moisture probe data at 5.08 cm (2 inches) was determined. While models for the 20.32 cm (8 inches) and 30.48 cm (12 inches) depths were tested, they were not able to estimate soil moisture to the same degree.

  18. Remote sensing of soil moisture using airborne hyperspectral data

    USGS Publications Warehouse

    Finn, Michael P.; Lewis, Mark (David); Bosch, David D.; Giraldo, Mario; Yamamoto, Kristina H.; Sullivan, Dana G.; Kincaid, Russell; Luna, Ronaldo; Allam, Gopala Krishna; Kvien, Craig; Williams, Michael S.

    2011-01-01

    Landscape assessment of soil moisture is critical to understanding the hydrological cycle at the regional scale and in broad-scale studies of biophysical processes affected by global climate changes in temperature and precipitation. Traditional efforts to measure soil moisture have been principally restricted to in situ measurements, so remote sensing techniques are often employed. Hyperspectral sensors with finer spatial resolution and narrow band widths may offer an alternative to traditional multispectral analysis of soil moisture, particularly in landscapes with high spatial heterogeneity. This preliminary research evaluates the ability of remotely sensed hyperspectral data to quantify soil moisture for the Little River Experimental Watershed (LREW), Georgia. An airborne hyperspectral instrument with a short-wavelength infrared (SWIR) sensor was flown in 2005 and 2007 and the results were correlated to in situ soil moisture values. A significant statistical correlation (R 2 value above 0.7 for both sampling dates) for the hyperspectral instrument data and the soil moisture probe data at 5.08 cm (2 inches) was determined. While models for the 20.32 cm (8 inches) and 30.48 cm (12 inches) depths were tested, they were not able to estimate soil moisture to the same degree.

  19. Passive Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Njoku, Eni G.; Entekhabi, Dara

    1996-01-01

    Microwave remote sensing provides a unique capability for direct observation of soil moisture. Remote measurements from space afford the possibility of obtaining frequent, global sampling of soil moisture over a large fraction of the Earth's land surface. Microwave measurements have the benefit of being largely unaffected by cloud cover and variable surface solar illumination, but accurate soil moisture estimates are limited to regions that have either bare soil or low to moderate amounts of vegetation cover. A particular advantage of passive microwave sensors is that in the absence of significant vegetation cover soil moisture is the dominant effect on the received signal. The spatial resolutions of passive Microwave soil moisture sensors currently considered for space operation are in the range 10-20 km. The most useful frequency range for soil moisture sensing is 1-5 GHz. System design considerations include optimum choice of frequencies, polarizations, and scanning configurations, based on trade-offs between requirements for high vegetation penetration capability, freedom from electromagnetic interference, manageable antenna size and complexity, and the requirement that a sufficient number of information channels be available to correct for perturbing geophysical effects. This paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods. Particularly promising are methods for optimally assimilating passive microwave data into hydrologic models. Further studies are needed to investigate the effects on microwave observations of within-footprint spatial heterogeneity of vegetation cover and subsurface soil characteristics, and to assess the limitations imposed by heterogeneity on the retrievability of large-scale soil moisture information from remote observations.

  20. Evaluating Soil Moisture Status Using an e-Nose

    PubMed Central

    Bieganowski, Andrzej; Jaromin-Glen, Katarzyna; Guz, Łukasz; Łagód, Grzegorz; Jozefaciuk, Grzegorz; Franus, Wojciech; Suchorab, Zbigniew; Sobczuk, Henryk

    2016-01-01

    The possibility of distinguishing different soil moisture levels by electronic nose (e-nose) was studied. Ten arable soils of various types were investigated. The measurements were performed for air-dry (AD) soils stored for one year, then moistened to field water capacity and finally dried within a period of 180 days. The volatile fingerprints changed during the course of drying. At the end of the drying cycle, the fingerprints were similar to those of the initial AD soils. Principal component analysis (PCA) and artificial neural network (ANN) analysis showed that e-nose results can be used to distinguish soil moisture. It was also shown that different soils can give different e-nose signals at the same moistures. PMID:27338404

  1. Soil Moisture Measurement System For An Improved Flood Warning

    NASA Astrophysics Data System (ADS)

    Schaedel, W.; Becker, R.

    Precipitation-runoff processes are correlated with the catchment's hydrological pre- conditions that are taken into account in some hydrological models, e.g. by pre- precipitation index. This statistically generated variable is unsuitable in case of ex- treme flood events. Thus a non-statistical estimation of the catchment's preconditions is of tremendous importance for an improvement in reliability of flood warning. This can be achieved by persistent operational observation of the catchment's soil mois- ture condition. The soil moisture acts as a state variable controlling the risk of surface runoff, which is assumed to provoke critical floods. Critical soil moisture conditions can be identified by measurements in certain areas representative for the catchment. Therefore a measurement arrangement that does not effect the structure of soils is realised with twin rod probes. Spatial resolution algorithms result in soil moisture profiles along the probe rods. In this set up a quasi three dimensional soil moisture distribution can be interpolated with point measurements of up to 47 twin rod probes per cluster, connected via multiplexer. The large number of probes per cluster is of use for detailed observation of small-scaled moisture variability. As regionalized grid cell moisture the cluster information calibrates the default, state depending soil moisture distribution of the catchment. This distribution is explained by diverse soil moisture influencing properties, which are found by Landsat satellite image. Therefore the im- age is processed with principal component analysis to extract the soil moisture distri- bution. The distribution is calibrated by the detailed measurements, acting as ground based truth. Linear multiple regression operated on the calibrated distribution identi- fies the mentioned properties. In this fashion the catchment status can be determined and combined with precipitation forecasts, thus allowing for the comprehensive risk calculation of

  2. The soil moisture active passive experiments (SMAPEx): Towards soil moisture retrieval from the SMAP mission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NASA’s Soil Moisture Active Passive (SMAP) mission, scheduled for launch in 2014, will carry the first combined L-band radar and radiometer system with the objective of mapping near surface soil moisture and freeze/thaw state globally at near-daily time step (2-3 days). SMAP will provide three soil ...

  3. Contribution of Soil Moisture Information to Streamflow Prediction in the Snowmelt Season: A Continental-Scale Analysis

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf; Mahanama, Sarith; Koster, Randal; Lettenmaier, Dennis

    2009-01-01

    In areas dominated by winter snowcover, the prediction of streamflow during the snowmelt season may benefit from three pieces of information: (i) the accurate prediction of weather variability (precipitation, etc.) leading up to and during the snowmelt season, (ii) estimates of the amount of snow present during the winter season, and (iii) estimates of the amount of soil moisture underlying the snowpack during the winter season. The importance of accurate meteorological predictions and wintertime snow estimates is obvious. The contribution of soil moisture to streamflow prediction is more subtle yet potentially very important. If the soil is dry below the snowpack, a significant fraction of the snowmelt may be lost to streamflow and potential reservoir storage, since it may infiltrate the soil instead for later evaporation. Such evaporative losses are presumably smaller if the soil below the snowpack is wet. In this paper, we use a state-of-the-art land surface model to quantify the contribution of wintertime snow and soil moisture information -- both together and separately -- to skill in forecasting springtime streamflow. We find that soil moisture information indeed contributes significantly to streamflow prediction skill.

  4. NASA's Soil Moisture Active Passive (SMAP) Observatory

    NASA Technical Reports Server (NTRS)

    Kellogg, Kent; Thurman, Sam; Edelstein, Wendy; Spencer, Michael; Chen, Gun-Shing; Underwood, Mark; Njoku, Eni; Goodman, Shawn; Jai, Benhan

    2013-01-01

    The SMAP mission will produce high-resolution and accurate global maps of soil moisture and its freeze/thaw state using data from a non-imaging synthetic aperture radar and a radiometer, both operating at L-band.

  5. Radar measurement of soil moisture content

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.

    1974-01-01

    The effect of soil moisture on the radar backscattering coefficient was investigated by measuring the 4- to 8-GHz spectral response from two types of bare-soil fields: slightly rough and very rough, in terms of the wavelength. An FM-CW radar system mounted atop a 75-ft truck-mounted boom was used to measure the return at ten frequency points across the 4- to 8-GHz band, at eight different look angles (0 through 70 deg), and for all polarization combinations. A total of 17 sets of data were collected covering the range from 4 to 36% soil moisture content by weight. The results indicate that the radar response to soil moisture content is highly dependent on the surface roughness, microwave frequency, and look angle. The response seems to be linear, however, over the range from 15 to 30% moisture content for all angles, frequencies, polarizations and surface conditions.

  6. Error in Radar-Derived Soil Moisture due to Roughness Parameterization: An Analysis Based on Synthetical Surface Profiles

    PubMed Central

    Lievens, Hans; Vernieuwe, Hilde; Álvarez-Mozos, Jesús; De Baets, Bernard; Verhoest, Niko E.C.

    2009-01-01

    In the past decades, many studies on soil moisture retrieval from SAR demonstrated a poor correlation between the top layer soil moisture content and observed backscatter coefficients, which mainly has been attributed to difficulties involved in the parameterization of surface roughness. The present paper describes a theoretical study, performed on synthetical surface profiles, which investigates how errors on roughness parameters are introduced by standard measurement techniques, and how they will propagate through the commonly used Integral Equation Model (IEM) into a corresponding soil moisture retrieval error for some of the currently most used SAR configurations. Key aspects influencing the error on the roughness parameterization and consequently on soil moisture retrieval are: the length of the surface profile, the number of profile measurements, the horizontal and vertical accuracy of profile measurements and the removal of trends along profiles. Moreover, it is found that soil moisture retrieval with C-band configuration generally is less sensitive to inaccuracies in roughness parameterization than retrieval with L-band configuration. PMID:22399956

  7. Sensitivity analysis of C- and Ku-band synthetic aperture radar data to soil moisture content in a semiarid region

    NASA Astrophysics Data System (ADS)

    Sano, Edson Eyji

    In this study, the sensitivity of the C-band (5.3 GHz) with a 23sp° incidence angle and the Ku-band (14.85 GHz) with 35sp° ,\\ 55sp° , and 75sp° incidence angles to surface soil moisture content from a semiarid region were evaluated. To obtain an improved soil moisture estimation, a practical technique to reduce the influence of soil roughness and vegetation in the SAR data was developed in a study area located in the Walnut Gulch Experimental Watershed, a representative site of shrub- and grass-dominated rangelands of the southwestern part of the United States. To correct for soil roughness effects, the C-band radar backscattering coefficients sigmasp° from a wet season image were subtracted from sigmasp° derived from a dry season image. The assumption was that, in semiarid regions, the SAR data from the dry season was dependent only on the soil roughness effects. To correct for vegetation effects, an empirical relation between sigmasp° and leaf area index was used, the latter derived from Landsat Thematic Mapper data. The results showed that when both soil roughness and vegetation effects were corrected for, the sensitivity of sigmasp° to soil moisture improved substantially. The sensitivity of sigmasp° to soil moisture was also evaluated in agricultural fields with bare soil and periodic roughness components (planting row and furrow structures). Four types of SAR system configurations were analyzed: C-band with a 23sp° incidence angle and Ku-band with 35sp° ,\\ 55sp° , and 75sp° incidence angles. The test sites were located at the University of Arizona's Maricopa Agricultural Center, south of Phoenix, Arizona. The results showed that the sensitivity of sigmasp° to soil moisture was strongly dependent upon the field conditions. The SAR signal was nearly insensitive to soil moisture for furrowed fields (furrow spacing ˜95 cm; amplitude ˜22 cm), but for fields with planting row structures (row spacing ˜24 cm; amplitude ˜2 cm), the SAR data was

  8. Radar for Measuring Soil Moisture Under Vegetation

    NASA Technical Reports Server (NTRS)

    Moghaddam, Mahta; Moller, Delwyn; Rodriguez, Ernesto; Rahmat-Samii, Yahya

    2004-01-01

    A two-frequency, polarimetric, spaceborne synthetic-aperture radar (SAR) system has been proposed for measuring the moisture content of soil as a function of depth, even in the presence of overlying vegetation. These measurements are needed because data on soil moisture under vegetation canopies are not available now and are necessary for completing mathematical models of global energy and water balance with major implications for global variations in weather and climate.

  9. Soil moisture estimation with limited soil characterization for decision making

    NASA Astrophysics Data System (ADS)

    Chanzy, A.; Richard, G.; Boizard, H.; Défossez, P.

    2009-04-01

    Many decisions in agriculture are conditional to soil moisture. For instance in wet conditions, farming operations as soil tillage, organic waste spreading or harvesting may lead to degraded results and/or induce soil compaction. The development of a tool that allows the estimation of soil moisture is useful to help farmers to organize their field work in a context where farm size tends to increase as well as the need to optimize the use of expensive equipments. Soil water transfer models simulate soil moisture vertical profile evolution. These models are highly sensitive to site dependant parameters. A method to implement the mechanistic soil water and heat flow model (the TEC model) in a context of limited information (soil texture, climatic data, soil organic carbon) is proposed [Chanzy et al., 2008]. In this method the most sensitive model inputs were considered i.e. soil hydraulic properties, soil moisture profile initialization and the lower boundary conditions. The accuracy was estimated by implementing the method on several experimental cases covering a range of soils. Simulated soil moisture results were compared to soil moisture measurements. The obtained accuracy in surface soil moisture (0-30 cm) was 0.04 m3/m3. When a few soil moisture measurements are available (collected for instance by the farmer using a portable moisture sensor), significant improvement in soil moisture accuracy is obtained by assimilating the results into the model. Two assimilation strategies were compared and led to comparable results: a sequential approach, where the measurement were used to correct the simulated moisture profile when measurements are available and a variational approach which take moisture measurements to invert the TEC model and so retrieve soil hydraulic properties of the surface layer. The assimilation scheme remains however heavy in terms of computing time and so, for operational purposed fast code should be taken to simulate the soil moisture as with the

  10. Large scale measurements of soil moisture for validation of remotely sensed data: Georgia soil moisture experiment of 2003

    NASA Astrophysics Data System (ADS)

    Bosch, D. D.; Lakshmi, V.; Jackson, T. J.; Choi, M.; Jacobs, J. M.

    2006-05-01

    A series of soil moisture experiments were conducted in 2003 (SMEX03) to develop enhanced datasets necessary to improve spatiotemporal characterization of soil moisture and to enhance satellite-based retrievals. One component of this research was conducted in South Central Georgia of the US, from June 17th to July 21st (SMEX03 GA). This study analyzes measurements of soil moisture and temperature collected during SMEX03 GA. A network of in situ soil moisture measurement devices, established to provide validation data for the satellite collections and for long-term estimation of soil moisture conditions throughout the region, provided continuous measurements at 19 sites. Additional soil moisture and temperature validation data were collected daily from 49 field sites. These sites represented a diversity of land covers including forest, cotton, peanut, and pasture. Precipitation that occurred prior to June 22nd and from June 29th through July 2nd produced drying conditions from June 23rd to June 28th and gradual wetting from June 29th through July 2nd. Soil moisture in the top 0-1 cm of the soil was found to be more responsive to precipitation and to have greater variability than soil moisture at the 0-3 or 3-6 cm layers. Within different land covers, soil moisture followed the same trends, but varied with land use. Pasture sites were consistently the wettest while row-crop sites were normally the driest. Good agreement was observed between soil moisture measurements collected with the in situ network and the 49 SMEX sites. For the study period, soil moisture across the entire 50 km by 75 km region and five of the six 25 km by 25 km EASE-Grids demonstrated time stable characteristics. Time stability analysis and statistical tests demonstrated the in situ stations had a small dry bias as compared to the SMEX03 GA measurements. These results indicate that the in situ network will be a good resource for long-term calibration of remotely sensed soil moisture and provide

  11. Soil-moisture ground truth, Hand County, South Dakota

    NASA Technical Reports Server (NTRS)

    Jones, E. B.

    1976-01-01

    Soil types were determined from the Soil Survey of Hand County, South Dakota. The soil types encountered on the soil moisture lines are summarized. The actual soil moisture data are presented. The data have been divided by range, township and section. The soil moisture data obtained in fields of winter wheat and spring wheat are briefly summarized.

  12. Predicting root zone soil moisture with soil properties and satellite near-surface moisture data across the conterminous United States

    NASA Astrophysics Data System (ADS)

    Baldwin, D.; Manfreda, S.; Keller, K.; Smithwick, E. A. H.

    2017-03-01

    Satellite-based near-surface (0-2 cm) soil moisture estimates have global coverage, but do not capture variations of soil moisture in the root zone (up to 100 cm depth) and may be biased with respect to ground-based soil moisture measurements. Here, we present an ensemble Kalman filter (EnKF) hydrologic data assimilation system that predicts bias in satellite soil moisture data to support the physically based Soil Moisture Analytical Relationship (SMAR) infiltration model, which estimates root zone soil moisture with satellite soil moisture data. The SMAR-EnKF model estimates a regional-scale bias parameter using available in situ data. The regional bias parameter is added to satellite soil moisture retrievals before their use in the SMAR model, and the bias parameter is updated continuously over time with the EnKF algorithm. In this study, the SMAR-EnKF assimilates in situ soil moisture at 43 Soil Climate Analysis Network (SCAN) monitoring locations across the conterminous U.S. Multivariate regression models are developed to estimate SMAR parameters using soil physical properties and the moderate resolution imaging spectroradiometer (MODIS) evapotranspiration data product as covariates. SMAR-EnKF root zone soil moisture predictions are in relatively close agreement with in situ observations when using optimal model parameters, with root mean square errors averaging 0.051 [cm3 cm-3] (standard error, s.e. = 0.005). The average root mean square error associated with a 20-fold cross-validation analysis with permuted SMAR parameter regression models increases moderately (0.082 [cm3 cm-3], s.e. = 0.004). The expected regional-scale satellite correction bias is negative in four out of six ecoregions studied (mean = -0.12 [-], s.e. = 0.002), excluding the Great Plains and Eastern Temperate Forests (0.053 [-], s.e. = 0.001). With its capability of estimating regional-scale satellite bias, the SMAR-EnKF system can predict root zone soil moisture over broad extents and has

  13. Soil moisture at local scale: Measurements and simulations

    NASA Astrophysics Data System (ADS)

    Romano, Nunzio

    2014-08-01

    Soil moisture refers to the water present in the uppermost part of a field soil and is a state variable controlling a wide array of ecological, hydrological, geotechnical, and meteorological processes. The literature on soil moisture is very extensive and is developing so rapidly that it might be considered ambitious to seek to present the state of the art concerning research into this key variable. Even when covering investigations about only one aspect of the problem, there is a risk of some inevitable omission. A specific feature of the present essay, which may make this overview if not comprehensive at least of particular interest, is that the reader is guided through the various traditional and more up-to-date methods by the central thread of techniques developed to measure soil moisture interwoven with applications of modeling tools that exploit the observed datasets. This paper restricts its analysis to the evolution of soil moisture at the local (spatial) scale. Though a somewhat loosely defined term, it is linked here to a characteristic length of the soil volume investigated by the soil moisture sensing probe. After presenting the most common concepts and definitions about the amount of water stored in a certain volume of soil close to the land surface, this paper proceeds to review ground-based methods for monitoring soil moisture and evaluates modeling tools for the analysis of the gathered information in various applications. Concluding remarks address questions of monitoring and modeling of soil moisture at scales larger than the local scale with the related issue of data aggregation. An extensive, but not exhaustive, list of references is provided, enabling the reader to gain further insights into this subject.

  14. Microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Shiue, J. C.; Wang, J. R.

    1988-01-01

    Knowledge of soil moisture is important to many disciplines, such as agriculture, hydrology, and meteorology. Soil moisture distribution of vast regions can be measured efficiently only with remote sensing techniques from airborne or satellite platforms. At low microwave frequencies, water has a much larger dielectric constant than dry soil. This difference manifests itself in surface emissivity (or reflectivity) change between dry and wet soils, and can be measured by a microwave radiometer or radar. The Microwave Sensors and Data Communications Branch is developing microwave remote sensing techniques using both radar and radiometry, but primarily with microwave radiometry. The efforts in these areas range from developing algorithms for data interpretation to conducting feasibility studies for space systems, with a primary goal of developing a microwave radiometer for soil moisture measurement from satellites, such as EOS or the Space Station. These efforts are listed.

  15. The prototype SMOS soil moisture Algorithm

    NASA Astrophysics Data System (ADS)

    Kerr, Y.; Waldteufel, P.; Richaume, P.; Cabot, F.; Wigneron, J. P.; Ferrazzoli, P.; Mahmoodi, A.; Delwart, S.

    2009-04-01

    The Soil Moisture and Ocean Salinity (SMOS) mission is ESA's (European Space Agency ) second Earth Explorer Opportunity mission, to be launched in September 2007. It is a joint programme between ESA CNES (Centre National d'Etudes Spatiales) and CDTI (Centro para el Desarrollo Tecnologico Industrial). SMOS carries a single payload, an L-band 2D interferometric radiometer in the 1400-1427 MHz protected band. This wavelength penetrates well through the atmosphere and hence the instrument probes the Earth surface emissivity. Surface emissivity can then be related to the moisture content in the first few centimeters of soil, and, after some surface roughness and temperature corrections, to the sea surface salinity over ocean. In order to prepare the data use and dissemination, the ground segment will produce level 1 and 2 data. Level 1 will consists mainly of angular brightness temperatures while level 2 will consist of geophysical products. In this context, a group of institutes prepared the soil moisture and ocean salinity Algorithm Theoretical Basis documents (ATBD) to be used to produce the operational algorithm. The consortium of institutes preparing the Soil moisture algorithm is led by CESBIO (Centre d'Etudes Spatiales de la BIOsphère) and Service d'Aéronomie and consists of the institutes represented by the authors. The principle of the soil moisture retrieval algorithm is based on an iterative approach which aims at minimizing a cost function given by the sum of the squared weighted differences between measured and modelled brightness temperature (TB) data, for a variety of incidence angles. This is achieved by finding the best suited set of the parameters which drive the direct TB model, e.g. soil moisture (SM) and vegetation characteristics. Despite the simplicity of this principle, the main reason for the complexity of the algorithm is that SMOS "pixels" can correspond to rather large, inhomogeneous surface areas whose contribution to the radiometric

  16. Microwave radiometric measurements of soil moisture in Italy

    NASA Astrophysics Data System (ADS)

    Macelloni, G.; Paloscia, S.; Pampaloni, P.; Santi, E.; Tedesco, M.

    Within the framework of the MAP and RAPHAEL projects, airborne experimental campaigns were carried out by the IFAC group in 1999 and 2000, using a multifrequency microwave radiometer at L, C and X bands (1.4, 6.8 and 10 GHz). The aim of the experiments was to collect soil moisture and vegetation biomass information on agricultural areas to give reliable inputs to the hydrological models. It is well known that microwave emission from soil, mainly at L-band (1.4 GHz), is very well correlated to its moisture content. Two experimental areas in Italy were selected for this project: one was the Toce Valley, Domodossola, in 1999, and the other, the agricultural area of Cerbaia, close to Florence, where flights were performed in 2000. Measurements were carried out on bare soils, corn and wheat fields in different growth stages and on meadows. Ground data of soil moisture (SMC) were collected by other research teams involved in the experiments. From the analysis of the data sets, it has been confirmed that L-band is well related to the SMC of a rather deep soil layer, whereas C-band is sensitive to the surface SMC and is more affected by the presence of surface roughness and vegetation, especially at high incidence angles. An algorithm for the retrieval of soil moisture, based on the sensitivity to moisture of the brightness temperature at C-band, has been tested using the collected data set. The results of the algorithm, which is able to correct for the effect of vegetation by means of the polarisation index at X-band, have been compared with soil moisture data measured on the ground. Finally, the sensitivity of emission at different frequencies to the soil moisture profile was investigated. Experimental data sets were interpreted by using the Integral Equation Model (IEM) and the outputs of the model were used to train an artificial neural network to reproduce the soil moisture content at different depths.

  17. Downscaling soil moisture using multisource data in China

    NASA Astrophysics Data System (ADS)

    An, Ru; Wang, Hui-Lin; You, Jia-jun; Wang, Ying; Shen, Xiao-ji; Gao, Wei; Wang, Yi-nan; Zhang, Yu; Wang, Zhe; Quaye-Ballardd, Jonathan Arthur; Chen, Yuehong

    2016-10-01

    Soil moisture plays an important role in the water cycle within the surface ecosystem and it is the basic condition for the growth and development of plants. Currently, the spatial resolution of most soil moisture data from remote sensing ranges from ten to several tens of kilometres whilst those observed in situ and simulated for watershed hydrology, ecology, agriculture, weather and drought research are generally less than 1 kilometre. Therefore, the existing coarse resolution remotely sensed soil moisture data needs to be down-scaled. In this paper, a universal soil moisture downscaling model through stepwise regression with moving window suitable for large areas and multi temporal has been established. Datasets comprise land surface, brightness temperature, precipitation, soil and topographic parameters from high resolution data, and active/passive microwave remotely sensed soil moisture data from Essential Climate Variables (ECV_SM) with 25 km spatial resolution were used. With this model, a total of 288 soil moisture maps of 1 km resolution from the first ten-day of January 2003 to the last tenth-day of December 2010 were derived. The in situ observations were used to validate the down-scaled ECV_SM for different land cover and land use types and seasons. In addition, various errors comparative analysis was also carried out for the down-scaled ECV_SM and original one. In general, the down-scaled soil moisture for different land cover and land use types is consistent with the in situ observations. The accuracy is relatively high in autumn and winter. The validation results show that downscaled soil moisture can be improved not only on spatial resolution, but also on estimation accuracy.

  18. Development of an Objective High Spatial Resolution Soil Moisture Index

    NASA Astrophysics Data System (ADS)

    Zavodsky, B.; Case, J.; White, K.; Bell, J. R.

    2015-12-01

    Drought detection, analysis, and mitigation has become a key challenge for a diverse set of decision makers, including but not limited to operational weather forecasters, climatologists, agricultural interests, and water resource management. One tool that is heavily used is the United States Drought Monitor (USDM), which is derived from a complex blend of objective data and subjective analysis on a state-by-state basis using a variety of modeled and observed precipitation, soil moisture, hydrologic, and vegetation and crop health data. The NASA Short-term Prediction Research and Transition (SPoRT) Center currently runs a real-time configuration of the Noah land surface model (LSM) within the NASA Land Information System (LIS) framework. The LIS-Noah is run at 3-km resolution for local numerical weather prediction (NWP) and situational awareness applications at select NOAA/National Weather Service (NWS) forecast offices over the Continental U.S. (CONUS). To enhance the practicality of the LIS-Noah output for drought monitoring and assessing flood potential, a 30+-year soil moisture climatology has been developed in an attempt to place near real-time soil moisture values in historical context at county- and/or watershed-scale resolutions. This LIS-Noah soil moisture climatology and accompanying anomalies is intended to complement the current suite of operational products, such as the North American Land Data Assimilation System phase 2 (NLDAS-2), which are generated on a coarser-resolution grid that may not capture localized, yet important soil moisture features. Daily soil moisture histograms are used to identify the real-time soil moisture percentiles at each grid point according to the county or watershed in which the grid point resides. Spatial plots are then produced that map the percentiles as proxies to the different USDM categories. This presentation will highlight recent developments of this gridded, objective soil moisture index, comparison to subjective

  19. Analysis of field-sampled, in-situ network, and PALS airborne soil moisture observations over SMAPVEX12

    NASA Astrophysics Data System (ADS)

    Adams, J. R.; Berg, A. A.; McNairn, H.; Cosh, M. H.

    2014-12-01

    The Soil Moisture Active Passive Validation Experiment in 2012 (SMAPVEX12) was conducted over an agricultural domain in southern Manitoba, Canada. The purpose of the campaign was to develop ground and airborne datasets for pre-launch validation of SMAP satellite soil moisture retrieval algorithms. Three key soil moisture datasets were collected in support of the campaign objectives: 1) intensive field sampling over (up to) 55 agricultural fields on 17 sampling days; 2) a continuously operated temporary in-situ network (> 30 stations) distributed over the domain; and 3) L-band microwave data from NASA's Passive Active L-band Sensor (PALS) onboard a Twin-Otter aircraft. This presentation addresses whether dense temporary in-situ networks can supplant intensive field-sampling during pre-/post-launch validation campaigns. SMAPVEX12 datasets are examined at the field and aircraft pixel (~800 m) scale, and at the domain scale. Preliminary results demonstrate that, at the field-scale, there is generally limited agreement between a single station and sampled data over its field. Over the duration of the campaign, the majority of temporary soil moisture stations have > 0.04 m3m-3 RMSE with sampled field data, suggesting that a single station has limited representativeness of an agricultural field. Furthermore, the in-situ stations and field-sampled data are compared with PALS generated soil moisture to assess differences in daily RMSE. For wet-periods, both ground datasets provide a comparable RMSE for the PALS estimate. Although for dry-periods, the difference in RMSE between the ground datasets becomes more significant (> 0.04 m3m-3). This is because the field-sampled data exhibit a sharper dry-down than the in-situ station measurements. However, at the domain scale there is strong agreement between the soil moisture datasets. Additional results describe the sources of variability affecting these soil moisture datasets and the statistical number of stations needed to

  20. Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.

    1985-01-01

    Because of the large contrast between the dielectric constant of liquid water and that of dry soil at microwave wavelength, there is a strong dependence of the thermal emission and radar backscatter from the soil on its moisture content. This dependence provides a means for the remote sensing of the moisture content in a surface layer approximately 5 cm thick. The feasibility of these techniques is demonstrated from field, aircraft and spacecraft platforms. The soil texture, surface roughness, and vegetative cover affect the sensitivity of the microwave response to moisture variations with vegetation being the most important. It serves as an attenuating layer which can totally obscure the surface. Research indicates that it is possible to obtain five or more levels of moisture discrimination and that a mature corn crop is the limiting vegetation situation.

  1. The moisture response of soil heterotrophic respiration: interaction with soil properties

    NASA Astrophysics Data System (ADS)

    Moyano, F. E.; Vasilyeva, N.; Bouckaert, L.; Cook, F.; Craine, J.; Curiel Yuste, J.; Don, A.; Epron, D.; Formanek, P.; Franzluebbers, A.; Ilstedt, U.; Kätterer, T.; Orchard, V.; Reichstein, M.; Rey, A.; Ruamps, L.; Subke, J.-A.; Thomsen, I. K.; Chenu, C.

    2012-03-01

    Soil moisture is of primary importance for predicting the evolution of soil carbon stocks and fluxes, both because it strongly controls organic matter decomposition and because it is predicted to change at global scales in the following decades. However, the soil functions used to model the heterotrophic respiration response to moisture have limited empirical support and introduce an uncertainty of at least 4% in global soil carbon stock predictions by 2100. The necessity of improving the representation of this relationship in models has been highlighted in recent studies. Here we present a data-driven analysis of soil moisture-respiration relations based on 90 soils. With the use of linear models we show how the relationship between soil heterotrophic respiration and different measures of soil moisture is consistently affected by soil properties. The empirical models derived include main effects and moisture interaction effects of soil texture, organic carbon content and bulk density. When compared to other functions currently used in different soil biogeochemical models, we observe that our results can correct biases and reconcile differences within and between such functions. Ultimately, accurate predictions of the response of soil carbon to future climate scenarios will require the integration of soil-dependent moisture-respiration functions coupled with realistic representations of soil water dynamics.

  2. The moisture response of soil heterotrophic respiration: interaction with soil properties

    NASA Astrophysics Data System (ADS)

    Moyano, F. E.; Vasilyeva, N.; Bouckaert, L.; Cook, F.; Craine, J.; Curiel Yuste, J.; Don, A.; Epron, D.; Formanek, P.; Franzluebbers, A.; Ilstedt, U.; Kätterer, T.; Orchard, V.; Reichstein, M.; Rey, A.; Ruamps, L.; Subke, J.-A.; Thomsen, I. K.; Chenu, C.

    2011-12-01

    Soil moisture is of primary importance for predicting the evolution of soil carbon stocks and fluxes, both because it strongly controls organic matter decomposition and because it is predicted to change at global scales in the following decades. However, the soil functions used to model the heterotrophic respiration response to moisture have limited empirical support and introduce an uncertainty of at least 4 % in global soil carbon stock predictions by 2100. The necessity of improving the representation of this relationship in models has been highlighted in recent studies. Here we present a data-driven analysis of soil moisture-respiration relations based on 90 soils. With the use of linear models we show how the relationship between soil heterotrophic respiration and different measures of soil moisture is consistently affected by soil properties. The empirical models derived include main and moisture interaction effects of soil texture, organic carbon content and bulk density. When compared to other functions currently used in different soil biogeochemical models, we observe that our results can correct biases and reconcile differences within and between such functions. Ultimately, accurate predictions of the response of soil carbon to future climate scenarios will require the integration of soil-dependent moisture-respiration functions coupled with realistic representations of soil water dynamics.

  3. Impact of climate change on soil thermal and moisture regimes in Serbia: An analysis with data from regional climate simulations under SRES-A1B.

    PubMed

    Mihailović, D T; Drešković, N; Arsenić, I; Ćirić, V; Djurdjević, V; Mimić, G; Pap, I; Balaž, I

    2016-11-15

    We considered temporal and spatial variations to the thermal and moisture regimes of the most common RSGs (Reference Soil Groups) in Serbia under the A1B scenario for the 2021-2050 and 2071-2100 periods, with respect to the 1961-1990 period. We utilized dynamically downscaled global climate simulations from the ECHAM5 model using the coupled regional climate model EBU-POM (Eta Belgrade University-Princeton Ocean Model). We analysed the soil temperature and moisture time series using simple statistics and a Kolmogorov complexity (KC) analysis. The corresponding metrics were calculated for 150 sites. In the future, warmer and drier regimes can be expected for all RSGs in Serbia. The calculated soil temperature and moisture variations include increases in the mean annual soil temperature (up to 3.8°C) and decreases in the mean annual soil moisture (up to 11.3%). Based on the KC values, the soils in Serbia are classified with respect to climate change impacts as (1) less sensitive (Vertisols, Umbrisols and Dystric Cambisols) or (2) more sensitive (Chernozems, Eutric Cambisols and Planosols).

  4. Effects of soil moisture on the diurnal pattern of pesticide emission: Numerical simulation and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Reichman, Rivka; Yates, Scott R.; Skaggs, Todd H.; Rolston, Dennis E.

    2013-02-01

    Accurate prediction of pesticide volatilization is important for the protection of human and environmental health. Due to the complexity of the volatilization process, sophisticated predictive models are needed, especially for dry soil conditions. A mathematical model was developed to allow simulation of the diurnal variation of pesticide volatilization as affected by soil-water content, the air-solid interface partition coefficient, soil-water retention function and soil surface resistance processes. The model formulation considered two possible water retention functions and two soil surface resistance functions. To test the model, simulations were performed for ten successive days of drying under typical semi-arid summer conditions following application of the pesticide diazinon to either a loam or sand soil. Results showed that the temporal variation and magnitude of diazinon emission were strongly affected by the air-solid interface partition coefficient, soil-water content and the surface resistance function. The model was capable of simulating complex diurnal patterns in the peak emission rates which are caused by changes in soil water content and air-solid partitioning. The water retention function formulation had only a minor effect on the simulated water content and volatilization rates, whereas the soil surface resistance function significantly influenced the volatilization rate. Neither the water retention function nor the soil surface resistance formulation had a significant effect on the simulated soil temperature.

  5. Root Zone Soil Moisture Forecasting Using Multivariate Relevance Vector Machines

    NASA Astrophysics Data System (ADS)

    Zaman, B.; McKee, M.

    2009-12-01

    Root zone soil moisture at depths of 1 and 2 meters are forecasted four days into the future. Prediction of soil moisture can be of paramount importance owing to its applicability in soil water balance calculations, modeling of various hydrometeorological, ecological, and biogeochemical factors, and initialization of various land-atmosphere models. In this study, we propose a new multivariate output prediction approach for forecasting root zone soil moisture using learning machine models. These models are known for their robustness, efficiency, and sparseness, and provide a statistically sound approach to solving the inverse problems and thus to building statistical models. The multivariate relevance vector machine (MVRVM) is used to build a model that predicts future soil state based upon current soil moisture and soil temperature conditions. The predicting function learns the input-output response pattern from the training dataset. Soil moisture measurements acquired by the Soil Climate Analysis Network (SCAN) site at Rees Center, Texas are used for this study. The methodology combines the data at different depths from 5 cm to 50 cm, the largest of which corresponds to the depth at which the soil moisture sensors are generally operational, to produce soil moisture predictions at larger depths. The MVRVM model demonstrates superior performance. The results for soil moisture predictions at 1 m and 2 m depth for the fourth day are excellent, with RMSE = 0.0125 m3water/m3soil; IoA = 0.96; CoE = 0.88 at 1 m depth, and RMSE = 0.0021 m3/m3; IoA = 0.98; CoE = 0.93 for 2 m depth. The statistics indicate good model generalization capability and computations show good agreement with the actual soil moisture measurements with R2 = 0.89 and R2 = 0.94 for 1 m and 2 m depths on fourth day, respectively. The MVRVM produces good results for all four days with a reduced computational complexity and more suitable real-time implementation. Bootstrapping is used to check over

  6. Characterization of the spatial-temporal variability of soil moisture by remote sensing

    NASA Astrophysics Data System (ADS)

    Kim, Gwangseob

    1999-11-01

    Characterization of spatial and temporal variabilities of soil moisture, spectral formalism of soil moisture estimation and sampling error simulation study were conducted to understand soil moisture field and to establish global monitoring strategy. Linear relation between soil moisture and porosity is dramatically improved with increasing pixel size although linear relation between soil moisture and soil properties is very weak. The relation between field variance and aggregation area follows power law between log scale 4 and 7. Scaling analysis indicates that the power law exponent becomes smaller with increasing area, which allows the assumption that the soil moisture field is stationary in large area. Variogram analysis shows that the stationarity of soil moisture field is changed by meteorological condition. Spectrum of soil moisture field shows there is no dominant spatial frequency. Two-dimensional correlogram of the soil moisture and brightness temperature fields shows strong anisotropy. Correlation structure of the soil moisture field is changed by drying or rainfall process. Average correlation length of the soil moisture consists of Long'-14km and Lat'-36km. Autoregressive exogenous model (ARX) with lag-1 correlation coefficient 0.9 is suggested for temporal soil moisture model. The Monsoon '90 soil moisture data indicate that diurnal cycle causes 1--4% sampling error. (5 a.m.--9a.m.: 1%, 1 p.m.--3 p.m.: 4%). North-Nakamoto formalism (1989) was used to compute the sampling error for the soil moisture field estimation. The space-time discrete design filter was evaluated and it is applicable to all kinds of sampling design. Missing temporal measurements in SGP '97 soil moisture field make it difficult to estimate the spectra directly from observed record. The soil moisture spectrum was estimated using rainfall and soil moisture models tuned parameter to SGP '97 data. Estimated sampling error of daily electronically scanned thinned army radiometer (ESTAR

  7. Root-zone soil moisture estimation from assimilation of downscaled Soil Moisture and Ocean Salinity data

    NASA Astrophysics Data System (ADS)

    Dumedah, Gift; Walker, Jeffrey P.; Merlin, Olivier

    2015-10-01

    The crucial role of root-zone soil moisture is widely recognized in land-atmosphere interaction, with direct practical use in hydrology, agriculture and meteorology. But it is difficult to estimate the root-zone soil moisture accurately because of its space-time variability and its nonlinear relationship with surface soil moisture. Typically, direct satellite observations at the surface are extended to estimate the root-zone soil moisture through data assimilation. But the results suffer from low spatial resolution of the satellite observation. While advances have been made recently to downscale the satellite soil moisture from Soil Moisture and Ocean Salinity (SMOS) mission using methods such as the Disaggregation based on Physical And Theoretical scale Change (DisPATCh), the assimilation of such data into high spatial resolution land surface models has not been examined to estimate the root-zone soil moisture. Consequently, this study assimilates the 1-km DisPATCh surface soil moisture into the Joint UK Land Environment Simulator (JULES) to better estimate the root-zone soil moisture. The assimilation is demonstrated using the advanced Evolutionary Data Assimilation (EDA) procedure for the Yanco area in south eastern Australia. When evaluated using in-situ OzNet soil moisture, the open loop was found to be 95% as accurate as the updated output, with the updated estimate improving the DisPATCh data by 14%, all based on the root mean square error (RMSE). Evaluation of the root-zone soil moisture with in-situ OzNet data found the updated output to improve the open loop estimate by 34% for the 0-30 cm soil depth, 59% for the 30-60 cm soil depth, and 63% for the 60-90 cm soil depth, based on RMSE. The increased performance of the updated output over the open loop estimate is associated with (i) consistent estimation accuracy across the three soil depths for the updated output, and (ii) the deterioration of the open loop output for deeper soil depths. Thus, the

  8. Evaluation of soil moisture sensors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the measurement accuracy and repeatability of the EC-5 and 5TM soil volumetric water content (SVWC) sensors, MPS-2 and 200SS soil water potential (SWP) sensors, and 200TS soil temperature sensor. Six 183cm x 183cm x 71cm wooden compartments were built inside a greenhouse, and e...

  9. An Analysis of the Relationship between a Passive Microwave Sensor Data Set and Soil Moisture Content

    DTIC Science & Technology

    1989-12-01

    Radiometer ( PBMR ) was flown over the designated watershed in a NASA C-130 aircraft. In its explanatory report of the PBMR , NASA describes a radiometer and...amplification process helps to eliminate the problem. A more complete description of the radiometer is in Appendix C. The PBMR is a 4-beam...temperature of the soil (8:1138). The soil temperature was also identified by the PBMR equipment. 28 Soil Temperature. Besides the four brightness

  10. Comparing soil moisture memory in satellite observations and models

    NASA Astrophysics Data System (ADS)

    Stacke, Tobias; Hagemann, Stefan; Loew, Alexander

    2013-04-01

    A major obstacle to a correct parametrization of soil processes in large scale global land surface models is the lack of long term soil moisture observations for large parts of the globe. Currently, a compilation of soil moisture data derived from a range of satellites is released by the ESA Climate Change Initiative (ECV_SM). Comprising the period from 1978 until 2010, it provides the opportunity to compute climatological relevant statistics on a quasi-global scale and to compare these to the output of climate models. Our study is focused on the investigation of soil moisture memory in satellite observations and models. As a proxy for memory we compute the autocorrelation length (ACL) of the available satellite data and the uppermost soil layer of the models. Additional to the ECV_SM data, AMSR-E soil moisture is used as observational estimate. Simulated soil moisture fields are taken from ERA-Interim reanalysis and generated with the land surface model JSBACH, which was driven with quasi-observational meteorological forcing data. The satellite data show ACLs between one week and one month for the greater part of the land surface while the models simulate a longer memory of up to two months. Some pattern are similar in models and observations, e.g. a longer memory in the Sahel Zone and the Arabian Peninsula, but the models are not able to reproduce regions with a very short ACL of just a few days. If the long term seasonality is subtracted from the data the memory is strongly shortened, indicating the importance of seasonal variations for the memory in most regions. Furthermore, we analyze the change of soil moisture memory in the different soil layers of the models to investigate to which extent the surface soil moisture includes information about the whole soil column. A first analysis reveals that the ACL is increasing for deeper layers. However, its increase is stronger in the soil moisture anomaly than in its absolute values and the first even exceeds the

  11. Response of spectral vegetation indices to soil moisture in grasslands and shrublands

    USGS Publications Warehouse

    Zhang, Li; Ji, Lei; Wylie, Bruce K.

    2011-01-01

    The relationships between satellite-derived vegetation indices (VIs) and soil moisture are complicated because of the time lag of the vegetation response to soil moisture. In this study, we used a distributed lag regression model to evaluate the lag responses of VIs to soil moisture for grasslands and shrublands at Soil Climate Analysis Network sites in the central and western United States. We examined the relationships between Moderate Resolution Imaging Spectroradiometer (MODIS)-derived VIs and soil moisture measurements. The Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) showed significant lag responses to soil moisture. The lag length varies from 8 to 56 days for NDVI and from 16 to 56 days for NDWI. However, the lag response of NDVI and NDWI to soil moisture varied among the sites. Our study suggests that the lag effect needs to be taken into consideration when the VIs are used to estimate soil moisture.

  12. Derivation of Soil Moisture Patterns from a simple Soil Moisture Index

    NASA Astrophysics Data System (ADS)

    Korres, W.; Schneider, K.; Reichenau, T. G.; Esch, S.

    2015-12-01

    Soil moisture and its spatio-temporal pattern is one of the main drivers in complex soil-vegetation-atmosphere exchange processes. In order to observe long-term patterns of surface soil moisture, we analyzed a historical data set of ERS SAR (synthetic aperture radar) data using 85 ERS scenes from 1995-2003 for the Rur catchment (2364 km2) in Western Germany. The ERS satellites operated in C-band and single-channel VV polarization. To derive surface soil moisture from the microwave backscatter intensity, the influence of surface roughness and vegetation biomass on the backscatter must be taken into account. Thus, a simple soil moisture index was developed to retrieve semi-quantitative information about spatial soil moisture patterns with a simple yet robust approach. By using data from all available scenes for each month of the year, histograms of σ0-values for each agricultural land use class (cereals, sugar beet, pasture) were generated. Within each of these histograms, the influence of biomass and surface roughness on backscatter is assumed to be constant. Thus, changes in backscatter intensity are due to changes in surface soil moisture. Since the histograms are based on data from 8 years, we assume that each histogram contains pixels representing the wet and the dry soil moisture state. An index was spanned between high and low backscatter values, identifying wet and dry areas. By using soil texture information of the given location, the qualitative index can be translated into volumetric soil moisture. The resulting soil moisture maps were compared to precipitation data from nearby meteorological stations.

  13. Radar measurement of soil moisture content

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.

    1973-01-01

    The effect of soil moisture on the radar backscattering coefficient was investigated by measuring the 4-8 GHz spectral response from two types of bare-soil fields: slightly rough and very rough, in terms of the wavelength. An FM-CW radar system was used to measure the return at 10 frequency points across the 4-8 GHz band, at different look angles, and for all polarization combinations. The results indicate that the radar response to soil moisture content is highly dependent on the surface roughness, microwave frequency, and look angle. The response seems to be linear over the range 15%-30% moisture content for all angles, frequencies, polarizations and surface conditions.

  14. Soil moisture needs in earth sciences

    NASA Technical Reports Server (NTRS)

    Engman, Edwin T.

    1992-01-01

    The author reviews the development of passive and active microwave techniques for measuring soil moisture with respect to how the data may be used. New science programs such as the EOS, the GEWEX Continental-Scale International Project (GCIP) and STORM, a mesoscale meteorology and hydrology project, will have to account for soil moisture either as a storage in water balance computations or as a state variable in-process modeling. The author discusses future soil moisture needs such as frequency of measurement, accuracy, depth, and spatial resolution, as well as the concomitant model development that must proceed concurrently if the development in microwave technology is to have a major impact in these areas.

  15. Soil moisture-temperature coupling: revisited using remote sensing soil moisture

    NASA Astrophysics Data System (ADS)

    Hirschi, Martin; Mueller, Brigitte; Dorigo, Wouter; Seneviratne, Sonia I.

    2013-04-01

    Hot extremes have been shown to be induced by antecedent soil moisture deficits and drought conditions in several regions (e.g., Mueller and Seneviratne, 2012). While most previous studies on this topic relied on modeling results or precipitation-based soil moisture information (in particular the standardized precipitation index, SPI), we use here a new merged remote sensing (RS) soil moisture product combining data from active and passive microwave sensors to investigate the relation between the number of hot days (NHD) and preceding soil moisture deficits. Overall, the global patterns of soil moisture-NHD correlations from RS data and from SPI as used in previous studies agree relatively well, suggesting that these patterns are partly independent of the chosen dataset. Nonetheless, the strength of the relationship appears underestimated with RS-based soil mois- ture data compared to SPI-based estimates, in particular in previously iden- tified regions of strong soil moisture-temperature coupling. This is mainly due to the fact that the temporal hydrological variability is less pronounced in the RS data than the SPI estimates in these regions, and that pronounced (dry or wet) anomalies appear underestimated. Further, complementary anal- yses with data from the Global Land Data Assimilation System (GLDAS) suggest that the differences between the RS-based soil moisture-NHD and the precipitation-based SPI-NHD coupling estimates are not primarily due to the use of soil moisture instead of SPI, or to the shallow depth of the RS- based soil moisture retrievals. Mueller, B., and S. I. Seneviratne (2012). Hot days induced by precipitation deficits at the global scale. Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.1204330109.

  16. Application of a soil moisture diagnostic equation for estimating root-zone soil moisture in arid and semi-arid regions

    NASA Astrophysics Data System (ADS)

    Pan, Feifei; Nieswiadomy, Michael; Qian, Shuan

    2015-05-01

    Knowledge of soil moisture in the root zone is critical for crop growth estimation and irrigation scheduling. In this study, a soil moisture diagnostic equation is applied to estimate soil moisture at depths of 0-100 cm (because the majority of crop roots are in the top 100 cm of soil) at four USDA Soil Climate Analysis Network (SCAN) sites in arid and semi-arid regions: TX2105 in northwest Texas, NM2015 and NM2108 in east New Mexico, and AZ2026 in southeast Arizona. At each site, a dataset of 5-6 years of records of daily soil moisture, daily mean air temperature, precipitation and downward solar radiation is compiled and processed. Both the sinusoidal wave function of day of year (DOY) and a linear function of the potential evapotranspiration (PET) are used to approximate the soil moisture loss coefficient. The first four years of data are used to derive the soil moisture loss function and the empirical parameters in the soil moisture diagnostic equation. The derived loss function and empirical parameters are then applied to estimate soil moisture in the last fifth or sixth year at each site. Root mean square errors (RMSEs) of the estimated volumetric soil moistures in five different soil columns (i.e., 5 cm, 10 cm, 20 or 30 cm, 50 cm, and 100 cm) are less than 3.2 (%V/V), and the accuracy of the estimated soil moistures using the sinusoidal soil moisture loss function is slightly better than the PET-based loss functions. In addition to the three advantages of this soil moisture diagnostic equation, i.e., (1) non-cumulative errors in the estimated soil moisture, (2) no regular recalibration is required to correct the cumulative errors, and (3) no numerical iteration and initial moisture inputs are needed since only precipitation data are required, this study also demonstrates that the soil moisture diagnostic equation not only can be used to estimate surface soil moisture, but also the entire root-zone soil moisture.

  17. [Soil moisture estimation model based on multiple vegetation index].

    PubMed

    Wu, Hai-long; Yu, Xin-xiao; Zhang, Zhen-ming; Zhang, Yan

    2014-06-01

    Estimating soil moisture conveniently and exactly is a hot issues in water resource monitoring among agriculture and forestry. Estimating soil moisture based on vegetation index has been recognized and applied widely. 8 vegetation indexes were figured out based on the hyper-spectral data measured by portable spectrometer. The higher correlation indexes among 8 vegetation indexes and surface vegetation temperature were selected by Gray Relative Analysis method (GRA). Then, these selected indexes were analyzed using Multiple Linear Regression to establish soil moisture estimation model based on multiple vegetation indexes, and the model accuracy was evaluated. The accuracy evaluation indicated that the fitting was satisfied and the significance was 0.000 (P < 0.001). High correlation was turned out between estimated and measured soil moisture with R2 reached 0.636 1 and RMSE 2.149 9. This method introduced multiple vegetation indexes into soil water content estimating over micro scale by non-contact measuring method using portable spectrometer. The exact estimation could be an appropriate replacement for remote sensing inversion and direct measurement. The model could estimate soil moisture quickly and accurately, and provide theory and technology reference for water resource management in agriculture and forestry.

  18. Estimating rootzone soil moisture by assimilating both microwave based surface soil moisture and thermal based soil moisture proxy observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A number of synthetic data assimilation experiments are carried out at the USDA Economic and Environmental Enhancement (OPE3) site in Beltsville, Maryland. As a first case, only surface soil moisture retrievals are assimilated into a land surface model using the Ensemble Kalman filter (EnKF). This...

  19. Assessment of SMOS Soil Moisture Retrieval Parameters Using Tau-Omega Algorithms for Soil Moisture Deficit Estimation

    NASA Technical Reports Server (NTRS)

    Srivastava, Prashant K.; Han, Dawei; Rico-Ramirez, Miguel A.; O'Neill, Peggy; Islam, Tanvir; Gupta, Manika

    2014-01-01

    Soil Moisture and Ocean Salinity (SMOS) is the latest mission which provides flow of coarse resolution soil moisture data for land applications. However, the efficient retrieval of soil moisture for hydrological applications depends on optimally choosing the soil and vegetation parameters. The first stage of this work involves the evaluation of SMOS Level 2 products and then several approaches for soil moisture retrieval from SMOS brightness temperature are performed to estimate Soil Moisture Deficit (SMD). The most widely applied algorithm i.e. Single channel algorithm (SCA), based on tau-omega is used in this study for the soil moisture retrieval. In tau-omega, the soil moisture is retrieved using the Horizontal (H) polarisation following Hallikainen dielectric model, roughness parameters, Fresnel's equation and estimated Vegetation Optical Depth (tau). The roughness parameters are empirically calibrated using the numerical optimization techniques. Further to explore the improvement in retrieval models, modifications have been incorporated in the algorithms with respect to the sources of the parameters, which include effective temperatures derived from the European Center for Medium-Range Weather Forecasts (ECMWF) downscaled using the Weather Research and Forecasting (WRF)-NOAH Land Surface Model and Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) while the s is derived from MODIS Leaf Area Index (LAI). All the evaluations are performed against SMD, which is estimated using the Probability Distributed Model following a careful calibration and validation integrated with sensitivity and uncertainty analysis. The performance obtained after all those changes indicate that SCA-H using WRF-NOAH LSM downscaled ECMWF LST produces an improved performance for SMD estimation at a catchment scale.

  20. Freeze/thaw and soil moisture effects on wind erosion

    NASA Astrophysics Data System (ADS)

    Wang, L.; Shi, Z. H.; Wu, G. L.; Fang, N. F.

    2014-02-01

    Wind erosion is very pronounced in semiarid regions during late winter-early spring and has major impacts on regional desertification and agriculture. In order to identify the effects of freeze/thaw and soil moisture on wind erosion, wind tunnel experiments were conducted to compare wind erosion effects under various soil moisture gradients in frozen and thawed soil. The variation of surface soil moisture after wind erosion and the effective soil particle size distribution was tested to explain the differences. The results showed that surface soil moisture content decreased in thawed soil and increased in frozen soil after wind erosion. The mean weight diameter, which increased with increasing soil moisture, was smaller in thawed soil than in frozen soil. The wind-driven sediment flux of frozen and thawed soil both decreased with increasing moisture, owing to the heavier soil particle weight and stronger interparticle bonding forces. The critical soil moisture content for suppressing wind erosion was around 2.34% for frozen soil and around 2.61% for thawed soil. The wind-driven sediment flux of thawed soil was always larger than that of frozen soil at the same moisture content, but this difference became negligible at moisture contents above 3.38%. We may speculate that wind erosion will be more severe in the future because of the lower soil moisture content and fewer soil freezing days as a result of global warming.

  1. Towards an integrated soil moisture drought monitor for East Africa

    NASA Astrophysics Data System (ADS)

    Anderson, W. B.; Hain, C.; Zaitchik, B. F.; Anderson, M. C.; Alo, C. A.; Yilmaz, M. T.

    2011-12-01

    East Africa contains a number of highly drought prone regions, and the humanitarian consequences of drought in those regions can be severe. The severity of these drought impacts combined with a paucity of in situ monitoring networks has given rise to numerous efforts to develop reliable remote drought monitoring systems based on satellite data, physically-based models, or a combination of the two. Here we present the results of a cross-comparison and preliminary integration of three soil moisture monitoring methodologies that, combined, offer the potential for a soil moisture based drought monitoring system that is robust across the diverse climatic and ecological zones of East Africa. Three independent methods for estimating soil moisture anomalies, the AMSR-E microwave based satellite sensor, the ALEXI thermal infrared based model and the Noah land surface model, are evaluated using triple collocation error analysis (TCEA). TCEA is used to estimate the reliability of each soil moisture anomaly methodology through statistical cross-comparison-a particularly useful approach given the virtual absence of in situ soil moisture data in this region. While AMSR-E, ALEXI, and Noah each appear to produce reliable soil moisture anomaly estimates over some areas within East Africa, many areas posed significant challenges to one or more methods. These challenges include seasonal cloud cover that hinders ALEXI estimates, dense vegetation that impedes AMSR-E retrievals, and complex hydrology that tests the limits of Noah model assumptions. TCEA allows for assessment of the reliability of each method across seasonal and geographic gradients and provides systematic criteria for merging the three methods into an integrated estimate of spatially distributed soil moisture anomalies for all of East Africa. Results for the period 2007-2011 demonstrate the potential and the limitations of this approach in application to real time drought monitoring.

  2. Impact of SMOS soil moisture data assimilation on NCEP-GFS forecasts

    NASA Astrophysics Data System (ADS)

    Zhan, X.; Zheng, W.; Meng, J.; Dong, J.; Ek, M.

    2012-04-01

    Soil moisture is one of the few critical land surface state variables that have long memory to impact the exchanges of water, energy and carbon between the land surface and atmosphere. Accurate information about soil moisture status is thus required for numerical weather, seasonal climate and hydrological forecast as well as for agricultural production forecasts, water management and many other water related economic or social activities. Since the successful launch of ESA's soil moisture ocean salinity (SMOS) mission in November 2009, about 2 years of soil moisture retrievals has been collected. SMOS is believed to be the currently best satellite sensors for soil moisture remote sensing. Therefore, it becomes interesting to examine how the collected SMOS soil moisture data are compared with other satellite-sensed soil moisture retrievals (such as NASA's Advanced Microwave Scanning Radiometer -AMSR-E and EUMETSAT's Advanced Scatterometer - ASCAT)), in situ soil moisture measurements, and how these data sets impact numerical weather prediction models such as the Global Forecast System of NOAA-NCEP. This study implements the Ensemble Kalman filter in GFS to assimilate the AMSR-E, ASCAT and SMOS soil moisture observations after a quantitative assessment of their error rate based on in situ measurements from ground networks around contiguous United States. in situ soil moisture measurements from ground networks (such as USDA Soil Climate Analysis network - SCAN and NOAA's U.S. Climate Reference Network -USCRN) are used to evaluate the GFS soil moisture simulations (analysis). The benefits and uncertainties of assimilating the satellite data products in GFS are examined by comparing the GFS forecasts of surface temperature and rainfall with and without the assimilations. From these examinations, the advantages of SMOS soil moisture data products over other satellite soil moisture data sets will be evaluated. The next step toward operationally assimilating soil moisture

  3. Advanced microwave soil moisture studies. [Big Sioux River Basin, Iowa

    NASA Technical Reports Server (NTRS)

    Dalsted, K. J.; Harlan, J. C.

    1983-01-01

    Comparisons of low level L-band brightness temperature (TB) and thermal infrared (TIR) data as well as the following data sets: soil map and land cover data; direct soil moisture measurement; and a computer generated contour map were statistically evaluated using regression analysis and linear discriminant analysis. Regression analysis of footprint data shows that statistical groupings of ground variables (soil features and land cover) hold promise for qualitative assessment of soil moisture and for reducing variance within the sampling space. Dry conditions appear to be more conductive to producing meaningful statistics than wet conditions. Regression analysis using field averaged TB and TIR data did not approach the higher sq R values obtained using within-field variations. The linear discriminant analysis indicates some capacity to distinguish categories with the results being somewhat better on a field basis than a footprint basis.

  4. Soil moisture - precipitation feedbacks in observations and models (Invited)

    NASA Astrophysics Data System (ADS)

    Taylor, C.

    2013-12-01

    There is considerable uncertainty about the strength, geographical extent, and even the sign of feedbacks between soil moisture and precipitation. Whilst precipitation trivially increases soil moisture, the impact of soil moisture, via surface fluxes, on convective rainfall is far from straight-forward, and likely depends on space and time scale, soil and synoptic conditions, and the nature of the convection itself. In considering how daytime convection responds to surface fluxes, large-scale models based on convective parameterisations may not necessarily provide reliable depictions, particularly given their long-standing inability to reproduce a realistic diurnal cycle of convection. On the other hand, long-term satellite data provide the potential to establish robust relationships between soil moisture and precipitation across the world, notwithstanding some fundamental weaknesses and uncertainties in the datasets. Here, results from regional and global satellite-based analyses are presented. Globally, using 3-hourly precipitation and daily soil moisture datasets, a methodology has been developed to compare the statistics of antecedent soil moisture in the region of localised afternoon rain events (Taylor et al 2012). Specifically the analysis tests whether there are any significant differences in pre-event soil moisture between rainfall maxima and nearby (50-100km) minima. The results reveal a clear signal across a number of semi-arid regions, most notably North Africa, indicating a preference for afternoon rain over drier soil. Analysis by continent and by climatic zone reveals that this signal (locally a negative feedback) is evident in other continents and climatic zones, but is somewhat weaker. This may be linked to the inherent geographical differences across the world, as detection of a feedback requires water-stressed surfaces coincident with frequent active convective initiations. The differences also reflect the quality and utility of the soil moisture

  5. Spatial variability of soil moisture retrieved by SMOS satellite

    NASA Astrophysics Data System (ADS)

    Lukowski, Mateusz; Marczewski, Wojciech; Usowicz, Boguslaw; Rojek, Edyta; Slominski, Jan; Lipiec, Jerzy

    2015-04-01

    Standard statistical methods assume that the analysed variables are independent. Since the majority of the processes observed in the nature are continuous in space and time, this assumption introduces a significant limitation for understanding the examined phenomena. In classical approach, valuable information about the locations of examined observations is completely lost. However, there is a branch of statistics, called geostatistics, which is the study of random variables, but taking into account the space where they occur. A common example of so-called "regionalized variable" is soil moisture. Using in situ methods it is difficult to estimate soil moisture distribution because it is often significantly diversified. Thanks to the geostatistical methods, by employing semivariance analysis, it is possible to get the information about the nature of spatial dependences and their lengths. Since the Soil Moisture and Ocean Salinity mission launch in 2009, the estimation of soil moisture spatial distribution for regional up to continental scale started to be much easier. In this study, the SMOS L2 data for Central and Eastern Europe were examined. The statistical and geostatistical features of moisture distributions of this area were studied for selected natural soil phenomena for 2010-2014 including: freezing, thawing, rainfalls (wetting), drying and drought. Those soil water "states" were recognized employing ground data from the agro-meteorological network of ground-based stations SWEX and SMUDP2 data from SMOS. After pixel regularization, without any upscaling, the geostatistical methods were applied directly on Discrete Global Grid (15-km resolution) in ISEA 4H9 projection, on which SMOS observations are reported. Analysis of spatial distribution of SMOS soil moisture, carried out for each data set, in most cases did not show significant trends. It was therefore assumed that each of the examined distributions of soil moisture in the adopted scale satisfies

  6. Effects of soil moisture on the diurnal pattern of pesticide emission: Numerical simulation and sensitivity analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate prediction of pesticide volatilization is important for the protection of human and environmental health. Due to the complexity of the volatilization process, sophisticated predictive models are needed, especially for dry soil conditions. A mathematical model was developed to allow simulati...

  7. Preliminary Results of Estimating Soil Moisture Over Bare Soil Using Full-Polarimetric ALOS-2 Data

    NASA Astrophysics Data System (ADS)

    Sekertekin, A.; Marangoz, A. M.; Abdikan, S.; Esetlili, M. T.

    2016-10-01

    Synthetic Aperture Radar (SAR) imaging system is one of the most effective way for Earth observation. The aim of this study is to present the preliminary results about estimating soil moisture using L-band Synthetic Aperture Radar (SAR) data. Full-polarimetric (HH, HV, VV, VH) ALOS-2 data, acquired on 22.04.2016 with the incidence angle of 30.4o, were used in the study. Simultaneously with the SAR acquisition, in-situ soil moisture samples over bare agricultural lands were collected and evaluated using gravimetric method. Backscattering coefficients for all polarizations were obtained and linear regression analysis was carried out with in situ moisture measurements. The best correlation coefficient was observed with VV polarization. Cross-polarized backscattering coefficients were not so sensitive to soil moisture content. In the study, it was observed that soil moisture maps can be retrieved with the accuracy about 14% (RMSE).

  8. A Soil Moisture Budget Analysis of Texas Using Basic Climatic Data While Assuming a Possible Warming Trend Across the State

    DTIC Science & Technology

    1990-05-01

    pertains to the hydrological drought or a long-term water deficiency in deep soil profiles. It is important with respect to regional, municipal, and local...water supplies used for domestic, commercial, and industrial processes. The hydrological drought requires at least several months of dry weather in...whenever the vegetation of an area is stressed due to an inadequate or below normal supply of moisture. Unlike the hydrological drought , an agricultural

  9. Soil Moisture Variability Beneath a Melting Snowpack

    NASA Astrophysics Data System (ADS)

    Webb, R.; Fassnacht, S. R.

    2013-12-01

    The melting of the winter snowpack often enters the soil surface prior to flowing to a stream. Spatio-temporal variability in snowmelt infiltration can impact lateral and vertical hydraulic gradients. Previous snow hydrology modeling efforts often model the snowmelt as a uniform precipitation (or input to the soil) event, which this is known to not be the manner which snowmelt actually occurs. To model the hydrologic processes occurring at the site, variable surface boundary conditions are necessary and were investigated. The Dry Lake campground near Steamboat Springs, CO was selected to study the variability in which melting snowpack infiltrates the soil. The Dry Lake study site contains a small watershed of approximately 0.2 km2, and ranges in elevation from 2510 m to 2690 m containing deciduous and evergreen forests, and open grasslands. Both a Remote Automated Weather Station and Snow Telemetry site lie within the Dry Lake study site and provide meteorological, snow, and soil moisture and temperature data. During the spring of 2013, the variability in the snowpack was surveyed along with soil moisture beneath the snowpack. A time domain reflectometer was used at the bottom of snowpits and gravimetric samples were collected for calibration at the freezing temperatures. The results of the survey show the variability in the soil moisture and implicated infiltration variability which occurs. Such results may be used to improve modeling efforts through the inclusion of variable surface boundary conditions.

  10. SMAP validation of soil moisture products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) satellite will be launched by the National Aeronautics and Space Administration in October 2014. SMAP will also incorporate a rigorous calibration and validation program that will support algorithm refinement and provide users with information on the accuracy ...

  11. Soil moisture and temperature algorithms and validation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Passive microwave remote sensing of soil moisture has matured over the past decade as a result of the Advanced Microwave Scanning Radiometer (AMSR) program of JAXA. This program has resulted in improved algorithms that have been supported by rigorous validation. Access to the products and the valida...

  12. Impact of Soil Moisture Initialization on Seasonal Weather Prediction

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Suarez, Max J.; Houser, Paul (Technical Monitor)

    2002-01-01

    The potential role of soil moisture initialization in seasonal forecasting is illustrated through ensembles of simulations with the NASA Seasonal-to-Interannual Prediction Project (NSIPP) model. For each boreal summer during 1997-2001, we generated two 16-member ensembles of 3-month simulations. The first, "AMIP-style" ensemble establishes the degree to which a perfect prediction of SSTs would contribute to the seasonal prediction of precipitation and temperature over continents. The second ensemble is identical to the first, except that the land surface is also initialized with "realistic" soil moisture contents through the continuous prior application (within GCM simulations leading up to the start of the forecast period) of a daily observational precipitation data set and the associated avoidance of model drift through the scaling of all surface prognostic variables. A comparison of the two ensembles shows that soil moisture initialization has a statistically significant impact on summertime precipitation and temperature over only a handful of continental regions. These regions agree, to first order, with regions that satisfy three conditions: (1) a tendency toward large initial soil moisture anomalies, (2) a strong sensitivity of evaporation to soil moisture, and (3) a strong sensitivity of precipitation to evaporation. The degree to which the initialization improves forecasts relative to observations is mixed, reflecting a critical need for the continued development of model parameterizations and data analysis strategies.

  13. The Impact of Soil Moisture Initialization On Seasonal Precipitation Forecasts

    NASA Technical Reports Server (NTRS)

    Koster, R. D.; Suarez, M. J.; Tyahla, L.; Houser, Paul (Technical Monitor)

    2002-01-01

    Some studies suggest that the proper initialization of soil moisture in a forecasting model may contribute significantly to the accurate prediction of seasonal precipitation, especially over mid-latitude continents. In order for the initialization to have any impact at all, however, two conditions must be satisfied: (1) the initial soil moisture anomaly must be "remembered" into the forecasted season, and (2) the atmosphere must respond in a predictable way to the soil moisture anomaly. In our previous studies, we identified the key land surface and atmospheric properties needed to satisfy each condition. Here, we tie these studies together with an analysis of an ensemble of seasonal forecasts. Initial soil moisture conditions for the forecasts are established by forcing the land surface model with realistic precipitation prior to the start of the forecast period. As expected, the impacts on forecasted precipitation (relative to an ensemble of runs that do not utilize soil moisture information) tend to be localized over the small fraction of the earth with all of the required land and atmosphere properties.

  14. Plan of research for integrated soil moisture studies. Recommendations of the Soil Moisture Working Group

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Soil moisture information is a potentially powerful tool for applications in agriculture, water resources, and climate. At present, it is difficult for users of this information to clearly define their needs in terms of accuracy, resolution and frequency because of the current sparsity of data. A plan is described for defining and conducting an integrated and coordinated research effort to develop and refine remote sensing techniques which will determine spatial and temporal variations of soil moisture and to utilize soil moisture information in support of agricultural, water resources, and climate applications. The soil moisture requirements of these three different application areas were reviewed in relation to each other so that one plan covering the three areas could be formulated. Four subgroups were established to write and compile the plan, namely models, ground-based studies, aircraft experiments, and spacecraft missions.

  15. SMOS CATDS level 3 Soil Moisture products

    NASA Astrophysics Data System (ADS)

    Berthon, L.; Mialon, A.; Bitar, A. Al; Cabot, F.; Kerr, Y. H.

    2012-04-01

    The ESA's (European Space Agency) SMOS (Soil Moisture and Ocean Salinity) mission, operating since november 2009, is the first satellite dedicated to measuring surface soil moisture and ocean salinity. The CNES (Centre National d'Etudes Spatiales) has developed a ground segment for the SMOS data, known as the CATDS (Centre Aval de Traitement des Données SMOS). Operational since June 2011, it provides data referred to as level 3 products at different time resolutions: daily products, 3 days global products insuring a complete coverage of the Earth surface, 10-days composite products, and monthly averages products. These products are presented in the NetCDF format on the EASE grid (Equal Area Scalable Earth grid) with a spatial resolution of ~ 25*25 km2. Having global maps at different time resolutions is of interest for different applications such as agriculture, water management, climatic events (especially droughts and floods) or climatology. The soil moisture level 3 algorithm is based on ESA's (European Space Agency) level 2 retrieval scheme with the improvement of using several overpasses (3 at most) over a 7-days window. The benefit of using many revisits is expected to improve the retrieved soil moisture. Along with the surface soil moisture, other geophysical parameters are retrieved such as the vegetation optical depth or the dielectric constant of the surface. The aim of this communication is to present the first results from the CATDS dataset and all the different data available. Comparisons with in situ data at different sites will be presented to assess the quality of these data. A comparison with the ESA level 2 SMOS products will also be shown to better understand the difference between these dataset, in terms of quality, coverage, applications and use. We will also present how the CATDS data can capture some special events. For instance, the dataset will be compared with meteorological events (rain events), or extreme events such as droughts or

  16. SoilNet - A Zigbee based soil moisture sensor network

    NASA Astrophysics Data System (ADS)

    Bogena, H. R.; Weuthen, A.; Rosenbaum, U.; Huisman, J. A.; Vereecken, H.

    2007-12-01

    Soil moisture plays a key role in partitioning water and energy fluxes, in providing moisture to the atmosphere for precipitation, and controlling the pattern of groundwater recharge. Large-scale soil moisture variability is driven by variation of precipitation and radiation in space and time. At local scales, land cover, soil conditions, and topography act to redistribute soil moisture. Despite the importance of soil moisture, it is not yet measured in an operational way, e.g. for a better prediction of hydrological and surface energy fluxes (e.g. runoff, latent heat) at larger scales and in the framework of the development of early warning systems (e.g. flood forecasting) and the management of irrigation systems. The SoilNet project aims to develop a sensor network for the near real-time monitoring of soil moisture changes at high spatial and temporal resolution on the basis of the new low-cost ZigBee radio network that operates on top of the IEEE 802.15.4 standard. The sensor network consists of soil moisture sensors attached to end devices by cables, router devices and a coordinator device. The end devices are buried in the soil and linked wirelessly with nearby aboveground router devices. This ZigBee wireless sensor network design considers channel errors, delays, packet losses, and power and topology constraints. In order to conserve battery power, a reactive routing protocol is used that determines a new route only when it is required. The sensor network is also able to react to external influences, e.g. such as rainfall occurrences. The SoilNet communicator, routing and end devices have been developed by the Forschungszentrum Juelich and will be marketed through external companies. We will present first results of experiments to verify network stability and the accuracy of the soil moisture sensors. Simultaneously, we have developed a data management and visualisation system. We tested the wireless network on a 100 by 100 meter forest plot equipped with 25

  17. Preliminary assessment of soil moisture over vegetation

    NASA Technical Reports Server (NTRS)

    Carlson, T. N.

    1986-01-01

    Modeling of surface energy fluxes was combined with in-situ measurement of surface parameters, specifically the surface sensible heat flux and the substrate soil moisture. A vegetation component was incorporated in the atmospheric/substrate model and subsequently showed that fluxes over vegetation can be very much different than those over bare soil for a given surface-air temperature difference. The temperature signatures measured by a satellite or airborne radiometer should be interpreted in conjunction with surface measurements of modeled parameters. Paradoxically, analyses of the large-scale distribution of soil moisture availability shows that there is a very high correlation between antecedent precipitation and inferred surface moisture availability, even when no specific vegetation parameterization is used in the boundary layer model. Preparatory work was begun in streamlining the present boundary layer model, developing better algorithms for relating surface temperatures to substrate moisture, preparing for participation in the French HAPEX experiment, and analyzing aircraft microwave and radiometric surface temperature data for the 1983 French Beauce experiments.

  18. Absolute versus temporal anomaly and percent of saturation soil moisture spatial variability for six networks worldwide

    NASA Astrophysics Data System (ADS)

    Brocca, L.; Zucco, G.; Mittelbach, H.; Moramarco, T.; Seneviratne, S. I.

    2014-07-01

    The analysis of the spatial-temporal variability of soil moisture can be carried out considering the absolute (original) soil moisture values or relative values, such as the percent of saturation or temporal anomalies. Over large areas, soil moisture data measured at different sites can be characterized by large differences in their minimum, mean, and maximum absolute values, even though in relative terms their temporal patterns are very similar. In these cases, the analysis considering absolute compared with percent of saturation or temporal anomaly soil moisture values can provide very different results with significant consequences for their use in hydrological applications and climate science. In this study, in situ observations from six soil moisture networks in Italy, Spain, France, Switzerland, Australia, and United States are collected and analyzed to investigate the spatial soil moisture variability over large areas (250-150,000 km2). Specifically, the statistical and temporal stability analyses of soil moisture have been carried out for absolute, temporal anomaly, and percent of saturation values (using two different formulations for temporal anomalies). The results highlight that the spatial variability of the soil moisture dynamic (i.e., temporal anomalies) is significantly lower than that of the absolute soil moisture values. The spatial variance of the time-invariant component (temporal mean of each site) is the predominant contribution to the total spatial variance of absolute soil moisture data. Moreover, half of the networks show a minimum in the spatial variability for intermediate conditions when the temporal anomalies are considered, in contrast with the widely recognized behavior of absolute soil moisture data. The analyses with percent saturation data show qualitatively similar results as those for the temporal anomalies because of the applied normalization which reduces spatial variability induced by differences in mean absolute soil moisture

  19. Downscaled soil moisture from SMAP evaluated using high density observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, a soil moisture downscaling algorithm based on a regression relationship between daily temperature changes and daily average soil moisture was developed to produce an enhanced spatial resolution on soil moisture product for the Advanced Microwave Scanning Radiometer–EOS (AMSR-E) satellite ...

  20. Soil moisture inferences from thermal infrared measurements of vegetation temperatures

    NASA Technical Reports Server (NTRS)

    Jackson, R. D. (Principal Investigator)

    1981-01-01

    Thermal infrared measurements of wheat (Triticum durum) canopy temperatures were used in a crop water stress index to infer root zone soil moisture. Results indicated that one time plant temperature measurement cannot produce precise estimates of root zone soil moisture due to complicating plant factors. Plant temperature measurements do yield useful qualitative information concerning soil moisture and plant condition.

  1. Information and Complexity Measures Applied to Observed and Simulated Soil Moisture Time Series

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Time series of soil moisture-related parameters provides important insights in functioning of soil water systems. Analysis of patterns within these time series has been used in several studies. The objective of this work was to compare patterns in observed and simulated soil moisture contents to u...

  2. Soil moisture ground truth, Lafayette, Indiana, site; St. Charles Missouri, site; Centralia, Missouri, site

    NASA Technical Reports Server (NTRS)

    Jones, E. B.

    1975-01-01

    The soil moisture ground-truth measurements and ground-cover descriptions taken at three soil moisture survey sites located near Lafayette, Indiana; St. Charles, Missouri; and Centralia, Missouri are given. The data were taken on November 10, 1975, in connection with airborne remote sensing missions being flown by the Environmental Research Institute of Michigan under the auspices of the National Aeronautics and Space Administration. Emphasis was placed on the soil moisture in bare fields. Soil moisture was sampled in the top 0 to 1 in. and 0 to 6 in. by means of a soil sampling push tube. These samples were then placed in plastic bags and awaited gravimetric analysis.

  3. Estimating Soil Moisture from Satellite Microwave Observations

    NASA Technical Reports Server (NTRS)

    Owe, M.; VandeGriend, A. A.; deJeu, R.; deVries, J.; Seyhan, E.

    1998-01-01

    Cooperative research in microwave remote sensing between the Hydrological Sciences Branch of the NASA Goddard Space Flight Center and the Earth Sciences Faculty of the Vrije Universiteit Amsterdam began with the Botswana Water and Energy Balance Experiment and has continued through a series of highly successful International Research Programs. The collaboration between these two research institutions has resulted in significant scientific achievements, most notably in the area of satellite-based microwave remote sensing of soil moisture. The Botswana Program was the first joint research initiative between these two institutions, and provided a unique data base which included historical data sets of Scanning Multifrequency Microwave Radiometer (SN4NM) data, climate information, and extensive soil moisture measurements over several large experimental sites in southeast Botswana. These data were the basis for the development of new approaches in physically-based inverse modelling of soil moisture from satellite microwave observations. Among the results from this study were quantitative estimates of vegetation transmission properties at microwave frequencies. A single polarization modelling approach which used horizontally polarized microwave observations combined with monthly composites of Normalized Difference Vegetation Index was developed, and yielded good results. After more precise field experimentation with a ground-based radiometer system, a dual-polarization approach was subsequently developed. This new approach realized significant improvements in soil moisture estimation by satellite. Results from the Botswana study were subsequently applied to a desertification monitoring study for the country of Spain within the framework of the European Community science research programs EFEDA and RESMEDES. A dual frequency approach with only microwave data was used for this application. The Microwave Polarization Difference Index (MPDI) was calculated from 37 GHz data

  4. Microwave Soil Moisture Retrieval Under Trees

    NASA Technical Reports Server (NTRS)

    O'Neill, P.; Lang, R.; Kurum, M.; Joseph, A.; Jackson, T.; Cosh, M.

    2008-01-01

    Soil moisture is recognized as an important component of the water, energy, and carbon cycles at the interface between the Earth's surface and atmosphere. Current baseline soil moisture retrieval algorithms for microwave space missions have been developed and validated only over grasslands, agricultural crops, and generally light to moderate vegetation. Tree areas have commonly been excluded from operational soil moisture retrieval plans due to the large expected impact of trees on masking the microwave response to the underlying soil moisture. Our understanding of the microwave properties of trees of various sizes and their effect on soil moisture retrieval algorithms at L band is presently limited, although research efforts are ongoing in Europe, the United States, and elsewhere to remedy this situation. As part of this research, a coordinated sequence of field measurements involving the ComRAD (for Combined Radar/Radiometer) active/passive microwave truck instrument system has been undertaken. Jointly developed and operated by NASA Goddard Space Flight Center and George Washington University, ComRAD consists of dual-polarized 1.4 GHz total-power radiometers (LH, LV) and a quad-polarized 1.25 GHz L band radar sharing a single parabolic dish antenna with a novel broadband stacked patch dual-polarized feed, a quad-polarized 4.75 GHz C band radar, and a single channel 10 GHz XHH radar. The instruments are deployed on a mobile truck with an 19-m hydraulic boom and share common control software; real-time calibrated signals, and the capability for automated data collection for unattended operation. Most microwave soil moisture retrieval algorithms developed for use at L band frequencies are based on the tau-omega model, a simplified zero-order radiative transfer approach where scattering is largely ignored and vegetation canopies are generally treated as a bulk attenuating layer. In this approach, vegetation effects are parameterized by tau and omega, the microwave

  5. Analysis of Large Scale Spatial Variability of Soil Moisture Using a Geostatistical Method

    DTIC Science & Technology

    2010-01-25

    consists of a heating element and thermocouple emplaced in epoxy in a hypodermic needle , which is encased in a porous ceramic matrix. This sensor is...Sensors 2010, 10, 913-932; doi:10.3390/s100100913 sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Article Analysis of Large Scale Spatial...in calibration and validation of large-scale satellite based data assimilation systems. Spatial analysis using geostatistical approaches was used to

  6. Towards an integrated soil moisture drought monitor for East Africa

    NASA Astrophysics Data System (ADS)

    Anderson, W. B.; Zaitchik, B. F.; Hain, C. R.; Anderson, M. C.; Yilmaz, M. T.; Mecikalski, J.; Schultz, L.

    2012-08-01

    Drought in East Africa is a recurring phenomenon with significant humanitarian impacts. Given the steep climatic gradients, topographic contrasts, general data scarcity, and, in places, political instability that characterize the region, there is a need for spatially distributed, remotely derived monitoring systems to inform national and international drought response. At the same time, the very diversity and data scarcity that necessitate remote monitoring also make it difficult to evaluate the reliability of these systems. Here we apply a suite of remote monitoring techniques to characterize the temporal and spatial evolution of the 2010-2011 Horn of Africa drought. Diverse satellite observations allow for evaluation of meteorological, agricultural, and hydrological aspects of drought, each of which is of interest to different stakeholders. Focusing on soil moisture, we apply triple collocation analysis (TCA) to three independent methods for estimating soil moisture anomalies to characterize relative error between products and to provide a basis for objective data merging. The three soil moisture methods evaluated include microwave remote sensing using the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) sensor, thermal remote sensing using the Atmosphere-Land Exchange Inverse (ALEXI) surface energy balance algorithm, and physically based land surface modeling using the Noah land surface model. It was found that the three soil moisture monitoring methods yield similar drought anomaly estimates in areas characterized by extremely low or by moderate vegetation cover, particularly during the below-average 2011 long rainy season. Systematic discrepancies were found, however, in regions of moderately low vegetation cover and high vegetation cover, especially during the failed 2010 short rains. The merged, TCA-weighted soil moisture composite product takes advantage of the relative strengths of each method, as judged by the consistency of

  7. Towards an integrated soil moisture drought monitor for East Africa

    NASA Astrophysics Data System (ADS)

    Anderson, W. B.; Zaitchik, B. F.; Hain, C. R.; Anderson, M. C.; Yilmaz, M. T.; Mecikalski, J.; Schultz, L.

    2012-04-01

    Drought in East Africa is a recurring phenomenon with significant humanitarian impacts. Given the steep climatic gradients, topographic contrasts, general data scarcity, and, in places, political instability that characterize the region, there is a need for spatially distributed, remotely derived monitoring systems to inform national and international drought response. At the same time, the very diversity and data scarcity that necessitate remote monitoring also make it difficult to evaluate the reliability of these systems. Here we apply a suite of remote monitoring techniques to characterize the temporal and spatial evolution of the 2010-2011 Horn of Africa drought. Diverse satellite observations allow for evaluation of meteorological, agricultural, and hydrological aspects of drought, each of which is of interest to different stakeholders. Focusing on soil moisture, we apply triple collocation analysis (TCA) to three independent methods for estimating soil moisture anomalies to characterize relative error between products and to provide a basis for objective data merging. The three soil moisture methods evaluated include microwave remote sensing using the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) sensor, thermal remote sensing using the Atmosphere-Land Exchange Inverse (ALEXI) surface energy balance algorithm, and physically-based land surface modeling using the Noah land surface model. It was found that the three soil moisture monitoring methods yield similar drought anomaly estimates in areas characterized by extremely low or by moderate vegetation cover, particularly during the below-average 2011 long rainy season. Systematic discrepancies were found, however, in regions of moderately low vegetation cover and high vegetation cover, especially during the failed 2010 short rains. The merged, TCA-weighted soil moisture composite product takes advantage of the relative strengths of each method, as judged by the consistency of

  8. Application of triple collocation for the ground-based validation of soil moisture active/passive (SMAP) soil moisture products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The contrast in horizontal spatial support between ground-based soil moisture observations and satellite-derived soil moisture estimates represents a long-standing challenge for the validation of satellite soil moisture data products [Crow et al., 2014]. This challenge can be alleviated by limiting ...

  9. SMOS validation of soil moisture and ocen salinity (SMOS) soil moisture over watershed networks in the U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimation of soil moisture at large scale has been performed using several satellite-based passive microwave sensors and a variety of retrieval methods. The most recent source of soil moisture is the European Space Agency Soil Moisture and Ocean Salinity (SMOS) mission. A thorough validation must b...

  10. COsmic-ray Soil Moisture Observing System (COSMOS): soil moisture and beyond

    NASA Astrophysics Data System (ADS)

    Zreda, Marek; Shuttleworth, William J.; Zeng, Xubin; Zweck, Chris; Franz, Trenton; Rosolem, Rafael

    2013-04-01

    COSMOS, a project funded by the US National Science Foundation, was designed to measure average soil moisture in the top 10-70 cm of soil over the horizontal footprint of approximately 700 m by measuring cosmic-ray neutrons in air above the ground surface. It is in its fourth, final, year of the feasibility phase in which 60 neutron probes have been installed in the USA to provide continental-scale soil moisture data. The cosmic-ray neutron probe responds to all sources of hydrogen present within the footprint. Therefore, in addition to soil moisture, other pools of hydrogen can be measured; these include atmospheric water vapor, organic matter in soil, water in soil minerals, biomass water (including hydrogen bound in cellulose), and snow on the ground and on the canopy. All these pools of hydrogen form the "total surface moisture" that is measured by COSMOS probes. The first four pools are measured independently (water vapor) or are implicitly included in the probe calibration (water in minerals and organic matter, biomass water). The other two can be separated from one another to produce time series of soil moisture and snow water equivalent. Work is in progress to assimilate neutron data into land-surface models, to produce soil moisture profiles, to validate satellite soil moisture products (the current SMOS mission and the future SMAP mission), to measure temporal variations in biomass, and to measure area-average unsaturated hydraulic properties of soils. Separately, mobile COSMOS probe, called COSMOS rover, is being developed. COSMOS rover can be used to map soil moisture over large areas or along long transects. Cosmic-ray sensing of moisture at the land surface has gained popularity outside of the USA. Approximately 60 probes have been purchased in addition to the 60 probes in the COSMOS project. Funds for additional 80 probes, most of them in Germany, have been secured, and large new proposals will be submitted in the USA and Australia in 2013. These

  11. Synergies and complementarities between ASCAT and SMOS soil moisture products

    NASA Astrophysics Data System (ADS)

    Escorihuela, Maria Jose; Quintana, Pere; Merlin, Olivier

    2014-05-01

    Soil moisture is a critical variable in many kinds of applications including agriculture, water management, meteorology or climatology. This is especially true in the Mediterranean context, where soil moisture plays an important role in water resources management and hydrometeorological risks such as floods and droughts. Unfortunately, this variable is not widely observed in situ, so we lack data on its time evolution and spatial structure. Remote sensing has been used to estimate surface soil moisture because it provides comprehensive data over large surfaces. In this study we compared two different surface soil moisture remote sensing products; one derived from active microwave data of the ASCAT scatterometer instrument onboard METOP and the other from passive microwave data of the SMOS mission the first dedicated to estimate soil moisture. SMOS measuring frequency (1.4 GHz) is theoretically more suited to measure soil moisture than ASCAT measuring frequency (5.255 GHz) because of its lower vegetation effects. On the other hand, ASCAT- like instruments have been providing measurements for more than 2 decades and have been a key input in building the CCI Soil Moisture Variable. In order to get the best global soil moisture products it is thus essential to understand their respective performances and restrictions. The comparison has been carried out in Catalonia where we have implemented the SURFEX/ISBA land-surface model, which we forced with the SAFRAN meteorological analysis system. A downscaling algorithm has been also implemented and validated over the area to provide SMOS derived soil moisture fields at 1 km spatial resolution. Catalonia is located in the northeast of the Iberian Peninsula and its climate is typically Mediterranean, mild in winter and warm in summer. The Pyrenees and the neighbouring areas have a high-altitude climate, with minimum temperatures below 0º C, annual rainfall above 1000 mm and abundant snow during the winter. Along the coast

  12. Combined assimilation of streamflow and satellite soil moisture with the particle filter and geostatistical modeling

    NASA Astrophysics Data System (ADS)

    Yan, Hongxiang; Moradkhani, Hamid

    2016-08-01

    Assimilation of satellite soil moisture and streamflow data into a distributed hydrologic model has received increasing attention over the past few years. This study provides a detailed analysis of the joint and separate assimilation of streamflow and Advanced Scatterometer (ASCAT) surface soil moisture into a distributed Sacramento Soil Moisture Accounting (SAC-SMA) model, with the use of recently developed particle filter-Markov chain Monte Carlo (PF-MCMC) method. Performance is assessed over the Salt River Watershed in Arizona, which is one of the watersheds without anthropogenic effects in Model Parameter Estimation Experiment (MOPEX). A total of five data assimilation (DA) scenarios are designed and the effects of the locations of streamflow gauges and the ASCAT soil moisture on the predictions of soil moisture and streamflow are assessed. In addition, a geostatistical model is introduced to overcome the significantly biased satellite soil moisture and also discontinuity issue. The results indicate that: (1) solely assimilating outlet streamflow can lead to biased soil moisture estimation; (2) when the study area can only be partially covered by the satellite data, the geostatistical approach can estimate the soil moisture for those uncovered grid cells; (3) joint assimilation of streamflow and soil moisture from geostatistical modeling can further improve the surface soil moisture prediction. This study recommends that the geostatistical model is a helpful tool to aid the remote sensing technique and the hydrologic DA study.

  13. Quantifying Shrink Swell Capacity of Soil Using Soil Moisture Isotherms

    NASA Astrophysics Data System (ADS)

    Rivera, L. D.; Cobos, D. R.; Campbell, C. S.; Morgan, C.

    2013-12-01

    Vertisols, soils instinctively known for their expansive clays that cause them to have a high shrink swell potential, cover 2.4% of the earths ice-free land. In the United States these expansive soils can cause upwards of 6 billion in damages to pavements, foundations, and utility lines annually (Brady & Weil, 2010). Because of this, it is especially important that a soils ability to shrink and swell is well characterized when making engineering decisions. One traditional method for measuring a soil's expansive potential, the Coefficient of Linear Extensibility (COLE), can take weeks to months to complete (Grossman et al., 1968; Schafer and Singer, 1976b). Use of soil moisture isotherms, or the Soil Moisture Characteristic Curve (SMCC), in recent research has shown that the slope of the SMCC is related to a soils swelling potential (McKeen, 1992). The goal of this research is to evaluate the robustness of the relationship between the SMCC and COLE for a set of well-characterized test soils with COLE ranging from 0 to 0.176. If expansive potential can be reliably predicted from the SMCC, then data from recently developed automatic soil moisture isotherm generators could be used to characterize expansive potential with a fraction of the time and effort necessary for traditional techniques.

  14. A method for estimating soil moisture availability

    NASA Technical Reports Server (NTRS)

    Carlson, T. N.

    1985-01-01

    A method for estimating values of soil moisture based on measurements of infrared surface temperature is discussed. A central element in the method is a boundary layer model. Although it has been shown that soil moistures determined by this method using satellite measurements do correspond in a coarse fashion to the antecedent precipitation, the accuracy and exact physical interpretation (with respect to ground water amounts) are not well known. This area of ignorance, which currently impedes the practical application of the method to problems in hydrology, meteorology and agriculture, is largely due to the absence of corresponding surface measurements. Preliminary field measurements made over France have led to the development of a promising vegetation formulation (Taconet et al., 1985), which has been incorporated in the model. It is necessary, however, to test the vegetation component, and the entire method, over a wide variety of surface conditions and crop canopies.

  15. NASA Soil Moisture Active Passive (SMAP) Applications

    NASA Astrophysics Data System (ADS)

    Orr, Barron; Moran, M. Susan; Escobar, Vanessa; Brown, Molly E.

    2014-05-01

    The launch of the NASA Soil Moisture Active Passive (SMAP) mission in 2014 will provide global soil moisture and freeze-thaw measurements at moderate resolution (9 km) with latency as short as 24 hours. The resolution, latency and global coverage of SMAP products will enable new applications in the fields of weather, climate, drought, flood, agricultural production, human health and national security. To prepare for launch, the SMAP mission has engaged more than 25 Early Adopters. Early Adopters are users who have a need for SMAP-like soil moisture or freeze-thaw data, and who agreed to apply their own resources to demonstrate the utility of SMAP data for their particular system or model. In turn, the SMAP mission agreed to provide Early Adopters with simulated SMAP data products and pre-launch calibration and validation data from SMAP field campaigns, modeling, and synergistic studies. The applied research underway by Early Adopters has provided fundamental knowledge of how SMAP data products can be scaled and integrated into users' policy, business and management activities to improve decision-making efforts. This presentation will cover SMAP applications including weather and climate forecasting, vehicle mobility estimation, quantification of greenhouse gas emissions, management of urban potable water supply, and prediction of crop yield. The presentation will end with a discussion of potential international applications with focus on the ESA/CEOS TIGER Initiative entitled "looking for water in Africa", the United Nations (UN) Convention to Combat Desertification (UNCCD) which carries a specific mandate focused on Africa, the UN Framework Convention on Climate Change (UNFCCC) which lists soil moisture as an Essential Climate Variable (ECV), and the UN Food and Agriculture Organization (FAO) which reported a food and nutrition crisis in the Sahel.

  16. Analysis of ASAR Wide Swath Mode time series for the retrieval of soil moisture in mountainous areas

    NASA Astrophysics Data System (ADS)

    Greifeneder, Felix; Notarnicola, Claudia; Cuozzo, Giovanni; Spindler, Nadine; Bertoldi, Giacomo; Della Chiesa, Stefano; Niedrist, Georg; Stamenkovic, Jelena; Wagner, Wolgang

    2014-05-01

    Soil moisture is a key element in the global cycles of water, energy, and carbon. Knowledge on the spatial and temporal distribution of the soil moisture content (SMC) is therefore essential for a number of hydrological applications as well as earth sciences like meteorology or climatology (Heathman et al., 2003). In the last few years there has been an increasing interest towards the estimation of SMC at local scales using active microwave sensors (Barret et al., 2009). Compared to passive microwave sensors, SAR offers the potential to provide data at high spatial resolution (modern sensors can acquire images with up to approximately 1 m), which is particularly important in mountainous areas. So far, these areas have been considered only marginally in research and only pioneer studies can be found in the literature (Brocca et al., 2012; Bertoldi et al. 2013). In this work we analyzed the temporal and spatial dynamics of the surface SMC (0 - 5 cm depth) on the basis of ground data collected by fixed meteorological stations located in the emerging Long-Term Ecological Research (LTER) site Mazia Valley (Province of Bolzano, South Tyrol, Italy), SAR data from ENVISATs ASAR sensor, wide swath (WS) mode (acquired between 2005 and 2012), and SMC estimates from the hydrological model GEOtop (Endrizzi et al., 2013). The SMC retrieval process was based on the support vector regression (SVR) method introduced by Pasolli et al. (2011). The training of the algorithm was based on data acquired in 2010. Furthermore, the SAR backscatter and derived SMC have been compared with time-series derived from the distributed hydrological model GEOtop. The differences in terms of temporal and spatial dynamic have been analyzed. The main goal of this work is to evaluate the spatial and temporal patterns of SAR derived SMC at field scale and to correlate them with ground information. This is a preparatory study to establish a methodology for the retrieval of SMC with high spatial and

  17. NASA Soil Moisture Data Products and Their Incorporation in DREAM

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Holland, Donald; Henderson, Vaneshette

    2005-01-01

    NASA provides soil moisture data products that include observations from the Advanced Microwave Scanning Radiometer on the Earth Observing System Aqua satellite, field measurements from the Soil Moisture Experiment campaigns, and model predictions from the Land Information System and the Goddard Earth Observing System Data Assimilation System. Incorporation of the NASA soil moisture products in the Dust Regional Atmospheric Model is possible through use of the satellite observations of soil moisture to set initial conditions for the dust simulations. An additional comparison of satellite soil moisture observations with mesoscale atmospheric dynamics modeling is recommended. Such a comparison would validate the use of NASA soil moisture data in applications and support acceptance of satellite soil moisture data assimilation in weather and climate modeling.

  18. Traditional and microirrigation with stochastic soil moisture

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Porporato, Amilcare

    2010-03-01

    Achieving a sustainable use of water resources, in view of the increased food and biofuel demand and possible climate change, will require optimizing irrigation, a highly nontrivial task given the unpredictability of rainfall and the numerous soil-plant-atmosphere interactions. Here we theoretically analyze two different irrigation schemes, a traditional scheme, consisting of the application of fixed water volumes that bring soil moisture to field capacity, and a microirrigation scheme supplying water continuously in order to avoid plant water stress. These two idealized irrigation schemes are optimal in the sense that they avoid crop water stress while minimizing water losses by percolation and runoff. Furthermore, they cover the two extremes cases of continuous and fully concentrated irrigation. For both irrigation schemes, we obtain exact solutions of the steady state soil moisture probability density function with random timing and amounts of rainfall. We also give analytical expressions for irrigation frequency and volumes under different rainfall regimes, evaporative demands, and soil types. We quantify the excess volumes required by traditional irrigation, mostly lost in runoff and deep infiltration, as a function of climate, soil, and vegetation parameters.

  19. Improving Estimates of Root-zone Soil Water Content Using Soil Hydrologic Properties and Remotely Sensed Soil Moisture

    NASA Astrophysics Data System (ADS)

    Baldwin, D. C.; Miller, D. A.; Singha, K.; Davis, K. J.; Smithwick, E. A.

    2013-12-01

    the NRCS Soil Climate Analysis Network (SCAN). Our preliminary results show good performance of the SMAR model for predicting RZSM at the site level (root mean square error = 0.04). Second, a calibrated SMAR parameter governing the surface to subsurface rate of water flow was related to soil hydraulic properties at the AMERIFLUX tower sites, and region-wide maps of SMAR parameters were developed for the ChEAS region using gSSURGO information. Finally, region-wide maps of RZSM were developed and validated for the ChEAS region. The RZSM products can be directly incorporated with regional CO2 flux modeling, and the results inform - but are not dependent on - efforts that integrate observed soil moisture data with planned NASA missions (e.g., SMAP).

  20. An Evaluation of Soil Moisture Retrievals Using Aircraft and Satellite Passive Microwave Observations during SMEX02

    NASA Technical Reports Server (NTRS)

    Bolten, John D.; Lakshmi, Venkat

    2009-01-01

    The Soil Moisture Experiments conducted in Iowa in the summer of 2002 (SMEX02) had many remote sensing instruments that were used to study the spatial and temporal variability of soil moisture. The sensors used in this paper (a subset of the suite of sensors) are the AQUA satellite-based AMSR-E (Advanced Microwave Scanning Radiometer- Earth Observing System) and the aircraft-based PSR (Polarimetric Scanning Radiometer). The SMEX02 design focused on the collection of near simultaneous brightness temperature observations from each of these instruments and in situ soil moisture measurements at field- and domain- scale. This methodology provided a basis for a quantitative analysis of the soil moisture remote sensing potential of each instrument using in situ comparisons and retrieved soil moisture estimates through the application of a radiative transfer model. To this end, the two sensors are compared with respect to their estimation of soil moisture.

  1. Assimilation of Passive and Active Microwave Soil Moisture Retrievals

    NASA Technical Reports Server (NTRS)

    Draper, C. S.; Reichle, R. H.; DeLannoy, G. J. M.; Liu, Q.

    2012-01-01

    Root-zone soil moisture is an important control over the partition of land surface energy and moisture, and the assimilation of remotely sensed near-surface soil moisture has been shown to improve model profile soil moisture [1]. To date, efforts to assimilate remotely sensed near-surface soil moisture at large scales have focused on soil moisture derived from the passive microwave Advanced Microwave Scanning Radiometer (AMSR-E) and the active Advanced Scatterometer (ASCAT; together with its predecessor on the European Remote Sensing satellites (ERS. The assimilation of passive and active microwave soil moisture observations has not yet been directly compared, and so this study compares the impact of assimilating ASCAT and AMSR-E soil moisture data, both separately and together. Since the soil moisture retrieval skill from active and passive microwave data is thought to differ according to surface characteristics [2], the impact of each assimilation on the model soil moisture skill is assessed according to land cover type, by comparison to in situ soil moisture observations.

  2. Estimation of soil moisture from diurnal surface temperature observations

    NASA Technical Reports Server (NTRS)

    Vandegriend, A. A.; Camillo, P. J.

    1986-01-01

    A coupled heat and moisture balance model was used to determine the thermal inertia of a grass covered top soil under different meteorological conditions. Relations between thermal inertia and soil moisture were established using the De Vries models for thermal conductivity and heat capacity to relate soil moisture and thermal inertia as a function of soil type. A sensitivity study of the surface roughness length and thermal inertia on diurnal surface temperature shows the necessity of focusing on the night time surface temperature rather than on the day time surface temperature, in order to estimate the soil moisture content of the top soil.

  3. Landscape complexity and soil moisture variation in south Georgia, USA, for remote sensing applications

    USGS Publications Warehouse

    Giraldo, M.A.; Bosch, D.; Madden, M.; Usery, L.; Kvien, Craig

    2008-01-01

    This research addressed the temporal and spatial variation of soil moisture (SM) in a heterogeneous landscape. The research objective was to investigate soil moisture variation in eight homogeneous 30 by 30 m plots, similar to the pixel size of a Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper plus (ETM+) image. The plots were adjacent to eight stations of an in situ soil moisture network operated by the United States Department of Agriculture-Agriculture Research Service USDA-ARS in Tifton, GA. We also studied five adjacent agricultural fields to examine the effect of different landuses/land covers (LULC) (grass, orchard, peanuts, cotton and bare soil) on the temporal and spatial variation of soil moisture. Soil moisture field data were collected on eight occasions throughout 2005 and January 2006 to establish comparisons within and among eight homogeneous plots. Consistently throughout time, analysis of variance (ANOVA) showed high variation in the soil moisture behavior among the plots and high homogeneity in the soil moisture behavior within them. A precipitation analysis for the eight sampling dates throughout the year 2005 showed similar rainfall conditions for the eight study plots. Therefore, soil moisture variation among locations was explained by in situ local conditions. Temporal stability geostatistical analysis showed that soil moisture has high temporal stability within the small plots and that a single point reading can be used to monitor soil moisture status for the plot within a maximum 3% volume/volume (v/v) soil moisture variation. Similarly, t-statistic analysis showed that soil moisture status in the upper soil layer changes within 24 h. We found statistical differences in the soil moisture between the different LULC in the agricultural fields as well as statistical differences between these fields and the adjacent 30 by 30 m plots. From this analysis, it was demonstrated that spatial proximity is not enough to produce similar soil

  4. Landscape complexity and soil moisture variation in south Georgia, USA, for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Giraldo, Mario A.; Bosch, David; Madden, Marguerite; Usery, Lynn; Kvien, Craig

    2008-08-01

    SummaryThis research addressed the temporal and spatial variation of soil moisture (SM) in a heterogeneous landscape. The research objective was to investigate soil moisture variation in eight homogeneous 30 by 30 m plots, similar to the pixel size of a Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper plus (ETM+) image. The plots were adjacent to eight stations of an in situ soil moisture network operated by the United States Department of Agriculture-Agriculture Research Service USDA-ARS in Tifton, GA. We also studied five adjacent agricultural fields to examine the effect of different landuses/land covers (LULC) (grass, orchard, peanuts, cotton and bare soil) on the temporal and spatial variation of soil moisture. Soil moisture field data were collected on eight occasions throughout 2005 and January 2006 to establish comparisons within and among eight homogeneous plots. Consistently throughout time, analysis of variance (ANOVA) showed high variation in the soil moisture behavior among the plots and high homogeneity in the soil moisture behavior within them. A precipitation analysis for the eight sampling dates throughout the year 2005 showed similar rainfall conditions for the eight study plots. Therefore, soil moisture variation among locations was explained by in situ local conditions. Temporal stability geostatistical analysis showed that soil moisture has high temporal stability within the small plots and that a single point reading can be used to monitor soil moisture status for the plot within a maximum 3% volume/volume (v/v) soil moisture variation. Similarly, t-statistic analysis showed that soil moisture status in the upper soil layer changes within 24 h. We found statistical differences in the soil moisture between the different LULC in the agricultural fields as well as statistical differences between these fields and the adjacent 30 by 30 m plots. From this analysis, it was demonstrated that spatial proximity is not enough to produce similar

  5. Uncertainty in SMAP Soil Moisture Measurements Caused by Dew

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture is an important reservoir of the hydrologic cycle that regulates the exchange of moisture and energy between the land surface the atmosphere. Two satellite missions will soon make the first global measurements of soil moisture at the optimal microwave wavelength within L-band: ESA's So...

  6. [Soil moisture dynamics under artificial Caragana microphylla shrub].

    PubMed

    Alamusa; Jiang, Deming; Fan, Shixiang; Luo, Yongming

    2002-12-01

    Applying the methods of deducing time series from vegetation space alignment, we analyzed the spatial and temporal variation features of soil moisture under artificial Caragana microphylla shrubs built in 1984, 1987, 1995, 1999. The results showed that affected by mechanical composition of mobile sandy dunes, the soil of sandy land was mainly composed of sandy particle, and the particles of > 0.01 mm were accounted for 97%. The withered moisture was 1.55%. The field waterhold capacity was 5.5%, and the available moisture storage was 3.95%. With the increase of the dominance of fix-sand vegetation, the moisture content of soil under artificial Caragana microphylla shrubs was decreased. The soil moisture of vegetation built in 1984 was lower than that built in 1999. The soil moisture conditions of four stages vegetation were continued depressing from April to June in a year, the lowest point presenced in June, and then gradually increased from July to October. The vertical change of soil moisture showed the tendency of increasing with soil depth. The soil moisture decreased by the degrees of early built vegetation (1984, 1987). Especially in 70 cm soil depth, the moisture content of soil decreased obviously. Caragana microphylla shrubs absorbed water and aggravated the shortage of soil moisture content near the root system, which affected the component of vegetation in Caragana microphylla shrubs. The species of herbaceous plants and annual plants increased during the growth of Caragana microphylla shrub.

  7. Microbiology and Moisture Uptake of Desert Soils

    NASA Astrophysics Data System (ADS)

    Kress, M. E.; Bryant, E. P.; Morgan, S. W.; Rech, S.; McKay, C. P.

    2005-12-01

    We have initiated an interdisciplinary study of the microbiology and water content of desert soils to better understand microbial activity in extreme arid environments. Water is the one constituent that no organism can live without; nevertheless, there are places on Earth with an annual rainfall near zero that do support microbial ecosystems. These hyperarid deserts (e.g. Atacama and the Antarctic Dry Valleys) are the closest terrestrial analogs to Mars, which is the subject of future exploration motivated by the search for life beyond Earth. We are modeling the moisture uptake by soils in hyperarid environments to quantify the environmental constraints that regulate the survival and growth of micro-organisms. Together with the studies of moisture uptake, we are also characterizing the microbial population in these soils using molecular and culturing methods. We are in the process of extracting DNA from these soils using MoBio extraction kits. This DNA will be used as a template to amplify bacterial and eukaryotic ribosomal DNA to determine the diversity of the microbial population. We also have been attempting to determine the density of organisms by culturing on one-half strength R2A agar. The long-range goal of this research is to identify special adaptations of terrestrial life that allow them to inhabit extreme arid environments, while simultaneously quantifying the environmental parameters that enforce limits on these organisms' growth and survival.

  8. Capacitive Soil Moisture Sensor for Plant Watering

    NASA Astrophysics Data System (ADS)

    Maier, Thomas; Kamm, Lukas

    2016-04-01

    How can you realize a water saving and demand-driven plant watering device? To achieve this you need a sensor, which precisely detects the soil moisture. Designing such a sensor is the topic of this poster. We approached this subject with comparing several physical properties of water, e.g. the conductivity, permittivity, heat capacity and the soil water potential, which are suitable to detect the soil moisture via an electronic device. For our project we have developed a sensor device, which measures the soil moisture and provides the measured values for a plant watering system via a wireless bluetooth 4.0 network. Different sensor setups have been analyzed and the final sensor is the result of many iterative steps of improvement. In the end we tested the precision of our sensor and compared the results with theoretical values. The sensor is currently being used in the Botanical Garden of the Friedrich-Alexander-University in a long-term test. This will show how good the usability in the real field is. On the basis of these findings a marketable sensor will soon be available. Furthermore a more specific type of this sensor has been designed for the EU:CROPIS Space Project, where tomato plants will grow at different gravitational forces. Due to a very small (15mm x 85mm x 1.5mm) and light (5 gramm) realisation, our sensor has been selected for the space program. Now the scientists can monitor the water content of the substrate of the tomato plants in outer space and water the plants on demand.

  9. The Integration of SMOS Soil Moisture in a Consistent Soil Moisture Climate Record

    NASA Astrophysics Data System (ADS)

    de Jeu, Richard; Kerr, Yann; Wigneron, Jean Pierre; Rodriguez-Fernandez, Nemesio; Al-Yaari, Amen; van der Schalie, Robin; Dolman, Han; Drusch, Matthias; Mecklenburg, Susanne

    2015-04-01

    Recently, a study funded by the European Space Agency (ESA) was set up to provide guidelines for the development of a global soil moisture climate record with a special emphasis on the integration of SMOS. Three different data fusion approaches were designed and implemented on 10 year passive microwave data (2003-2013) from two different satellite sensors; the ESA Soil Moisture Ocean Salinity Mission (SMOS) and the NASA/JAXA Advanced Scanning Microwave Radiometer (AMSR-E). The AMSR-E data covered the period from January 2003 until Oct 2011 and SMOS data covered the period from June 2010 until the end of 2013. The fusion approaches included a neural network approach (Rodriguez-Fernandez et al., this conference session HS6.4), a regression approach (Wigneron et al., 2004), and an approach based on the baseline algorithm of ESAs current Climate Change Initiative soil moisture program, the Land Parameter Retrieval Model (Van der Schalie et al., this conference session HS6.4). With this presentation we will show the first results from this study including a description of the different approaches and the validation activities using both globally covered modeled datasets and ground observations from the international soil moisture network. The statistical validation analyses will give us information on the temporal and spatial performance of the three different approaches. Based on these results we will then discuss the next steps towards a seamless integration of SMOS in a consistent soil moisture climate record. References Wigneron J.-P., J.-C. Calvet, P. de Rosnay, Y. Kerr, P. Waldteufel, K. Saleh, M. J. Escorihuela, A. Kruszewski, 'Soil Moisture Retrievals from Bi-Angular L-band Passive Microwave Observations', IEEE Trans. Geosc. Remote Sens. Let., vol 1, no. 4, 277-281, 2004.

  10. Detecting soil moisture impacts on convective initiation in Europe

    NASA Astrophysics Data System (ADS)

    Taylor, Christopher

    2015-04-01

    Climate models suggest that soil moisture feedbacks on precipitation can play an important role in shaping the climate of some regions of the world. However, observational studies to evaluate models have produced a diverse range of conclusions, depending on scale, methodology, region etc. Our recent global study (Taylor et al, Nature 2012) showed that afternoon rain is more likely to develop over dry soils than nearby (50-100km) wetter areas. This is in contrast to typical global and regional models which favour a positive feedback. One key part of the feedback is the sensitivity of convective initiation to surface fluxes. Whilst some studies consider this in a purely one-dimensional sense, others have argued that spatial variability in fluxes plays an important role in convective triggering, via mesoscale circulations. In semi-arid Africa at least, there is an emerging observational and modelling consensus that it is the spatial heterogeneity of soil moisture which is the key to its influence on deep convective initiation. This study presents the first comprehensive observational analysis over Europe linking convective initiation to soil moisture, based on satellite observations. It builds on our previous global analysis, which indicated over Europe a weak but significant favouring of afternoon rain over locally drier soil at the 50 km scale. Higher space and time resolution satellite datasets are employed in the current study, which can shed light on the dominant mechanisms responsible. Afternoon convective initiations are defined by rapidly cooling cloud-tops using Meteosat images available every 15 minutes. To minimise the impact of fixed triggers such as mountains and coastlines, the analysis is restricted to flat inland regions, which means that most of the 2962 cases are located in central and eastern Europe. Land surface conditions preceding the initiation are characterised by MODIS land surface temperature and ASCAT soil moisture data, whilst wind

  11. Multiyear monitoring of soil moisture over Iran through satellite and reanalysis soil moisture products

    NASA Astrophysics Data System (ADS)

    Rahmani, Abdolaziz; Golian, Saeed; Brocca, Luca

    2016-06-01

    Soil moisture (SM) plays a fundamental role for many hydrological applications including water resources, drought analysis, agriculture, and climate variability and extremes. SM is not measured in most parts of Iran and limited measurements do not meet sufficient temporal and spatial resolution. Hence, due to ease of operation, their global coverage and demonstrated accuracy, use of remote sensing SM products is almost the only way for deriving SM information in Iran. In the present research, surface SM (SSM) datasets at six subregions of Iran with different climate conditions were extracted from two satellite-based passive (SMOSL3) and active + passive (ESA CCI SM) microwave observations, and two reanalysis (ERA-Interim and ERA-Interim/Land) products. Time series of averaged monthly mean SSM products and in situ ground precipitation and temperature measurements were derived for each subregion. Results revealed that, generally, all SSM products were in good agreement with each other with correlation coefficients higher than 0.5. The better agreement was found in the Northeast and Southwest region with average correlation values equal to 0.88 and 0.91, respectively. It should be noted that the SSM datasets are characterized by different periods and lengths. Hence, results should be assessed with cautious. Moreover, most SSM products have strong correlations with maximum, minimum and average temperature as well as with total monthly precipitation. Also, trend analysis showed no trend for time series of monthly SSM over all subregions in the two periods 1980-1999 and 2000-2014. The only exceptions were the Southeast subregion for ERA-Interim and Center and Northwest subregions for the ESA CCI SM for which a negative trend was detected for the period 2000-2014. Finally, the Standardized Soil Moisture Index (SSI) calculated from ERA-Interim, ERA-I/Land and ESA CCI SM datasets showed that the Center and Southeast regions suffered from the most severe and longest

  12. Measurement of soil moisture using remote sensing multisensor radiation techniques

    NASA Technical Reports Server (NTRS)

    Waite, W. P. (Principal Investigator)

    1982-01-01

    Theoretical modeling as well as laboratory and field measurement were coupled with analysis of aircraft data obtained from controlled sites in an effort to enhance understanding of the microwave response due to soil moisture so as to specify sensor parameters and develop inversion algorithms. Models to predict the complex dielectric constant were produced which led to the interpretation of the results in terms of a matrix potential rather than simply moisture content. Similar advances were made in the development of coherent and incoherent radiative transfer models and rough surface scattering models.

  13. Comparison of temporal trends from multiple soil moisture data sets and precipitation: The implication of irrigation on regional soil moisture trend

    NASA Astrophysics Data System (ADS)

    Qiu, Jianxiu; Gao, Quanzhou; Wang, Sheng; Su, Zhenrong

    2016-06-01

    In this study, soil moisture trend during 1996-2010 in China was analyzed based on three soil moisture data sets, namely microwave-based multi-satellite surface soil moisture product released from European Space Agency's Climate Change Initiative (ESA CCI), ERA-Interim/Land reanalysis, and in-situ measurements collected from the nationwide agro-meteorological network. Taking the in-situ soil moisture as reference, it is found that ESA CCI generally captured soil moisture trend more accurately than ERA-Interim/Land did. From the spatial distribution of trend analysis results, it is seen that significant decreasing trend for summer soil moisture in northwestern China and northern Inner Mongolia, as well as the significant increasing trend for autumn soil moisture in northern China were identified by both ESA CCI and ERA-Interim/Land. This is in alignment with results from gauge-based precipitation provided by Institute of Geographic Sciences and Natural Resources Research (IGSNRR) and satellite-based precipitation from Tropical Rainfall Measuring Mission (TRMM). However, disagreements in derived trends between ESA CCI, ERA-Interim/Land and IGSNRR were observed in the southwest and north of China, especially in major irrigation regions, such as the oases in northern Xinjiang and large areas in Sichuan province. Prominent difference between soil moisture and precipitation exhibited in the extensively irrigated Huang-Huai-Hai Plain. The spatial coincidence between significantly wetting areas (identified by ESA CCI) and heavily irrigated areas, as well as the grid-based Student's t-test sampling from various irrigation levels revealed that the observed discrepancy was caused by massive anthropogenic interference in this region. Results indicate that, for regions with great magnitude of human interference, modules considering actual irrigation practice are crucial for successful modeling of soil moisture and capturing the long-term trend. Furthermore, results could

  14. Concerning the relationship between evapotranspiration and soil moisture

    NASA Technical Reports Server (NTRS)

    Wetzel, Peter J.; Chang, Jy-Tai

    1987-01-01

    The relationship between the evapotranspiration and soil moisture during the drying, supply-limited phase is studied. A second scaling parameter, based on the evapotranspirational supply and demand concept of Federer (1982), is defined; the parameter, referred to as the threshold evapotranspiration, occurs in vegetation-covered surfaces just before leaf stomata close and when surface tension restricts moisture release from bare soil pores. A simple model for evapotranspiration is proposed. The effects of natural soil heterogeneities on evapotranspiration computed from the model are investigated. It is observed that the natural variability in soil moisture, caused by the heterogeneities, alters the relationship between regional evapotranspiration and the area average soil moisture.

  15. An inversion method for retrieving soil moisture information from satellite altimetry observations

    NASA Astrophysics Data System (ADS)

    Uebbing, Bernd; Forootan, Ehsan; Kusche, Jürgen; Braakmann-Folgmann, Anne

    2016-04-01

    ) deriving time-invariant spatial patterns (base-functions) by applying principal component analysis (PCA) to simulated soil moisture from a large-scale land surface model. (ii) Estimating time-variable soil moisture evolution by fitting these base functions of (i) to the along-track retracked backscatter coefficients in a least squares sense. (iii) Combining the estimated time-variable amplitudes and the pre-computed base-functions, which results in reconstructed (spatio-temporal) soil moisture information. We will show preliminary results that are compared to available high-resolution soil moisture model data over the region (the Australian Water Resource Assessment, AWRA model). We discuss the possibility of using altimetry-derived soil moisture estimations to improve the simulation skill of soil moisture in the Global Land Data Assimilation System (GLDAS) over Australia.

  16. Quantifying mesoscale soil moisture with the cosmic-ray rover

    NASA Astrophysics Data System (ADS)

    Chrisman, B.; Zreda, M.

    2013-06-01

    Soil moisture governs the surface fluxes of mass and energy and is a major influence on floods and drought. Existing techniques measure soil moisture either at a point or over a large area many kilometers across. To bridge these two scales we used the cosmic-ray rover, an instrument similar to the recently developed COSMOS probe, but bigger and mobile. This paper explores the challenges and opportunities for mapping soil moisture over large areas using the cosmic-ray rover. In 2012, soil moisture was mapped 22 times in a 25 km × 40 km survey area of the Tucson Basin at 1 km2 resolution, i.e., a survey area extent comparable to that of a pixel for the Soil Moisture and Ocean Salinity (SMOS) satellite mission. The soil moisture distribution is dominated by climatic variations, notably by the North American monsoon, that results in a systematic increase in the standard deviation, observed up to 0.022 m3 m-3, as a function of the mean, between 0.06 and 0.14 m3 m-3. Two techniques are explored to use the cosmic-ray rover data for hydrologic applications: (1) interpolation of the 22 surveys into a daily soil moisture product by defining an approach to utilize and quantify the observed temporal stability producing an average correlation coefficient of 0.82 for the soil moisture distributions that were surveyed and (2) estimation of soil moisture profiles by combining surface moisture from satellite microwave sensors with deeper measurements from the cosmic-ray rover. The interpolated soil moisture and soil moisture profile estimates allow for basin-wide mass balance calculation of evapotranspiration, totaling 241 mm for the year 2012. Generating soil moisture maps with cosmic-ray rover at this intermediate scale may help in the calibration and validation of satellite campaigns and may also aid in various large scale hydrologic studies.

  17. Estimation of Watershed Scale Soil Moisture from Point Measurements in SMEX02

    NASA Astrophysics Data System (ADS)

    Cosh, M. H.; Jackson, T. J.; Bindlish, R.; Prueger, J.

    2002-12-01

    Understanding watershed scale soil moisture distributions is necessary to validate current remote sensing, such as the Advanced Microwave Scanning Radiometer (AMSR). Unfortunately, remote sensing technology does not currently resolve the land surface at a scale that can be easily validated with ground observations. One method of validation uses existing soil moisture measurement networks and scales up to the resolution of these remote sensing footprints. Soil Moisture Experiment 2002 (SMEX02) was an excellent opportunity to implement one such soil moisture gaging system which, when calibrated, provided robust estimates of the watershed scale soil moisture throughout the summer of 2002. Twelve fields distributed across the Walnut Creek watershed were instrumented with in situ soil moisture probes and were intensively sampled during the experiment, between June 25 and July 12, 2002. The sampling sites were analyzed for temporal stability and scaling relationships were developed. These point measurements were scaled up to the field scale (~ 800 m) and then to the watershed scale (~ 25 km) for the field experiment period and were shown to be accurate indicators of the large-scale soil moisture distribution. Point measurements were then used as a basis for a watershed estimate for several months beyond SMEX02, thereby providing a long record of watershed scale soil moisture which can be used for validation. The ability to estimate the soil moisture is measured by a variety of techniques, including split sample verification. This analysis is a first step in the implementation of large-scale soil moisture validation utilizing networks such as the Soil Climate Analysis Network (SCAN) as a basis for calibrating soil moisture satellite products.

  18. Remote sensing of vegetation and soil moisture

    NASA Technical Reports Server (NTRS)

    Kong, J. A.; Shin, R. T. (Principal Investigator)

    1983-01-01

    Progress in the investigation of problems related to the remote sensing of vegetation and soil moisture is reported. Specific topics addressed include: (1) microwave scattering from periodic surfaces using a rigorous modal technique; (2) combined random rough surface and volume scattering effects; (3) the anisotropic effects of vegetation structures; (4) the application of the strong fluctuation theory to the the study of electromagnetic wave scattering from a layer of random discrete scatterers; and (5) the investigation of the scattering of a plane wave obliquely incident on a half space of densely distributed spherical dielectric scatterers using a quantum mechanical potential approach.

  19. Ultrasound Algorithm Derivation for Soil Moisture Content Estimation

    NASA Technical Reports Server (NTRS)

    Belisle, W.R.; Metzl, R.; Choi, J.; Aggarwal, M. D.; Coleman, T.

    1997-01-01

    Soil moisture content can be estimated by evaluating the velocity at which sound waves travel through a known volume of solid material. This research involved the development of three soil algorithms relating the moisture content to the velocity at which sound waves moved through dry and moist media. Pressure and shear wave propagation equations were used in conjunction with soil property descriptions to derive algorithms appropriate for describing the effects of moisture content variation on the velocity of sound waves in soils with and without complete soil pore water volumes, An elementary algorithm was used to estimate soil moisture contents ranging from 0.08 g/g to 0.5 g/g from sound wave velocities ranging from 526 m/s to 664 m/s. Secondary algorithms were also used to estimate soil moisture content from sound wave velocities through soils with pores that were filled predominantly with air or water.

  20. Evaluation of gravimetric ground truth soil moisture data collected for the agricultural soil moisture experiment, 1978 Colby, Kansas, aircraft mission

    NASA Technical Reports Server (NTRS)

    Arya, L. M.; Phinney, D. E. (Principal Investigator)

    1980-01-01

    Soil moisture data acquired to support the development of algorithms for estimating surface soil moisture from remotely sensed backscattering of microwaves from ground surfaces are presented. Aspects of field uniformity and variability of gravimetric soil moisture measurements are discussed. Moisture distribution patterns are illustrated by frequency distributions and contour plots. Standard deviations and coefficients of variation relative to degree of wetness and agronomic features of the fields are examined. Influence of sampling depth on observed moisture content an variability are indicated. For the various sets of measurements, soil moisture values that appear as outliers are flagged. The distribution and legal descriptions of the test fields are included along with examinations of soil types, agronomic features, and sampling plan. Bulk density data for experimental fields are appended, should analyses involving volumetric moisture content be of interest to the users of data in this report.

  1. Use of Ultrasonic Technology for Soil Moisture Measurement

    NASA Technical Reports Server (NTRS)

    Choi, J.; Metzl, R.; Aggarwal, M. D.; Belisle, W.; Coleman, T.

    1997-01-01

    In an effort to improve existing soil moisture measurement techniques or find new techniques using physics principles, a new technique is presented in this paper using ultrasonic techniques. It has been found that ultrasonic velocity changes as the moisture content changes. Preliminary values of velocities are 676.1 m/s in dry soil and 356.8 m/s in 100% moist soils. Intermediate values can be calibrated to give exact values for the moisture content in an unknown sample.

  2. A simulation study of scene confusion factors in sensing soil moisture from orbital radar

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Dobson, M. C.; Moezzi, S.; Roth, F. T.

    1983-01-01

    Simulated C-band radar imagery for a 124-km by 108-km test site in eastern Kansas is used to classify soil moisture. Simulated radar resolutions are 100 m by 100 m, 1 km by 1km, and 3 km by 3 km. Distributions of actual near-surface soil moisture are established daily for a 23-day accounting period using a water budget model. Within the 23-day period, three orbital radar overpasses are simulated roughly corresponding to generally moist, wet, and dry soil moisture conditions. The radar simulations are performed by a target/sensor interaction model dependent upon a terrain model, land-use classification, and near-surface soil moisture distribution. The accuracy of soil-moisture classification is evaluated for each single-date radar observation and also for multi-date detection of relative soil moisture change. In general, the results for single-date moisture detection show that 70% to 90% of cropland can be correctly classified to within +/- 20% of the true percent of field capacity. For a given radar resolution, the expected classification accuracy is shown to be dependent upon both the general soil moisture condition and also the geographical distribution of land-use and topographic relief. An analysis of cropland, urban, pasture/rangeland, and woodland subregions within the test site indicates that multi-temporal detection of relative soil moisture change is least sensitive to classification error resulting from scene complexity and topographic effects.

  3. Controlling Factors of Root-Zone Soil Moisture Spectra in Tropical and Temperate Forests

    NASA Astrophysics Data System (ADS)

    Nakai, T.; Katul, G. G.; Kotani, A.; Igarashi, Y.; Ohta, T.; Kumagai, T.

    2014-12-01

    Characteristics of root-zone soil moisture spectra in a subtropical monsoon forest in Thailand (Mae Moh) and two warm-temperate forests in the US (Duke) and Japan (Seto) were examined for time scales ranging from 30 minutes to multiple years. These forested areas have comparable maximum leaf area index but markedly different phase relations between evapotranspiration, net radiation, precipitation, and soil moisture. A hierarchy of models that sequentially introduce the spectrum of precipitation, net radiation, and nonlinearites in the damping originating from stomatal controls and drainage losses were used. If the precipitation is random, and the damping term by evapotranspiration and drainage is increased linearly with increasing soil moisture, the temporal variability of soil moisture simplifies to a first order Markov process commonly employed in the analysis of soil moisture in climate models. Its spectrum exhibits a Lorentz function with a white-noise behavior at low frequency and red-noise behavior at high frequency separated by a time-scale constant for intermediate frequencies. Such first order Markov process model with its time scale defined by the maximum wet surface evapotranspiration, soil porosity, and root-zone depth did not represent the observed soil moisture spectra at all three sites. Adding the effect of precipitation and net radiation variability were necessary for representing the actual soil moisture spectra. While the observed soil moisture spectra were satisfactorily reproduced by these additions, the relative importance of precipitation and net radiation to the soil moisture spectra differed between sites. The soil moisture memory, inferred from the observed soil moisture spectra (model decay time scale), was about 25-38 days, which was larger than that determined from maximum wet evapotranspiration and available pore space alone, except that these two time scales in Seto forest were nearly the same.

  4. Long-term trend and variability of soil moisture over East Asia

    NASA Astrophysics Data System (ADS)

    Cheng, Shanjun; Guan, Xiaodan; Huang, Jianping; Ji, Fei; Guo, Ruixia

    2015-09-01

    The variability of soil moisture over East Asia was analyzed using a long-term data set from the Global Land Data Assimilation System. Overall, a clear decreasing trend occurred over a period of 63 years, with pronounced drying over northeast China, north China, part of Mongolia, and Russia near lake Baikal. Statistical analyses show that decreasing precipitation and global warming have different effects on the decrease in soil moisture. The qualitative analysis and quantitative contributions illustrated that soil drying is driven primarily by decreasing precipitation and is enhanced almost twofold by increasing temperatures. As soil moisture decreases, the positive feedback between soil moisture and temperature may result in future water shortages. Following the Representative Concentration Pathways 8.5 (RCP8.5) and 4.5 (RCP4.5) simulation scenarios of Coupled Model Intercomparison Project phase 5, the model-predicted soil moisture demonstrated a continuously decreasing trend during the 21st century.

  5. The impact of vertical measurement depth on the information content of soil moisture times series data

    NASA Astrophysics Data System (ADS)

    Qiu, Jianxiu; Crow, Wade T.; Nearing, Grey S.; Mo, Xingguo; Liu, Suxia

    2014-07-01

    Using a decade of ground-based soil moisture observations acquired from the United States Department of Agriculture's Soil Climate Analysis Network (SCAN), we calculate the mutual information (MI) content between multiple soil moisture variables and near-future vegetation condition to examine the existence of emergent drought information in vertically integrated (surface to 60 cm) soil moisture observations (θ0-60 [cm]) not present in either superficial soil moisture observations (θ5 [cm]) or a simple low-pass transformation of θ5. Results suggest that while θ0-60 is indeed more valuable than θ5 for predicting near-future vegetation anomalies, the enhanced information content in θ0-60 soil moisture can be effectively duplicated by the low-pass transformation of θ5. This implies that, for drought monitoring applications, the shallow vertical penetration depth of microwave-based θ5 retrievals does not represent as large a practical limitation as commonly perceived.

  6. Australian Soil Moisture Field Experiments in Support of Soil Moisture Satellite Observations

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Walker, Jeff; Rudiger, Christopher; Panciera, Rocco

    2010-01-01

    Large-scale field campaigns provide the critical fink between our understanding retrieval algorithms developed at the point scale, and algorithms suitable for satellite applications at vastly larger pixel scales. Retrievals of land parameters must deal with the substantial sub-pixel heterogeneity that is present in most regions. This is particularly the case for soil moisture remote sensing, because of the long microwave wavelengths (L-band) that are optimal. Yet, airborne L-band imagers have generally been large, heavy, and required heavy-lift aircraft resources that are expensive and difficult to schedule. Indeed, US soil moisture campaigns, have been constrained by these factors, and European campaigns have used non-imagers due to instrument and aircraft size constraints. Despite these factors, these campaigns established that large-scale soil moisture remote sensing was possible, laying the groundwork for satellite missions. Starting in 2005, a series of airborne field campaigns have been conducted in Australia: to improve our understanding of soil moisture remote sensing at large scales over heterogeneous areas. These field data have been used to test and refine retrieval algorithms for soil moisture satellite missions, and most recently with the launch of the European Space Agency's Soil Moisture Ocean Salinity (SMOS) mission, to provide validation measurements over a multi-pixel area. The campaigns to date have included a preparatory campaign in 2005, two National Airborne Field Experiments (NAFE), (2005 and 2006), two campaigns to the Simpson Desert (2008 and 2009), and one Australian Airborne Cal/val Experiment for SMOS (AACES), just concluded in the austral spring of 2010. The primary airborne sensor for each campaign has been the Polarimetric L-band Microwave Radiometer (PLMR), a 6-beam pushbroom imager that is small enough to be compatible with light aircraft, greatly facilitating the execution of the series of campaigns, and a key to their success. An

  7. Building the North American Soil Moisture (NASM) Database

    NASA Astrophysics Data System (ADS)

    Quiring, S. M.

    2011-12-01

    Soil moisture is an important variable in the climate system. To date, relatively little work has been done to assemble and homogenize in situ measurements of soil moisture and to utilize these measurements for investigating land-atmosphere interactions. This research addresses the critical need to develop high quality soil moisture datasets from disparate sources and to use these data to improve our understanding of climatic variability on seasonal to interannual timescales. This project will assemble, quality control and harmonize the existing in situ soil moisture observations in the United States (and eventually beyond) and develop a soil moisture database for investigating the nature of land-atmosphere interactions, validating the accuracy of soil moisture simulations in global land surface models, and describing how soil moisture influences climate on seasonal to interannual timescales. These data will be published on a dedicated website and made available to the scientific community to support research efforts such as Decadal and Regional Climate Prediction Using Earth System Models (EaSM), the Soil Moisture and Ocean Salinity (SMOS) satellite recently launched by the European Space Agency and NASA's Soil Moisture Active and Passive (SMAP) mission (planned launch in 2015).

  8. Soil moisture impacts on convective precipitation in Oklahoma

    NASA Astrophysics Data System (ADS)

    Ford, Trenton W.

    Soil moisture is vital to the climate system, as root zone soil moisture has a significant influence on evapotranspiration rates and latent and sensible heat exchange. Through the modification of moisture flux from the land surface to the atmosphere, soil moisture can impact regional temperature and precipitation. Despite a wealth of studies examining land-atmosphere interactions, model and observation-driven studies show conflicting results with regard to the sign and strength of soil moisture feedback to precipitation, particularly in the Southern Great Plains of the United States. This research provides observational evidence for a preferential dry (or negative) soil moisture feedback to precipitation in Oklahoma. The ability of soil moisture to impact the location and occurrence of afternoon convective precipitation is constrained by synoptic-scale atmospheric circulation and resulting mid- and low-level wind patterns and sensible and latent heat flux. Overall, the preference for precipitation initiation over dry soils is enhanced when regional soil moisture gradients exhibit a weakened east to west, wet to dry pattern. Based on these results, we conclude that soil moisture can modify atmospheric conditions potentially leading to convective initiation. However, the land surface feedback signal is weak at best, suggesting that regional-scale circulation is the dominant driver of warm season precipitation in the Southern Great Plains.

  9. BOREAS HYD-1 Volumetric Soil Moisture Data

    NASA Technical Reports Server (NTRS)

    Cuenca, Richard H.; Kelly, Shaun F.; Stangel, David E.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-1 team made measurements of volumetric soil moisture at the Southern Study Area (SSA) and Northern Study Area (NSA) tower flux sites in 1994 and at selected tower flux sites in 1995-97. Different methods were used to collect these measurements, including neutron probe and manual and automated Time Domain Reflectometry (TDR). In 1994, the measurements were made every other day at the NSA-OJP (Old Jack Pine), NSA-YJP (Young Jack Pine), NSA-OBS (Old Black Spruce), NSA-Fen, SSA-OJP, SSA-YJP, SSA-Fen, SSA-YA (Young Aspen), and SSA-OBS sites. In 1995-97, when automated equipment was deployed at NSA-OJP, NSA-YJP, NSA-OBS, SSA-OBS, and SSA-OA (Old Aspen), the measurements were made as often as every hour. The data are stored in tabular ASCII files. The volumetric soil moisture data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  10. Correlation of microwave sensor returns with soil moisture

    NASA Technical Reports Server (NTRS)

    Taube, D. W.; Theis, S. W.

    1984-01-01

    Microwave sensor soil data were collected by aircraft over agricultural croplands. Multiple incident angle scatterometer data (13.3, 4.75, 1.6 and 0.4 GHz), passive radiometer data (L and C-band), and soil moisture ground truth measurements were collected coincidentally. Each sensor and angle of incidence was linearly analyzed against the measured soil moisture. For bare agricultural soils, the optimal single sensor for soil moisture preduction is the L-band passive radiometer. The effects of vegetation and differing surface roughness prove significant. When both bare and vegetated surfaces were studied, the masking due to the vegetation renders the single sensor approach ineffective in soil moisture prediction. Multisensor techniques are necessary to remotely measure soil moisture when a priori knowledge of vegetation is not available.

  11. Recent Enhancements in the North American Soil Moisture Database (NASMD)

    NASA Astrophysics Data System (ADS)

    Chavez, N.; Galvan, J., III; Quiring, S. M.; Ford, T.

    2014-12-01

    The North American Soil Moisture Database (soilmoisture.tamu.edu) is a high-quality observational soil moisture database that contains data from >1800 stations. In the last year we have enhanced the database by identifying sites in Mexico and expanding the database to also include soil temperature data. Here we provide an overview of how the in situ soil moisture and soil temperature observations are assembled, quality controlled and harmonized prior to being incorporated in the NASMD. The database is designed to facilitate observationally-driven investigations of land-atmosphere interactions, validation of the accuracy of soil moisture simulations in global land surface models, satellite calibration/validation for SMOS and SMAP, and an improved understanding of how soil moisture influences climate on seasonal to interannual timescales. This paper provides some examples of how the NASMD has been utilized to enhance understanding of land-atmosphere interactions in the U.S. Great Plains.

  12. Inferring Land Surface Model Parameters for the Assimilation of Satellite-Based L-Band Brightness Temperature Observations into a Soil Moisture Analysis System

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.

    2012-01-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters

  13. Scaling surface soil moisture in the Walnut Gulch Experimental Watershed

    NASA Astrophysics Data System (ADS)

    Cosh, M. H.; Jackson, T. J.; Moran, S.; Bindlish, R.; Mladenova, I.

    2006-05-01

    The estimation of surface soil moisture in semi-arid and arid regions is complicated by the inherent heterogeneous precipitation patterns and ephemeral surface water characteristics. Large-scale sampling is inefficient for long term monitoring of surface soil moisture, especially with the goal of calibration of a satellite soil moisture product such as that generated by the AMSR-E instrument for example. Statistical methods of accurately monitoring and scaling point and watershed estimates to satellite scale moisture values are explored. The location for this study is the Walnut Gulch Experimental Watershed in Tombstone, Arizona, which is also the location of the Soil Moisture Experiment in 2004 (SMEX04). The variability of radiometric temperature brightness data is also examined for its relationships to land surface parameters, climate variables, and insitu soil moisture measurements. Variability assessment is also evaluated for consistency and persistence over a three-year period.

  14. Inflatable Antenna Microwave Radiometer for Soil Moisture Measurement

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.; Kendall, Bruce M.; Schroeder, Lyle C.; Harrington, Richard F.

    1993-01-01

    Microwave measurements of soil moisture are not being obtained at the required spatial Earth resolution with current technology. Recently, new novel designs for lightweight reflector systems have been developed using deployable inflatable antenna structures which could enable lightweight real-aperture radiometers. In consideration of this, a study was conducted at the NASA Langley Research Center (LaRC) to determine the feasibility of developing a microwave radiometer system using inflatable reflector antenna technology to obtain high spatial resolution radiometric measurements of soil moisture from low Earth orbit and which could be used with a small and cost effective launch vehicle. The required high resolution with reasonable swath width coupled with the L-band measurement frequency for soil moisture dictated the use of a large (30 meter class) real aperture antenna in conjunction with a pushbroom antenna beam configuration and noise-injection type radiometer designs at 1.4 and 4.3 GHz to produce a 370 kilometer cross-track swath with a 10 kilometer resolution that could be packaged for launch with a Titan 2 class vehicle. This study includes design of the inflatable structure, control analysis, structural and thermal analysis, antenna and feed design, radiometer design, payload packaging, orbital analysis, and electromagnetic losses in the thin membrane inflatable materials.

  15. Evaluation and Application of Remotely Sensed Soil Moisture Products

    NASA Technical Reports Server (NTRS)

    Bolten, J.; Crow, W.; Zhan, X.; Jackson, T.; Reynolds, C.; Rodell, Matt

    2010-01-01

    Whereas in-situ measurements of soil moisture are very accurate, achieving accurate regional soil moisture estimates derived solely from point measurements is difficult because of the dependence upon the density of the gauge network and the proper upkeep of these instruments, which can be costly. Microwave remote sensing is the only technology capable of providing timely direct measurements of regional soil moisture in areas that are lacking in-situ networks. Soil moisture remote sensing technology is well established has been successfully applied in many fashions to Earth Science applications. Since the microwave emission from the soil surface has such a high dependency upon the moisture content within the soil, we can take advantage of this relationship and combined with physically-based models of the land surface, derive accurate regional estimates of the soil column water content from the microwave brightness temperature observed from satellite-based remote sensing instruments. However, there still remain many questions regarding the most efficient methodology for evaluating and applying satellite-based soil moisture estimates. As discussed below, we to use satellite-based estimates of soil moisture dynamics to improve the predictive capability of an optimized hydrologic model giving more accurate root-zone soil moisture estimates.

  16. Assessment of Errors in AMSR-E Derived Soil Moisture

    NASA Astrophysics Data System (ADS)

    Champagne, C.; McNairn, H.; Berg, A.; de Jeu, R. A.

    2009-05-01

    Soil moisture derived from passive microwave satellites provides information at a coarse spatial scale, but with temporally frequent, global coverage that can be used for monitoring applications over agricultural regions. Passive microwave satellites measure surface brightness temperature, which is largely a function of vegetation water content (which is directly related to the vegetation optical depth), surface temperature and surface soil moisture at low frequencies. Retrieval algorithms for global soil moisture data sets by necessity require limited site-specific information to derive these parameters, and as such may show variations in local accuracy. The objective of this study is to examine the errors in passive microwave soil moisture data over agricultural sites in Canada to provide guidelines on data quality assessment for using these data sets in monitoring applications. Global gridded soil moisture was acquired from the AMSR-E satellite using the Land Parameter Retrieval Model, LPRM (Owe et al., 2008). The LPRM model derives surface soil moisture through an iterative optimization procedure using a polarization difference index to estimate vegetation optical depth and surface dielectric constant using frequencies at 6.9 and 10.7 GHz. The LPRM model requires no a-priori information on surface conditions, but retrieval errors are expected to increase as the amount of open water and dense vegetation within each pixel increases (Owe et al., 2008) Satellite-derived LPRM soil moisture values were used to assess changes in soil moisture retrieval accuracy over the 2007 growing season for a largely agricultural site near Guelph (Ontario), Canada. Accuracy was determined by validating LPRM soil moisture against a network of 16 in-situ monitoring sites distributed at the pixel scale for AMSR-E. Changes in squared error, and pairwise correlation coefficient between satellite and in-situ surface soil moisture were assessed against changes in satellite orbit and

  17. A nonlinear coupled soil moisture-vegetation model

    NASA Astrophysics Data System (ADS)

    Liu, Shikuo; Liu, Shida; Fu, Zuntao; Sun, Lan

    2005-06-01

    Based on the physical analysis that the soil moisture and vegetation depend mainly on the precipitation and evaporation as well as the growth, decay and consumption of vegetation a nonlinear dynamic coupled system of soil moisture-vegetation is established. Using this model, the stabilities of the steady states of vegetation are analyzed. This paper focuses on the research of the vegetation catastrophe point which represents the transition between aridness and wetness to a great extent. It is shown that the catastrophe point of steady states of vegetation depends mainly on the rainfall P and saturation value v0, which is selected to balance the growth and decay of vegetation. In addition, when the consumption of vegetation remains constant, the analytic solution of the vegetation equation is obtained.

  18. Validation of SMOS Satellite Soil Moisture Products over Tropical Region

    NASA Astrophysics Data System (ADS)

    Kanniah, Kasturi; Siang, Kang Chuen

    2016-07-01

    Calibration and validation (cal/val) activities on Soil Moisture and Ocean Salinity (SMOS) satellite derived soil moisture products has been conducted worldwide since the data has become available but not over the tropical region . This study focuses on the installation of a soil moisture data collection network over an agricultural site in a tropical region in Peninsular Malaysia, and the validation of SMOS soil moisture products. The in-situ data over one year period was analysed and validation of SMOS Soil Moisture products with these in-situ data was conducted.Bias and root mean square errors (RMSE) were computed between SMOS soil moisture products and the in-situ surface soil moisture collected at the satellite passing time (6 am and 6 pm local time). Due to the known limitations of SMOS soil moisture retrieval over vegetated areas with vegetation water content higher than 5 kgm-2, overestimation of SMOS soil moisture products to in-situ data was noticed in this study. The bias is ranging from 0.064 to 0.119 m3m-3 and the RMSE is from 0.090 to 0.158 m3m-3, when both ascending and descending data were validated. This RMSE was found to be similar to a number of studies conducted previously at different regions. However a wet bias was found during the validation, while previous validation activities at other regions showed dry biases. The result of this study is useful to support the continuous development and improvement of SMOS soil moisture retrieval model, aims to produce soil moisture products with higher accuracy, especially in the tropical region.

  19. Divergent surface and total soil moisture projections under global warming

    USGS Publications Warehouse

    Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.

    2017-01-01

    Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.

  20. Misrepresentation and amendment of soil moisture in conceptual hydrological modelling

    NASA Astrophysics Data System (ADS)

    Zhuo, Lu; Han, Dawei

    2016-04-01

    Although many conceptual models are very effective in simulating river runoff, their soil moisture schemes are generally not realistic in comparison with the reality (i.e., getting the right answers for the wrong reasons). This study reveals two significant misrepresentations in those models through a case study using the Xinanjiang model which is representative of many well-known conceptual hydrological models. The first is the setting of the upper limit of its soil moisture at the field capacity, due to the 'holding excess runoff' concept (i.e., runoff begins on repletion of its storage to the field capacity). The second is neglect of capillary rise of water movement. A new scheme is therefore proposed to overcome those two issues. The amended model is as effective as its original form in flow modelling, but represents more logically realistic soil water processes. The purpose of the study is to enable the hydrological model to get the right answers for the right reasons. Therefore, the new model structure has a better capability in potentially assimilating soil moisture observations to enhance its real-time flood forecasting accuracy. The new scheme is evaluated in the Pontiac catchment of the USA through a comparison with satellite observed soil moisture. The correlation between the XAJ and the observed soil moisture is enhanced significantly from 0.64 to 0.70. In addition, a new soil moisture term called SMDS (Soil Moisture Deficit to Saturation) is proposed to complement the conventional SMD (Soil Moisture Deficit).

  1. A microwave systems approach to measuring root zone soil moisture

    NASA Technical Reports Server (NTRS)

    Newton, R. W.; Paris, J. F.; Clark, B. V.

    1983-01-01

    Computer microwave satellite simulation models were developed and the program was used to test the ability of a coarse resolution passive microwave sensor to measure soil moisture over large areas, and to evaluate the effect of heterogeneous ground covers with the resolution cell on the accuracy of the soil moisture estimate. The use of realistic scenes containing only 10% to 15% bare soil and significant vegetation made it possible to observe a 60% K decrease in brightness temperature from a 5% soil moisture to a 35% soil moisture at a 21 cm microwave wavelength, providing a 1.5 K to 2 K per percent soil moisture sensitivity to soil moisture. It was shown that resolution does not affect the basic ability to measure soil moisture with a microwave radiometer system. Experimental microwave and ground field data were acquired for developing and testing a root zone soil moisture prediction algorithm. The experimental measurements demonstrated that the depth of penetration at a 21 cm microwave wavelength is not greater than 5 cm.

  2. Remote sensing as a tool in assessing soil moisture

    NASA Technical Reports Server (NTRS)

    Carlson, C. W.

    1978-01-01

    The effects of soil moisture as it relates to agriculture is briefly discussed. The use of remote sensing to predict scheduling of irrigation, runoff and soil erosion which contributes to the prediction of crop yield is also discussed.

  3. Spatial and temporal variability of soil moisture on the field with and without plants*

    NASA Astrophysics Data System (ADS)

    Usowicz, B.; Marczewski, W.; Usowicz, J. B.

    2012-04-01

    Spatial and temporal variability of the natural environment is its inherent and unavoidable feature. Every element of the environment is characterized by its own variability. One of the kinds of variability in the natural environment is the variability of the soil environment. To acquire better and deeper knowledge and understanding of the temporal and spatial variability of the physical, chemical and biological features of the soil environment, we should determine the causes that induce a given variability. Relatively stable features of soil include its texture and mineral composition; examples of those variables in time are the soil pH or organic matter content; an example of a feature with strong dynamics is the soil temperature and moisture content. The aim of this study was to identify the variability of soil moisture on the field with and without plants using geostatistical methods. The soil moisture measurements were taken on the object with plant canopy and without plants (as reference). The measurements of soil moisture and meteorological components were taken within the period of April-July. The TDR moisture sensors covered 5 cm soil layers and were installed in the plots in the soil layers of 0-0.05, 0.05-0.1, 0.1-0.15, 0.2-0.25, 0.3-0.35, 0.4-0.45, 0.5-0.55, 0.8-0.85 m. Measurements of soil moisture were taken once a day, in the afternoon hours. For the determination of reciprocal correlation, precipitation data and data from soil moisture measurements with the TDR meter were used. Calculations of reciprocal correlation of precipitation and soil moisture at various depths were made for three objects - spring barley, rye, and bare soil, at the level of significance of p<0.05. No significant reciprocal correlation was found between the precipitation and soil moisture in the soil profile for any of the objects studied. Although the correlation analysis indicates a lack of correlation between the variables under consideration, observation of the soil

  4. Estimating daily root-zone soil moisture in snow-dominated regions using an empirical soil moisture diagnostic equation

    NASA Astrophysics Data System (ADS)

    Pan, Feifei; Nieswiadomy, Michael

    2016-11-01

    Soil moisture in snow-dominated regions has many important applications including evapotranspiration estimation, flood forecasting, water resource and ecosystem services management, weather prediction and climate modeling, and quantification of denudation processes. A simple and robust empirical approach to estimate root-zone soil moisture in snow-dominated regions using a soil moisture diagnostic equation that incorporates snowfall and snowmelt processes is suggested and tested. A five-water-year dataset (10/1/2010-9/30/2015) of daily precipitation, air temperature, snow water equivalent and soil moistures at three depths (i.e., 5 cm, 20 cm, and 50 cm) at each of 12 Snow Telemetry (SNOTEL) sites across Utah (37.583°N-41.883°N, 110.183°W-112.9°W), is applied to test the proposed method. The first three water years are designated as the parameter-estimation period (PEP) and the last two water years are chosen as the model-testing period (MTP). Applying the estimated soil moisture loss function parameters and other empirical parameters in the soil moisture diagnostic equation in the PEP, soil moistures in three soil columns (0-5 cm, 0-20 cm, and 0-50 cm) are estimated in the MTP. The relatively accurate soil moisture estimations compared to the observations at 12 SNOTEL sites (RMSE ⩽ 6.23 (%V/V), average RMSE = 4.28 (%V/V), correlation coefficient ⩾0.75, average correlation coefficient =0.89, the Nash-Sutcliffe efficient coefficient Ec ⩾ 0.24, average Ec = 0.72) indicate that the soil moisture diagnostic equation is capable of accurately estimating soil moisture in snow-dominated regions after the snowfall and snowmelt processes are included in the soil moisture diagnostic equation.

  5. Joint microwave and infrared studies for soil moisture determination

    NASA Technical Reports Server (NTRS)

    Njoku, E. G.; Schieldge, J. P.; Kahle, A. B. (Principal Investigator)

    1980-01-01

    The feasibility of using a combined microwave-thermal infrared system to determine soil moisture content is addressed. Of particular concern are bare soils. The theoretical basis for microwave emission from soils and the transport of heat and moisture in soils is presented. Also, a description is given of the results of two field experiments held during vernal months in the San Joaquin Valley of California.

  6. SMOS Soil moisture Cal val activities

    NASA Astrophysics Data System (ADS)

    Kerr, Y.; Mialon, A.; Bitar, A. Al; Leroux, D.; Richaume, P.; Gruhier, C.; Berthon, L.; Novello, N.; Rudiger, C.; Bircher, S.; Wigneron, J. P.; Ferrazzoli, P.; Rahmoune, R.

    2012-04-01

    SMOS, successfully launched on November 2, 2009, uses an L Band radiometer with aperture synthesis to achieve a good spatial resolution.. It was developed and made under the leadership of the European Space Agency (ESA) as an Earth Explorer Opportunity mission. It is a joint program with the Centre National d'Etudes Spatiales (CNES) in France and the Centro para el Desarrollo Tecnologico Industrial (CDTI) in Spain. SMOS carries a single payload, an L band 2D interferometric,radiometer in the 1400-1427 MHz protected band. This wavelength penetrates well through the vegetation and with the atmosphere being almost transparent, it enables us to infer both soil moisture and vegetation water content. SMOS achieves an unprecedented spatial resolution of 50 km at L-band maximum (43 km on average) with multi angular-dual polarized (or fully polarized) brightness temperatures over the globe and with a revisit time smaller than 3 days. SMOS is now acquiring data and has undergone the commissioning phase. The data quality exceeds what was expected, showing very good sensitivity and stability. The data is however very much impaired by man made emission in the protected band, leading to degraded measurements in several areas including parts of Europe and China. Many different international teams are now performing cal val activities in various parts of the world, with notably large field campaigns either on the long time scale or over specific targets to address the specific issues. These campaigns take place in various parts of the world and in different environments, from the Antarctic plateau to the deserts, from rain forests to deep oceans. SMOS is a new sensor, making new measurements and paving the way for new applications. It requires a detailed analysis of the data so as to validate both the approach and the quality of the retrievals, and allow for monitoring and the evolution of the sensor. To achieve such goals it is very important to link efficiently ground

  7. An overview of the measurements of soil moisture and modeling of moisture flux in FIFE

    NASA Astrophysics Data System (ADS)

    Wang, J. R.

    1992-11-01

    Measurements of soil moisture and calculations of moisture transfer in the soil medium and at the air-soil interface were conducted by a group of investigators over a 15-km by 15-km test site south of Manhattan, Kansas, during the First ISLSCP Field Experiment (FIFE) in 1987 and 1989. The measurements included intensive soil moisture sampling at the ground level and surveys at aircraft altitudes by several active and passive microwave sensors as well as a gamma radiation device. The calculations were based on a catchment-scale water balance model that is driven by spatially interpolated rainfalls and estimated potential evaporation. The results of this group effort are presented in the five papers in this section. They include discussions on the statistics of soil moisture variability within a pixel of a remote sensor, soil moisture measurements by impedance probes, the comparison of active and passive microwave sensing of surface soil moisture, the statistics of soil moisture estimation by a gamma-radiation technique, and the comparison of the calculated and measured latent heat fluxes at the catchment scale (4 km by 4 km).

  8. The Temperature Dependence of Soil Moisture Characteristics of Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Salehzadeh, Amir

    1990-01-01

    The temperature dependence of static and dynamic characteristics of four soils: glass beads, Plainfield sand, Plano silt loam, and Elkmound sandy loam were explored. Gain -factor model was employed for quantifying the temperature dependences. The study required novel methods and technologies which were developed and employed for the rapid, and transient measurement of soil-moisture characteristics of these soils. A pressurized 2 cm-high column of soil is sandwiched between two air blocking membranes interfacing outside pressurized water system. Water content (Theta ) is measured with a 2 Curie gamma-ray source combined with a fast detection system giving a statistical accuracy of +/-0.2%. Moisture potential ( Psi) down to -2000 cm was measured with a newly developed "stripper" tensionmeter. While a slowly varying soil-water pressure was imposed on the thin sample through the membranes, firmly held in contact with the soil, water content and moisture -potentials were being monitored in the sample. A plot of water content versus water pressure gave the static characteristics (Theta,Psi ) of soils. An array of tensiometers (between the membranes) allowed measurement of the potential profile; in conjunction with the time-varying water content this permitted measurement of dynamic characteristics, conductivity versus water content (K,Theta). For the (Theta, Psi) characteristics, the measurements indicated that, wholly for glass beads, and largely for sand, the surface tension of pure water governs the temperature response. The temperature dependence of Plano silt loam was largely independent of water content and was roughly five times the temperature dependence of the surface tension of pure water. For Elkmound sandy loam the dependence was complex and not easily explained. Two factors appear to limit further system improvement. (1) A sample thinner than 2 cm faces difficulties of fitting three tensionmeters into the thickness. This limit on the thickness, in turn

  9. Soil moisture determination study. [Guymon, Oklahoma

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J.

    1979-01-01

    Soil moisture data collected in conjunction with aircraft sensor and SEASAT SAR data taken near Guymon, Oklahoma are summarized. In order to minimize the effects of vegetation and roughness three bare and uniformly smooth fields were sampled 6 times at three day intervals on the flight days from August 2 through 17. Two fields remained unirrigated and dry. A similar pair of fields was irrigated at different times during the sample period. In addition, eighteen other fields were sampled on the nonflight days with no field being sampled more than 24 hours from a flight time. The aircraft sensors used included either black and white or color infrared photography, L and C band passive microwave radiometers, the 13.3, 4.75, 1.6 and .4 GHz scatterometers, the 11 channel modular microwave scanner, and the PRT5.

  10. Enhancing agricultural forecasting using SMOS surface soil moisture retrievals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the onset of data availability from the ESA Soil Moisture and Ocean Salinity (SMOS) mission (Kerr and Levine, 2008) and the expected 2015 launch of the NASA Soil Moisture Active and Passive (SMAP) mission (Entekhabi et al., 2010), the next five years should see a significant expansion in our ab...

  11. Soil moisture remote sensing: State of the science

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Satellites (e.g., SMAP, SMOS) using passive microwave techniques, in particular at L band frequency, have shown good promise for global mapping of near-surface (0-5 cm) soil moisture at a spatial resolution of 25-40 km and temporal resolution of 2-3 days. C- and X-band soil moisture records date bac...

  12. Long term observation and validation of windsat soil moisture data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The surface soil moisture controls surface energy budget. It is a key environmental variable in the coupled atmospheric and hydrological processes that are related to drought, heat waves and monsoon formation. Satellite remote sensing of soil moisture provides information that can contribute to unde...

  13. Use of soil moisture sensors for irrigation scheduling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various types of soil moisture sensing devices have been developed and are commercially available for water management applications. Each type of soil moisture sensors has its advantages and shortcomings in terms of accuracy, reliability, and cost. Resistive and capacitive based sensors, and time-d...

  14. Challenges in Interpreting and Validating Satellite Soil Moisture Information

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global soil moisture products are now being generated routinely using microwave-based satellite observing systems. These include the NASA Soil Moisture Active Passive (SMAP) mission. In order to fully exploit these observations they must be integrated with both in situ measurements and model-based e...

  15. SMOS Soil Moisture Validation with Dense and Sparse Networks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Validation is an important but particularly challenging task for passive microwave remote sensing of soil moisture from Earth orbit. The key issue is spatial scale; conventional measurements of soil moisture are made at a point whereas satellite sensors provide an integrated area/volume value for a ...

  16. Assessment of the SMAP level 2 passive soil moisture product

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The NASA Soil Moisture Active Passive (SMAP) satellite mission was launched on Jan 31, 2015. The observatory was developed to provide global mapping of high-resolution soil moisture and freeze-thaw state every 2–3 days using an L-band (active) radar and an L-band (passive) radiometer. SMAP provides ...

  17. The global distribution and dynamics of surface soil moisture

    NASA Astrophysics Data System (ADS)

    McColl, Kaighin A.; Alemohammad, Seyed Hamed; Akbar, Ruzbeh; Konings, Alexandra G.; Yueh, Simon; Entekhabi, Dara

    2017-01-01

    Surface soil moisture has a direct impact on food security, human health and ecosystem function. It also plays a key role in the climate system, and the development and persistence of extreme weather events such as droughts, floods and heatwaves. However, sparse and uneven observations have made it difficult to quantify the global distribution and dynamics of surface soil moisture. Here we introduce a metric of soil moisture memory and use a full year of global observations from NASA's Soil Moisture Active Passive mission to show that surface soil moisture--a storage believed to make up less than 0.001% of the global freshwater budget by volume, and equivalent to an, on average, 8-mm thin layer of water covering all land surfaces--plays a significant role in the water cycle. Specifically, we find that surface soil moisture retains a median 14% of precipitation falling on land after three days. Furthermore, the retained fraction of the surface soil moisture storage after three days is highest over arid regions, and in regions where drainage to groundwater storage is lowest. We conclude that lower groundwater storage in these regions is due not only to lower precipitation, but also to the complex partitioning of the water cycle by the surface soil moisture storage layer at the land surface.

  18. The Soil Moisture Active/Passive Mission (SMAP)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active/Passive (SMAP) mission will deliver global views of soil moisture content and its freeze/thaw state that are critical terrestrial water cycle state variables. Polarized measurements obtained with a shared antenna L-band radar and radiometer system will allow accurate estima...

  19. [Effects of soil thickness on spatiotemporal pattern of soil moisture in catchment level].

    PubMed

    Chen, Jia; Shi, Zhi-Hua; Li, Lu; Luo, Xuan

    2009-07-01

    Based on the fixed-spot observation, this paper analyzed the effects of soil thicknesses on the spatiotemporal pattern of soil moisture in the Wulongchi catchment of Danjiangkou, China. The soil moisture content increased soon after precipitation events, followed by a decline as the soil dried down, whilst its spatial heterogeneity exhibited an opposite pattern. The profile-averaged soil moisture content differed significantly with soil thickness. The soil with a thickness of 20 cm had lower profile-averaged moisture content whose variation trend was similar to that of precipitation and varied obviously among seasons; medium thickness (20-40 cm) soil had medium level of profile-averaged moisture content whose seasonal variation was moderately and affected by the characteristics of precipitation; while the soil with a thicknesses of > 40 cm had higher profile-averaged moisture content whose seasonal variation was relatively small. The profile distribution pattern of soil moisture was determined by the integrated effects of precipitation, evapotranspiration, and leakage, exhibiting increasing-type at semi-humid stage, waving-type at humid stage, and both of the two types at arid stage. There was a significant positive correlation between profile-averaged soil moisture content and soil thickness, and the correlation coefficient was 0.630-0.855. The moisture content in 0-15 cm soil layer had less correlation with soil thickness, but the moisture content in 20-55 cm soil layer was significantly correlated with soil thickness.

  20. Soil moisture responses to vapour pressure deficit in polytunnel-grown tomato under soil moisture triggered irrigation control

    NASA Astrophysics Data System (ADS)

    Goodchild, Martin; Kühn, Karl; Jenkins, Dick

    2014-05-01

    The aim of this work has been to investigate soil-to-atmosphere water transport in potted tomato plants by measuring and processing high-resolution soil moisture data against the environmental driver of vapour pressure deficit (VPD). Whilst many researchers have successfully employed sap flow sensors to determine water uptake by roots and transport through the canopy, the installation of sap flow sensors is non-trivial. This work presents an alternative method that can be integrated with irrigation controllers and data loggers that employ soil moisture feedback which can allow water uptake to be evaluated against environmental drivers such as VPD between irrigation events. In order to investigate water uptake against VPD, soil moisture measurements were taken with a resolution of 2 decimal places - and soil moisture, air temperature and relative humidity measurements were logged every 2 minutes. Data processing of the soil moisture was performed in an Excel spread sheet where changes in water transport were derived from the rate of change of soil moisture using the Slope function over 5 soil moisture readings. Results are presented from a small scale experiment using a GP2-based irrigation controller and data logger. Soil moisture feedback is provided from a single SM300 soil moisture sensor in order to regulate the soil moisture level and to assess the water flow from potted tomato plants between irrigation events. Soil moisture levels were set to avoid drainage water losses. By determining the rate of change in soil moisture between irrigation events, over a 16 day period whilst the tomato plant was in flower, it has been possible to observe very good correlation between soil water uptake and VPD - illustrating the link between plant physiology and environmental conditions. Further data is presented for a second potted tomato plant where the soil moisture level is switched between the level that avoids drainage losses and a significantly lower level. This data

  1. Quantifying mesoscale soil moisture with the cosmic-ray rover

    NASA Astrophysics Data System (ADS)

    Chrisman, B.; Zreda, M.

    2013-12-01

    Soil moisture governs the surface fluxes of mass and energy and is a major influence on floods and drought. Existing techniques measure soil moisture either at a point or over a large area many kilometers across. To bridge these two scales we used the cosmic-ray rover, an instrument similar to the recently developed COSMOS probe, but bigger and mobile. This paper explores the challenges and opportunities for mapping soil moisture over large areas using the cosmic-ray rover. In 2012, soil moisture was mapped 22 times in a 25 km × 40 km survey area of the Tucson Basin at an average of 1.7 km2 resolution, i.e., a survey area extent comparable to that of a pixel for the Soil Moisture and Ocean Salinity (SMOS) satellite mission. The soil moisture distribution is dominated by climatic variations, notably by the North American monsoon, that results in a systematic increase in the standard deviation, observed up to 0.022 m3 m-3, as a function of the mean, between 0.06 m3 m-3 and 0.14 m3 m-3. Two techniques are explored to use the cosmic-ray rover data for hydrologic applications: (1) interpolation of the 22 surveys into a daily soil moisture product by defining an approach to utilize and quantify the observed temporal stability producing an average correlation coefficient of 0.82 for the soil moisture distributions that were surveyed, and (2) estimation of soil moisture profiles by combining surface moisture from satellite microwave sensors (SMOS) with deeper measurements from the cosmic-ray rover. The interpolated soil moisture and soil moisture profiles allow for basin-wide mass balance calculation of evapotranspiration, which amounted to 241 mm in 2012. Generating soil moisture maps with a cosmic-ray rover at this intermediate scale may help in the calibration and validation of satellite soil moisture data products and may also aid in various large-scale hydrologic studies.

  2. The GLOBE Soil Moisture Campaign's Light Bulb Oven

    NASA Astrophysics Data System (ADS)

    Whitaker, M. P.; Tietema, D.; Ferre, T. P.; Nijssen, B.; Washburne, J.

    2003-12-01

    The GLOBE Soil Moisture Campaign (SMC) (www.hwr.arizona.edu/globe/sci/SM/SMC) has developed a light bulb oven to provide a low budget, low-technology method for drying soil samples. Three different soils were used to compare the ability of the light bulb oven to dry soils against a standard laboratory convection oven. The soils were: 1) a very fine sandy loam (the "Gila" soil); 2) a silty clay (the "Pima" soil); and 3) a sandy soil (the "Sonoran" soil). A large batch of each soil was wetted uniformly in the laboratory. Twelve samples of each soil were placed in the light bulb oven and twelve samples were placed in the standard oven. The average gravimetric soil moisture of the Gila soil was 0.214 g/cm3 for both ovens; the average Pima soil moisture was 0.332 g/cm3 and 0.331 g/cm3 for the traditional and light bulb ovens, respectively; and the Sonoran soil moisture was 0.077 g/cm3 for both ovens. These results demonstrate that the low technology light-bulb oven was able to dry the soil samples as well as a standard laboratory oven, offering the ability to make gravimetric water content measurements when a relatively expensive drying oven is not available.

  3. Upscaling sparse ground-based soil moisture observations for the validation of satellite surface soil moisture products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The contrast between the point-scale nature of current ground-based soil moisture instrumentation and the footprint resolution (typically >100 square kilometers) of satellites used to retrieve soil moisture poses a significant challenge for the validation of data products from satellite missions suc...

  4. Validation of two gridded soil moisture products over India with in-situ observations

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, C. K.; George, John P.; Lodh, Abhishek; Maurya, Devesh Kumar; Mallick, Swapan; Rajagopal, E. N.; Mohandas, Saji

    2016-07-01

    Surface level soil moisture from two gridded datasets over India are evaluated in this study. The first one is the UK Met Office (UKMO) soil moisture analysis produced by a land data assimilation system based on Extended Kalman Filter method (EKF), which make use of satellite observation of Advanced Scatterometer (ASCAT) soil wetness index as well as the screen level meteorological observations. Second dataset is a satellite soil moisture product, produced by National Remote Sensing Centre (NRSC) using passive microwave Advanced Microwave Scanning Radiometer 2 measurements. In-situ observations of soil moisture from India Meteorological Department (IMD) are used for the validation of the gridded soil moisture products. The difference between these datasets over India is minimum in the non-monsoon months and over agricultural regions. It is seen that the NRSC data is slightly drier (0.05%) and UKMO soil moisture analysis is relatively wet during southwest monsoon season. Standard AMSR-2 satellite soil moisture product is used to compare the NRSC and UKMO products. The standard AMSR-2 and UKMO values are closer in monsoon season and AMSR-2 soil moisture is higher than UKMO in all seasons. NRSC and AMSR-2 showed a correlation of 0.83 (significant at 0.01 level). The probability distribution of IMD soil moisture observation peaks at 0.25 m3/m3, NRSC at 0.15 m3/m3, AMSR-2 at 0.25 m3/m3 and UKMO at 0.35 m3/m3 during June-September period. Validation results show UKMO analysis has better correlation with in-situ observations compared to the NRSC and AMSR-2 datasets. The seasonal variation in soil moisture is better represented in UKMO analysis. Underestimation of soil moisture during monsoon season over India in NRSC data suggests the necessity of incorporating the actual vegetation for a better soil moisture retrieval using passive microwave sensors. Both products have good agreement over bare soil, shrubs and grassland compared to needle leaf tree, broad leaf tree and

  5. GNSSProbe, penetrating GNSS signals for measuring soil moisture

    NASA Astrophysics Data System (ADS)

    Martin, Francisco; Navarro, Victor; Reppucci, Antonio; Mollfulleda, Antonio; Balzter, Heiko; Nicolas-Perea, Virginia; Kissick, Lucy

    2016-04-01

    Soil moisture content (SMC) is an essential parameter from both a scientific and economical point of view. On one hand, it is key for the understanding of hydrological. Secondly, it is a most relevant parameter for agricultural activities and water management. Wide research has been done in this field using different sensors, spanning different parts of the measured electromagnetic spectrum, leading thus several methodologies to estimate soil moisture content. However complying with requirements in terms of accuracy and spatial resolution is still a major challenge. A novel approach based on the measurement of GNSS signals penetrating a soil volume is proposed here. This model relates soil moisture content to the measured soil transmissivity, and attenuation coefficient, which are a function of the soil characteristics (i.e soil moisture content, soit type, soil temperature, etc). A preliminary experiment has been performed to demonstrate the validity of this technique, where the signal received by a GNSS-R L1/E1 RHCP antenna buried at 5, 10, and 15 cm below the surface, was compared to the one received by a GNSS-R L1/E1 RHCP antenna with clear sky visibility. Preliminary results show agreement with theoretical results based on transmissivity and with previous campaigns performed where the soil moisture were collected at two different depths (5 and 15 cm). Details related to the GNSS soil moisture modeling, instrument preparation, measurement campaign, data processing and main results will be presented at the conference.

  6. Remotely sensed soil moisture input to a hydrologic model

    NASA Technical Reports Server (NTRS)

    Engman, E. T.; Kustas, W. P.; Wang, J. R.

    1989-01-01

    The possibility of using detailed spatial soil moisture maps as input to a runoff model was investigated. The water balance of a small drainage basin was simulated using a simple storage model. Aircraft microwave measurements of soil moisture were used to construct two-dimensional maps of the spatial distribution of the soil moisture. Data from overflights on different dates provided the temporal changes resulting from soil drainage and evapotranspiration. The study site and data collection are described, and the soil measurement data are given. The model selection is discussed, and the simulation results are summarized. It is concluded that a time series of soil moisture is a valuable new type of data for verifying model performance and for updating and correcting simulated streamflow.

  7. Analysis of the hydrological response of a distributed physically-based model using post-assimilation (EnKF) diagnostics of streamflow and in situ soil moisture observations

    NASA Astrophysics Data System (ADS)

    Trudel, Mélanie; Leconte, Robert; Paniconi, Claudio

    2014-06-01

    Data assimilation techniques not only enhance model simulations and forecast, they also provide the opportunity to obtain a diagnostic of both the model and observations used in the assimilation process. In this research, an ensemble Kalman filter was used to assimilate streamflow observations at a basin outlet and at interior locations, as well as soil moisture at two different depths (15 and 45 cm). The simulation model is the distributed physically-based hydrological model CATHY (CATchment HYdrology) and the study site is the Des Anglais watershed, a 690 km2 river basin located in southern Quebec, Canada. Use of Latin hypercube sampling instead of a conventional Monte Carlo method to generate the ensemble reduced the size of the ensemble, and therefore the calculation time. Different post-assimilation diagnostics, based on innovations (observation minus background), analysis residuals (observation minus analysis), and analysis increments (analysis minus background), were used to evaluate assimilation optimality. An important issue in data assimilation is the estimation of error covariance matrices. These diagnostics were also used in a calibration exercise to determine the standard deviation of model parameters, forcing data, and observations that led to optimal assimilations. The analysis of innovations showed a lag between the model forecast and the observation during rainfall events. Assimilation of streamflow observations corrected this discrepancy. Assimilation of outlet streamflow observations improved the Nash-Sutcliffe efficiencies (NSE) between the model forecast (one day) and the observation at both outlet and interior point locations, owing to the structure of the state vector used. However, assimilation of streamflow observations systematically increased the simulated soil moisture values.

  8. Sensitivity of Residual Soil Moisture Content in VIC Model Soil Property Parameterizations for Sub-arctic Discontinuous Permafrost Watersheds

    NASA Astrophysics Data System (ADS)

    Endalamaw, A. M.; Bolton, W. R.; Hinzman, L. D.; Morton, D.; Cable, J.

    2015-12-01

    analysis reveals that, although residual soil moisture is sensitive for both sub-basins, the low permafrost sub-basin is more sensitive than the high permafrost dominated sub-basin. This may be due to the dry mineral soil layer and higher transpiration by the deciduous plants in the low-permafrost ecosystem.

  9. Soil moisture and the persistence of North American drought

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Erickson, David J., III

    1989-01-01

    Numerical sensitivity experiments on the effects of soil moisture on North American summertime climate are performed using a 12-layer global atmospheric general circulation model. Consideration is given to the hypothesis that reduced soil moisture may induce and amplify warm, dry summers of midlatitude continental interiors. The simulations resemble the conditions of the summer of 1988, including an extensive drought over much of North America. It is found that a reduction in soil moisture leads to an increase in surface temperature, lower surface pressure, increased ridging aloft, and a northward shift of the jet stream. It is shown that low-level moisture advection from the Gulf of Mexico is important in the maintenance of persistent soil moisture deficits.

  10. Is Regional Root Reinforcement Controlled by Soil Moisture Variability?

    NASA Astrophysics Data System (ADS)

    Hales, T.; Ford, C. R.

    2011-12-01

    Climate change will alter the amount, type (i.e., snow vs. rain), and timing of precipitation that controls many hazardous Earth surface processes, including debris flows. Most GCMs agree that as climate warms the frequency of extreme precipitation will increase across the globe. Debris flow events triggered by heavy precipitation will likely also increase. Precipitation also affects the resistance to debris flow initiation by controlling belowground plant hydraulic architecture (e.g. root frequency, diameter distribution, tensile strength). Quantifying the links between precipitation, below ground properties, and the processes that initiate debris flows are therefore critical to understanding future hazard. To explore these links, we conducted a field experiment in the Coweeta Hydrologic Laboratory by excavating 12 soil pits (~1 m3), from two topographies (noses, hollows), and two tree species (Liriodendron tulipifera and Betula lenta). For each species and topography, we collected all biomass from five soil depths and measured soil moisture at 30, 60, and 90cm depth. For each depth we also measured root tensile strength, root cellulose content. Where we collected soil moisture data, we also measured root and soil hydraulic conductivity. Our data show a link between soil moisture content and root biomass distribution; root biomass is more evenly distributed through the soil column in hollows compared to noses. This relationship is consistent with the hypothesis that more consistent soil moisture in hollows allows plant roots to access resources from deeper within the soil column. This physiologic control has a significant effect on root cohesion, with trees on noses (or lower average soil moisture) providing greater root cohesion close to the surface, but considerably less cohesion at depth. Root tensile strength correlated with local daily soil moisture rather than the long term differences represented by noses and hollows. Daily soil moisture affected the amount

  11. The Sodankylä in situ soil moisture observation network: an example application of ESA CCI soil moisture product evaluation

    NASA Astrophysics Data System (ADS)

    Ikonen, Jaakko; Vehviläinen, Juho; Rautiainen, Kimmo; Smolander, Tuomo; Lemmetyinen, Juha; Bircher, Simone; Pulliainen, Jouni

    2016-04-01

    During the last decade there has been considerable development in remote sensing techniques relating to soil moisture retrievals over large areas. Within the framework of the European Space Agency's (ESA) Climate Change Initiative (CCI) a new soil moisture product has been generated, merging different satellite-based surface soil moisture based products. Such remotely sensed data need to be validated by means of in situ observations in different climatic regions. In that context, a comprehensive, distributed network of in situ measurement stations gathering information on soil moisture, as well as soil temperature, has been set up in recent years at the Finnish Meteorological Institute's (FMI) Sodankylä Arctic research station. The network forms a calibration and validation (CAL-VAL) reference site and is used as a tool to evaluate the validity of satellite retrievals of soil properties. In this paper we present the Sodankylä CAL-VAL reference site soil moisture observation network, its instrumentation as well as its areal representativeness over the study area and the region in general as a whole. As an example of data utilization, comparisons of spatially weighted average top-layer soil moisture observations between the years 2012 and 2014 against ESA CCI soil moisture data product estimates are presented and discussed. The comparisons were made against a single ESA CCI data product pixel encapsulating most of the Sodankylä CAL-VAL network sites. Comparisons are made with daily averaged and running weekly averaged soil moisture data as well as through application of an exponential soil moisture filter. The overall achieved correlation between the ESA CCI data product and in situ observations varies considerably (from 0.479 to 0.637) depending on the applied comparison perspective. Similarly, depending on the comparison perspective used, inter-annual correlation comparison results exhibit even more pronounced variation, ranging from 0.166 to 0.840.

  12. A Time Series Approach for Soil Moisture Estimation

    NASA Technical Reports Server (NTRS)

    Kim, Yunjin; vanZyl, Jakob

    2006-01-01

    Soil moisture is a key parameter in understanding the global water cycle and in predicting natural hazards. Polarimetric radar measurements have been used for estimating soil moisture of bare surfaces. In order to estimate soil moisture accurately, the surface roughness effect must be compensated properly. In addition, these algorithms will not produce accurate results for vegetated surfaces. It is difficult to retrieve soil moisture of a vegetated surface since the radar backscattering cross section is sensitive to the vegetation structure and environmental conditions such as the ground slope. Therefore, it is necessary to develop a method to estimate the effect of the surface roughness and vegetation reliably. One way to remove the roughness effect and the vegetation contamination is to take advantage of the temporal variation of soil moisture. In order to understand the global hydrologic cycle, it is desirable to measure soil moisture with one- to two-days revisit. Using these frequent measurements, a time series approach can be implemented to improve the soil moisture retrieval accuracy.

  13. Research on the Spatial Variability of Soil Moisture

    NASA Astrophysics Data System (ADS)

    Zhang, Changli; Liu, Shuqiang; Zhang, Xianyue; Tan, Kezhu

    China is a country seriously suffering from the lack of water resource, especially the north of China (a dense area) where there are more agricultural production than other places in China. Therefore, some have become most important problems which should be settled down right now for precision agriculture: saving the water of agriculture, optimizing the water for cropland as well as making use of soil moisture effectively. To realise the potential of soil-moisture, protect the water source , strengthen the management of the soil moisture of farm, design the irrigation and drainage, monitor the soil-moisture, etc. ,the data collection of soil moisture and the study on how to could provide the far-reaching and academic significance of guidance together with higher regional and practical use value. The IDW, Spline and Kriging in the Spatial Analyst of ArcGIS 9.0 are applied on drawing the distributing map of soil moisture and it also offers the theoretical foundation for the connection between studying soil moisture and enhancing the yield.

  14. Soil moisture downscaling using a simple thermal based proxy

    NASA Astrophysics Data System (ADS)

    Peng, Jian; Loew, Alexander; Niesel, Jonathan

    2016-04-01

    Microwave remote sensing has been largely applied to retrieve soil moisture (SM) from active and passive sensors. The obvious advantage of microwave sensor is that SM can be obtained regardless of atmospheric conditions. However, existing global SM products only provide observations at coarse spatial resolutions, which often hamper their applications in regional hydrological studies. Therefore, various downscaling methods have been proposed to enhance the spatial resolution of satellite soil moisture products. The aim of this study is to investigate the validity and robustness of a simple Vegetation Temperature Condition Index (VTCI) downscaling scheme over different climates and regions. Both polar orbiting (MODIS) and geostationary (MSG SEVIRI) satellite data are used to improve the spatial resolution of the European Space Agency's Water Cycle Multi-mission Observation Strategy and Climate Change Initiative (ESA CCI) soil moisture, which is a merged product based on both active and passive microwave observations. The results from direct validation against soil moisture in-situ measurements, spatial pattern comparison, as well as seasonal and land use analyses show that the downscaling method can significantly improve the spatial details of CCI soil moisture while maintain the accuracy of CCI soil moisture. The application of the scheme with different satellite platforms and over different regions further demonstrate the robustness and effectiveness of the proposed method. Therefore, the VTCI downscaling method has the potential to facilitate relevant hydrological applications that require high spatial and temporal resolution soil moisture.

  15. Microwave remote sensing and its application to soil moisture detection

    NASA Technical Reports Server (NTRS)

    Newton, R. W. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. Experimental measurements were utilized to demonstrate a procedure for estimating soil moisture, using a passive microwave sensor. The investigation showed that 1.4 GHz and 10.6 GHz can be used to estimate the average soil moisture within two depths; however, it appeared that a frequency less than 10.6 GHz would be preferable for the surface measurement. Average soil moisture within two depths would provide information on the slope of the soil moisture gradient near the surface. Measurements showed that a uniform surface roughness similar to flat tilled fields reduced the sensitivity of the microwave emission to soil moisture changes. Assuming that the surface roughness was known, the approximate soil moisture estimation accuracy at 1.4 GHz calculated for a 25% average soil moisture and an 80% degree of confidence, was +3% and -6% for a smooth bare surface, +4% and -5% for a medium rough surface, and +5.5% and -6% for a rough surface.

  16. Estimating root zone soil water content using limited soils information and surface soil moisture data assimilation

    NASA Astrophysics Data System (ADS)

    Heathman, Gary Claude

    2001-10-01

    The various hydrologic processes of infiltration, redistribution, drainage, evaporation, and water uptake by plants are strongly interdependent, as they occur sequentially or simultaneously. An important state variable that strongly influences the magnitude to which these rate processes occur is the amount of water present within the root zone, and in particular, the top few centimeters near the soil surface. Traditionally, measurements of soil moisture have been limited to point measurements made in the field. In general, averages of point measurements are used to characterize the soil moisture of an area, but these averages seldom yield information that is adequate to characterize large scale hydrologic processes. Recent advancements in remote sensing now make it possible to obtain areal estimates of surface soil moisture. The use of remotely sensed data to estimate surface soil moisture, combined with soil water and hydrologic modeling, provides a unique opportunity to advance our understanding of hydrologic processes at a much larger scale. Standard techniques for measuring soil moisture have been well documented, with commercial instrumentation being widely available. Various computer models have been developed to estimate soil moisture in the root and vadose zone, although their application over large scales is limited due to varying spatial and temporal field conditions. It is the combination of ground-based data (in-situ measurements), near-surface soil moisture data, and modeling that form the basis for this research. The interactive use of field research, remote sensing ground truth data, and integrated systems modeling is used to describe surface and profile soil moisture conditions at several locations within a large watershed. Successful application of this approach should improve our capabilities for estimating soil hydraulic properties and to better estimate water and chemical transport in the root zone, thus enhancing water use efficiency and plant

  17. The Effects of Wildfire on Soil Moisture Dynamics

    NASA Astrophysics Data System (ADS)

    Kanarek, M.; Cardenas, M.

    2013-12-01

    Moisture dynamics in the critical zone have significant implications for a variety of hydrologic processes, from water availability to plants to infiltration and groundwater recharge rates. These processes are perturbed by events such as wildfires, which may have long-lasting impacts. In September 2011, the most destructive wildfire in Texas history occurred in and around Bastrop State Park, which was significantly affected; thus we take advantage of a rare opportunity to study soil moisture under such burned conditions. A 165 m long transect bridging burned and unburned areas was established within the 'Lost Pines' of the park. Soil moisture and soil temperature were monitored and estimated using a variety of methods, including 2D electrical resistivity imaging (using dipole-dipole and Schlumberger configurations), surface permittivity measurements (ThetaProbe), permittivity-based soil moisture profiling (PR2 profile probes), and installation of thermistors. Field measurements were collected at approximately one-month intervals to study temporal and seasonal effects on soil moisture and temperature in this area. Greater soil moisture and lower resistivity were found near the surface at the heavily burned end of the transect, where trees have been largely killed by the fire and grasses now dominate, and very low near-surface soil moisture and higher resistivity were found at the opposite end, which is still populated by pine trees. These variations can likely be attributed to the vegetative variations between the two ends of the transect, with trees consuming more water at one end and the ground cover of grasses and mosses consuming less water and helping reduce evaporation at the burned end. Higher clay content at the burned end of the transect could also be a factor in greater soil moisture retention there. Given the higher moisture content throughout the soil profile at the heavily burned end of the transect, this could be an indication of greater infiltration

  18. Evaluation of soil moisture data products over Indian region and analysis of spatio-temporal characteristics with respect to monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Sathyanadh, Anusha; Karipot, Anandakumar; Ranalkar, Manish; Prabhakaran, Thara

    2016-11-01

    Soil moisture (SM) is an essential climate variable of greater relevance in the monsoon scenario, hence validation and understanding of its spatio-temporal variability over the Indian region is of high significance. In the present study, five SM products are evaluated against in situ SM measurements conducted by India Meteorological Department and the selected data product is used for spatio-temporal characterization of SM in relation to monsoon rainfall. The data products evaluated are: European Space Agency's merged satellite SM, Modern-Era Retrospective analysis for Research and Applications (MERRA) Land SM, ECMWF's ERA interim SM, Climate Forecast System Reanalysis SM, and Global Land Data Assimilation System Noah Land Surface Model SM. Comparisons show that seasonal SM patterns in all products generally follow the characteristics of rainfall, even though there are certain differences in details. The statistical estimates indicate fairly good agreement between in situ and the five products, with some variations among them and over the homogeneous rainfall regions. On comparison, MERRA SM is found appropriate for further analyses on spatio-temporal characteristics, which are then carried out with the 20 year (1993-2012) SM data. Stability analyses revealed SM patterns indicative of relative SM variability as well as persistence. The spatial stability analysis depicts dry and wet patterns and their seasonal variations over different geographical locations in relation to all India spatial average. Large temporal variations are found over central, western and northern Indian regions caused by large intraseasonal variability in rainfall. In brief, intraseasonal and interannual soil moisture variations broadly follow the rainfall pattern, with long-term influences attributed to SM memory effects. The soil moisture persistence and dominant scales of variability are explored with autocorrelation and wavelet transform techniques. Seasonal persistence is large over

  19. Effects of soil moisture and temperature on overwintering survival of Curculio larvae (Coleoptera : Curculionidae)

    USGS Publications Warehouse

    Ricca, M.A.; Weckerly, F.W.; Semlitsch, R.D.

    1996-01-01

    Few studies to date have investigated factors, other than mast crop size, that influence the dynamics of Curculio populations.W e examined the effects of varying levels of soil moisture (0.35, 0.4 and 0.5 g water/g soil) and temperature (8, 14 and 20 C) on over wintering survival of Curculio larvae collected from Quercus michauxii acorns. Survival of larvae, analyzed using log-linear analysis, was adversely affected by soil moisture but not by soil temperature. Larvae that overwinter in drier soil may have higher probabilities of successfully metamorphosing.

  20. An EKF assimilation of AMSR-E soil moisture into the ISBA land surface scheme

    NASA Astrophysics Data System (ADS)

    Draper, C. S.; Mahfouf, J.-F.; Walker, J. P.

    2009-10-01

    An Extended Kalman Filter (EKF) for the assimilation of remotely sensed near-surface soil moisture into the Interactions between Surface, Biosphere, and Atmosphere (ISBA) model is described. ISBA is the land surface scheme in Météo-France's Aire Limitée Adaptation Dynamique développement InterNational (ALADIN) Numerical Weather Prediction (NWP) model, and this work is directed toward providing initial conditions for NWP. The EKF is used to assimilate near-surface soil moisture observations retrieved from C-band Advanced Microwave Scanning Radiometer (AMSR-E) brightness temperatures into ISBA. The EKF can translate near-surface soil moisture observations into useful increments to the root-zone soil moisture. If the observation and model soil moisture errors are equal, the Kalman gain for the root-zone soil moisture is typically 20-30%, resulting in a mean net monthly increment for July 2006 of 0.025 m3 m-3 over ALADIN's European domain. To test the benefit of evolving the background error, the EKF is compared to a Simplified EKF (SEKF), in which the background errors at the time of the analysis are constant. While the Kalman gains for the EKF and SEKF are derived from different model processes, they produce similar soil moisture analyses. Despite this similarity, the EKF is recommended for future work where the extra computational expense can be afforded. The method used to rescale the near-surface soil moisture data to the model climatology has a greater influence on the analysis than the error covariance evolution approach, highlighting the importance of developing appropriate methods for rescaling remotely sensed near-surface soil moisture data.

  1. Evaluating the Utility of Remotely-Sensed Soil Moisture Retrievals for Operational Agricultural Drought Monitoring

    NASA Technical Reports Server (NTRS)

    Bolten, John D.; Crow, Wade T.; Zhan, Xiwu; Jackson, Thomas J.; Reynolds,Curt

    2010-01-01

    Soil moisture is a fundamental data source used by the United States Department of Agriculture (USDA) International Production Assessment Division (IPAD) to monitor crop growth stage and condition and subsequently, globally forecast agricultural yields. Currently, the USDA IPAD estimates surface and root-zone soil moisture using a two-layer modified Palmer soil moisture model forced by global precipitation and temperature measurements. However, this approach suffers from well-known errors arising from uncertainty in model forcing data and highly simplified model physics. Here we attempt to correct for these errors by designing and applying an Ensemble Kalman filter (EnKF) data assimilation system to integrate surface soil moisture retrievals from the NASA Advanced Microwave Scanning Radiometer (AMSR-E) into the USDA modified Palmer soil moisture model. An assessment of soil moisture analysis products produced from this assimilation has been completed for a five-year (2002 to 2007) period over the North American continent between 23degN - 50degN and 128degW - 65degW. In particular, a data denial experimental approach is utilized to isolate the added utility of integrating remotely-sensed soil moisture by comparing EnKF soil moisture results obtained using (relatively) low-quality precipitation products obtained from real-time satellite imagery to baseline Palmer model runs forced with higher quality rainfall. An analysis of root-zone anomalies for each model simulation suggests that the assimilation of AMSR-E surface soil moisture retrievals can add significant value to USDA root-zone predictions derived from real-time satellite precipitation products.

  2. Microbial destruction of chitin in soils under different moisture conditions

    NASA Astrophysics Data System (ADS)

    Yaroslavtsev, A. M.; Manucharova, N. A.; Stepanov, A. L.; Zvyagintsev, D. G.; Sudnitsyn, I. I.

    2009-07-01

    The most favorable moisture conditions for the microbial destruction of chitin in soils are close to the total water capacity. The water content has the most pronounced effect on chitin destruction in soils in comparison with other studied substrates. It was found using gas-chromatographic and luminescent-microscopic methods that the maximum specific activity of the respiration of the chitinolytic community was at a rather low redox potential with the soil moisture close to the total water capacity. The range of moisture values under which the most intense microbial transformation of chitin occurred was wider in clayey and clay loamy soils as compared with sandy ones. The increase was observed due to the contribution of mycelial bacteria and actinomycetes in the chitinolytic complex as the soil moisture increased.

  3. Is soil moisture initialization important for seasonal to decadal predictions?

    NASA Astrophysics Data System (ADS)

    Stacke, Tobias; Hagemann, Stefan

    2014-05-01

    The state of soil moisture can can have a significant impact on regional climate conditions for short time scales up to several months. However, focusing on seasonal to decadal time scales, it is not clear whether the predictive skill of global a Earth System Model might be enhanced by assimilating soil moisture data or improving the initial soil moisture conditions with respect to observations. As a first attempt to provide answers to this question, we set up an experiment to investigate the life time (memory) of extreme soil moisture states in the coupled land-atmosphere model ECHAM6-JSBACH, which is part of the Max Planck Institute for Meteorology's Earth System Model (MPI-ESM). This experiment consists of an ensemble of 3 years simulations which are initialized with extreme wet and dry soil moisture states for different seasons and years. Instead of using common thresholds like wilting point or critical soil moisture, the extreme states were extracted from a reference simulation to ensure that they are within the range of simulated climate variability. As a prerequisite for this experiment, the soil hydrology in JSBACH was improved by replacing the bucket-type soil hydrology scheme with a multi-layer scheme. This new scheme is a more realistic representation of the soil, including percolation and diffusion fluxes between up to five separate layers, the limitation of bare soil evaporation to the uppermost soil layer and the addition of a long term water storage below the root zone in regions with deep soil. While the hydrological cycle is not strongly affected by this new scheme, it has some impact on the simulated soil moisture memory which is mostly strengthened due to the additional deep layer water storage. Ensemble statistics of the initialization experiment indicate perturbation lengths between just a few days up to several seasons for some regions. In general, the strongest effects are seen for wet initialization during northern winter over cold and humid

  4. Coupling rainfall observations and satellite soil moisture for predicting event soil loss in Central Italy

    NASA Astrophysics Data System (ADS)

    Todisco, Francesca; Brocca, Luca; Termite, Loris Francesco; Wagner, Wolfgang

    2015-04-01

    specifically the analysis was focused on the evaluation of the effectiveness of coupling modeled or satellite-derived soil moisture with USLE-derived models in predicting event unit soil loss at the plot scale in a silty-clay soil in Central Italy. To this end was used the database of the Masse experimental station developed considering for a given erosive event (an event yielding a measurable soil loss) the simultaneous measures of the total runoff amount, Qe (mm), and soil loss per unit area, Ae (Mg-ha-1) at plot scale and of the rainfall data required to derive the erosivity factor Re according to Wischmeiser and Smith (1978), with a MIT=6 h (Bagarello et al., 2013; Todisco et al., 2012). To the purpose of this investigation only data collected on the λ = 22 m long plots were considered: 63 erosive events in the period 2008-2013, 18 occurred during the dry period (from June to September) and the other 45 in the complementary period (wet period). The models tested are the USLE/RUSLE and some USLE-derived formulations in which the event erosivity factor, Re, is corrected by the antecedent soil moisture, θ, and powered to an exponent α > 0 (α =1: linear model; α ≠ 1: power model). Both soil moisture data the satellite retrieved (θ = θsat) and the estimates (θ = θest) of Soil Water Balance model (Brocca et al., 2011) were tested. The results have been compared with those obtained by the USLE/RUSLE, USLE-M and USLE-MM models coupled with a parsimonious rainfall-runoff model, MILc, (Brocca et al. 2011) for the prediction of runoff volume (that in these models is the term used to correct the erosivity factor Re). The results showed that: including direct consideration of antecedent soil moisture and runoff in the event rainfall-runoff factor of the RUSLE/USLE enhanced the capacity of the model to account for variations in event soil loss when soil moisture and runoff volume are measured or predicted reasonably well; the accuracy of the original USLE/RUSLE model was

  5. Remote monitoring of soil moisture using airborne microwave radiometers

    NASA Technical Reports Server (NTRS)

    Kroll, C. L.

    1973-01-01

    The current status of microwave radiometry is provided. The fundamentals of the microwave radiometer are reviewed with particular reference to airborne operations, and the interpretative procedures normally used for the modeling of the apparent temperature are presented. Airborne microwave radiometer measurements were made over selected flight lines in Chickasha, Oklahoma and Weslaco, Texas. Extensive ground measurements of soil moisture were made in support of the aircraft mission over the two locations. In addition, laboratory determination of the complex permittivities of soil samples taken from the flight lines were made with varying moisture contents. The data were analyzed to determine the degree of correlation between measured apparent temperatures and soil moisture content.

  6. Estimation of Soil Moisture Profile using a Simple Hydrology Model and Passive Microwave Remote Sensing

    NASA Technical Reports Server (NTRS)

    Soman, Vishwas V.; Crosson, William L.; Laymon, Charles; Tsegaye, Teferi

    1998-01-01

    Soil moisture is an important component of analysis in many Earth science disciplines. Soil moisture information can be obtained either by using microwave remote sensing or by using a hydrologic model. In this study, we combined these two approaches to increase the accuracy of profile soil moisture estimation. A hydrologic model was used to analyze the errors in the estimation of soil moisture using the data collected during Huntsville '96 microwave remote sensing experiment in Huntsville, Alabama. Root mean square errors (RMSE) in soil moisture estimation increase by 22% with increase in the model input interval from 6 hr to 12 hr for the grass-covered plot. RMSEs were reduced for given model time step by 20-50% when model soil moisture estimates were updated using remotely-sensed data. This methodology has a potential to be employed in soil moisture estimation using rainfall data collected by a space-borne sensor, such as the Tropical Rainfall Measuring Mission (TRMM) satellite, if remotely-sensed data are available to update the model estimates.

  7. NASA Giovanni: A Tool for Visualizing, Analyzing, and Inter-Comparing Soil Moisture Data

    NASA Technical Reports Server (NTRS)

    Teng, William; Rui, Hualan; Vollmer, Bruce; deJeu, Richard; Fang, Fan; Lei, Guang-Dih

    2012-01-01

    There are many existing satellite soil moisture algorithms and their derived data products, but there is no simple way for a user to inter-compare the products or analyze them together with other related data (e.g., precipitation). An environment that facilitates such inter-comparison and analysis would be useful for validation of satellite soil moisture retrievals against in situ data and for determining the relationships between different soil moisture products. The latter relationships are particularly important for applications users, for whom the continuity of soil moisture data, from whatever source, is critical. A recent example was provided by the sudden demise of EOS Aqua AMSR-E and the end of its soil moisture data production, as well as the end of other soil moisture products that had used the AMSR-E brightness temperature data. The purpose of the current effort is to create an environment, as part of the NASA Giovanni family of portals, that facilitates inter-comparisons of soil moisture algorithms and their derived data products.

  8. A Comparison of Methods for a Priori Bias Correction in Soil Moisture Data Assimilation

    NASA Technical Reports Server (NTRS)

    Kumar, Sujay V.; Reichle, Rolf H.; Harrison, Kenneth W.; Peters-Lidard, Christa D.; Yatheendradas, Soni; Santanello, Joseph A.

    2011-01-01

    Data assimilation is being increasingly used to merge remotely sensed land surface variables such as soil moisture, snow and skin temperature with estimates from land models. Its success, however, depends on unbiased model predictions and unbiased observations. Here, a suite of continental-scale, synthetic soil moisture assimilation experiments is used to compare two approaches that address typical biases in soil moisture prior to data assimilation: (i) parameter estimation to calibrate the land model to the climatology of the soil moisture observations, and (ii) scaling of the observations to the model s soil moisture climatology. To enable this research, an optimization infrastructure was added to the NASA Land Information System (LIS) that includes gradient-based optimization methods and global, heuristic search algorithms. The land model calibration eliminates the bias but does not necessarily result in more realistic model parameters. Nevertheless, the experiments confirm that model calibration yields assimilation estimates of surface and root zone soil moisture that are as skillful as those obtained through scaling of the observations to the model s climatology. Analysis of innovation diagnostics underlines the importance of addressing bias in soil moisture assimilation and confirms that both approaches adequately address the issue.

  9. Uncertainties of seasonal surface climate predictions induced by soil moisture biases in the La Plata Basin

    NASA Astrophysics Data System (ADS)

    Sorensson, Anna; Berbery, E. Hugo

    2015-04-01

    This work examines the evolution of soil moisture initialization biases and their effects on seasonal forecasts depending on the season and vegetation type for a regional model over the La Plata Basin in South America. WRF/Noah model simulations covering multiple cases during a two-year period are designed to emphasize the conceptual nature of the simulations at the expense of statistical significance of the results. Analysis of the surface climate shows that the seasonal predictive skill is higher when the model is initialized during the wet season and the initial soil moisture differences are small. Large soil moisture biases introduce large surface temperature biases, particularly for Savanna, Grassland and Cropland vegetation covers at any time of the year, thus introducing uncertainty in the surface climate. Regions with Evergreen Broadleaf Forest have roots that extend to the deep layer whose moisture content affects the surface temperature through changes in the partitioning of the surface fluxes. The uncertainties of monthly maximum temperature can reach several degrees during the dry season in cases when: (a) the soil is much wetter in the reanalysis than in the WRF/Noah equilibrium soil moisture, and (b) the memory of the initial value is long due to scarce rainfall and low temperatures. This study suggests that responses of the atmosphere to soil moisture initialization depend on how the initial wet and dry conditions are defined, stressing the need to take into account the characteristics of a particular region and season when defining soil moisture initialization experiments.

  10. Remote Sensing of Soil Moisture based on Dynamic Vegetation Scattering Properties for AMSR sensors

    NASA Astrophysics Data System (ADS)

    Du, J.; Kimball, J. S.; Jones, L. A.

    2015-12-01

    Accurate mapping of soil moisture and its spatial-temporal variations are of great significance to scientific studies on global water, energy and carbon cycles as well as operational applications including flood and drought monitoring, water resources management and crop yield forecasts. An approach for deriving volumetric soil moisture using satellite passive microwave radiometry from the Advanced Microwave Scanning Radiometers AMSR-E and AMSR2 was developed in this study. The algorithm adopts a weighted averaging strategy for soil moisture estimation based on a dynamic selection of empirically determined vegetation single-scatter albedo values. The resulting soil moisture retrievals demonstrate more realistic global patterns and seasonal dynamics relative to the baseline University of Montana (UMT) soil moisture product. Quantitative analysis of the new approach against in situ soil moisture measurements over four global study regions also indicates significant improvement over the baseline algorithm, with coefficients of determination (R2) between the retrievals and in-situ measurements increasing by approximately 16.9% and 41.5% respectively; and bias-corrected RMSEs decreasing by about 25.0% and 38.2% for respective ascending and descending orbital data records. Initial comparisons between soil moisture retrievals from AMSR2 and SMAP indicate coherent global and seasonal patterns.

  11. A statistical retrieval algorithm for root zone soil moisture

    NASA Astrophysics Data System (ADS)

    Lindau, Ralf; Simmer, Clemens

    2014-11-01

    An algorithm for the estimation of root zone soil moisture is presented. Global fields of the soil moisture within the uppermost metre of soil are derived with a temporal resolution of 10 days. For calibration, long-term soil moisture observations from the former Soviet Union are used. The variance of the measurements is largely dominated by the spatial variability of the long-term mean soil moisture, while the temporal variability gives comparatively small contribution. Consequently, the algorithm is organised into two steps. The first step concentrates on the retrieval of the spatial variance of the long-term means, which comprises more than 85% of the total soil moisture variability. A major part of the spatial variance can be explained by four easily available fields: the climatological precipitation, land use, soil texture, and terrain slope. The second step of the algorithm is dedicated to the local temporal variability. This part of variability is recovered by using passive microwave data from scanning multichannel microwave radiometre (SMMR) supported by monthly averaged fields of air temperature and precipitation. The 6-GHz channel of SMMR is shown to be severely disturbed by radio frequency interference, so that information from the 10-GHz channel is used instead. The algorithm provides reasonable soil moisture fields which is confirmed by a comparison with independent measurements from Illinois.

  12. Soil moisture tendencies into the next century for the conterminous United States

    USGS Publications Warehouse

    Georgakakos, Konstantine P.; Smith, Diane E.

    2000-01-01

    A monthly snow-pack and soil- moisture accounting model is formulated for application to each of the climate divisions of the conterminous United States for use in climate impacts-assessment studies. Statistical downscaling and bias-adjustment components complement the model for the assimilation of large-scale global climate model data. Simulations of the formulated model driven by precipitation and temperature for the period 1931-1998 produce streamflows that are broadly consistent with observed data from several drainage basins in the US. Simulated historical soil moisture fields reproduce several features of the available observed soil moisture in the Midwest. The simulations produce large-scale coherent seasonal patterns of soil moisture field- moments over the conterminous US, with high soil moisture means over divisions in the Ohio Valley, the northeastern US and the Pacific Northwest, and with pronounced low means in most of the western US climate divisions. Characteristically low field-standard- deviations are produced for the Ohio Valley and northeastern US, and the Pacific Northwest in winter, and the southwestern US in summer. Differences in extreme standardized anomalies of soil moisture over the historical record range possess high values (2.5 - 3) in the central US where the available water capacity of the soils is high. An application of the model to exemplify the methodology for determining projected US monthly soil moisture fields under control and greenhouse gas forcing is also documented. Climate simulations of the coupled global climate model from the Canadian Centre for Climate Modeling and Analysis were used for these sensitivity examples. The climatology of the control-run soil moisture fields reproduces several characteristic features of the historical soil moisture climatology. Simulations with forcing by a 1% greenhouse-gas- increase scenario show that for at least the first few decades of the 21 st Century somewhat drier-than-present soil

  13. Soil moisture sensor calibration for organic soil surface layers

    NASA Astrophysics Data System (ADS)

    Bircher, S.; Andreasen, M.; Vuollet, J.; Vehviläinen, J.; Rautiainen, K.; Jonard, F.; Weihermüller, L.; Zakharova, E.; Wigneron, J.-P.; Kerr, Y. H.

    2015-12-01

    This paper's objective is to present generic calibration functions for organic surface layers derived for the soil moisture sensors Decagon ECH2O 5TE and Delta-T ThetaProbe ML2x, using material from northern regions, mainly from the Finish Meteorological Institute's Arctic Research Center in Sodankylä and the study area of the Danish Center for Hydrology HOBE. For the Decagon 5TE sensor such a function is currently not reported in literature. Data were compared with measurements from underlying mineral soils including laboratory and field measurements. Shrinkage and charring during drying were considered. For both sensors all field and lab data showed consistent trends. For mineral layers with low soil organic matter (SOM) content the validity of the manufacturer's calibrations was demonstrated. Deviating sensor outputs in organic and mineral horizons were identified: for the Decagon 5TE apparent relative permittivities at a given moisture content decreased for increased SOM content, which was attributed to an increase of bound water in organic materials with large surface areas compared to the studied mineral soils. ThetaProbe measurements from organic horizons showed stronger non-linearity in the sensor response and signal saturation in the high level data. The derived calibration fit functions between sensor response and volumetric water content hold for samples spanning a wide range of humus types with differing SOM characteristics. This strengthens confidence in their validity under various conditions, rendering them highly suitable for large-scale applications in remote sensing and land surface modeling studies. Agreement between independent Decagon 5TE and ThetaProbe time series from an organic surface layer at the Sodankylä site was significantly improved when the here proposed fit functions were used. Decagon 5TE data also well-reflected precipitation events. Thus, Decagon 5TE network data from organic surface layers at the Sodankylä and HOBE sites are

  14. Soil moisture sensor calibration for organic soil surface layers

    NASA Astrophysics Data System (ADS)

    Bircher, Simone; Andreasen, Mie; Vuollet, Johanna; Vehviläinen, Juho; Rautiainen, Kimmo; Jonard, François; Weihermüller, Lutz; Zakharova, Elena; Wigneron, Jean-Pierre; Kerr, Yann H.

    2016-04-01

    This paper's objective is to present generic calibration functions for organic surface layers derived for the soil moisture sensors Decagon ECH2O 5TE and Delta-T ThetaProbe ML2x, using material from northern regions, mainly from the Finnish Meteorological Institute's Arctic Research Center in Sodankylä and the study area of the Danish Center for Hydrology (HOBE). For the Decagon 5TE sensor such a function is currently not reported in the literature. Data were compared with measurements from underlying mineral soils including laboratory and field measurements. Shrinkage and charring during drying were considered. For both sensors all field and lab data showed consistent trends. For mineral layers with low soil organic matter (SOM) content the validity of the manufacturer's calibrations was demonstrated. Deviating sensor outputs in organic and mineral horizons were identified. For the Decagon 5TE, apparent relative permittivities at a given moisture content decreased for increased SOM content, which was attributed to an increase of bound water in organic materials with large specific surface areas compared to the studied mineral soils. ThetaProbe measurements from organic horizons showed stronger nonlinearity in the sensor response and signal saturation in the high-level data. The derived calibration fit functions between sensor response and volumetric water content hold for samples spanning a wide range of humus types with differing SOM characteristics. This strengthens confidence in their validity under various conditions, rendering them highly suitable for large-scale applications in remote sensing and land surface modeling studies. Agreement between independent Decagon 5TE and ThetaProbe time series from an organic surface layer at the Sodankylä site was significantly improved when the here-proposed fit functions were used. Decagon 5TE data also well-reflected precipitation events. Thus, Decagon 5TE network data from organic surface layers at the Sodankylä and

  15. The Soil Moisture Active and Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Nijoku, Eni G.; ONeill, Peggy E.; Kellogg, Kent H.; Crow, Wade T.; Edelstein, Wendy N.; Entin, Jared K.; Goodman, Shawn D.; Jackson, Thomas J.; Johnson, Joel; Kimball, John; Piepmeier, Jeffrey R.; Koster, Randal D.; McDonald, Kyle C.; Moghaddam, Mahta; Moran, Susan; Reichle, Rolf; Shi, J. C.; Spencer, Michael W.; Thurman, Samuel W.; Tsang, Leung; VanZyl, Jakob

    2009-01-01

    The Soil Moisture Active and Passive (SMAP) Mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council s Decadal Survey. SMAP will make global measurements of the moisture present at Earth's land surface and will distinguish frozen from thawed land surfaces. Direct observations of soil moisture and freeze/thaw state from space will allow significantly improved estimates of water, energy and carbon transfers between land and atmosphere. Soil moisture measurements are also of great importance in assessing flooding and monitoring drought. SMAP observations can help mitigate these natural hazards, resulting in potentially great economic and social benefits. SMAP soil moisture and freeze/thaw timing observations will also reduce a major uncertainty in quantifying the global carbon balance by helping to resolve an apparent missing carbon sink on land over the boreal latitudes. The SMAP mission concept would utilize an L-band radar and radiometer. These instruments will share a rotating 6-meter mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days. The SMAP instruments provide direct measurements of surface conditions. In addition, the SMAP project will use these observations with advanced modeling and data assimilation to provide deeper root-zone soil moisture and estimates of land surface-atmosphere exchanges of water, energy and carbon. SMAP is scheduled for a 2014 launch date

  16. Effect of Soil Moisture on Chlorine Deposition (POSTPRINT)

    DTIC Science & Technology

    2014-01-01

    obtained nd prepared for extraction (10 mL deionized water, 18 M/cm) nd subsequent analysis by ion chromatography [16] to measure l− concentrations. Ion ...Photobiol. A: Chem. 86 (1995) 1–7. 16] Determination of Inorganic Anions by Ion Chromatography , EPA Method 9056A, 2007, http://www.epa.gov/wastes/hazard...examine Cl2 eposition into soils with moisture contents from 0 to 0.2 (w/w) and ith varying organic matter contents. We use the chloride ion (Cl−) s

  17. Soil Albedo in Relation to Soil Color, Moisture and Roughness

    NASA Astrophysics Data System (ADS)

    Fontes, Adan Fimbres

    Land surface albedo is the ratio of reflected to incident solar radiation. It is a function of several surface parameters including soil color, moisture, roughness and vegetation cover. A better understanding of albedo and how it changes in relation to variations in these parameters is important in order to help improve our ability to model the effects of land surface modifications on climate. The objectives of this study were (1) To determine empirical relationships between smooth bare soil albedo and soil color, (2) To develop statistical relationships between albedo and ground-based thematic mapper (TM) measurements of spectral reflectances, (3) To determine how increased surface roughness caused by tillage reduces bare soil albedo and (4) To empirically relate albedo with TM data and other physical characteristics of mixed grass/shrubland sites at Walnut Gulch Watershed. Albedos, colors and spectral reflectances were measured by Eppley pyranometer, Chroma Meter CR-200 and a Spectron SE-590, respectively. Measurements were made on two field soils (Gila and Pima) at the Campus Agricultural Center (CAC), Tucson, AZ. Soil surface roughness was measured by a profile meter developed by the USDA/ARS. Additional measurements were made at the Maricopa Agricultural Center (MAC) for statistical model testing. Albedos of the 15 smooth, bare soils (plus silica sand) were determined by linear regression to be highly correlated (r^2 = 0.93, p > 0.01) with color values for both wet and dry soil conditions. Albedos of the same smooth bare soils were also highly correlated (r^2>=q 0.86, p > 0.01) with spectral reflectances. Testing of the linear regression equations relating albedo to soil color and spectral reflectances using the data from MAC showed a high correlation. A general nonlinear relationship given by y = 8.366ln(x) + 37.802 r^2 = 0.71 was determined between percent reduction in albedo (y) and surface roughness index (x) for wet and dry Pima and Gila field soils

  18. Validation of Satellite Soil Moisture Retrievals using Precipitation Records in India

    NASA Astrophysics Data System (ADS)

    Karthikeyan, L.; Nagesh Kumar, D.

    2014-11-01

    Soil moisture plays crucial role in influencing the components of hydrologic cycle and thus used for large range of applications such as climate predictions, agriculture management and flood/drought modelling. The current work focuses on establishing a measure to check the performance of passive microwave satellite soil moisture data using rainfall information over India. The measure is developed based on the concepts of information theory and copulas. Two soil moisture products developed by, VUA-NASA (jointly by Vrije Universiteit Amsterdam and NASA) and university of Montana are tested with the proposed measure using IMD rainfall data at 0.25° latitude-longitude spatial resolution. The measure conveyed that soil moisture product by university of Montana has outperformed over its counterpart. Further analysis concluded that under moderate climate conditions, Montana product could be used for analysis whereas for study in extreme weather conditions it may be necessary to check the usefulness of VUA-NASA product.

  19. Long-term soil moisture variability from a new P-E water budget method

    NASA Astrophysics Data System (ADS)

    Zeng, N.; Yoon, J.; Mariotti, A.; Swenson, S. C.

    2006-05-01

    Basin-scale soil moisture is traditionally estimated using either land-surface model forced by observed meteorological variables or atmospheric moisture convergence from atmospheric analysis and observed runoff. Interannual variability from such methods suffer from major uncertainties due to the sensitivity to small imperfections in the land-surface model or the atmospheric analysis. Here we introduce a novel P-E method in estimating basin-scale soil moisture, or more precisely apparent land water storage (AWS). The key input variables are observed precipitation and runoff, and reconstructed evaporation. We show the results for the tropics using the example of the Amazon basin. The seasonal cycle of diagnosed soil moisture over the Amazon is about 200mm, compares favorably with satellite estimate from the GRACE mission, thus lending confidence both in this method and the usefulness of space gravity based large-scale soil moisture estimate. This is about twice as large as estimates from several traditional methods, suggesting that current models tend to under estimate the soil moisture variability. One of the advantage of the P-E method is to retrive long-term variability of the basin-scale soil moisture (including interannual and decadal time scales), which can provide valuable information to understand climate variability and to predict future climate condition. However, validation on reconstructed evaporation is very difficult due to lack of observation. The interannual variability in AWS in the Amazon basin is about 150mm, also consistent with GRACE data, but much larger than model results. We also apply this P-E method to the midlatitude Mississippi basin and discuss the impact of major 20th century droughts such as the dust bowl period on the long-term soil moisture variability. The results suggest the existence of soil moisture memories on decadal time scales, significantly longer than typically assumed seasonal timescales.

  20. Derivation of soil moisture retrieval uncertainties associated to the simplification of the dynamic vegetation signal.

    NASA Astrophysics Data System (ADS)

    Vreugdenhil, Mariette; Dorigo, Wouter; de Jeu, Richard; Hahn, Sebastian; Salinas, Jose Luis; Wagner, Wolfgang

    2014-05-01

    Satellite-based microwave remote sensing has proven to provide reliable soil moisture observations on a global scale over the last decades. In microwave remote sensing of soil moisture the satellite signal holds information on both soil moisture and vegetation. Separating these components from each other is not straightforward. In the last years the importance of a robust and reliable vegetation parameterization within the soil moisture retrieval algorithms has become evident. In the TU-Wien soil moisture retrieval algorithm, developed by the Vienna University of Technology, the backscatter observations are corrected for vegetation effects by way of the slope and curvature. The slope and curvature are derivates of noisy backscatter measurements in relation to incidence angle and hence have a high level of noise. Therefore, they are averaged over several years resulting in a fixed seasonal vegetation correction, where no inter-annual variability is present in the characterisation of vegetation. This study assesses the strengths and weaknesses of the fixed seasonal vegetation correction in the TU-Wien soil moisture retrieval algorithm. The Vegetation Optical Depth (VOD) retrieved from AMSR-E passive microwave observations with the VUA-NASA retrieval algorithm is analysed to identify regions with high inter-annual variability in vegetation. For these regions the effect of a fixed seasonal correction on the soil moisture retrieval is investigated. First, the TU-Wien soil moisture products before and after the application of the vegetation correction, the TU-Wien normalised backscatter and TU-Wien soil moisture respectively, are compared to modelled soil moisture from ECMWFs ERA-Interim. With this analysis regions where the vegetation correction decreases the quality of the TU-Wien soil moisture product with regard to modeled soil moisture can be identified. Secondly, the vegetation correction within the TU-Wien retrieval algorithm is replaced by the VOD to simulate an

  1. Role of Subsurface Physics in the Assimilation of Surface Soil Moisture Observations

    NASA Technical Reports Server (NTRS)

    Reichle, R. H.

    2010-01-01

    Root zone soil moisture controls the land-atmosphere exchange of water and energy and exhibits memory that may be useful for climate prediction at monthly scales. Assimilation of satellite-based surface soil moisture observations into a land surface model is an effective way to estimate large-scale root zone soil moisture. The propagation of surface information into deeper soil layers depends on the model-specific representation of subsurface physics that is used in the assimilation system. In a suite of experiments we assimilate synthetic surface soil moisture observations into four different models (Catchment, Mosaic, Noah and CLM) using the Ensemble Kalman Filter. We demonstrate that identical twin experiments significantly overestimate the information that can be obtained from the assimilation of surface soil moisture observations. The second key result indicates that the potential of surface soil moisture assimilation to improve root zone information is higher when the surface to root zone coupling is stronger. Our experiments also suggest that (faced with unknown true subsurface physics) overestimating surface to root zone coupling in the assimilation system provides more robust skill improvements in the root zone compared with underestimating the coupling. When CLM is excluded from the analysis, the skill improvements from using models with different vertical coupling strengths are comparable for different subsurface truths. Finally, the skill improvements through assimilation were found to be sensitive to the regional climate and soil types.

  2. The Soil Moisture Active and Passive (SMAP) Mission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active and Passive (SMAP) Mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council’s Decadal Survey. SMAP will make global measurements of the moisture present at Earth's land surface and will distinguish frozen f...

  3. Automated Quality Control of in Situ Soil Moisture from the North American Soil Moisture Database Using NLDAS-2 Products

    NASA Astrophysics Data System (ADS)

    Ek, M. B.; Xia, Y.; Ford, T.; Wu, Y.; Quiring, S. M.

    2015-12-01

    The North American Soil Moisture Database (NASMD) was initiated in 2011 to provide support for developing climate forecasting tools, calibrating land surface models and validating satellite-derived soil moisture algorithms. The NASMD has collected data from over 30 soil moisture observation networks providing millions of in situ soil moisture observations in all 50 states as well as Canada and Mexico. It is recognized that the quality of measured soil moisture in NASMD is highly variable due to the diversity of climatological conditions, land cover, soil texture, and topographies of the stations and differences in measurement devices (e.g., sensors) and installation. It is also recognized that error, inaccuracy and imprecision in the data set can have significant impacts on practical operations and scientific studies. Therefore, developing an appropriate quality control procedure is essential to ensure the data is of the best quality. In this study, an automated quality control approach is developed using the North American Land Data Assimilation System phase 2 (NLDAS-2) Noah soil porosity, soil temperature, and fraction of liquid and total soil moisture to flag erroneous and/or spurious measurements. Overall results show that this approach is able to flag unreasonable values when the soil is partially frozen. A validation example using NLDAS-2 multiple model soil moisture products at the 20 cm soil layer showed that the quality control procedure had a significant positive impact in Alabama, North Carolina, and West Texas. It had a greater impact in colder regions, particularly during spring and autumn. Over 433 NASMD stations have been quality controlled using the methodology proposed in this study, and the algorithm will be implemented to control data quality from the other ~1,200 NASMD stations in the near future.

  4. Soil moisture from temperature measurements at the Earth's surface, update

    NASA Technical Reports Server (NTRS)

    Welker, J. E.

    1984-01-01

    Soil moisture budgets at the Earth's surface were investigated based on soil and atmospheric temperature variations. A number of data sets were plotted and statistically analyzed in order to accentuate the existence and the characteristics of mesoscale soil temperature extrema variations and their relations to other parameters. The correlations between diurnal temperature extrema for air and soil in drought and non-drought periods appear to follow different characteristic patterns, allowing an inference of soil moisture content from temperature data. The recovery of temperature extrema after a precipitation event also follows a characteristic power curve rise between two limiting values which is an indicator of evaporation rates. If these indicators are applied universally to regional temperature data, soil moisture content or drought conditions can be inferred directly from temperature measurements.

  5. Using magnetic susceptibility to discriminate between soil moisture regimes in selected loess and loess-like soils in northern Iran

    NASA Astrophysics Data System (ADS)

    Valaee, Morteza; Ayoubi, Shamsollah; Khormali, Farhad; Lu, Sheng Gao; Karimzadeh, Hamid Reza

    2016-04-01

    This study used discriminant analysis to determine the efficacy of magnetic measures for discriminating between four soil moisture regimes in northern Iran. The study area was located on loess deposits and loess-like soils containing similar parent material. Four soil moisture regimes including aridic, xeric, udic, and aquic were selected. A total of 25 soil profiles were drug from each regime and composite soil samples were collected within the moisture control section. A set of magnetic measures including magnetic susceptibility at low (χlf) and high (χhf) frequencies, frequency-dependent magnetic susceptibility (χfd), saturation isothermal remnant magnetization (SIRM), and isothermal remnant magnetization (IRM100 mT, IRM 20 mT) were measured in the laboratory. Dithionite citrate bicarbonate (Fed) and acid oxalate (Feo) contents of all soil samples were also determined. The lowest and highest χlf and χhf were observed in aquic and udic moisture regimes, respectively. A similar trend was obtained for Fed and Fed-Feo. The significant positive correlation between Fed and SIRM (r = 0.60; P < 0.01) suggested the formation of stable single domains (SSD) due to pedogenic processes. The results of discriminant analysis indicated that a combination of magnetic measures could successfully discriminate between the selected moisture regimes in the study area (average accuracy = 80%). It can thus be concluded that magnetic measures could be applied as a powerful indicator for differentiation of soil moisture regimes in the study area.

  6. Soil moisture and evapotranspiration predictions using Skylab data

    NASA Technical Reports Server (NTRS)

    Myers, V. I. (Principal Investigator); Moore, D. G.; Horton, M. L.; Russell, M. J.

    1975-01-01

    The author has identified the following significant results. Multispectral reflectance and emittance data from the Skylab workshop were evaluated for prediction of evapotranspiration and soil moisture for an irrigated region of southern Texas. Wavelengths greater than 2.1 microns were required to spectrally distinguish between wet and dry fallow surfaces. Thermal data provided a better estimate of soil moisture than did data from the reflective bands. Thermal data were dependent on soil moisture but not on the type of agricultural land use. The emittance map, when used in conjunction with existing models, did provide an estimate of evapotranspiration rates. Surveys of areas of high soil moisture can be accomplished with space altitude thermal data. Thermal data will provide a reliable input into irrigation scheduling.

  7. The NASA Soil Moisture Active Passive (SMAP) Mission: Overview

    NASA Technical Reports Server (NTRS)

    O'Neill, Peggy; Entekhabi, Dara; Njoku, Eni; Kellogg, Kent

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council?s Decadal Survey [1]. Its mission design consists of L-band radiometer and radar instruments sharing a rotating 6-m mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every 2-3 days. The combined active/passive microwave soil moisture product will have a spatial resolution of 10 km and a mean latency of 24 hours. In addition, the SMAP surface observations will be combined with advanced modeling and data assimilation to provide deeper root zone soil moisture and net ecosystem exchange of carbon. SMAP is expected to launch in the late 2014 - early 2015 time frame.

  8. A quantitative comparison of soil moisture inversion algorithms

    NASA Technical Reports Server (NTRS)

    Zyl, J. J. van; Kim, Y.

    2001-01-01

    This paper compares the performance of four bare surface radar soil moisture inversion algorithms in the presence of measurement errors. The particular errors considered include calibration errors, system thermal noise, local topography and vegetation cover.

  9. Measurement of soil moisture trends with airborne scatterometers

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J. (Principal Investigator)

    1978-01-01

    The author had identified the following significant results. Repeated looks at surfaces that maintain constant roughness can provide an estimate of soil moisture in the surface, when appropriate radar look angles are used. Significant influence due to differences in soil moisture can be detected in the 13.3 GHz and 1.6 GHz scatterometer returns. Effects of normal crop densities have little influence on the surface soil moisture estimate, when appropriate look angles are used. It appears that different look angles are optimum for different frequencies to avoid effects from vegetation. Considering the frequency and look angles used on the Seasat-A imaging radar, differences in soil moisture should produce as much as 9 db difference in return on that system.

  10. [Priming Effects of Soil Moisture on Soil Respiration Under Different Tillage Practices].

    PubMed

    Zhang, Yan; Liang, Ai-zhen; Zhang, Xiao-ping; Chen, Sheng-long; Sun, Bing-jie; Liu, Si-yi

    2016-03-15

    In the early stage of an incubation experiment, soil respiration has a sensitive response to different levels of soil moisture. To investigate the effects of soil moisture on soil respiration under different tillage practices, we designed an incubation trial using air-dried soil samples collected from tillage experiment station established on black soils in 2001. The tillage experiment consisted of no-tillage (NT), ridge tillage (RT), and conventional tillage (CT). According to field capacity (water-holding capacity, WHC), we set nine moisture levels including 30%, 60%, 90%, 120%, 150%, 180%, 210%, 240%, 270% WHC. During the 22-day short-term incubation, soil CO₂ emission was measured. In the early stage of incubation, the priming effects occurred under all tillage practices. There were positive correlations between soil respiration and soil moisture. In addition to drought and flood conditions, soil CO₂ fluxes followed the order of NT > RT > CT. We fitted the relationship between soil moisture and soil CO₂ fluxes under different tillage practices. In the range of 30%-270% WHC, soil CO₂ fluxes and soil moisture fitted a quadratic regression equation under NT, and linear regression equations under RT and CT. Under the conditions of 30%-210% WHC of both NT and RT, soil CO₂ fluxes and soil moisture were well fitted by the logarithmic equation with fitting coefficient R² = 0.966 and 0.956, respectively.

  11. Soil Moisture Dynamics under Corn, Soybean, and Perennial Kura Clover

    NASA Astrophysics Data System (ADS)

    Ochsner, T.; Venterea, R. T.

    2009-12-01

    Rising global food and energy consumption call for increased agricultural production, whereas rising concerns for environmental quality call for farming systems with more favorable environmental impacts. Improved understanding and management of plant-soil water interactions are central to meeting these twin challenges. The objective of this research was to compare the temporal dynamics of soil moisture under contrasting cropping systems suited for the Midwestern region of the United States. Precipitation, infiltration, drainage, evapotranspiration, soil water storage, and freeze/thaw processes were measured hourly for three years in field plots of continuous corn (Zea mays L.), corn/soybean [Glycine max (L.) Merr.] rotation, and perennial kura clover (Trifolium ambiguum M. Bieb.) in southeastern Minnesota. The evapotranspiration from the perennial clover most closely followed the temporal dynamics of precipitation, resulting in deep drainage which was reduced up to 50% relative to the annual crops. Soil moisture utilization also continued later into the fall under the clover than under the annual crops. In the annual cropping systems, crop sequence influenced the soil moisture dynamics. Soybean following corn and continuous corn exhibited evapotranspiration which was 80 mm less than and deep drainage which was 80 mm greater than that of corn following soybean. These differences occurred primarily during the spring and were associated with differences in early season plant growth between the systems. In the summer, soil moisture depletion was up to 30 mm greater under corn than soybean. Crop residue also played an important role in the soil moisture dynamics. Higher amounts of residue were associated with reduced soil freezing. This presentation will highlight key aspects of the soil moisture dynamics for these contrasting cropping systems across temporal scales ranging from hours to years. The links between soil moisture dynamics, crop yields, and nutrient leaching

  12. Multi-frequency SAR data for soil surface moisture estimation over agricultural fields

    NASA Astrophysics Data System (ADS)

    Zribi, Mehrez; Baghdadi, Nicolas

    2015-04-01

    Soil moisture plays a crucial role in the continental water cycle, in particular through its influence on the distribution of precipitation between surface runoff and infiltration, which is the main driver behind most hydrological and geomorphologic processes. Although there is now a good understanding of soil hydrodynamics and water transfer in porous media, the development of reliable techniques allowing field heterogeneities to be fully analyzed in space and time remains a key issue. In recent decades, various inversion models have been proposed for the retrieval of surface parameters (mainly soil moisture and surface roughness) from Synthetic Aperture Radar (SAR) high resolution measurements. The proposed techniques depend particularly on two instrumental parameters: the radar system's spatial resolution and the number of configurations measured during satellite acquisitions (mainly incidence angle and polarization). In this paper, our objective is to illustrate different applications of SAR data to estimate soil moisture over bare soil and vegetation cover areas (wheat, olive groves, meadows ...). Potential of very high resolution data, with the availability of TerraSAR-X and COSMO-SkyMed constellations is also discussed. This study is based on different experimental campaigns organized over different sites in humid and semi-arid regions. Ground measurements (soil moisture, soil roughness, vegetation description) over test fields were carried out simultaneously to SAR measurements. Effect of vegetation attenuation on radar signal is considered through a synergy with optical remote sensing. Soil moisture precision for all proposed applications is generally ranged between 3 and 5% of volumetric moisture. These methodologies are developed in the context of the preparation for having a high soil moisture operational product, with SENTINEL and/or the other planned constellations. After an analysis of radar data sensitivity (C and X bands) to surface parameters

  13. SMOS CATDS Level 3 products, Soil Moisture and Brightness Temperature

    NASA Astrophysics Data System (ADS)

    Berthon, L.; Mialon, A.; Al Bitar, A.; Cabot, F.; Kerr, Y. H.

    2012-12-01

    The ESA's (European Space Agency) SMOS (Soil Moisture and Ocean Salinity) mission, operating since november 2009, is the first satellite dedicated to measuring the surface soil moisture and the ocean salinity. The CNES (Centre National d'Etudes Spatiales) has developed the CATDS (Centre Aval de Traitement des Données SMOS) ground segment. The CATDS provides temporal synthesis products (referred to as level 3) of soil moisture, which are now covering the whole SMOS period, i.e. since January 2010. These products have different time resolutions: daily products, 3-day global products (insuring a complete coverage of the Earth surface), 10-day composite products, and monthly averaged products. Moreover, a new product provides brightness temperatures at H and V polarizations which are computed at fixed incidence angles every 5 degrees. As the instrument measures L-band brightness temperatures at the antenna frame (X/Y polarizations), a rotation is applied to transform the observations to V/H polarizations. All the CATDS products are presented in the NetCDF format and on the EASE grid (Equal Area Scalable Earth grid) with a spatial resolution of ~ 25*25 km2 The soil moisture level 3 algorithm is based on ESA's (European Space Agency) level 2 retrieval scheme with the improvement of using several overpasses (3 at most) over a 7-day window. The use of many revisits is expected to improve the retrieved soil moisture. This communication aims at presenting the soil moisture and brightness temperature products from the CATDS as well as the other geophysical parameters retrieved, such as the vegetation optical depth or the dielectric constant of the surface. SMOS Level 3 soil moisture. 3-days aggregation product, the best estimation of soil moisture is chosen.

  14. Soil moisture variability of root zone profiles within SMEX02 remote sensing footprints

    NASA Astrophysics Data System (ADS)

    Choi, Minha; Jacobs, Jennifer M.

    2007-04-01

    Remote sensing of soil moisture effectively provides soil moisture at a large scale, but does not explain highly heterogeneous soil moisture characteristics within remote sensing footprints. In this study, field scale spatio-temporal variability of root zone soil moisture was analyzed. During the Soil Moisture Experiment 2002 (SMEX02), daily soil moisture profiles (i.e., 0-6, 5-11, 15-21, and 25-31 cm) were measured in two fields in Walnut Creek watershed, Ames, Iowa, USA. Theta probe measurements of the volumetric soil moisture profile data were used to analyze statistical moments and time stability and to validate soil moisture predicted by a simple physical model simulation. For all depths, the coefficient of variation of soil moisture is well explained by the mean soil moisture using an exponential relationship. The simple model simulated very similar variability patterns as those observed. As soil depth increases, soil moisture distributions shift from skewed to normal patterns. At the surface depth, the soil moisture during dry down is log-normally distributed, while the soil moisture is normally distributed after rainfall. At all depths below the surface, the normal distribution captures the soil moisture variability for all conditions. Time stability analyses show that spatial patterns of sampling points are preserved for all depths and that time stability of surface measurements is a good indicator of subsurface time stability. The most time stable sampling sites estimate the field average root zone soil moisture value within ±2.1% volumetric soil moisture.

  15. Inverse Method for Estimating the Spatial Variability of Soil Particle Size Distribution from Observed Soil Moisture

    SciTech Connect

    Pan, Feifei; Peters-lidard, Christa D.; King, Anthony Wayne

    2010-11-01

    Soil particle size distribution (PSD) (i.e., clay, silt, sand, and rock contents) information is one of critical factors for understanding water cycle since it affects almost all of water cycle processes, e.g., drainage, runoff, soil moisture, evaporation, and evapotranspiration. With information about soil PSD, we can estimate almost all soil hydraulic properties (e.g., saturated soil moisture, field capacity, wilting point, residual soil moisture, saturated hydraulic conductivity, pore-size distribution index, and bubbling capillary pressure) based on published empirical relationships. Therefore, a regional or global soil PSD database is essential for studying water cycle regionally or globally. At the present stage, three soil geographic databases are commonly used, i.e., the Soil Survey Geographic database, the State Soil Geographic database, and the National Soil Geographic database. Those soil data are map unit based and associated with great uncertainty. Ground soil surveys are a way to reduce this uncertainty. However, ground surveys are time consuming and labor intensive. In this study, an inverse method for estimating mean and standard deviation of soil PSD from observed soil moisture is proposed and applied to Throughfall Displacement Experiment sites in Walker Branch Watershed in eastern Tennessee. This method is based on the relationship between spatial mean and standard deviation of soil moisture. The results indicate that the suggested method is feasible and has potential for retrieving soil PSD information globally from remotely sensed soil moisture data.

  16. Predicting root zone soil moisture using surface data

    NASA Astrophysics Data System (ADS)

    Manfreda, S.; Brocca, L.; Moramarco, T.; Melone, F.; Sheffield, J.; Fiorentino, M.

    2012-04-01

    In recent years, much effort has been given to monitoring of soil moisture from satellite remote sensing. These tools represent an extraordinary source of information for hydrological applications, but they only provide information on near-surface soil moisture. In the present work, we developed a new formulation for the estimation of the soil moisture in the root zone based on the measured value of soil moisture at the surface. The method derives from a simplified form of the soil water balance equation and for this reason all parameters adopted are physically consistent. The formulation provides a closed form of the relationship between the root zone soil moisture and the surface soil moisture with a limited number of parameters, such as: the ratio between the depth of the surface layer and the deeper layer, the water loss coefficient, and the field capacity. The method has been tested using modeled soil moisture obtained from the North American Land Data Assimilation System (NLDAS). The NLDAS is a multi-institution partnership aimed at developing a retrospective data set, using available atmospheric and land surface meteorological observations to compute the land surface hydrological budget. The NLDAS database was extremely useful for the scope of the present research since it provides simulated data over an extended area with different climatic and physical condition and moreover it provides soil moisture data averaged over different depths. In particular, we used values in the top 10 cm and 100 cm layers. One year of simulation was used to test the ability of the developed method to describe soil moisture fluctuation in the 100cm layer over the entire NLDAS domain. The method was adopted by calibrating one of its three parameters and defining the remaining two based on physical characteristics of the site (using the potential evapotranspiration and ratio between the first and the second soil layer depth). In general, the method performed better than

  17. Validation of the ESA CCI soil moisture product in China

    NASA Astrophysics Data System (ADS)

    An, Ru; Zhang, Ling; Wang, Zhe; Quaye-Ballard, Jonathan Arthur; You, Jiajun; Shen, Xiaoji; Gao, Wei; Huang, LiJun; Zhao, Yinghui; Ke, Zunyou

    2016-06-01

    The quality of a newly merged soil moisture product (ECV_SM v0.1) from active and passive microwave sensors has attracted widespread international attention. The performance evaluation of this product will benefit studies on climate, meteorology, agriculture, hydrology, ecology and the environment. In this study, meteorological station data and the Noah soil moisture product were used to validate the ECV_SM product in China. First, some conventional statistical measures, such as correlation coefficients, bias, root mean square difference (RMSD) and mean relative error (MRE), were computed to describe the level of agreement between the meteorological station data and ECV_SM values. The accuracy was moderately high (the correlation was significant at the 0.05 level), although the two datasets differed slightly for various types of land cover. Compared with cropland and urban and built-up areas, the performance of ECV_SM was best in grassland regions. Second, the triple collocation technique was used to assess the random error in the meteorological station data, Noah soil moisture product and ECV_SM product. The mean errors in these three datasets were 0.108, 0.079 and 0.075 m3 m-3, respectively, on July 8, 2010 and 0.099, 0.061 and 0.059 m3 m-3, respectively, on October 8, 2010. Only two days of data were used for the triple collocation test as a representative, but this cannot precisely indicate that the test results on any other day correspond with the test results on these two days. Additionally, a trend analysis of ECV_SM during 2003-2010 was carried out using the Mann-Kendall trend test.

  18. Improving the vegetation parametrization in the ASCAT soil moisture retrieval

    NASA Astrophysics Data System (ADS)

    Hahn, Sebastian; Wagner, Wolfgang

    2016-04-01

    The TU Wien soil moisture retrieval algorithm is based upon a backscatter model designed to exploit the multi-angle viewing capabilities of space-borne fan-beam scatterometers. In the beginning the backscatter model has been developed for the scatterometers on-board ERS-1 and ERS-2 and later successfully applied on the successor instrument ASCAT (Advanced Scatterometer) on-board the series of Metop satellites. The soil moisture retrieval algorithm represents a physically motivated change detection method, which requires model parameters derived along the way to the final soil moisture estimates. The computation of the model parameters needs to be done in the time domain and is computationally expensive. However, not all model parameters are computationally estimated from the backscatter measurements, but rather defined by empirical observations. The cross-over angles belong to this group of model parameters, which unlike other model parameters, remain spatially and temporally constant on a global scale. This study investigates the possibility to optimize the cross-over angles, which are important parameters for the vegetation correction in the TU Wien soil moisture retrieval algorithm. The optimization is carried out with various cost functions and compared against soil moisture values from land surface models. First results indicate that spatially varying cross-over angles help to improve the mean annual cycle of soil moisture.

  19. New insights in catchment processes via distributed soil moisture measurements and 3D hydrological modeling

    NASA Astrophysics Data System (ADS)

    Bogena, H. R.; Sciuto, G.; Rosenbaum, U.; Herbst, M.; Huisman, J. A.; Vereecken, H.; Diekkrueger, B.

    2010-12-01

    Hydrological analysis is often limited by the number of data available. Usually, discharge data and only little point information concerning soil moisture status are available. This might give a good representation of the temporal variability of runoff, but it does not provide insights into the spatial dynamics of soil moisture and water fluxes within the catchment. The small forested Wüstebach catchment (~27 ha) has been instrumented with a wireless sensor network consisting of 150 nodes and more than 1200 soil moisture sensors in the framework of the Transregio32 and the Helmholtz initiative TERENO (Terrestrial Environmental Observatories) [1]. This unique data set provides a consistent picture of the hydrological status of the catchment in a high spatial and temporal resolution. We present first results of a geostatistical analysis of the data and an application of the integrated surface/subsurface 3D finite element model HydroGeoSphere model to investigate the scale dependency of the temporal dynamics of soil moisture patterns. A variogram analysis showed that the sum of the sub-scale variability and the measurement error is close to time-invariant. Wet situations showed smaller spatial variability, which is attributed to saturated soil moisture, which poses an upper limit and is typically not strongly variable in headwater catchments with relatively homogeneous soil. The spatiotemporal variability in soil moisture at 50 cm depth was significantly lower than at 5 and 20 cm. This finding indicates that the considerable variability of the top soil is buffered deeper in the soil due to root water uptake, lateral and vertical water fluxes. Topographic features showed the strongest correlation with soil moisture during dry periods, indicating that the control of topography on the soil moisture pattern depends on the soil water status. The temporal patterns of runoff discharge were reproduced by the HydroGeoSphere model in a satisfying way. The observed soil

  20. Effects of climate change on soil moisture over China from 1960-2006

    USGS Publications Warehouse

    Zhu, Q.; Jiang, H.; Liu, J.

    2009-01-01

    Soil moisture is an important variable in the climate system and it has sensitive impact on the global climate. Obviously it is one of essential components in the climate change study. The Integrated Biosphere Simulator (IBIS) is used to evaluate the spatial and temporal patterns of soil moisture across China under the climate change conditions for the period 1960-2006. Results show that the model performed better in warm season than in cold season. Mean errors (ME) are within 10% for all the months and root mean squared errors (RMSE) are within 10% except winter season. The model captured the spatial variability higher than 50% in warm seasons. Trend analysis based on the Mann-Kendall method indicated that soil moisture in most area of China is decreased especially in the northern China. The areas with significant increasing trends in soil moisture mainly locate at northwestern China and small areas in southeastern China and eastern Tibet plateau. ?? 2009 IEEE.

  1. Evaluation of the validated soil moisture product from the SMAP radiometer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we used a multilinear regression approach to retrieve surface soil moisture from NASA’s Soil Moisture Active Passive (SMAP) satellite data to create a global dataset of surface soil moisture which is consistent with ESA’s Soil Moisture and Ocean Salinity (SMOS) satellite retrieved sur...

  2. Soil moisture sensor intercomparisons at the SMAP marena in situ testbed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In May 2010, a soil moisture sensor intercomparison study was begun in Marena, Oklahoma. This effort is designed to serve as a foundation for incorporating diverse soil moisture networks into the Soil Moisture Active Passive (SMAP) Calibration and Validation program. Various soil moisture sensors, w...

  3. Evaluation of SMAP radiometer level 2 soil moisture algorithms using four years of SMOS data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of the SMAP (Soil Moisture Active Passive) mission include global measurements of soil moisture at three different spatial resolutions. SMAP will provide soil moisture with a 3-day revisit time at an accuracy of 0.04 m3/m3 The 36 km gridded soil moisture product (L2_SM_P) is primar...

  4. The impact of land surface temperature on soil moisture anomaly detection from passive microwave observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For several years passive microwave observations have been used to retrieve soil moisture from the Earth’s surface. Low frequency observations have the most sensitivity to soil moisture, therefore the modern Soil Moisture and Ocean Salinity (SMOS) and future Soil Moisture Active and Passive (SMAP) ...

  5. Application of observation operators for field scale soil moisture averages and variances in agricultural landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture is a key variable in understanding hydrologic processes and energy fluxes at the land surface. In spite of developing technologies for in-situ soil moisture measurements and increased availability of remotely sensed soil moisture data, scaling issues between soil moisture observations ...

  6. Comparing and Combining Surface Soil Moisture Products from AMSR2

    NASA Astrophysics Data System (ADS)

    Parinussa, R.; Kim, S.; Liu, Y.; Johnson, F.; Sharma, A.

    2015-12-01

    Soil moisture is an important variable in hydrological systems as its part of the water cycle in the atmosphere, the land surface and subsurface. Microwave remote sensing is a viable tool to monitor global soil moisture conditions at regular time intervals. The Advanced Microwave Scanning Radiometer 2 (AMSR2) is a sensor onboard the Global Change Observation Mission 1 - Water that was launched in May 2012. Multiple soil moisture products from AMSR2 observations exist; these were compared and combined with special emphasis to the global scale. The first product is retrieved by the Japan Aerospace Exploration Agency (JAXA) algorithm, the other uses the Land Parameter Retrieval Model (LPRM). These two products were compared against each other and evaluated against COSMOS data over the United States, Australia, Europe and Africa. The temporal correlations highlight differences in the representation of the seasonal cycle of soil moisture. It is hypothesized that four factors, physical surface temperatures, surface roughness, vegetation and ground soil wetness conditions, affect the quality of soil moisture retrievals. The complementary between the products led to the opportunity to combine them into a superior one that benefits from the strengths of both algorithms.These soil moisture algorithms share the same background in the radiative transfer model, but each algorithm applies different approaches to reflect various external conditions. As a result, the performance of the products is complementary in many locations in terms of bias, RMSE and, most importantly temporal correlation coefficients. Here, we present a methodology that combines the two AMSR2 based soil moisture products into a single product, which improves the overall performance by leveraging the strengths of the individual products. The new product is combined by applying an optimal weighting factor, calculated based on variance and correlation coefficients against a reference dataset. The complementary

  7. The Soil Moisture Dependence of TRMM Microwave Imager Rainfall Estimates

    NASA Astrophysics Data System (ADS)

    Seyyedi, H.; Anagnostou, E. N.

    2011-12-01

    This study presents an in-depth analysis of the dependence of overland rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) on the soil moisture conditions at the land surface. TMI retrievals are verified against rainfall fields derived from a high resolution rain-gauge network (MESONET) covering Oklahoma. Soil moisture (SOM) patterns are extracted based on recorded data from 2000-2007 with 30 minutes temporal resolution. The area is divided into wet and dry regions based on normalized SOM (Nsom) values. Statistical comparison between two groups is conducted based on recorded ground station measurements and the corresponding passive microwave retrievals from TMI overpasses at the respective MESONET station location and time. The zero order error statistics show that the Probability of Detection (POD) for the wet regions (higher Nsom values) is higher than the dry regions. The Falls Alarm Ratio (FAR) and volumetric FAR is lower for the wet regions. The volumetric missed rain for the wet region is lower than dry region. Analysis of the MESONET-to-TMI ratio values shows that TMI tends to overestimate for surface rainfall intensities less than 12 (mm/h), however the magnitude of the overestimation over the wet regions is lower than the dry regions.

  8. Preliminary results of SAR soil moisture experiment, November 1975

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Chang, A. T. C.; Schmugge, T. J.; Salomonson, V. V.; Wang, J. R.

    1979-01-01

    The experiment was performed using the Environmental Research Institute of Michigan's (ERIM) dual-frequency and dual-polarization side-looking SAR system on board a C-46 aircraft. For each frequency, horizontally polarized pulses were transmitted and both horizontally and vertically polarized return signals were recorded on the signal film simultaneously. The test sites were located in St. Charles, Missouri; Centralia, Missouri; and Lafayette, Indiana. Each test site was a 4.83 km by 8.05 km (3 mile by 5 mile) rectangular strip of terrain. Concurrent with SAR overflight, ground soil samples of 0-to-2.5 cm and 0-to-15 cm layers were collected for soil moisture estimation. The surface features were also noted. Hard-copy image films and the digital data produced via optical processing of the signal films are analyzed in this report to study the relationship of radar backscatter to the moisture content and the surface roughness. Many difficulties associated with processing and analysis of the SAR imagery are noted. In particular, major uncertainty in the quantitative analysis appeared due to the difficulty of quality reproduction of digital data from the signal films.

  9. Coupling soil moisture and precipitation observations for predicting hourly runoff at small catchment scale

    NASA Astrophysics Data System (ADS)

    Tayfur, Gokmen; Zucco, Graziano; Brocca, Luca; Moramarco, Tommaso

    2014-03-01

    The importance of soil moisture is recognized in rainfall-runoff processes. This study quantitatively investigates the use of soil moisture measured at 10, 20, and 40 cm soil depths along with rainfall in predicting runoff. For this purpose, two small sub-catchments of Tiber River Basin, in Italy, were instrumented during periods of October 2002-March 2003 and January-April 2004. Colorso Basin is about 13 km2 and Niccone basin 137 km2. Rainfall plus soil moisture at 10, 20, and 40 cm formed the input vector while the discharge was the target output in the model of generalized regression neural network (GRNN). The model for each basin was calibrated and tested using October 2002-March 2003 data. The calibrated and tested GRNN was then employed to predict runoff for each basin for the period of January-April 2004. The model performance was found to be satisfactory with determination coefficient, R2, equal to 0.87 and Nash-Sutcliffe efficiency, NS, equal to 0.86 in the validation phase for both catchments. The investigation of effects of soil moisture on runoff prediction revealed that the addition of soil moisture data, along with rainfall, tremendously improves the performance of the model. The sensitivity analysis indicated that the use of soil moisture data at different depths allows to preserve the memory of the system thus having a similar effect of employing the past values of rainfall, but with improved GRNN performance.

  10. The Influence of Antecedent Soil Moisture on Springtime Runoff in the Sierra Nevada Mountains

    NASA Astrophysics Data System (ADS)

    Flint, A. L.; Flint, L. E.; Dettinger, M. D.

    2009-12-01

    As the changing climate influences precipitation, air temperature, and snowmelt, measurements in the Sierra Nevada are illustrating the contribution of antecedent soil moisture on the timing and volume of springtime runoff. Delays in runoff correspond to low antecedent soil moisture from the preceding fall when snow fell on dry soil. In the Tuolumne River streamgage at the Little Grand Canyon just above Hetch Hetchy reservoir, no delay occurred between runoff and snowmelt in 2007 when the soil was wetter due to a cooler summer and fall rains. However, a 26-day delay in runoff was observed after the onset of snowmelt in 2008 when the soil was drier than the preceding fall at the time of the first snowfall due to a hotter and drier summer. If soils are dry prior to snowfall then the soil moisture is first replenished by springtime snowmelt, which not only delays runoff, but also reduces runoff volume to less than that estimated from snow pack. Typical runoff forecasts rely heavily on snow survey data and snowpack conditions, and the exclusion of soil moisture data could lead to an overestimate of the amount of runoff and compromise reservoir operations. In an average snowfall year, for example, the Kaweah Basin in the southern Sierra Nevada could lose as much as 20 percent of its snow water equivalent and the Merced Basin could lose 12 percent of its snow water equivalent simply to recharge soil moisture. Analyses of measured soil moisture in the Sierra Nevada, corresponding high elevation streamflow records, regional hydrologic modeling, and analysis of future climate projections to define the nature of summer and fall temperature and precipitation, will be used to illustrate the important role antecedent soil moisture plays in the timing and volume of springtime runoff in a changing climate.

  11. Satellite Based Soil Moisture Product Validation Using NOAA-CREST Ground and L-Band Observations

    NASA Astrophysics Data System (ADS)

    Norouzi, H.; Campo, C.; Temimi, M.; Lakhankar, T.; Khanbilvardi, R.

    2015-12-01

    Soil moisture content is among most important physical parameters in hydrology, climate, and environmental studies. Many microwave-based satellite observations have been utilized to estimate this parameter. The Advanced Microwave Scanning Radiometer 2 (AMSR2) is one of many remotely sensors that collects daily information of land surface soil moisture. However, many factors such as ancillary data and vegetation scattering can affect the signal and the estimation. Therefore, this information needs to be validated against some "ground-truth" observations. NOAA - Cooperative Remote Sensing and Technology (CREST) center at the City University of New York has a site located at Millbrook, NY with several insitu soil moisture probes and an L-Band radiometer similar to Soil Moisture Passive and Active (SMAP) one. This site is among SMAP Cal/Val sites. Soil moisture information was measured at seven different locations from 2012 to 2015. Hydra probes are used to measure six of these locations. This study utilizes the observations from insitu data and the L-Band radiometer close to ground (at 3 meters height) to validate and to compare soil moisture estimates from AMSR2. Analysis of the measurements and AMSR2 indicated a weak correlation with the hydra probes and a moderate correlation with Cosmic-ray Soil Moisture Observing System (COSMOS probes). Several differences including the differences between pixel size and point measurements can cause these discrepancies. Some interpolation techniques are used to expand point measurements from 6 locations to AMSR2 footprint. Finally, the effect of penetration depth in microwave signal and inconsistencies with other ancillary data such as skin temperature is investigated to provide a better understanding in the analysis. The results show that the retrieval algorithm of AMSR2 is appropriate under certain circumstances. This validation algorithm and similar study will be conducted for SMAP mission. Keywords: Remote Sensing, Soil

  12. NASA Giovanni: A Tool for Visualizing, Analyzing, and Inter-comparing Soil Moisture Data

    NASA Technical Reports Server (NTRS)

    Teng, William; Rui, Hualan; Vollmer, Bruce; deJeu, Richard; Fang, Fan; Lei, Guang-Dih; Parinussa, Robert

    2014-01-01

    There are many existing satellite soil moisture algorithms and their derived data products, but there is no simple way for a user to inter-compare the products or analyze them together with other related data. An environment that facilitates such inter-comparison and analysis would be useful for validation of satellite soil moisture retrievals against in situ data and for determining the relationships between different soil moisture products. As part of the NASA Giovanni (Geospatial Interactive Online Visualization ANd aNalysis Infrastructure) family of portals, which has provided users worldwide with a simple but powerful way to explore NASA data, a beta prototype Giovanni Inter-comparison of Soil Moisture Products portal has been developed. A number of soil moisture data products are currently included in the prototype portal. More will be added, based on user requirements and feedback and as resources become available. Two application examples for the portal are provided. The NASA Giovanni Soil Moisture portal is versatile and extensible, with many possible uses, for research and applications, as well as for the education community.

  13. Indirect Measurement of Evapotranspiration from Soil Moisture Depletion

    NASA Astrophysics Data System (ADS)

    Li, M.; Chen, Y.

    2007-12-01

    Direct and in situ measurement of evapotranspiration (ET), such as the eddy covariance (EC) method, is often expensive and complicated, especially over tall canopy. In view of soil water balance, depletion of soil moisture can be attributed to canopy ET when horizontal soil moisture movement is negligible and percolation ceases. This study computed the daily soil moisture depletion at the Lien-Hua-Chih (LHC) station (23°55'52"N, 120°53'39"E, 773 m elevation) from July, 2004 to June, 2007 to estimate daily ET. The station is inside an experimental watershed of a natural evergreen forest and the canopy height is about 17 m. Rainfall days are assumed to be no ET. For those days with high soil moisture content, normally 2 to 3 days after significant rainfall input, ET is estimated by potential ET. Soil moistures were measured by capacitance probes at -10 cm, - 30 cm, -50 cm, -70 cm, and -90 cm. A soil heat flux plate was placed at -5 cm. In the summer of 2006, a 22 m tall observation tower was constructed. Temperature and relative humidity sensors were placed every 5 m from ground surface to 20 m for inner and above canopy measurements. Net radiation and wind speed/directions were also installed. A drainage gauge was installed at -50 cm to collect infiltrated water. Continuous measurements of low response instruments were recorded every 30-minute averaged from 10-minute samplings. A nearby weather station provides daily pan evaporation and precipitation data. Since the response of soil water variations is relatively slow to the fluctuations of atmospheric forcing, only daily ET is estimated from daily soil moisture depletion. The annual average precipitation is 2902 mm and the annual average ET is 700 mm. The seasonal ET patterns of the first two water years are similar. The third year has a higher ET because soil moisture was recharged frequently by rainfall In order to examine the applicability of this approach, an EC system, including a 3-D sonic anemometer (Young

  14. Validation and Upscaling of Soil Moisture Satellite Products in Romania

    NASA Astrophysics Data System (ADS)

    Sandric, I.; Diamandi, A.; Oana, N.; Saizu, D.; Vasile, C.; Lucaschi, B.

    2016-06-01

    The study presents the validation of SMOS soil moisture satellite products for Romania. The validation was performed with in-situ measurements spatially distributed over the country and with in-situ measurements concentrated in on small area. For country level a number of 20 stations from the national meteorological observations network in Romania were selected. These stations have in-situ measurements for soil moisture in the first 5 cm of the soil surface. The stations are more or less distributed in one pixel of SMOS, but it has the advantage that covers almost all the country with a wide range of environmental conditions. Additionally 10 mobile soil moisture measurements stations were acquired and installed. These are spatially concentrated in one SMOS pixel in order to have a more detailed validation against the soil type, soil texture, land surface temperature and vegetation type inside one pixel. The results were compared and analyzed for each day, week, season, soil type, and soil texture and vegetation type. Minimum, maximum, mean and standard deviation were extracted and analyzed for each validation criteria and a hierarchy of those were performed. An upscaling method based on the relations between soil moisture, land surface temperature and vegetation indices was tested and implemented. The study was financed by the Romanian Space Agency within the framework of ASSIMO project http://assimo.meteoromania.ro.

  15. Desert shrub stemflow and its significance in soil moisture replenishment

    NASA Astrophysics Data System (ADS)

    Wang, X.-P.; Wang, Z.-N.; Berndtsson, R.; Zhang, Y.-F.; Pan, Y.-X.

    2011-02-01

    Stemflow of xerophytic shrubs represents a significant component of water replenishment to the soil-root system influencing water utilization of plant roots at the stand scale, especially in water scarce desert ecosystems. In this study, stemflow of Caragana korshinskii was quantified by an aluminum foil collar collection method on re-vegetated sand dunes of the Shapotou restored desert ecosystem in northwestern China. Time domain reflectometry probes were inserted horizontally at 20 different soil profile depths under the C. korshinskii shrub to monitor soil moisture variation at hourly intervals. Results indicated that 2.2 mm precipitation was necessary for the generation of stemflow for C. korshinskii. Stemflow averaged 8% of the gross precipitation and the average funnelling ratio was as high as 90. The soil moisture in the uppermost soil profile was strongly correlated with individual rainfall and the stemflow strengthened this relationship. Therefore, it is favourable for the infiltrated water redistribution in the deeper soil profile of the root zone. Consequently, stemflow contributes significantly to a positive soil moisture balance in the root zone and the replenishment of soil moisture at deeper soil layers. This plays an important role in plant survival and the general ecology of arid desert environments.

  16. Analysis of water application efficiency and emission uniformity of drip irrigation systems based on space-time analysis of soil moisture patterns in soils

    NASA Astrophysics Data System (ADS)

    Shabeeb, Ahmeed; Taha, Uday; dragonetti, giovanna; Lamaddalena, Nicola; Coppola, Antonio

    2016-04-01

    In order to evaluate how efficiently and uniformly drip irrigation systems can deliver water to emitters distributed around a field, we need some methods for measuring/calculating water application efficiency (WAE) and emission uniformity (EU). In general, the calculation of the WAE and of other efficiency indices requires the measurement of the water stored in the root zone. Measuring water storage in soils allows directly saying how much water a given location of the field retains having received a given amount of irrigation water. And yet, due to the difficulties of measuring water content variability under an irrigation system at field scale, it is quite common using EU as a proxy indicator of the irrigation performance. This implicitly means assuming that the uniformity of water application is immediately reflected in an uniformity of water stored in the root zone. In other words, that if a site receive more water it will store more water. Nevertheless, due to the heterogeneity of soil hydrological properties the same EU may correspond to very different distributions of water stored in the soil root zone. 1) In the case of isolated drippers, the storages measured in the soil root zone layer shortly after an irrigation event may be or not different from the water height applied at the surface depending on the vertical/horizontal development of the wetted bulbs. Specifically, in the case of dominant horizontal spreading the water storage is expected to reflect the distribution of water applied at the surface. To the contrary, in the case of relatively significant vertical spreading, deep percolation fluxes (fluxes leaving the root zone) may well induce water storages in the root zone significantly different from the water applied at the surface. 2) The drippers and laterals are close enough that the wetted bulbs below adjacent drippers may interact. In this case, lateral fluxes in the soil may well induce water storages in the root zone which may be

  17. The Presence of Plants Alters the Effect of Soil Moisture on Soil C Decomposition in Two Different Soil Types

    NASA Astrophysics Data System (ADS)

    Dijkstra, F. A.; Cheng, W.

    2005-12-01

    While it is well known that soil moisture directly affects microbial activity and soil C decomposition, it is unclear if the presence of plants alters these effects through rhizosphere processes. We studied soil moisture effects on soil C decomposition with and without sunflower and soybean. Plants were grown in two different soil types with soil moisture contents of 45 and 85% of field capacity in a greenhouse experiment. We continuously labeled plants with depleted 13C, which allowed us to separate plant-derived CO2-C from original soil-derived CO2-C in soil respiration measurements. We observed an overall increase in soil-derived CO2-C efflux in the presence of plants (priming effect) in both soils with on average a greater priming effect in the high soil moisture treatment (60% increase in soil-derived CO2-C compared to control) than in the low soil moisture treatment (37% increase). Greater plant biomass in the high soil moisture treatment contributed to greater priming effects, but priming effects remained significantly higher after correcting for plant biomass. Possibly, root exudation of labile C may have increased more than plant biomass and may have become more effective in stimulating microbial decomposition in the higher soil moisture treatment. Our results indicate that changing soil moisture conditions can significantly alter rhizosphere effects on soil C decomposition.

  18. Assimilation of Satellite Based Soil Moisture Data in the National Weather Service's Flash Flood Guidance System

    NASA Astrophysics Data System (ADS)

    Seo, D.; Lakhankar, T.; Cosgrove, B.; Khanbilvardi, R.

    2012-12-01

    potential sources of remotely sensed soil moisture data. SMOS measures the microwave radiation emitted from the Earth's surface operating at L-band (1.20-1.41 GHz) to measure surface soil moisture directly. Microwave radiation at this wavelength offers relatively deeper penetration and has lower sensitivity to vegetation impacts. The main objective of this research is to evaluate the contribution of remote sensing technology to quantifiable improvements in flash flood applications as well as adding a remote sensing component to the NWS FFG Algorithm. The challenge of this study is employing the direct soil moisture data from SMOS to replace the model-calculated soil moisture state which is based on the soil water balance in 4 km x 4 km Hydrologic Rainfall Analysis Project (HRAP) grid cells. In order to determine the value of the satellite data to NWS operations, the streamflow generated by HL-RDHM with and without soil moisture assimilation will be compared to USGS gauge data. Furthermore, we will apply the satellite-based soil moisture data with the FFG algorithm to evaluate how many hits, misses and false alarms are generated. This study will evaluate the value of remote sensing data in constraining the state of the system for main-stem and flash flood forecasting.

  19. Validation and trend analysis of ECV soil moisture data on cropland in North China Plain during 1981-2010

    NASA Astrophysics Data System (ADS)

    Wang, Sisi; Mo, Xingguo; Liu, Suxia; Lin, Zhonghui; Hu, Shi

    2016-06-01

    Global time series of the Essential Climate Variable (ECV) soil mositure (SM) is being developed from passive and active satellite microwave sensors at a coarse spatial resolution with Climate Change Initiative program funded by European Space Agency. This study aims to validate the reliability of ECV SM dataset, and attempts are made to analyze SM trends in cropland. Firstly, in-situ SM measurements during crop growing seasons from 1992 to 2010 for 228 stations across China and 21 stations over cropland of North China Plain (NCP) were employed to validate ECV SM product. Then, the spatiotemporal variations of ECV SM were analyzed during growing period of winter wheat (April-June) and summer maize (July-September) from 1981 to 2010 in NCP. Finally, the possible relationship between SM, precipitation, evapotranspiration and NDVI were explored. Results showed that ECV SM could generally capture the seasonal SM dynamics. The average triple collocation random error of ECV SM in China was 0.052 m3 m-3 while the error in cropland ranged from 0.003 to 0.156 m3 m-3. The averaged Spearman correlation coefficient between ECV SM and all in-situ observations was 0.42 (p < 0.01) in China and 0.43 (p < 0.01) for cropland over NCP. Spatially, ECV SM was decreasing in most areas during wheat season, whereas the trends of ECV SM were positive in south and negative in north during maize season in NCP, being consistent with the precipitation fluctuation. Overall, ECV SM is potentially suitable for trend analysis in NCP and its validations and analysis will be helpful for further enhancement of the ECV SM product.

  20. Soil moisture monitoring methods: Strengths and limitations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All soil water content sensors require soil-specific calibration – but calibration of capacitance sensors, whether in the laboratory or in the field, doesn’t ensure accuracy in the field. EM fields from capacitance sensors do not uniformly interrogate the soil and are influenced by soil structure – ...

  1. Soil moisture retrieval from Sentinel-1 satellite data

    NASA Astrophysics Data System (ADS)

    Benninga, Harm-Jan; van der Velde, Rogier; Su, Zhongbo

    2016-04-01

    Reliable up-to-date information on the current water availability and models to evaluate management scenarios are indispensable for skilful water management. The Sentinel-1 radar satellite programme provides an opportunity to monitor water availability (as surface soil moisture) from space on an operational basis at unprecedented fine spatial and temporal resolutions. However, the influences of soil roughness and vegetation cover complicate the retrieval of soil moisture states from radar data. In this contribution, we investigate the sensitivity of Sentinel-1 radar backscatter to soil moisture states and vegetation conditions. The analyses are based on 105 Sentinel-1 images in the period from October 2014 to January 2016 covering the Twente region in the Netherlands. This area is almost flat and has a heterogeneous landscape, including agricultural (mainly grass, cereal and corn), forested and urban land covers. In-situ measurements at 5 cm depth collected from the Twente soil moisture monitoring network are used as reference. This network consists of twenty measurement stations (most of them at agricultural fields) distributed across an area of 50 km × 40 km. The Normalized Difference Vegetation Index (NDVI) derived from optical images is adopted as proxy to represent seasonal variability in vegetation conditions. The results from this sensitivity study provide insight into the potential capability of Sentinel-1 data for the estimation of soil moisture states and they will facilitate the further development of operational retrieval methods. An operationally applicable soil moisture retrieval method requires an algorithm that is usable without the need for area specific model calibration with detailed field information (regarding roughness and vegetation). Because it is not yet clear which method provides the most reliable soil moisture retrievals from Sentinel-1 data, multiple soil moisture retrieval methods will be studied in which the fine spatiotemporal

  2. Upscaling sparse, irregularly spaced in situ soil moisture measurements for calibration and validation of SMAP soil moisture products

    NASA Astrophysics Data System (ADS)

    Whitcomb, J.; Clewley, D.; Moghaddam, M.; Akbar, R.; Silva, A. R. D.

    2015-12-01

    There is a large difference in the footprints over which remote sensing instruments, such as the Soil Moisture Active Passive (SMAP) mission, retrieve soil moisture and that of in situ networks. Therefore a method for upscaling in situ measurements is required before they can be used to validate remote sensing instruments. The upscaling problem is made more difficult when measurements are sparse and irregularly spaced within the footprint. To address these needs, we have developed a method for producing upscaled estimates of soil moisture based on a network of in situ soil moisture measurements and airborne P-band SAR data, and utilizing a Random Forests-based regression algorithm. Sites within the SoilSCAPE network, for which the technique was developed, typically contains sensors at ~30 locations, with each location sampled at multiple depths. Measurements are taken at 20 minute intervals and averaged over a selectable time interval, thereby supporting near-real time generation of soil moisture maps. The collected measurements are automatically uploaded to a central database from which they can be accessed for use in the regression algorithm. Our regression-based approach works well with irregularly-spaced sensors by incorporating a set of data layers that correlate well with soil moisture. The layers include thematic land cover, elevation, slope, aspect, flow accumulation, clay fraction, air temperature, precipitation, and P-Band HH, VV, and HV backscatter. Values from these data layers are extracted for each sensor location and applied to train the Random Forests algorithm. The decision trees generated are then applied to estimate soil moisture at a 100 m spacing throughout the network region, after which the evenly-spaced values are averaged to accord with the 3-, 9-, and 36-km SMAP measurement grids. The resulting set of near-real time soil moisture estimates suitable for SMAP calibration and validation is placed online for use by the SMAP Cal/Val team

  3. Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images

    NASA Astrophysics Data System (ADS)

    Cumbrera, Ramiro; Tarquis, Ana M.; Gascó, Gabriel; Millán, Humberto

    2012-07-01

    SummaryImage analysis could be a useful tool for investigating the spatial patterns of apparent soil moisture at multiple resolutions. The objectives of the present work were (i) to define apparent soil moisture patterns from vertical planes of Vertisol pit images and (ii) to describe the scaling of apparent soil moisture distribution using fractal parameters. Twelve soil pits (0.70 m long × 0.60 m width × 0.30 m depth) were excavated on a bare Mazic Pellic Vertisol. Six of them were excavated in April/2011 and six pits were established in May/2011 after 3 days of a moderate rainfall event. Digital photographs were taken from each Vertisol pit using a Kodak™ digital camera. The mean image size was 1600 × 945 pixels with one physical pixel ≈373 μm of the photographed soil pit. Each soil image was analyzed using two fractal scaling exponents, box counting (capacity) dimension (DBC) and interface fractal dimension (Di), and three prefractal scaling coefficients, the total number of boxes intercepting the foreground pattern at a unit scale (A), fractal lacunarity at the unit scale (Λ1) and Shannon entropy at the unit scale (S1). All the scaling parameters identified significant differences between both sets of spatial patterns. Fractal lacunarity was the best discriminator between apparent soil moisture patterns. Soil image interpretation with fractal exponents and prefractal coefficients can be incorporated within a site-specific agriculture toolbox. While fractal exponents convey information on space filling characteristics of the pattern, prefractal coefficients represent the investigated soil property as seen through a higher resolution microscope. In spite of some computational and practical limitations, image analysis of apparent soil moisture patterns could be used in connection with traditional soil moisture sampling, which always renders punctual estimates.

  4. Influence of Soil Moisture on Soil Gas Vapor Concentration for Vapor Intrusion

    PubMed Central

    Shen, Rui; Pennell, Kelly G.; Suuberg, Eric M.

    2013-01-01

    Abstract Mathematical models have been widely used in analyzing the effects of various environmental factors in the vapor intrusion process. Soil moisture content is one of the key factors determining the subsurface vapor concentration profile. This manuscript considers the effects of soil moisture profiles on the soil gas vapor concentration away from any surface capping by buildings or pavement. The “open field” soil gas vapor concentration profile is observed to be sensitive to the soil moisture distribution. The van Genuchten relations can be used for describing the soil moisture retention curve, and give results consistent with the results from a previous experimental study. Other modeling methods that account for soil moisture are evaluated. These modeling results are also compared with the measured subsurface concentration profiles in the U.S. EPA vapor intrusion database. PMID:24170970

  5. Influence of Soil Moisture on Soil Gas Vapor Concentration for Vapor Intrusion.

    PubMed

    Shen, Rui; Pennell, Kelly G; Suuberg, Eric M

    2013-10-01

    Mathematical models have been widely used in analyzing the effects of various environmental factors in the vapor intrusion process. Soil moisture content is one of the key factors determining the subsurface vapor concentration profile. This manuscript considers the effects of soil moisture profiles on the soil gas vapor concentration away from any surface capping by buildings or pavement. The "open field" soil gas vapor concentration profile is observed to be sensitive to the soil moisture distribution. The van Genuchten relations can be used for describing the soil moisture retention curve, and give results consistent with the results from a previous experimental study. Other modeling methods that account for soil moisture are evaluated. These modeling results are also compared with the measured subsurface concentration profiles in the U.S. EPA vapor intrusion database.

  6. Advances, experiences, and prospects of the International Soil Moisture Network

    NASA Astrophysics Data System (ADS)

    Dorigo, W.; van Oevelen, P. J.; Drusch, M.; Wagner, W.; Scipal, K.; Mecklenburg, S.

    2012-12-01

    In 2009, the International Soil Moisture Network (ISMN; http:www.ipf.tuwien.ac.at) was initiated as a platform to support calibration and validation of soil moisture products from remote sensing and land surface models, and to advance studies on the behavior of soil moisture over space and time. This international initiative is fruit of continuing coordinative efforts of the Global Energy and Water Cycle Experiment (GEWEX) in cooperation with the Group of Earth Observation (GEO) and the Committee on Earth Observation Satellites (CEOS). The decisive financial incentive was given by the European Space Agency (ESA) who considered the establishment of the network critical for optimizing the soil moisture products from the Soil Moisture and Ocean Salinity (SMOS) mission. The ISMN collects and harmonizes ground-based soil moisture data sets from a large variety of individually operating networks and makes them available through a centralized data portal. Meanwhile, almost 6000 soil moisture data sets from over 1300 sites, distributed among 34 networks worldwide, are contained in the database. The steadily increasing number of organizations voluntarily contributing to the ISMN, and the rapidly increasing number of studies based on the network show that the portal has been successful in reaching its primary goal to promote easy data accessibility to a wide variety of users. Recently, several updates of the system were performed to keep up with the increasing data amount and traffic, and to meet the requirements of many advanced users. Many datasets from operational networks (e.g., SCAN, the US Climate Reference Network, COSMOS, and ARM) are now assimilated and processed in the ISMN on a fully automated basis in near-real time. In addition, a new enhanced quality control system is currently being implemented. This presentation gives an overview of these recent developments, presents some examples of important scientific results based on the ISMN, and sketches an outlook for

  7. Assessment of the SMAP Passive Soil Moisture Product

    NASA Technical Reports Server (NTRS)

    Chan, Steven K.; Bindlish, Rajat; O'Neill, Peggy E.; Njoku, Eni; Jackson, Tom; Colliander, Andreas; Chen, Fan; Burgin, Mariko; Dunbar, Scott; Piepmeier, Jeffrey; Yueh, Simon; Entekhabi, Dara; Cosh, Michael H.; Caldwell, Todd; Walker, Jeffrey; Wu, Xiaoling; Berg, Aaron; Rowlandson, Tracy; Pacheco, Anna; McNairn, Heather; Thibeault, Marc; Martinez-Fernandez, Jose; Gonzalez-Zamora, Angel; Seyfried, Mark; Bosch, David; Starks, Patrick; Goodrich, David; Prueger, John; Palecki, Michael; Small, Eric E.; Zreda, Marek; Calvet, Jean-Christophe; Crow, Wade T.; Kerr, Yann

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) satellite mission was launched on January 31, 2015. The observatory was developed to provide global mapping of high-resolution soil moisture and freeze-thaw state every two to three days using an L-band (active) radar and an L-band (passive) radiometer. After an irrecoverable hardware failure of the radar on July 7, 2015, the radiometer-only soil moisture product became the only operational Level 2 soil moisture product for SMAP. The product provides soil moisture estimates posted on a 36 kilometer Earth-fixed grid produced using brightness temperature observations from descending passes. Within months after the commissioning of the SMAP radiometer, the product was assessed to have attained preliminary (beta) science quality, and data were released to the public for evaluation in September 2015. The product is available from the NASA Distributed Active Archive Center at the National Snow and Ice Data Center. This paper provides a summary of the Level 2 Passive Soil Moisture Product (L2_SM_P) and its validation against in situ ground measurements collected from different data sources. Initial in situ comparisons conducted between March 31, 2015 and October 26, 2015, at a limited number of core validation sites (CVSs) and several hundred sparse network points, indicate that the V-pol Single Channel Algorithm (SCA-V) currently delivers the best performance among algorithms considered for L2_SM_P, based on several metrics. The accuracy of the soil moisture retrievals averaged over the CVSs was 0.038 cubic meter per cubic meter unbiased root-mean-square difference (ubRMSD), which approaches the SMAP mission requirement of 0.040 cubic meter per cubic meter.

  8. Seasonality in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia

    NASA Astrophysics Data System (ADS)

    Poveda, GermáN.; Jaramillo, Alvaro; Gil, Marta MaríA.; Quiceno, Natalia; Mantilla, Ricardo I.

    2001-08-01

    An analysis of hydrologic variability in Colombia shows different seasonal effects associated with El Niño/Southern Oscillation (ENSO) phenomenon. Spectral and cross-correlation analyses are developed between climatic indices of the tropical Pacific Ocean and the annual cycle of Colombia's hydrology: precipitation, river flows, soil moisture, and the Normalized Difference Vegetation Index (NDVI). Our findings indicate stronger anomalies during December-February and weaker during March-May. The effects of ENSO are stronger for streamflow than for precipitation, owing to concomitant effects on soil moisture and evapotranspiration. We studied time variability of 10-day average volumetric soil moisture, collected at the tropical Andes of central Colombia at depths of 20 and 40 cm, in coffee growing areas characterized by shading vegetation ("shaded coffee"), forest, and sunlit coffee. The annual and interannual variability of soil moisture are highly intertwined for the period 1997-1999, during strong El Niño and La Niña events. Soil moisture exhibited greater negative anomalies during 1997-1998 El Niño, being strongest during the two dry seasons that normally occur in central Colombia. Soil moisture deficits were more drastic at zones covered by sunlit coffee than at those covered by forest and shaded coffee. Soil moisture responds to wetter than normal precipitation conditions during La Niña 1998-1999, reaching maximum levels throughout that period. The probability density function of soil moisture records is highly skewed and exhibits different kinds of multimodality depending upon land cover type. NDVI exhibits strong negative anomalies throughout the year during El Niños, in particular during September-November (year 0) and June-August (year 0). The strong negative relation between NDVI and El Niño has enormous implications for carbon, water, and energy budgets over the region, including the tropical Andes and Amazon River basin.

  9. Potential Soil Moisture Products from the Aquarius Radiometer and Scatterometer Using an Observing System Simulation Experiment

    SciTech Connect

    Luo, Yan; Houser, Paul; Anantharaj, Valentine G; Fan, Xingang; De Lannoy, Gabrielle; Zhan, Xiwu

    2013-01-01

    Using an observing system simulation experiment (OSSE), we investigate the potential soil moisture retrieval capability of the National Aeronautics and Space Administration (NASA) Aquarius radiometer (L-band 1.413 GHz) and scatterometer (L-band, 1.260 GHz). We estimate potential errors in soil moisture retrievals and identify the sources that could cause those errors. The OSSE system includes (i) a land surface model in the NASA Land Information System, (ii) a radiative transfer and backscatter model, (iii) a realistic orbital sampling model, and (iv) an inverse soil moisture retrieval model. We execute the OSSE over a 1000 2200 km2 region in the central United States, including the Red and Arkansas river basins. Spatial distributions of soil moisture retrieved from the radiometer and scatterometer are close to the synthetic truth. High root mean square errors (RMSEs) of radiometer retrievals are found over the heavily vegetated regions, while large RMSEs of scatterometer retrievals are scattered over the entire domain. The temporal variations of soil moisture are realistically captured over a sparely vegetated region with correlations 0.98 and 0.63, and RMSEs 1.28% and 8.23% vol/vol for radiometer and scatterometer, respectively. Over the densely vegetated region, soil moisture exhibits larger temporal variation than the truth, leading to correlation 0.70 and 0.67, respectively, and RMSEs 9.49% and 6.09% vol/vol respectively. The domain-averaged correlations and RMSEs suggest that radiometer is more accurate than scatterometer in retrieving soil moisture. The analysis also demonstrates that the accuracy of the retrieved soil moisture is affected by vegetation coverage and spatial aggregation.

  10. Dependence of soil respiration on soil temperature and soil moisture in successional forests in Southern China

    USGS Publications Warehouse

    Tang, X.-L.; Zhou, G.-Y.; Liu, S.-G.; Zhang, D.-Q.; Liu, S.-Z.; Li, J.; Zhou, C.-Y.

    2006-01-01

    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (±SD) soil respiration rate in the DNR forests was (9.0 ± 4.6) Mg CO2-C/hm2per year, ranging from (6.1 ± 3.2) Mg CO2-C/hm2per year in early successional forests to (10.7 ± 4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities.

  11. Combined evaluation of optical and microwave satellite dataset for soil moisture deficit estimation

    NASA Astrophysics Data System (ADS)

    Srivastava, Prashant K.; Han, Dawei; Islam, Tanvir; Singh, Sudhir Kumar; Gupta, Manika; Gupta, Dileep Kumar; Kumar, Pradeep

    2016-04-01

    Soil moisture is a key variable responsible for water and energy exchanges from land surface to the atmosphere (Srivastava et al., 2014). On the other hand, Soil Moisture Deficit (or SMD) can help regulating the proper use of water at specified time to avoid any agricultural losses (Srivastava et al., 2013b) and could help in preventing natural disasters, e.g. flood and drought (Srivastava et al., 2013a). In this study, evaluation of Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) and soil moisture from Soil Moisture and Ocean Salinity (SMOS) satellites are attempted for prediction of Soil Moisture Deficit (SMD). Sophisticated algorithm like Adaptive Neuro Fuzzy Inference System (ANFIS) is used for prediction of SMD using the MODIS and SMOS dataset. The benchmark SMD estimated from Probability Distributed Model (PDM) over the Brue catchment, Southwest of England, U.K. is used for all the validation. The performances are assessed in terms of Nash Sutcliffe Efficiency, Root Mean Square Error and the percentage of bias between ANFIS simulated SMD and the benchmark. The performance statistics revealed a good agreement between benchmark and the ANFIS estimated SMD using the MODIS dataset. The assessment of the products with respect to this peculiar evidence is an important step for successful development of hydro-meteorological model and forecasting system. The analysis of the satellite products (viz. SMOS soil moisture and MODIS LST) towards SMD prediction is a crucial step for successful hydrological modelling, agriculture and water resource management, and can provide important assistance in policy and decision making. Keywords: Land Surface Temperature, MODIS, SMOS, Soil Moisture Deficit, Fuzzy Logic System References: Srivastava, P.K., Han, D., Ramirez, M.A., Islam, T., 2013a. Appraisal of SMOS soil moisture at a catchment scale in a temperate maritime climate. Journal of Hydrology 498, 292-304. Srivastava, P.K., Han, D., Rico

  12. Soil Moisture: The Hydrologic Interface Between Surface and Ground Waters

    NASA Technical Reports Server (NTRS)

    Engman, Edwin T.

    1997-01-01

    A hypothesis is presented that many hydrologic processes display a unique signature that is detectable with microwave remote sensing. These signatures are in the form of the spatial and temporal distributions of surface soil moisture. The specific hydrologic processes that may be detected include groundwater recharge and discharge zones, storm runoff contributing areas, regions of potential and less than potential evapotranspiration (ET), and information about the hydrologic properties of soils. In basin and hillslope hydrology, soil moisture is the interface between surface and ground waters.

  13. Field-Scale Soil Moisture Sensing Using GPS Reflections: Description of the PBO H2O Soil Moisture Product

    NASA Astrophysics Data System (ADS)

    Chew, C. C.; Small, E. E.; Larson, K. M.

    2014-12-01

    Data from NSF's EarthScope Plate Boundary Observatory (PBO), and similar GPS networks worldwide, can be used to monitor the terrestrial water cycle. GPS satellites transmit L-band microwave signals, which are affected by water at Earth's surface. GPS signals take two paths: (1) the "direct" signal travels from the satellite to the antenna; (2) the "reflected" signal interacts with the Earth's surface before travelling to the antenna. The direct signal is used by geophysicists to measure position of the antenna, while the effects of reflected signals are generally ignored. Recently, our group has developed a technique to retrieve terrestrial water cycle variables from GPS reflections. The sensing footprint is intermediate in scale between in situ and remote sensing observations. Soil moisture, snow depth, and an index of vegetation water content are estimated from data collected at over 400 PBO sites. The products are updated daily and are available online. This presentation provides a description of the soil moisture product. Near-surface soil moisture is estimated at more than 100 sites in the PBO H2O network. At each site, a geodetic-quality GPS antenna records the interference pattern between the direct and ground-reflected GPS signals in signal-to-noise ratio (SNR) interferograms. The ground-reflected GPS signal is altered by changes in the permittivity of the ground surface, which is primarily a function of its water content. Temporal changes in the SNR interferogram, primarily its phase, are indicative of changes in soil moisture. SNR phase data are converted to soil moisture using relationships determined using an electrodynamic model. Soil moisture is not retrieved when there is snow or significant vegetation (> ~1 kg m-2 of vegetation water), as both affect SNR phase. When there is moderate vegetation, a correction is applied to the phase data before conversion to soil moisture. The effect of vegetation on SNR phase and the exact relationship between SNR

  14. Integrating Microwave and Optical Data for Monitoring Soil Moisture

    NASA Astrophysics Data System (ADS)

    Morgan, R. S.; Abd El-Hady, M.; Rahim, I. S.; Silva, J.; Berg, A.

    2016-08-01

    In arid regions, such as Egypt, irrigation is the main source of water consumption and freshwater resources are getting scarcer. Therefore, the development of an appropriate irrigation water practices becomes a necessity. Soil moisture, in particular, plays a key role in any efficient water use strategy for agriculture. This study aims at suggesting a protocol for processing microwave data (Sentinel-1) supported by optical data (Landsat 8) with and without ancillary data and utilizing Artificial Neural Network (ANN) to provide repeatable, reliable and accurate estimation of soil moisture content and at a practical interval. The results of this study suggested two approaches for soil moisture predictions using Sentienl-1 data. The first approach depended totally on remote sensing data with a correlation of 0.76. The second approach is more suitable when accurate detailed field survey of soil field capacity is available and reached a correlation of about 0.98.

  15. Comparing AMSR-E soil moisture estimates to the extended record of the U.S. Climate Reference Network (USCRN)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture plays an integral role in various aspects ranging from multi-scale hydrologic modeling to agricultural decision analysis to multi-scale hydrologic modeling, from climate change assessments to drought prediction and prevention. The broad availability of soil moisture estimates has only...

  16. Soil Moisture Prediction in the Soil, Vegetation and Snow (SVS) Scheme

    NASA Astrophysics Data System (ADS)

    Alavi, Nasim; Bélair, Stéphane; Fortin, Vincent; Zhang, Shunli; Husain, Syed; Carrera, Marco; Abrahamowicz, Maria

    2016-04-01

    A new land surface scheme has been developed at Environment of Canada to provide surface fluxes of momentum, heat and moisture for the Global Environmental Multiscale (GEM) atmospheric model. In this study, the performance of the soil, vegetation and snow (SVS) scheme in estimating surface and root-zone soil moisture is evaluated against the ISBA (Interactions between Surface, Biosphere, and Atmosphere) scheme currently used operationally within GEM for numerical weather prediction. In addition, the sensitivity of SVS soil moisture results to soil texture and vegetation data sources (type and fractional coverage) has been explored. The performance of SVS and ISBA was assessed against a large set of in situ as well as brightness temperature data from the Soil Moisture and Ocean Salinity (SMOS) satellite over North America. The results indicate that SVS estimates the time evolution of soil moisture more accurately, and compared to ISBA results in higher correlations with observations and reduced errors. The sensitivity tests carried out during this study revealed that SVS soil moisture results are not affected significantly by the soil texture data from different sources. The vegetation data source, however, has a major impact on the soil moisture results predicted by SVS, and accurate specification of vegetation characteristics is crucial for accurate soil moisture prediction.

  17. Rainfall estimation from soil moisture data: crash test for SM2RAIN algorithm

    NASA Astrophysics Data System (ADS)

    Brocca, Luca; Albergel, Clement; Massari, Christian; Ciabatta, Luca; Moramarco, Tommaso; de Rosnay, Patricia

    2015-04-01

    mean square differences and categorical scores were used to evaluate the goodness of the results. This analysis wants to draw global picture of the performance of SM2RAIN algorithm in absence of errors in soil moisture and rainfall data. First preliminary results over Europe have shown that SM2RAIN performs particularly well over southern Europe (e.g., Spain, Italy and Greece) while its performances diminish by moving towards Northern latitudes (Scandinavia) and over Alps. The results on a global scale will be shown and discussed at the conference session. REFERENCES Brocca, L., Melone, F., Moramarco, T., Wagner, W. (2013). A new method for rainfall estimation through soil moisture observations. Geophysical Research Letters, 40(5), 853-858. Brocca, L., Ciabatta, L., Massari, C., Moramarco, T., Hahn, S., Hasenauer, S., Kidd, R., Dorigo, W., Wagner, W., Levizzani, V. (2014). Soil as a natural rain gauge: estimating global rainfall from satellite soil moisture data. Journal of Geophysical Research, 119(9), 5128-5141. Chen F, Crow WT, Ryu D. (2014) Dual forcing and state correction via soil moisture assimilation for improved rainfall-runoff modeling. J Hydrometeor, 15, 1832-1848. Crow, W.T., van den Berg, M.J., Huffman, G.J., Pellarin, T. (2011). Correcting rainfall using satellite-based surface soil moisture retrievals: the soil moisture analysis rainfall tool (SMART). Water Resour Res, 47, W08521. Dee, D. P.,et al. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. Roy. Meteorol. Soc., 137, 553-597 Massari, C., Brocca, L., Moramarco, T., Tramblay, Y., Didon Lescot, J.-F. (2014). Potential of soil moisture observations in flood modelling: estimating initial conditions and correcting rainfall. Advances in Water Resources, 74, 44-53.

  18. Soil Moisture Sensing Using Reflected GPS Signals: Description of the GPS Soil Moisture Product.

    NASA Astrophysics Data System (ADS)

    Larson, Kristine; Small, Eric; Chew, Clara

    2015-04-01

    As first demonstrated by the GPS reflections group in 2008, data from GPS networks can be used to monitor multiple parameters of the terrestrial water cycle. The GPS L-band signals take two paths: (1) the "direct" signal travels from the satellite to the antenna, which is typically located 2-3 meters above the ground; (2) the reflected signal interacts with the Earth's surface before traveling to the antenna. The direct signal is used by geophysicists and surveyors to measure the position of the antenna, while the effects of reflected signals are a source of error. If one focuses on the reflected signal rather than the positioning observables, one has a method that is sensitive to surface soil moisture (top 5 cm), vegetation water content, and snow depth. This method - known as GPS Interferometric Reflectometry (GPS-IR) - has a footprint of ~1000 m2 for most GPS sites. This is intermediate in scale to most in situ and satellite observations. A significant advantage of GPS-IR is that data from existing GPS networks can be used without any changes to the instrumentation. This means that there is a new source of cost-effective instrumentation for satellite validation and climate studies. This presentation will provide an overview of the GPS-IR methodology with an emphasis on the soil moisture product. GPS water cycle products are currently produced on a daily basis for a network of ~500 sites in the western United States; results are freely available at http://xenon.colorado.edu/portal. Plans to expand the GPS-IR method to the network of international GPS sites will also be discussed.

  19. SMOS/SMAP Synergy for SMAP Level 2 Soil Moisture Algorithm Evaluation

    NASA Technical Reports Server (NTRS)

    Bindlish, Rajat; Jackson, Thomas J.; Zhao, Tianjie; Cosh, Michael; Chan, Steven; O'Neill, Peggy; Njoku, Eni; Colliander, Andreas; Kerr, Yann

    2011-01-01

    Soil Moisture Active Passive (SMAP) satellite has been proposed to provide global measurements of soil moisture and land freeze/thaw state at 10 km and 3 km resolutions, respectively. SMAP would also provide a radiometer-only soil moisture product at 40-km spatial resolution. This product and the supporting brightness temperature observations are common to both SMAP and European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission. As a result, there are opportunities for synergies between the two missions. These include exploiting the data for calibration and validation and establishing longer term L-band brightness temperature and derived soil moisture products. In this investigation we will be using SMOS brightness temperature, ancillary data, and soil moisture products to develop and evaluate a candidate SMAP L2 passive soil moisture retrieval algorithm. This work will begin with evaluations based on the SMOS product grids and ancillary data sets and transition to those that will be used by SMAP. An important step in this analysis is reprocessing the multiple incidence angle observations provided by SMOS to a global brightness temperature product that simulates the constant 40 degree incidence angle observations that SMAP will provide. The reprocessed brightness temperature data provide a basis for evaluating different SMAP algorithm alternatives. Several algorithms are being considered for the SMAP radiometer-only soil moisture retrieval. In this first phase, we utilized only the Single Channel Algorithm (SCA), which is based on the radiative transfer equation and uses the channel that is most sensitive to soil moisture (H-pol). Brightness temperature is corrected sequentially for the effects of temperature, vegetation, roughness (dynamic ancillary data sets) and soil texture (static ancillary data set). European Centre for Medium-Range Weather Forecasts (ECMWF) estimates of soil temperature for the top layer (as provided as part of the SMOS

  20. Why is SMOS Drier than the South Fork In-situ Soil Moisture Network?

    NASA Astrophysics Data System (ADS)

    Walker, V. A.; Hornbuckle, B. K.; Cosh, M. H.

    2014-12-01

    Global maps of near-surface soil moisture are currently being produced by the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) satellite mission at 40 km. Within the next few months NASA's Soil Moisture Active Passive (SMAP) satellite mission will begin producing observations of near-surface soil moisture at 10 km. Near-surface soil moisture is the water content of the first 3 to 5 cm of the soil. Observations of near-surface soil moisture are expected to improve weather and climate forecasts. These satellite observations must be validated. We define validation as determining the space/time statistical characteristics of the uncertainty. A standard that has been used for satellite validation is in-situ measurements of near-surface soil moisture made with a network of sensors spanning the extent of a satellite footprint. Such a network of sensors has been established in the South Fork of the Iowa River in Central Iowa by the USDA ARS. Our analysis of data in 2013 indicates that SMOS has a dry bias: SMOS near-surface soil moisture is between 0.05 to 0.10 m^3m^{-3} lower than what is observed by the South Fork network. A dry bias in SMOS observations has also been observed in other regions of North America. There are many possible explanations for this difference: underestimation of vegetation, or soil surface roughness; undetected radio frequency interference (RFI); a retrieval model that is not appropriate for agricultural areas; or the use of an incorrect surface temperature in the retrieval process. We will begin our investigation by testing this last possibility: that SMOS is using a surface temperature that is too low which results in a drier soil moisture that compensates for this error. We will present a comparison of surface temperatures from the European Center for Medium-range Weather Forecasting (ECMWF) used to retrieve near-surface soil moisture from SMOS measurements of brightness temperature, and surface temperatures in the South Fork

  1. Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models

    NASA Technical Reports Server (NTRS)

    Robock, Alan; Vinnikov, Konstantin YA.; Schlosser, C. Adam; Speranskaya, Nina A.; Xue, Yongkang

    1995-01-01

    Soil moisture observations in sites with natural vegetation were made for several decades in the former Soviet Union at hundreds of stations. In this paper, the authors use data from six of these stations from different climatic regimes, along with ancillary meteorological and actinometric data, to demonstrate a method to validate soil moisture simulations with biosphere and bucket models. Some early and current general circulation models (GCMs) use bucket models for soil hydrology calculations. More recently, the Simple Biosphere Model (SiB) was developed to incorporate the effects of vegetation on fluxes of moisture, momentum, and energy at the earth's surface into soil hydrology models. Until now, the bucket and SiB have been verified by comparison with actual soil moisture data only on a limited basis. In this study, a Simplified SiB (SSiB) soil hydrology model and a 15-cm bucket model are forced by observed meteorological and actinometric data every 3 h for 6-yr simulations at the six stations. The model calculations of soil moisture are compared to observations of soil moisture, literally 'ground truth,' snow cover, surface albedo, and net radiation, and with each other. For three of the stations, the SSiB and 15-cm bucket models produce good simulations of seasonal cycles and interannual variations of soil moisture. For the other three stations, there are large errors in the simulations by both models. Inconsistencies in specification of field capacity may be partly responsible. There is no evidence that the SSiB simulations are superior in simulating soil moisture variations. In fact, the models are quite similar since SSiB implicitly has a bucket embedded in it. One of the main differences between the models is in the treatment of runoff due to melting snow in the spring -- SSiB incorrectly puts all the snowmelt into runoff. While producing similar soil moisture simulations, the models produce very different surface latent and sensible heat fluxes, which

  2. Spatiotemporal analyses of soil moisture from point to footprint scale in two different hydroclimatic regions

    NASA Astrophysics Data System (ADS)

    Joshi, Champa; Mohanty, Binayak P.; Jacobs, Jennifer M.; Ines, Amor V. M.

    2011-01-01

    This paper presents time stability analyses of soil moisture at different spatial measurement support scales (point scale and airborne remote sensing (RS) footprint scale 800 m × 800 m) in two different hydroclimatic regions. The data used in the analyses consist of in situ and passive microwave remotely sensed soil moisture data from the Southern Great Plains Hydrology Experiments 1997 and 1999 (SGP97 and SGP99) conducted in the Little Washita (LW) watershed, Oklahoma, and the Soil Moisture Experiments 2002 and 2005 (SMEX02 and SMEX05) in the Walnut Creek (WC) watershed, Iowa. Results show that in both the regions soil properties (i.e., percent silt, percent sand, and soil texture) and topography (elevation and slope) are significant physical controls jointly affecting the spatiotemporal evolution and time stability of soil moisture at both point and footprint scales. In Iowa, using point-scale soil moisture measurements, the WC11 field was found to be more time stable (TS) than the WC12 field. The common TS points using data across the 3 year period (2002-2005) were mostly located at moderate to high elevations in both the fields. Furthermore, the soil texture at these locations consists of either loam or clay loam soil. Drainage features and cropping practices also affected the field-scale soil moisture variability in the WC fields. In Oklahoma, the field having a flat topography (LW21) showed the worst TS features compared to the fields having gently rolling topography (LW03 and LW13). The LW13 field (silt loam) exhibited better time stability than the LW03 field (sandy loam) and the LW21 field (silt loam). At the RS footprint scale, in Iowa, the analysis of variance (ANOVA) tests show that the percent clay and percent sand are better able to discern the TS features of the footprints compared to the soil texture. The best soil indicator of soil moisture time stability is the loam soil texture. Furthermore, the hilltops (slope ˜0%-0.45%) exhibited the best TS

  3. Mapping Spatial Moisture Content of Unsaturated Agricultural Soils with Ground-Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Shamir, O.; Goldshleger, N.; Basson, U.; Reshef, M.

    2016-06-01

    Soil subsurface moisture content, especially in the root zone, is important for evaluation the influence of soil moisture to agricultural crops. Conservative monitoring by point-measurement methods is time-consuming and expensive. In this paper we represent an active remote-sensing tool for subsurface spatial imaging and analysis of electromagnetic physical properties, mostly water content, by ground-penetrating radar (GPR) reflection. Combined with laboratory methods, this technique enables real-time and highly accurate evaluations of soils' physical qualities in the field. To calculate subsurface moisture content, a model based on the soil texture, porosity, saturation, organic matter and effective electrical conductivity is required. We developed an innovative method that make it possible measures spatial subsurface moisture content up to a depth of 1.5 m in agricultural soils and applied it to two different unsaturated soil types from agricultural fields in Israel: loess soil type (Calcic haploxeralf), common in rural areas of southern Israel with about 30% clay, 30% silt and 40% sand, and hamra soil type (Typic rhodoxeralf), common in rural areas of central Israel with about 10% clay, 5% silt and 85% sand. Combined field and laboratory measurements and model development gave efficient determinations of spatial moisture content in these fields. The environmentally friendly GPR system enabled non-destructive testing. The developed method for measuring moisture content in the laboratory enabled highly accurate interpretation and physical computing. Spatial soil moisture content to 1.5 m depth was determined with 1-5% accuracy, making our method useful for the design of irrigation plans for different interfaces.

  4. Physically plausible prescription of land surface model soil moisture

    NASA Astrophysics Data System (ADS)

    Hauser, Mathias; Orth, René; Thiery, Wim; Seneviratne, Sonia

    2016-04-01

    Land surface hydrology is an important control of surface weather and climate, especially under extreme dry or wet conditions where it can amplify heat waves or floods, respectively. Prescribing soil moisture in land surface models is a valuable technique to investigate this link between hydrology and climate. It has been used for example to assess the influence of soil moisture on temperature variability, mean and extremes (Seneviratne et al. 2006, 2013, Lorenz et al., 2015). However, perturbing the soil moisture content artificially can lead to a violation of the energy and water balances. Here we present a new method for prescribing soil moisture which ensures water and energy balance closure by using only water from runoff and a reservoir term. If water is available, the method prevents soil moisture decrease below climatological values. Results from simulations with the Community Land Model (CLM) indicate that our new method allows to avoid soil moisture deficits in many regions of the world. We show the influence of the irrigation-supported soil moisture content on mean and extreme temperatures and contrast our findings with that of earlier studies. Additionally, we will assess how long into the 21st century the new method will be able to maintain present-day climatological soil moisture levels for different regions. Lorenz, R., Argüeso, D., Donat, M.G., Pitman, A.J., den Hurk, B.V., Berg, A., Lawrence, D.M., Chéruy, F., Ducharne, A., Hagemann, S. and Meier, A., 2015. Influence of land-atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble. Journal of Geophysical Research: Atmospheres. Seneviratne, S.I., Lüthi, D., Litschi, M. and Schär, C., 2006. Land-atmosphere coupling and climate change in Europe. Nature, 443(7108), pp.205-209. Seneviratne, S.I., Wilhelm, M., Stanelle, T., Hurk, B., Hagemann, S., Berg, A., Cheruy, F., Higgins, M.E., Meier, A., Brovkin, V. and Claussen, M., 2013. Impact of soil moisture

  5. Remote sensing of soil moisture with microwave radiometers

    NASA Technical Reports Server (NTRS)

    Schmugge, T.; Wilheit, T.; Webster, W., Jr.; Gloerson, P.

    1976-01-01

    Results are presented that were derived from measurements made by microwave radiometers during the March 1972 and February 1973 flights of National Aeronautics and Space Administration (NASA) Convair-9900 aircraft over agricultural test sites in the southwestern part of United States. The purpose of the missions was to study the use of microwave radiometers for the remote sensing of soil moisture. The microwave radiometers covered the 0.8- to 21-cm wavelength range. The results show a good linear correlation between the observed microwave brightness temperature and moisture content of the 0- to 1-cm layer of the soil. The results at the largest wavelength (21 cm) show the greatest sensitivity to soil moisture variations and indicate the possibility of sensing these variations through a vegetative canopy. The effect of soil texture on the emission from the soil was also studied and it was found that this effect can be compensated for by expressing soil moisture as a percent of field capacity for the soil. The results were compared with calculations based on a radiative transfer model for layered dielectrics and the agreement is very good at the longer wavelengths. At the shorter wavelengths, surface roughness effects are larger and the agreement becomes poorer.

  6. Longwall Coal Mining and Soil Moisture Changes in Southwestern Pennsylvania

    NASA Astrophysics Data System (ADS)

    Pfeil-McCullough, E. K.; Bain, D.

    2014-12-01

    Subsidence from longwall coal mining impacts the surface and sub-surface hydrology in overlying areas. During longwall mining, coal is completely removed in large rectangular panels and the overlying rock collapses into the void. Though the hydrologic effects of longwall mining subsidence have been studied in arid systems, in humid-temperate regions these effects are not well understood. In particular, it is not clear how longwall mining will impact soil moisture patterns. Utilizing simple soil water modeling frameworks (ArcGIS-based Water Balance Toolbox) and the locations of recent long wall mining, potential impacts on soil water availability were predicted at the landscape scale. For example, in areas overlying panel edges, soil available water capacities (AWC) were altered based on several scenarios of AWC change and interactions between aspect driven soil moisture regimes and the mining perturbation were explored over a five year period (2008-2013). The regular patterns of soil moisture arising from insolation contrasts, when interacting with broad-scale longwall mining impacts, are predicted to cause complicated patterns of soil moisture change. These predictions serve as a means to guide field campaigns necessary to understand longwall mining's hydrologic impacts in wetter climates

  7. Study Variability of Seasonal Soil Moisture in Ensemble of CMIP5 Models Over South Asia During 1950-2005

    NASA Astrophysics Data System (ADS)

    Fahim, A. M.; Shen, R.; Yue, Z.; Di, W.; Mushtaq Shah, S.

    2015-12-01

    Moisture in the upper most layer of soil column from 14 different models under Coupled Model Intercomparison Project Phase-5 (CMIP5) project were analyzed for four seasons of the year. Aim of this study was to explore variability in soil moisture over south Asia using multi model ensemble and relationship between summer rainfall and soil moisture for spring and summer season. GLDAS (Global Land Data Assimilation System) dataset set was used for comparing CMIP5 ensemble mean soil moisture in different season. Ensemble mean represents soil moisture well in accordance with the geographical features; prominent arid regions are indicated profoundly. Empirical Orthogonal Function (EOF) analysis was applied to study the variability. First component of EOF explains 17%, 16%, 11% and 11% variability for spring, summer, autumn and winter season respectively. Analysis reveal increasing trend in soil moisture over most parts of Afghanistan, Central and north western parts of Pakistan, northern India and eastern to south eastern parts of China, in spring season. During summer, south western part of India exhibits highest negative trend while rest of the study area show minute trend (increasing or decreasing). In autumn, south west of India is under highest negative loadings. During winter season, north western parts of study area show decreasing trend. Summer rainfall has very week (negative or positive) spatial correlation, with spring soil moisture, while possess higher correlation with summer soil moisture. Our studies have significant contribution to understand complex nature of land - atmosphere interactions, as soil moisture prediction plays an important role in the cycle of sink and source of many air pollutants. Next level of research should be on filling the gaps between accurately measuring the soil moisture using satellite remote sensing and land surface modelling. Impact of soil moisture in tracking down different types of pollutant will also be studied.

  8. An evaluation of the spatial resolution of soil moisture information

    NASA Technical Reports Server (NTRS)

    Hardy, K. R.; Cohen, S. H.; Rogers, L. K.; Burke, H. H. K.; Leupold, R. C.; Smallwood, M. D.

    1981-01-01

    Rainfall-amount patterns in the central regions of the U.S. were assessed. The spatial scales of surface features and their corresponding microwave responses in the mid western U.S. were investigated. The usefulness for U.S. government agencies of soil moisture information at scales of 10 km and 1 km. was ascertained. From an investigation of 494 storms, it was found that the rainfall resulting from the passage of most types of storms produces patterns which can be resolved on a 10 km scale. The land features causing the greatest problem in the sensing of soil moisture over large agricultural areas with a radiometer are bodies of water. Over the mid-western portions of the U.S., water occupies less than 2% of the total area, the consequently, the water bodies will not have a significant impact on the mapping of soil moisture. Over most of the areas, measurements at a 10-km resolution would adequately define the distribution of soil moisture. Crop yield models and hydrological models would give improved results if soil moisture information at scales of 10 km was available.

  9. Soil moisture and strength index for earthwork construction quality control

    NASA Astrophysics Data System (ADS)

    Sawangsuriya, A.; Wachiraporn, S.; Sramoon, W.

    2015-09-01

    This paper presents the implementation of soil moisture and strength index measurements for earthwork construction quality control as well as a link between the in situ testing and structural property of earthen materials. Use of the convenient Dynamic Cone Penetrometer (DCP) in conjunction with conventional moisture-density measurements enhances quality control by achieving acceptable level of compaction, more uniform structural properties, and aids developing a controlled design parameter during the earthwork construction. Soil strength in term of DCP index normalized by the deviation of compaction moisture content from the optimum moisture content is proposed as performance criteria for a variety of engineered earth fills and special engineering assessment, prevention, and mitigation of geohazards e.g. earthen flood defense embankments.

  10. Small-scale soil moisture determination with GPR

    NASA Astrophysics Data System (ADS)

    Igel, Jan; Preetz, Holger

    2010-05-01

    The knowledge of topsoil moisture distribution is an important input for modelling water flow and evapotranspiration which are essential processes in hydrology, meteorology, and agriculture. All these processes involve non-linear effects and thus the small-scale variability of input parameters play an important role. Using smoothed interpolations instead can cause significant biases. Lateral soil moisture distribution can be sensed by different techniques at various scales whereby geophysical methods provide spatial information which closes the gap between point measurements by classical soil scientific methods and measurements on the field or regional scale by remote sensing. Ground-penetrating radar (GPR) can be used to explore soil moisture on the field scale as propagation of electromagnetic waves is correlated to soil water content. By determining the velocity of the ground wave, which is a guided wave travelling along the soil surface, we can sense soil water content. This method has been applied to determine topsoil moisture for several years. We present a new groundwave technique which determines the velocity in between two receiving antennas which enables a higher lateral resolution (approx. 10 cm) compared to classical groundwave technique (half meter and more). We present synthetic data from finite-differences (FD) calculations as well as data from a sandbox experiment carried out under controlled conditions to demonstrate the performance of this method. Further, we carried out field measurements on two sites on a sandy soil which is used as grassland. The measurements were carried out in late summer at dry soil conditions. Soil moisture on the first site shows an isotropic pattern with correlation lengths of approx. 35 cm. We think this natural pattern is governed by rout distribution within the soil and the water uptake of vegetation. On the second site, soil moisture distribution shows a regular stripe pattern. As the land has been used as

  11. Evaluation of microwaves soil moisture products based on two years of ground measurements over a Sahelian region.

    NASA Astrophysics Data System (ADS)

    Gruhier, C.; de Rosnay, P.; Kerr, Y.; Kergoat, L.

    2008-12-01

    Microwaves remote sensing is a promising approach to measure soil moisture values and variations. Soil moisture is a very important variable which strongly interacts with soil-vegetation-atmosphere fluxes. This is particularly true in Sahelian region with monsoon climatic system. From active or passive microwaves measurements of backscatter coefficients or brightness temperatures, soil moisture products are derived. Soil moisture products evaluation is essential to improve algorithm and inform users on the products quality (eg quality of soil moisture products variability or absolutes). This study aims to evaluate and to intercompare five soil moisture products from active and passive microwaves sensors. The study is performed for 2005-2006, for a 1 x 3 degrees longitude-latitude window located in Sahel (14-17N and 0-1W). In addition an accurate validation is conducted for specific locations based on ground measurements available in this region. It uses the Gourma (Mali) soil moisture measurements network installed in the framework of the African Monsoon Multidisciplinary Analysis (AMMA) program. The soil moisture network has been organized in order to validate remotely sensed soil moisture for the future Soil Moisture an Ocean Salinity (SMOS) mission. Three stations located on sandy dune systems have been selected according to their location along the North-South climatic gradient. They provide continuous soil moisture measurements at 15-minute time step and at 5-cm depth for 2005-2006. Five soil moisture products provided by three different sensors are considered. 1) From the Advanced Microwave Scanning Radiometer on Earth Observing System (AMSR-E), two soil moisture products are used: the National Snow and Ice Data Center product and the Amsterdam University product. 2) From the Wind Scatterometer, on European Remote Sensing (ERS) satellite, two soil moisture products are evaluated: the Vienna University of Technology and the Zribi et al 2007 products. 3) The

  12. Impact of the soil hydrology scheme on simulated soil moisture memory in a GCM

    NASA Astrophysics Data System (ADS)

    Hagemann, Stefan; Stacke, Tobias

    2013-04-01

    Soil moisture-atmosphere feedback effects play an important role in several regions of the globe. For some of these regions, soil moisture memory may contribute significantly to the development of the regional climate. Identifying those regions can help to improve predictability in seasonal to decadal climate forecasts. The present study investigates how different setups of the soil hydrology scheme affect soil moisture memory simulated by the global climate model of the Max Planck Institute for Meteorology (MPI-M), ECHAM6/JSBACH. First, the standard setup applied for the CMIP5 exercise is used, in which soil water is represented by a single soil moisture reservoir. Second, a new five soil layer hydrology scheme is utilized where the previous bucket soil moisture now corresponds to the root zone soil moisture. In the standard setup, transpiration may access the whole soil moisture that is exceeding the wilting point over vegetated areas. However, in the five layer scheme, soil water below the root zone cannot be accessed by transpiration directly, but only be transported upwards into the root zone by diffusion following the Richard's equation. Thus, this below the root zone, which is not present in the standard setup, can act as buffer in the transition between wet and dry periods. A second notable difference between the two setups is the formulation of bare soil evaporation. In the standard setup, it may only occur if the whole soil moisture bucket is almost completely saturated, while in the new setup, it depends only on the saturation of the upper most soil layer. As the latter is much thinner than the root zone (bucket), bare soil evaporation can occur more frequently, especially after rainfall events. For the second setup, two further variants are considered: one where the bare soil evaporation was modified and one where a new parameter dataset of soil water holding capacities was used. Soil moisture memory of the different setups will be analysed from global

  13. Soil Moisture Time Stability in Two Hydro-climatic Regions

    NASA Astrophysics Data System (ADS)

    Mohanty, B. P.; Joshi, C.; Jacobs, J. M.

    2009-12-01

    In this study we present time stability analyses of soil moisture at different spatial measurement support scales (point-scale and airborne remote sensing footprint-scale 800 m X 800 m) in two different hydro-climatic regions. The data used in the analyses consist of in-situ and passive microwave remotely sensed soil moisture data from Southern Great Plains hydrology experiments 1997 and 1999 (SGP97 and SGP99) conducted in Little Washita (LW) watershed, Oklahoma, and Soil Moisture Experiments 2002 and 2005 (SMEX02 and SMEX05) in Walnut Creek (WC) watershed, Iowa. Results show that in both the regions soil properties (i.e., percentage clay, percentage sand, and soil texture), and topography (elevation and slope) are significant physical controls jointly affecting the spatio-temporal evolution and time stability of soil moisture at both point- and footprint-scale. In Iowa, using point scale soil moisture measurements, WC11 field having higher %clay and lower %sand content was found to be more time stable than the WC12 field. The common time stable points using data across the 3-year period (2002-2005) were mostly located at moderate to high elevations in both the fields. Drainage features and cropping practices also affected the field-scale soil moisture variability in the WC fields. At the remote sensing footprint-scale, the ANOVA tests show that the percentage clay and percentage sand are better able to discern the time stable features of the footprints compared to the soil texture in Iowa. Further, the footprints with steep slopes exhibited the best time stable characteristics in Iowa. On the other hand, in Oklahoma, ANOVA results show that the footprints with sandy clay and loam soil texture are better indicators of the time stability phenomena. In terms of the hill slope position, depressions (0-0.93%) followed by mild slopes (0.93-1.85%) are the best indicators of time stable footprints. Also, at both point- and footprint-scale in both the regions, land use

  14. Soil Moisture-Atmosphere Feedbacks on Atmospheric Tracers: The Effects of Soil Moisture on Precipitation and Near-Surface Chemistry

    NASA Astrophysics Data System (ADS)

    Tawfik, Ahmed B.

    The atmospheric component is described by rapid fluctuations in typical state variables, such as temperature and water vapor, on timescales of hours to days and the land component evolves on daily to yearly timescales. This dissertation examines the connection between soil moisture and atmospheric tracers under varying degrees of soil moisture-atmosphere coupling. Land-atmosphere coupling is defined over the United States using a regional climate model. A newly examined soil moisture-precipitation feedback is identified for winter months extending the previous summer feedback to colder temperature climates. This feedback is driven by the freezing and thawing of soil moisture, leading to coupled land-atmosphere conditions near the freezing line. Soil moisture can also affect the composition of the troposphere through modifying biogenic emissions of isoprene (C5H8). A novel first-order Taylor series decomposition indicates that isoprene emissions are jointly driven by temperature and soil moisture in models. These compounds are important precursors for ozone formation, an air pollutant and a short-lived forcing agent for climate. A mechanistic description of commonly observed relationships between ground-level ozone and meteorology is presented using the concept of soil moisture-temperature coupling regimes. The extent of surface drying was found to be a better predictor of ozone concentrations than temperature or humidity for the Eastern U.S. This relationship is evaluated in a coupled regional chemistry-climate model under several land-atmosphere coupling and isoprene emissions cases. The coupled chemistry-climate model can reproduce the observed soil moisture-temperature coupling pattern, yet modeled ozone is insensitive to changes in meteorology due to the balance between isoprene and the primary atmospheric oxidant, the hydroxyl radical (OH). Overall, this work highlights the importance of soil moisture-atmosphere coupling for previously neglected cold climate

  15. Results of soil moisture flights during April 1974

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Blanchard, B. J.; Burke, W. J.; Paris, J. F.; Swang, J. R.

    1976-01-01

    The results presented here are derived from measurements made during the April 5 and 6, 1974 flights of the NASA P-3A aircraft over the Phoenix, Arizona agricultural test site. The purpose of the mission was to study the use of microwave techniques for the remote sensing of soil moisture. These results include infrared (10-to 12 micrometers) 2.8-cm and 21-cm brightness temperatures for approximately 90 bare fields. These brightness temperatures are compared with surface measurements of the soil moisture made at the time of the overflights. These data indicate that the combination of the sum and difference of the vertically and the horizontally polarized brightness temperatures yield information on both the soil moisture and surface roughness conditions.

  16. BOREAS HYD-6 Ground Gravimetric Soil Moisture Data

    NASA Technical Reports Server (NTRS)

    Carroll, Thomas; Knapp, David E. (Editor); Hall, Forrest G. (Editor); Peck, Eugene L.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-6 team collected several data sets related to the moisture content of soil and overlying humus layers. This data set contains percent soil moisture ground measurements. These data were collected on the ground along the various flight lines flown in the Southern Study Area (SSA) and Northern Study Area (NSA) during 1994 by the gamma ray instrument. The data are available in tabular ASCII files. The HYD-06 ground gravimetric soil moisture data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  17. Spatial Estimation of Soil Moisture Using Synthetic Aperture Radar in Alaska

    NASA Astrophysics Data System (ADS)

    Meade, N. G.; Hinzman, L. D.; Kane, D. L.

    1999-01-01

    A spatially distributed Model of Arctic Thermal and Hydrologic processes (MATH) has been developed. One of the attributes of this model is the spatial and temporal prediction of soil moisture in the active layer. The spatially distributed output from this model required verification data obtained through remote sensing to assess performance at the watershed scale independently. Therefore, a neural network was trained to predict soil moisture contents near the ground surface. The input to train the neural network is synthetic aperture radar (SAR) pixel value, and field measurements of soil moisture, and vegetation, which were used as a surrogate for surface roughness. Once the network was trained, soil moisture predictions were made based on SAR pixel value and vegetation. These results were then used for comparison with results from the hydrologic model. The quality of neural network input was less than anticipated. Our digital elevation model (DEM) was not of high enough resolution to allow exact co-registration with soil moisture measurements; therefore, the statistical correlations were not as good as hoped. However, the spatial pattern of the SAR derived soil moisture contents compares favorably with the hydrologic MATH model results. Primary surface parameters that effect SAR include topography, surface roughness, vegetation cover and soil texture. Single parameters that are considered to influence SAR include incident angle of the radar, polarization of the radiation, signal strength and returning signal integration, to name a few. These factors influence the reflectance, but if one adequately quantifies the influences of terrain and roughness, it is considered possible to extract information on soil moisture from SAR imagery analysis and in turn use SAR imagery to validate hydrologic models

  18. The role of soil moisture on the coevolution of soil and vegetation in mountain grasslands

    NASA Astrophysics Data System (ADS)

    Bertoldi, Giacomo; Claudia, Notarnicola; Brenner, Johannes; Castelli, Mariapina; Greifeneder, Felix; Niedrist, Georg; Seeber, Julia; Tappeiner, Ulrike

    2016-04-01

    One of the key variables controlling the organization of vegetation and the coevolution of soils and landforms is soil moisture content (SMC). For this reason, understanding the controls on the spatial and temporal patterns of SMC is essential to predict how perturbations in vegetation and climate will affect mountain ecosystem functioning. In this contribution, we focus on the dynamic of surface SMC of water-limited alpine grasslands in the Long Term Ecological Research area Mazia Valley in the European Alps. We analyze the impacts of different land managements (meadows versus pastures) and its relationships with climate and topography. The area has been equipped since 2009 with a network of more than 20 stations, measuring SMC and climatic variables and with two eddy-covariance stations, measuring surface fluxes over meadows and pastures. Monthly biomass production data have been collected and detailed soil and spatial soil moisture surveys are available. Moreover, high spatial resolution SMC maps have been derived from satellites Synthetic Aperture Radar Radar (SAR) images (Sentinel 1 and RADARSAT2 images). Both ground surveys and remote sensing observations show persistent landscape-level patterns. Meadows, in general located in flatter areas, tend to be wetter. This leads to higher vegetation productivity and to the development of soils with higher water holding capacity, thus to a positive feedback on SMC. In contrast, pastures, located on steeper slopes with lower vegetation density and higher soil erosion, tend to be drier, leading to a negative feedback on SMC and soil development. This co-evolution of land cover and SMC leads therefore to persistent spatial patterns. In order to understand quantitatively such linked interactions, a sensitivity analysis has been performed with the GEOtop hydrological model. Results show how both abiotic (mainly slope and elevation) and anthropogenic (irrigation and soil management) factors exert a significant control on

  19. Spatial Variation of Soil Type and Soil Moisture in the Regional Atmospheric Modeling System

    SciTech Connect

    Buckley, R.

    2001-06-27

    Soil characteristics (texture and moisture) are typically assumed to be initially constant when performing simulations with the Regional Atmospheric Modeling System (RAMS). Soil texture is spatially homogeneous and time-independent, while soil moisture is often spatially homogeneous initially, but time-dependent. This report discusses the conversion of a global data set of Food and Agriculture Organization (FAO) soil types to RAMS soil texture and the subsequent modifications required in RAMS to ingest this information. Spatial variations in initial soil moisture obtained from the National Center for Environmental Predictions (NCEP) large-scale models are also introduced. Comparisons involving simulations over the southeastern United States for two different time periods, one during warmer, more humid summer conditions, and one during cooler, dryer winter conditions, reveals differences in surface conditions related to increases or decreases in near-surface atmospheric moisture con tent as a result of different soil properties. Three separate simulation types were considered. The base case assumed spatially homogeneous soil texture and initial soil moisture. The second case assumed variable soil texture and constant initial soil moisture, while the third case allowed for both variable soil texture and initial soil moisture. The simulation domain was further divided into four geographically distinct regions. It is concluded there is a more dramatic impact on thermodynamic variables (surface temperature and dewpoint) than on surface winds, and a more pronounced variability in results during the summer period. While no obvious trends in surface winds or dewpoint temperature were found relative to observations covering all regions and times, improvement in surface temperatures in most regions and time periods was generally seen with the incorporation of variable soil texture and initial soil moisture.

  20. Evaluation of a Soil Moisture Data Assimilation System Over the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Bolten, J. D.; Crow, W. T.; Zhan, X.; Reynolds, C. A.; Jackson, T. J.

    2008-12-01

    A data assimilation system has been designed to integrate surface soil moisture estimates from the EOS Advanced Microwave Scanning Radiometer (AMSR-E) with an online soil moisture model used by the USDA Foreign Agriculture Service for global crop estimation. USDA's International Production Assessment Division (IPAD) of the Office of Global Analysis (OGA) ingests global soil moisture within a Crop Assessment Data Retrieval and Evaluation (CADRE) Decision Support System (DSS) to provide nowcasts of crop conditions and agricultural-drought. This information is primarily used to derive mid-season crop yield estimates for the improvement of foreign market access for U.S. agricultural products. The CADRE is forced by daily meteorological observations (precipitation and temperature) provided by the Air Force Weather Agency (AFWA) and World Meteorological Organization (WMO). The integration of AMSR-E observations into the two-layer soil moisture model employed by IPAD can potentially enhance the reliability of the CADRE soil moisture estimates due to AMSR-E's improved repeat time and greater spatial coverage. Assimilation of the AMSR-E soil moisture estimates is accomplished using a 1-D Ensemble Kalman filter (EnKF) at daily time steps. A diagnostic calibration of the filter is performed using innovation statistics by accurately weighting the filter observation and modeling errors for three ranges of vegetation biomass density estimated using historical data from the Advanced Very High Resolution Radiometer (AVHRR). Assessment of the AMSR-E assimilation has been completed for a five year duration over the conterminous United States. To evaluate the ability of the filter to compensate for incorrect precipitation forcing into the model, a data denial approach is employed by comparing soil moisture results obtained from separate model simulations forced with precipitation products of varying uncertainty. An analysis of surface and root-zone anomalies is presented for each

  1. Soil Moisture Extremes Observed by METOP ASCAT: Was 2012 an Exceptional Year?

    NASA Astrophysics Data System (ADS)

    Wagner, Wolfgang; Paulik, Christoph; Hahn, Sebastian; Melzer, Thomas; Parinussa, Robert; de Jeu, Richard; Dorigo, Wouter; Chung, Daniel; Enenkel, Markus

    2013-04-01

    In summer 2012 the international press reported widely about the severe drought that had befallen large parts of the United States. Yet, the US drought was only one of several major droughts that occurred in 2012: Southeastern Europe, Central Asia, Brazil, India, Southern Australia and several other regions suffered from similarly dry soil conditions. This raises the question whether 2012 was an exceptionally dry year? In this presentation we will address this question by analyzing global soil moisture patterns as observed by the Advanced Scatterometer (ASCAT) flown on board of the METOP-A satellite. We firstly compare the 2012 ASCAT soil moisture data to all available ASCAT measurements acquired by the instrument since the launch of METOP-A in November 2006. Secondly, we compare the 2012 data to a long-term soil moisture data set derived by merging the ASCAT soil moisture data with other active and passive microwave soil moisture retrievals as described by Liu et al. (2012) and Wagner et al. (2012) (see also http://www.esa-soilmoisture-cci.org/). A first trend analysis of the latter long-term soil moisture data set carried out by Dorigo et al. (2012) has revealed that over the period 1988-2010 significant trends were observed over 27 % of the area covered by the data set, of which 73 % were negative (soil drying) and only 27 % were positive (soil wetting). In this presentation we will show how the inclusion of the years 2011 and 2012 affects the areal extent and strengths of these significant trends. REFERENCES Dorigo, W., R. de Jeu, D. Chung, R. Parinussa, Y. Liu, W. Wagner, D. Fernández-Prieto (2012) Evaluating global trends (1988-2010) in harmonized multi-satellite surface soil moisture, Geophysical Research Letters, 39, L18405, 1-7. Liu, Y.Y., W.A. Dorigo, R.M. Parinussa, R.A.M. de Jeu, W. Wagner, M.F. McCabe, J.P. Evans, A.I.J.M. van Dijk (2012) Trend-preserving blending of passive and active microwave soil moisture retrievals, Remote Sensing of Environment

  2. Soil Moisture Experiments 2004 and 2005 Results and Plans

    NASA Astrophysics Data System (ADS)

    Jackson, T. J.

    2005-05-01

    The Soil Moisture Experiments (SMEX) series of field campaigns was designed to address research priorities of several programs involving satellite remote sensing of surface soil moisture. These include the Advanced Scanning Microwave Radiometer (AMSR) on Aqua, the Windsat on Coriolis, and future missions that include NASAs Hydros, the European Space Agency Soil Moisture Ocean Salinity (SMOS) mission and NPOESS. Algorithms, scaling, technology and land-atmosphere studies have all been addressed in each experiment. Scaling is a key aspect of experiment design because of the spatial differences between ground point observations and satellite footprints. In all of the campaigns aircraft sensors have provided the critical link between these. Different geographic domains have been used to provide diverse conditions for algorithm development and validation and a variety of aircraft instruments have been used to support specific objectives. SMEX04 was conducted in August 2004 in the southwestern U.S. and northern Mexico. It was designed to address satellite footprint heterogeneity. The region has the diverse topography, vegetation and rainfall patterns necessary to address this issue. In addition, SMEX04 was timed to coincide with North American Monsoon Experiment (NAME). A working hypothesis of NAME is that among the land surface antecedent boundary conditions that control the onset and intensity of the precipitation is soil moisture. Surface soil moisture can change dramatically after rain events. A review of SMEX04 and preliminary results will be presented. SMEX05 is being planned to understand what contributions to soil moisture retrieval and mapping may be achieved by using fully polarimetric passive microwave observations. This has not been a focus of land parameter investigations in the past. The Windsat instrument provides these measurements at several frequencies. For SMEX05 an aircraft simulator of Windsat will also be employed. The field campaign will be

  3. Variability of soil moisture memory for wet and dry basins

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammad Mahfuzur; Lu, Minjiao; Kyi, Khin Htay

    2015-04-01

    Soil moisture memory (SMM) is not only important for atmospheric weather/climate forecasting, but may also be useful in flood and drought prediction. Despite their importance, SMM studies are restricted in certain regions due to the scarcity of soil moisture data. To overcome this limitation, this study explains the variability of SMM in wet and dry basins, and shows an alternative way to predict the basin scale SMM using observed precipitation and potential evapotranspiration information only. This study presents the basin average SMM in the form of a timescale that indicates the duration of significant autocorrelations at 95% confidence intervals. The soil moisture autocorrelations were calculated using observed precipitation, potential evapotranspiration, streamflow and soil moisture data sets simulated using the XinAnJiang (XAJ) model, for 26 river basins across the USA. The XAJ model's capability to simulate seasonal cycles (temporal anomalies) of soil moisture was validated against cycles from the observed data set of the Spoon River basin of Illinois State, USA. Based on the validation experience, the XAJ model was thereafter used to simulate soil moisture data for the analysed basins. Basin scale SMM timescale ranges were computed from 11 to 133 days. The SMM timescale is highly influenced by precipitation variability and exhibits strong seasonality. Dry basins tend to show the highest memory during the winter months (December to February) and lowest in late spring (May). In contrast, wet basins have the lowest memory during winter and early spring (December to April) and highest in the late summer and early autumn (July to September). The SMM timescale displayed an exponential relationship with the basin aridity index, with an r2 value of 0.9. This relationship could be a cheap source of basin scale SMM prediction from widely available observed data sets (actual precipitation and potential evapotranspiration), and thus, could afford some knowledge of SMM

  4. Homogeneity of a Global Multisatellite Soil Moisture Climate Data Record

    NASA Technical Reports Server (NTRS)

    Su, Chun-Hsu; Ryu, Dongryeol; Dorigo, Wouter; Zwieback, Simon; Gruber, Alexander; Albergel, Clement; Reichle, Rolf H.; Wagner, Wolfgang

    2016-01-01

    Climate Data Records (CDR) that blend multiple satellite products are invaluable for climate studies, trend analysis and risk assessments. Knowledge of any inhomogeneities in the CDR is therefore critical for making correct inferences. This work proposes a methodology to identify the spatiotemporal extent of the inhomogeneities in a 36-year, global multisatellite soil moisture CDR as the result of changing observing systems. Inhomogeneities are detected at up to 24 percent of the tested pixels with spatial extent varying with satellite changeover times. Nevertheless, the contiguous periods without inhomogeneities at changeover times are generally longer than 10 years. Although the inhomogeneities have measurable impact on the derived trends, these trends are similar to those observed in ground data and land surface reanalysis, with an average error less than 0.003 cubic meters per cubic meter per year. These results strengthen the basis of using the product for long-term studies and demonstrate the necessity of homogeneity testing of multisatellite CDRs in general.

  5. Homogeneity of a global multisatellite soil moisture climate data record

    NASA Astrophysics Data System (ADS)

    Su, Chun-Hsu; Ryu, Dongryeol; Dorigo, Wouter; Zwieback, Simon; Gruber, Alexander; Albergel, Clement; Reichle, Rolf H.; Wagner, Wolfgang

    2016-11-01

    Climate Data Records (CDR) that blend multiple satellite products are invaluable for climate studies, trend analysis and risk assessments. Knowledge of any inhomogeneities in the CDR is therefore critical for making correct inferences. This work proposes a methodology to identify the spatiotemporal extent of the inhomogeneities in a 36 year, global multisatellite soil moisture CDR as the result of changing observing systems. Inhomogeneities are detected at up to 24% of the tested pixels with spatial extent varying with satellite changeover times. Nevertheless, the contiguous periods without inhomogeneities at changeover times are generally longer than 10 years. Although the inhomogeneities have measurable impact on the derived trends, these trends are similar to those observed in ground data and land surface reanalysis, with an average error less than 0.003 m3 m-3 y-1. These results strengthen the basis of using the product for long-term studies and demonstrate the necessity of homogeneity testing of multisatellite CDRs in general.

  6. Agricultural Decision Support Through Robust Assimilation of Satellite Derived Soil Moisture Estimates

    NASA Astrophysics Data System (ADS)

    Mishra, V.; Cruise, J.; Mecikalski, J. R.

    2012-12-01

    Soil Moisture is a key component in the hydrological process, affects surface and boundary layer energy fluxes and is the driving factor in agricultural production. Multiple in situ soil moisture measuring instruments such as Time-domain Reflectrometry (TDR), Nuclear Probes etc. are in use along with remote sensing methods like Active and Passive Microwave (PM) sensors. In situ measurements, despite being more accurate, can only be obtained at discrete points over small spatial scales. Remote sensing estimates, on the other hand, can be obtained over larger spatial domains with varying spatial and temporal resolutions. Soil moisture profiles derived from satellite based thermal infrared (TIR) imagery can overcome many of the problems associated with laborious in-situ observations over large spatial domains. An area where soil moisture observation and assimilation is receiving increasing attention is agricultural crop modeling. This study revolves around the use of the Decision Support System for Agrotechnology Transfer (DSSAT) crop model to simulate corn yields under various forcing scenarios. First, the model was run and calibrated using observed precipitation and model generated soil moisture dynamics. Next, the modeled soil moisture was updated using estimates derived from satellite based TIR imagery and the Atmospheric Land Exchange Inverse (ALEXI) model. We selected three climatically different locations to test the concept. Test Locations were selected to represent varied climatology. Bell Mina, Alabama - South Eastern United States, representing humid subtropical climate. Nabb, Indiana - Mid Western United States, representing humid continental climate. Lubbok, Texas - Southern United States, representing semiarid steppe climate. A temporal (2000-2009) correlation analysis of the soil moisture values from both DSSAT and ALEXI were performed and validated against the Land Information System (LIS) soil moisture dataset. The results clearly show strong

  7. Updated global soil map for the Weather Research and Forecasting model and soil moisture initialization for the Noah land surface model

    NASA Astrophysics Data System (ADS)

    DY, C. Y.; Fung, J. C. H.

    2016-08-01

    A meteorological model requires accurate initial conditions and boundary conditions to obtain realistic numerical weather predictions. The land surface controls the surface heat and moisture exchanges, which can be determined by the physical properties of the soil and soil state variables, subsequently exerting an effect on the boundary layer meteorology. The initial and boundary conditions of soil moisture are currently obtained via National Centers for Environmental Prediction FNL (Final) Operational Global Analysis data, which are collected operationally in 1° by 1° resolutions every 6 h. Another input to the model is the soil map generated by the Food and Agriculture Organization of the United Nations - United Nations Educational, Scientific and Cultural Organization (FAO-UNESCO) soil database, which combines several soil surveys from around the world. Both soil moisture from the FNL analysis data and the default soil map lack accuracy and feature coarse resolutions, particularly for certain areas of China. In this study, we update the global soil map with data from Beijing Normal University in 1 km by 1 km grids and propose an alternative method of soil moisture initialization. Simulations of the Weather Research and Forecasting model show that spinning-up the soil moisture improves near-surface temperature and relative humidity prediction using different types of soil moisture initialization. Explanations of that improvement and improvement of the planetary boundary layer height in performing process analysis are provided.

  8. Patterns and scaling properties of surface soil moisture in an agricultural landscape: An ecohydrological modeling study

    NASA Astrophysics Data System (ADS)

    Korres, W.; Reichenau, T. G.; Schneider, K.

    2013-08-01

    Soil moisture is a key variable in hydrology, meteorology and agriculture. Soil moisture, and surface soil moisture in particular, is highly variable in space and time. Its spatial and temporal patterns in agricultural landscapes are affected by multiple natural (precipitation, soil, topography, etc.) and agro-economic (soil management, fertilization, etc.) factors, making it difficult to identify unequivocal cause and effect relationships between soil moisture and its driving variables. The goal of this study is to characterize and analyze the spatial and temporal patterns of surface soil moisture (top 20 cm) in an intensively used agricultural landscape (1100 km2 northern part of the Rur catchment, Western Germany) and to determine the dominant factors and underlying processes controlling these patterns. A second goal is to analyze the scaling behavior of surface soil moisture patterns in order to investigate how spatial scale affects spatial patterns. To achieve these goals, a dynamically coupled, process-based and spatially distributed ecohydrological model was used to analyze the key processes as well as their interactions and feedbacks. The model was validated for two growing seasons for the three main crops in the investigation area: Winter wheat, sugar beet, and maize. This yielded RMSE values for surface soil moisture between 1.8 and 7.8 vol.% and average RMSE values for all three crops of 0.27 kg m-2 for total aboveground biomass and 0.93 for green LAI. Large deviations of measured and modeled soil moisture can be explained by a change of the infiltration properties towards the end of the growing season, especially in maize fields. The validated model was used to generate daily surface soil moisture maps, serving as a basis for an autocorrelation analysis of spatial patterns and scale. Outside of the growing season, surface soil moisture patterns at all spatial scales depend mainly upon soil properties. Within the main growing season, larger scale

  9. ESTAR - A synthetic aperture microwave radiometer for measuring soil moisture

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Griffis, A.; Swift, C. T.; Jackson, T. J.

    1992-01-01

    The measurement of soil moisture from space requires putting relatively large microwave antennas in orbit. Aperture synthesis, an interferometric technique for reducing the antenna aperture needed in space, offers the potential for a practical means of meeting these requirements. An aircraft prototype, electronically steered thinned array L-band radiometer (ESTAR), has been built to develop this concept and to demonstrate its suitability for the measurement of soil moisture. Recent flights over the Walnut Gulch Watershed in Arizona show good agreement with ground truth and with measurements with the Pushbroom Microwave Radiometer (PBMR).

  10. Design of a global soil moisture initialization procedure for the simple biosphere model

    NASA Technical Reports Server (NTRS)

    Liston, G. E.; Sud, Y. C.; Walker, G. K.

    1993-01-01

    Global soil moisture and land-surface evapotranspiration fields are computed using an analysis scheme based on the Simple Biosphere (SiB) soil-vegetation-atmosphere interaction model. The scheme is driven with observed precipitation, and potential evapotranspiration, where the potential evapotranspiration is computed following the surface air temperature-potential evapotranspiration regression of Thomthwaite (1948). The observed surface air temperature is corrected to reflect potential (zero soil moisture stress) conditions by letting the ratio of actual transpiration to potential transpiration be a function of normalized difference vegetation index (NDVI). Soil moisture, evapotranspiration, and runoff data are generated on a daily basis for a 10-year period, January 1979 through December 1988, using observed precipitation gridded at a 4 deg by 5 deg resolution.

  11. Soil moisture under contrasted atmospheric conditions in Eastern Spain

    NASA Astrophysics Data System (ADS)

    Azorin-Molina, César; Cerdà, Artemi; Vicente-Serrano, Sergio M.

    2014-05-01

    Soil moisture plays a key role on the recently abandoned agriculture land where determine the recovery and the erosion rates (Cerdà, 1995), on the soil water repellency degree (Bodí et al., 2011) and on the hydrological cycle (Cerdà, 1999), the plant development (García Fayos et al., 2000) and the seasonality of the geomorphological processes (Cerdà, 2002). Moreover, Soil moisture is a key factor on the semiarid land (Ziadat and Taimeh, 2013), on the productivity of the land (Qadir et al., 2013) and soils treated with amendments (Johnston et al., 2013) and on soil reclamation on drained saline-sodic soils (Ghafoor et al., 2012). In previous study (Azorin-Molina et al., 2013) we investigated the intraannual evolution of soil moisture in soils under different land managements in the Valencia region, Eastern Spain, and concluded that soil moisture recharges are much controlled by few heavy precipitation events; 23 recharge episodes during 2012. Most of the soil moisture recharge events occurred during the autumn season under Back-Door cold front situations. Additionally, sea breeze front episodes brought isolated precipitation and moisture to mountainous areas within summer (Azorin-Molina et al., 2009). We also evidenced that the intraanual evolution of soil moisture changes are positively and significatively correlated (at p<0.01) with the amount of measured precipitation. In this study we analyze the role of other crucial atmospheric parameters (i.e., temperature, relative humidity, global solar radiation, and wind speed and wind direction) in the intraanual evolution of soil moisture; focussing our analyses on the soil moisture discharge episodes. Here we present 1-year of soil moisture measurements at two experimental sites in the Valencia region, one representing rainfed orchard typical from the Mediterranean mountains (El Teularet-Sierra de Enguera), and a second site corresponding to an irrigated orange crop (Alcoleja). Key Words: Soil Moisture Discharges

  12. Soil moisture and vegetation memories in a cold, arid climate

    NASA Astrophysics Data System (ADS)

    Shinoda, Masato; Nandintsetseg, Banzragch

    2011-10-01

    Continental climate is established as a result of a complex interplay between the atmosphere and various land-surface systems such as the biosphere, soil, hydrosphere, and cryosphere. These systems function as climate memory, allowing the maintenance of interannual atmospheric anomalies. In this paper, we present new observational evidence of an interseasonal moisture memory mechanism mediated by the land surface that is manifested in the coupled cold and arid climate of Mongolia. Interannual anomalies of soil moisture and vegetation due to rainfall during a given summer are maintained through the freezing winter months to the spring, acting as an initial condition for subsequent summer land-surface and rainfall conditions. Both the soil moisture and vegetation memories were prominent over the eastern part of the Mongolian steppe zone (103-112°E and 46-50°N). That is, the cold-season climate with low evapotranspiration and strong soil freezing acts to prolong the decay time scale of autumn soil moisture anomalies to 8.2 months that is among the longest in the world. The vegetation also has a memory of the similar time scale, likely because the large rootstock of the perennial plants dominant in the Mongolian steppe may remain alive, retain belowground biomass anomalies during the winter, and have an impact on the initial vegetation growth during the spring.

  13. Temporal Dynamics of Soil Moisture Variability: A Theoretical Framework

    NASA Astrophysics Data System (ADS)

    Albertson, J. D.; Montaldo, N.

    Much observational effort has been devoted of late to the issue of sub-grid variability of near surface soil moisture fields. This work has been motivated by the tendency for large scale atmospheric models to have coarse land surface grids (and hence soil moisture fields) and the prospect for the development of satellite platforms for re- motely sensing coarse grained soil moisture fields. The interest in sub-grid variability is intended to provide insights needed to complement the coarse scale models and observational systems. Interestingly, the empirical results have often appeared contra- dictory at first glance. Some studies have shown spatial variance to increase through the drying phase while other studies found the variance to decrease through time. Var- ious explanations have been proposed, typically centered on possible disparate scales of the studies or differing hydrometeorological conditions. In this presentation we de- rive from basic fluid mechanical tools a prognostic equation for the temporal evolution of the spatial variance of soil moisture. The resulting equation includes separate vari- ance production-destruction terms for infiltration, drainage, horizontal convergence- divergence, and evapotranspiration. In this talk we demonstrate how the individual terms contribute uniquely to the temporal changes of the spatial variance of soil mois- ture under contrasting physiographic and hydrometeorological conditions. We contend that the derived variance evolution equation provides a framework for reconciling em- pirical results that were previously considered to be contradictory.

  14. Accomplishments of the NASA Johnson Space Center portion of the soil moisture project in fiscal year 1981

    NASA Technical Reports Server (NTRS)

    Paris, J. F.; Arya, L. M.; Davidson, S. A.; Hildreth, W. W.; Richter, J. C.; Rosenkranz, W. A.

    1982-01-01

    The NASA/JSC ground scatterometer system was used in a row structure and row direction effects experiment to understand these effects on radar remote sensing of soil moisture. Also, a modification of the scatterometer system was begun and is continuing, to allow cross-polarization experiments to be conducted in fiscal years 1982 and 1983. Preprocessing of the 1978 agricultural soil moisture experiment (ASME) data was completed. Preparations for analysis of the ASME data is fiscal year 1982 were completed. A radar image simulation procedure developed by the University of Kansas is being improved. Profile soil moisture model outputs were compared quantitatively for the same soil and climate conditions. A new model was developed and tested to predict the soil moisture characteristic (water tension versus volumetric soil moisture content) from particle-size distribution and bulk density data. Relationships between surface-zone soil moisture, surface flux, and subsurface moisture conditions are being studied as well as the ways in which measured soil moisture (as obtained from remote sensing) can be used for agricultural applications.

  15. Assimilation of Satellite Soil Moisture observation with the Particle Filter-Markov Chain Monte Carlo and Geostatistical Modeling

    NASA Astrophysics Data System (ADS)

    Moradkhani, Hamid; Yan, Hongxiang

    2016-04-01

    Soil moisture simulation and prediction are increasingly used to characterize agricultural droughts but the process suffers from data scarcity and quality. The satellite soil moisture observations could be used to improve model predictions with data assimilation. Remote sensing products, however, are typically discontinuous in spatial-temporal coverages; while simulated soil moisture products are potentially biased due to the errors in forcing data, parameters, and deficiencies of model physics. This study attempts to provide a detailed analysis of the joint and separate assimilation of streamflow and Advanced Scatterometer (ASCAT) surface soil moisture into a fully distributed hydrologic model, with the use of recently developed particle filter-Markov chain Monte Carlo (PF-MCMC) method. A geostatistical model is introduced to overcome the satellite soil moisture discontinuity issue where satellite data does not cover the whole study region or is significantly biased, and the dominant land cover is dense vegetation. The results indicate that joint assimilation of soil moisture and streamflow has minimal effect in improving the streamflow prediction, however, the surface soil moisture field is significantly improved. The combination of DA and geostatistical approach can further improve the surface soil moisture prediction.

  16. Assimilating AMSR-E data for soil moisture estimation

    NASA Astrophysics Data System (ADS)

    Li, X.; Koike, T.

    In the last decade we see a blooming of developing and applying of land data assimilation systems LDAS This technique by integrating both in situ and remote sensing data into the dynamics of land surface model is capable of producing the evolution of land surface state such as soil moisture soil temperature and snow water equivalent in physical and spatiotemporal consistence In this paper we introduce a few numerical experiments of assimilating the Advanced Microwave Scanning Radiometer AMSR-E brightness temperature data by using the LDAS we have developed The data assimilation method being used is the ensemble Kalman filter which is a Monte Carlo based sequential filter method The land model is the JMA Japan Meteorological Administration new SiB which originates from the Simple Biosphere SiB model but is reformulated with explicit snow and soil freeze thaw processes The observation operators are radiative transfer models of soil We used the semi-empirical Q h model in this study The system was tested using many observations collected during CEOP Coordinated Enhanced Observation Period a Global Energy and Water Experiment particularly at a semi-arid region site Mongolia and a cold region site Tibet-east The results showed that 1 The system can estimate land surface variables i e soil moisture soil temperature and snow much more reasonable than free-loop modeling 2 From the view point of remote sensing the soil moisture and temperature profiles can be retrieved successfully with the aid of additional information

  17. [Characteristics of soil moisture in artificial impermeable layers].

    PubMed

    Suo, Gai-Di; Xie, Yong-Sheng; Tian, Fei; Chuai, Jun-Feng; Jing, Min-Xiao

    2014-09-01

    For the problem of low water and fertilizer use efficiency caused by nitrate nitrogen lea- ching into deep soil layer and soil desiccation in dryland apple orchard, characteristics of soil moisture were investigated by means of hand tamping in order to find a new approach in improving the water and fertilizer use efficiency in the apple orchard. Two artificial impermeable layers of red clay and dark loessial soil were built in soil, with a thickness of 3 or 5 cm. Results showed that artificial impermeable layers with the two different thicknesses were effective in reducing or blocking water infiltration into soil and had higher seepage controlling efficiency. Seepage controlling efficiency for the red clay impermeable layer was better than that for the dark loessial soil impermeable layer. Among all the treatments, the red clay impermeable layer of 5 cm thickness had the highest bulk density, the lowest initial infiltration rate (0.033 mm · min(-1)) and stable infiltration rate (0.018 mm · min(-1)) among all treatments. After dry-wet alternation in summer and freezing-thawing cycle in winter, its physiochemical properties changed little. Increase in years did not affect stable infiltration rate of soil water. The red clay impermeable layer of 5 cm thickness could effectively increase soil moisture content in upper soil layer which was conducive to raise the water and nutrient use efficiency. The approach could be applied to the apple production of dryland orchard.

  18. Influence of soil moisture-carbon cycle interactions on the terrestrial carbon cycle over Europe

    NASA Astrophysics Data System (ADS)

    Mystakidis, Stefanos; Davin, Edouard L.; Gruber, Nicolas; Seneviratne, Sonia I.

    2016-04-01

    Water availability is a crucial limiting factor for terrestrial ecosystems, but relatively few studies have quantitatively assessed the influence of soil moisture variability on the terrestrial carbon cycle. Here, we investigate the role of soil moisture variability and state in the contemporary terrestrial carbon cycle over Europe. For this we use a Regional Earth System Model (RESM) based on the COSMO-CLM Regional Climate Model, coupled to the Community Land Model version 4.0 (CLM4.0) and its carbon-nitrogen module. The simulation setup consists of a control simulation over the period 1979-2010 in which soil moisture is interactive and three sensitivity simulations in which soil moisture is prescribed to a mean, a very dry or a very wet seasonal cycle without inter-annual variability. The cumulative net biome productivity varies markedly between the different experiments ranging from a strong sink of up to 6PgC in the wet experiment to a source of up to 1.2PgC in the dry experiment. Changes in the land carbon uptake are driven by a combination of two factors: the direct impact of soil moisture on plant's carbon uptake (essentially in southern Europe) and an indirect effect through changes in temperature affecting ecosystem respiration (mainly in central and northern Europe). We find that removing temporal variations in soil moisture dampens interannual variations in terrestrial carbon fluxes (Gross Primary Productivity, respiration, Net Biome Productivity) by more than 50% over most of Europe. Moreover, the analysis reveals that on annual scale about two-thirds of central Europe and about 70% of southern Europe display statistically significant effect of drying and/or wetting on the terrestrial carbon budget and its components. Our findings confirm the crucial role of soil moisture in determining the magnitude and the inter-annual variability in land CO2 uptake which is a key contributor to the year-to-year variations in atmospheric CO2 concentration.

  19. Correlation Between Soil Moisture and Dust Emissions: An Investigation for Global Climate Modeling

    NASA Technical Reports Server (NTRS)

    Fredrickson, Carley; Tan, Qian

    2017-01-01

    This work is using the newly available NASA SMAP soil moisture measurement data to evaluate its impact on the atmospheric dust emissions. Dust is an important component of atmospheric aerosols, which affects both climate and air quality. In this work, we focused on semi-desert regions, where dust emissions show seasonal variations due to soil moisture changes, i.e. in Sahel of Africa. We first identified three Aerosol Robotic Network (AERONET) sites in the Sahel (IER_Cinzana, Banizoumbou, and Zinder_Airport). We then utilized measurements of aerosol optical depth (AOD), fine mode fraction, size distribution, and single-scattering albedo and its wave-length dependence to select dust plumes from the available measurements We matched the latitude and longitude of the AERONET station to the corresponding SMAP data cell in the years 2015 and 2016, and calculated their correlation coefficient. Additionally, we looked at the correlation coefficient with a three-day and a five-day shift to check the impact of soil moisture on dust plumes with some time delay. Due to the arid nature of Banizoumbou and Zinder_Airport, no correlation was found to exist between local soil moisture and dust aerosol load. While IER_Cinzana had soil moisture levels above the satellite threshold of 0.02cm3/cm3, R-value approaching zero indicated no presence of a correlation. On the other hand, Ilorin demonstrated a significant negative correlation between aerosol optical depth and soil moisture. When isolating the analysis to Ilorin's dry season, a negative correlation of -0.593 was the largest dust-isolated R-value recorded, suggesting that soil moisture is driven the dust emission in this semi-desert region during transitional season.

  20. Assimilation of SMOS brightness temperatures or soil moisture retrievals into a land surface model

    NASA Astrophysics Data System (ADS)

    De Lannoy, Gabriëlle J. M.; Reichle, Rolf H.

    2016-12-01

    Three different data products from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated separately into the Goddard Earth Observing System Model, version 5 (GEOS-5) to improve estimates of surface and root-zone soil moisture. The first product consists of multi-angle, dual-polarization brightness temperature (Tb) observations at the bottom of the atmosphere extracted from Level 1 data. The second product is a derived SMOS Tb product that mimics the data at a 40° incidence angle from the Soil Moisture Active Passive (SMAP) mission. The third product is the operational SMOS Level 2 surface soil moisture (SM) retrieval product. The assimilation system uses a spatially distributed ensemble Kalman filter (EnKF) with seasonally varying climatological bias mitigation for Tb assimilation, whereas a time-invariant cumulative density function matching is used for SM retrieval assimilation. All assimilation experiments improve the soil moisture estimates compared to model-only simulations in terms of unbiased root-mean-square differences and anomaly correlations during the period from 1 July 2010 to 1 May 2015 and for 187 sites across the US. Especially in areas where the satellite data are most sensitive to surface soil moisture, large skill improvements (e.g., an increase in the anomaly correlation by 0.1) are found in the surface soil moisture. The domain-average surface and root-zone skill metrics are similar among the various assimilation experiments, but large differences in skill are found locally. The observation-minus-forecast residuals and analysis increments reveal large differences in how the observations add value in the Tb and SM retrieval assimilation systems. The distinct patterns of these diagnostics in the two systems reflect observation and model errors patterns that are not well captured in the assigned EnKF error parameters. Consequently, a localized optimization of the EnKF error parameters is needed to further improve Tb or SM retrieval

  1. ESA's Soil Moisture dnd Ocean Salinity Mission - Contributing to Water Resource Management

    NASA Astrophysics Data System (ADS)

    Mecklenburg, S.; Kerr, Y. H.

    2015-12-01

    The Soil Moisture and Ocean Salinity (SMOS) mission, launched in November 2009, is the European Space Agency's (ESA) second Earth Explorer Opportunity mission. The scientific objectives of the SMOS mission directly respond to the need for global observations of soil moisture and ocean salinity, two key variables used in predictive hydrological, oceanographic and atmospheric models. SMOS observations also provide information on the characterisation of ice and snow covered surfaces and the sea ice effect on ocean-atmosphere heat fluxes and dynamics, which affects large-scale processes of the Earth's climate system. The focus of this paper will be on SMOS's contribution to support water resource management: SMOS surface soil moisture provides the input to derive root-zone soil moisture, which in turn provides the input for the drought index, an important monitoring prediction tool for plant available water. In addition to surface soil moisture, SMOS also provides observations on vegetation optical depth. Both parameters aid agricultural applications such as crop growth, yield forecasting and drought monitoring, and provide input for carbon and land surface modelling. SMOS data products are used in data assimilation and forecasting systems. Over land, assimilating SMOS derived information has shown to have a positive impact on applications such as NWP, stream flow forecasting and the analysis of net ecosystem exchange. Over ocean, both sea surface salinity and severe wind speed have the potential to increase the predictive skill on the seasonal and short- to medium-range forecast range. Operational users in particular in Numerical Weather Prediction and operational hydrology have put forward a requirement for soil moisture data to be available in near-real time (NRT). This has been addressed by developing a fast retrieval for a NRT level 2 soil moisture product based on Neural Networks, which will be available by autumn 2015. This paper will focus on presenting the

  2. Assimilation of SMOS Brightness Temperatures or Soil Moisture Retrievals into a Land Surface Model

    NASA Technical Reports Server (NTRS)

    De Lannoy, Gabrielle J. M.; Reichle, Rolf H.

    2016-01-01

    Three different data products from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated separately into the Goddard Earth Observing System Model, version 5 (GEOS-5) to improve estimates of surface and root-zone soil moisture. The first product consists of multi-angle, dual-polarization brightness temperature (Tb) observations at the bottom of the atmosphere extracted from Level 1 data. The second product is a derived SMOS Tb product that mimics the data at a 40 degree incidence angle from the Soil Moisture Active Passive (SMAP) mission. The third product is the operational SMOS Level 2 surface soil moisture (SM) retrieval product. The assimilation system uses a spatially distributed ensemble Kalman filter (EnKF) with seasonally varying climatological bias mitigation for Tb assimilation, whereas a time-invariant cumulative density function matching is used for SM retrieval assimilation. All assimilation experiments improve the soil moisture estimates compared to model-only simulations in terms of unbiased root-mean-square differences and anomaly correlations during the period from 1 July 2010 to 1 May 2015 and for 187 sites across the US. Especially in areas where the satellite data are most sensitive to surface soil moisture, large skill improvements (e.g., an increase in the anomaly correlation by 0.1) are found in the surface soil moisture. The domain-average surface and root-zone skill metrics are similar among the various assimilation experiments, but large differences in skill are found locally. The observation-minus-forecast residuals and analysis increments reveal large differences in how the observations add value in the Tb and SM retrieval assimilation systems. The distinct patterns of these diagnostics in the two systems reflect observation and model errors patterns that are not well captured in the assigned EnKF error parameters. Consequently, a localized optimization of the EnKF error parameters is needed to further improve Tb or SM retrieval

  3. De-noising of microwave satellite soil moisture time series

    NASA Astrophysics Data System (ADS)

    Su, Chun-Hsu; Ryu, Dongryeol; Western, Andrew; Wagner, Wolfgang

    2013-04-01

    The use of satellite soil moisture data for scientific and operational hydrologic, meteorological and climatological applications is advancing rapidly due to increasing capability and temporal coverage of current and future missions. However evaluation studies of various existing remotely-sensed soil moisture products from these space-borne microwave sensors, which include AMSR-E (Advanced Microwave Scanning Radiometer) on Aqua satellite, SMOS (Soil Moisture and Ocean Salinity) mission and ASCAT (Advanced Scatterometer) on MetOp-A satellite, found them to be significantly different from in-situ observations, showing large biases and different dynamic ranges and temporal patterns (e.g., Albergel et al., 2012; Su et al., 2012). Moreover they can have different error profiles in terms of bias, variance and correlations and their performance varies with land surface characteristics (Su et al., 2012). These severely impede the effort to use soil moisture retrievals from multiple sensors concurrently in land surface modelling, cross-validation and multi-satellite blending. The issue of systematic errors present in data sets should be addressed prior to renormalisation of the data for blending and data assimilation. Triple collocation estimation technique has successfully yielded realistic error estimates (Scipal et al., 2008), but this method relies on availability of large number of coincident data from multiple independent satellite data sets. In this work, we propose, i) a conceptual framework for distinguishing systematic periodic errors in the form of false spectral resonances from non-systematic errors (stochastic noise) in remotely-sensed soil moisture data in the frequency domain; and ii) the use of digital filters to reduce the variance- and correlation-related errors in satellite data. In this work, we focus on the VUA-NASA (Vrije Universiteit Amsterdam with NASA) AMSR-E, CATDS (Centre National d'Etudes Spatiales, CNES) SMOS and TUWIEN (Vienna University of

  4. Soil Moisture Remote Sensing using GPS-Interferometric Reflectometry

    NASA Astrophysics Data System (ADS)

    Chew, Clara

    Ground-reflected Global Positioning System (GPS) signals can be used opportunistically to infer changes in land-surface characteristics surrounding a GPS monument. GPS satellites transmit at L-band, and at microwave frequencies the permittivity of the ground surface changes primarily due to its moisture content. Temporal changes in ground-reflected GPS signals are thus indicative of temporal changes in the moisture content surrounding a GPS antenna. The interference pattern of the direct and reflected GPS signal for a single satellite track is recorded in signal-to-noise ratio (SNR) data. Alternating constructive and destructive interference as the satellite passes over the antenna results in a noisy oscillating wave at low satellite elevation angles, from which the phase, amplitude, and frequency (or reflector height) can be calculated. Here, an electrodynamic model that simulates SNR data is validated against field observations. The model is then used to show that temporal changes in these SNR metrics may be used to estimate changes in surface soil moisture in the top 5 cm of the soil column. Results show that changes in SNR phase are best correlated with changes in soil moisture, with an approximately linear slope. Surface roughness decreases the sensitivity of SNR phase to soil moisture, though the effect is not significant for small roughness values (<5 cm). Modeling experiments show that all three SNR metrics are affected by changes in the permittivity and height of a vegetation canopy. SNR amplitude is the best indicator of changes in vegetation. An increase in either canopy permittivity or height will cause a corresponding decrease in SNR phase. Seasonal changes in vegetation must be removed if soil moisture is to be estimated using phase data. An algorithm is presented that uses modeled relationships between canopy parameters and SNR metrics to remove seasonal vegetation effects from the phase time series, from which soil moisture time series may be

  5. Moisture effect in prompt gamma measurements from soil samples.

    PubMed

    Naqvi, A A; Khiari, F Z; Liadi, F A; Khateeb-Ur-Rehman; Raashid, M A; Isab, A H

    2016-09-01

    The variation in intensity of 1.78MeV silicon, 6.13MeV oxygen, and 2.22MeV hydrogen prompt gamma rays from soil samples due to the addition of 5.1, 7.4, 9.7, 11.9 and 14.0wt% water was studied for 14MeV incident neutron beams utilizing a LaBr3:Ce gamma ray detector. The intensities of 1.78MeV and 6.13MeV gamma rays from silicon and oxygen, respectively, decreased with increasing sample moisture. The intensity of 2.22MeV hydrogen gamma rays increases with moisture. The decrease in intensity of silicon and oxygen gamma rays with moisture concentration indicates a loss of 14MeV neutron flux, while the increase in intensity of 2.22MeV gamma rays with moisture indicates an increase in thermal neutron flux due to increasing concentration of moisture. The experimental intensities of silicon, oxygen and hydrogen prompt gamma rays, measured as a function of moisture concentration in the soil samples, are in good agreement with the theoretical results obtained through Monte Carlo calculations.

  6. Using ARM observations to test soil moisture dynamics in climate models

    NASA Astrophysics Data System (ADS)

    Sun, S.; Cook, D. R.; Drewniak, B. A.; Stein, M.; Collis, S. M.; Moyer, E. J.

    2015-12-01

    Potential changes in soil moisture may have significant societal impacts, as soil moisture directly influences agriculture. Soil moisture is also a critical factor in climate simulations as it is the moisture source for evapotranspiration over land. Climate model projections generally show reduced soil moisture in future warmer climate conditions, and the scale of potential adverse impacts means that validation of those projections is a science priority. Our understanding of soil moisture dynamics is hampered by limited suitable observational data, but the Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site offers a unique resource for this purpose, with over a decade of simultaneous measurements of soil moisture profiles and measurements of moisture fluxes and aboveground variables. In this work we use stations across SGP to identify statistical relationships in drivers of soil moisture dynamics. We also compare observed soil moisture dynamics to those in the Community Land Model version 4 (CLM4), running CLM4 in an offline mode with observationally derived atmospheric forcing, to identify similarities and discrepancies in resulting soil moisture evolution in observations and model. Preliminary comparison of metrics such as soil moisture characteristic time, soil moisture infiltration rate, etc. suggests that the governing hydrological and/or biophysical processes in models need improvements. The spatial heterogeneity of the SGP measurement stations also provides insight into the role of sub-grid scale features and the role of spatial resolution in producing accurate representations of soil moisture in climate models.

  7. Potential application of satellite radar to monitor soil moisture

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Bradley, G. A.; Dobson, M. C.

    1981-01-01

    The microwave backscattering characteristics of soils as a function of moisture content are reviewed as a basis for the evaluation of the applicability of satellite radar to soil moisture determinations. Results of experiments showing the dependence of the complex dielectric constant, power reflection coefficient and backscattering coefficient of soil on its volumetric moisture content are presented. Results of a research program using the truck-mounted University of Kansas microwave active spectrometer to determine if, by the proper choice of sensor frequency, polarization and incidence, the sensor dynamic range in response to moisture variations may be greater than its response to other variations are considered in detail, and the optimum conditions of frequency (between 4 and 5 GHz), angular incidence (between 7 and 20 deg from nadir) and polarization (HH) obtained are indicated. An empirical model for the backscattering coefficient as a function of gravimetric moisture content derived on the basis of the experimental data is presented, and it is noted that available airborne and spaceborne data confirm the results of the ground-based sensors.

  8. Macrofauna assemblage composition and soil moisture interact to affect soil ecosystem functions

    NASA Astrophysics Data System (ADS)

    Collison, E. J.; Riutta, T.; Slade, E. M.

    2013-02-01

    Changing climatic conditions and habitat fragmentation are predicted to alter the soil moisture conditions of temperate forests. It is not well understood how the soil macrofauna community will respond to changes in soil moisture, and how changes to species diversity and community composition may affect ecosystem functions, such as litter decomposition and soil fluxes. Moreover, few studies have considered the interactions between the abiotic and biotic factors that regulate soil processes. Here we attempt to disentangle the interactive effects of two of the main factors that regulate soil processes at small scales - moisture and macrofauna assemblage composition. The response of assemblages of three common temperate soil invertebrates (Glomeris marginata Villers, Porcellio scaber Latreille and Philoscia muscorum Scopoli) to two contrasting soil moisture levels was examined in a series of laboratory mesocosm experiments. The contribution of the invertebrates to the leaf litter mass loss of two common temperate tree species of contrasting litter quality (easily decomposing Fraxinus excelsior L. and recalcitrant Quercus robur L.) and to soil CO2 fluxes were measured. Both moisture conditions and litter type influenced the functioning of the invertebrate assemblages, which was greater in high moisture conditions compared with low moisture conditions and on good quality vs. recalcitrant litter. In high moisture conditions, all macrofauna assemblages functioned at equal rates, whereas in low moisture conditions there were pronounced differences in litter mass loss among the assemblages. This indicates that species identity and assemblage composition are more important when moisture is limited. We suggest that complementarity between macrofauna species may mitigate the reduced functioning of some species, highlighting the importance of maintaining macrofauna species richness.

  9. Field scale spatio-temporal soil moisture variability for trafficability and crop water availability

    NASA Astrophysics Data System (ADS)

    Carranza, Coleen; van der Ploeg, Martine; Ritsema, Coen

    2016-04-01

    Spatio-temporal patterns of soil moisture have been studied mostly for inputs in land surface models for weather and climate predictions. Remote sensing techniques for estimation of soil moisture have been explored because of the good spatial coverage at different scales. Current available satellite data provide surface soil moisture as microwave systems only measure soil moisture content up to 5cm soil depth. The OWAS1S project will focus on estimation of soil moisture from freely available Sentinel-1 datasets for operational water management in agricultural areas. As part of the project, it is essential to develop spatio-temporal methods to estimate root zone soil moisture from surface soil moisture. This will be used for crop water availability and trafficability in selected agricultural fields in the Netherlands. A network of single capacitance sensors installed per field will provide continuous measurements of soil moisture in the study area. Ground penetrating radar will be used to measure soil moisture variability within a single field for different time periods. During wetter months, optimal conditions for traffic will be assessed using simultaneous soil strength and soil moisture measurements. Towards water deficit periods, focus is on the relation (or the lack thereof) between surface soil moisture and root zone soil moisture to determine the amount of water for crops. Spatio-temporal distribution will determine important physical controls for surface and root zone soil moisture and provide insights for root-zone soil moisture. Existing models for field scale soil-water balance and data assimilation methods (e.g. Kalman filter) will be combined to estimate root zone soil moisture. Furthermore, effects of root development on soil structure and soil hydraulic properties and subsequent effects on trafficability and crop water availability will be investigated. This research project has recently started, therefore we want to present methods and framework of

  10. The soil moisture active passive (SMAP) mission and validation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) satellite will be launched by the National Aeronautics and Space Administration in October 2014. This satellite is the culmination of basic research and applications development over the past thirty years. During most of this period, research and development o...

  11. U.S National cropland soil moisture monitoring using SMAP

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop condition information is critical for public and private sector decision making that concerns agricultural policy, food production, food security, and food commodity prices. Crop conditions change quickly due to various growing condition events, such as temperature extremes, soil moisture defic...

  12. WindSat Global Soil Moisture Retrieval and Validation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A physically based six-channel land algorithm is developed to simultaneously retrieve the global soil moisture, vegetation water content and land surface temperature. The algorithm is based on a maximum-likelihood estimation and uses WindSat passive microwave data at 10, 18.7 and 37 GHz. The global ...

  13. SMAP Validation and Accuracy Assessment of Soil Moisture Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: The Soil Moisture Active Passive (SMAP) mission was launched in January, 2015 and will begin its calibration and validation (Cal/Val) phase in May, 2015. This will begin with a focus on instrument measurements, brightness temperature and backscatter, and evolve to the geophysical produ...

  14. An adaptive ensemble Kalman filter for soil moisture data assimilation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a 19-year twin experiment for the Red-Arkansas river basin we assimilate synthetic surface soil moisture retrievals into the NASA Catchment land surface model. We demonstrate how poorly specified model and observation error parameters affect the quality of the assimilation products. In particul...

  15. A comparison of soil moisture sensors for space flight applications

    NASA Technical Reports Server (NTRS)

    Norikane, J. H.; Prenger, J. J.; Rouzan-Wheeldon, D. T.; Levine, H. G.

    2005-01-01

    Plants will be an important part of future long-term space missions. Automated plant growth systems require accurate and reliable methods of monitoring soil moisture levels. There are a number of different methods to accomplish this task. This study evaluated sensors using the capacitance method (ECH2O), the heat-pulse method (TMAS), and tensiometers, compared to soil water loss measured gravimetrically in a side-by-side test. The experiment monitored evaporative losses from substrate compartments filled with 1- to 2-mm baked calcinated clay media. The ECH2O data correlated well with the gravimetric measurements, but over a limited range of soil moisture. The averaged TMAS sensor data overstated soil moisture content levels. The tensiometer data appeared to track evaporative losses in the 0.5- to 2.5-kPa range of matric potential that corresponds to the water content needed to grow plants. This small range is characteristic of large particle media, and thus high-resolution tensiometers are required to distinguish changing moisture contents in this range.

  16. GCOM-W soil moisture and temperature algorithms and validation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Passive microwave remote sensing of soil moisture has matured over the past decade as a result of the Advanced Microwave Scanning Radiometer (AMSR) program of JAXA. This program has resulted in improved algorithms that have been supported by rigorous validation. Access to the products and the valida...

  17. High resolution soil moisture radiometer. [large space structures

    NASA Technical Reports Server (NTRS)

    Wilheit, T. T.

    1978-01-01

    An electrically scanned pushbroom phased antenna array is described for a microwave radiometer which can provide agriculturally meaningful measurements of soil moisture. The antenna size of 100 meters at 1400 MHz or 230 meters at 611 MHz requires several shuttle launches and orbital assembly. Problems inherent to the size of the structure and specific instrument problems are discussed as well as the preliminary design.

  18. Overview of the NASA soil moisture active/passive mission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The NASA Soil Moisture Active Passive (SMAP) Mission is currently in design Phase C and scheduled for launch in October 2014. Its mission concept is based on combined L-band radar and radiometry measurements obtained from a shared, rotating 6-meter antennae. These measurements will be used to retrie...

  19. The Soil Moisture Active Passive (SMAP) applications activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) mission is one of the first-tier satellite missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space. The SMAP mission 1 is under development by NASA and is scheduled for launch late in 2014. The SMAP mea...

  20. Uncertainties of soil moisture in historical simulations and future projections

    NASA Astrophysics Data System (ADS)

    Cheng, Shanjun; Huang, Jianping; Ji, Fei; Lin, Lei

    2017-02-01

    Uncertainties of soil moisture in historical simulations (1920-2005) and future projections (2006-2080) were investigated by using the outputs from the Coupled Model Intercomparison Project Phase 5 and Community Earth System Model. The results showed that soil moisture climatology varies greatly among models despite the good agreement between the ensemble mean of simulated soil moisture and the Global Land Data Assimilation System data. The uncertainties of initial conditions and model structure showed similar spatial patterns and magnitudes, with high uncertainties in dry regions and low uncertainties in wet regions. In addition, the long-term variability of model structure uncertainty rapidly decreased before 1980 and increased thereafter, but the uncertainty in initial conditions showed an upward trend over the entire time span. The model structure and initial conditions can cause uncertainties at all time scales. Despite these large uncertainties, almost all of the simulations showed significant decreasing linear trends in soil moisture for the 21st century, especially in the Mediterranean region, northeast and southwest South America, southern Africa, and southwestern USA.

  1. Introduction to Soil Moisture Experiments 2004 (SMEX04)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface antecedent boundary conditions may control the onset and intensity of the summer monsoon rainfall in the southwestern U.S. and northern Mexico. The influence of the land surface is relayed through surface evaporation and associated surface cooling (dependent on soil moisture), terrain, ...

  2. NASA Soil Moisture Active Passive Mission Status and Science Performance

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Entekhabi, Dara; O'Neill, Peggy; Njoku, Eni; Entin, Jared K.

    2016-01-01

    The Soil Moisture Active Passive (SMAP) observatory was launched January 31, 2015, and its L-band radiometer and radar instruments became operational since mid-April 2015. The SMAP radiometer has been operating flawlessly, but the radar transmitter ceased operation on July 7. This paper provides a status summary of the calibration and validation of the SMAP instruments and the quality assessment of its soil moisture and freeze/thaw products. Since the loss of the radar in July, the SMAP project has been conducting two parallel activities to enhance the resolution of soil moisture products. One of them explores the Backus Gilbert optimum interpolation and de-convolution techniques based on the oversampling characteristics of the SMAP radiometer. The other investigates the disaggregation of the SMAP radiometer data using the European Space Agency's Sentinel-1 C-band synthetic radar data to obtain soil moisture products at about 1 to 3 kilometers resolution. In addition, SMAP's L-band data have found many new applications, including vegetation opacity, ocean surface salinity and hurricane ocean surface wind mapping. Highlights of these new applications will be provided.

  3. Why different passive microwave algorithms give different soil moisture retrievals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several algorithms have been used to retrieve surface soil moisture from brightness temperature observations provided by low frequency microwave satellite sensors such as the Advanced Microwave Scanning Radiometer on NASA EOS satellite Aqua (AMSR-E). Most of these algorithms have originated from the...

  4. Toward Global Soil Moisture Estimation By Satellite Precipitation Radars

    NASA Astrophysics Data System (ADS)

    Seto, S.; Oki, T.; Musiake, K.

    A soil moisture estimation algorithm using Tropical Rainfall Measuring Mission (TRMM) / Precipitation Radar (PR) is developed to be applied at global scale. In our algorithm, the backscattering coefficients at land surface (denoted as 0) observed by PR is used. As 0 is attenuated by strong rainfall, the data observed during rainfall is not included in our calculation (the percentage if observation is done while it is raining is as small as 5 percent in global average). Soil moisture estimation algorithms by active microwave sensors have been proposed by other researches, though, they are mainly applied to Synthetic Aperture Radars (SAR). TRMM/PR has poor spatial resolution compared with SAR, but the observation frequency (temporal resolution) is as high as passive microwave sensors. On behalf of such high observation frequency, our algorithm can be applied at daily scale which is suitable to analyze soil mois- ture variation. Though TRMM/PR observes by different incident angles from 0 to 18 degree, our algorithm is basically designed for 0(12) (0 observed by 12 degree). Assuming that observed 0 is composed of s (the backscattering at bare soil) and v 0 0 (the backscattering at vegetation layer), it is shown that the sensitivity of 0 to soil moisture is higher by smaller incident angle and the sensitivity of 0 to vegetation cover ratio is lower when observed by 12 degree. If the temporal change of vegetation is not significant, 0 observed by among 3 to 18 degree is well correlated with 0(12). In such case, 0 is converted to 0(12) by linear regression to increase the number of sample per day. The algorithm is firstly applied to Oklahoma in central United States and validated using in-situ soil moisture data. In Oklahoma, the effect of vegetation growth is not significant, then the soil moisture estimates well correspond with in-situ data. Contrastedly, in the Sahel of Africa which shows strong seasonal vegetation cy- cle, 0 obseved by only around 12 degree can be

  5. Influence of soil moisture on C incorporation and preservation in soil

    NASA Astrophysics Data System (ADS)

    Majumder, B.; Gocke, M.; Kuzyakov, Y.; Wiesenberg, G.

    2012-04-01

    Sequestration of atmospheric C into soil is only mediated by plant. Plant leaf can use atmospheric C by photosynthesis, thereafter this C is translocated into soil through plant root exudates and root fragments. With changing climatic conditions like decreasing rainfall especially during growing seasons of plants, water availability is thought to raise as limiting factor for plant growth and thus sequestration of C. However, little is known about the pathway of translocation of C from atmosphere to soil at different moisture regimes. To quantify atmospheric C incorporation in plant and its preservation into soil via the rhizosphere, a laboratory experiment on Juncus effusus, which is adapted to very moist conditions, was conducted. The plants were kept at levels of 70 and 100% soil moisture (relative to field capacity, which was adjusted daily to a difference of 30% between high and low moisture levels) for several months. C uptake by plants and translocation towards soil was traced 3, 7, 14 and 21 days after 14CO2 pulse labeling in bulk carbon and lipid fractions of plants and soils. J. effusus produced higher leaf and root biomass at 100% moisture as compared to 70% soil moisture. Consequently, rhizosphere-dry mass increased with increasing root biomass. Considering whole pot (plant & soil together), 14C proportion of shoots decreased and that of roots increased successively from 3 to 21 days after labelling due to translocation of C from shoots to roots. 14C content of rhizosphere was observed to be highest at day 14 after labeling at 100% soil moisture, implied an exceptional increase of root exudates, whereas root exudation was less in 70% soil moisture. As a result of C translocation from roots to soil, 14C content of soil increased until day 7 after labeling. Thereafter, soil 14C content decreased more sharply with time at 100% soil moisture than at 70% moisture. Moreover, to gain quantitative knowledge of 14C preservation, a comparatively recalcitrant C

  6. The impact of soil moisture on convective initiation in the Sahel

    NASA Astrophysics Data System (ADS)

    Taylor, Chris; Gounou, Amanda; Guichard, Francoise; Harris, Phil; Ellis, Richard; Couvreux, Fleur

    2010-05-01

    In many parts of the world, soil moisture exerts a strong influence on the fluxes of sensible and latent heat, and thereby the properties of the Planetary Boundary Layer (PBL). During the wet season in the Sahel, this influence is pronounced due to a combination of sparse vegetation, and the frequent passage of Mesoscale Convective Systems (MCS). Observations taken during the Special Observing Period of the African Monsoon Multidisciplinary Analysis (AMMA) demonstrated that the result is a PBL which exhibits substantial space-time variability linked to antecedent rainfall. In this presentation, satellite data are used to examine the potential feedback between mesoscale soil moisture features and the initiation of new MCS. Previous analysis using coarse resolution passive microwave data to map soil moisture features (Taylor and Ellis, GRL, 2006) had shown a strong preference for convective cloud to develop in the afternoon over dry soil. Here Land Surface Temperature data, with a resolution of 3 km, are used to identify wet and dry surfaces. This permits a more detailed examination of the location of convective initiation with respect to the underlying soil moisture. Using a storm tracking algorithm based on thermal infra red imagery from Meteosat, the initiation of over 300 storms from the 2006 wet season were analysed. The vertical structure of the atmosphere for each storm was documented using data from ECMWF analyses. The results indicate a marked preference for initiation associated with strong gradients in soil moisture. In particular, there is a tendency in the dataset for storms to develop during the afternoon on the upwind side of transitions from dry to wet surfaces. These findings are consistent with previous modelling studies which have shown a preference for convective initiation where soil moisture gradients induce a mesoscale circulation. This study provides important observational evidence of the process in a region where such feedbacks could have

  7. [Bare Soil Moisture Inversion Model Based on Visible-Shortwave Infrared Reflectance].

    PubMed

    Zheng, Xiao-po; Sun, Yue-jun; Qin, Qi-ming; Ren, Hua-zhong; Gao, Zhong-ling; Wu, Ling; Meng, Qing-ye; Wang, Jin-liang; Wang, Jian-hua

    2015-08-01

    Soil is the loose solum of land surface that can support plants. It consists of minerals, organics, atmosphere, moisture, microbes, et al. Among its complex compositions, soil moisture varies greatly. Therefore, the fast and accurate inversion of soil moisture by using remote sensing is very crucial. In order to reduce the influence of soil type on the retrieval of soil moisture, this paper proposed a normalized spectral slope and absorption index named NSSAI to estimate soil moisture. The modeling of the new index contains several key steps: Firstly, soil samples with different moisture level were artificially prepared, and soil reflectance spectra was consequently measured using spectroradiometer produced by ASD Company. Secondly, the moisture absorption spectral feature located at shortwave wavelengths and the spectral slope of visible wavelengths were calculated after analyzing the regular spectral feature change patterns of different soil at different moisture conditions. Then advantages of the two features at reducing soil types' effects was synthesized to build the NSSAI. Thirdly, a linear relationship between NSSAI and soil moisture was established. The result showed that NSSAI worked better (correlation coefficient is 0.93) than most of other traditional methods in soil moisture extraction. It can weaken the influences caused by soil types at different moisture levels and improve the bare soil moisture inversion accuracy.

  8. Estimating soil moisture in gullies from adjacent upland measurements through different observation operators

    NASA Astrophysics Data System (ADS)

    Gao, X.; Wu, P.; Zhao, X.; Zhou, X.; Zhang, B.; Shi, Y.; Wang, J.

    2013-04-01

    SummarySoil moisture datasets in large gullies are rare due to the difficulty of direct sampling in such landform. This study attempted to estimate spatial soil moisture averages in gullies from measurements of adjacent uplands by using observation operators, based on three-year soil moisture datasets in a gully catchment of the Loess Plateau. Soil moisture datasets in 2010 and 2011 were used for developing observation operators and those in 2012 were used for validation. Several nonlinear and linear methods including cumulative distribution function (CDF) matching method, linear regression (LRG) method, mean relative difference (MRD) method and linear rescaling (LRS) method were used to define observation operators. The results showed observation operators significantly improved the predictions compared to when using spatial averages of uplands as the direct surrogates for gullies. Among different methods, the CDF matching method performed best in estimating soil moisture in gullies followed by the LRG, LRS and MRD methods. Validation analysis showed that the linear observation operators such as LRS, MRD and LRG had better temporal transferability than the nonlinear operators. The MRD observation operators for various layers could successfully transfer in time whereas temporal transferability only succeeds to a limited extent for other observation operators. Furthermore, the MRD, LRG and LRS methods exhibited better vertical transferability than the CDF matching method. However, the transferability of observation operators across the whole root zone layers was not successful.

  9. Mapping surface soil moisture using an aircraft-based passive microwave instrument: algorithm and example

    NASA Astrophysics Data System (ADS)

    Jackson, T. J.; Le Vine, David E.

    1996-10-01

    Microwave remote sensing at L-band (21 cm wavelength) can provide a direct measurement of the surface soil moisture for a range of cover conditions and within reasonable error bounds. Surface soil moisture observations are rare and, therefore, the use of these data in hydrology and other disciplines has not been fully explored or developed. Without satellite-based observing systems, the only way to collect these data in large-scale studies is with an aircraft platform. Recently, aircraft systems such as the push broom microwave radiometer (PBMR) and the electronically scanned thinned array radiometer (ESTAR) have been developed to facilitate such investigations. In addition, field experiments have attempted to collect the passive microwave data as part of an integrated set of hydrologic data. One of the most ambitious of these investigations was the Washita'92 experiment. Preliminary analysis of these data has shown that the microwave observations are indicative of deterministic spatial and temporal variations in the surface soil moisture. Users of these data should be aware of a number of issues related to using aircraft-based systems and practical approaches to applying soil moisture estimation algorithms to large data sets. This paper outlines the process of mapping surface soil moisture from an aircraft-based passive microwave radiometer system for the Washita'92 experiment.

  10. Understanding of accuracy on calculated soil moisture field for the study of land-atmosphere interaction

    NASA Astrophysics Data System (ADS)

    Yorozu, K.; Tanaka, K.; Nakakita, E.; Ikebuchi, S.

    2007-12-01

    each region is focused on, high monthly correlation are shown in Illinois (0.83) and India (0.75). In these regions, inter-seasonal correlation is also high, but inter-annual correlation becomes lower. On the other hand, in China or Mongolia, all median value of correlation is low. And, both types of monthly correlation in Russia are relatively high (0.69, 0.65). In addition, inter-seasonal and inter-annual correlation are almost same as monthly correlation. From the result, from the viewpoint of regional scale, calculated soil moisture field in Illinois and India have high accuracy on monthly and inter-seasonal time scales. In Russia, calculated soil moisture field has relatively high accuracy on any time scales. Low accuracy on monthly time scale in China and Mongolia correspond to the result of multi-model analysis and validation (Guo et al., 2007). From this concurrent result, it is assumed that it is difficult to estimate the soil moisture field in China and Mongolia for any models or meteorological forcing data have some uncertainty. Nevertheless these reason should be investigated.

  11. Radon diffusion coefficients in soils of varying moisture content

    NASA Astrophysics Data System (ADS)

    Papachristodoulou, C.; Ioannides, K.; Pavlides, S.

    2009-04-01

    Radon is a naturally occurring radioactive gas that is generated in the Earth's crust and is free to migrate through soil and be released to the atmosphere. Due to its unique properties, soil gas radon has been established as a powerful tracer used for a variety of purposes, such as exploring uranium ores, locating geothermal resources and hydrocarbon deposits, mapping geological faults, predicting seismic activity or volcanic eruptions and testing atmospheric transport models. Much attention has also been given to the radiological health hazard posed by increased radon concentrations in the living and working environment. In order to exploit radon profiles for geophysical purposes and also to predict its entry indoors, it is necessary to study its transport through soils. Among other factors, the importance of soil moisture in such studies has been largely highlighted and it is widely accepted that any measurement of radon transport parameters should be accompanied by a measurement of the soil moisture content. In principle, validation of transport models in the field is encountered by a large number of uncontrollable and varying parameters; laboratory methods are therefore preferred, allowing for experiments to be conducted under well-specified and uniform conditions. In this work, a laboratory technique has been applied for studying the effect of soil moisture content on radon diffusion. A vertical diffusion chamber was employed, in which radon was produced from a 226Ra source, was allowed to diffuse through a soil column and was finally monitored using a silicon surface barrier detector. By solving the steady-state radon diffusion equation, diffusion coefficients (D) were determined for soil samples of varying moisture content (m), from null (m=0) to saturation (m=1). For dry soil, a D value of 4.1×10-7 m2s-1 was determined, which increased moderately by a factor of ~3 for soil with low moisture content, i.e. up to m ~0.2. At higher water fractions, a decrease

  12. Modeling Soil Moisture in the Mojave Desert

    USGS Publications Warehouse

    Miller, David M.; Hughson, Debra; Schmidt, Kevin M.

    2008-01-01

    The Mojave Desert is an arid region of southeastern California and parts of Nevada, Arizona, and Utah; the desert occupies more than 25,000 square miles (fig. 1). Ranging from below sea level to over 5,000 feet (1,524 m) in elevation, the Mojave Desert is considered a ?high desert.? On the west and southwest it is bounded by the Sierra Nevada, the San Gabriel, and the San Bernardino Mountains. These imposing mountains intercept moisture traveling inland from the Pacific Ocean, producing arid conditions characterized by extreme fluctuations in daily temperatures, strong seasonal winds, and an average annual precipitation of less than six inches. The Mojave Desert lies farther south and at a lower elevation than the cooler Great Basin Desert and grades southward into the even lower and hotter Sonoran Desert.

  13. [Effects of nitrogen fertilization, soil moisture and soil temperature on soil respiration during summer fallow season].

    PubMed

    Zhang, Fang; Guo, Sheng-Li; Zou, Jun-Liang; Li, Ze; Zhang, Yan-Jun

    2011-11-01

    On the loess plateau, summer fallow season is a hot rainy time with intensive soil microbe activities. To evaluate the response of soil respiration to soil moisture, temperature, and N fertilization during this period is helpful for a deep understanding about the temporal and spatial variability of soil respiration and its impact factors, then a field experiment was conducted in the Changwu State Key Agro-Ecological Experimental Station, Shaanxi, China. The experiment included five N application rates: unfertilized 0 (N0), 45 (N45), 90 (N90), 135(N135), and 180 (N180) kg x hm(-2). The results showed that at the fallow stage, soil respiration rate significantly enhanced from 1.24 to 1.91 micromol x (m2 x s)(-1) and the average of soil respiration during this period [6.20 g x (m2 x d)(-1)] was close to the growing season [6.95 g x (m2 x d)(-1)]. The bivariate model of soil respiration with soil water and soil temperature was better than the single-variable model, but not so well as the three-factor model when explaining the actual changes of soil respiration. Nitrogen fertilization alone accounted for 8% of the variation soil respiration. Unlike the single-variable model, the results could provide crucial information for further research of multiple factors on soil respiration and its simulation.

  14. The International Soil Moisture Network - A data hosting facility for in situ soil moisture measurements in support of SMOS cal/val

    NASA Astrophysics Data System (ADS)

    Dorigo, Wouter; Hahn, Sebastian; Hohensinn, Roland; Paulik, Christoph; Wagner, Wolfgang; Drusch, Matthias; van Oevelen, Peter

    2010-05-01

    In situ soil moisture observations are crucial for validating SMOS and other satellite based soil moisture products. In order to support valid conclusions about the accuracy of such products the in situ soil moisture observations used need to be available for many locations worldwide and have to be intercomparable. So far, the latter requirement is usually not met as the different locally and regionally operating networks apply neither a standard measurement technique nor a standard protocol. The need for international cooperation in constructing centralized and homogenized global soil moisture data sets has been recognized by the international community. To support the validation of satellite soil moisture products the International Soil Moisture Working Group (ISMWG) has suggested constructing a standardized global data base of in-situ soil moisture measurements. Further, the creation of multi-source soil moisture datasets, including in situ observations, was included in the GEO 2009-2011 Work Plan under sub-task WA-08-01a led by GEWEX (Global Energy and Water Cycle Experiment) and ESA (European Space Agency). As fruit of this initiative and in support of SMOS calibration and validation activities, ESA decided to support the development of the International Soil Moisture Network. The International Soil Moisture Network is a web based data hosting facility for collecting and redistributing in situ soil moisture measurements from existing soil moisture networks. Incoming data are carefully checked for their quality and homogenized before being stored in the database. A web interface allows the user to easily query and download the data. Special care has been taken to make downloads compliant with international data and metadata standards such as GEWEX CEOP, ISO 19115, and INPIRE of the European Commission. This presentation provides insight in the design considerations, implementation, functionalities and outputs of the data hosting facility. The International Soil

  15. Assimilation of streamflow and soil moisture observations in a distributed physically-based hydrological model

    NASA Astrophysics Data System (ADS)

    Trudel, M.; Leconte, R.; Paniconi, C.

    2012-04-01

    Data assimilation techniques not only enhance model simulations and predictions, they also give the opportunity to pose a diagnostic on both model and observations used in the assimilation process. The goal of this research is to assimilate streamflow and soil moisture in a distributed physically-based hydrological model, CATHY (CATchment HYdrology). The study site is the des Anglais Watershed, a 690-km2 river basin located in southern Québec, Canada. An ensemble Kalman filter was used to assimilate streamflow observations at the basin outlet and at interior locations, as well as soil moisture at different depths (15, 45, and 90 cm) measured with probes (6 stations) and surface soil moisture estimated from radar remote sensing. The use of a Latin hypercube sampling instead of the Monte Carlo method to generate the ensemble reduced the size of ensemble, and therefore the calculation time. An important issue in data assimilation is the estimation of error covariance matrices. Different post-assimilation diagnostics, based on innovations (observation-minus-background), analysis residuals (observation-minus-analysis) and analysis increments (analysis-minus-background) were used to evaluate assimilation optimality. A calibration approach was performed to determine the standard deviation of model parameters, forcing data and observations that lead to optimal assimilations. The analysis of innovations showed a lag between the model prediction and the observation during rainfall events. The assimilation of streamflow observations (outlet or interior locations) corrected this discrepancy. The assimilation of outlet streamflow observations improved the Nash-Sutcliffe efficiencies (NSE) at both outlet and interior point locations. The structure of the state vector used in this study allowed the assimilation of outlet streamflow observations to have an impact over streamflow simulations at interior point locations. Indeed, the state vector contains the outlet streamflow (Qout

  16. Inter-Comparison of Retrieved and Modelled Soil Moisture and Coherency of Remotely Sensed Hydrology Data

    NASA Astrophysics Data System (ADS)

    Kolassa, Jana; Aires, Filipe

    2013-04-01

    A neural network algorithm has been developed for the retrieval of Soil Moisture (SM) from global satellite observations. The algorithm estimates soil moisture from a synergy of passive and active microwave, infrared and visible satellite observations in order to capture the different SM variabilities that the individual sensors are sensitive to. The advantages and drawbacks of each satellite observation have been analysed and the information type and content carried by each observation have been determined. A global data set of monthly mean soil moisture for the 1993-2000 period has been computed with the neural network algorithm (Kolassa et al., in press, 2012). The resulting soil moisture retrieval product has then been used in an inter-comparison study including soil moisture from (1) the HTESSEL model (Balsamo et al., 2009), (2) the WACMOS satellite product (Liu et al., 2011), and (3) in situ measurements from the International Soil Moisture Network (Dorigo et al., 2011). The analysis showed that the satellite remote sensing products are well-suited to capture the spatial variability of the in situ data and even show the potential to improve the modelled soil moisture. Both satellite retrievals also display a good agreement with the temporal structures of the in situ data, however, HTESSEL appears to be more suitable for capturing the temporal variability (Kolassa et al., in press, 2012). The use of this type of neural network approach is currently being investigated as a retrieval option for the SMOS mission. Our soil moisture retrieval product has also been used in a coherence study with precipitation data from GPCP (Adler et al., 2003) and inundation estimates from GIEMS (Prigent et al., 2007). It was investigated on a global scale whether the three observation-based datasets are coherent with each other and show the expected behaviour. For most regions of the Earth, the datasets were consistent and the behaviour observed could be explained with the known

  17. Seasonal soil moisture patterns in contrasting habitats in the Willamette Valley, Oregon

    EPA Science Inventory

    Changing seasonal soil moisture regimes caused by global warming may alter plant community composition in sensitive habitats such as wetlands and oak savannas. To evaluate such changes, an understanding of typical seasonal soil moisture regimes is necessary. The primary objective...

  18. Ground truth report 1975 Phoenix microwave experiment. [Joint Soil Moisture Experiment

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J.

    1975-01-01

    Direct measurements of soil moisture obtained in conjunction with aircraft data flights near Phoenix, Arizona in March, 1975 are summarized. The data were collected for the Joint Soil Moisture Experiment.

  19. Evaluation of SMAP Level 2 Soil Moisture Algorithms Using SMOS Data

    NASA Technical Reports Server (NTRS)

    Bindlish, Rajat; Jackson, Thomas J.; Zhao, Tianjie; Cosh, Michael; Chan, Steven; O'Neill, Peggy; Njoku, Eni; Colliander, Andreas; Kerr, Yann; Shi, J. C.

    2011-01-01

    The objectives of the SMAP (Soil Moisture Active Passive) mission are global measurements of soil moisture and land freeze/thaw state at 10 km and 3 km resolution, respectively. SMAP will provide soil moisture with a spatial resolution of 10 km with a 3-day revisit time at an accuracy of 0.04 m3/m3 [1]. In this paper we contribute to the development of the Level 2 soil moisture algorithm that is based on passive microwave observations by exploiting Soil Moisture Ocean Salinity (SMOS) satellite observations and products. SMOS brightness temperatures provide a global real-world, rather than simulated, test input for the SMAP radiometer-only soil moisture algorithm. Output of the potential SMAP algorithms will be compared to both in situ measurements and SMOS soil moisture products. The investigation will result in enhanced SMAP pre-launch algorithms for soil moisture.

  20. Mapping Spatial Variability of Soil Moisture in a Semi-distributed Hydrologic Modelling Framework

    NASA Astrophysics Data System (ADS)

    Ajami, Hoori; Sharma, Ashish

    2016-04-01

    The Soil Moisture and Runoff simulation Toolkit (SMART) is a computationally efficient semi-distributed hydrological modelling framework developed for water balance simulations at a catchment scale. The modelling framework is based upon the delineation of contiguous and topologically connected Hydrologic Response Units (HRUs) and distributed cross sections or equivalent cross sections (ECS) in each first order sub-basin to represent hillslope hydrologic processes. HRUs are delineated in each first order sub-basin based on topographic and geomorphic analysis of the entire catchment. A 2-d distributed hydrological model based on the Richards' equation performs water balance simulations across a series of ECSs formulated by aggregating topographic and physiographic properties of the part or entire first order sub-basins. Delineation of ECSs has the advantage of reducing computational time while maintaining reasonable accuracy in simulated fluxes and states. While HRU level soil moisture is well approximated in the ECS formulation compared to the distributed modelling approaches, spatial variability of soil moisture within a given HRU inside an ECS is ignored. In this study, we developed a disaggregation scheme for soil moisture distribution within every ECS formulated in a first order sub-basin. The statistical disaggregation scheme is developed based on soil moisture simulations of the Baldry sub-catchment, Australia using the integrated land surface-groundwater model, ParFlow.CLM. ParFlow is a variably saturated flow model that solves the 3D Richards' equation for the sub-surface and it is coupled to the Common Land Model (CLM). The disaggregation scheme preserves the mean sub-basin soil moisture and maintains temporal correlation of simulated daily soil moisture. Our preliminary results illustrate that the spatial disaggregation scheme can approximate spatially distributed soil moisture field produced by ParFlow.CLM at 60 m resolution. In addition, the

  1. Towards Generating Long-term AMSR-based Soil Moisture Data Record

    NASA Astrophysics Data System (ADS)

    Mladenova, I. E.; Jackson, T. J.; Bindlish, R.; Cosh, M. H.

    2014-12-01

    in order to ensure consistency between both instruments. The corresponding soil moisture retrievals from AMSR-E and AMSR2 demonstrated reasonable agreement relative to in situ data. A detailed discussion that focuses on this analysis as well as possible approaches for removing the observed bias in the brightness temperature observations will be presented.

  2. Evaluation of an agro--ecosystem model using cosmicray neutron soil moisture

    NASA Astrophysics Data System (ADS)

    Carr, Benjamin David

    detector, a soil texture sensitivity analysis was performed using Agro--IBIS to determine the texture that would produce the best hydraulic properties and therefore the best estimate of soil moisture. The maize year results show Agro--IBIS with silt loam soil texture with a RMSE of 0.037 cm3 cm-33 and bias of -0.02 cm3 cm3 cm--3 and the updated Agro--IBIS (AgroIBIS--VSF) had a RMSE of 0.033 cm3 cm--3 and bias of -0:006 cm3 cm-3 compared to the cosmic--ray neutron soil moisture. In the soybean year, sandy clay loam with Agro--IBIS had a RMSE of 0.028 cm3 cm --3 and bias of -0.014 cm3 cm--3 and AgroIBIS--VSF had a RMSE of 0.028 cm3 cm --3 and bias of 0.023 cm3 cm--3. These low values for RMSE and bias demonstrate that the models are in good agreement with the field--scale observation of soil moisture for the growing season in 2011 (maize) and 2012 (soybean). Adding a water table did not improve AgroIBIS--VSF's accuracy against the observed cosmic--ray neutron soil moisture in the top 20 cm, except with the sandy clay loam soil texture simulations. The original version of Agro--IBIS conserved water to within 1% of total precipitation, but the water balance for AgroIBIS--VSF lost close to 10%. Both the original and new version of Agro--IBIS performed poorly during the 2012 drought year as shown by their inconsistency with observed yield and the change in soil moisture storage, as well as expected LAI and canopy height.

  3. Trends in Soil Moisture Reflect More Than Slope Position: Soils on San Cristóbal Island, Galápagos as a Case Study

    NASA Astrophysics Data System (ADS)

    Percy, M.; Singha, K.; Benninger, L. K.; Riveros-Iregui, D. A.; Mirus, B. B.

    2015-12-01

    The spatial and temporal distribution of soil moisture in tropical critical zones depends upon a number of variables including topographic position, soil texture, overlying vegetation, and local microclimates. We investigate the influences on soil moisture on a tropical basaltic island (San Cristóbal, Galápagos) across a variety of microclimates during the transition from the wetter to the drier season. We used multiple approaches to characterize spatial and temporal patterns in soil moisture at four sites across microclimates ranging from arid to very humid. The microclimates on San Cristóbal vary with elevation, so our monitoring includes two sites in the transitional zone at lower elevations, one in the humid zone at moderate elevations, and one in the very humid zone in higher elevations. We made over 250 near-surface point measurements per site using a Hydrosense II probe, and estimated the lateral variability in soil moisture across each site with an EM-31 electrical conductivity meter. We also monitored continuous time-series of in-situ soil moisture dynamics using three nested TDR probes collocated with meteorological stations at each of the sites. Preliminary analysis indicates that soils in the very humid zone have lower electrical conductivities across all the hillslopes as compared to the humid and transitional zones, which suggests that additional factors beyond climate and slope position are important. While soil texture across the very humid site is fairly uniform, variations in vegetation have a strong control on soil moisture patterns. At the remaining sites the vegetation patterns also have a very strong local influence on soil moisture, but correlation between the depth to clay layers and soil moisture patterns suggests that mineralogy is also important. Our findings suggest that the microclimatic setting is a crucial consideration for understanding relations between vegetation, soil texture, and soil-moisture dynamics in tropical critical

  4. Dielectric properties of soils as a function of moisture content

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Ulaby, F. T.

    1974-01-01

    Soil dielectric constant measurements are reviewed and the dependence of the dielectric constant on various soil parameters is determined. Moisture content is given special attention because of its practical significance in remote sensing and because it represents the single most influential parameter as far as soil dielectric properties are concerned. Relative complex dielectric constant curves are derived as a function of volumetric soil water content at three frequencies (1.3 GHz, 4.0 GHz, and 10.0 GHz) for each of three soil textures (sand, loam, and clay). These curves, presented in both tabular and graphical form, were chosen as representative of the reported experimental data. Calculations based on these curves showed that the power reflection coefficient and emissivity, unlike skin depth, vary only slightly as a function of frequency and soil texture.

  5. Soil microbial community responses to antibiotic-contaminated manure under different soil moisture regimes.

    PubMed

    Reichel, Rüdiger; Radl, Viviane; Rosendahl, Ingrid; Albert, Andreas; Amelung, Wulf; Schloter, Michael; Thiele-Bruhn, Sören

    2014-01-01

    Sulfadiazine (SDZ) is an antibiotic frequently administered to livestock, and it alters microbial communities when entering soils with animal manure, but understanding the interactions of these effects to the prevailing climatic regime has eluded researchers. A climatic factor that strongly controls microbial activity is soil moisture. Here, we hypothesized that the effects of SDZ on soil microbial communities will be modulated depending on the soil moisture conditions. To test this hypothesis, we performed a 49-day fully controlled climate chamber pot experiments with soil grown with Dactylis glomerata (L.). Manure-amended pots without or with SDZ contamination were incubated under a dynamic moisture regime (DMR) with repeated drying and rewetting changes of >20 % maximum water holding capacity (WHCmax) in comparison to a control moisture regime (CMR) at an average soil moisture of 38 % WHCmax. We then monitored changes in SDZ concentration as well as in the phenotypic phospholipid fatty acid and genotypic 16S rRNA gene fragment patterns of the microbial community after 7, 20, 27, 34, and 49 days of incubation. The results showed that strongly changing water supply made SDZ accessible to mild extraction in the short term. As a result, and despite rather small SDZ effects on community structures, the PLFA-derived microbial biomass was suppressed in the SDZ-contaminated DMR soils relative to the CMR ones, indicating that dynamic moisture changes accelerate the susceptibility of the soil microbial community to antibiotics.

  6. Comparison of Multiple Satellite Soil Moisture Products Using In-Situ Soil Moisture Observations Over the Continental United States

    NASA Astrophysics Data System (ADS)

    Chavez, N.; Galvan, J., III; McRoberts, D. B.; Quiring, S. M.; Ford, T.

    2015-12-01

    We evaluate the skill of multiple satellite-derived soil moisture products using in-situ soil moisture observations from over 50 long-record stations in the continental United States. The satellite products compared include AMSR-E, ASCAT, SMOS, TMI, ESA CCI, and SMAP. Daily volumetric water content and percentiles of volumetric water content from each satellite product is compared with the observations from the corresponding station. We evaluate the similarity between the satellite and in-situ products with regard to the climate and biome conditions of the area as well as the representativeness of the in-situ station for the satellite footprint. We find moderate-to-strong correspondence between all satellite products and in-situ soil moisture observations. Differences between the satellite and observation datasets are attributed to varying land cover conditions, snow cover, and the spatial mismatch of the point observation with the satellite product grid cell. In general, our results suggest that the satellite products evaluated can accurately capture temporal variability of soil moisture near the surface, but do show systematic offsets at several stations across the study region.

  7. Remote Satellite Soil Moisture Mapping for the ERDC Countermine Simulation Test Bed

    DTIC Science & Technology

    2010-03-01

    river beds, deserts, riparian areas and forests; 2. Development of a reliable downscaling procedure for Landsat soil moisture maps (30 m) to Quickbird...on roads and in river beds, deserts, riparian areas and forests; 2. Development of a reliable downscaling procedure for Landsat soil moisture maps... river the QuickBird soil moisture seems to be too low (Figures 7, 8, 9, 10, 11, 12) while on the asphalt road the soil moisture is estimated too high (13

  8. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale.

    PubMed

    Hursh, Andrew; Ballantyne, Ashley; Cooper, Leila; Maneta, Marco; Kimball, John; Watts, Jennifer

    2017-05-01

    Soil respiration (Rs) is a major pathway by which fixed carbon in the biosphere is returned to the atmosphere, yet there are limits to our ability to predict respiration rates using environmental drivers at the global scale. While temperature, moisture, carbon supply, and other site characteristics are known to regulate soil respiration rates at plot scales within certain biomes, quantitative frameworks for evaluating the relative importance of these factors across different biomes and at the global scale require tests of the relationships between field estimates and global climatic data. This study evaluates the factors driving Rs at the global scale by linking global datasets of soil moisture, soil temperature, primary productivity, and soil carbon estimates with observations of annual Rs from the Global Soil Respiration Database (SRDB). We find that calibrating models with parabolic soil moisture functions can improve predictive power over similar models with asymptotic functions of mean annual precipitation. Soil temperature is comparable with previously reported air temperature observations used in predicting Rs and is the dominant driver of Rs in global models; however, within certain biomes soil moisture and soil carbon emerge as dominant predictors of Rs. We identify regions where typical temperature-driven responses are further mediated by soil moisture, precipitation, and carbon supply and regions in which environmental controls on high Rs values are difficult to ascertain due to limited field data. Because soil moisture integrates temperature and precipitation dynamics, it can more directly constrain the heterotrophic component of Rs, but global-scale models tend to smooth its spatial heterogeneity by aggregating factors that increase moisture variability within and across biomes. We compare statistical and mechanistic models that provide independent estimates of global Rs ranging from 83 to 108 Pg yr(-1) , but also highlight regions of uncertainty

  9. [Dynamic variations of soil moisture in Haloxylon ammodendron root zone in Gurbantunggut Desert].

    PubMed

    Yang, Yan-feng; Zhou, Hong-fei; Xu, Li-gang

    2011-07-01

    To understand the dynamic variations of soil moisture in the root zone of original Haloxylon ammodendron land is of significance for further understanding the interactions between hydrological processes and vegetations in the Gurbantunggut Desert. By using TDR probes system, this paper measured the volumetric soil moisture content in H. ammodendron land in the southern edge of Gurbantunggut Desert, and analyzed the spatiotemporal distribution of soil moisture in the root zone of H. ammodendron in August 2007-July 2008. There existed 'wet island' effect in H. ammodendron root zone. The 0-60 cm soil water storage in the root zone was 1.49 times of that in bare land. Such a difference was greater in summer than in spring and after rainfall than before rainfall. The soil moisture content in the Desert was the richest in spring after snow melting and the lowest in winter, and its annual variation could be divided into three periods, i.e., quick supplement-consumption period in spring (from March to May), slow consumption period in summer and autumn (from June to September), and stable period in winter (form October to next February). Based on wavelet analysis, the soil moisture variation in H. ammodendron root zone and bare land had a short cycle of 43 and 40 days and a long cycle of 110 and 103 days, respectively. The relatively rich soil moisture content in H. ammodendron root zone could be mainly due to the stem flow water collection, tree canopy shading, and the better water percolating capacity in root zone.

  10. SIR-C Measurements of Soil Moisture, Vegetation and Surface Roughness and their Hydrological Application

    NASA Technical Reports Server (NTRS)

    Wang, James R.

    1996-01-01

    The objectives of the study are: (1) Analysis of SIR-C/X-SAR response to soil moisture, vegetation and surface roughness and development of an algorithm to retrieve these parameters; (2) Combination of the visible and near-infrared data and the SIR-C/X-SAR data to improve the range and accuracy of vegetation classification; (3) Testing of theoretical models for microwave propagation with SIR-C/X-SAR and microwave radiometric measurements over rough surfaces; and (4) Evaluation of a water balance model using SIR-C/X-SAR derived soil moisture values and other ancillary data. Progress, significant results and future plans are presented.

  11. Distributed Soil Moisture Estimation in a Mountainous Semiarid Basin: Constraining Soil Parameter Uncertainty through Field Studies

    NASA Astrophysics Data System (ADS)