NASA Astrophysics Data System (ADS)
Tromp-van Meerveld, I.; McDonnell, J.
2009-05-01
We present an assessment of electromagnetic induction (EM) as a potential rapid and non-invasive method to map soil moisture patterns at the Panola (GA, USA) hillslope. We address the following questions regarding the applicability of EM measurements for hillslope hydrological investigations: (1) Can EM be used for soil moisture measurements in areas with shallow soils?; (2) Can EM represent the temporal and spatial patterns of soil moisture throughout the year?; and (3) can multiple frequencies be used to extract additional information content from the EM approach and explain the depth profile of soil moisture? We found that the apparent conductivity measured with the multi-frequency GEM-300 was linearly related to soil moisture measured with an Aqua-pro capacitance sensor below a threshold conductivity and represented the temporal patterns in soil moisture well. During spring rainfall events that wetted only the surface soil layers the apparent conductivity measurements explained the soil moisture dynamics at depth better than the surface soil moisture dynamics. All four EM frequencies (7290, 9090, 11250, and 14010 Hz) were highly correlated and linearly related to each other and could be used to predict soil moisture. This limited our ability to use the four different EM frequencies to obtain a soil moisture profile with depth. The apparent conductivity patterns represented the observed spatial soil moisture patterns well when the individually fitted relationships between measured soil moisture and apparent conductivity were used for each measurement point. However, when the same (master) relationship was used for all measurement locations, the soil moisture patterns were smoothed and did not resemble the observed soil moisture patterns very well. In addition, the range in calculated soil moisture values was reduced compared to observed soil moisture. Part of the smoothing was likely due to the much larger measurement area of the GEM-300 compared to the Aqua-pro soil moisture measurements.
NASA Astrophysics Data System (ADS)
Tromp-van Meerveld, H. J.; McDonnell, J. J.
2009-04-01
SummaryHillslopes are fundamental landscape units, yet represent a difficult scale for measurements as they are well-beyond our traditional point-scale techniques. Here we present an assessment of electromagnetic induction (EM) as a potential rapid and non-invasive method to map soil moisture patterns at the hillslope scale. We test the new multi-frequency GEM-300 for spatially distributed soil moisture measurements at the well-instrumented Panola hillslope. EM-based apparent conductivity measurements were linearly related to soil moisture measured with the Aqua-pro capacitance sensor below a threshold conductivity and represented the temporal patterns in soil moisture well. During spring rainfall events that wetted only the surface soil layers the apparent conductivity measurements explained the soil moisture dynamics at depth better than the surface soil moisture dynamics. All four EM frequencies (7.290, 9.090, 11.250, and 14.010 kHz) were highly correlated and linearly related to each other and could be used to predict soil moisture. This limited our ability to use the four different EM frequencies to obtain a soil moisture profile with depth. The apparent conductivity patterns represented the observed spatial soil moisture patterns well when the individually fitted relationships between measured soil moisture and apparent conductivity were used for each measurement point. However, when the same (master) relationship was used for all measurement locations, the soil moisture patterns were smoothed and did not resemble the observed soil moisture patterns very well. In addition the range in calculated soil moisture values was reduced compared to observed soil moisture. Part of the smoothing was likely due to the much larger measurement area of the GEM-300 compared to the soil moisture measurements.
Stochastic Analysis and Probabilistic Downscaling of Soil Moisture
NASA Astrophysics Data System (ADS)
Deshon, J. P.; Niemann, J. D.; Green, T. R.; Jones, A. S.
2017-12-01
Soil moisture is a key variable for rainfall-runoff response estimation, ecological and biogeochemical flux estimation, and biodiversity characterization, each of which is useful for watershed condition assessment. These applications require not only accurate, fine-resolution soil-moisture estimates but also confidence limits on those estimates and soil-moisture patterns that exhibit realistic statistical properties (e.g., variance and spatial correlation structure). The Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) model downscales coarse-resolution (9-40 km) soil moisture from satellite remote sensing or land-surface models to produce fine-resolution (10-30 m) estimates. The model was designed to produce accurate deterministic soil-moisture estimates at multiple points, but the resulting patterns do not reproduce the variance or spatial correlation of observed soil-moisture patterns. The primary objective of this research is to generalize the EMT+VS model to produce a probability density function (pdf) for soil moisture at each fine-resolution location and time. Each pdf has a mean that is equal to the deterministic soil-moisture estimate, and the pdf can be used to quantify the uncertainty in the soil-moisture estimates and to simulate soil-moisture patterns. Different versions of the generalized model are hypothesized based on how uncertainty enters the model, whether the uncertainty is additive or multiplicative, and which distributions describe the uncertainty. These versions are then tested by application to four catchments with detailed soil-moisture observations (Tarrawarra, Satellite Station, Cache la Poudre, and Nerrigundah). The performance of the generalized models is evaluated by comparing the statistical properties of the simulated soil-moisture patterns to those of the observations and the deterministic EMT+VS model. The versions of the generalized EMT+VS model with normally distributed stochastic components produce soil-moisture patterns with more realistic statistical properties than the deterministic model. Additionally, the results suggest that the variance and spatial correlation of the stochastic soil-moisture variations do not vary consistently with the spatial-average soil moisture.
Soil moisture and vegetation patterns in northern California forests
James R. Griffin
1967-01-01
Twenty-nine soil-vegetation plots were studied in a broad transect across the southern Cascade Range. Variations in soil moisture patterns during the growing season and in soil moisture tension values are discussed. Plot soil moisture values for 40- and 80-cm. depths in August and September are integrated into a soil drought index. Vegetation patterns are described in...
NASA Astrophysics Data System (ADS)
Dong, Jingnuo; Ochsner, Tyson E.
2018-03-01
Soil moisture patterns are commonly thought to be dominated by land surface characteristics, such as soil texture, at small scales and by atmospheric processes, such as precipitation, at larger scales. However, a growing body of evidence challenges this conceptual model. We investigated the structural similarity and spatial correlations between mesoscale (˜1-100 km) soil moisture patterns and land surface and atmospheric factors along a 150 km transect using 4 km multisensor precipitation data and a cosmic-ray neutron rover, with a 400 m diameter footprint. The rover was used to measure soil moisture along the transect 18 times over 13 months. Spatial structures of soil moisture, soil texture (sand content), and antecedent precipitation index (API) were characterized using autocorrelation functions and fitted with exponential models. Relative importance of land surface characteristics and atmospheric processes were compared using correlation coefficients (r) between soil moisture and sand content or API. The correlation lengths of soil moisture, sand content, and API ranged from 12-32 km, 13-20 km, and 14-45 km, respectively. Soil moisture was more strongly correlated with sand content (r = -0.536 to -0.704) than with API for all but one date. Thus, land surface characteristics exhibit coherent spatial patterns at scales up to 20 km, and those patterns often exert a stronger influence than do precipitation patterns on mesoscale spatial patterns of soil moisture.
Drive by Soil Moisture Measurement: A Citizen Science Project
NASA Astrophysics Data System (ADS)
Senanayake, I. P.; Willgoose, G. R.; Yeo, I. Y.; Hancock, G. R.
2017-12-01
Two of the common attributes of soil moisture are that at any given time it varies quite markedly from point to point, and that there is a significant deterministic pattern that underlies this spatial variation and which is typically 50% of the spatial variability. The spatial variation makes it difficult to determine the time varying catchment average soil moisture using field measurements because any individual measurement is unlikely to be equal to the average for the catchment. The traditional solution to this is to make many measurements (e.g. with soil moisture probes) spread over the catchment, which is very costly and manpower intensive, particularly if we need a time series of soil moisture variation across a catchment. An alternative approach, explored in this poster is to use the deterministic spatial pattern of soil moisture to calibrate one site (e.g. a permanent soil moisture probe at a weather station) to the spatial pattern of soil moisture over the study area. The challenge is then to determine the spatial pattern of soil moisture. This poster will present results from a proof of concept project, where data was collected by a number of undergraduate engineering students, to estimate the spatial pattern. The approach was to drive along a series of roads in a catchment and collect soil moisture measurements at the roadside using field portable soil moisture probes. This drive was repeated a number of times over the semester, and the time variation and spatial persistence of the soil moisture pattern were examined. Provided that the students could return to exactly the same location on each collection day there was a strong persistent pattern in the soil moisture, even while the average soil moisture varied temporally as a result of preceding rainfall. The poster will present results and analysis of the student data, and compare these results with several field sites where we have spatially distributed permanently installed soil moisture probes. The poster will also outline an experimental design, based on our experience, that will underpin a proposed citizen science project involving community environment and farming groups, and high school students.
NASA Astrophysics Data System (ADS)
Korres, W.; Reichenau, T. G.; Schneider, K.
2012-12-01
Soil moisture is one of the fundamental variables in hydrology, meteorology and agriculture, influencing the partitioning of solar energy into latent and sensible heat flux as well as the partitioning of precipitation into runoff and percolation. Numerous studies have shown that in addition to natural factors (rainfall, soil, topography etc.) agricultural management is one of the key drivers for spatio-temporal patterns of soil moisture in agricultural landscapes. Interactions between plant growth, soil hydrology and soil nitrogen transformation processes are modeled by using a dynamically coupled modeling approach. The process-based ecohydrological model components of the integrated decision support system DANUBIA are used to identify the important processes and feedbacks determining soil moisture patterns in agroecosystems. Integrative validation of plant growth and surface soil moisture dynamics serves as a basis for a spatially distributed modeling analysis of surface soil moisture patterns in the northern part of the Rur catchment (1100 sq km), Western Germany. An extensive three year dataset (2007-2009) of surface soil moisture-, plant- (LAI, organ specific biomass and N) and soil- (texture, N, C) measurements was collected. Plant measurements were carried out biweekly for winter wheat, maize, and sugar beet during the growing season. Soil moisture was measured with three FDR soil moisture stations. Meteorological data was measured with an eddy flux station. The results of the model validation showed a very good agreement between the modeled plant parameters (biomass, green LAI) and the measured parameters with values between 0.84 and 0.98 (Willmotts index of agreement). The modeled surface soil moisture (0 - 20 cm) showed also a very favorable agreement with the measurements for winter wheat and sugar beet with an RMSE between 1.68 and 3.45 Vol.-%. For maize, the RMSE was less favorable particularly in the 1.5 months prior to harvest. The modeled soil moisture remained in contrast to the measurements very responsive to precipitation with high soil moisture after precipitation events. This behavior indicates that the soil properties might have changed due to the formation of a surface crust or seal towards the end of the growing season. Spatial soil moisture patterns were investigated using a grid resolution of 150 meter. Spatial autocorrelation was computed on a daily basis using patterns of soil texture as well as transpiration and precipitation indices as co-variables. Spatial patterns of surface soil moisture are mostly determined by the structure of the soil properties (soil type) during winter, early growing season and after harvest of all crops. Later in the growing season, after establishment of a closed canopy the dependence of the soil moisture patterns on soil texture patterns becomes smaller and diminishes quickly after precipitation events, due to differences of the transpiration rate of the different crops. When changing the spatial scale of the analysis, the highest autocorrelation values can be found on a grid cell size between 450 and 1200 meters. Thus, small scale variability of transpiration induced by the land use pattern almost averages out, leaving the larger scale structure of soil properties to explain the soil moisture patterns.
A multiyear study of soil moisture patterns across agricultural and forested landscapes
NASA Astrophysics Data System (ADS)
Georgakakos, C. B.; Hofmeister, K.; O'Connor, C.; Buchanan, B.; Walter, T.
2017-12-01
This work compares varying spatial and temporal soil moisture patterns in wet and dry years between forested and agricultural landscapes. This data set spans 6 years (2012-2017) of snow-free soil moisture measurements across multiple watersheds and land covers in New York State's Finger Lakes region. Due to the relatively long sampling period, we have captured fluctuations in soil moisture dynamics across wetter, dryer, and average precipitation years. We can therefore analyze response of land cover types to precipitation under varying climatic and hydrologic conditions. Across the study period, mean soil moisture in forest soils was significantly drier than in agricultural soils, and exhibited a smaller range of moisture conditions. In the drought year of 2016, soil moisture at all sites was significantly drier compared to the other years. When comparing the effects of land cover and year on soil moisture, we found that land cover had a more significant influence. Understanding the difference in landscape soil moisture dynamics between forested and agricultural land will help predict watershed responses to changing precipitation patterns in the future.
NASA Astrophysics Data System (ADS)
Martini, Edoardo; Wollschläger, Ute; Kögler, Simon; Behrens, Thorsten; Dietrich, Peter; Reinstorf, Frido; Schmidt, Karsten; Weiler, Markus; Werban, Ulrike; Zacharias, Steffen
2016-04-01
Characterizing the spatial patterns of soil moisture is critical for hydrological and meteorological models, as soil moisture is a key variable that controls matter and energy fluxes and soil-vegetation-atmosphere exchange processes. Deriving detailed process understanding at the hillslope scale is not trivial, because of the temporal variability of local soil moisture dynamics. Nevertheless, it remains a challenge to provide adequate information on the temporal variability of soil moisture and its controlling factors. Recent advances in wireless sensor technology allow monitoring of soil moisture dynamics with high temporal resolution at varying scales. In addition, mobile geophysical methods such as electromagnetic induction (EMI) have been widely used for mapping soil water content at the field scale with high spatial resolution, as being related to soil apparent electrical conductivity (ECa). The objective of this study was to characterize the spatial and temporal pattern of soil moisture at the hillslope scale and to infer the controlling hydrological processes, integrating well established and innovative sensing techniques, as well as new statistical methods. We combined soil hydrological and pedological expertise with geophysical measurements and methods from digital soil mapping for designing a wireless soil moisture monitoring network. For a hillslope site within the Schäfertal catchment (Central Germany), soil water dynamics were observed during 14 months, and soil ECa was mapped on seven occasions whithin this period of time using an EM38-DD device. Using the Spearman rank correlation coefficient, we described the temporal persistence of a dry and a wet characteristic state of soil moisture as well as the switching mechanisms, inferring the local properties that control the observed spatial patterns and the hydrological processes driving the transitions. Based on this, we evaluated the use of EMI for mapping the spatial pattern of soil moisture under different hydrologic conditions and the factors controlling the temporal variability of the ECa-soil moisture relationship. The approach provided valuable insight into the time-varying contribution of local and nonlocal factors to the characteristic spatial patterns of soil moisture and the transition mechanisms. The spatial organization of soil moisture was controlled by different processes in different soil horizons, and the topsoil's moisture did not mirror processes that take place within the soil profile. Results show that, for the Schäfertal hillslope site which is presumed to be representative for non-intensively managed soils with moderate clay content, local soil properties (e.g., soil texture and porosity) are the major control on the spatial pattern of ECa. In contrast, the ECa-soil moisture relationship is small and varies over time indicating that ECa is not a good proxy for soil moisture estimation at the investigated site.Occasionally observed stronger correlations between ECa and soil moisture may be explained by background dependencies of ECa to other state variables such as pore water electrical conductivity. The results will help to improve conceptual understanding for hydrological model studies at similar or smaller scales, and to transfer observation concepts and process understanding to larger or less instrumented sites, as well as to constrain the use of EMI-based ECa data for hydrological applications.
Wang, Shuai; Fu, Bojie; Gao, Guangyao; Zhou, Ji; Jiao, Lei; Liu, Jianbo
2015-12-01
Soil moisture pulses are a prerequisite for other land surface pulses at various spatiotemporal scales in arid and semi-arid areas. The temporal dynamics and profile variability of soil moisture in relation to land cover combinations were studied along five slopes transect on the Loess Plateau during the rainy season of 2011. Within the 3 months of the growing season coupled with the rainy season, all of the soil moisture was replenished in the area, proving that a type stability exists between different land cover soil moisture levels. Land cover combinations disturbed the trend determined by topography and increased soil moisture variability in space and time. The stability of soil moisture resulting from the dynamic processes could produce stable patterns on the slopes. The relationships between the mean soil moisture and vertical standard deviation (SD) and coefficient of variation (CV) were more complex, largely due to the fact that different land cover types had distinctive vertical patterns of soil moisture. The spatial SD of each layer had a positive correlation and the spatial CV exhibited a negative correlation with the increase in mean soil moisture. The soil moisture stability implies that sampling comparisons in this area can be conducted at different times to accurately compare different land use types.
The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert.
Li, Bonan; Wang, Lixin; Kaseke, Kudzai F; Li, Lin; Seely, Mary K
2016-01-01
Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is also uncertain to what extent rainfall controls soil moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to nineteen months' continuous daily records of rainfall and soil moisture (from January 2014 to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in the Namib Desert are reported. A process-based model simulating the stochastic soil moisture dynamics in water-limited systems was used to study the relationships between soil moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation parameters under diverse soil textures was also investigated. Our field observations showed that surface soil moisture dynamics generally follow rainfall patterns at the two gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a significant relationship with rainfall pattern. The modeling results suggested that most of the soil moisture dynamics can be simulated except the daily fluctuations, which may require a modification of the model structure to include non-rainfall components. Sensitivity analyses suggested that soil hygroscopic point (sh) and field capacity (sfc) were two main parameters controlling soil moisture output, though permanent wilting point (sw) was also very sensitive under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall, the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling results as well as sensitivity analyses provide soil moisture baseline information for future monitoring and the prediction of soil moisture patterns in the Namib Desert.
The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert
Li, Bonan; Wang, Lixin; Kaseke, Kudzai F.; Li, Lin; Seely, Mary K.
2016-01-01
Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is also uncertain to what extent rainfall controls soil moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to nineteen months’ continuous daily records of rainfall and soil moisture (from January 2014 to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in the Namib Desert are reported. A process-based model simulating the stochastic soil moisture dynamics in water-limited systems was used to study the relationships between soil moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation parameters under diverse soil textures was also investigated. Our field observations showed that surface soil moisture dynamics generally follow rainfall patterns at the two gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a significant relationship with rainfall pattern. The modeling results suggested that most of the soil moisture dynamics can be simulated except the daily fluctuations, which may require a modification of the model structure to include non-rainfall components. Sensitivity analyses suggested that soil hygroscopic point (sh) and field capacity (sfc) were two main parameters controlling soil moisture output, though permanent wilting point (sw) was also very sensitive under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall, the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling results as well as sensitivity analyses provide soil moisture baseline information for future monitoring and the prediction of soil moisture patterns in the Namib Desert. PMID:27764203
NASA Astrophysics Data System (ADS)
Blume, T.; Heidbuechel, I.; Hassler, S. K.; Simard, S.; Guntner, A.; Stewart, R. D.; Weiler, M.
2015-12-01
We hypothesize that there is a shift in controls on landscape scale soil moisture patterns when plants become active during the growing season. Especially during the summer soil moisture patterns are not only controlled by soils, topography and related abiotic site characteristics but also by root water uptake. Root water uptake influences soil moisture patterns both in the lateral and vertical direction. Plant water uptake from different soil depths is estimated based on diurnal fluctuations in soil moisture content and was investigated with a unique setup of 46 field sites in Luxemburg and 15 field sites in Germany. These sites cover a range of geologies, soils, topographic positions and types of vegetation. Vegetation types include pasture, pine forest (young and old) and different deciduous forest stands. Available data at all sites includes information at high temporal resolution from 3-5 soil moisture and soil temperature profiles, matrix potential, piezometers and sapflow sensors as well as standard climate data. At sites with access to a stream, discharge or water level is also recorded. The analysis of soil moisture patterns over time indicates a shift in regime depending on season. Depth profiles of root water uptake show strong differences between different forest stands, with maximum depths ranging between 50 and 200 cm. Temporal dynamics of signal strength within the profile furthermore suggest a locally shifting spatial distribution of root water uptake depending on water availability. We will investigate temporal thresholds (under which conditions spatial patterns of root water uptake become most distinct) as well as landscape controls on soil moisture and root water uptake dynamics.
NASA Astrophysics Data System (ADS)
Willgoose, G. R.
2006-12-01
In humid catchments the spatial distribution of soil water is dominated by subsurface lateral fluxes, which leads to a persistent spatial pattern of soil moisture principally described by the topographic index. In contrast, semi-arid, and dryer, catchments are dominated by vertical fluxes (infiltration and evapotranspiration) and persistent spatial patterns, if they exist, are subtler. In the first part of this presentation the results of a reanalysis of a number of catchment-scale long-term spatially-distributed soil moisture data sets are presented. We concentrate on Tarrawarra and SASMAS, both catchments in Australia that are water-limited for at least part of the year and which have been monitored using a variety of technologies. Using the data from permanently installed instruments (neutron probe and reflectometry) both catchments show persistent patterns at the 1-3 year timescale. This persistent pattern is not evident in the field campaign data where field portable instruments (reflectometry) instruments were used. We argue, based on high-resolution soil moisture semivariograms, that high short-distance variability (100mm scale) means that field portable instrument cannot be replaced at the same location with sufficient accuracy to ensure deterministic repeatability of soil moisture measurements from campaign to campaign. The observed temporal persistence of the spatial pattern can be caused by; (1) permanent features of the landscape (e.g. vegetation, soils), or (2) long term memory in the soil moisture store. We argue that it is permanent in which case it is possible to monitor the soil moisture status of a catchment using a single location measurement (continuous in time) of soil moisture using a permanently installed reflectometry instrument. This instrument will need to be calibrated to the catchment averaged soil moisture but the temporal persistence of the spatial pattern of soil moisture will mean that this calibration will be deterministically stable with time. In the second part of this presentation we will explore aspects of the calibration using data from the SASMAS site using the multiscale spatial resolution data (100m to 10km) provided by permanently installed reflectometry instruments, and how this single site measurement technique may complement satellite data.
NASA Astrophysics Data System (ADS)
Korres, W.; Reichenau, T. G.; Schneider, K.
2013-08-01
Soil moisture is a key variable in hydrology, meteorology and agriculture. Soil moisture, and surface soil moisture in particular, is highly variable in space and time. Its spatial and temporal patterns in agricultural landscapes are affected by multiple natural (precipitation, soil, topography, etc.) and agro-economic (soil management, fertilization, etc.) factors, making it difficult to identify unequivocal cause and effect relationships between soil moisture and its driving variables. The goal of this study is to characterize and analyze the spatial and temporal patterns of surface soil moisture (top 20 cm) in an intensively used agricultural landscape (1100 km2 northern part of the Rur catchment, Western Germany) and to determine the dominant factors and underlying processes controlling these patterns. A second goal is to analyze the scaling behavior of surface soil moisture patterns in order to investigate how spatial scale affects spatial patterns. To achieve these goals, a dynamically coupled, process-based and spatially distributed ecohydrological model was used to analyze the key processes as well as their interactions and feedbacks. The model was validated for two growing seasons for the three main crops in the investigation area: Winter wheat, sugar beet, and maize. This yielded RMSE values for surface soil moisture between 1.8 and 7.8 vol.% and average RMSE values for all three crops of 0.27 kg m-2 for total aboveground biomass and 0.93 for green LAI. Large deviations of measured and modeled soil moisture can be explained by a change of the infiltration properties towards the end of the growing season, especially in maize fields. The validated model was used to generate daily surface soil moisture maps, serving as a basis for an autocorrelation analysis of spatial patterns and scale. Outside of the growing season, surface soil moisture patterns at all spatial scales depend mainly upon soil properties. Within the main growing season, larger scale patterns that are induced by soil properties are superimposed by the small scale land use pattern and the resulting small scale variability of evapotranspiration. However, this influence decreases at larger spatial scales. Most precipitation events cause temporarily higher surface soil moisture autocorrelation lengths at all spatial scales for a short time even beyond the autocorrelation lengths induced by soil properties. The relation of daily spatial variance to the spatial scale of the analysis fits a power law scaling function, with negative values of the scaling exponent, indicating a decrease in spatial variability with increasing spatial resolution. High evapotranspiration rates cause an increase in the small scale soil moisture variability, thus leading to large negative values of the scaling exponent. Utilizing a multiple regression analysis, we found that 53% of the variance of the scaling exponent can be explained by a combination of an independent LAI parameter and the antecedent precipitation.
NASA Astrophysics Data System (ADS)
Chifflard, Peter; Weishaupt, Philipp; Reiss, Martin
2017-04-01
Spatial and temporal patterns of throughfall can affect the heterogeneity of ecological, biogeochemical and hydrological processes at a forest floor and further the underlying soil. Previous research suggests different factors controlling the spatial and temporal patterns of throughfall, but most studies focus on coniferous forest, where the vegetation coverage is more or less constant over time. In deciduous forests the leaf area index varies due to the leaf fall in autumn which implicates a specific spatial and temporal variability of throughfall and furthermore of the soil moisture. Therefore, in the present study, the measurements of throughfall and soil moisture in a deciduous forest in the low mountain ranges focused especially on the period of leaf fall. The aims of this study were: 1) to detect the spatial and temporal variability of both the throughfall and the soil moisture, 2) to examine the temporal stability of the spatial patterns of the throughfall and soil moisture and 3) relate the soil moisture patterns to the throughfall patterns and further to the canopy characteristics. The study was carried out in a small catchment on middle Hesse (Germany) which is covered by beech forest. Annual mean air temperature is 9.4°C (48.9˚F) and annual mean precipitation is 650 mm. Base materials for soil genesis is greywacke and clay shale from Devonian deposits. The soil type at the study plot is a shallow cambisol. The study plot covers an area of about 150 m2 where 77 throughfall samplers where installed. The throughfall and the soil moisture (FDR-method, 20 cm depth) was measured immediately after every rainfall event at the 77 measurement points. During the period of October to December 2015 altogether 7 events were investigated. The geostatistical method kriging was used to interpolate between the measurements points to visualize the spatial patterns of each investigated parameter. Time-stability-plots were applied to examine temporal scatters of each investigated parameter. The spearmen and pearson correlation coefficients were applied to detect the relationship between the different investigated parameters. First results show that the spatial variability of throughfall decreases if the total amount of the throughfall increases. The soil moisture shows a similar behavior. It`s spatial variability decreases if higher soil moisture values were measured. Concerning the temporal stability of throughfall it can be shown that it is very high during the leaf-free period, although the rainfall events have different total througfall amounts. The soil moisture patterns consists of a low temporal stability and additionally only during one event a significant correlations between throughfall and soil moisture patterns exists. This implies that other factors than the throughfall patterns control the spatial patterns of soil moisture.
NASA Astrophysics Data System (ADS)
Yang, Yang; Dou, Yanxing; Liu, Dong; An, Shaoshan
2017-07-01
Spatial pattern and heterogeneity of soil moisture is important for the hydrological process on the Loess Plateau. This study combined the classical and geospatial statistical techniques to examine the spatial pattern and heterogeneity of soil moisture along a transect scale (e.g. land use types and topographical attributes) on the Loess Plateau. The average values of soil moisture were on the order of farmland > orchard > grassland > abandoned land > shrubland > forestland. Vertical distribution characteristics of soil moisture (0-500 cm) were similar among land use types. Highly significant (p < 0.01) negative correlations were found between soil moisture and elevation (h) except for shrubland (p > 0.05), whereas no significant correlations were found between soil moisture and plan curvature (Kh), stream power index (SPI), compound topographic index (CTI) (p > 0.05), indicating that topographical attributes (mainly h) have a negative effect on the soil moisture spatial heterogeneity. Besides, soil moisture spatial heterogeneity decreased from forestland to grassland and farmland, accompanied by a decline from 15° to 1° alongside upper to lower slope position. This study highlights the importance of land use types and topographical attributes on the soil moisture spatial heterogeneity from a combined analysis of the structural equation model (SEM) and generalized additive models (GAMs), and the relative contribution of land use types to the soil moisture spatial heterogeneity was higher than that of topographical attributes, which provides insights for researches focusing on soil moisture varitions on the Loess Plateau.
NASA Astrophysics Data System (ADS)
Cowley, Garret S.; Niemann, Jeffrey D.; Green, Timothy R.; Seyfried, Mark S.; Jones, Andrew S.; Grazaitis, Peter J.
2017-02-01
Soil moisture can be estimated at coarse resolutions (>1 km) using satellite remote sensing, but that resolution is poorly suited for many applications. The Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) model downscales coarse-resolution soil moisture using fine-resolution topographic, vegetation, and soil data to produce fine-resolution (10-30 m) estimates of soil moisture. The EMT+VS model performs well at catchments with low topographic relief (≤124 m), but it has not been applied to regions with larger ranges of elevation. Large relief can produce substantial variations in precipitation and potential evapotranspiration (PET), which might affect the fine-resolution patterns of soil moisture. In this research, simple methods to downscale temporal average precipitation and PET are developed and included in the EMT+VS model, and the effects of spatial variations in these variables on the surface soil moisture estimates are investigated. The methods are tested against ground truth data at the 239 km2 Reynolds Creek watershed in southern Idaho, which has 1145 m of relief. The precipitation and PET downscaling methods are able to capture the main features in the spatial patterns of both variables. The space-time Nash-Sutcliffe coefficients of efficiency of the fine-resolution soil moisture estimates improve from 0.33 to 0.36 and 0.41 when the precipitation and PET downscaling methods are included, respectively. PET downscaling provides a larger improvement in the soil moisture estimates than precipitation downscaling likely because the PET pattern is more persistent through time, and thus more predictable, than the precipitation pattern.
Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images
NASA Astrophysics Data System (ADS)
Cumbrera, Ramiro; Tarquis, Ana M.; Gascó, Gabriel; Millán, Humberto
2012-07-01
SummaryImage analysis could be a useful tool for investigating the spatial patterns of apparent soil moisture at multiple resolutions. The objectives of the present work were (i) to define apparent soil moisture patterns from vertical planes of Vertisol pit images and (ii) to describe the scaling of apparent soil moisture distribution using fractal parameters. Twelve soil pits (0.70 m long × 0.60 m width × 0.30 m depth) were excavated on a bare Mazic Pellic Vertisol. Six of them were excavated in April/2011 and six pits were established in May/2011 after 3 days of a moderate rainfall event. Digital photographs were taken from each Vertisol pit using a Kodak™ digital camera. The mean image size was 1600 × 945 pixels with one physical pixel ≈373 μm of the photographed soil pit. Each soil image was analyzed using two fractal scaling exponents, box counting (capacity) dimension (DBC) and interface fractal dimension (Di), and three prefractal scaling coefficients, the total number of boxes intercepting the foreground pattern at a unit scale (A), fractal lacunarity at the unit scale (Λ1) and Shannon entropy at the unit scale (S1). All the scaling parameters identified significant differences between both sets of spatial patterns. Fractal lacunarity was the best discriminator between apparent soil moisture patterns. Soil image interpretation with fractal exponents and prefractal coefficients can be incorporated within a site-specific agriculture toolbox. While fractal exponents convey information on space filling characteristics of the pattern, prefractal coefficients represent the investigated soil property as seen through a higher resolution microscope. In spite of some computational and practical limitations, image analysis of apparent soil moisture patterns could be used in connection with traditional soil moisture sampling, which always renders punctual estimates.
NASA Astrophysics Data System (ADS)
Dick, Jonathan; Tetzlaff, Doerthe; Bradford, John; Soulsby, Chris
2018-04-01
As the relationship between vegetation and soil moisture is complex and reciprocal, there is a need to understand how spatial patterns in soil moisture influence the distribution of vegetation, and how the structure of vegetation canopies and root networks regulates the partitioning of precipitation. Spatial patterns of soil moisture are often difficult to visualise as usually, soil moisture is measured at point scales, and often difficult to extrapolate. Here, we address the difficulties in collecting large amounts of spatial soil moisture data through a study combining plot- and transect-scale electrical resistivity tomography (ERT) surveys to estimate soil moisture in a 3.2 km2 upland catchment in the Scottish Highlands. The aim was to assess the spatio-temporal variability in soil moisture under Scots pine forest (Pinus sylvestris) and heather moorland shrubs (Calluna vulgaris); the two dominant vegetation types in the Scottish Highlands. The study focussed on one year of fortnightly ERT surveys. The surveyed resistivity data was inverted and Archie's law was used to calculate volumetric soil moisture by estimating parameters and comparing against field measured data. Results showed that spatial soil moisture patterns were more heterogeneous in the forest site, as were patterns of wetting and drying, which can be linked to vegetation distribution and canopy structure. The heather site showed a less heterogeneous response to wetting and drying, reflecting the more uniform vegetation cover of the shrubs. Comparing soil moisture temporal variability during growing and non-growing seasons revealed further contrasts: under the heather there was little change in soil moisture during the growing season. Greatest changes in the forest were in areas where the trees were concentrated reflecting water uptake and canopy partitioning. Such differences have implications for climate and land use changes; increased forest cover can lead to greater spatial variability, greater growing season temporal variability, and reduced levels of soil moisture, whilst projected decreasing summer precipitation may alter the feedbacks between soil moisture and vegetation water use and increase growing season soil moisture deficits.
Information and Complexity Measures Applied to Observed and Simulated Soil Moisture Time Series
USDA-ARS?s Scientific Manuscript database
Time series of soil moisture-related parameters provides important insights in functioning of soil water systems. Analysis of patterns within these time series has been used in several studies. The objective of this work was to compare patterns in observed and simulated soil moisture contents to u...
NASA Astrophysics Data System (ADS)
Pradhan, N. R.
2015-12-01
Soil moisture conditions have an impact upon hydrological processes, biological and biogeochemical processes, eco-hydrology, floods and droughts due to changing climate, near-surface atmospheric conditions and the partition of incoming solar and long-wave radiation between sensible and latent heat fluxes. Hence, soil moisture conditions virtually effect on all aspects of engineering / military engineering activities such as operational mobility, detection of landmines and unexploded ordinance, natural material penetration/excavation, peaking factor analysis in dam design etc. Like other natural systems, soil moisture pattern can vary from completely disorganized (disordered, random) to highly organized. To understand this varying soil moisture pattern, this research utilized topographic wetness index from digital elevation models (DEM) along with vegetation index from remotely sensed measurements in red and near-infrared bands, as well as land surface temperature (LST) in the thermal infrared bands. This research developed a methodology to relate a combined index from DEM, LST and vegetation index with the physical soil moisture properties of soil types and the degree of saturation. The advantage in using this relationship is twofold: first it retrieves soil moisture content at the scale of soil data resolution even though the derived indexes are in a coarse resolution, and secondly the derived soil moisture distribution represents both organized and disorganized patterns of actual soil moisture. The derived soil moisture is used in driving the hydrological model simulations of runoff, sediment and nutrients.
Long-term soil moisture patterns in a northern Minnesota forest
Salli F. Dymond; Randall K. Kolka; Paul V. Bolstad; Stephen D. Sebestyen
2014-01-01
Forest hydrological and biogeochemical processes are highly dependent on soil water. At the Marcell Experimental Forest, seasonal patterns of soil moisture have been monitored at three forested locations since 1966. This unique, long-term data set was used to analyze seasonal trends in soil moisture as well as the influence of time-lagged precipitation and modified...
Hydrologic downscaling of soil moisture using global data without site-specific calibration
USDA-ARS?s Scientific Manuscript database
Numerous applications require fine-resolution (10-30 m) soil moisture patterns, but most satellite remote sensing and land-surface models provide coarse-resolution (9-60 km) soil moisture estimates. The Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) model downscales soil moistu...
NASA Astrophysics Data System (ADS)
Percy, M.; Singha, K.; Benninger, L. K.; Riveros-Iregui, D. A.; Mirus, B. B.
2015-12-01
The spatial and temporal distribution of soil moisture in tropical critical zones depends upon a number of variables including topographic position, soil texture, overlying vegetation, and local microclimates. We investigate the influences on soil moisture on a tropical basaltic island (San Cristóbal, Galápagos) across a variety of microclimates during the transition from the wetter to the drier season. We used multiple approaches to characterize spatial and temporal patterns in soil moisture at four sites across microclimates ranging from arid to very humid. The microclimates on San Cristóbal vary with elevation, so our monitoring includes two sites in the transitional zone at lower elevations, one in the humid zone at moderate elevations, and one in the very humid zone in higher elevations. We made over 250 near-surface point measurements per site using a Hydrosense II probe, and estimated the lateral variability in soil moisture across each site with an EM-31 electrical conductivity meter. We also monitored continuous time-series of in-situ soil moisture dynamics using three nested TDR probes collocated with meteorological stations at each of the sites. Preliminary analysis indicates that soils in the very humid zone have lower electrical conductivities across all the hillslopes as compared to the humid and transitional zones, which suggests that additional factors beyond climate and slope position are important. While soil texture across the very humid site is fairly uniform, variations in vegetation have a strong control on soil moisture patterns. At the remaining sites the vegetation patterns also have a very strong local influence on soil moisture, but correlation between the depth to clay layers and soil moisture patterns suggests that mineralogy is also important. Our findings suggest that the microclimatic setting is a crucial consideration for understanding relations between vegetation, soil texture, and soil-moisture dynamics in tropical critical zones.
NASA Astrophysics Data System (ADS)
Bogena, Heye R.; Huisman, Johan A.; Rosenbaum, Ulrike; Weuthen, Ansgar; Vereecken, Harry
2010-05-01
Soil water content plays a key role in partitioning water and energy fluxes and controlling the pattern of groundwater recharge. Despite the importance of soil water content, it is not yet measured in an operational way at larger scales. The aim of this paper is to present the potential of real-time monitoring for the analysis of soil moisture patterns at the catchment scale using the recently developed wireless sensor network SoilNet [1], [2]. SoilNet is designed to measure soil moisture, salinity and temperature in several depths (e.g. 5, 20 and 50 cm). Recently, a small forest catchment Wüstebach (~27 ha) has been instrumented with 150 sensor nodes and more than 1200 soil sensors in the framework of the Transregio32 and the Helmholtz initiative TERENO (Terrestrial Environmental Observatories). From August to November 2009, more than 6 million soil moisture measurements have been performed. We will present first results from a statistical and geostatistical analysis of the data. The observed spatial variability of soil moisture corresponds well with the 800-m scale variability described in [3]. The very low scattering of the standard deviation versus mean soil moisture plots indicates that sensor network data shows less artificial soil moisture variations than soil moisture data originated from measurement campaigns. The variograms showed more or less the same nugget effect, which indicates that the sum of the sub-scale variability and the measurement error is rather time-invariant. Wet situations showed smaller spatial variability, which is attributed to saturated soil water content, which poses an upper limit and is typically not strongly variable in headwater catchments with relatively homogeneous soil. The spatiotemporal variability in soil moisture at 50 cm depth was significantly lower than at 5 and 20 cm. This finding indicates that the considerable variability of the top soil is buffered deeper in the soil due to lateral and vertical water fluxes. Topographic features showed the strongest correlation with soil moisture during dry periods, indicating that the control of topography on the soil moisture pattern depends on the soil water status. Interpolation using the external drift kriging method demonstrated that the high sampling density allows capturing the key patterns of soil moisture variation in the Wüstebach catchment. References: [1] Bogena, H.R., J.A. Huisman, C. Oberdörster, H. Vereecken (2007): Evaluation of a low-cost soil water content sensor for wireless network applications. Journal of Hydrology: 344, 32- 42. [2] Rosenbaum, U., Huisman, J.A., Weuthen, A., Vereecken, H. and Bogena, H.R. (2010): Quantification of sensor-to-sensor variability of the ECH2O EC-5, TE and 5TE sensors in dielectric liquids. Accepted for publication in Vadose Zone Journal (09/2009). [3] Famiglietti J.S., D. Ryu, A. A. Berg, M. Rodell and T. J. Jackson (2008), Field observations of soil moisture variability across scales, Water Resour. Res. 44, W01423, doi:10.1029/2006WR005804.
Spatial-temporal variability of soil moisture and its estimation across scales
NASA Astrophysics Data System (ADS)
Brocca, L.; Melone, F.; Moramarco, T.; Morbidelli, R.
2010-02-01
The soil moisture is a quantity of paramount importance in the study of hydrologic phenomena and soil-atmosphere interaction. Because of its high spatial and temporal variability, the soil moisture monitoring scheme was investigated here both for soil moisture retrieval by remote sensing and in view of the use of soil moisture data in rainfall-runoff modeling. To this end, by using a portable Time Domain Reflectometer, a sequence of 35 measurement days were carried out within a single year in seven fields located inside the Vallaccia catchment, central Italy, with area of 60 km2. Every sampling day, soil moisture measurements were collected at each field over a regular grid with an extension of 2000 m2. The optimization of the monitoring scheme, with the aim of an accurate mean soil moisture estimation at the field and catchment scale, was addressed by the statistical and the temporal stability. At the field scale, the number of required samples (NRS) to estimate the field-mean soil moisture within an accuracy of 2%, necessary for the validation of remotely sensed soil moisture, ranged between 4 and 15 for almost dry conditions (the worst case); at the catchment scale, this number increased to nearly 40 and it refers to almost wet conditions. On the other hand, to estimate the mean soil moisture temporal pattern, useful for rainfall-runoff modeling, the NRS was found to be lower. In fact, at the catchment scale only 10 measurements collected in the most "representative" field, previously determined through the temporal stability analysis, can reproduce the catchment-mean soil moisture with a determination coefficient, R2, higher than 0.96 and a root-mean-square error, RMSE, equal to 2.38%. For the "nonrepresentative" fields the accuracy in terms of RMSE decreased, but similar R2 coefficients were found. This insight can be exploited for the sampling in a generic field when it is sufficient to know an index of soil moisture temporal pattern to be incorporated in conceptual rainfall-runoff models. The obtained results can address the soil moisture monitoring network design from which a reliable soil moisture temporal pattern at the catchment scale can be derived.
NASA Astrophysics Data System (ADS)
Nasta, Paolo; Penna, Daniele; Brocca, Luca; Zuecco, Giulia; Romano, Nunzio
2018-02-01
Indirect measurements of field-scale (hectometer grid-size) spatial-average near-surface soil moisture are becoming increasingly available by exploiting new-generation ground-based and satellite sensors. Nonetheless, modeling applications for water resources management require knowledge of plot-scale (1-5 m grid-size) soil moisture by using measurements through spatially-distributed sensor network systems. Since efforts to fulfill such requirements are not always possible due to time and budget constraints, alternative approaches are desirable. In this study, we explore the feasibility of determining spatial-average soil moisture and soil moisture patterns given the knowledge of long-term records of climate forcing data and topographic attributes. A downscaling approach is proposed that couples two different models: the Eco-Hydrological Bucket and Equilibrium Moisture from Topography. This approach helps identify the relative importance of two compound topographic indexes in explaining the spatial variation of soil moisture patterns, indicating valley- and hillslope-dependence controlled by lateral flow and radiative processes, respectively. The integrated model also detects temporal instability if the dominant type of topographic dependence changes with spatial-average soil moisture. Model application was carried out at three sites in different parts of Italy, each characterized by different environmental conditions. Prior calibration was performed by using sparse and sporadic soil moisture values measured by portable time domain reflectometry devices. Cross-site comparisons offer different interpretations in the explained spatial variation of soil moisture patterns, with time-invariant valley-dependence (site in northern Italy) and hillslope-dependence (site in southern Italy). The sources of soil moisture spatial variation at the site in central Italy are time-variant within the year and the seasonal change of topographic dependence can be conveniently correlated to a climate indicator such as the aridity index.
Soil moisture depletion patterns around scattered trees
Robert R. Ziemer
1968-01-01
Soil moisture was measured around an isolated mature sugar pine tree (Pinus lambertiana Dougl.) in the mixed conifer forest type of the north central Sierra Nevada, California, from November 1965 to October 1966. From a sequence of measurements, horizontal and vertical soil moisture profiles were developed. Estimated soil moisture depletion from the 61-foot radius plot...
NASA Astrophysics Data System (ADS)
Chang, Ni-Bin; Xuan, Zhemin; Wimberly, Brent
2011-09-01
Soil moisture and evapotranspiration (ET) is affected by both water and energy balances in the soilvegetation- atmosphere system, it involves many complex processes in the nexus of water and thermal cycles at the surface of the Earth. These impacts may affect the recharge of the upper Floridian aquifer. The advent of urban hydrology and remote sensing technologies opens new and innovative means to undertake eventbased assessment of ecohydrological effects in urban regions. For assessing these landfalls, the multispectral Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing images can be used for the estimation of such soil moisture change in connection with two other MODIS products - Enhanced Vegetation Index (EVI), Land Surface Temperature (LST). Supervised classification for soil moisture retrieval was performed for Tampa Bay area on the 2 kmx2km grid with MODIS images. Machine learning with genetic programming model for soil moisture estimation shows advances in image processing, feature extraction, and change detection of soil moisture. ET data that were derived by Geostationary Operational Environmental Satellite (GOES) data and hydrologic models can be retrieved from the USGS web site directly. Overall, the derived soil moisture in comparison with ET time series changes on a seasonal basis shows that spatial and temporal variations of soil moisture and ET that are confined within a defined region for each type of surfaces, showing clustered patterns and featuring space scatter plot in association with the land use and cover map. These concomitant soil moisture patterns and ET fluctuations vary among patches, plant species, and, especially, location on the urban gradient. Time series plots of LST in association with ET, soil moisture and EVI reveals unique ecohydrological trends. Such ecohydrological assessment can be applied for supporting the urban landscape management in hurricane-stricken regions.
NASA Astrophysics Data System (ADS)
Liu, Qi; Hao, Yonghong; Stebler, Elaine; Tanaka, Nobuaki; Zou, Chris B.
2017-12-01
Mapping the spatiotemporal patterns of soil moisture within heterogeneous landscapes is important for resource management and for the understanding of hydrological processes. A critical challenge in this mapping is comparing remotely sensed or in situ observations from areas with different vegetation cover but subject to the same precipitation regime. We address this challenge by wavelet analysis of multiyear observations of soil moisture profiles from adjacent areas with contrasting plant functional types (grassland, woodland, and encroached) and precipitation. The analysis reveals the differing soil moisture patterns and dynamics between plant functional types. The coherence at high-frequency periodicities between precipitation and soil moisture generally decreases with depth but this is much more pronounced under woodland compared to grassland. Wavelet analysis provides new insights on soil moisture dynamics across plant functional types and is useful for assessing differences and similarities in landscapes with heterogeneous vegetation cover.
NASA Astrophysics Data System (ADS)
Lehman, B. M.; Niemann, J. D.
2008-12-01
Soil moisture exerts significant control over the partitioning of latent and sensible energy fluxes, the magnitude of both vertical and lateral water fluxes, the physiological and water-use characteristics of vegetation, and nutrient cycling. Considerable progress has been made in determining how soil characteristics, topography, and vegetation influence spatial patterns of soil moisture in humid environments at the catchment, hillslope, and plant scales. However, understanding of the controls on soil moisture patterns beyond the plant scale in semi-arid environments remains more limited. This study examines the relationships between the spatial patterns of near surface soil moisture (upper 5 cm), terrain indices, and soil properties in a small, semi-arid, montane catchment. The 8 ha catchment, located in the Cache La Poudre River Canyon in north-central Colorado, has a total relief of 115 m and an average elevation of 2193 m. It is characterized by steep slopes and shallow, gravelly/sandy soils with scattered granite outcroppings. Depth to bedrock ranges from 0 m to greater than 1 m. Vegetation in the catchment is highly correlated with topographic aspect. In particular, north-facing hillslopes are predominately vegetated by ponderosa pines, while south-facing slopes are mostly vegetated by several shrub species. Soil samples were collected at a 30 m resolution to characterize soil texture and bulk density, and several datasets consisting of more than 300 point measurements of soil moisture were collected using time domain reflectometry (TDR) between Fall 2007 and Summer 2008 at a 15 m resolution. Results from soil textural analysis performed with sieving and the ASTM standard hydrometer method show that soil texture is finer on the north-facing hillslope than on the south-facing hillslope. Cos(aspect) is the best univariate predictor of silts, while slope is the best predictor of coarser fractions up to fine gravel. Bulk density increases with depth but shows no significant relationship with topographic indices. When the catchment average soil moisture is low, the variance of soil moisture increases with the average. When the average is high, the variance remains relatively constant. Little of the variation in soil moisture is explained by topographic indices when the catchment is either very wet or dry; however, when the average soil moisture takes on intermediate values, cos(aspect) is consistently the best predictor among the terrain indices considered.
WaterSense Soil Moisture-Based Control Technologies Notice of Intent (NOI)
By directly measuring the amount of moisture in the soil, soil moisture-based control technologies tailor irrigation schedules to meet landscape water needs based on seasonal patterns, as well as prevailing conditions in the landscape.
NASA Astrophysics Data System (ADS)
Dunkerley, D.
2009-04-01
Speculation abounds concerning the drivers of spatial patterning in dryland vegetation, and many numerical analyses have been built with little use of field evidence for parameterisation or validation. In fact, studies of soil moisture distribution, the most commonly hypothesised driver of pattern formation, are uncommon. Here, soil infiltrability and soil moisture data are presented from a banded vegetation community in arid western NSW Australia. The site had received 40 mm of rain in one day a week prior to field measurement. This is an exceptional rain event for this region, and provided the opportunity to observe resulting distributions of soil moisture within various mosaics, including contour-aligned groves and intergroves in chenopod shrubland. Results taken at 2 m intervals across many cycles of the repeating banded pattern show that near-surface (6 cm) soil moisture is relatively constant, except in lower intergroves, which were drier. Patterns of soil infiltrability by cylinder infiltrometer follow the same pattern, with lowest values at the same locations as the soil moisture minima. Locally high soil infiltrabilities occur in both grove and intergrove, but low values are restricted to intergroves. These results suggest that any runoff-runon system operating at the site is driven largely from the intergroves, where high bulk density, hydrophobic biological soil crusts, and mantles of small stones with associated vesicular horizons, limit water entry. If this is so, it suggests that attention must be paid to intergrove processes, which may be more significant that plant facilitation within groves. Model developments will thus need to address the evolution of low infiltrability in intergroves in parallel with any high infiltrability within groves.
USDA-ARS?s Scientific Manuscript database
Mapping of soil moisture is important for many applications such as flood forecasting, soil protection, and crop management. Soil moisture can be estimated at coarse resolutions (>1 km) using satellite remote sensing, but that resolution is poorly suited for many applications. The Equilibrium Mois...
NASA Astrophysics Data System (ADS)
Robinet, Jérémy; von Hebel, Christian; van der Kruk, Jan; Govers, Gerard; Vanderborght, Jan
2016-04-01
As highlighted by many authors, classical or geophysical techniques for measuring soil moisture such as destructive soil sampling, neutron probes or Time Domain Reflectometry (TDR) have some major drawbacks. Among other things, they provide point scale information, are often intrusive and time-consuming. ElectroMagnetic Induction (EMI) instruments are often cited as a promising alternative hydrogeophysical methods providing more efficiently soil moisture measurements ranging from hillslope to catchment scale. The overall objective of our research project is to investigate whether a combination of geophysical techniques at various scales can be used to study the impact of land use change on temporal and spatial variations of soil moisture and soil properties. In our work, apparent electrical conductivity (ECa) patterns are obtained with an EM multiconfiguration system. Depth profiles of ECa were subsequently inferred through a calibration-inversion procedure based on TDR data. The obtained spatial patterns of these profiles were linked to soil profile and soil water content distributions. Two catchments with contrasting land use (agriculture vs. natural forest) were selected in a subtropical region in the south of Brazil. On selected slopes within the catchments, combined EMI and TDR measurements were carried out simultaneously, under different atmospheric and soil moisture conditions. Ground-truth data for soil properties were obtained through soil sampling and auger profiles. The comparison of these data provided information about the potential of the EMI technique to deliver qualitative and quantitative information about the variability of soil moisture and soil properties.
Wang, Jun; Fu, Bo-jie; Qiu, Yang; Chen, Li-ding
2003-03-01
Due to relatively strong human activities in the hilly area of Loess Plateau, the natural vegetation has been destroyed, and landscape pattern based on agricultural land matrix was land use mosaic composing of shrub land, grassland, woodland and orchard. This pattern has an important effect on soil moisture and soil nutrients. The Danangou catchment, a typical small catchment, was selected to study the effects of land use and its patterns on soil moisture and nutrients in this paper. The results are as follows: The comparisons of soil moisture among seven land uses for wet year and dry year were performed; (1) the average of soil moisture content for whole catchment was 12.11% in wet year, while it was 9.37% in dry year; (2) soil moisture among seven land uses significantly different in dry year, but not in wet year; (3) from wet year to dry year, the profile type of soil moisture changed from decreasing type to fluctuation-type and from fluctuant type to increasing type; (4) the increasing trend in soil moisture from the top to foot of hillslope occurred in simple land use along slope, while complicated distribution of soil moisture was observed in multiple land uses along slope. The relationship between soil nutrients and land uses and landscape positions were analysed: (1) five nutrient contents of soil organic matter (SOM), total N (TN), available N (AN), total P (TP) and available P (AP) in hilly area were lower than that in other area. SOM content was less than 1%, TN content less than 0.07%, and TP content between 0.05% and 0.06%; (2) SOM and TN contents in woodland, shrub land and grassland were significantly higher than that in fallow land and cropland, and higher level in soil fertility was found in crop-fruit intercropping land among croplands; (3) soil nutrient distribution and responses to landscape positions were variable depending on slope and the location of land use types.
NASA Astrophysics Data System (ADS)
Park, Seonyoung; Im, Jungho; Park, Sumin; Rhee, Jinyoung
2017-04-01
Soil moisture is one of the most important keys for understanding regional and global climate systems. Soil moisture is directly related to agricultural processes as well as hydrological processes because soil moisture highly influences vegetation growth and determines water supply in the agroecosystem. Accurate monitoring of the spatiotemporal pattern of soil moisture is important. Soil moisture has been generally provided through in situ measurements at stations. Although field survey from in situ measurements provides accurate soil moisture with high temporal resolution, it requires high cost and does not provide the spatial distribution of soil moisture over large areas. Microwave satellite (e.g., advanced Microwave Scanning Radiometer on the Earth Observing System (AMSR2), the Advanced Scatterometer (ASCAT), and Soil Moisture Active Passive (SMAP)) -based approaches and numerical models such as Global Land Data Assimilation System (GLDAS) and Modern- Era Retrospective Analysis for Research and Applications (MERRA) provide spatial-temporalspatiotemporally continuous soil moisture products at global scale. However, since those global soil moisture products have coarse spatial resolution ( 25-40 km), their applications for agriculture and water resources at local and regional scales are very limited. Thus, soil moisture downscaling is needed to overcome the limitation of the spatial resolution of soil moisture products. In this study, GLDAS soil moisture data were downscaled up to 1 km spatial resolution through the integration of AMSR2 and ASCAT soil moisture data, Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), and Moderate Resolution Imaging Spectroradiometer (MODIS) data—Land Surface Temperature, Normalized Difference Vegetation Index, and Land cover—using modified regression trees over East Asia from 2013 to 2015. Modified regression trees were implemented using Cubist, a commercial software tool based on machine learning. An optimization based on pruning of rules derived from the modified regression trees was conducted. Root Mean Square Error (RMSE) and Correlation coefficients (r) were used to optimize the rules, and finally 59 rules from modified regression trees were produced. The results show high validation r (0.79) and low validation RMSE (0.0556m3/m3). The 1 km downscaled soil moisture was evaluated using ground soil moisture data at 14 stations, and both soil moisture data showed similar temporal patterns (average r=0.51 and average RMSE=0.041). The spatial distribution of the 1 km downscaled soil moisture well corresponded with GLDAS soil moisture that caught both extremely dry and wet regions. Correlation between GLDAS and the 1 km downscaled soil moisture during growing season was positive (mean r=0.35) in most regions.
Seasonal soil moisture patterns in contrasting habitats in the Willamette Valley, Oregon
Changing seasonal soil moisture regimes caused by global warming may alter plant community composition in sensitive habitats such as wetlands and oak savannas. To evaluate such changes, an understanding of typical seasonal soil moisture regimes is necessary. The primary objective...
[Bare Soil Moisture Inversion Model Based on Visible-Shortwave Infrared Reflectance].
Zheng, Xiao-po; Sun, Yue-jun; Qin, Qi-ming; Ren, Hua-zhong; Gao, Zhong-ling; Wu, Ling; Meng, Qing-ye; Wang, Jin-liang; Wang, Jian-hua
2015-08-01
Soil is the loose solum of land surface that can support plants. It consists of minerals, organics, atmosphere, moisture, microbes, et al. Among its complex compositions, soil moisture varies greatly. Therefore, the fast and accurate inversion of soil moisture by using remote sensing is very crucial. In order to reduce the influence of soil type on the retrieval of soil moisture, this paper proposed a normalized spectral slope and absorption index named NSSAI to estimate soil moisture. The modeling of the new index contains several key steps: Firstly, soil samples with different moisture level were artificially prepared, and soil reflectance spectra was consequently measured using spectroradiometer produced by ASD Company. Secondly, the moisture absorption spectral feature located at shortwave wavelengths and the spectral slope of visible wavelengths were calculated after analyzing the regular spectral feature change patterns of different soil at different moisture conditions. Then advantages of the two features at reducing soil types' effects was synthesized to build the NSSAI. Thirdly, a linear relationship between NSSAI and soil moisture was established. The result showed that NSSAI worked better (correlation coefficient is 0.93) than most of other traditional methods in soil moisture extraction. It can weaken the influences caused by soil types at different moisture levels and improve the bare soil moisture inversion accuracy.
Soil moisture in sessile oak forest gaps
NASA Astrophysics Data System (ADS)
Zagyvainé Kiss, Katalin Anita; Vastag, Viktor; Gribovszki, Zoltán; Kalicz, Péter
2015-04-01
By social demands are being promoted the aspects of the natural forest management. In forestry the concept of continuous forest has been an accepted principle also in Hungary since the last decades. The first step from even-aged stand to continuous forest can be the forest regeneration based on gap cutting, so small openings are formed in a forest due to forestry interventions. This new stand structure modifies the hydrological conditions for the regrowth. Without canopy and due to the decreasing amounts of forest litter the interception is less significant so higher amount of precipitation reaching the soil. This research focuses on soil moisture patterns caused by gaps. The spatio-temporal variability of soil water content is measured in gaps and in surrounding sessile oak (Quercus petraea) forest stand. Soil moisture was determined with manual soil moisture meter which use Time-Domain Reflectometry (TDR) technology. The three different sizes gaps (G1: 10m, G2: 20m, G3: 30m) was opened next to Sopron on the Dalos Hill in Hungary. First, it was determined that there is difference in soil moisture between forest stand and gaps. Second, it was defined that how the gap size influences the soil moisture content. To explore the short term variability of soil moisture, two 24-hour (in growing season) and a 48-hour (in dormant season) field campaign were also performed in case of the medium-sized G2 gap along two/four transects. Subdaily changes of soil moisture were performed. The measured soil moisture pattern was compared with the radiation pattern. It was found that the non-illuminated areas were wetter and in the dormant season the subdaily changes cease. According to our measurements, in the gap there is more available water than under the forest stand due to the less evaporation and interception loss. Acknowledgements: The research was supported by TÁMOP-4.2.2.A-11/1/KONV-2012-0004 and AGRARKLIMA.2 VKSZ_12-1-2013-0034.
NASA Technical Reports Server (NTRS)
Arya, L. M.; Phinney, D. E. (Principal Investigator)
1980-01-01
Soil moisture data acquired to support the development of algorithms for estimating surface soil moisture from remotely sensed backscattering of microwaves from ground surfaces are presented. Aspects of field uniformity and variability of gravimetric soil moisture measurements are discussed. Moisture distribution patterns are illustrated by frequency distributions and contour plots. Standard deviations and coefficients of variation relative to degree of wetness and agronomic features of the fields are examined. Influence of sampling depth on observed moisture content an variability are indicated. For the various sets of measurements, soil moisture values that appear as outliers are flagged. The distribution and legal descriptions of the test fields are included along with examinations of soil types, agronomic features, and sampling plan. Bulk density data for experimental fields are appended, should analyses involving volumetric moisture content be of interest to the users of data in this report.
An evaluation of the spatial resolution of soil moisture information
NASA Technical Reports Server (NTRS)
Hardy, K. R.; Cohen, S. H.; Rogers, L. K.; Burke, H. H. K.; Leupold, R. C.; Smallwood, M. D.
1981-01-01
Rainfall-amount patterns in the central regions of the U.S. were assessed. The spatial scales of surface features and their corresponding microwave responses in the mid western U.S. were investigated. The usefulness for U.S. government agencies of soil moisture information at scales of 10 km and 1 km. was ascertained. From an investigation of 494 storms, it was found that the rainfall resulting from the passage of most types of storms produces patterns which can be resolved on a 10 km scale. The land features causing the greatest problem in the sensing of soil moisture over large agricultural areas with a radiometer are bodies of water. Over the mid-western portions of the U.S., water occupies less than 2% of the total area, the consequently, the water bodies will not have a significant impact on the mapping of soil moisture. Over most of the areas, measurements at a 10-km resolution would adequately define the distribution of soil moisture. Crop yield models and hydrological models would give improved results if soil moisture information at scales of 10 km was available.
Reynolds, Robert F; Bauerle, William L; Wang, Ying
2009-09-01
Deciduous trees have a seasonal carbon dioxide exchange pattern that is attributed to changes in leaf biochemical properties. However, it is not known if the pattern in leaf biochemical properties - maximum Rubisco carboxylation (V(cmax)) and electron transport (J(max)) - differ between species. This study explored whether a general pattern of changes in V(cmax), J(max), and a standardized soil moisture response accounted for carbon dioxide exchange of deciduous trees throughout the growing season. The model MAESTRA was used to examine V(cmax) and J(max) of leaves of five deciduous trees, Acer rubrum 'Summer Red', Betula nigra, Quercus nuttallii, Quercus phellos and Paulownia elongata, and their response to soil moisture. MAESTRA was parameterized using data from in situ measurements on organs. Linking the changes in biochemical properties of leaves to the whole tree, MAESTRA integrated the general pattern in V(cmax) and J(max) from gas exchange parameters of leaves with a standardized soil moisture response to describe carbon dioxide exchange throughout the growing season. The model estimates were tested against measurements made on the five species under both irrigated and water-stressed conditions. Measurements and modelling demonstrate that the seasonal pattern of biochemical activity in leaves and soil moisture response can be parameterized with straightforward general relationships. Over the course of the season, differences in carbon exchange between measured and modelled values were within 6-12 % under well-watered conditions and 2-25 % under water stress conditions. Hence, a generalized seasonal pattern in the leaf-level physiological change of V(cmax) and J(max), and a standardized response to soil moisture was sufficient to parameterize carbon dioxide exchange for large-scale evaluations. Simplification in parameterization of the seasonal pattern of leaf biochemical activity and soil moisture response of deciduous forest species is demonstrated. This allows reliable modelling of carbon exchange for deciduous trees, thus circumventing the need for extensive gas exchange experiments on different species.
Modelling of Space-Time Soil Moisture in Savannas and its Relation to Vegetation Patterns
NASA Astrophysics Data System (ADS)
Rodriguez-Iturbe, I.; Mohanty, B.; Chen, Z.
2017-12-01
A physically derived space-time representation of the soil moisture field is presented. It includes the incorporation of a "jitter" process acting over the space-time soil moisture field and accounting for the short distance heterogeneities in topography, soil, and vegetation characteristics. The modelling scheme allows for the representation of spatial random fluctuations of soil moisture at small spatial scales and reproduces quite well the space-time correlation structure of soil moisture from a field study in Oklahoma. It is shown that the islands of soil moisture above different thresholds have sizes which follow power distributions over an extended range of scales. A discussion is provided about the possible links of this feature with the observed power law distributions of the clusters of trees in savannas.
NASA Astrophysics Data System (ADS)
Montzka, C.; Rötzer, K.; Bogena, H. R.; Vereecken, H.
2017-12-01
Improving the coarse spatial resolution of global soil moisture products from SMOS, SMAP and ASCAT is currently an up-to-date topic. Soil texture heterogeneity is known to be one of the main sources of soil moisture spatial variability. A method has been developed that predicts the soil moisture standard deviation as a function of the mean soil moisture based on soil texture information. It is a closed-form expression using stochastic analysis of 1D unsaturated gravitational flow in an infinitely long vertical profile based on the Mualem-van Genuchten model and first-order Taylor expansions. With the recent development of high resolution maps of basic soil properties such as soil texture and bulk density, relevant information to estimate soil moisture variability within a satellite product grid cell is available. Here, we predict for each SMOS, SMAP and ASCAT grid cell the sub-grid soil moisture variability based on the SoilGrids1km data set. We provide a look-up table that indicates the soil moisture standard deviation for any given soil moisture mean. The resulting data set provides important information for downscaling coarse soil moisture observations of the SMOS, SMAP and ASCAT missions. Downscaling SMAP data by a field capacity proxy indicates adequate accuracy of the sub-grid soil moisture patterns.
Patterns Of Moisture Storage During Canadian Prairie Drought
NASA Astrophysics Data System (ADS)
Agboma, C. O.; Snelgrove, K. R.
2008-12-01
Comprehensive studies of soil moisture storage patterns during drought episodes and normal years on the Canadian Prairie are rare. These studies have become increasingly imperative and desirable for an understanding and quantification of the influences of the land surface moisture on atmospheric processes. These influences or "memory" of the soil moisture may play an important role under conditions of extreme climate such as drought and flood. The recollection of a wet or dry anomaly by the soil moisture memory is a fundamental component of any regional land-atmosphere interactions, which possess significant implications for seasonal forecasting. The 13,000km2 Upper Assiniboine River Basin in Central Saskatchewan with its outlet at Kamsack is the domain of this study; via deploying a land surface model variously known as the Variable Infiltration Capacity/Xinanjiang/ARNO model driven offline both in the water and energy balance modes, it was possible to capture the dynamics and seasonal response of the soil moisture storage up to a depth of about 1-metre. Meteorological inputs required to drive the model were retrieved respectively from Environment Canada and the North American Regional Reanalysis (NARR) dataset at daily and sub-daily time steps correspondingly. The North American Land Data Assimilation System (NLDAS) served as the repository from which the soil and vegetation parameters were obtained. The patterns in seasonal and inter-annual soil moisture storage as well as changes in the total water storage anomaly averaged over the entire basin were captured during a period of 11 years commencing 1994. The role of the observed patterns in the regional land-atmosphere interactions is being assessed to ascertain the relevance of the inherent memory in soil moisture as one of the slow drivers of the Canadian Prairie regional climate system with the key objective of attaining a better understanding of drought evolution, continuation and eventual cessation over this region.
Assessing topographic patterns in moisture use and stress using a water balance approach
James M. Dyer
2009-01-01
Through its control on soil moisture patterns, topography's role in influencing forest composition is widely recognized. This study addresses shortcomings in traditional moisture indices by employing a water balance approach, incorporating topographic and edaphic variability to assess fine-scale moisture demand and moisture availability. Using GIS and readily...
Multiscale soil moisture estimates using static and roving cosmic-ray soil moisture sensors
NASA Astrophysics Data System (ADS)
McJannet, David; Hawdon, Aaron; Baker, Brett; Renzullo, Luigi; Searle, Ross
2017-12-01
Soil moisture plays a critical role in land surface processes and as such there has been a recent increase in the number and resolution of satellite soil moisture observations and the development of land surface process models with ever increasing resolution. Despite these developments, validation and calibration of these products has been limited because of a lack of observations on corresponding scales. A recently developed mobile soil moisture monitoring platform, known as the rover
, offers opportunities to overcome this scale issue. This paper describes methods, results and testing of soil moisture estimates produced using rover surveys on a range of scales that are commensurate with model and satellite retrievals. Our investigation involved static cosmic-ray neutron sensors and rover surveys across both broad (36 × 36 km at 9 km resolution) and intensive (10 × 10 km at 1 km resolution) scales in a cropping district in the Mallee region of Victoria, Australia. We describe approaches for converting rover survey neutron counts to soil moisture and discuss the factors controlling soil moisture variability. We use independent gravimetric and modelled soil moisture estimates collected across both space and time to validate rover soil moisture products. Measurements revealed that temporal patterns in soil moisture were preserved through time and regression modelling approaches were utilised to produce time series of property-scale soil moisture which may also have applications in calibration and validation studies or local farm management. Intensive-scale rover surveys produced reliable soil moisture estimates at 1 km resolution while broad-scale surveys produced soil moisture estimates at 9 km resolution. We conclude that the multiscale soil moisture products produced in this study are well suited to future analysis of satellite soil moisture retrievals and finer-scale soil moisture models.
Using satellite image data to estimate soil moisture
NASA Astrophysics Data System (ADS)
Chuang, Chi-Hung; Yu, Hwa-Lung
2017-04-01
Soil moisture is considered as an important parameter in various study fields, such as hydrology, phenology, and agriculture. In hydrology, soil moisture is an significant parameter to decide how much rainfall that will infiltrate into permeable layer and become groundwater resource. Although soil moisture is a critical role in many environmental studies, so far the measurement of soil moisture is using ground instrument such as electromagnetic soil moisture sensor. Use of ground instrumentation can directly obtain the information, but the instrument needs maintenance and consume manpower to operation. If we need wide range region information, ground instrumentation probably is not suitable. To measure wide region soil moisture information, we need other method to achieve this purpose. Satellite remote sensing techniques can obtain satellite image on Earth, this can be a way to solve the spatial restriction on instrument measurement. In this study, we used MODIS data to retrieve daily soil moisture pattern estimation, i.e., crop water stress index (cwsi), over the year of 2015. The estimations are compared with the observations at the soil moisture stations from Taiwan Bureau of soil and water conservation. Results show that the satellite remote sensing data can be helpful to the soil moisture estimation. Further analysis can be required to obtain the optimal parameters for soil moisture estimation in Taiwan.
Observing and modeling links between soil moisture, microbes and CH4 fluxes from forest soils
NASA Astrophysics Data System (ADS)
Christiansen, Jesper; Levy-Booth, David; Barker, Jason; Prescott, Cindy; Grayston, Sue
2017-04-01
Soil moisture is a key driver of methane (CH4) fluxes in forest soils, both of the net uptake of atmospheric CH4 and emission from the soil. Climate and land use change will alter spatial patterns of soil moisture as well as temporal variability impacting the net CH4 exchange. The impact on the resultant net CH4 exchange however is linked to the underlying spatial and temporal distribution of the soil microbial communities involved in CH4 cycling as well as the response of the soil microbial community to environmental changes. Significant progress has been made to target specific CH4 consuming and producing soil organisms, which is invaluable in order to understand the microbial regulation of the CH4 cycle in forest soils. However, it is not clear as to which extent soil moisture shapes the structure, function and abundance of CH4 specific microorganisms and how this is linked to observed net CH4 exchange under contrasting soil moisture regimes. Here we report on the results from a research project aiming to understand how the CH4 net exchange is shaped by the interactive effects soil moisture and the spatial distribution CH4 consuming (methanotrophs) and producing (methanogens). We studied the growing season variations of in situ CH4 fluxes, microbial gene abundances of methanotrophs and methanogens, soil hydrology, and nutrient availability in three typical forest types across a soil moisture gradient in a temperate rainforest on the Canadian Pacific coast. Furthermore, we conducted laboratory experiments to determine whether the net CH4 exchange from hydrologically contrasting forest soils responded differently to changes in soil moisture. Lastly, we modelled the microbial mediation of net CH4 exchange along the soil moisture gradient using structural equation modeling. Our study shows that it is possible to link spatial patterns of in situ net exchange of CH4 to microbial abundance of CH4 consuming and producing organisms. We also show that the microbial community responds different to environmental change dependent on the soil moisture regime. These results are important to include in future modeling efforts to predict changes in soil-atmosphere exchange of CH4 under global change.
NASA Astrophysics Data System (ADS)
Khedun, C. P.; Mishra, A. K.; Bolten, J. D.; Giardino, J. R.; Singh, V. P.
2010-12-01
Soil moisture is an important component of the hydrological cycle. Climate variability patterns, such as the Pacific Decadal Oscillation (PDO), El Niño Southern Oscillation (ENSO), and Atlantic Multidecadal Oscillation (AMO) are determining factors on surface water availability and soil moisture. Understanding this complex relationship and the phase and lag times between climate events and soil moisture variability is important for agricultural management and water planning. In this study we look at the effect of these climate teleconnection patterns on the soil moisture across the Rio Grande/Río Bravo del Norte basin. The basin is transboundary between the US and Mexico and has a varied climatology - ranging from snow dominated in its headwaters in Colorado, to an arid and semi-arid region in its middle reach and a tropical climate in the southern section before it discharges into the Gulf of Mexico. Agricultural activities in the US and in northern Mexico are highly dependent on the Rio Grande and are extremely vulnerable to climate extremes. The treaty between the two countries does not address climate related events. The soil moisture is generated using the community NOAH land surface model (LSM). The LSM is a 1-D column model that runs in coupled or uncoupled mode, and it simulates soil moisture, soil temperature, skin temperature, snowpack depth, snow water equivalent, canopy water content, and energy flux and water flux of the surface energy and water balance. The North American Land Data Assimilation Scheme 2 (NLDAS2) is used to drive the model. The model is run for the period 1979 to 2009. The soil moisture output is validated against measured values from the different Soil Climate Analysis Network (SCAN) sites within the basin. The spatial and temporal variability of the modeled soil moisture is then analyzed using marginal entropy to investigate monthly, seasonal, and annual variability. Wavelet transform is used to determine the relation, phase difference, and lag times between climate teleconnection events and soil moisture. The results from this study will help agricultural scientists and water planners in both the US and Mexico in better managing the dwindling water resources of this transboundary basin.
Evolving soils and hydrologic connectivity in semiarid hillslopes
NASA Astrophysics Data System (ADS)
Saco, Patricia M.
2015-04-01
Soil moisture availability is essential for the stability and resilience of semiarid ecosystems. In these ecosystems the amount of soil moisture available for vegetation growth and survival is intrinsically related to the way water is redistributed, that is from source to sink areas, and therefore prescribed by the hydrologic connectivity of the landscape. Recent studies have shown that hydrologic connectivity is highly dynamic and linked to the coevolution of geomorphic, soil and vegetation structures at a variety of spatial and temporal scales. This study investigates the effect of evolving soil depths on hydrologic connectivity using a modelling framework. The focus is on Australian semiarid hillslopes with patterned vegetation that result from coevolving landforms, soils, water redistribution, and vegetation patterns. We present and analyse results from simulations using a coupled landform evolution-dynamic vegetation model, which includes a soil depth evolution module and accounts for soil production and sediment erosion and deposition processes. We analyse the effect of soils depths on surface connectivity for a range of biotic (plant functional type strategies) and abiotic (slope and erodibility) conditions. The analysis shows that different plant functional types, through their varying facilitation strategies, have a profound effect on soils depths and therefore affect hydrologic connectivity and soil moisture patterns. This interplay becomes particularly important for systems that coevolve to have very shallow soils. In this case soil depth becomes the key factor prescribing surface connectivity and available soil moisture for plants, which affect the recovery of the system after disturbance. Conditions for the existence of threshold behaviour for which small perturbations can trigger a sudden increase in hydrologic connectivity, reduced soil moisture availability and decrease in productivity leading to degraded states are investigated. Critical implications for effective restoration efforts are discussed.
Soil moisture patterns in a northern coniferous forest
Thomas F. McLintock
1959-01-01
The trend of soil moisture during the growing season, the alternate wetting from rainfall and drying during clear weather, determines the amount of moisture available for tree growth and also fixes, in part, the environment for root growth. In much of the northern coniferous region both moisture content and root environment are in turn affected by the hummock-and-...
NASA Astrophysics Data System (ADS)
Blume, T.; Zehe, E.; Bronstert, A.
2007-08-01
Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes, especially in data scarce or previously ungauged catchments. The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes) than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture response allows for visualization of flow processes in the unsaturated zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale) and indicator maps (for the long-term and hillslope scale). Annual dynamics of soil moisture and decimeter-scale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a data-scarce catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to self-reinforcing flow paths.
NASA Astrophysics Data System (ADS)
Blume, T.; Zehe, E.; Bronstert, A.
2009-07-01
Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes, especially in data scarce or previously ungauged catchments. The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes) than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture response allows for visualization of flow processes in the unsaturated zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale) and binary indicator maps (for the long-term and hillslope scale). Annual dynamics of soil moisture and decimeter-scale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a data-scarce catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to self-reinforcing flow paths.
NASA Astrophysics Data System (ADS)
Zhang, W.; Yi, Y.; Yang, K.; Kimball, J. S.
2016-12-01
The Tibetan Plateau (TP) is underlain by the world's largest extent of alpine permafrost ( 2.5×106 km2), dominated by sporadic and discontinuous permafrost with strong sensitivity to climate warming. Detailed permafrost distributions and patterns in most of the TP region are still unknown due to extremely sparse in-situ observations in this region characterized by heterogeneous land cover and large temporal dynamics in surface soil moisture conditions. Therefore, satellite-based temperature and moisture observations are essential for high-resolution mapping of permafrost distribution and soil active layer changes in the TP region. In this study, we quantify the TP regional permafrost distribution at 1-km resolution using a detailed satellite data-driven soil thermal process model (GIPL2). The soil thermal model is calibrated and validated using in-situ soil temperature/moisture observations from the CAMP/Tibet field campaign (9 sites: 0-300 cm soil depth sampling from 1997-2007), a multi-scale soil moisture and temperature monitoring network in the central TP (CTP-SMTMN, 57 sites: 5-40 cm, 2010-2014) and across the whole plateau (China Meteorology Administration, 98 sites: 0-320 cm, 2000-2015). Our preliminary results using the CAMP/Tibet and CTP-SMTMN network observations indicate strong controls of surface thermal and soil moisture conditions on soil freeze/thaw dynamics, which vary greatly with underlying topography, soil texture and vegetation cover. For regional mapping of soil freeze/thaw and permafrost dynamics, we use the most recent soil moisture retrievals from the NASA SMAP (Soil Moisture Active Passive) sensor to account for the effects of temporal soil moisture dynamics on soil thermal heat transfer, with surface thermal conditions defined by MODIS (Moderate Resolution Imaging Spectroradiometer) land surface temperature records. Our study provides the first 1-km map of spatial patterns and recent changes of permafrost conditions in the TP.
NASA Astrophysics Data System (ADS)
O'Donnell, F. C.; Springer, A. E.; Sankey, T.; Masek Lopez, S.
2014-12-01
Forest restoration projects are being planned for large areas of overgrown semi-arid ponderosa pine forests of the Southwestern US. Restoration involves the thinning of smaller trees and prescribed or managed fire to reduce tree density, restore a more natural fire regime, and decrease the risk of catastrophic wildfire. The stated goals of these projects generally reduced plant water stress and improvements in hydrologic function. However, little is known about how to design restoration treatments to best meet these goals. As part of a larger project on snow cover, soil moisture, and groundwater recharge, we measured soil moisture, an indicator of plant water status, in four pairs of control and restored sites near Flagstaff, Arizona. The restoration strategies used at the sites range in both amount of open space created and degree of clustering of the remaining trees. We measured soil moisture using 30 cm vertical time domain reflectometry probes installed on 100 m transects at 5 m intervals so it would be possible to analyze the spatial pattern of soil moisture. Soil moisture was higher and more spatially variable in the restored sites than the control sites with differences in spatial pattern among the restoration types. Soil moisture monitoring will continue until the first snow fall, at which point measurements of snow depth and snow water equivalent will be made at the same locations.
NASA Astrophysics Data System (ADS)
Senanayake, I. P.; Yeo, I. Y.; Tangdamrongsub, N.; Willgoose, G. R.; Hancock, G. R.; Wells, T.; Fang, B.; Lakshmi, V.
2017-12-01
Long-term soil moisture datasets at high spatial resolution are important in agricultural, hydrological, and climatic applications. The soil moisture estimates can be achieved using satellite remote sensing observations. However, the satellite soil moisture data are typically available at coarse spatial resolutions ( several tens of km), therefore require further downscaling. Different satellite soil moisture products have to be conjointly employed in developing a consistent time-series of high resolution soil moisture, while the discrepancies amongst different satellite retrievals need to be resolved. This study aims to downscale three different satellite soil moisture products, the Soil Moisture and Ocean Salinity (SMOS, 25 km), the Soil Moisture Active Passive (SMAP, 36 km) and the SMAP-Enhanced (9 km), and to conduct an inter-comparison of the downscaled results. The downscaling approach is developed based on the relationship between the diurnal temperature difference and the daily mean soil moisture content. The approach is applied to two sub-catchments (Krui and Merriwa River) of the Goulburn River catchment in the Upper Hunter region (NSW, Australia) to estimate soil moisture at 1 km resolution for 2015. The three coarse spatial resolution soil moisture products and their downscaled results will be validated with the in-situ observations obtained from the Scaling and Assimilation of Soil Moisture and Streamflow (SASMAS) network. The spatial and temporal patterns of the downscaled results will also be analysed. This study will provide the necessary insights for data selection and bias corrections to maintain the consistency of a long-term high resolution soil moisture dataset. The results will assist in developing a time-series of high resolution soil moisture data over the south-eastern Australia.
NASA Astrophysics Data System (ADS)
Cotterman, K. A.; Follum, M. L.; Pradhan, N. R.; Niemann, J. D.
2017-12-01
Flooding impacts numerous aspects of society, from localized flash floods to continental-scale flood events. Many numerical flood models focus solely on riverine flooding, with some capable of capturing both localized and continental-scale flood events. However, these models neglect flooding away from channels that are related to excessive ponding, typically found in areas with flat terrain and poorly draining soils. In order to obtain a holistic view of flooding, we combine flood results from the Streamflow Prediction Tool (SPT), a riverine flood model, with soil moisture downscaling techniques to determine if a better representation of flooding is obtained. This allows for a more holistic understanding of potential flood prone areas, increasing the opportunity for more accurate warnings and evacuations during flooding conditions. Thirty-five years of near-global historical streamflow is reconstructed with continental-scale flow routing of runoff from global land surface models. Elevation data was also obtained worldwide, to establish a relationship between topographic attributes and soil moisture patterns. Derived soil moisture data is validated against observed soil moisture, increasing confidence in the ability to accurately capture soil moisture patterns. Potential flooding situations can be examined worldwide, with this study focusing on the United States, Central America, and the Philippines.
Jia, Jin Tian; Fu, Zhi Yong; Chen, Hong Song; Wang, Ke Lin; Zhou, Wei Jun
2016-06-01
Based on three manually excavated trenches (projection length of 21 m, width of 1 m) along a typical Karst hillslope, the changing trends for soil-bedrock structure, average water content of soil profile and soil-bedrock interface water content along each individual trench were studied. The effect of irregular bedrock topography on soil moisture distribution was discussed. The results showed that the surface topography was inconsistent with the bedrock topography in the Karst hill-slopes. The bedrock topography was highly irregular with a maximum variation coefficient of 82%. The distribution pattern of soil profile of moisture was significantly affected by the underlying undulant bedrock. The soil water content was related to slope position when the fluctuation was gentle, and displayed a linear increase from upslope to downslope. When the bedrock fluctuation increased, the downslope linear increasing trend for soil water content became unapparent, and the spatial continuity of soil moisture was weakened. The soil moisture was converged in rock dents and cracks. The average water content of soil profile was significantly positively correlated with the soil-bedrock interface water content, while the latter responded more sensitively to the bedrock fluctuation.
NASA Astrophysics Data System (ADS)
Yoshida, N.; Oki, T.
2016-12-01
Appropriate initial condition of soil moisture and water table depth are important factors to reduce uncertainty in hydrological simulations. Approaches to determine the initial water table depth have been developed because of difficulty to get information on global water table depth and soil moisture distributions. However, how is equilibrium soil moisture determined by climate conditions? We try to discuss this issue by using land surface model with representation of water table dynamics (MAT-GW). First, the global pattern of water table depth at equilibrium soil moisture in MAT-GW was verified. The water table depth in MAT-GW was deeper than the previous one at fundamentally arid region because the negative recharge and continuous baseflow made water table depth deeper. It indicated that the hydraulic conductivity used for estimating recharge and baseflow need to be reassessed in MAT-GW. In soil physics field, it is revealed that proper hydraulic property models for water retention and unsaturated hydraulic conductivity should be selected for each soil type. So, the effect of selecting hydraulic property models on terrestrial soil moisture and water table depth were examined.Clapp and Hornburger equation(CH eq.) and Van Genuchten equation(VG eq.) were used as representative hydraulic property models. Those models were integrated on MAT-GW and equilibrium soil moisture and water table depth with using each model were compared. The water table depth and soil moisture at grids which reached equilibrium in both simulations were analyzed. The equilibrium water table depth were deeper in VG eq. than CH eq. in most grids due to shape of hydraulic property models. Then, total soil moisture were smaller in VG eq. than CH eq. at almost all grids which water table depth reached equilibrium. It is interesting that spatial patterns which water table depth reached equilibrium or not were basically similar in both simulations but reverse patterns were shown in east and west part of America. Selection of each hydraulic property model based on soil types may compensate characteristic of models in initialization.
Divergent surface and total soil moisture projections under global warming
Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.
2017-01-01
Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.
Examination of Soil Moisture Retrieval Using SIR-C Radar Data and a Distributed Hydrological Model
NASA Technical Reports Server (NTRS)
Hsu, A. Y.; ONeill, P. E.; Wood, E. F.; Zion, M.
1997-01-01
A major objective of soil moisture-related hydrological-research during NASA's SIR-C/X-SAR mission was to determine and compare soil moisture patterns within humid watersheds using SAR data, ground-based measurements, and hydrologic modeling. Currently available soil moisture-inversion methods using active microwave data are only accurate when applied to bare and slightly vegetated surfaces. Moreover, as the surface dries down, the number of pixels that can provide estimated soil moisture by these radar inversion methods decreases, leading to less accuracy and, confidence in the retrieved soil moisture fields at the watershed scale. The impact of these errors in microwave- derived soil moisture on hydrological modeling of vegetated watersheds has yet to be addressed. In this study a coupled water and energy balance model operating within a topographic framework is used to predict surface soil moisture for both bare and vegetated areas. In the first model run, the hydrological model is initialized using a standard baseflow approach, while in the second model run, soil moisture values derived from SIR-C radar data are used for initialization. The results, which compare favorably with ground measurements, demonstrate the utility of combining radar-derived surface soil moisture information with basin-scale hydrological modeling.
Alexander K. Anning; Darrin L. Rubino; Elaine K. Sutherland; Brian C. McCarthy
2013-01-01
Moisture availability is a key factor that influences white oak (Quercus alba L.) growth and wood production. In unglaciated eastern North America, available soil moisture varies greatly along topographic and edaphic gradients. This study was aimed at determining the effects of soil moisture variability and macroclimate on white oak growth in mixed-oak forests of...
NASA Astrophysics Data System (ADS)
Kaleita, A. L.
2013-12-01
Identifying field-scale soil moisture patterns, and quantifying their impact on hydrology and nutrient flux, is currently limited by the time and resources required to do sufficient monitoring. A small number of monitoring locations or occasions may not be sufficient to capture the true spatial and temporal dynamics of these patterns. While process models can help to fill in data gaps, it is often difficult if not impossible to effectively parameterize them at the field and sub-field scale. Thus, empirical methods that can optimize sampling and mapping of soil moisture by using a minimal amount of readily available data may be of significant value. LiDAR is one source of such readily available data. Various topographic indices, including relative elevation, land slope, curvature, and slope aspect are known to influence soil moisture patterns, though the exact nature of that relationship appears to vary from study to study. The objective of this study was to use these data to identify critical sampling locations for mapping soil moisture, and to upscale point measurements at those locations to both a single field-average value, and to a high-resolution pattern map for the field. This study analyzed in-situ soil moisture measurements from the working agricultural field in Story County, Iowa. Theta probe soil moisture measurement values were taken every 50 meters on a 300 x 250 meter grid (~18 acres) during the summer growing seasons of 2004, 2005, 2007, and 2008. The elevation in the field varies by approximately 5 meters and the grid covers six different soil types and a variety of different landscape positions throughout the field. We used self-organizing maps (SOMs) and K-means clustering algorithms to split apart the field study area into distinct categories of similarly-characterized locations. We then used the SOM and clustering metrics to identify locations within each group that were representative of the behavior of that group of locations. We developed a weighted upscaling process to estimate a whole-field average soil moisture content from these few critical samples, and we compared the results to those obtained through the more traditional 'temporal stability' approach. The cluster-based approach was as good as and often better than the temporal stability approach, with the significant advantage that the former does not require any initial period of exhaustive soil moisture monitoring, whereas the latter does. A second objective was to use the classification results of the landscape data to interpolate these sparse critical sampling point data over the whole field. Using what we term 'feature-space interpolation' we were able to re-create a high-resolution soil moisture map for the field using only three measurements, by giving locations with similar landscape characteristics similar soil moisture values. The results showed a small but significant statistical improvement over traditional distance-based interpolation methods, and the resulting patterns also had stronger correlation with end-of-season yield, suggesting this approach may have valuable applications in production agriculture decision-making and assessment.
Vegetation and environmental controls on soil respiration in a pinon-juniper woodland
Sandra A. White
2008-01-01
Soil respiration (RS) responds to changes in plant and microbial activity and environmental conditions. In arid ecosystems of the southwestern USA, soil moisture exhibits large fluctuations because annual and seasonal precipitation inputs are highly variable, with increased variability expected in the future. Patterns of soil moisture, and periodic severe drought, are...
Examining diel patterns of soil and xylem moisture using electrical resistivity imaging
NASA Astrophysics Data System (ADS)
Mares, Rachel; Barnard, Holly R.; Mao, Deqiang; Revil, André; Singha, Kamini
2016-05-01
The feedbacks among forest transpiration, soil moisture, and subsurface flowpaths are poorly understood. We investigate how soil moisture is affected by daily transpiration using time-lapse electrical resistivity imaging (ERI) on a highly instrumented ponderosa pine and the surrounding soil throughout the growing season. By comparing sap flow measurements to the ERI data, we find that periods of high sap flow within the diel cycle are aligned with decreases in ground electrical conductivity and soil moisture due to drying of the soil during moisture uptake. As sap flow decreases during the night, the ground conductivity increases as the soil moisture is replenished. The mean and variance of the ground conductivity decreases into the summer dry season, indicating drier soil and smaller diel fluctuations in soil moisture as the summer progresses. Sap flow did not significantly decrease through the summer suggesting use of a water source deeper than 60 cm to maintain transpiration during times of shallow soil moisture depletion. ERI captured spatiotemporal variability of soil moisture on daily and seasonal timescales. ERI data on the tree showed a diel cycle of conductivity, interpreted as changes in water content due to transpiration, but changes in sap flow throughout the season could not be interpreted from ERI inversions alone due to daily temperature changes.
NASA Technical Reports Server (NTRS)
Liu, Yi; van Dijk, Albert I.J.M.; Owe, Manfred
2007-01-01
Spatiotemporal patterns in soil moisture and vegetation water content across mainland Australia were investigated from 1998 through 2005, using TRMMITMI passive microwave observations. The Empirical Orthogonal Function technique was used to extract dominant spatial and temporal patterns in retrieved estimates of moisture content for the top 1-cm of soil (theta) and vegetation moisture content (via optical depth tau). The dominant temporal theta and tau patterns were strongly correlated to El Nino/Southern Oscillation (ENSO) in spring (3 = 0.90), and to a progressively lesser extent autumn, summer and winter. The Indian Ocean Dipole (IOD) index also explained part of the variation in spring 8 and z. Cluster analysis suggested that the regions most affected by ENS0 are mainly located in eastern Australia. The results suggest that the drought conditions experienced in eastern Australia since 2000 an clearly expressed in these satellite observations have a strong connection with ENSO patterns.
Assimilation of SMOS Retrieved Soil Moisture into the Land Information System
NASA Technical Reports Server (NTRS)
Blankenship, Clay; Case, Jonathan; Zavodsky, Bradley; Jedlovec, Gary
2014-01-01
Soil moisture retrievals from the Soil Moisture and Ocean Salinity (SMOS) instrument are assimilated into the Noah land surface model (LSM) within the NASA Land Information System (LIS). Before assimilation, SMOS retrievals are bias-corrected to match the model climatological distribution using a Cumulative Distribution Function (CDF) matching approach. Data assimilation is done via the Ensemble Kalman Filter. The goal is to improve the representation of soil moisture within the LSM, and ultimately to improve numerical weather forecasts through better land surface initialization. We present a case study showing a large area of irrigation in the lower Mississippi River Valley, in an area with extensive rice agriculture. High soil moisture value in this region are observed by SMOS, but not captured in the forcing data. After assimilation, the model fields reflect the observed geographic patterns of soil moisture. Plans for a modeling experiment and operational use of the data are given. This work helps prepare for the assimilation of Soil Moisture Active/Passive (SMAP) retrievals in the near future.
Yongqiang Liu
2003-01-01
The relations between monthly-seasonal soil moisture and precipitation variability are investigated by identifying the coupled patterns of the two hydrological fields using singular value decomposition (SVD). SVD is a technique of principal component analysis similar to empirical orthogonal knctions (EOF). However, it is applied to two variables simultaneously and is...
Orbiting multi-beam microwave radiometer for soil moisture remote sensing
NASA Technical Reports Server (NTRS)
Shiue, J. C.; Lawrence, R. W.
1985-01-01
The effects of soil moisture and other factors on soil surface emissivity are reviewed and design concepts for a multibeam microwave radiometer with a 15 m antenna are described. Characteristic antenna gain and radiation patterns are shown and losses due to reflector roughness are estimated.
Sensitivity of Polygonum aviculare Seeds to Light as Affected by Soil Moisture Conditions
Batlla, Diego; Nicoletta, Marcelo; Benech-Arnold, Roberto
2007-01-01
Background and Aims It has been hypothesized that soil moisture conditions could affect the dormancy status of buried weed seeds, and, consequently, their sensitivity to light stimuli. In this study, an investigation is made of the effect of different soil moisture conditions during cold-induced dormancy loss on changes in the sensitivity of Polygonum aviculare seeds to light. Methods Seeds buried in pots were stored under different constant and fluctuating soil moisture environments at dormancy-releasing temperatures. Seeds were exhumed at regular intervals during storage and were exposed to different light treatments. Changes in the germination response of seeds to light treatments during storage under the different moisture environments were compared in order to determine the effect of soil moisture on the sensitivity to light of P. aviculare seeds. Key Results Seed acquisition of low-fluence responses during dormancy release was not affected by either soil moisture fluctuations or different constant soil moisture contents. On the contrary, different soil moisture environments affected seed acquisition of very low fluence responses and the capacity of seeds to germinate in the dark. Conclusions The results indicate that under field conditions, the sensitivity to light of buried weed seeds could be affected by the soil moisture environment experienced during the dormancy release season, and this could affect their emergence pattern. PMID:17430979
NASA Astrophysics Data System (ADS)
Sure, A.; Dikshit, O.
2017-12-01
Root zone soil moisture (RZSM) is an important element in hydrology and agriculture. The estimation of RZSM provides insight in selecting the appropriate crops for specific soil conditions (soil type, bulk density, etc.). RZSM governs various vadose zone phenomena and subsequently affects the groundwater processes. With various satellite sensors dedicated to estimating surface soil moisture at different spatial and temporal resolutions, estimation of soil moisture at root zone level for Indo - Gangetic basin which inherits complex heterogeneous environment, is quite challenging. This study aims at estimating RZSM and understand its variation at the level of Indo - Gangetic basin with changing land use/land cover, topography, crop cycles, soil properties, temperature and precipitation patterns using two satellite derived soil moisture datasets operating at distinct frequencies with different principles of acquisition. Two surface soil moisture datasets are derived from AMSR-2 (6.9 GHz - `C' Band) and SMOS (1.4 GHz - `L' band) passive microwave sensors with coarse spatial resolution. The Soil Water Index (SWI), accounting for soil moisture from the surface, is derived by considering a theoretical two-layered water balance model and contributes in ascertaining soil moisture at the vadose zone. This index is evaluated against the widely used modelled soil moisture dataset of GLDAS - NOAH, version 2.1. This research enhances the domain of utilising the modelled soil moisture dataset, wherever the ground dataset is unavailable. The coupling between the surface soil moisture and RZSM is analysed for two years (2015-16), by defining a parameter T, the characteristic time length. The study demonstrates that deriving an optimal value of T for estimating SWI at a certain location is a function of various factors such as land, meteorological, and agricultural characteristics.
Ecosystem-scale plant hydraulic strategies inferred from remotely-sensed soil moisture
NASA Astrophysics Data System (ADS)
Bassiouni, M.; Good, S. P.; Higgins, C. W.
2017-12-01
Characterizing plant hydraulic strategies at the ecosystem scale is important to improve estimates of evapotranspiration and to understand ecosystem productivity and resilience. However, quantifying plant hydraulic traits beyond the species level is a challenge. The probability density function of soil moisture observations provides key information about the soil moisture states at which evapotranspiration is reduced by water stress. Here, an inverse Bayesian approach is applied to a standard bucket model of soil column hydrology forced with stochastic precipitation inputs. Through this approach, we are able to determine the soil moisture thresholds at which stomata are open or closed that are most consistent with observed soil moisture probability density functions. This research utilizes remotely-sensed soil moisture data to explore global patterns of ecosystem-scale plant hydraulic strategies. Results are complementary to literature values of measured hydraulic traits of various species in different climates and previous estimates of ecosystem-scale plant isohydricity. The presented approach provides a novel relation between plant physiological behavior and soil-water dynamics.
Global Soil Moisture from the Aquarius/SAC-D Satellite: Description and Initial Assessment
NASA Technical Reports Server (NTRS)
Bindlish, Rajat; Jackson, Thomas; Cosh, Michael; Zhao, Tianjie; O'Neil, Peggy
2015-01-01
Aquarius satellite observations over land offer a new resource for measuring soil moisture from space. Although Aquarius was designed for ocean salinity mapping, our objective in this investigation is to exploit the large amount of land observations that Aquarius acquires and extend the mission scope to include the retrieval of surface soil moisture. The soil moisture retrieval algorithm development focused on using only the radiometer data because of the extensive heritage of passive microwave retrieval of soil moisture. The single channel algorithm (SCA) was implemented using the Aquarius observations to estimate surface soil moisture. Aquarius radiometer observations from three beams (after bias/gain modification) along with the National Centers for Environmental Prediction model forecast surface temperatures were then used to retrieve soil moisture. Ancillary data inputs required for using the SCA are vegetation water content, land surface temperature, and several soil and vegetation parameters based on land cover classes. The resulting global spatial patterns of soil moisture were consistent with the precipitation climatology and with soil moisture from other satellite missions (Advanced Microwave Scanning Radiometer for the Earth Observing System and Soil Moisture Ocean Salinity). Initial assessments were performed using in situ observations from the U.S. Department of Agriculture Little Washita and Little River watershed soil moisture networks. Results showed good performance by the algorithm for these land surface conditions for the period of August 2011-June 2013 (rmse = 0.031 m(exp 3)/m(exp 3), Bias = -0.007 m(exp 3)/m(exp 3), and R = 0.855). This radiometer-only soil moisture product will serve as a baseline for continuing research on both active and combined passive-active soil moisture algorithms. The products are routinely available through the National Aeronautics and Space Administration data archive at the National Snow and Ice Data Center.
Conner, Lafe G; Gill, Richard A.; Belnap, Jayne
2016-01-01
Soil moisture in seasonally snow-covered environments fluctuates seasonally between wet and dry states. Climate warming is advancing the onset of spring snowmelt and may lengthen the summer-dry state and ultimately cause drier soil conditions. The magnitude of either response may vary across elevation and vegetation types. We situated our study at the lower boundary of persistent snow cover and the upper boundary of subalpine forest with paired treatment blocks in aspen forest and open meadow. In treatments plots, we advanced snowmelt timing by an average of 14 days by adding dust to the snow surface during spring melt. We specifically wanted to know whether early snowmelt would increase the duration of the summer-dry period and cause soils to be drier in the early-snowmelt treatments compared with control plots. We found no difference in the onset of the summer-dry state and no significant differences in soil moisture between treatments. To better understand the reasons soil moisture did not respond to early snowmelt as expected, we examined the mediating influences of soil organic matter, texture, temperature, and the presence or absence of forest. In our study, late-spring precipitation may have moderated the effects of early snowmelt on soil moisture. We conclude that landscape characteristics, including soil, vegetation, and regional weather patterns, may supersede the effects of snowmelt timing in determining growing season soil moisture, and efforts to anticipate the impacts of climate change on seasonally snow-covered ecosystems should take into account these mediating factors.
Downscaling SMAP Soil Moisture Using Geoinformation Data and Geostatistics
NASA Astrophysics Data System (ADS)
Xu, Y.; Wang, L.
2017-12-01
Soil moisture is important for agricultural and hydrological studies. However, ground truth soil moisture data for wide area is difficult to achieve. Microwave remote sensing such as Soil Moisture Active Passive (SMAP) can offer a solution for wide coverage. However, existing global soil moisture products only provide observations at coarse spatial resolutions, which often limit their applications in regional agricultural and hydrological studies. This paper therefore aims to generate fine scale soil moisture information and extend soil moisture spatial availability. A statistical downscaling scheme is presented that incorporates multiple fine scale geoinformation data into the downscaling of coarse scale SMAP data in the absence of ground measurement data. Geoinformation data related to soil moisture patterns including digital elevation model (DEM), land surface temperature (LST), land use and normalized difference vegetation index (NDVI) at a fine scale are used as auxiliary environmental variables for downscaling SMAP data. Generalized additive model (GAM) and regression tree are first conducted to derive statistical relationships between SMAP data and auxiliary geoinformation data at an original coarse scale, and residuals are then downscaled to a finer scale via area-to-point kriging (ATPK) by accounting for the spatial correlation information of the input residuals. The results from standard validation scores as well as the triple collocation (TC) method against soil moisture in-situ measurements show that the downscaling method can significantly improve the spatial details of SMAP soil moisture while maintain the accuracy.
Evapotranspiration Controls Imposed by Soil Moisture: A Spatial Analysis across the United States
NASA Astrophysics Data System (ADS)
Rigden, A. J.; Tuttle, S. E.; Salvucci, G.
2014-12-01
We spatially analyze the control over evapotranspiration (ET) imposed by soil moisture across the United States using daily estimates of satellite-derived soil moisture and data-driven ET over a nine-year period (June 2002-June 2011) at 305 locations. The soil moisture data are developed using 0.25-degree resolution satellite observations from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), where the 9-year time series for each 0.25-degree pixel was selected from three potential algorithms (VUA-NASA, U. Montana, & NASA) based on the maximum mutual information between soil moisture and precipitation (Tuttle & Salvucci (2014), Remote Sens Environ, 114: 207-222). The ET data are developed independent of soil moisture using an emergent relationship between the diurnal cycle of the relative humidity profile and ET. The emergent relation is that the vertical variance of the relative humidity profile is less than what would occur for increased or decreased ET rates, suggesting that land-atmosphere feedback processes minimize this variance (Salvucci and Gentine (2013), PNAS, 110(16): 6287-6291). The key advantage of using this approach to estimate ET is that no measurements of surface limiting factors (soil moisture, leaf area, canopy conductance) are required; instead, ET is estimated from meteorological data measured at 305 common weather stations that are approximately uniformly distributed across the United States. The combination of these two independent datasets allows for a unique spatial analysis of the control on ET imposed by the availability of soil moisture. We fit evaporation efficiency curves across the United States at each of the 305 sites during the summertime (May-June-July-August-September). Spatial patterns are visualized by mapping optimal curve fitting coefficients across the Unites States. An analysis of efficiency curves and their spatial patterns will be presented.
NASA Astrophysics Data System (ADS)
Martini, Edoardo; Werban, Ulrike; Zacharias, Steffen; Pohle, Marco; Dietrich, Peter; Wollschläger, Ute
2017-01-01
Electromagnetic induction (EMI) measurements are widely used for soil mapping, as they allow fast and relatively low-cost surveys of soil apparent electrical conductivity (ECa). Although the use of non-invasive EMI for imaging spatial soil properties is very attractive, the dependence of ECa on several factors challenges any interpretation with respect to individual soil properties or states such as soil moisture (θ). The major aim of this study was to further investigate the potential of repeated EMI measurements to map θ, with particular focus on the temporal variability of the spatial patterns of ECa and θ. To this end, we compared repeated EMI measurements with high-resolution θ data from a wireless soil moisture and soil temperature monitoring network for an extensively managed hillslope area for which soil properties and θ dynamics are known. For the investigated site, (i) ECa showed small temporal variations whereas θ varied from very dry to almost saturation, (ii) temporal changes of the spatial pattern of ECa differed from those of the spatial pattern of θ, and (iii) the ECa-θ relationship varied with time. Results suggest that (i) depending upon site characteristics, stable soil properties can be the major control of ECa measured with EMI, and (ii) for soils with low clay content, the influence of θ on ECa may be confounded by changes of the electrical conductivity of the soil solution. Further, this study discusses the complex interplay between factors controlling ECa and θ, and the use of EMI-based ECa data with respect to hydrological applications.
NASA Astrophysics Data System (ADS)
Willgoose, G. R.; Chen, M.; Cohen, S.; Saco, P. M.; Hancock, G. R.
2013-12-01
In humid areas it is generally considered that soil moisture scales spatially according to the wetness index of the landscape. This scaling arises from lateral flow downslope of ground water within the soil zone. However, in semi-arid and drier regions, this lateral flow is small and fluxes are dominated by vertical flows driven by infiltration and evapotranspiration. Thus, in the absence of runon processes, soil moisture at a location is more driven by local factors such as soil and vegetation properties at that location rather than upstream processes draining to that point. The 'apparent' spatial randomness of soil and vegetation properties generally suggests that soil moisture for semi-arid regions is spatially random. In this presentation a new analysis of neutron probe data during summer from the Tarrawarra site near Melbourne, Australia shows persistent spatial organisation of soil moisture over several years. This suggests a link between permanent features of the catchment (e.g. soil properties) and soil moisture distribution, even though the spatial pattern of soil moisture during the 4 summers monitored appears spatially random. This and other data establishes a prima facie case that soil variations drive spatial variation in soil moisture. Accordingly, we used a previously published spatial scaling relationship for soil properties derived using the mARM pedogenesis model to simulate the spatial variation of soil grading. This soil grading distribution was used in the Rosetta pedotransfer model to derive a spatial distribution of soil functional properties (e.g. saturated hydraulic conductivity, porosity). These functional properties were then input into the HYDRUS-1D soil moisture model and soil moisture simulated for 3 years at daily resolution. The HYDRUS model used had previously been calibrated to field observed soil moisture data at our SASMAS field site. The scaling behaviour of soil moisture derived from this modelling will be discussed and compared with observed data from our SASMAS field sites.
A New Approach in Downscaling Microwave Soil Moisture Product using Machine Learning
NASA Astrophysics Data System (ADS)
Abbaszadeh, Peyman; Yan, Hongxiang; Moradkhani, Hamid
2016-04-01
Understating the soil moisture pattern has significant impact on flood modeling, drought monitoring, and irrigation management. Although satellite retrievals can provide an unprecedented spatial and temporal resolution of soil moisture at a global-scale, their soil moisture products (with a spatial resolution of 25-50 km) are inadequate for regional study, where a resolution of 1-10 km is needed. In this study, a downscaling approach using Genetic Programming (GP), a specialized version of Genetic Algorithm (GA), is proposed to improve the spatial resolution of satellite soil moisture products. The GP approach was applied over a test watershed in United States using the coarse resolution satellite data (25 km) from Advanced Microwave Scanning Radiometer - EOS (AMSR-E) soil moisture products, the fine resolution data (1 km) from Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index, and ground based data including land surface temperature, vegetation and other potential physical variables. The results indicated the great potential of this approach to derive the fine resolution soil moisture information applicable for data assimilation and other regional studies.
Wagner, Wolfgang; Pathe, Carsten; Doubkova, Marcela; Sabel, Daniel; Bartsch, Annett; Hasenauer, Stefan; Blöschl, Günter; Scipal, Klaus; Martínez-Fernández, José; Löw, Alexander
2008-01-01
The high spatio-temporal variability of soil moisture is the result of atmospheric forcing and redistribution processes related to terrain, soil, and vegetation characteristics. Despite this high variability, many field studies have shown that in the temporal domain soil moisture measured at specific locations is correlated to the mean soil moisture content over an area. Since the measurements taken by Synthetic Aperture Radar (SAR) instruments are very sensitive to soil moisture it is hypothesized that the temporally stable soil moisture patterns are reflected in the radar backscatter measurements. To verify this hypothesis 73 Wide Swath (WS) images have been acquired by the ENVISAT Advanced Synthetic Aperture Radar (ASAR) over the REMEDHUS soil moisture network located in the Duero basin, Spain. It is found that a time-invariant linear relationship is well suited for relating local scale (pixel) and regional scale (50 km) backscatter. The observed linear model coefficients can be estimated by considering the scattering properties of the terrain and vegetation and the soil moisture scaling properties. For both linear model coefficients, the relative error between observed and modelled values is less than 5 % and the coefficient of determination (R2) is 86 %. The results are of relevance for interpreting and downscaling coarse resolution soil moisture data retrieved from active (METOP ASCAT) and passive (SMOS, AMSR-E) instruments. PMID:27879759
Berryman, E. M.; Barnard, H. R.; Adams, H. R.; ...
2015-02-10
Forest soil respiration is a major carbon (C) flux that is characterized by significant variability in space and time. In this paper, we quantified growing season soil respiration during both a drought year and a nondrought year across a complex landscape to identify how landscape and climate interact to control soil respiration. We asked the following questions: (1) How does soil respiration vary across the catchments due to terrain-induced variability in moisture availability and temperature? (2) Does the relative importance of moisture versus temperature limitation of respiration vary across space and time? And (3) what terrain elements are important formore » dictating the pattern of soil respiration and its controls? Moisture superseded temperature in explaining watershed respiration patterns, with wetter yet cooler areas higher up and on north facing slopes yielding greater soil respiration than lower and south facing areas. Wetter subalpine forests had reduced moisture limitation in favor of greater seasonal temperature limitation, and the reverse was true for low-elevation semiarid forests. Coincident climate poorly predicted soil respiration in the montane transition zone; however, antecedent precipitation from the prior 10 days provided additional explanatory power. A seasonal trend in respiration remained after accounting for microclimate effects, suggesting that local climate alone may not adequately predict seasonal variability in soil respiration in montane forests. Finally, soil respiration climate controls were more strongly related to topography during the drought year highlighting the importance of landscape complexity in ecosystem response to drought.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berryman, E. M.; Barnard, H. R.; Adams, H. R.
Forest soil respiration is a major carbon (C) flux that is characterized by significant variability in space and time. In this paper, we quantified growing season soil respiration during both a drought year and a nondrought year across a complex landscape to identify how landscape and climate interact to control soil respiration. We asked the following questions: (1) How does soil respiration vary across the catchments due to terrain-induced variability in moisture availability and temperature? (2) Does the relative importance of moisture versus temperature limitation of respiration vary across space and time? And (3) what terrain elements are important formore » dictating the pattern of soil respiration and its controls? Moisture superseded temperature in explaining watershed respiration patterns, with wetter yet cooler areas higher up and on north facing slopes yielding greater soil respiration than lower and south facing areas. Wetter subalpine forests had reduced moisture limitation in favor of greater seasonal temperature limitation, and the reverse was true for low-elevation semiarid forests. Coincident climate poorly predicted soil respiration in the montane transition zone; however, antecedent precipitation from the prior 10 days provided additional explanatory power. A seasonal trend in respiration remained after accounting for microclimate effects, suggesting that local climate alone may not adequately predict seasonal variability in soil respiration in montane forests. Finally, soil respiration climate controls were more strongly related to topography during the drought year highlighting the importance of landscape complexity in ecosystem response to drought.« less
Berryman, Erin Michele; Barnard, H.R.; Adams, H.R.; Burns, M.A.; Gallo, E.; Brooks, P.D.
2015-01-01
Forest soil respiration is a major carbon (C) flux that is characterized by significant variability in space and time. We quantified growing season soil respiration during both a drought year and a nondrought year across a complex landscape to identify how landscape and climate interact to control soil respiration. We asked the following questions: (1) How does soil respiration vary across the catchments due to terrain-induced variability in moisture availability and temperature? (2) Does the relative importance of moisture versus temperature limitation of respiration vary across space and time? And (3) what terrain elements are important for dictating the pattern of soil respiration and its controls? Moisture superseded temperature in explaining watershed respiration patterns, with wetter yet cooler areas higher up and on north facing slopes yielding greater soil respiration than lower and south facing areas. Wetter subalpine forests had reduced moisture limitation in favor of greater seasonal temperature limitation, and the reverse was true for low-elevation semiarid forests. Coincident climate poorly predicted soil respiration in the montane transition zone; however, antecedent precipitation from the prior 10 days provided additional explanatory power. A seasonal trend in respiration remained after accounting for microclimate effects, suggesting that local climate alone may not adequately predict seasonal variability in soil respiration in montane forests. Soil respiration climate controls were more strongly related to topography during the drought year highlighting the importance of landscape complexity in ecosystem response to drought.
NASA Astrophysics Data System (ADS)
Chen, M.; Willgoose, G. R.; Saco, P. M.
2009-12-01
This paper investigates the soil moisture dynamics over two subcatchments (Stanley and Krui) in the Goulburn River in NSW during a three year period (2005-2007) using the Hydrus 1-D unsaturated soil water flow model. The model was calibrated to the seven Stanley microcatchment sites (1 sqkm site) using continuous time surface 30cm and full profile soil moisture measurements. Soil type, leaf area index and soil depth were found to be the key parameters changing model fit to the soil moisture time series. They either shifted the time series up or down, changed the steepness of dry-down recessions or determined the lowest point of soil moisture dry-down respectively. Good correlations were obtained between observed and simulated soil water storage (R=0.8-0.9) when calibrated parameters for one site were applied to the other sites. Soil type was also found to be the main determinant (after rainfall) of the mean of modelled soil moisture time series. Simulations of top 30cm were better than those of the whole soil profile. Within the Stanley microcatchment excellent soil moisture matches could be generated simply by adjusting the mean of soil moisture up or down slightly. Only minor modification of soil properties from site to site enable good fits for all of the Stanley sites. We extended the predictions of soil moisture to a larger spatial scale of the Krui catchment (sites up to 30km distant from Stanley) using soil and vegetation parameters from Stanley but the locally recorded rainfall at the soil moisture measurement site. The results were encouraging (R=0.7~0.8). These results show that it is possible to use a calibrated soil moisture model to extrapolate the soil moisture to other sites for a catchment with an area of up to 1000km2. This paper demonstrates the potential usefulness of continuous time, point scale soil moisture (typical of that measured by permanently installed TDR probes) in predicting the soil wetness status over a catchment of significant size.
NASA Astrophysics Data System (ADS)
Bradford, J. B.; Schlaepfer, D.; Palmquist, K. A.; Lauenroth, W.
2017-12-01
Climate projections for western North America suggest temperature increases that are relatively consistent across climate models. However, precipitation projections are less consistent, especially in the Southwest, promoting uncertainty about the future of soil moisture and drought. We utilized a daily time-step ecosystem water balance model to characterize soil temperature and moisture patterns at a 10-km resolution across western North America for historical (1980-2010), mid-century (2020-2050), and late century (2070-2100). We simulated soil moisture and temperature under two representative concentration pathways and eleven climate models (selected strategically to represent the range of variability in projections among the full set of models in the CMIP5 database and perform well in hind-cast comparisons for the region), and we use the results to identify areas with robust projections, e.g. areas where the large majority of models agree in the direction of change in long-term average soil moisture or temperature. Rising air temperatures will increase average soil temperatures across western North America and expand the area of mesic and thermic soil temperature regimes while decreasing the area of cryic and frigid regimes. Future soil moisture conditions are relatively consistent across climate models for much of the region, including many areas with variable precipitation trajectories. Consistent projections for drier soils are expected in most of Arizona and New Mexico, similar to previous studies. Other regions with projections for declining soil moisture include the central and southern U.S. Great Plains and large parts of southern British Columbia. By contrast, areas with robust projections for increasing soil moisture include northeastern Montana, southern Alberta and Saskatchewan, and many areas in the intermountain west dominated by big sagebrush. In addition, seasonal moisture patterns in much of the western US drylands are expected to shift toward cool-season water availability, with potentially important consequences for ecosystem structure and function. These results provide a framework for coping with variability in climate projections and assessing climate change impacts on dryland ecosystems.
NASA Astrophysics Data System (ADS)
Salvucci, G.; Rigden, A. J.; Gianotti, D.; Entekhabi, D.
2017-12-01
We analyze the control over evapotranspiration (ET) imposed by soil moisture limitations and stomatal closure due to vapor pressure deficit (VPD) across the United States using estimates of satellite-derived soil moisture from SMAP and a meteorological, data-driven ET estimate over a two year period at over 1000 locations. The ET data are developed independent of soil moisture using the emergent relationship between the diurnal cycle of the relative humidity profile and ET based on ETRHEQ (Salvucci and Gentine (2013), PNAS, 110(16): 6287-6291, Rigden and Salvucci, 2015, WRR, 51(4): 2951-2973; Rigden and Salvucci, 2017, GCB, 23(3) 1140-1151). The key advantage of using this approach to estimate ET is that no measurements of surface limiting factors (soil moisture, leaf area, canopy conductance) are required; instead, ET is estimated from only meteorological data. The combination of these two independent datasets allows for a unique spatial analysis of the control on ET imposed by the availability of soil moisture vs. VPD. Spatial patterns of limitations are inferred by fitting the ETRHEQ-inferred surface conductance to a weighted sum of a Jarvis type stomatal conductance model and bare soil evaporation conductance model, with separate moisture-dependent evaporation efficiency relations for bare soil and vegetation. Spatial patterns are visualized by mapping the optimal curve fitting coefficients and by conducting sensitivity analyses of the resulting fitted model across the Unites States. Results indicate regional variations in rate-limiting factors, and suggest that in some areas the VPD effect on stomatal closure is strong enough to induce a decrease in ET under projected climate change, despite an increase in atmospheric drying (and thus evaporative demand).
NASA Astrophysics Data System (ADS)
Shi, Y.; Davis, K. J.; Eissenstat, D. M.; Kaye, J. P.; Duffy, C.; Yu, X.; He, Y.
2014-12-01
Belowground carbon processes are affected by soil moisture and soil temperature, but current biogeochemical models are 1-D and cannot resolve topographically driven hill-slope soil moisture patterns, and cannot simulate the nonlinear effects of soil moisture on carbon processes. Coupling spatially-distributed physically-based hydrologic models with biogeochemical models may yield significant improvements in the representation of topographic influence on belowground C processes. We will couple the Flux-PIHM model to the Biome-BGC (BBGC) model. Flux-PIHM is a coupled physically-based land surface hydrologic model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Because PIHM is capable of simulating lateral water flow and deep groundwater, Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. The coupled Flux-PIHM-BBGC model will be tested at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). The abundant observations, including eddy covariance fluxes, soil moisture, groundwater level, sap flux, stream discharge, litterfall, leaf area index, above ground carbon stock, and soil carbon efflux, make SSHCZO an ideal test bed for the coupled model. In the coupled model, each Flux-PIHM model grid will couple a BBGC cell. Flux-PIHM will provide BBGC with soil moisture and soil temperature information, while BBGC provides Flux-PIHM with leaf area index. Preliminary results show that when Biome- BGC is driven by PIHM simulated soil moisture pattern, the simulated soil carbon is clearly impacted by topography.
NASA Astrophysics Data System (ADS)
Tuttle, S. E.; Salvucci, G.
2012-12-01
Soil moisture influences many hydrological processes in the water and energy cycles, such as runoff generation, groundwater recharge, and evapotranspiration, and thus is important for climate modeling, water resources management, agriculture, and civil engineering. Large-scale estimates of soil moisture are produced almost exclusively from remote sensing, while validation of remotely sensed soil moisture has relied heavily on ground truthing, which is at an inherently smaller scale. Here we present a complementary method to determine the information content in different soil moisture products using only large-scale precipitation data (i.e. without modeling). This study builds on the work of Salvucci [2001], Saleem and Salvucci [2002], and Sun et al. [2011], in which precipitation was conditionally averaged according to soil moisture level, resulting in moisture-outflow curves that estimate the dependence of drainage, runoff, and evapotranspiration on soil moisture (i.e. sigmoidal relations that reflect stressed evapotranspiration for dry soils, roughly constant flux equal to potential evaporation minus capillary rise for moderately dry soils, and rapid drainage for very wet soils). We postulate that high quality satellite estimates of soil moisture, using large-scale precipitation data, will yield similar sigmoidal moisture-outflow curves to those that have been observed at field sites, while poor quality estimates will yield flatter, less informative curves that explain less of the precipitation variability. Following this logic, gridded ¼ degree NLDAS precipitation data were compared to three AMSR-E derived soil moisture products (VUA-NASA, or LPRM [Owe et al., 2001], NSIDC [Njoku et al., 2003], and NSIDC-LSP [Jones & Kimball, 2011]) for a period of nine years (2001-2010) across the contiguous United States. Gaps in the daily soil moisture data were filled using a multiple regression model reliant on past and future soil moisture and precipitation, and soil moisture was then converted to a ranked wetness index, in order to reconcile the wide range and magnitude of the soil moisture products. Generalized linear models were employed to fit a polynomial model to precipitation, given wetness index. Various measures of fit (e.g. log likelihood) were used to judge the amount of information in each soil moisture product, as indicated by the amount of precipitation variability explained by the fitted model. Using these methods, regional patterns appear in soil moisture product performance.
NASA Astrophysics Data System (ADS)
Cumbrera, Ramiro; Millán, Humberto; Martín-Sotoca, Juan Jose; Pérez Soto, Luis; Sanchez, Maria Elena; Tarquis, Ana Maria
2016-04-01
Soil moisture distribution usually presents extreme variation at multiple spatial scales. Image analysis could be a useful tool for investigating these spatial patterns of apparent soil moisture at multiple resolutions. The objectives of the present work were (i) to describe the local scaling of apparent soil moisture distribution and (ii) to define apparent soil moisture patterns from vertical planes of Vertisol pit images. Two soil pits (0.70 m long × 0.60 m width × 0.30 m depth) were excavated on a bare Mazic Pellic Vertisol. One was excavated in April/2011 and the other pit was established in May/2011 after 3 days of a moderate rainfall event. Digital photographs were taken from each Vertisol pit using a Kodak™ digital camera. The mean image size was 1600 × 945 pixels with one physical pixel ≈373 μm of the photographed soil pit. For more details see Cumbrera et al. (2012). Geochemical exploration have found with increasingly interests and benefits of using fractal (power-law) models to characterize geochemical distribution, using the concentration-area (C-A) model (Cheng et al., 1994; Cheng, 2012). This method is based on the singularity maps of a measure that at each point define areas with self-similar properties that are shown in power-law relationships in Concentration-Area plots (C-A method). The C-A method together with the singularity map ("Singularity-CA" method) define thresholds that can be applied to segment the map. We have applied it to each soil image. The results show that, in spite of some computational and practical limitations, image analysis of apparent soil moisture patterns could be used to study the dynamical change of soil moisture sampling in agreement with previous results (Millán et al., 2016). REFERENCES Cheng, Q., Agterberg, F. P. and Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51, 109-130. Cheng, Q. (2012). Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Cumbrera, R., Ana M. Tarquis, Gabriel Gascó, Humberto Millán (2012) Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images. Journal of Hydrology (452-453), 205-212. Martin Sotoca; J.J. Antonio Saa-Requejo, Juan Grau and Ana M. Tarquis (2016). Segmentation of singularity maps in the context of soil porosity. Geophysical Research Abstracts, 18, EGU2016-11402. Millán, H., Cumbrera, R. and Ana M. Tarquis (2016) Multifractal and Levy-stable statistics of soil surface moisture distribution derived from 2D image analysis. Applied Mathematical Modelling, 40(3), 2384-2395.
Plant hydraulics improves and topography mediates prediction of aspen mortality in southwestern USA.
Tai, Xiaonan; Mackay, D Scott; Anderegg, William R L; Sperry, John S; Brooks, Paul D
2017-01-01
Elevated forest mortality has been attributed to climate change-induced droughts, but prediction of spatial mortality patterns remains challenging. We evaluated whether introducing plant hydraulics and topographic convergence-induced soil moisture variation to land surface models (LSM) can help explain spatial patterns of mortality. A scheme predicting plant hydraulic safety loss from soil moisture was developed using field measurements and a plant physiology-hydraulics model, TREES. The scheme was upscaled to Populus tremuloides forests across Colorado, USA, using LSM-modeled and topography-mediated soil moisture, respectively. The spatial patterns of hydraulic safety loss were compared against aerial surveyed mortality. Incorporating hydraulic safety loss raised the explanatory power of mortality by 40% compared to LSM-modeled soil moisture. Topographic convergence was mostly influential in suppressing mortality in low and concave areas, explaining an additional 10% of the variations in mortality for those regions. Plant hydraulics integrated water stress along the soil-plant continuum and was more closely tied to plant physiological response to drought. In addition to the well-recognized topo-climate influence due to elevation and aspect, we found evidence that topographic convergence mediates tree mortality in certain parts of the landscape that are low and convergent, likely through influences on plant-available water. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
An integrated GIS application system for soil moisture data assimilation
NASA Astrophysics Data System (ADS)
Wang, Di; Shen, Runping; Huang, Xiaolong; Shi, Chunxiang
2014-11-01
The gaps in knowledge and existing challenges in precisely describing the land surface process make it critical to represent the massive soil moisture data visually and mine the data for further research.This article introduces a comprehensive soil moisture assimilation data analysis system, which is instructed by tools of C#, IDL, ArcSDE, Visual Studio 2008 and SQL Server 2005. The system provides integrated service, management of efficient graphics visualization and analysis of land surface data assimilation. The system is not only able to improve the efficiency of data assimilation management, but also comprehensively integrate the data processing and analysis tools into GIS development environment. So analyzing the soil moisture assimilation data and accomplishing GIS spatial analysis can be realized in the same system. This system provides basic GIS map functions, massive data process and soil moisture products analysis etc. Besides,it takes full advantage of a spatial data engine called ArcSDE to effeciently manage, retrieve and store all kinds of data. In the system, characteristics of temporal and spatial pattern of soil moiture will be plotted. By analyzing the soil moisture impact factors, it is possible to acquire the correlation coefficients between soil moisture value and its every single impact factor. Daily and monthly comparative analysis of soil moisture products among observations, simulation results and assimilations can be made in this system to display the different trends of these products. Furthermore, soil moisture map production function is realized for business application.
Soil moisture - precipitation feedbacks in observations and models (Invited)
NASA Astrophysics Data System (ADS)
Taylor, C.
2013-12-01
There is considerable uncertainty about the strength, geographical extent, and even the sign of feedbacks between soil moisture and precipitation. Whilst precipitation trivially increases soil moisture, the impact of soil moisture, via surface fluxes, on convective rainfall is far from straight-forward, and likely depends on space and time scale, soil and synoptic conditions, and the nature of the convection itself. In considering how daytime convection responds to surface fluxes, large-scale models based on convective parameterisations may not necessarily provide reliable depictions, particularly given their long-standing inability to reproduce a realistic diurnal cycle of convection. On the other hand, long-term satellite data provide the potential to establish robust relationships between soil moisture and precipitation across the world, notwithstanding some fundamental weaknesses and uncertainties in the datasets. Here, results from regional and global satellite-based analyses are presented. Globally, using 3-hourly precipitation and daily soil moisture datasets, a methodology has been developed to compare the statistics of antecedent soil moisture in the region of localised afternoon rain events (Taylor et al 2012). Specifically the analysis tests whether there are any significant differences in pre-event soil moisture between rainfall maxima and nearby (50-100km) minima. The results reveal a clear signal across a number of semi-arid regions, most notably North Africa, indicating a preference for afternoon rain over drier soil. Analysis by continent and by climatic zone reveals that this signal (locally a negative feedback) is evident in other continents and climatic zones, but is somewhat weaker. This may be linked to the inherent geographical differences across the world, as detection of a feedback requires water-stressed surfaces coincident with frequent active convective initiations. The differences also reflect the quality and utility of the soil moisture datasets outside of sparsely-vegetated regions. No evidence is found for afternoon convection developing preferentially above locally moister soils. Higher resolution datasets are used to provide a clearer relationship between soil moisture patterns and convective initiation in both the Sahel (Taylor et al 2011) and Europe. The observations indicate a preference for convection to initiate on soil moisture gradients, consistent with many high resolution numerical studies. The ability of models to capture the observed relationships between soil moisture and rainfall in the Sahel has been evaluated. This focuses on models run at different resolutions, and with convective parameterisations switched on or off, and highlights issues associated with the parameterisation of convection. Taylor, C.M., Gounou, A., Guichard, F., Harris, P.P., Ellis, R.J.,Couvreux, F., and M. De Kauwe. 2011, Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns, Nature Geoscience, 4, 430-433, doi:10.1038/ngeo1173 Taylor, C.M., de Jeu, R.A.M., Guichard, F., Harris, P.P, and W.A. Dorigo. 2012, Afternoon rain more likely over drier soils, Nature, 489, 423-426, doi:10.1038/nature11377
Development and Application of a Soil Moisture Downscaling Method for Mobility Assessment
2011-05-01
instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send...REPORT Development and Application of a Soil Moisture Downscaling Method for Mobility Assessment 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Soil...cells). Thus, a method is required to downscale intermediate-resolution patterns to finer resolutions. Fortunately, fine-resolution variations in
Topographic, edaphic, and vegetative controls on plant-available water
Dymond, Salli F.; Bradford, John B.; Bolstad, Paul V.; Kolka, Randall K.; Sebestyen, Stephen D.; DeSutter, Thomas S.
2017-01-01
Soil moisture varies within landscapes in response to vegetative, physiographic, and climatic drivers, which makes quantifying soil moisture over time and space difficult. Nevertheless, understanding soil moisture dynamics for different ecosystems is critical, as the amount of water in a soil determines a myriad ecosystem services and processes such as net primary productivity, runoff, microbial decomposition, and soil fertility. We investigated the patterns and variability in in situ soil moisture measurements converted to plant-available water across time and space under different vegetative cover types and topographic positions at the Marcell Experimental Forest (Minnesota, USA). From 0 – 228.6 cm soil depth, plant-available water was significantly higher under the hardwoods (12%), followed by the aspen (8%) and red pine (5%) cover types. Across the same soil depth, toeslopes were wetter (mean plant-available water = 10%) than ridges and backslopes (mean plant-available water was 8%), although these differences were not statistically significant (p < 0.05). Using a mixed model of fixed and random effects, we found that cover type, soil texture, and time were related to plant-available water and that topography was not significantly related to plant-available water within this low-relief landscape. Additionally, during the three-year monitoring period, red pine and quaking aspen sites experienced plant-available water levels that may be considered limiting to plant growth and function. Given that increasing temperatures and more erratic precipitation patterns associated with climate change may result in decreased soil moisture in this region, these species may be sensitive and vulnerable to future shifts in climate.
Assimilation of SMOS Brightness Temperatures or Soil Moisture Retrievals into a Land Surface Model
NASA Technical Reports Server (NTRS)
De Lannoy, Gabrielle J. M.; Reichle, Rolf H.
2016-01-01
Three different data products from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated separately into the Goddard Earth Observing System Model, version 5 (GEOS-5) to improve estimates of surface and root-zone soil moisture. The first product consists of multi-angle, dual-polarization brightness temperature (Tb) observations at the bottom of the atmosphere extracted from Level 1 data. The second product is a derived SMOS Tb product that mimics the data at a 40 degree incidence angle from the Soil Moisture Active Passive (SMAP) mission. The third product is the operational SMOS Level 2 surface soil moisture (SM) retrieval product. The assimilation system uses a spatially distributed ensemble Kalman filter (EnKF) with seasonally varying climatological bias mitigation for Tb assimilation, whereas a time-invariant cumulative density function matching is used for SM retrieval assimilation. All assimilation experiments improve the soil moisture estimates compared to model-only simulations in terms of unbiased root-mean-square differences and anomaly correlations during the period from 1 July 2010 to 1 May 2015 and for 187 sites across the US. Especially in areas where the satellite data are most sensitive to surface soil moisture, large skill improvements (e.g., an increase in the anomaly correlation by 0.1) are found in the surface soil moisture. The domain-average surface and root-zone skill metrics are similar among the various assimilation experiments, but large differences in skill are found locally. The observation-minus-forecast residuals and analysis increments reveal large differences in how the observations add value in the Tb and SM retrieval assimilation systems. The distinct patterns of these diagnostics in the two systems reflect observation and model errors patterns that are not well captured in the assigned EnKF error parameters. Consequently, a localized optimization of the EnKF error parameters is needed to further improve Tb or SM retrieval assimilation.
NASA Astrophysics Data System (ADS)
Soulsby, C.; Dick, J.; Tetzlaff, D.; Bradford, J.
2016-12-01
The role of vegetation on the partitioning of precipitation, and the subsequent storage and release of water within the landscape is poorly understood. In particular, the relationship between vegetation and soil moisture is complex and reciprocal. The role of soil moisture as the primary source of water to plants may affect vegetation distribution. In turn, the structure of vegetation canopies may regulate water partitioning into interception, throughfall and steam flow. Such spatial differences in the inputs, together with complex patterns of water uptake from highly distributed root networks can create marked heterogeneity in soil moisture dynamics at small scales. Here, we present a study combining 3D and 2D ERT surveys with soil moisture measurements in a 3.2km upland catchment in the Scottish Highlands to understand influences of different vegetation types on spatio-temporal dynamics in soil moisture. The study focussed on one year of fortnightly ERT surveys to investigate plant-soil-water interactions within the root zone in podzolic soils. Locations were selected in both forest stands of 15m high Scots pine (Pinus sylvestris) and non-forest locations dominated by heather (Calluna vulgaris) shrubs (<0.5m high). These dominant species are typical of forest and non-forest vegetation communities in the Scottish Highlands. Results showed differences in the soil moisture dynamics under the different vegetation types, with heterogeneous patterns in the forested site mainly correlated with canopy cover and mirroring interception losses, with pronounced wetting cycles of the soil surrounding the bole of trees as a consequence of stem flow. Temporal variability in the forested site was greater, probably due to the interception, and increased evapotranspiration losses relative to the heather site, with drying typically being focussed on the areas around the trees, and reflecting the amount of water uptake. Moisture changes in the heather site were fairly heterogeneous are related to micro-topographic affects, lower interception ( 30% compared with 45%) and a smaller microclimatic effect of the canopy which serves to create greater fluctuations in soil moisture. Our results confirm the value in using geophysics to spatially elucidate subsurface plant-soil-water interactions.
NASA Astrophysics Data System (ADS)
González-Zamora, Ángel; Sánchez, Nilda; Martínez-Fernández, José; Gumuzzio, Ángela; Piles, María; Olmedo, Estrella
The European Space Agency's Soil Moisture and Ocean Salinity (SMOS) Level 2 soil moisture and the new L3 product from the Barcelona Expert Center (BEC) were validated from January 2010 to June 2014 using two in situ networks in Spain. The first network is the Soil Moisture Measurement Stations Network of the University of Salamanca (REMEDHUS), which has been extensively used for validating remotely sensed observations of soil moisture. REMEDHUS can be considered a small-scale network that covers a 1300 km2 region. The second network is a large-scale network that covers the main part of the Duero Basin (65,000 km2). At an existing meteorological network in the Castilla y Leon region (Inforiego), soil moisture probes were installed in 2012 to provide data until 2014. Comparisons of the temporal series using different strategies (total average, land use, and soil type) as well as using the collocated data at each location were performed. Additionally, spatial correlations on each date were computed for specific days. Finally, an improved version of the Triple Collocation (TC) method, i.e., the Extended Triple Collocation (ETC), was used to compare satellite and in situ soil moisture estimates with outputs of the Soil Water Balance Model Green-Ampt (SWBM-GA). The results of this work showed that SMOS estimates were consistent with in situ measurements in the time series comparisons, with Pearson correlation coefficients (R) and an Agreement Index (AI) higher than 0.8 for the total average and the land-use averages and higher than 0.85 for the soil-texture averages. The results obtained at the Inforiego network showed slightly better results than REMEDHUS, which may be related to the larger scale of the former network. Moreover, the best results were obtained when all networks were jointly considered. In contrast, the spatial matching produced worse results for all the cases studied. These results showed that the recent reprocessing of the L2 products (v5.51) improved the accuracy of soil moisture retrievals such that they are now suitable for developing new L3 products, such as the presented in this work. Additionally, the validation based on comparisons between dense/sparse networks and satellite retrievals at a coarse resolution showed that temporal patterns in the soil moisture are better reproduced than spatial patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Chunmei; Leung, Lai R.; Gochis, David
2009-11-29
The influence of antecedent soil moisture on North American monsoon system (NAMS) precipitation variability was explored using the MM5 mesoscale model coupled with the Variable Infiltration Capacity (VIC) land surface model. Sensitivity experiments were performed with extreme wet and dry initial soil moisture conditions for both the 1984 wet monsoon year and the 1989 dry year. The MM5-VIC model reproduced the key features of NAMS in 1984 and 1989 especially over northwestern Mexico. Our modeling results indicate that the land surface has memory of the initial soil wetness prescribed at the onset of the monsoon that persists over most ofmore » the region well into the monsoon season (e.g. until August). However, in contrast to the classical thermal contrast concept, where wetter soils lead to cooler surface temperatures, less land-sea thermal contrast, weaker monsoon circulations and less precipitation, the coupled model consistently demonstrated a positive soil moisture – precipitation feedback. Specifically, anomalously wet premonsoon soil moisture always lead to enhanced monsoon precipitation, and the reverse was also true. The surface temperature changes induced by differences in surface energy flux partitioning associated with pre-monsoon soil moisture anomalies changed the surface pressure and consequently the flow field in the coupled model, which in turn changed moisture convergence and, accordingly, precipitation patterns. Both the largescale circulation change and local land-atmospheric interactions in response to premonsoon soil moisture anomalies play important roles in the coupled model’s positive soil moisture monsoon precipitation feedback. However, the former may be sensitive to the strength and location of the thermal anomalies, thus leaving open the possibility of both positive and negative soil moisture precipitation feedbacks.« less
USDA-ARS?s Scientific Manuscript database
An increase in abnormal climate change patterns and unsustainable irrigation in uplands cause drought and affect agricultural water security, crop productivity, and price fluctuations. In this study, we developed a soil moisture model to project irrigation requirements (IR) for upland crops under cl...
NASA Astrophysics Data System (ADS)
Yu, Z.; Bedig, A.; Quigley, M.; Montalto, F. A.
2017-12-01
In-situ field monitoring can help to improve the design and management of decentralized Green Infrastructure (GI) systems in urban areas. Because of the vast quantity of continuous data generated from multi-site sensor systems, cost-effective post-construction opportunities for real-time control are limited; and the physical processes that influence the observed phenomena (e.g. soil moisture) are hard to track and control. To derive knowledge efficiently from real-time monitoring data, there is currently a need to develop more efficient approaches to data quality control. In this paper, we employ dynamic time warping method to compare the similarity of two soil moisture patterns without ignoring the inherent autocorrelation. We also use a rule-based machine learning method to investigate the feasibility of detecting anomalous responses from soil moisture probes. The data was generated from both individual and clusters of probes, deployed in a GI site in Milwaukee, WI. In contrast to traditional QAQC methods, which seek to detect outliers at individual time steps, the new method presented here converts the continuous time series into event-based symbolic sequences from which unusual response patterns can be detected. Different Matching rules are developed on different physical characteristics for different seasons. The results suggest that this method could be used alternatively to detect sensor failure, to identify extreme events, and to call out abnormal change patterns, compared to intra-probe and inter-probe historical observations. Though this algorithm was developed for soil moisture probes, the same approach could easily be extended to advance QAQC efficiency for any continuous environmental datasets.
Inter-Annual Variability of Soil Moisture Stress Function in the Wheat Field
NASA Astrophysics Data System (ADS)
Akuraju, V. R.; Ryu, D.; George, B.; Ryu, Y.; Dassanayake, K. B.
2014-12-01
Root-zone soil moisture content is a key variable that controls the exchange of water and energy fluxes between land and atmosphere. In the soil-vegetation-atmosphere transfer (SVAT) schemes, the influence of root-zone soil moisture on evapotranspiration (ET) is parameterized by the soil moisture stress function (SSF). Dependence of actual ET: potential ET (fPET) or evaporative fraction to the root-zone soil moisture via SSF can also be used inversely to estimate root-zone soil moisture when fPET is estimated by remotely sensed land surface states. In this work we present fPET versus available soil water (ASW) in the root zone observed in the experimental farm sites in Victoria, Australia in 2012-2013. In the wheat field site, fPET vs ASW exhibited distinct features for different soil depth, net radiation, and crop growth stages. Interestingly, SSF in the wheat field presented contrasting shapes for two cropping years of 2012 and 2013. We argue that different temporal patterns of rainfall (and resulting soil moisture) during the growing seasons in 2012 and 2013 are responsible for the distinctive SSFs. SSF of the wheat field was simulated by the Agricultural Production Systems sIMulator (APSIM). The APSIM was able to reproduce the observed fPET vs. ASW. We discuss implications of our findings for existing modeling and (inverse) remote sensing approaches relying on SSF and alternative growth-stage-dependent SSFs.
Soil moisture downscaling using a simple thermal based proxy
NASA Astrophysics Data System (ADS)
Peng, Jian; Loew, Alexander; Niesel, Jonathan
2016-04-01
Microwave remote sensing has been largely applied to retrieve soil moisture (SM) from active and passive sensors. The obvious advantage of microwave sensor is that SM can be obtained regardless of atmospheric conditions. However, existing global SM products only provide observations at coarse spatial resolutions, which often hamper their applications in regional hydrological studies. Therefore, various downscaling methods have been proposed to enhance the spatial resolution of satellite soil moisture products. The aim of this study is to investigate the validity and robustness of a simple Vegetation Temperature Condition Index (VTCI) downscaling scheme over different climates and regions. Both polar orbiting (MODIS) and geostationary (MSG SEVIRI) satellite data are used to improve the spatial resolution of the European Space Agency's Water Cycle Multi-mission Observation Strategy and Climate Change Initiative (ESA CCI) soil moisture, which is a merged product based on both active and passive microwave observations. The results from direct validation against soil moisture in-situ measurements, spatial pattern comparison, as well as seasonal and land use analyses show that the downscaling method can significantly improve the spatial details of CCI soil moisture while maintain the accuracy of CCI soil moisture. The application of the scheme with different satellite platforms and over different regions further demonstrate the robustness and effectiveness of the proposed method. Therefore, the VTCI downscaling method has the potential to facilitate relevant hydrological applications that require high spatial and temporal resolution soil moisture.
Analyzing and Visualizing Precipitation and Soil Moisture in ArcGIS
NASA Technical Reports Server (NTRS)
Yang, Wenli; Pham, Long; Zhao, Peisheng; Kempler, Steve; Wei, Jennifer
2016-01-01
Precipitation and soil moisture are among the most important parameters in many land GIS (Geographic Information System) research and applications. These data are available globally from NASA GES DISC (Goddard Earth Science Data and Information Services Center) in GIS-ready format at 10-kilometer spatial resolution and 24-hour or less temporal resolutions. In this presentation, well demonstrate how rainfall and soil moisture data are used in ArcGIS to analyze and visualize spatiotemporal patterns of droughts and their impacts on natural vegetation and agriculture in different parts of the world.
Root System Water Consumption Pattern Identification on Time Series Data
Figueroa, Manuel; Pope, Christopher
2017-01-01
In agriculture, soil and meteorological sensors are used along low power networks to capture data, which allows for optimal resource usage and minimizing environmental impact. This study uses time series analysis methods for outliers’ detection and pattern recognition on soil moisture sensor data to identify irrigation and consumption patterns and to improve a soil moisture prediction and irrigation system. This study compares three new algorithms with the current detection technique in the project; the results greatly decrease the number of false positives detected. The best result is obtained by the Series Strings Comparison (SSC) algorithm averaging a precision of 0.872 on the testing sets, vastly improving the current system’s 0.348 precision. PMID:28621739
Root System Water Consumption Pattern Identification on Time Series Data.
Figueroa, Manuel; Pope, Christopher
2017-06-16
In agriculture, soil and meteorological sensors are used along low power networks to capture data, which allows for optimal resource usage and minimizing environmental impact. This study uses time series analysis methods for outliers' detection and pattern recognition on soil moisture sensor data to identify irrigation and consumption patterns and to improve a soil moisture prediction and irrigation system. This study compares three new algorithms with the current detection technique in the project; the results greatly decrease the number of false positives detected. The best result is obtained by the Series Strings Comparison (SSC) algorithm averaging a precision of 0.872 on the testing sets, vastly improving the current system's 0.348 precision.
Retrieving pace in vegetation growth using precipitation and soil moisture
NASA Astrophysics Data System (ADS)
Sohoulande Djebou, D. C.; Singh, V. P.
2013-12-01
The complexity of interactions between the biophysical components of the watershed increases the challenge of understanding water budget. Hence, the perspicacity of the continuum soil-vegetation-atmosphere's functionality still remains crucial for science. This study targeted the Texas Gulf watershed and evaluated the behavior of vegetation covers by coupling precipitation and soil moisture patterns. Growing season's Normalized Differential Vegetation Index NDVI for deciduous forest and grassland were used over a 23 year period as well as precipitation and soil moisture data. The role of time scales on vegetation dynamics analysis was appraised using both entropy rescaling and correlation analysis. This resulted in that soil moisture at 5 cm and 25cm are potentially more efficient to use for vegetation dynamics monitoring at finer time scale compared to precipitation. Albeit soil moisture at 5 cm and 25 cm series are highly correlated (R2>0.64), it appeared that 5 cm soil moisture series can better explain the variability of vegetation growth. A logarithmic transformation of soil moisture and precipitation data increased correlation with NDVI for the different time scales considered. Based on a monthly time scale we came out with a relationship between vegetation index and the couple soil moisture and precipitation [NDVI=a*Log(% soil moisture)+b*Log(Precipitation)+c] with R2>0.25 for each vegetation type. Further, we proposed to assess vegetation green-up using logistic regression model and transinformation entropy using the couple soil moisture and precipitation as independent variables and vegetation growth metrics (NDVI, NDVI ratio, NDVI slope) as the dependent variable. The study is still ongoing and the results will surely contribute to the knowledge in large scale vegetation monitoring. Keywords: Precipitation, soil moisture, vegetation growth, entropy Time scale, Logarithmic transformation and correlation between soil moisture and NDVI, precipitation and NDVI. The analysis is performed by combining both scenes 7 and 8 data. Schematic illustration of the two dimension transinformation entropy approach. T(P,SM;VI) stand for the transinformation contained in the couple soil moisture (SM)/precipitation (P) and explaining vegetation growth (VI).
What are the hydro-meteorological controls on flood characteristics?
NASA Astrophysics Data System (ADS)
Nied, Manuela; Schröter, Kai; Lüdtke, Stefan; Nguyen, Viet Dung; Merz, Bruno
2017-02-01
Flood events can be expressed by a variety of characteristics such as flood magnitude and extent, event duration or incurred loss. Flood estimation and management may benefit from understanding how the different flood characteristics relate to the hydrological catchment conditions preceding the event and to the meteorological conditions throughout the event. In this study, we therefore propose a methodology to investigate the hydro-meteorological controls on different flood characteristics, based on the simulation of the complete flood risk chain from the flood triggering precipitation event, through runoff generation in the catchment, flood routing and possible inundation in the river system and floodplains to flood loss. Conditional cumulative distribution functions and regression tree analysis delineate the seasonal varying flood processes and indicate that the effect of the hydrological pre-conditions, i.e. soil moisture patterns, and of the meteorological conditions, i.e. weather patterns, depends on the considered flood characteristic. The methodology is exemplified for the Elbe catchment. In this catchment, the length of the build-up period, the event duration and the number of gauges undergoing at least a 10-year flood are governed by weather patterns. The affected length and the number of gauges undergoing at least a 2-year flood are however governed by soil moisture patterns. In case of flood severity and loss, the controlling factor is less pronounced. Severity is slightly governed by soil moisture patterns whereas loss is slightly governed by weather patterns. The study highlights that flood magnitude and extent arise from different flood generation processes and concludes that soil moisture patterns as well as weather patterns are not only beneficial to inform on possible flood occurrence but also on the involved flood processes and resulting flood characteristics.
Lyu, Jin Lin; He, Qiu Yue; Yan, Mei Jie; Li, Guo Qing; Du, Sheng
2018-03-01
To examine the characteristics of sap flow in Quercus liaotungensis and their response to environmental factors under different soil moisture conditions, Granier-type thermal dissipation probes were used to measure xylem sap flow of trees with different sapwood area in a natural Q. liaotungensis forest in the loess hilly region. Solar radiation, air temperature, relative air humidity, precipitation, and soil moisture were monitored during the study period. The results showed that sap flux of Q. liaotungensis reached daily peaks earlier than solar radiation and vapor pressure deficit. The diurnal dynamics of sap flux showed a similar pattern to those of the environmental factors. Trees had larger sap flux during the period with higher soil moisture. Under the same soil moisture conditions, trees with larger diameter and sapwood areas had significantly higher sap flux than those with smaller diameter and sapwood areas. Sap flux could be fitted with vapor pressure deficit, solar radiation, and the integrated index of the two factors using exponential saturation function. Differences in the fitted curves and parameters suggested that sap flux tended to reach saturation faster under higher soil moisture. Furthermore, trees in the smaller diameter class were more sensitive to the changes of soil moisture. The ratio of daily sap flux per unit vapor pressure deficit under lower soil moisture condition to that under higher soil moisture condition was linearly correlated to sapwood area. The regressive slope in smaller diameter class was larger than that in bigger diameter class, which further indicated the higher sensitivity of trees with smaller diameter class to soil moisture. These results indicated that wider sapwood of larger diameter class provided a buffer against drought stress.
Exchange of carbonyl sulfide (OCS) between soils and atmosphere under various CO2 concentrations
NASA Astrophysics Data System (ADS)
Bunk, Rüdiger; Behrendt, Thomas; Yi, Zhigang; Andreae, Meinrat O.; Kesselmeier, Jürgen
2017-06-01
A new continuous integrated cavity output spectroscopy analyzer and an automated soil chamber system were used to investigate the exchange processes of carbonyl sulfide (OCS) between soils and the atmosphere under laboratory conditions. The exchange patterns of OCS between soils and the atmosphere were found to be highly dependent on soil moisture and ambient CO2 concentration. With increasing soil moisture, OCS exchange ranged from emission under dry conditions to an uptake within an optimum moisture range, followed again by emission at high soil moisture. Elevated CO2 was found to have a significant impact on the exchange rate and direction as tested with several soils. There is a clear tendency toward a release of OCS at higher CO2 levels (up to 7600 ppm), which are typical for the upper few centimeters within soils. At high soil moisture, the release of OCS increased sharply. Measurements after chloroform vapor application show that there is a biotic component to the observed OCS exchange. Furthermore, soil treatment with the fungi inhibitor nystatin showed that fungi might be the dominant OCS consumers in the soils we examined. We discuss the influence of soil moisture and elevated CO2 on the OCS exchange as a change in the activity of microbial communities. Physical factors such as diffusivity that are governed by soil moisture also play a role. Comparing KM values of the enzymes to projected soil water CO2 concentrations showed that competitive inhibition is unlikely for carbonic anhydrase and PEPCO but might occur for RubisCO at higher CO2 concentrations.
Assimilating soil moisture into an Earth System Model
NASA Astrophysics Data System (ADS)
Stacke, Tobias; Hagemann, Stefan
2017-04-01
Several modelling studies reported potential impacts of soil moisture anomalies on regional climate. In particular for short prediction periods, perturbations of the soil moisture state may result in significant alteration of surface temperature in the following season. However, it is not clear yet whether or not soil moisture anomalies affect climate also on larger temporal and spatial scales. In an earlier study, we showed that soil moisture anomalies can persist for several seasons in the deeper soil layers of a land surface model. Additionally, those anomalies can influence root zone moisture, in particular during explicitly dry or wet periods. Thus, one prerequisite for predictability, namely the existence of long term memory, is evident for simulated soil moisture and might be exploited to improve climate predictions. The second prerequisite is the sensitivity of the climate system to soil moisture. In order to investigate this sensitivity for decadal simulations, we implemented a soil moisture assimilation scheme into the Max-Planck Institute for Meteorology's Earth System Model (MPI-ESM). The assimilation scheme is based on a simple nudging algorithm and updates the surface soil moisture state once per day. In our experiments, the MPI-ESM is used which includes model components for the interactive simulation of atmosphere, land and ocean. Artificial assimilation data is created from a control simulation to nudge the MPI-ESM towards predominantly dry and wet states. First analyses are focused on the impact of the assimilation on land surface variables and reveal distinct differences in the long-term mean values between wet and dry state simulations. Precipitation, evapotranspiration and runoff are larger in the wet state compared to the dry state, resulting in an increased moisture transport from the land to atmosphere and ocean. Consequently, surface temperatures are lower in the wet state simulations by more than one Kelvin. In terms of spatial pattern, the largest differences between both simulations are seen for continental areas, while regions with a maritime climate are least sensitive to soil moisture assimilation.
NASA Astrophysics Data System (ADS)
Penna, Daniele; Gobbi, Alberto; Mantese, Nicola; Borga, Marco
2010-05-01
Hydrological processes driving runoff generation in mountain basins depend on a wide number of factors which are often strictly interconnected. Among them, topography is widely recognized as one of the dominant controls influencing soil moisture distribution in the root zone, depth to water table and location and extent of saturated areas possibly prone to runoff production. Morphological properties of catchments are responsible for the alternation between steep slopes and relatively flat areas which have the potentials to control the storage/release of water and hence the hydrological response of the whole watershed. This work aims to: i) identify the role of topography as the main factor controlling the spatial distribution of near-surface soil moisture; ii) evaluate the possible switch in soil moisture spatial organization between wet and relatively dry periods and the stability of patterns during triggering of surface/subsurface runoff; iii) assess the possible connection between the develop of an ephemeral river network and the groundwater variations, examining the influence of the catchment topographical properties on the hydrological response. Hydro-meteorological data were collected in a small subcatchment (Larch Creek Catchment, 0.033 km²) of Rio Vauz basin (1.9 km²), in the eastern Italian Alps. Precipitation, discharge, water table level over a net of 14 piezometric wells and volumetric soil moisture at 0-30 cm depth were monitored continuously during the late spring-early autumn months in 2007 and 2008. Soil water content at 0-6 and 0-20 cm depth was measured manually during 22 field surveys in summer 2007 over a 44-sampling point experimental plot (approximately 3000 m²). In summer 2008 the sampling grid was extended to 64 points (approximately 4500 m²) and 28 field surveys were carried out. The length of the ephemeral stream network developed during rainfall events was assessed by a net of 24 Overland Flow Detectors (OFDs), which are able to detect the presence/absence of surface runoff. Results show a significant correlation between plot-averaged soil moisture at 0-20 cm depth, local slope and local curvature, while poor correlations were found with aspect and solar radiation: this suggests a sharp control of the catchment topological architecture (likely coupled with soil properties) on soil moisture distribution. This was also confirmed by the visual inspection of interpolated maps which reveal the persistence of high values of soil moisture in hollow areas and, conversely, of low values over the hillslopes. Moreover, a strong correlation between plot-averaged soil moisture patterns over time, with no decline after rainfall events, indicates a good temporal stability of water content distribution and its independence from the triggering of surface flow and transient lateral subsurface flow during wet conditions. The analysis of the time lag between storm centroid and piezometric peak shows an increasing delay of water table reaction with increasing distance from the stream, revealing different groundwater dynamics between the near-stream and the hillslope zone. Furthermore, the significant correlation between groundwater time lag monitored for the net of piezometers and the local slope suggests a topographical influence on the temporal and spatial variability of subsurface runoff. Finally, the extent of the ephemeral stream network was clearly dependent on the amount of precipitation but a different percentage of active OFDs and piezometers for the same rainfall event suggests a decoupling between patterns of surface and subsurface flows in the study area. Key words: topographical controls, soil moisture patterns, groundwater level, overland flow.
Moment Analysis Characterizing Water Flow in Repellent Soils from On- and Sub-Surface Point Sources
NASA Astrophysics Data System (ADS)
Xiong, Yunwu; Furman, Alex; Wallach, Rony
2010-05-01
Water repellency has a significant impact on water flow patterns in the soil profile. Flow tends to become unstable in such soils, which affects the water availability to plants and subsurface hydrology. In this paper, water flow in repellent soils was experimentally studied using the light reflection method. The transient 2D moisture profiles were monitored by CCD camera for tested soils packed in a transparent flow chamber. Water infiltration experiments and subsequent redistribution from on-surface and subsurface point sources with different flow rates were conducted for two soils of different repellency degrees as well as for wettable soil. We used spatio-statistical analysis (moments) to characterize the flow patterns. The zeroth moment is related to the total volume of water inside the moisture plume, and the first and second moments are affinitive to the center of mass and spatial variances of the moisture plume, respectively. The experimental results demonstrate that both the general shape and size of the wetting plume and the moisture distribution within the plume for the repellent soils are significantly different from that for the wettable soil. The wetting plume of the repellent soils is smaller, narrower, and longer (finger-like) than that of the wettable soil compared with that for the wettable soil that tended to roundness. Compared to the wettable soil, where the soil water content decreases radially from the source, moisture content for the water-repellent soils is higher, relatively uniform horizontally and gradually increases with depth (saturation overshoot), indicating that flow tends to become unstable. Ellipses, defined around the mass center and whose semi-axes represented a particular number of spatial variances, were successfully used to simulate the spatial and temporal variation of the moisture distribution in the soil profiles. Cumulative probability functions were defined for the water enclosed in these ellipses. Practically identical cumulative probability functions (beta distribution) were obtained for all soils, all source types, and flow rates. Further, same distributions were obtained for the infiltration and redistribution processes. This attractive result demonstrates the competence and advantage of the moment analysis method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, A. Peyton; Bond-Lamberty, Ben; Benscoter, Brian W.
Droughts and other extreme precipitation events are predicted to increase in intensity, duration and extent, with uncertain implications for terrestrial carbon (C) sequestration. Soil wetting from above (precipitation) results in a characteristically different pattern of pore-filling than wetting from below (groundwater), with larger, well-connected pores filling before finer pore spaces, unlike groundwater rise in which capillary forces saturate the finest pores first. Here we demonstrate that pore-scale wetting patterns interact with antecedent soil moisture conditions to alter pore-, core- and field-scale C dynamics. Drought legacy and wetting direction are perhaps more important determinants of short-term C mineralization than current soilmore » moisture content in these soils. Our results highlight that microbial access to C is not solely limited by physical protection, but also by drought or wetting-induced shifts in hydrologic connectivity. We argue that models should treat soil moisture within a three-dimensional framework emphasizing hydrologic conduits for C and resource diffusion.« less
Pore-scale water dynamics during drying and the impacts of structure and surface wettability
NASA Astrophysics Data System (ADS)
Cruz, Brian C.; Furrer, Jessica M.; Guo, Yi-Syuan; Dougherty, Daniel; Hinestroza, Hector F.; Hernandez, Jhoan S.; Gage, Daniel J.; Cho, Yong Ku; Shor, Leslie M.
2017-07-01
Plants and microbes secrete mucilage into soil during dry conditions, which can alter soil structure and increase contact angle. Structured soils exhibit a broad pore size distribution with many small and many large pores, and strong capillary forces in narrow pores can retain moisture in soil aggregates. Meanwhile, contact angle determines the water repellency of soils, which can result in suppressed evaporation rates. Although they are often studied independently, both structure and contact angle influence water movement, distribution, and retention in soils. Here drying experiments were conducted using soil micromodels patterned to emulate different aggregation states of a sandy loam soil. Micromodels were treated to exhibit contact angles representative of those in bulk soil (8.4° ± 1.9°) and the rhizosphere (65° ± 9.2°). Drying was simulated using a lattice Boltzmann single-component, multiphase model. In our experiments, micromodels with higher contact angle surfaces took 4 times longer to completely dry versus micromodels with lower contact angle surfaces. Microstructure influenced drying rate as a function of saturation and controlled the spatial distribution of moisture within micromodels. Lattice Boltzmann simulations accurately predicted pore-scale moisture retention patterns within micromodels with different structures and contact angles.
NASA Astrophysics Data System (ADS)
Franz, T. E.; Avery, W. A.; Finkenbiner, C. E.; Wang, T.; Brocca, L.
2014-12-01
Approximately 40% of global food production comes from irrigated agriculture. With the increasing demand for food even greater pressures will be placed on water resources within these systems. In this work we aimed to characterize the spatial and temporal patterns of soil moisture at the field-scale (~500 m) using the newly developed cosmic-ray neutron rover near Waco, NE. Here we mapped soil moisture of 144 quarter section fields (a mix of maize, soybean, and natural areas) each week during the 2014 growing season (May to September). The 11 x11 km study domain also contained 3 stationary cosmic-ray neutron probes for independent validation of the rover surveys. Basic statistical analysis of the domain indicated a strong inverted parabolic relationship between the mean and variance of soil moisture. The relationship between the mean and higher order moments were not as strong. Geostatistical analysis indicated the range of the soil moisture semi-variogram was significantly shorter during periods of heavy irrigation as compared to non-irrigated periods. Scaling analysis indicated strong power law behavior between the variance of soil moisture and averaging area with minimal dependence of mean soil moisture on the slope of the power law function. Statistical relationships derived from the rover dataset offer a novel set of observations that will be useful in: 1) calibrating and validating land surface models, 2) calibrating and validating crop models, 3) soil moisture covariance estimates for statistical downscaling of remote sensing products such as SMOS and SMAP, and 4) provide center-pivot scale mean soil moisture data for optimal irrigation timing and volume amounts.
USDA-ARS?s Scientific Manuscript database
Global-scale surface soil moisture (SSM) products retrieved from active and passive microwave remote sensing provide an effective method for monitoring near-real-time SSM content with nearly daily temporal resolution. In the present study, we first inter-compared global-scale error patterns and comb...
Experimental study of nonlinear ultrasonic behavior of soil materials during the compaction.
Chen, Jun; Wang, Hao; Yao, Yangping
2016-07-01
In this paper, the nonlinear ultrasonic behavior of unconsolidated granular medium - soil during the compaction is experimentally studied. The second harmonic generation technique is adopted to investigate the change of microstructural void in materials during the compaction process of loose soils. The nonlinear parameter is measured with the change of two important environmental factors i.e. moisture content and impact energy of compaction. It is found the nonlinear parameter of soil material presents a similar variation pattern with the void ratio of soil samples, corresponding to the increased moisture content and impact energy. A same optimum moisture content is found by observing the variation of nonlinear parameter and void ratio with respect to moisture content. The results indicate that the unconsolidated soil is manipulated by a strong material nonlinearity during the compaction procedure. The developed experimental technique based on the second harmonic generation could be a fast and convenient testing method for the determination of optimum moisture content of soil materials, which is very useful for the better compaction effect of filled embankment for civil infrastructures in-situ. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fischer, Christine; Hohenbrink, Tobias; Leimer, Sophia; Roscher, Christiane; Ravenek, Janneke; de Kroon, Hans; Kreutziger, Yvonne; Wirth, Christian; Eisenhauer, Nico; Gleixner, Gerd; Weigelt, Alexandra; Mommer, Liesje; Beßler, Holger; Schröder, Boris; Hildebrandt, Anke
2015-04-01
Soil moisture is the dynamic link between climate, soil and vegetation and the dynamics and variation are affected by several often interrelated factors such as soil texture, soil structural parameters (soil organic carbon) and vegetation parameters (belowground- and aboveground biomass). For the characterization and estimation of soil moisture and its variability and the resulting water fluxes and solute transports, the knowledge of the relative importance of these factors is of major challenge for hydrology and bioclimatology. Because of the heterogeneity of these factors, soil moisture varies strongly over time and space. Our objective was to assess the spatio-temporal variability of soil moisture and factors which could explain that variability, like soil properties and vegetation cover, in in a long term biodiversity experiment (Jena Experiment). The Jena Experiment consist 86 plots on which plant species richness (0, 1, 2, 4, 8, 16, and 60) and functional groups (legumes, grasses, tall herbs, and small herbs) were manipulated in a factorial design Soil moisture measurements were performed weekly April to September 2003-2005 and 2008-2013 using Delta T theta probe. Measurements were integrated to three depth intervals: 0.0 - 0.20, 0.20 - 0.40 and 0.40 - 0.70 m. We analyze the spatio-temporal patterns of soil water content on (i) the normalized time series and (ii) the first components obtained from a principal component analysis (PCA). Both were correlated with the design variables of the Jena Experiment (plant species richness and plant functional groups) and other influencing factors such as soil texture, soil structural variables and vegetation parameters. For the time stability of soil water content, the analysis showed that plots containing grasses was consistently drier than average at the soil surface in all observed years while plots containing legumes comparatively moister, but only up to the year 2008. In 0.40 - 0.70 m soil deep plots presence of small herbs led to higher than average soil moisture in some years (2008, 2012, 2013). Interestingly, plant species richness led to moister than average subsoil at the beginning of the experiment (2003 and 2004), which changed to lower than average up to the year 2010 in all depths. There was no effect of species diversity in the years since 2010, although species diversity generally increases leaf area index and aboveground biomass. The first component from the PCA analysis described the mean behavior in time of all soil moisture time series. The second component reflected the impact of soil depth. The first two components explained 76% of the data set total variance. The third component is linked to plant species richness and explained about 4 % of the total variance of soil moisture data. The fourth component, which explained 2.4 %, showed a high correlation to soil texture. Within this study we investigate the dominant factors controlling spatio-temporal patterns of soil moisture at several soil depths. Although climate and soil depths were the most important drivers, other factors like plant species richness and soil texture affected the temporal variation while certain plant functional groups were important for the spatial variability.
Soil moisture variation patterns observed in Hand County, South Dakota
NASA Technical Reports Server (NTRS)
Jones, E. B.; Owe, M.; Schmugge, T. J. (Principal Investigator)
1981-01-01
Soil moisture data were taken during 1976 (April, June, October), 1977 (April, May, June), and 1978 (May, June, July) Hand County, South Dakota as part of the ground truth used in NASA's aircraft experiments to study the use of microwave radiometers for the remote sensing of soil moisture. The spatial variability observed on the ground during each of the sampling events was studied. The data reported are the mean gravimetric soil moisture contained in three surface horizon depths: 0 to 2.5, 0 to 5 and 0 to 10 cm. The overall moisture levels ranged from extremely dry conditions in June 1976 to very wet in May 1978, with a relatively even distribution of values within that range. It is indicated that well drained sites have to be partitioned from imperfectly drained areas when attempting to characterize the general moisture profile throughout an area of varying soil and cover type conditions. It is also found that the variability in moisture content is greatest in the 0 to 2.5 cm measurements and decreases as the measurements are integrated over a greater depth. It is also determined that the sampling intensity of 10 measurements per km is adequate to estimate the mean moisture with an uncertainty of + or - 3 percent under average moisture conditions in areas of moderate to good drainage.
Reichel, Rüdiger; Radl, Viviane; Rosendahl, Ingrid; Albert, Andreas; Amelung, Wulf; Schloter, Michael; Thiele-Bruhn, Sören
2014-01-01
Sulfadiazine (SDZ) is an antibiotic frequently administered to livestock, and it alters microbial communities when entering soils with animal manure, but understanding the interactions of these effects to the prevailing climatic regime has eluded researchers. A climatic factor that strongly controls microbial activity is soil moisture. Here, we hypothesized that the effects of SDZ on soil microbial communities will be modulated depending on the soil moisture conditions. To test this hypothesis, we performed a 49-day fully controlled climate chamber pot experiments with soil grown with Dactylis glomerata (L.). Manure-amended pots without or with SDZ contamination were incubated under a dynamic moisture regime (DMR) with repeated drying and rewetting changes of >20 % maximum water holding capacity (WHCmax) in comparison to a control moisture regime (CMR) at an average soil moisture of 38 % WHCmax. We then monitored changes in SDZ concentration as well as in the phenotypic phospholipid fatty acid and genotypic 16S rRNA gene fragment patterns of the microbial community after 7, 20, 27, 34, and 49 days of incubation. The results showed that strongly changing water supply made SDZ accessible to mild extraction in the short term. As a result, and despite rather small SDZ effects on community structures, the PLFA-derived microbial biomass was suppressed in the SDZ-contaminated DMR soils relative to the CMR ones, indicating that dynamic moisture changes accelerate the susceptibility of the soil microbial community to antibiotics.
Effects of climate change on soil moisture over China from 1960-2006
Zhu, Q.; Jiang, H.; Liu, J.
2009-01-01
Soil moisture is an important variable in the climate system and it has sensitive impact on the global climate. Obviously it is one of essential components in the climate change study. The Integrated Biosphere Simulator (IBIS) is used to evaluate the spatial and temporal patterns of soil moisture across China under the climate change conditions for the period 1960-2006. Results show that the model performed better in warm season than in cold season. Mean errors (ME) are within 10% for all the months and root mean squared errors (RMSE) are within 10% except winter season. The model captured the spatial variability higher than 50% in warm seasons. Trend analysis based on the Mann-Kendall method indicated that soil moisture in most area of China is decreased especially in the northern China. The areas with significant increasing trends in soil moisture mainly locate at northwestern China and small areas in southeastern China and eastern Tibet plateau. ?? 2009 IEEE.
An inversion method for retrieving soil moisture information from satellite altimetry observations
NASA Astrophysics Data System (ADS)
Uebbing, Bernd; Forootan, Ehsan; Kusche, Jürgen; Braakmann-Folgmann, Anne
2016-04-01
Soil moisture represents an important component of the terrestrial water cycle that controls., evapotranspiration and vegetation growth. Consequently, knowledge on soil moisture variability is essential to understand the interactions between land and atmosphere. Yet, terrestrial measurements are sparse and their information content is limited due to the large spatial variability of soil moisture. Therefore, over the last two decades, several active and passive radar and satellite missions such as ERS/SCAT, AMSR, SMOS or SMAP have been providing backscatter information that can be used to estimate surface conditions including soil moisture which is proportional to the dielectric constant of the upper (few cm) soil layers . Another source of soil moisture information are satellite radar altimeters, originally designed to measure sea surface height over the oceans. Measurements of Jason-1/2 (Ku- and C-Band) or Envisat (Ku- and S-Band) nadir radar backscatter provide high-resolution along-track information (~ 300m along-track resolution) on backscatter every ~10 days (Jason-1/2) or ~35 days (Envisat). Recent studies found good correlation between backscatter and soil moisture in upper layers, especially in arid and semi-arid regions, indicating the potential of satellite altimetry both to reconstruct and to monitor soil moisture variability. However, measuring soil moisture using altimetry has some drawbacks that include: (1) the noisy behavior of the altimetry-derived backscatter (due to e.g., existence of surface water in the radar foot-print), (2) the strong assumptions for converting altimetry backscatters to the soil moisture storage changes, and (3) the need for interpolating between the tracks. In this study, we suggest a new inversion framework that allows to retrieve soil moisture information from along-track Jason-2 and Envisat satellite altimetry data, and we test this scheme over the Australian arid and semi-arid regions. Our method consists of: (i) deriving time-invariant spatial patterns (base-functions) by applying principal component analysis (PCA) to simulated soil moisture from a large-scale land surface model. (ii) Estimating time-variable soil moisture evolution by fitting these base functions of (i) to the along-track retracked backscatter coefficients in a least squares sense. (iii) Combining the estimated time-variable amplitudes and the pre-computed base-functions, which results in reconstructed (spatio-temporal) soil moisture information. We will show preliminary results that are compared to available high-resolution soil moisture model data over the region (the Australian Water Resource Assessment, AWRA model). We discuss the possibility of using altimetry-derived soil moisture estimations to improve the simulation skill of soil moisture in the Global Land Data Assimilation System (GLDAS) over Australia.
Aspect-related Vegetation Differences Amplify Soil Moisture Variability in Semiarid Landscapes
NASA Astrophysics Data System (ADS)
Yetemen, O.; Srivastava, A.; Kumari, N.; Saco, P. M.
2017-12-01
Soil moisture variability (SMV) in semiarid landscapes is affected by vegetation, soil texture, climate, aspect, and topography. The heterogeneity in vegetation cover that results from the effects of microclimate, terrain attributes (slope gradient, aspect, drainage area etc.), soil properties, and spatial variability in precipitation have been reported to act as the dominant factors modulating SMV in semiarid ecosystems. However, the role of hillslope aspect in SMV, though reported in many field studies, has not received the same degree of attention probably due to the lack of extensive large datasets. Numerical simulations can then be used to elucidate the contribution of aspect-driven vegetation patterns to this variability. In this work, we perform a sensitivity analysis to study on variables driving SMV using the CHILD landscape evolution model equipped with a spatially-distributed solar-radiation component that couples vegetation dynamics and surface hydrology. To explore how aspect-driven vegetation heterogeneity contributes to the SMV, CHILD was run using a range of parameters selected to reflect different scenarios (from uniform to heterogeneous vegetation cover). Throughout the simulations, the spatial distribution of soil moisture and vegetation cover are computed to estimate the corresponding coefficients of variation. Under the uniform spatial precipitation forcing and uniform soil properties, the factors affecting the spatial distribution of solar insolation are found to play a key role in the SMV through the emergence of aspect-driven vegetation patterns. Hence, factors such as catchment gradient, aspect, and latitude, define water stress and vegetation growth, and in turn affect the available soil moisture content. Interestingly, changes in soil properties (porosity, root depth, and pore-size distribution) over the domain are not as effective as the other factors. These findings show that the factors associated to aspect-related vegetation differences amplify the soil moisture variability of semi-arid landscapes.
Geophysical characterization of soil moisture spatial patterns in a tillage experiment
NASA Astrophysics Data System (ADS)
Martinez, G.; Vanderlinden, K.; Giráldez, J. V.; Muriel, J. L.
2009-04-01
Knowledge on the spatial soil moisture pattern can improve the characterisation of the hydrological response of either field-plots or small watersheds. Near-surface geophysical methods, such as electromagnetic induction (EMI), provide a means to map such patterns using non-invasive and non-destructive measurements of the soil apparent electrical conductivity (ECa. In this study ECa was measured using an EMI sensor and used to characterize spatially the hydrologic response of a cropped field to an intense shower. The study site is part of a long-term tillage experiment in Southern Spain in which Conventional Tillage (CT), Direct Drilling (DD) and Minimum Tillage (MT) are being evaluated since 1982. Soil ECa was measured before and after a rain event of 115 mm, near the soil surface and at deeper depth (ECas and ECad, respectively) using the EM38-DD EMI sensor. Simultaneously, elevation data were collected at each sampling point to generate a Digital Elevation Model (DEM). Soil moisture during the first survey was close to permanent wilting point and near field capacity during the second survey. For the first survey, both ECas and ECad, were higher in the CT and MT than in the DD plots. After the rain event, rill erosion appeared only in CT and MT plots were soil was uncovered, matching the drainage lines obtained from the DEM. Apparent electrical conductivity increased all over the field plot with higher increments in the DD plots. These plots showed the highest ECas and ECad values, in contrast to the spatial pattern found during the first sampling. Difference maps obtained from the two ECas and ECad samplings showed a clear difference between DD plots and CT and MT plots due to their distinct hydrologic response. Water infiltration was higher in the soil of the DD plots than in the MT and CT plots, as reflected by their ECad increment. Higher ECa increments were observed in the depressions of the terrain, where water and sediments accumulated. On the contrary, the most elevated places of the field showed lower ECa increments. When soil is wet topography dominates the hydrologic response of the field, while under drier conditions, hydraulic conductivity controls the soil water dynamics. These results show that when static soil properties, e.g. clay content, are spatially uniform, ECa can detect changes in dynamic properties like soil moisture content, characterizing their spatial pattern.
Yongqiang Liu
2003-01-01
It was suggested in a recent statistical correlation analysis that predictability of monthly-seasonal precipitation could be improved by using coupled singular value decomposition (SVD) pattems between soil moisture and precipitation instead of their values at individual locations. This study provides predictive evidence for this suggestion by comparing skills of two...
Hydrologic influences on soil properties along ephemeral rivers in the Namib Desert
Jacobson, P.J.; Jacobson, K.M.; Angermeier, P.L.; Cherry, D.S.
2000-01-01
Soils were examined along three ephemeral rivers in the Namib Desert to assess the influence of their hydrologic characteristics on soil properties. Soils consisted of layers of fluvially deposited, organic-rich silts, interstratified with fluvial and aeolian sands. The most significant influence of the ephemeral hydrologic regime upon soils was related to the downstream alluviation associated with hydrologic decay. This alluviation increased the silt proportion of soils in the lower reaches of the rivers. Organic carbon, nitrogen and phosphorous were correlated with silt content, and silt deposition patterns influenced patterns of moisture availability and plant rooting, creating and maintaining micro-habitats for various organisms. Localized salinization occurred in association with wetland sites and soluble salt content tended to increase downstream. Because of the covariance between silt and macronutrients, and the influence of silt upon moisture availability and habitat suitability, alluviation patterns associated with the hydrologic regime strongly influence the structure, productivity, and spatial distribution of biotic communities in ephemeral river ecosystems. (C) 2000 Academic Press.
Modelling soil water repellency at the daily scale in Portuguese burnt and unburnt eucalypt stands
NASA Astrophysics Data System (ADS)
Nunes, João Pedro; van der Slik, Bart; Marisa Santos, Juliana; Malvar Cortizo, Maruxa; Keizer, Jan Jacob
2014-05-01
Soil water repellency can impact soil hydrology, especially soil wetting. This creates a challenge for hydrological modelling in repellency-prone regions, since current models are generally unable to take it into account. This communication focuses on the development and evaluation of a daily water balance model which takes repellency into account, adapted for eucalypt forest plantations in the north-western Iberian Peninsula. The model was developed and tested using data from three eucalypt stands. Two were burnt in 2005, and the data included bi-weekly measurements of soil moisture and water repellency along a transect, during two years. The third was not burnt, and the data included both weekly measurements of soil water repellency and soil moisture along transects, and continuous measurements of soil moisture at one point, performed for one year between 2011 and 2012. All sites showed low repellency during the wet winter season (although less in the unburnt site, as the winter of 2011/12 was comparatively dry) and high repellency during the dry summer season; this seasonal pattern was strongly related with soil moisture fluctuations. The water balance model was based on the Thornthwaite-Mather method. Interception and tree potential evapotranspiration were estimated using satellite imagery (MODIS NDVI), the first by estimating LAI and applying the Gash interception model, and the second using the SAMIR approach. The model itself was modified by first estimating soil water repellency from soil moisture, using an empirical relation taking into account repellent and non-repellent moisture thresholds for each site; and afterwards using soil water repellency as a limiting factor on soil wettability, by limiting the fraction of infiltration which could replenish soil moisture. Results indicate that this simple approach to simulate repellency can provide adequate model performance and can be easily included in hydrological models.
NASA Astrophysics Data System (ADS)
Franz, Trenton; Wang, Tiejun
2015-04-01
Approximately 40% of global food production comes from irrigated agriculture. With the increasing demand for food even greater pressures will be placed on water resources within these systems. In this work we aimed to characterize the spatial and temporal patterns of soil moisture at the field-scale (~500 m) using the newly developed cosmic-ray neutron rover near Waco, NE USA. Here we mapped soil moisture of 144 quarter section fields (a mix of maize, soybean, and natural areas) each week during the 2014 growing season (May to September). The 12 by 12 km study domain also contained three stationary cosmic-ray neutron probes for independent validation of the rover surveys. Basic statistical analysis of the domain indicated a strong relationship between the mean and variance of soil moisture at several averaging scales. The relationships between the mean and higher order moments were not significant. Scaling analysis indicated strong power law behavior between the variance of soil moisture and averaging area with minimal dependence of mean soil moisture on the slope of the power law function. In addition, we combined the data from the three stationary cosmic-ray neutron probes and mobile surveys using linear regression to derive a daily soil moisture product at 1, 3, and 12 km spatial resolutions for the entire growing season. The statistical relationships derived from the rover dataset offer a novel set of observations that will be useful in: 1) calibrating and validating land surface models, 2) calibrating and validating crop models, 3) soil moisture covariance estimates for statistical downscaling of remote sensing products such as SMOS and SMAP, and 4) provide daily center-pivot scale mean soil moisture data for optimal irrigation timing and volume amounts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, C.; Riley, W.J.
2009-11-01
Precipitation variability and magnitude are expected to change in many parts of the world over the 21st century. We examined the potential effects of intra-annual rainfall patterns on soil nitrogen (N) transport and transformation in the unsaturated soil zone using a deterministic dynamic modeling approach. The model (TOUGHREACT-N), which has been tested and applied in several experimental and observational systems, mechanistically accounts for microbial activity, soil-moisture dynamics that respond to precipitation variability, and gaseous and aqueous tracer transport in the soil. Here, we further tested and calibrated the model against data from a precipitation variability experiment in a tropical systemmore » in Costa Rica. The model was then used to simulate responses of soil moisture, microbial dynamics, nitrogen (N) aqueous and gaseous species, N leaching, and N trace-gas emissions to changes in rainfall patterns; the effect of soil texture was also examined. The temporal variability of nitrate leaching and NO, N{sub 2}, and N{sub 2}O effluxes were significantly influenced by rainfall dynamics. Soil texture combined with rainfall dynamics altered soil moisture dynamics, and consequently regulated soil N responses to precipitation changes. The clay loam soil more effectively buffered water stress during relatively long intervals between precipitation events, particularly after a large rainfall event. Subsequent soil N aqueous and gaseous losses showed either increases or decreases in response to increasing precipitation variability due to complex soil moisture dynamics. For a high rainfall scenario, high precipitation variability resulted in as high as 2.4-, 2.4-, 1.2-, and 13-fold increases in NH{sub 3}, NO, N{sub 2}O and NO{sub 3}{sup -} fluxes, respectively, in clay loam soil. In sandy loam soil, however, NO and N{sub 2}O fluxes decreased by 15% and 28%, respectively, in response to high precipitation variability. Our results demonstrate that soil N cycling responses to increasing precipitation variability depends on precipitation amount and soil texture, and that accurate prediction of future N cycling and gas effluxes requires models with relatively sophisticated representation of the relevant processes.« less
NASA Astrophysics Data System (ADS)
Hess, L.; Basso, B.; Hinckley, E. L. S.; Robertson, G. P.; Matson, P. A.
2015-12-01
In the coming century, the proportion of total rainfall that falls in heavy storm events is expected to increase in many areas, especially in the US Midwest, a major agricultural region. These changes in rainfall patterns may have consequences for hydrologic flow and nutrient losses, especially in agricultural soils, with potentially negative consequences for receiving ground- and surface waters. We used a tracer experiment to examine how more extreme rainfall patterns may affect the movement of water and solutes through an agricultural soil profile in the upper Midwest, and to what extent tillage may moderate these effects. Two rainfall patterns were created with 5m x 5m rainout shelters at the Kellogg Biological Station LTER site in replicated plots with either conventional tillage or no-till management. Control rainfall treatments received water 3x per week, and extreme rainfall treatments received the same total amount of water but once every two weeks, to simulate less frequent but larger storms. In April 2015, potassium bromide (KBr) was added as a conservative tracer of water flow to all plots, and Br- concentrations in soil water at 1.2m depth were measured weekly from April through July. Soil water Br- concentrations increased and peaked more quickly under the extreme rainfall treatment, suggesting increased infiltration and solute transfer to depth compared to soils exposed to control rainfall patterns. Soil water Br- also increased and peaked more quickly in no-till than in conventional tillage treatments, indicating differences in flow paths between management systems. Soil moisture measured every 15 minutes at 10, 40, and 100cm depths corroborates tracer experiment results: rainfall events simulated in extreme rainfall treatments led to large increases in deep soil moisture, while the smaller rainfall events simulated under control conditions did not. Deep soil moisture in no-till treatments also increased sooner after water application as compared to in conventional soils. Our results suggest that exposure to more extreme rainfall patterns will likely increase infiltration depth and nutrient losses in agricultural soils. In particular, soils under no-till management, which leads to development of preferential flow paths, may be particularly vulnerable to vertical nutrient losses.
Fernandez, D.P.; Neff, J.C.; Belnap, J.; Reynolds, R.L.
2006-01-01
Decomposition is central to understanding ecosystem carbon exchange and nutrient-release processes. Unlike mesic ecosystems, which have been extensively studied, xeric landscapes have received little attention; as a result, abiotic soil-respiration regulatory processes are poorly understood in xeric environments. To provide a more complete and quantitative understanding about how abiotic factors influence soil respiration in xeric ecosystems, we conducted soil- respiration and decomposition-cloth measurements in the cold desert of southeast Utah. Our study evaluated when and to what extent soil texture, moisture, temperature, organic carbon, and nitrogen influence soil respiration and examined whether the inverse-texture hypothesis applies to decomposition. Within our study site, the effect of texture on moisture, as described by the inverse texture hypothesis, was evident, but its effect on decomposition was not. Our results show temperature and moisture to be the dominant abiotic controls of soil respiration. Specifically, temporal offsets in temperature and moisture conditions appear to have a strong control on soil respiration, with the highest fluxes occurring in spring when temperature and moisture were favorable. These temporal offsets resulted in decomposition rates that were controlled by soil moisture and temperature thresholds. The highest fluxes of CO2 occurred when soil temperature was between 10 and 16??C and volumetric soil moisture was greater than 10%. Decomposition-cloth results, which integrate decomposition processes across several months, support the soil-respiration results and further illustrate the seasonal patterns of high respiration rates during spring and low rates during summer and fall. Results from this study suggest that the parameters used to predict soil respiration in mesic ecosystems likely do not apply in cold-desert environments. ?? Springer 2006.
Wang, Yan-Ping; Han, Ming-Yu; Zhang, Lin-Sen; Dang, Yong-Jian; Qu, Jun-Tao
2012-03-01
To have an overall understanding on the soil moisture characteristics in the apple orchards of Luochuan County can not only provide theoretical basis for selecting apple orchard sites, choosing the best root-stock combination, and improving the soil water management, but also has reference importance in increasing the productive efficiency of our apple orchards. In this study, a fixed-point continuous monitoring was conducted on the overall soil moisture environment and the variation characteristics of soil moisture in the County apple orchards differed in age class, stand type, and tree type (standard or dwarfed). For the apple orchards in the County, the rhizosphere (0-200 cm) soils of most apple trees were water-deficient, and the deficit in 0-60 cm soil layer was less than that in 60-200 cm layer. During growth season, the water storage in 0-60 cm soil layer had the same variation trend as the rainfall pattern. The relative soil moisture content in most orchards was less than 60% , and seasonal drought was quite severe. The coefficient of variation of soil moisture content decreased with soil depth. With the increasing age of the orchards, soil water storage decreased. At the same planting density, the orchards with dwarfed trees had more water storage in 0-5 m soil layer than the orchards with standard trees. However, when the orchards were planted with dwarfed trees at a higher density, the soil water storage in the orchards with dwarfed trees was lesser than that in the standard orchards. The mature orchards on highland had the highest soil moisture content, followed by the mature orchards on flat land, and on terraced land. Tree density had great effects on the soil moisture content. When the tree density was the same, planting dwarfed trees could decrease the water consumption, and increase the soil moisture content significantly. To decrease the planting density through the removal of trees would be an effective way to maintain the soil water balance of apple orchards, and achieve the sustainable development of the orchards.
NASA Astrophysics Data System (ADS)
Chalari, A.; Ciocca, F.; Krause, S.; Hannah, D. M.; Blaen, P.; Coleman, T. I.; Mondanos, M.
2015-12-01
The Birmingham Institute of Forestry Research (BIFoR) is using Free-Air Carbon Enrichment (FACE) experiments to quantify the long-term impact and resilience of forests into rising atmospheric CO2 concentrations. The FACE campaign critically relies on a successful monitoring and understanding of the large variety of ecohydrological processes occurring across many interfaces, from deep soil to above the tree canopy. At the land-atmosphere interface, soil moisture and temperature are key variables to determine the heat and water exchanges, crucial to the vegetation dynamics as well as to groundwater recharge. Traditional solutions for monitoring soil moisture and temperature such as remote techniques and point sensors show limitations in fast acquisition rates and spatial coverage, respectively. Hence, spatial patterns and temporal dynamics of heat and water fluxes at this interface can only be monitored to a certain degree, limiting deeper knowledge in dynamically evolving systems (e.g. in impact of growing vegetation). Fibre optics Distributed Temperature Sensors (DTS) can measure soil temperatures at high spatiotemporal resolutions and accuracy, along kilometers of optical cable buried in the soil. Heat pulse methods applied to electrical elements embedded in the optical cable can be used to obtain the soil moisture. In July 2015 a monitoring system based on DTS has been installed in a recently forested hillslope at BIFoR in order to quantify high-resolution spatial patterns and high-frequency temporal dynamics of soil heat fluxes and soil moisture conditions. Therefore, 1500m of optical cables have been carefully deployed in three overlapped loops at 0.05m, 0.25m and 0.4m from the soil surface and an electrical system to send heat pulses along the optical cable has been developed. This paper discussed both, installation and design details along with first results of the soil moisture and temperature monitoring carried out since July 2015. Moreover, interpretations of the collected data to investigate the impact on soil moisture dynamics of i) forest evolution (long timescale), (ii) seasonality and, (iii) high-frequency forcing, are discussed.
Impacts of single and recurrent wildfires on topsoil moisture regime
NASA Astrophysics Data System (ADS)
González-Pelayo, Oscar; Malvar, Maruxa; van den Elsen, Erik; Hosseini, Mohammadreza; Coelho, Celeste; Ritsema, Coen; Bautista, Susana; Keizer, Jacob
2017-04-01
The increasing fire recurrence on forest in the Mediterranean basin is well-established by future climate scenarios due to land use changes and climate predictions. By this, shifts on mature pine woodlands to shrub rangelands are of major importance on forest ecosystems buffer functions, since historical patterns of established vegetation help to recover from fire disturbances. This fact, together with the predicted expansion of the drought periods, will affect feedback processes of vegetation patterns since water availability on these seasons are driven by post-fire local soil properties. Although fire impacts of soil properties and water availability has been widely studied using the fire severity as the main factor, little research is developed on post-fire soil moisture patterns, including the fire recurrence as a key explanatory variable. The following research investigated, in pine woodlands of north central Portugal, the short-term consequences (one year after a fire) of wildfire recurrence on the surface soil moisture content (SMC) and on effective soil water (SWEFF, parameter that includes actual daily soil moisture, soil field capacity-FC and permanent wilting point-PWP). The study set-up includes analyses at two fire recurrence scenarios (1x- and 4x-burnt since 1975), at a patch level (shrub patch/interpatch) and at two soil depths (2.5 and 7.5 cm) in a nested approach. Understanding how fire recurrence affects water in soil over space and time is the main goal of this research. The use of soil moisture sensors in a nested approach, the rainfall features and analyses on basic soil properties as soil organic matter, texture, bulk density, pF curves, soil water repellency and soil surface components will establish which factors has the largest role in controlling soil moisture behavior. Main results displayed, in a seasonal and yearly basis, no differences on SMC as increasing fire recurrence (1x- vs 4x-burnt) neither between patch/interpatch microsites at both two soil depths. Otherwise, in a yearly basis and during soil drying cycles, it was found less effective water on soil at the surface layers of the 4x-burnt and between shrub interpatches, based on the worst soil hydrological conditions (PWP) and the increasing percentage of abiotic soil surface components as increasing fire recurrence. Our results suggest that the inclusion of soil hydrological properties, as pF-curves, on the soil water effectiveness calculation seems to be a better indicator of water availability that volumetric SM per se. Otherwise, the use of a nested approach methodology, stresses how fire recurrence, expected increases in the summer drought spells and, the increasing dominance of abiotic soil surface components, are the factors that much influence soil eco-hydrological functioning in fire prone ecosystems. Furthermore, this research point out how post-fire soil structural quality into plant interpatches could provoke looping feedback processes triggering desertification situations also in humid Mediterranean forestlands.
NASA Astrophysics Data System (ADS)
A, G.; Velicogna, I.; Kimball, J. S.; Du, J.; Kim, Y.; Njoku, E. G.; Colliander, A.
2016-12-01
We combine soil moisture (SM) data from AMSR-E, AMSR-2 and SMAP, terrestrial water storage (TWS) changes from GRACE and precipitation measurements from GPCP to delineate and characterize drought and water supply pattern and its impact on vegetation growth. GRACE TWS provides spatially continuous observations of total terrestrial water storage changes and regional drought extent, persistence and severity, while satellite derived soil moisture estimates provide enhanced delineation of plant-available soil moisture. Together these data provide complementary metrics quantifying available plant water supply and have important implications for water resource management. We use these data to investigate the supply changes from different water components in relation to satellite based vegetation productivity metrics from MODIS, before, during and following the major drought events observed in the continental US during the past 13 years. We observe consistent trends and significant correlations between monthly time series of TWS, SM, and vegetation productivity. In Texas and surrounding semi-arid areas, we find that the spatial pattern of the vegetation-moisture relation follows the gradient in mean annual precipitation. In Texas, GRACE TWS and surface SM show strong coupling and similar characteristic time scale in relatively normal years, while during the 2011 onward hydrological drought, GRACE TWS manifests a longer time scale than that of surface SM, implying stronger drought persistence in deeper water storage. In the Missouri watershed, we find a spatially varying vegetation-moisture relationship where in the drier northwestern portion of the basin, the inter-annual variability in summer vegetation productivity is closely associated with changes in carry-on GRACE TWS from spring, whereas in the moist southeastern portion of the basin, summer precipitation is the dominant controlling factor on vegetation growth.
SoilNet - A Zigbee based soil moisture sensor network
NASA Astrophysics Data System (ADS)
Bogena, H. R.; Weuthen, A.; Rosenbaum, U.; Huisman, J. A.; Vereecken, H.
2007-12-01
Soil moisture plays a key role in partitioning water and energy fluxes, in providing moisture to the atmosphere for precipitation, and controlling the pattern of groundwater recharge. Large-scale soil moisture variability is driven by variation of precipitation and radiation in space and time. At local scales, land cover, soil conditions, and topography act to redistribute soil moisture. Despite the importance of soil moisture, it is not yet measured in an operational way, e.g. for a better prediction of hydrological and surface energy fluxes (e.g. runoff, latent heat) at larger scales and in the framework of the development of early warning systems (e.g. flood forecasting) and the management of irrigation systems. The SoilNet project aims to develop a sensor network for the near real-time monitoring of soil moisture changes at high spatial and temporal resolution on the basis of the new low-cost ZigBee radio network that operates on top of the IEEE 802.15.4 standard. The sensor network consists of soil moisture sensors attached to end devices by cables, router devices and a coordinator device. The end devices are buried in the soil and linked wirelessly with nearby aboveground router devices. This ZigBee wireless sensor network design considers channel errors, delays, packet losses, and power and topology constraints. In order to conserve battery power, a reactive routing protocol is used that determines a new route only when it is required. The sensor network is also able to react to external influences, e.g. such as rainfall occurrences. The SoilNet communicator, routing and end devices have been developed by the Forschungszentrum Juelich and will be marketed through external companies. We will present first results of experiments to verify network stability and the accuracy of the soil moisture sensors. Simultaneously, we have developed a data management and visualisation system. We tested the wireless network on a 100 by 100 meter forest plot equipped with 25 end devices each consisting of 6 vertically arranged soil moisture sensors. The next step will be the instrumentation of two small catchments (~30 ha) with a 30 m spacing of the end devices. juelich.de/icg/icg-4/index.php?index=739
Naithani, Kusum J; Baldwin, Doug C; Gaines, Katie P; Lin, Henry; Eissenstat, David M
2013-01-01
Quantifying coupled spatio-temporal dynamics of phenology and hydrology and understanding underlying processes is a fundamental challenge in ecohydrology. While variation in phenology and factors influencing it have attracted the attention of ecologists for a long time, the influence of biodiversity on coupled dynamics of phenology and hydrology across a landscape is largely untested. We measured leaf area index (L) and volumetric soil water content (θ) on a co-located spatial grid to characterize forest phenology and hydrology across a forested catchment in central Pennsylvania during 2010. We used hierarchical Bayesian modeling to quantify spatio-temporal patterns of L and θ. Our results suggest that the spatial distribution of tree species across the landscape created unique spatio-temporal patterns of L, which created patterns of water demand reflected in variable soil moisture across space and time. We found a lag of about 11 days between increase in L and decline in θ. Vegetation and soil moisture become increasingly homogenized and coupled from leaf-onset to maturity but heterogeneous and uncoupled from leaf maturity to senescence. Our results provide insight into spatio-temporal coupling between biodiversity and soil hydrology that is useful to enhance ecohydrological modeling in humid temperate forests.
Spatial Estimation of Soil Moisture Using Synthetic Aperture Radar in Alaska
NASA Astrophysics Data System (ADS)
Meade, N. G.; Hinzman, L. D.; Kane, D. L.
1999-01-01
A spatially distributed Model of Arctic Thermal and Hydrologic processes (MATH) has been developed. One of the attributes of this model is the spatial and temporal prediction of soil moisture in the active layer. The spatially distributed output from this model required verification data obtained through remote sensing to assess performance at the watershed scale independently. Therefore, a neural network was trained to predict soil moisture contents near the ground surface. The input to train the neural network is synthetic aperture radar (SAR) pixel value, and field measurements of soil moisture, and vegetation, which were used as a surrogate for surface roughness. Once the network was trained, soil moisture predictions were made based on SAR pixel value and vegetation. These results were then used for comparison with results from the hydrologic model. The quality of neural network input was less than anticipated. Our digital elevation model (DEM) was not of high enough resolution to allow exact co-registration with soil moisture measurements; therefore, the statistical correlations were not as good as hoped. However, the spatial pattern of the SAR derived soil moisture contents compares favorably with the hydrologic MATH model results. Primary surface parameters that effect SAR include topography, surface roughness, vegetation cover and soil texture. Single parameters that are considered to influence SAR include incident angle of the radar, polarization of the radiation, signal strength and returning signal integration, to name a few. These factors influence the reflectance, but if one adequately quantifies the influences of terrain and roughness, it is considered possible to extract information on soil moisture from SAR imagery analysis and in turn use SAR imagery to validate hydrologic models
Seasonal soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st century
NASA Astrophysics Data System (ADS)
Ruosteenoja, Kimmo; Markkanen, Tiina; Venäläinen, Ari; Räisänen, Petri; Peltola, Heli
2018-02-01
Projections for near-surface soil moisture content in Europe for the 21st century were derived from simulations performed with 26 CMIP5 global climate models (GCMs). Two Representative Concentration Pathways, RCP4.5 and RCP8.5, were considered. Unlike in previous research in general, projections were calculated separately for all four calendar seasons. To make the moisture contents simulated by the various GCMs commensurate, the moisture data were normalized by the corresponding local maxima found in the output of each individual GCM. A majority of the GCMs proved to perform satisfactorily in simulating the geographical distribution of recent soil moisture in the warm season, the spatial correlation with an satellite-derived estimate varying between 0.4 and 0.8. In southern Europe, long-term mean soil moisture is projected to decline substantially in all seasons. In summer and autumn, pronounced soil drying also afflicts western and central Europe. In northern Europe, drying mainly occurs in spring, in correspondence with an earlier melt of snow and soil frost. The spatial pattern of drying is qualitatively similar for both RCP scenarios, but weaker in magnitude under RCP4.5. In general, those GCMs that simulate the largest decreases in precipitation and increases in temperature and solar radiation tend to produce the most severe soil drying. Concurrently with the reduction of time-mean soil moisture, episodes with an anomalously low soil moisture, occurring once in 10 years in the recent past simulations, become far more common. In southern Europe by the late 21st century under RCP8.5, such events would be experienced about every second year.
NASA Astrophysics Data System (ADS)
Gimeno-García, E.; Pascual-Aguilar, J. A.; Llovet, J.
2009-04-01
When studying surface runoff processes, measurement of the soil moisture content (SMC) at the surface could be used to identify sinks and sources areas of runoff. Surface soil moisture patterns variability have been studied in a burned Mediterranean semi-arid area. Since surface SMC and soil water repellency (SWR) are influenced by fire and vegetation (see previous abstract), and soil water dynamics and vegetation dynamics are functionally related, it could be expected to find some changes during the following months after fire when vegetation starts to recover. The identification of these changes is the main goal of this research. The study area is located at the municipality of Les Useres, 40 km from Castellón city (E Spain), where a wildfire occured in August 2007. We selected a burned SSE facing hillslope, located at 570 m a.s.l., with 12° slope angle, in which it was possible to identify the presence of two unique shrub species: Quercus coccifera L. and Rosmarinus officinalis L., which were distributed in a patchy mosaic. Twenty microsites with burned R. officinalis and eight microsites with burned Q. coccifera were selected in an area of 7 m wide by 14 m long. At the burned microsites, it was possible to distinguish three concentric zones (I, II and III) around the stumps showing differences on their soil surface appearance, which indicate a gradient of fire severity. Those differences were considered for field soil moisture measurements. Five measurements of SMC separated approximately 10 cm per zone at each microsite (n= 420) were carried out after different rainfall events. Volumetric soil moisture was measured by means of the moisture meter HH2 with ThetaProbe sensor type ML2x, 6 cm long. SMC was monitored on three occasions, always one day after the following rainfall events: (1) the first rainfall event after fire, when 11 mm were registered (Oct-07); (2) four months later than fire (Dec-07), after six consecutive raining days with a total rain volume of 172 mm; and (3) ten months after fire (Jun-08), when 50 mm were registered in the previous ten days. The spatial pattern of SMC was determined trough geostatistical analysis using GS+ software, calculating the semivariograms, to analyse the spatial correlation scale, interpolating data to estimate values of SMC at unsampled locations by means of kriging and finally, the results of kriging were displayed as different contour maps. Results showed that spatial pattern of SMC was highly variable, with important differences recorded within short distances. In fact, the range of spatial correlation (a0), which is the distance at that spatial correlation exists, varied between 0.5 to 1.4 m. A0 also varied according to the time from fire, with values of 0.5 m in the first rainfall after fire, 0.9 m four months later and 1.4 m ten months after fire occurs. This result suggests that the extent of the wettest areas increase as the vegetation recover. After the first rainfall, the SMC spatial pattern seems to be related to the soil microsite characteristics, mainly organic matter content, presence of hydrophobicity and soil clay content. Generally, the highest SMC (26-31%) appears at the burned bare soil areas. Four months later, as the same time as Q. coccifera resprouts, and in the R. officinalis microsites an important regrowth of Brachypodium resutum is observed, the spatial pattern of SMC changed according this plant cover distribution. This pattern is more clearly observed ten months after fire, when the highest SMC values were located at Q. coccifera and B. resutum areas (28-33%). At this time, no evidence of germination of R. officinalis (obligate seeder specie) was found. The lowest SMC (19-22%) appeared at the half lower part of the plot, where there was a central strip dominated by bare soil, with scarce presence of resprouter species. These results showed that at detailed working scale, the soil moisture pattern in this burned area was highly heterogeneous and the microsite characteristics (mainly soil properties and vegetation regrowth) seem to control the SMC spatial pattern. The interaction of soil-plant-water is more complex that the few environmental factors analysed here, and future research is needed to consider other site factors, such as microtopography, surface stoniness and outcrops, root density, between others. However, the obtained results reflect the capacity of vegetated patches to act as moisture holding areas ten months after fire occurs.
Waring, Bonnie G; Hawkes, Christine V
2015-05-01
Many wet tropical forests, which contain a quarter of global terrestrial biomass carbon stocks, will experience changes in precipitation regime over the next century. Soil microbial responses to altered rainfall are likely to be an important feedback on ecosystem carbon cycling, but the ecological mechanisms underpinning these responses are poorly understood. We examined how reduced rainfall affected soil microbial abundance, activity, and community composition using a 6-month precipitation exclusion experiment at La Selva Biological Station, Costa Rica. Thereafter, we addressed the persistent effects of field moisture treatments by exposing soils to a controlled soil moisture gradient in the lab for 4 weeks. In the field, compositional and functional responses to reduced rainfall were dependent on initial conditions, consistent with a large degree of spatial heterogeneity in tropical forests. However, the precipitation manipulation significantly altered microbial functional responses to soil moisture. Communities with prior drought exposure exhibited higher respiration rates per unit microbial biomass under all conditions and respired significantly more CO2 than control soils at low soil moisture. These functional patterns suggest that changes in microbial physiology may drive positive feedbacks to rising atmospheric CO2 concentrations if wet tropical forests experience longer or more intense dry seasons in the future.
NASA Astrophysics Data System (ADS)
Guan, X. J.; Spence, C.; Westbrook, C. J.
2010-01-01
The companion paper (Guan et al., 2010) demonstrated variable interactions and correlations between shallow soil moisture and ground thaw in soil filled areas along a wetness spectrum in a subarctic Canadian Precambrian Shield landscape. From wetter to drier, these included a wetland, peatland and soil filled valley. Herein, water and energy fluxes were examined for these same subarctic study sites to discern the key controlling processes on the found patterns. Results showed the key control in variable soil moisture and frost table interactions among the sites was the presence of surface water. At the peatland and wetland sites, accumulated water in depressions and flow paths maintained soil moisture for a longer duration than at the hummock tops. These wet areas were often locations of deepest thaw depth due to the transfer of latent heat accompanying lateral surface runoff. Although the peatland and wetland sites had large inundation extent, modified Péclet numbers indicated the relative influence of external and internal hydrological processes at each site were different. Continuous inflow from an upstream lake into the wetland site caused advective and conductive thermal energies to be of equal importance to conductive ground thaw. The absence of continuous surface flow at the peatland and valley sites led to dominance of conductive thermal energy over advective energy for ground thaw. The results suggest that the modified Péclet number could be a very useful parameter to differentiate landscape components in modeling frost table heterogeneity. The calculated water and energy fluxes, and the modified Péclet number provide quantitative explanations for the shallow soil moisture-ground thaw patterns by linking them with hydrological processes and hillslope storage capacity.
NASA Astrophysics Data System (ADS)
Guan, X. J.; Spence, C.; Westbrook, C. J.
2010-07-01
The companion paper (Guan et al., 2010) demonstrated variable interactions and correlations between shallow soil moisture and ground thaw in soil filled areas along a wetness spectrum in a subarctic Canadian Precambrian Shield landscape. From wetter to drier, these included a wetland, peatland and soil filled valley. Herein, water and energy fluxes were examined for these same subarctic study sites to discern the key controlling processes on the found patterns. Results showed the presence of surface water was the key control in variable soil moisture and frost table interactions among sites. At the peatland and wetland sites, accumulated water in depressions and flow paths maintained soil moisture for a longer duration than at the hummock tops. These wet areas were often locations of deepest thaw depth due to the transfer of latent heat accompanying lateral surface runoff. Although the peatland and wetland sites had large inundation extent, modified Péclet numbers indicated the relative influence of external and internal hydrological and energy processes at each site were different. Continuous inflow from an upstream lake into the wetland site caused advective and conductive thermal energies to be of equal importance to ground thaw. The absence of continuous surface flow at the peatland and valley sites led to dominance of conductive thermal energy over advective energy for ground thaw. The results suggest that the modified Péclet number could be a very useful parameter to differentiate landscape components in modeling frost table heterogeneity. The calculated water and energy fluxes, and the modified Péclet number provide quantitative explanations for the shallow soil moisture-ground thaw patterns by linking them with hydrological processes and hillslope storage capacity.
NASA Astrophysics Data System (ADS)
van Wesemael, Bas; Nocita, Marco
2016-04-01
One of the problems for mapping of soil organic carbon (SOC) at large-scale based on visible - near and short wave infrared (VIS-NIR-SWIR) remote sensing techniques is the spatial variation of topsoil moisture when the images are collected. Soil moisture is certainly an aspect causing biased SOC estimations, due to the problems in discriminating reflectance differences due to either variations in organic matter or soil moisture, or their combination. In addition, the difficult validation procedures make the accurate estimation of soil moisture from optical airborne a major challenge. After all, the first millimeters of the soil surface reflect the signal to the airborne sensor and show a large spatial, vertical and temporal variation in soil moisture. Hence, the difficulty of assessing the soil moisture of this thin layer at the same moment of the flight. The creation of a soil moisture proxy, directly retrievable from the hyperspectral data is a priority to improve the large-scale prediction of SOC. This paper aims to verify if the application of the normalized soil moisture index (NSMI) to Airborne Prima Experiment (APEX) hyperspectral images could improve the prediction of SOC. The study area was located in the loam region of Wallonia, Belgium. About 40 samples were collected from bare fields covered by the flight lines, and analyzed in the laboratory. Soil spectra, corresponding to the sample locations, were extracted from the images. Once the NSMI was calculated for the bare fields' pixels, spatial patterns, presumably related to within field soil moisture variations, were revealed. SOC prediction models, built using raw and pre-treated spectra, were generated from either the full dataset (general model), or pixels belonging to one of the two classes of NSMI values (NSMI models). The best result, with a RMSE after validation of 1.24 g C kg-1, was achieved with a NSMI model, compared to the best general model, characterized by a RMSE of 2.11 g C kg-1. These results confirmed the advantage to controlling the effect of soil moisture on the detection of SOC. The NSMI proved to be a flexible concept, due to the possible use of different SWIR wavelengths, and ease of use, because measurements of soil moisture by other techniques are not needed. However, in the future, it will be important to assess the effectiveness of the NSMI for different soil types, and other hyperspectral sensors.
NASA Astrophysics Data System (ADS)
Guo, L.; Lin, H.; Nyquist, J.; Toran, L.; Mount, G.
2017-12-01
Linking subsurface structures to their functions in determining hydrologic processes, such as soil moisture dynamics, subsurface flow patterns, and discharge behaviours, is a key to understanding and modelling hydrological systems. Geophysical techniques provide a non-invasive approach to investigate this form-function dualism of subsurface hydrology at the field scale, because they are effective in visualizing subsurface structure and monitoring the distribution of water. In this study, we used time-lapse ground-penetrating radar (GPR) to compare the hydrologic responses of two contrasting soils in the Shale Hills Critical Zone Observatory. By integrating time-lapse GPR with artificial water injection, we observed distinct flow patterns in the two soils: 1) in the deep Rushtown soil (over 1.5 m depth to bedrock) located in a concave hillslope, a lateral preferential flow network extending as far as 2 m downslope was identified above a less permeable layer and via a series of connected macropores; whereas 2) in the shallow Weikert soil ( 0.3 m depth to saprock) located in a planar hillslope, vertical infiltration into the permeable fractured shale dominated the flow field, while the development of lateral preferential flow along the hillslope was restrained. At the Weikert soil site, the addition of brilliant blue dye to the water injection followed by in situ excavation supported GPR interpretation that only limited lateral preferential flow formed along the soil-saprock interface. Moreover, seasonally repeated GPR surveys indicated different patterns of profile moisture distribution in the two soils that in comparison with the dry season, a dense layer within the BC horizon in the deep Rushtown soil prevented vertical infiltration in the wet season, leading to the accumulation of soil moisture above this layer; whereas, in the shallow Weikert soil, water infiltrated into saprock in wet seasons, building up water storage within the fractured bedrock (i.e., the rock moisture). Results of this study demonstrated the strong interplay between soil structures and subsurface hydrologic behaviors, and time-lapse GPR is an effective method to establish such a relationship under the field conditions.
Estimating Root Mean Square Errors in Remotely Sensed Soil Moisture over Continental Scale Domains
NASA Technical Reports Server (NTRS)
Draper, Clara S.; Reichle, Rolf; de Jeu, Richard; Naeimi, Vahid; Parinussa, Robert; Wagner, Wolfgang
2013-01-01
Root Mean Square Errors (RMSE) in the soil moisture anomaly time series obtained from the Advanced Scatterometer (ASCAT) and the Advanced Microwave Scanning Radiometer (AMSR-E; using the Land Parameter Retrieval Model) are estimated over a continental scale domain centered on North America, using two methods: triple colocation (RMSETC ) and error propagation through the soil moisture retrieval models (RMSEEP ). In the absence of an established consensus for the climatology of soil moisture over large domains, presenting a RMSE in soil moisture units requires that it be specified relative to a selected reference data set. To avoid the complications that arise from the use of a reference, the RMSE is presented as a fraction of the time series standard deviation (fRMSE). For both sensors, the fRMSETC and fRMSEEP show similar spatial patterns of relatively highlow errors, and the mean fRMSE for each land cover class is consistent with expectations. Triple colocation is also shown to be surprisingly robust to representativity differences between the soil moisture data sets used, and it is believed to accurately estimate the fRMSE in the remotely sensed soil moisture anomaly time series. Comparing the ASCAT and AMSR-E fRMSETC shows that both data sets have very similar accuracy across a range of land cover classes, although the AMSR-E accuracy is more directly related to vegetation cover. In general, both data sets have good skill up to moderate vegetation conditions.
Soil moisture profile variability in land-vegetation- atmosphere continuum
NASA Astrophysics Data System (ADS)
Wu, Wanru
Soil moisture is of critical importance to the physical processes governing energy and water exchanges at the land-air boundary. With respect to the exchange of water mass, soil moisture controls the response of the land surface to atmospheric forcing and determines the partitioning of precipitation into infiltration and runoff. Meanwhile, the soil acts as a reservoir for the storage of liquid water and slow release of water vapor into the atmosphere. The major motivation of the study is that the soil moisture profile is thought to make a substantial contribution to the climate variability through two-way interactions between the land-surface and the atmosphere in the coupled ocean-atmosphere-land climate system. The characteristics of soil moisture variability with soil depth may be important in affecting the atmosphere. The natural variability of soil moisture profile is demonstrated using observations. The 16-year field observational data of soil moisture with 11-layer (top 2.0 meters) measured soil depths over Illinois are analyzed and used to identify and quantify the soil moisture profile variability, where the atmospheric forcing (precipitation) anomaly propagates down through the land-branch of the hydrological cycle with amplitude damping, phase shift, and increasing persistence. Detailed statistical data analyses, which include application of the periodogram method, the wavelet method and the band-pass filter, are made of the variations of soil moisture profile and concurrently measured precipitation for comparison. Cross-spectral analysis is performed to obtain the coherence pattern and phase correlation of two time series for phase shift and amplitude damping calculation. A composite of the drought events during this time period is analyzed and compared with the normal (non-drought) case. A multi-layer land surface model is applied for modeling the soil moisture profile variability characteristics and investigating the underlying mechanisms. Numerical experiments are conducted to examine the impacts of some potential controlling factors, which include atmospheric forcing (periodic and pulse) at the upper boundary, the initial soil moisture profile, the relative root abundance and the soil texture, on the variability of soil moisture profile and the corresponding evapotranspiration. Similar statistical data analyses are performed for the experimental data. Observations from the First International Satellite Land Surface Climatological Project (ISLSCP) Field Experiment (FIFE) are analyzed and used for the testing of model. The integration of the observational and modeling approaches makes it possible to better understand the mechanisms by which the soil moisture profile variability is generated with phase shift, fluctuation amplitude damping and low-pass frequency filtering with soil depth, to improve the strategies of parameterizations in land surface schemes, and furthermore, to assess its contribution to climate variability.
NASA Technical Reports Server (NTRS)
Wiesnet, D. R.; Mcginnis, D. F., Jr. (Principal Investigator); Matson, M.; Pritchard, J. A.
1981-01-01
Digital thermal maps of the Cooper River (SC) and the Potomac River estuaries were prepared from heat capacity mapping radiometer (HCMR) tapes. Tidal phases were correctly interpreted and verified. Synoptic surface circulation patterns were charted by location thermal fronts and water mass boundaries within the estuaries. Thermal anomalies were detected adjacent of a conventional power plant on the Potomac. Under optimum conditions, estuaries as small as the Cooper River can be monitored for generalized thermal/tidal circulation patterns by the HCMM-type IR sensors. The HCMM thermal inertia approach to estimating soil moisture at the Luverne (MN) test site was found to be unsatisfactory as a NESS operational satellite technique because of cloud cover interference. Thermal-IR data show similar structure of the Baltimore and Washington heat islands when compared to NOAA AVHRR thermal-IR data. Thermal anomalies from the warm water discharge water of a nuclear power plant were mapped in Lake Anna, Virginia.
CO2 efflux from soils with seasonal water repellency
NASA Astrophysics Data System (ADS)
Urbanek, Emilia; Doerr, Stefan H.
2017-10-01
Soil carbon dioxide (CO2) emissions are strongly dependent on pore water distribution, which in turn can be modified by reduced wettability. Many soils around the world are affected by soil water repellency (SWR), which reduces infiltration and results in diverse moisture distribution. SWR is temporally variable and soils can change from wettable to water-repellent and vice versa throughout the year. Effects of SWR on soil carbon (C) dynamics, and specifically on CO2 efflux, have only been studied in a few laboratory experiments and hence remain poorly understood. Existing studies suggest soil respiration is reduced with increasing severity of SWR, but the responses of soil CO2 efflux to varying water distribution created by SWR are not yet known.Here we report on the first field-based study that tests whether SWR indeed reduces soil CO2 efflux, based on in situ measurements carried out over three consecutive years at a grassland and pine forest sites under the humid temperate climate of the UK.Soil CO2 efflux was indeed very low on occasions when soil exhibited consistently high SWR and low soil moisture following long dry spells. Low CO2 efflux was also observed when SWR was absent, in spring and late autumn when soil temperatures were low, but also in summer when SWR was reduced by frequent rainfall events. The highest CO2 efflux occurred not when soil was wettable, but when SWR, and thus soil moisture, was spatially patchy, a pattern observed for the majority of the measurement period. Patchiness of SWR is likely to have created zones with two different characteristics related to CO2 production and transport. Zones with wettable soil or low persistence of SWR with higher proportion of water-filled pores are expected to provide water with high nutrient concentration resulting in higher microbial activity and CO2 production. Soil zones with high SWR persistence, on the other hand, are dominated by air-filled pores with low microbial activity, but facilitating O2 supply and CO2 exchange between the soil and the atmosphere.The effects of soil moisture and SWR on soil CO2 efflux are strongly co-correlated, but the results of this study support the notion that SWR indirectly affects soil CO2 efflux by affecting soil moisture distribution. The appearance of SWR is influenced by moisture and temperature, but once present, SWR influences subsequent infiltration patterns and resulting soil water distribution, which in turn affects respiration. This study demonstrates that SWR can have contrasting effects on CO2 efflux. It can reduce it in dry soil zones by preventing their re-wetting, but, at the field soil scale and when spatially variable, it can also enhance overall CO2 efflux. Spatial variability in SWR and associated soil moisture distribution therefore need to be considered when evaluating the effects of SWR on soil C dynamics under current and predicted future climatic conditions.
Spatial Variation in Anaerobic Microbial Communities in Wetland Margin Soils
NASA Astrophysics Data System (ADS)
Rich, H.; Kannenberg, S.; Ludwig, S.; Nelson, L. C.; Spawn, S.; Porterfield, J.; Schade, J. D.
2012-12-01
Climate change is predicted to increase the severity and frequency of precipitation and drought events, which may result in substantial temporal variation in the size of wetlands. Wetlands are the world's largest natural emitter of methane, a greenhouse gas that is 20 times more effective at trapping heat than carbon dioxide. Changes in the dynamics of wetland size may lead to changes in the extent and timing of inundation of soils in ephemeral margins, which is likely to influence microbes that rely on anoxic conditions. The impact on process rates may depend on the structure of the community of microbes present in the soil, however, the link between microbial structure and patterns in process rates in soils is not well understood. Our goal was to use molecular techniques to compare microorganism communities in two wetlands that differ in the extent and duration of inundation of marginal soils to assess how these communities may change with changes in climate, and the potential consequences for methane production. This will allow us to examine how community composition changes with soil conditions such as moisture content, frequency of drought and abundance of available carbon. The main focus of this project was to determine the presence or absence of acetoclastic (AC) and hydrogenotrophic (HT) methanogens. AC methanogens use acetate as their main substrate, while HT methanogens use Hydrogen and Carbon dioxide. The relative proportion of these pathways depends on soil conditions, such as competition with other anaerobic microbes and the amount of labile carbon, and spatial patterns in the presence of each can give insight into the soil conditions of a wetland site. We sampled soil from three different wetland ponds of varying permanence in the St Olaf Natural Lands in Northfield, Minnesota, and extracted DNA from these soil samples with a MoBio PowerSoil DNA Isolation Kit. With PCR and seven different primer sets, we tested the extracted DNA for the presence of four different methanogen taxa as well as denitrifying, iron reducing and sulfate reducing bacteria. We used the percentage of soil replicates that tested positive for a primer as an indicator of the population size of each microorganism at each site. The results of the presence/absence test suggested a relationship between soil moisture and abundance of methanogens. The sites with over 25% moisture content showed a higher percent presence than the soil sites with under 25% moisture content for all taxa except for sulfate reducing bacteria. The impact of soil moisture is likely due to negative effects of oxygen on methanogens. However, the presence of methanogens in drier soils shows that methanogens can still exist in a dormant state in aerobic environments. Methanogens may be ubiquitous but vary in population size and activity depending on soil conditions. With changes in wetland soil moisture in response to changes in precipitation patterns, the populations of methanogens may change, affecting the amount of methane production and ultimately the amount of heat trapped by the atmosphere.
Eco-geophysical imaging of watershed-scale soil patterns links with plant community spatial patterns
USDA-ARS?s Scientific Manuscript database
The extent to which soil resource availability, nutrients or 1 moisture, control the structure, function and diversity of plant communities has aroused considerable interest in the past decade, and remains topical in light of global change. Numerous plant communities are controlled either by water o...
Is soil moisture initialization important for seasonal to decadal predictions?
NASA Astrophysics Data System (ADS)
Stacke, Tobias; Hagemann, Stefan
2014-05-01
The state of soil moisture can can have a significant impact on regional climate conditions for short time scales up to several months. However, focusing on seasonal to decadal time scales, it is not clear whether the predictive skill of global a Earth System Model might be enhanced by assimilating soil moisture data or improving the initial soil moisture conditions with respect to observations. As a first attempt to provide answers to this question, we set up an experiment to investigate the life time (memory) of extreme soil moisture states in the coupled land-atmosphere model ECHAM6-JSBACH, which is part of the Max Planck Institute for Meteorology's Earth System Model (MPI-ESM). This experiment consists of an ensemble of 3 years simulations which are initialized with extreme wet and dry soil moisture states for different seasons and years. Instead of using common thresholds like wilting point or critical soil moisture, the extreme states were extracted from a reference simulation to ensure that they are within the range of simulated climate variability. As a prerequisite for this experiment, the soil hydrology in JSBACH was improved by replacing the bucket-type soil hydrology scheme with a multi-layer scheme. This new scheme is a more realistic representation of the soil, including percolation and diffusion fluxes between up to five separate layers, the limitation of bare soil evaporation to the uppermost soil layer and the addition of a long term water storage below the root zone in regions with deep soil. While the hydrological cycle is not strongly affected by this new scheme, it has some impact on the simulated soil moisture memory which is mostly strengthened due to the additional deep layer water storage. Ensemble statistics of the initialization experiment indicate perturbation lengths between just a few days up to several seasons for some regions. In general, the strongest effects are seen for wet initialization during northern winter over cold and humid regions, while the shortest memory is found during northern spring. For most regions, the soil moisture memory is either sensitive to wet or to dry perturbations, indicating that soil moisture anomalies interact with the respective weather pattern for a given year and might be able to enhance or dampen extreme conditions. To further investigate this effect, the simulations will be repeated using JSBACH with prescribed meteorological forcing to better disentangle the direct effects of soil moisture initialization and the atmospheric response.
NASA Astrophysics Data System (ADS)
Jin, Z.; Guo, L.; Lin, H.; Wang, Y.; Chu, G.
2017-12-01
In this study, a paired of small watersheds, which are artificial forestland and natural grassland, respectively, were selected. The two watersheds have been set up since 1954 and the time of revegetation is more than 60 years. Their differences in event and seasonal dynamics of soil moisture were investigated and the effects of vegetation and landform were analyzed. Results showed that consecutive small events higher than 22 mm and single events higher than 16.6 mm could recharge the soil moisture of the two watersheds, but no rainfall event was observed to recharge the soil moisture of 100 cm within 2 weeks after rainfall initiation. Moreover, the two contrasting watersheds showed no difference in rainfall threshold for effective soil moisture replenishment and also had similar patterns of soil water increment with the increase of initial soil water content and rainfall intensity. The changing vegetation cover and coverage at different landforms (uphill slope land and downhill gully) showed the most significant impact on event and seasonal dynamics of soil moisture. The strong interception, evaporation and transpiration of tree canopy and understory vegetation in the gully of the forestland showed the most negative impacts on soil moisture replenishment. Moreover, dense surface grass biomass (living and dead) in the grassland also showed negative impacts on effective soil moisture recharge. Landform itself showed no significant impact on event soil moisture dynamics through changing the initial soil water content and soil texture, while site differences in slope gradient and soil temperature could affect the seasonal soil water content. During the growing season of May-October, the forestland showed 1.3% higher soil water content than that of the grassland in the landform of uphill slope land; while in the landform of downhill gully, the grassland showed 4.3% higher soil water content than that of the forestland. Many studies have predicted that there will be more extreme precipitation in the global and local dry regions in the 21st century, and thus the threshold and mechanisms of effective rainfall replenishment should be strengthened. Keywords: Soil water monitoring; paired watersheds; afforestation; natural recovery; landform Corresponding author: Prof. Dr. Zhao Jin, jinzhao@ieecas.cn
NASA Astrophysics Data System (ADS)
Barron-Gafford, G. A.; Minor, R. L.; Braun, Z.; Potts, D. L.
2012-12-01
Woody encroachment into grasslands alters ecosystem structure and function both above- and belowground. Aboveground, woody plant canopies increase leaf area index and alter patterns of interception, infiltration and runoff. Belowground, woody plants alter root distribution and increase maximum rooting depth with the effect of accessing deeper pools of soil moisture and shifting the timing and duration of evapotranspiration. In turn, these woody plants mediate hydrological changes that influence patterns of ecosystem CO2 exchange and productivity. Given projections of more variable precipitation and increased temperatures for many semiarid regions, differences in physiological performance are likely to drive changes in ecosystem-scale carbon and water flux depending on the degree of woody cover. Ultimately, as soil moisture declines with decreased precipitation, differential patterns of environmental sensitivity among growth-forms and their dependence on groundwater will only become more important in determining ecosystem resilience to future change. Here, we created a series of 1-meter deep mesocosms that housed either a woody mesquite shrub, a bunchgrass, or was left as bare soil. Five replicates of each were maintained under current ambient air temperatures, and five replicates were maintained under projected (+4oC) air temperatures. Each mesocosm was outfitted with an array of soil moisture, temperature, water potential, and CO2 exchange concentration sensors at the near-surface, 30, 55, and 80cm depths to quantify patterns of soil moisture and respiratory CO2 exchange efflux in response to rainfall events of varying magnitude and intervening dry periods of varying duration. In addition, we used minirhizotrons to quantify the response of roots to episodic rainfall. During the first year, bunchgrasses photosynthetically outperformed mesquite saplings across a wider range of temperatures under dry conditions, regardless of growth temperature (ambient or +4oC). Both growth forms were similarly responsive to episodic rainfall, regardless of event magnitude, though mesquite were able to maintain photosynthetic function for a longer period in response to each rain. However, in the second year of the experiment a new pattern of response to moisture and high temperature stress emerged. Under dry conditions, mesquite sustained high photosynthetic rates across a wider range of atmospheric temperatures and were less responsive to rainfall, regardless of event magnitude. In contrast, the limiting effect of high temperatures on bunchgrass photosynthesis was soil moisture dependent. In this case, the effects of high temperature limitation were exaggerated under dry conditions and relaxed when soil moisture was more abundant. Together, these trends yielded a significantly greater photosynthetic assimilation by deeper-rooted mesquite shrubs than shallow-rooted bunchgrasses under both temperature regimes. Combining these aboveground measurements of carbon uptake with belowground estimates of carbon efflux will allow us to make much more informed projections of net carbon balance within mixed vegetation shrublands across a range of global climate change projections.
Effects of Recent Regional Soil Moisture Variability on Global Net Ecosystem CO2 Exchange
NASA Astrophysics Data System (ADS)
Jones, L. A.; Madani, N.; Kimball, J. S.; Reichle, R. H.; Colliander, A.
2017-12-01
Soil moisture exerts a major regional control on the inter-annual variability of the global land sink for atmospheric CO2. In semi-arid regions, annual biomass production is closely coupled to variability in soil moisture availability, while in cold-season-affected regions, summer drought offsets the effects of advancing spring phenology. Availability of satellite solar-induced fluorescence (SIF) observations and improvements in atmospheric inversions has led to unprecedented ability to monitor atmospheric sink strength. However, discrepancies still exist between such top-down estimates as atmospheric inversion and bottom-up process and satellite driven models, indicating that relative strength, mechanisms, and interaction of driving factors remain poorly understood. We use soil moisture fields informed by Soil Moisture Active Passive Mission (SMAP) observations to compare recent (2015-2017) and historic (2000-2014) variability in net ecosystem land-atmosphere CO2 exchange (NEE). The operational SMAP Level 4 Carbon (L4C) product relates ground-based flux tower measurements to other bottom-up and global top-down estimates to underlying soil moisture and other driving conditions using data-assimilation-based SMAP Level 4 Soil Moisture (L4SM). Droughts in coastal Brazil, South Africa, Eastern Africa, and an anomalous wet period in Eastern Australia were observed by L4C. A seasonal seesaw pattern of below-normal sink strength at high latitudes relative to slightly above-normal sink strength for mid-latitudes was also observed. Whereas SMAP-based soil moisture is relatively informative for short-term temporal variability, soil moisture biases that vary in space and with season constrain the ability of the L4C estimates to accurately resolve NEE. Such biases might be caused by irrigation and plant-accessible ground-water. Nevertheless, SMAP L4C daily NEE estimates connect top-down estimates to variability of effective driving factors for accurate estimates of regional-to-global land-atmosphere CO2 exchange.
NASA Astrophysics Data System (ADS)
Riley, J. W.; Aulenbach, B. T.
2015-12-01
Understanding the factors that control runoff processes is important for many aspects of water supply and ecosystem protection, especially during climatic extremes that result in flooding or droughts; potentially impacting human safety. Furthermore, having knowledge of the conditions during which runoff occurs contributes to the conceptual understanding of the hydrologic cycle and may improve parameterization of hydrologic models. We evaluated soil moisture, storm characteristics, and the subsequent runoff and water yield for 297 storms over an eight-year period at Panola Mountain Research Watershed to better understand runoff generation processes. Panola Mountain Research Watershed is a small (41-hectare), relatively undisturbed forested watershed near Atlanta, GA, U.S.A. Strong relations were observed between total precipitation for a given storm, deep (70 cm below surface) antecedent soil moisture content and the volume of runoff. However, the strength of the relations varied based on occurrence during the growing (April - September; 172 storms) or dormant (October - March; 125 storms) period. In general, soil moisture responded at a minimum of 15 cm depth for all but 18 events. In addition, we found storms that initiated a response of deep soil moisture (70 cm below surface) to be an important factor relating to storm runoff and water yield. Seventy percent of the dormant period storms generated a response at 70 cm depth compared to 58% of growing period storms. A stronger relation between soil moisture and water yield was noted during the dormant period and indicated that all storms that produced a water yield >12% occurred when deep pre-event soil moisture was >20%. Similar patterns were also present during the growing season with occasional intense thunderstorms also generating higher water yields even in the absence of high soil moisture. The importance of deep soil moisture likely reflects the overall status of watershed storage conditions.
SMAP Validation Experiment 2015 (SMAPVEX15)
NASA Astrophysics Data System (ADS)
Colliander, A.; Jackson, T. J.; Cosh, M. H.; Misra, S.; Crow, W. T.; Chae, C. S.; Moghaddam, M.; O'Neill, P. E.; Entekhabi, D.; Yueh, S. H.
2015-12-01
NASA's (National Aeronautics and Space Administration) Soil Moisture Active Passive (SMAP) mission was launched in January 2015. The objective of the mission is global mapping of soil moisture and freeze/thaw state. For soil moisture algorithm validation, the SMAP project and NASA coordinated SMAPVEX15 around the Walnut Gulch Experimental Watershed (WGEW) in Tombstone, Arizona on August 1-19, 2015. The main goals of SMAPVEX15 are to understand the effects and contribution of heterogeneity on the soil moisture retrievals, evaluate the impact of known RFI sources on retrieval, and analyze the brightness temperature product calibration and heterogeneity effects. Additionally, the campaign aims to contribute to the validation of GPM (Global Precipitation Mission) data products. The campaign will feature three airborne microwave instruments: PALS (Passive Active L-band System), UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) and AirMOSS (Airborne Microwave Observatory of Subcanopy and Subsurface). PALS has L-band radiometer and radar, and UAVSAR and AirMOSS have L- and P-band synthetic aperture radars, respectively. The PALS instrument will map the area on seven days coincident with SMAP overpasses; UAVSAR and AirMOSS on four days. WGEW was selected as the experiment site due to the rainfall patterns in August and existing dense networks of precipitation gages and soil moisture sensors. An additional temporary network of approximately 80 soil moisture stations was deployed in the region. Rainfall observations were supplemented with two X-band mobile scanning radars, approximately 25 tipping bucket rain gauges, three laser disdrometers, and three vertically-profiling K-band radars. Teams were on the field to take soil moisture samples for gravimetric soil moisture, bulk density and rock fraction determination as well as to measure surface roughness and vegetation water content. In this talk we will present preliminary results from the experiment including comparisons between SMAP and PALS soil moisture retrievals with respect to the in situ measurements. Acknowledgement: This work was carried out in part at Jet Propulsion Laboratory, California Institute of Technology under contract with National Aeronautics and Space Administration.
Comparing soil moisture memory in satellite observations and models
NASA Astrophysics Data System (ADS)
Stacke, Tobias; Hagemann, Stefan; Loew, Alexander
2013-04-01
A major obstacle to a correct parametrization of soil processes in large scale global land surface models is the lack of long term soil moisture observations for large parts of the globe. Currently, a compilation of soil moisture data derived from a range of satellites is released by the ESA Climate Change Initiative (ECV_SM). Comprising the period from 1978 until 2010, it provides the opportunity to compute climatological relevant statistics on a quasi-global scale and to compare these to the output of climate models. Our study is focused on the investigation of soil moisture memory in satellite observations and models. As a proxy for memory we compute the autocorrelation length (ACL) of the available satellite data and the uppermost soil layer of the models. Additional to the ECV_SM data, AMSR-E soil moisture is used as observational estimate. Simulated soil moisture fields are taken from ERA-Interim reanalysis and generated with the land surface model JSBACH, which was driven with quasi-observational meteorological forcing data. The satellite data show ACLs between one week and one month for the greater part of the land surface while the models simulate a longer memory of up to two months. Some pattern are similar in models and observations, e.g. a longer memory in the Sahel Zone and the Arabian Peninsula, but the models are not able to reproduce regions with a very short ACL of just a few days. If the long term seasonality is subtracted from the data the memory is strongly shortened, indicating the importance of seasonal variations for the memory in most regions. Furthermore, we analyze the change of soil moisture memory in the different soil layers of the models to investigate to which extent the surface soil moisture includes information about the whole soil column. A first analysis reveals that the ACL is increasing for deeper layers. However, its increase is stronger in the soil moisture anomaly than in its absolute values and the first even exceeds the latter in the deepest layer. From this we conclude that the seasonal soil moisture variations dominate the memory close to the surface but these are dampened in lower layers where the memory is mainly affected by longer term variations.
NASA Technical Reports Server (NTRS)
Yueh, Simon; Wilson, William J.; Njoku, Eni; Dinardo, Steve; Hunter, Don; Rahmat-Samii, Yahya; Kona, Keerti S.; Manteghi, Majid
2006-01-01
The development of a compact, lightweight, dual-frequency antenna feed for future soil moisture and sea surface salinity (SSS) missions is described. The design is based on the microstrip stacked-patch array (MSPA) to be used to feed a large lightweight deployable rotating mesh antenna for spaceborne L-band (approx.1 GHz) passive and active sensing systems. The design features will also enable applications to airborne soil moisture and salinity remote sensing sensors operating on small aircrafts. This paper describes the design of stacked patch elements and 16-element array configuration. The results from the return loss, antenna pattern measurements and sky tests are also described.
NASA Technical Reports Server (NTRS)
Santanello, Joseph A.; Peters-Lidard, Christa D.; Garcia, Matthew E.; Mocko, David M.; Tischler, Michael A.; Moran, M. Susan; Thoma, D. P.
2007-01-01
Near-surface soil moisture is a critical component of land surface energy and water balance studies encompassing a wide range of disciplines. However, the processes of infiltration, runoff, and evapotranspiration in the vadose zone of the soil are not easy to quantify or predict because of the difficulty in accurately representing soil texture and hydraulic properties in land surface models. This study approaches the problem of parameterizing soils from a unique perspective based on components originally developed for operational estimation of soil moisture for mobility assessments. Estimates of near-surface soil moisture derived from passive (L-band) microwave remote sensing were acquired on six dates during the Monsoon '90 experiment in southeastern Arizona, and used to calibrate hydraulic properties in an offline land surface model and infer information on the soil conditions of the region. Specifically, a robust parameter estimation tool (PEST) was used to calibrate the Noah land surface model and run at very high spatial resolution across the Walnut Gulch Experimental Watershed. Errors in simulated versus observed soil moisture were minimized by adjusting the soil texture, which in turn controls the hydraulic properties through the use of pedotransfer functions. By estimating a continuous range of widely applicable soil properties such as sand, silt, and clay percentages rather than applying rigid soil texture classes, lookup tables, or large parameter sets as in previous studies, the physical accuracy and consistency of the resulting soils could then be assessed. In addition, the sensitivity of this calibration method to the number and timing of microwave retrievals is determined in relation to the temporal patterns in precipitation and soil drying. The resultant soil properties were applied to an extended time period demonstrating the improvement in simulated soil moisture over that using default or county-level soil parameters. The methodology is also applied to an independent case at Walnut Gulch using a new soil moisture product from active (C-band) radar imagery with much lower spatial and temporal resolution. Overall, results demonstrate the potential to gain physically meaningful soils information using simple parameter estimation with few but appropriately timed remote sensing retrievals.
USDA-ARS?s Scientific Manuscript database
Climate models predict increased variability in precipitation regimes, which will likely increase frequency/duration of drought. Reductions in soil moisture affect physical and chemical characteristics of the soil habitat and can influence soil organisms such as mites and nematodes. These organisms ...
S.B. McLaughlin; S.D. Wullschleger; G. Sun; M. Nosal
2007-01-01
Documentation of the degree and direction of effects of ozone on transpiration of canopies of mature forest trees is critically needed to model ozone effects on forest water use and growth in a warmer future climate.Patterns of sap flow in stems and soil moisture in the rooting zones of mature trees, coupled with late-season...
NASA Technical Reports Server (NTRS)
Carlson, T. N.
1986-01-01
A review is presented of numerical models which were developed to interpret thermal IR data and to identify the governing parameters and surface energy fluxes recorded in the images. Analytic, predictive, diagnostic and empirical models are described. The limitations of each type of modeling approach are explored in terms of the error sources and inherent constraints due to theoretical or measurement limitations. Sample results of regional-scale soil moisture or evaporation patterns derived from the Heat Capacity Mapping Mission and GOES satellite data through application of the predictive model devised by Carlson (1981) are discussed. The analysis indicates that pattern recognition will probably be highest when data are collected over flat, arid, sparsely vegetated terrain. The soil moisture data then obtained may be accurate to within 10-20 percent.
NASA Astrophysics Data System (ADS)
Blume, T.; Hassler, S. K.; Weiler, M.
2017-12-01
Hydrological science still struggles with the fact that while we wish for spatially continuous images or movies of state variables and fluxes at the landscape scale, most of our direct measurements are point measurements. To date regional measurements resolving landscape scale patterns can only be obtained by remote sensing methods, with the common drawback that they remain near the earth surface and that temporal resolution is generally low. However, distributed monitoring networks at the landscape scale provide the opportunity for detailed and time-continuous pattern exploration. Even though measurements are spatially discontinuous, the large number of sampling points and experimental setups specifically designed for the purpose of landscape pattern investigation open up new avenues of regional hydrological analyses. The CAOS hydrological observatory in Luxembourg offers a unique setup to investigate questions of temporal stability, pattern evolution and persistence of certain states. The experimental setup consists of 45 sensor clusters. These sensor clusters cover three different geologies, two land use classes, five different landscape positions, and contrasting aspects. At each of these sensor clusters three soil moisture/soil temperature profiles, basic climate variables, sapflow, shallow groundwater, and stream water levels were measured continuously for the past 4 years. We will focus on characteristic landscape patterns of various hydrological state variables and fluxes, studying their temporal stability on the one hand and the dependence of patterns on hydrological states on the other hand (e.g. wet vs dry). This is extended to time-continuous pattern analysis based on time series of spatial rank correlation coefficients. Analyses focus on the absolute values of soil moisture, soil temperature, groundwater levels and sapflow, but also investigate the spatial pattern of the daily changes of these variables. The analysis aims at identifying hydrologic signatures of the processes or landscape characteristics acting as major controls. While groundwater, soil water and transpiration are closely linked by the water cycle, they are controlled by different processes and we expect this to be reflected in interlinked but not necessarily congruent patterns and responses.
Puértolas, Jaime; Alcobendas, Rosalía; Alarcón, Juan J; Dodd, Ian C
2013-08-01
To determine how root-to-shoot abscisic acid (ABA) signalling is regulated by vertical soil moisture gradients, root ABA concentration ([ABA](root)), the fraction of root water uptake from, and root water potential of different parts of the root zone, along with bulk root water potential, were measured to test various predictive models of root xylem ABA concentration [RX-ABA](sap). Beans (Phaseolus vulgaris L. cv. Nassau) were grown in soil columns and received different irrigation treatments (top and basal watering, and withholding water for varying lengths of time) to induce different vertical soil moisture gradients. Root water uptake was measured at four positions within the column by continuously recording volumetric soil water content (θv). Average θv was inversely related to bulk root water potential (Ψ(root)). In turn, Ψ(root) was correlated with both average [ABA](root) and [RX-ABA](sap). Despite large gradients in θv, [ABA](root) and root water potential was homogenous within the root zone. Consequently, unlike some split-root studies, root water uptake fraction from layers with different soil moisture did not influence xylem sap (ABA). This suggests two different patterns of ABA signalling, depending on how soil moisture heterogeneity is distributed within the root zone, which might have implications for implementing water-saving irrigation techniques. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Tawfik, Ahmed B.
The atmospheric component is described by rapid fluctuations in typical state variables, such as temperature and water vapor, on timescales of hours to days and the land component evolves on daily to yearly timescales. This dissertation examines the connection between soil moisture and atmospheric tracers under varying degrees of soil moisture-atmosphere coupling. Land-atmosphere coupling is defined over the United States using a regional climate model. A newly examined soil moisture-precipitation feedback is identified for winter months extending the previous summer feedback to colder temperature climates. This feedback is driven by the freezing and thawing of soil moisture, leading to coupled land-atmosphere conditions near the freezing line. Soil moisture can also affect the composition of the troposphere through modifying biogenic emissions of isoprene (C5H8). A novel first-order Taylor series decomposition indicates that isoprene emissions are jointly driven by temperature and soil moisture in models. These compounds are important precursors for ozone formation, an air pollutant and a short-lived forcing agent for climate. A mechanistic description of commonly observed relationships between ground-level ozone and meteorology is presented using the concept of soil moisture-temperature coupling regimes. The extent of surface drying was found to be a better predictor of ozone concentrations than temperature or humidity for the Eastern U.S. This relationship is evaluated in a coupled regional chemistry-climate model under several land-atmosphere coupling and isoprene emissions cases. The coupled chemistry-climate model can reproduce the observed soil moisture-temperature coupling pattern, yet modeled ozone is insensitive to changes in meteorology due to the balance between isoprene and the primary atmospheric oxidant, the hydroxyl radical (OH). Overall, this work highlights the importance of soil moisture-atmosphere coupling for previously neglected cold climate regimes, controlling isoprene emissions variability, and providing a processed-based description of observed ozone-meteorology relationships. From the perspective of ozone air quality, the lack of sensitivity of ozone to meteorology suggests a systematic deficiency in chemistry models in high isoprene emission regions. This shortcoming must be addressed to better estimate tropospheric ozone radiative forcing and to understanding how ozone air quality may respond to future warming.
Potential Predictability of U.S. Summer Climate with "Perfect" Soil Moisture
NASA Technical Reports Server (NTRS)
Yang, Fanglin; Kumar, Arun; Lau, K.-M.
2004-01-01
The potential predictability of surface-air temperature and precipitation over the United States continent was assessed for a GCM forced by observed sea surface temperatures and an estimate of observed ground soil moisture contents. The latter was obtained by substituting the GCM simulated precipitation, which is used to drive the GCM's land-surface component, with observed pentad-mean precipitation at each time step of the model's integration. With this substitution, the simulated soil moisture correlates well with an independent estimate of observed soil moisture in all seasons over the entire US continent. Significant enhancements on the predictability of surface-air temperature and precipitation were found in boreal late spring and summer over the US continent. Anomalous pattern correlations of precipitation and surface-air temperature over the US continent in the June-July-August season averaged for the 1979-2000 period increased from 0.01 and 0.06 for the GCM simulations without precipitation substitution to 0.23 and 0.3 1, respectively, for the simulations with precipitation substitution. Results provide an estimate for the limits of potential predictability if soil moisture variability is to be perfectly predicted. However, this estimate may be model dependent, and needs to be substantiated by other modeling groups.
NASA Astrophysics Data System (ADS)
Fest, Benedikt J.; Hinko-Najera, Nina; Wardlaw, Tim; Griffith, David W. T.; Livesley, Stephen J.; Arndt, Stefan K.
2017-01-01
Well-drained, aerated soils are important sinks for atmospheric methane (CH4) via the process of CH4 oxidation by methane-oxidising bacteria (MOB). This terrestrial CH4 sink may contribute towards climate change mitigation, but the impact of changing soil moisture and temperature regimes on CH4 uptake is not well understood in all ecosystems. Soils in temperate forest ecosystems are the greatest terrestrial CH4 sink globally. Under predicted climate change scenarios, temperate eucalypt forests in south-eastern Australia are predicted to experience rapid and extreme changes in rainfall patterns, temperatures and wild fires. To investigate the influence of environmental drivers on seasonal and inter-annual variation of soil-atmosphere CH4 exchange, we measured soil-atmosphere CH4 exchange at high-temporal resolution (< 2 h) in a dry temperate eucalypt forest in Victoria (Wombat State Forest, precipitation 870 mm yr-1) and in a wet temperature eucalypt forest in Tasmania (Warra Long-Term Ecological Research site, 1700 mm yr-1). Both forest soil systems were continuous CH4 sinks of -1.79 kg CH4 ha-1 yr-1 in Victoria and -3.83 kg CH4 ha-1 yr-1 in Tasmania. Soil CH4 uptake showed substantial temporal variation and was strongly controlled by soil moisture at both forest sites. Soil CH4 uptake increased when soil moisture decreased and this relationship explained up to 90 % of the temporal variability. Furthermore, the relationship between soil moisture and soil CH4 flux was near-identical at both forest sites when soil moisture was expressed as soil air-filled porosity (AFP). Soil temperature only had a minor influence on soil CH4 uptake. Soil nitrogen concentrations were generally low and fluctuations in nitrogen availability did not influence soil CH4 uptake at either forest site. Our data suggest that soil MOB activity in the two forests was similar and that differences in soil CH4 exchange between the two forests were related to differences in soil moisture and thereby soil gas diffusivity. The differences between forest sites and the variation in soil CH4 exchange over time could be explained by soil AFP as an indicator of soil moisture status.
NASA Astrophysics Data System (ADS)
Barba, J.; Poyatos, R.; Vargas, R.
2017-12-01
The emissions of the main greenhouse gases (GHG; CO2, CH4 and N2O) through tree stems are still an uncertain component of the total GHG balance of forests. Despite that stem CO2 emissions have been studied for several decades, it is still unclear the drivers and spatiotemporal patterns of CH4 and N2O stem emissions. Additionally, it is unknown how stem emissions could be related to soil physiological processes or environmental conditions. We measured CO2, CH4 and N2O emissions hourly from April to July 2017 at two different heights (75 [LStem] and 150cm [HStem]) of bitternut hickory (Carya cordiformis) trees and adjacent soil locations in a forested area in the Mid Atlantic of the USA. We designed an automated system to continuously measure the three greenhouse gases (GHG) in stems and soils. Stem and soil CO2 emissions showed similar seasonal patterns with an average of 6.56±0.09 (soil), 3.72±0.05 (LStem) and 2.47±0.04 µmols m-2 s-1 (HStem) (mean±95% CI). Soil temperature controlled CO2 fluxes at both daily and seasonal scales (R2>0.5 for all cases), but there was no clear effect of soil moisture. The stems were a clear CH4 source with emissions decreasing with height (0.35±0.02 and 0.25±0.01 nmols m-2 s-1 for LStem and HStem, respectively) with no apparent seasonal pattern, and no clear relationship with environmental drivers (e.g., temperature, moisture). In contrast, soil was a CH4 sink throughout the experiment (-0.55±0.02 nmols m-2 s-1) and its seasonal pattern responded to moisture changes. Despite soil and stem N2O emissions did not show a seasonal pattern or apparent dependency on temperature or moisture, they showed net N2O emissions with a decrease in emissions with stem height (0.29±0.05 for soil, 0.38±0.06 for LStem and 0.28±0.05 nmols m-2 s-1 for HStem). The three GHG emissions decreased with stem height at similar rates (33%, 28% and 27% for CO2, CH4 and N2O, respectively). These results suggest that the gases were not produced in the stem but originated in the soil and transported within the stem. At the forest stand level, the CH4 sink capacity of soils could be partially counteracted by the stem emissions. These results indicate the need to measure CO2, CH4 and N2O emissions not only in soil but also in stems to account for the total GHG balance in ecosystems.
NASA Astrophysics Data System (ADS)
Barron-Gafford, G.; Minor, R. L.; Heard, M. M.; Sutter, L. F.; Yang, J.; Potts, D. L.
2015-12-01
The southwestern U.S. is predicted to experience increasing temperatures and longer periods of inter-storm drought. High temperature and water deficit restrict plant productivity and ecosystem functioning, but the influence of future climate is predicted to be highly heterogeneous because of the complex terrain characteristic of much of the Critical Zone (CZ). Within our Critical Zone Observatory (CZO) in the Southwestern US, we monitor ecosystem-scale carbon and water fluxes using eddy covariance. This whole-ecosystem metric is a powerful integrating measure of ecosystem function over time, but details on spatial heterogeneity resulting from topographic features of the landscape are not captured, nor are interactions among below- and aboveground processes. We supplement eddy covariance monitoring with distributed measures of carbon flux from soil and vegetation across different aspects to quantify the causes and consequences of spatial heterogeneity through time. Given that (i) aspect influences how incoming energy drives evaporative water loss and (ii) seasonality drives temporal patterns of soil moisture recharge, we were able to examine the influence of these processes on CO2 efflux by investigating variation across aspect. We found that aspect was a significant source of spatial heterogeneity in soil CO2 efflux, but the influence varied across seasonal periods. Snow on South-facing aspects melted earlier and yielded higher efflux rates in the spring. However, during summer, North- and South-facing aspects had similar amounts of soil moisture, but soil temperatures were warmer on the North-facing aspect, yielding greater rates of CO2 efflux. Interestingly, aspect did not influence photosynthetic rates. Taken together, we found that physical features of the landscape yielded predictable patterns of levels and phenologies of soil moisture and temperature, but these drivers differentially influenced below- and aboveground sources of carbon exchange. Conducting these spatially distributed measurements are time consuming. Looking forward, we have begun using unmanned aerial vehicles outfitted with thermal and multi-spectral cameras to quantify patterns of water flux, NDVI, needle browning due to moisture stress, and overall phenology in the CZ.
Seasonality of semi-arid and savanna-type ecosystems in an Earth system model
NASA Astrophysics Data System (ADS)
Dahlin, K.; Swenson, S. C.; Lombardozzi, D.; Kamoske, A.
2016-12-01
Recent work has identified semi-arid and savanna-type (SAST) ecosystems as a critical component of interannual variability in the Earth system (Poulter et al. 2014, Ahlström et al. 2015), yet our understanding of the spatial and temporal patterns present in these systems remains limited. There are three major factors that contribute to the complex behavior of SAST ecosystems, globally. First is leaf phenology, the timing of the appearance, presence, and senescence of plant leaves. Plants grow and drop their leaves in response to a variety of cues, including soil moisture, rainfall, day length, and relative humidity, and alternative phenological strategies might often co-exist in the same location. The second major factor in savannas is soil moisture. The complex nature of soil behavior under extremely dry, then extremely wet conditions is critical to our understanding of how savannas function. The third factor is fire. Globally, virtually all savanna-type ecosystems operate with some non-zero fire return interval. Here we compare model output from the Community Land Model (CLM5-BGC) in SAST regions to remotely sensed data on these three variables - phenology (MODIS LAI), soil moisture (SMAP), and fire (GFED4) - assessing both annual spatial patterns and intra-annual variability, which is critical in these highly variable systems. We present new SAST-specific first- and second-order benchmarks, including numbers of annual LAI peaks (often >1 in SAST systems) and correlations between soil moisture, LAI, and fire. Developing a better understanding of how plants respond to seasonal patterns is a critical first step in understanding how SAST ecosystems will respond to and influence climate under future scenarios.
NASA Astrophysics Data System (ADS)
Dobriyal, Pariva; Qureshi, Ashi; Badola, Ruchi; Hussain, Syed Ainul
2012-08-01
SummaryThe maintenance of elevated soil moisture is an important ecosystem service of the natural ecosystems. Understanding the patterns of soil moisture distribution is useful to a wide range of agencies concerned with the weather and climate, soil conservation, agricultural production and landscape management. However, the great heterogeneity in the spatial and temporal distribution of soil moisture and the lack of standard methods to estimate this property limit its quantification and use in research. This literature based review aims to (i) compile the available knowledge on the methods used to estimate soil moisture at the landscape level, (ii) compare and evaluate the available methods on the basis of common parameters such as resource efficiency, accuracy of results and spatial coverage and (iii) identify the method that will be most useful for forested landscapes in developing countries. On the basis of the strengths and weaknesses of each of the methods reviewed we conclude that the direct method (gravimetric method) is accurate and inexpensive but is destructive, slow and time consuming and does not allow replications thereby having limited spatial coverage. The suitability of indirect methods depends on the cost, accuracy, response time, effort involved in installation, management and durability of the equipment. Our review concludes that measurements of soil moisture using the Time Domain Reflectometry (TDR) and Ground Penetrating Radar (GPR) methods are instantaneously obtained and accurate. GPR may be used over larger areas (up to 500 × 500 m a day) but is not cost-effective and difficult to use in forested landscapes in comparison to TDR. This review will be helpful to researchers, foresters, natural resource managers and agricultural scientists in selecting the appropriate method for estimation of soil moisture keeping in view the time and resources available to them and to generate information for efficient allocation of water resources and maintenance of soil moisture regime.
NASA Astrophysics Data System (ADS)
Bassiouni, Maoya; Higgins, Chad W.; Still, Christopher J.; Good, Stephen P.
2018-06-01
Vegetation controls on soil moisture dynamics are challenging to measure and translate into scale- and site-specific ecohydrological parameters for simple soil water balance models. We hypothesize that empirical probability density functions (pdfs) of relative soil moisture or soil saturation encode sufficient information to determine these ecohydrological parameters. Further, these parameters can be estimated through inverse modeling of the analytical equation for soil saturation pdfs, derived from the commonly used stochastic soil water balance framework. We developed a generalizable Bayesian inference framework to estimate ecohydrological parameters consistent with empirical soil saturation pdfs derived from observations at point, footprint, and satellite scales. We applied the inference method to four sites with different land cover and climate assuming (i) an annual rainfall pattern and (ii) a wet season rainfall pattern with a dry season of negligible rainfall. The Nash-Sutcliffe efficiencies of the analytical model's fit to soil observations ranged from 0.89 to 0.99. The coefficient of variation of posterior parameter distributions ranged from < 1 to 15 %. The parameter identifiability was not significantly improved in the more complex seasonal model; however, small differences in parameter values indicate that the annual model may have absorbed dry season dynamics. Parameter estimates were most constrained for scales and locations at which soil water dynamics are more sensitive to the fitted ecohydrological parameters of interest. In these cases, model inversion converged more slowly but ultimately provided better goodness of fit and lower uncertainty. Results were robust using as few as 100 daily observations randomly sampled from the full records, demonstrating the advantage of analyzing soil saturation pdfs instead of time series to estimate ecohydrological parameters from sparse records. Our work combines modeling and empirical approaches in ecohydrology and provides a simple framework to obtain scale- and site-specific analytical descriptions of soil moisture dynamics consistent with soil moisture observations.
From ASCAT to Sentinel-1: Soil Moisture Monitoring using European C-Band Radars
NASA Astrophysics Data System (ADS)
Wagner, Wolfgang; Bauer-Marschallinger, Bernhard; Hochstöger, Simon
2016-04-01
The Advanced Scatterometer (ASCAT) is a C-Band radar instrument flown on board of the series of three METOP satellites. Albeit not operating in one of the more favorable longer wavelength ranges (S, L or P-band) as the dedicated Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) missions, it is one of main microwave sensors used for monitoring of soil moisture on a global scale. Its attractiveness for soil moisture monitoring applications stems from its operational status, high radiometric accuracy and stability, short revisit time, multiple viewing directions and long heritage (Wagner et al. 2013). From an application perspective, its main limitation is its spatial resolution of about 25 km, which does not allow resolving soil moisture patterns driven by smaller-scale hydrometeorological processes (e.g. convective precipitation, runoff patterns, etc.) that are themselves related to highly variable land surface characteristics (soil characteristics, topography, vegetation cover, etc.). Fortunately, the technique of aperture synthesis allows to significantly improve the spatial resolution of spaceborne radar instruments up to the meter scale. Yet, past Synthetic Aperture Radar (SAR) missions had not yet been designed to achieve a short revisit time required for soil moisture monitoring. This has only changed recently with the development and launch of SMAP (Entekhabi et al. 2010) and Sentinel-1 (Hornacek et al. 2012). Unfortunately, the SMAP radar failed only after a few months of operations, which leaves Sentinel-1 as the only currently operational SAR mission capable of delivering high-resolution radar observations with a revisit time of about three days for Europe, about weekly for most crop growing regions worldwide, and about bi-weekly to monthly over the rest of the land surface area. Like ASCAT, Sentinel-1 acquires C-band backscatter data in VV polarization over land. Therefore, for the interpretation of both ASCAT and Sentinel-1 backscatter observation, the same physical processes and geophysical variables (e.g. vegetation optical depth, surface roughness, soil volume scattering, etc.) need to be considered. The difference lies mainly in the scaling, i.e. how prominently the different variables influence the C-band data at the different spatial (25 km versus 20 m) and temporal (daily versus 3-30 days repeat coverage) scales. Therefore, while the general properties of soil moisture retrievals schemes used for ASCAT and Sentinel-1 can be the same, the details of the algorithm and parameterization will be different. This presentation will review similarities and differences of soil moisture retrieval approaches used for ASCAT and Sentinel-1, with a focus on the change detection method developed by TU Wien. Some first comparisons of ASCAT and Sentinel-1 soil moisture data over Europe will also be shown. REFERENCES Entekhabi, D., Njoku, E.G., O'Neill, P.E., Kellog, K.H., Crow, W.T., Edelstein, W.N., Entin, J.K., Goodman, S.D., Jackson, T.J., Johnson, J., Kimball, J., Piepmeier, J.R., Koster, R., Martin, N., McDonald, K.C., Moghaddam, M., Moran, S., Reichle, R., Shi, J.C., Spencer, M.W., Thurman, S.W., Tsang, L., & Van Zyl, J. (2010). The Soil Moisture Active Passive (SMAP) mission. Proceedings of the IEEE, 98, 704-716 Hornacek, M., Wagner, W., Sabel, D., Truong, H.L., Snoeij, P., Hahmann, T., Diedrich, E., & Doubkova, M. (2012). Potential for High Resolution Systematic Global Surface Soil Moisture Retrieval via Change Detection Using Sentinel-1. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5, 1303-1311 Wagner, W., Hahn, S., Kidd, R., Melzer, T., Bartalis, Z., Hasenauer, S., Figa-Saldana, J., De Rosnay, P., Jann, A., Schneider, S., Komma, J., Kubu, G., Brugger, K., Aubrecht, C., Züger, C., Gangkofer, U., Kienberger, S., Brocca, L., Wang, Y., Blöschl, G., Eitzinger, J., Steinnocher, K., Zeil, P., & Rubel, F. (2013). The ASCAT soil moisture product: A review of its specifications, validation results, and emerging applications. Meteorologische Zeitschrift, 22, 5-33
Sensitivity of Land Surface Parameters on Thunderstorm Simulation through HRLDAS-WRF Coupling Mode
NASA Astrophysics Data System (ADS)
Kumar, Dinesh; Kumar, Krishan; Mohanty, U. C.; Kisore Osuri, Krishna
2016-07-01
Land surface characteristics play an important role in large scale, regional and mesoscale atmospheric process. Representation of land surface characteristics can be improved through coupling of mesoscale atmospheric models with land surface models. Mesoscale atmospheric models depend on Land Surface Models (LSM) to provide land surface variables such as fluxes of heat, moisture, and momentum for lower boundary layer evolution. Studies have shown that land surface properties such as soil moisture, soil temperature, soil roughness, vegetation cover, have considerable effect on lower boundary layer. Although, the necessity to initialize soil moisture accurately in NWP models is widely acknowledged, monitoring soil moisture at regional and global scale is a very tough task due to high spatial and temporal variability. As a result, the available observation network is unable to provide the required spatial and temporal data for the most part of the globe. Therefore, model for land surface initializations rely on updated land surface properties from LSM. The solution for NWP land-state initialization can be found by combining data assimilation techniques, satellite-derived soil data, and land surface models. Further, it requires an intermediate step to use observed rainfall, satellite derived surface insolation, and meteorological analyses to run an uncoupled (offline) integration of LSM, so that the evolution of modeled soil moisture can be forced by observed forcing conditions. Therefore, for accurate land-state initialization, high resolution land data assimilation system (HRLDAS) is used to provide the essential land surface parameters. Offline-coupling of HRLDAS-WRF has shown much improved results over Delhi, India for four thunder storm events. The evolution of land surface variables particularly soil moisture, soil temperature and surface fluxes have provided more realistic condition. Results have shown that most of domain part became wetter and warmer after assimilation of soil moisture and soil temperature at the initial condition which helped to improve the exchange fluxes at lower atmospheric level. Mixing ratio were increased along with elevated theta-e at lower level giving a signature of improvement in LDAS experiment leading to a suitable condition for convection. In the analysis, moisture convergence, mixing ratio and vertical velocities have improved significantly in terms of intensity and time lag. Surface variables like soil moisture, soil temperature, sensible heat flux and latent heat flux have progressed in a possible realistic pattern. Above discussion suggests that assimilation of soil moisture and soil temperature improves the overall simulations significantly.
The Role of Evapotranspiration on Soil Moisture Depletion in a Small Alaskan Subarctic Farm
NASA Astrophysics Data System (ADS)
Ruairuen, W.; Fochesatto, G. J.; Sparrow, E. B.; Schnabel, W.; Zhang, M.
2013-12-01
At high latitudes the period for agriculture production is very short (110 frost-free days) and strongly depends on the availability of soil water content for vegetables to grow. In this context the evapotranspiration (ET) cycle is key variable underpinning mass and energy balance modulating therefore moisture gradients and soil dryness. Evapotranspiration (ET) from field-grown crops water stress is virtually unknown in the subarctic region. Understanding ET cycles in high latitude agricultural ecosystem is essential in terms of water management and sustainability and projection of agricultural activity. To investigate the ET cycle in farming soils a field experiment was conducted in the summer of 2012 and 2013 at the University of Alaska Fairbanks Agricultural and Forestry Experiment Station combining micrometeorological and hydrological measurements. In this case experimental plots of lettuce (Lactuca sativa) plants were grown. The experiment evaluated several components of the ET cycle such as actual evapotranspiration, reference evaporation, pan evaporation as well as soil water content and temperature profiles to link them to the vegetable growing functions. We investigated the relationship of soil moisture content and crop water use across the growing season as a function of the ET cycle. Soil water depletion was compared to daily estimates of water loss by ET during dry and wet periods. We also investigated the dependence of ET on the atmospheric boundary layer flow patterns set by the synoptic large scale weather patterns.
NASA Astrophysics Data System (ADS)
McKnight, J.; Klein, E. S.; Welker, J. M.; Schaeffer, S. M.; Franklin, M.
2015-12-01
High Arctic landscapes are composed of watershed basins that vary in size and ecohydrology, but typically have a plant community complex that ranges from dry tundra to moist tundra to wet sedge systems along water body shorelines. The spatial extent of these plant communities reflects mean annual soil moisture and temperature, and is vulnerable to changes in climate conditions. Soil moisture and temperature significantly influence organic matter microbial activity and decomposition, and can affect the fate of soil carbon in tundra soils. Consequently, due to the unique soil carbon differences between tundra plant communities, shifts in their spatial extent may drive future High Arctic biosphere-atmosphere interactions. Understanding this terrestrial-atmosphere trace gas feedback, however, requires quantification of the rates and patterns of CO2 exchange along soil moisture gradients and the associated soil properties. In summer of 2015, soil CO2 flux rate, soil moisture and temperature were measured along a soil moisture gradient spanning three vegetation zones (dry tundra, wet tundra, and wet grassland) in a snow melt-fed lake basin near Thule Greenland. Mean soil temperature during the 2015 growing season was greater in dry tundra than in wet tundra and wet grassland (13.0 ± 1.2, 7.8 ± 0.8, and 5.5 ± 0.9°C, respectively). Mean volumetric soil moisture differed among all three vegetation zones where the soil moisture gradient ranged from 9 % (dry tundra) to 34 % (wet tundra) to 51 % (wet grassland). Mean soil CO2 flux was significantly greater in the wet grassland (1.7 ± 0.1 μmol m-2 s-1) compared to wet tundra (0.9 ± 0.2 μmol m-2 s-1) and dry tundra (1.2 ± 0.2 μmol m-2 s-1). Soil CO2 flux increased and decreased with seasonal warming and cooling of soil temperature. Although soil temperature was an important seasonal driver of soil CO2 flux rates, differences in mean seasonal soil CO2 flux rates among vegetation zones appeared to be a function of the combined effects of soil temperature and soil moisture conditions. These results suggest that the response of vegetation distribution to shifts in precipitation and warmer climate conditions may have significant implications for release of soil carbon as CO2 in High Arctic tundra ecosystems in Northwest Greenland.
NASA Astrophysics Data System (ADS)
Gorobtsova, O. N.; Khezheva, F. V.; Uligova, T. S.; Tembotov, R. Kh.
2015-03-01
The biochemical properties inherent to the main types of automorphic soils developed in different bioclimatic conditions of Elbrus and Terek variants of the vertical zonality within Kabardino-Balkaria were compared. The natural-climatic conditions of these variants noticeably affect the soil cover pattern. The ratio of the oxidase and hydrolase activities is sensitive to the moisture conditions in which these soils are formed. The redox processes are more active in drier conditions, whereas hydrolytic processes are more active under higher moisture. The level of the biological activity of the automorphic soils is estimated using the integral index of the ecological-biological soil status.
NASA Astrophysics Data System (ADS)
Elmes, Matthew C.; Thompson, Dan K.; Sherwood, James H.; Price, Jonathan S.
2018-01-01
The destructive nature of the ˜ 590 000 ha Horse river wildfire in the Western Boreal Plain (WBP), northern Alberta, in May of 2016 motivated the investigation of the hydrometeorological conditions that preceded the fire. Historical climate and field hydrometeorological data from a moderate-rich fen watershed were used to (a) identify whether the spring 2016 conditions were outside the range of natural variability for WBP climate cycles, (b) explain the observed patterns in burn severity across the watershed, and (c) identify whether fall and winter moisture signals observed in peatlands and lowland forests in the region are indicative of wildfire. Field hydrometeorological data from the fen watershed confirmed the presence of cumulative moisture deficits prior to the fire. Hydrogeological investigations highlighted the susceptibility of fen and upland areas to water table and soil moisture decline over rain-free periods (including winter), due to the watershed's reliance on supply from localized flow systems originating in topographic highs. Subtle changes in topographic position led to large changes in groundwater connectivity, leading to greater organic soil consumption by fire in wetland margins and at high elevations. The 2016 spring moisture conditions measured prior to the ignition of the fen watershed were not illustrated well by the Drought Code (DC) when standard overwintering procedures were applied. However, close agreement was found when default assumptions were replaced with measured duff soil moisture recharge and incorporated into the overwintering DC procedure. We conclude that accumulated moisture deficits dating back to the summer of 2015 led to the dry conditions that preceded the fire. The infrequent coinciding of several hydrometeorological conditions, including low autumn soil moisture, a modest snowpack, lack of spring precipitation, and high spring air temperatures and winds, ultimately led to the Horse river wildfire spreading widely and causing the observed burn patterns. Monitoring soil moisture at different land classes and watersheds would aid management strategies in the production of more accurate overwintered DC calculations, providing fire management agencies early warning signals ahead of severe spring wildfire seasons.
NASA Astrophysics Data System (ADS)
Rodriguez-Alvarez, N.; Bosch-Lluis, X.; Camps, A.; Aguasca, A.; Vall-Llossera, M.; Valencia, E.; Ramos-Perez, I.; Park, H.
2011-12-01
Reflectometry using Global Navigation Satellite Systems signals (GNSSR) has been the focus of many studies during the past few years for a number of applications over different scenarios as land, ocean or snow and ice surfaces. In the past decade, its potential has increased yearly, with improved receivers and signal processors, from generic GNSS receivers whose signals were recorded in magnetic tapes to instruments that measure full Delay Doppler Maps (the power distribution of the reflected GNSS signal over the 2-D space of delay offsets and Doppler shifts) in real time. At present, these techniques are considered to be promising tools to retrieve geophysical parameters such as soil moisture, vegetation height, topography, altimetry, sea state and ice and snow thickness, among others. This paper focuses on the land geophysical retrievals (topography, vegetation height and soil moisture) performed from a ground-based instrument using the Interference Pattern Technique (IPT). This technique consists of the measurement of the power fluctuations of the interference signal resulting from the simultaneous reception of the direct and the reflected GNSS signals. The latest experiment performed using this technique over a maize field is shown in this paper. After a review of the previous results, this paper presents the latest experiment performed using this technique over a maize field. This new study provides a deeper analysis on the soil moisture retrieval by observing three irrigation-drying cycles and comparing them to different depths soil moisture probes. Furthermore, the height of the maize, almost 300 cm, has allowed testing the capabilities of the technique over dense and packed vegetation layers, with high vegetation water content.
Niu, Yu Jie; Zhou, Jian Wei; Yang, Si Wei; Wang, Gui Zhen; Liu, Li; Hua, Li Min
2017-05-18
For understanding the effect of aspect and altitude of hill on soil moisture and temperature as well as the vegetation community, we selected an alpine meadow located on a hill in north-eastern Tibet Plateau as our study area. Data on soil moisture and temperature, as well as plant distribution pattern in this mountain ecosystem were collected. We used regression analysis, CCA ordination and variance decomposition, to determine the impacts of the key factors (aspect, altitude, soil temperature and moisture) on plant diversity distribution in 189 sample sites of the hill. The results showed that the plant diversity of shady aspect and bottomland was highest and lowest, respectively. The plant diversity of the shady aspect and on the ridge of the hill increased initially and then decreased with the increasing altitude, but the plant diversity of the sunny aspect increased with the increasing altitude. At 0-30 cm soil layer, the soil temperature of the sunny aspect was higher than that of other aspects, but the soil temperature at 0-20 cm soil layer did not change with the increa-sing altitude. The soil moisture of shady aspect was higher than that of other aspects, and increased with the increasing altitude. The aspect and altitude explained 100% of soil temperature changes and 51.8% of soil moisture variation. Aspect alone explained 72.2% of soil temperature variation and altitude alone explained 51.8% of soil moisture variation, which had the highest contribution rate individually. Most plants were distributed on the shady aspect and on the ridge, and at medium altitude. Sedges mainly grew on the shady aspect, while Gramineae grew on the sunny aspect, the ridge was an ecotone. Cyperaceae, Gramineae and Leguminosae were mainly distributed in low altitude zone. Hill aspect and altitude totally explained 28.6% of plant abundance variation, hill aspect alone explained 19.9% of plant abundance variation. The management of grassland production and ecological restoration in alpine meadow ecosystem should consider the effect of landform on soil and vegetation, and the hill aspect should be priority factor instead of altitude when planning management interventions.
[Dynamics of soil water reservoir of wheat field in rain-fed area of the Loess Tableland, China].
Li, Peng Zhan; Wang, Li; Wang, Di
2017-11-01
Soil reservoir is the basis of stable grain production and sustainable development in dry farming area. Based on the long-term field experiment, this paper investigated the changes of soil moisture in wheat field located in the rain-fed Changwu Tableland, and analyzed the interannual and annual variation characteristics and dynamics trends of soil reservoir from 2012 to 2015. The results showed that the vertical distribution curves of average soil water content were double peaks and double valleys: first peak and valley occurred in the 10-20 and 50 cm soil layer, respectively, while for the second peak and valley, the corresponding soil layer was the 100 and 280 cm soil layer. Soil reservoir did not coincide with precipitation for all yearly precipitation patterns but lagged behind. Yearly precipitation patterns had a great influence on the interannual and annual dynamic changes of soil reservoir. Compared with rainy year, the depth of soil moisture consumption decreased and supplementary effect of precipitation on soil moisture became obvious under effects of drought year and normal year. In rainy year, soil reservoir had a large surplus (84.2 mm), water balance was compensated; in normal year, it had a slight surplus (9.5 mm), water balance was compensated; while in drought year, it was slightly deficient (1.5 mm), water balance was negatively compensated. The dynamics of soil water in winter wheat field in the rain-fed Changwu Tableland could be divided into four periods: seedling period, slow consumption period, large consumption period, and harvest period, the order of evapotranspiration was large consumption period> seedling period> harvest period> slow consumption period.
NASA Technical Reports Server (NTRS)
Van Den Hurk, Bart; Kim, Hyungjun; Krinner, Gerhard; Seneviratne, Sonia I.; Derksen, Chris; Oki, Taikan; Douville, Herve; Colin, Jeanne; Ducharne, Agnes; Cheruy, Frederique;
2016-01-01
The Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP) is designed to provide a comprehensive assessment of land surface, snow, and soil moisture feedbacks on climate variability and climate change, and to diagnose systematic biases in the land modules of current Earth System Models (ESMs). The solid and liquid water stored at the land surface has a large influence on the regional climate, its variability and predictability, including effects on the energy, water and carbon cycles. Notably, snow and soil moisture affect surface radiation and flux partitioning properties, moisture storage and land surface memory. They both strongly affect atmospheric conditions, in particular surface air temperature and precipitation, but also large-scale circulation patterns. However, models show divergent responses and representations of these feedbacks as well as systematic biases in the underlying processes. LS3MIP will provide the means to quantify the associated uncertainties and better constrain climate change projections, which is of particular interest for highly vulnerable regions (densely populated areas, agricultural regions, the Arctic, semi-arid and other sensitive terrestrial ecosystems).The experiments are subdivided in two components, the first addressing systematic land biases in offline mode (LMIP, building upon the 3rd phase of Global Soil Wetness Project; GSWP3) and the second addressing land feedbacks attributed to soil moisture and snow in an integrated framework (LFMIP, building upon the GLACE-CMIP blueprint).
NASA Astrophysics Data System (ADS)
Fan, Yun; van den Dool, Huug
2004-05-01
We have produced a 0.5° × 0.5° monthly global soil moisture data set for the period from 1948 to the present. The land model is a one-layer "bucket" water balance model, while the driving input fields are Climate Prediction Center monthly global precipitation over land, which uses over 17,000 gauges worldwide, and monthly global temperature from global Reanalysis. The output consists of global monthly soil moisture, evaporation, and runoff, starting from January 1948. A distinguishing feature of this data set is that all fields are updated monthly, which greatly enhances utility for near-real-time purposes. Data validation shows that the land model does well; both the simulated annual cycle and interannual variability of soil moisture are reasonably good against the limited observations in different regions. A data analysis reveals that, on average, the land surface water balance components have a stronger annual cycle in the Southern Hemisphere than those in the Northern Hemisphere. From the point of view of soil moisture, climates can be characterized into two types, monsoonal and midlatitude climates, with the monsoonal ones covering most of the low-latitude land areas and showing a more prominent annual variation. A global soil moisture empirical orthogonal function analysis and time series of hemisphere means reveal some interesting patterns (like El Niño-Southern Oscillation) and long-term trends in both regional and global scales.
NASA Astrophysics Data System (ADS)
Hess, L.; Basso, B.; Hinckley, E. L. S.; Robertson, G. P.; Matson, P. A.
2014-12-01
In the coming century, the proportion of total rainfall that falls in heavy storm events is expected to increase in many areas, especially in the US Midwest, a major agricultural region. These changes in rainfall patterns may have consequences for hydrologic flow and nutrient losses, especially in agricultural soils, with potentially negative consequences for receiving ground- and surface waters. We used a tracer experiment to examine how more extreme rainfall patterns may affect the movement of water and solutes through an agricultural soil profile in the upper Midwest, and to what extent tillage may moderate these effects. Two rainfall patterns were created with 5m x 5m rainout shelters at the Kellogg Biological Station LTER site in replicated plots with either conventional tillage or no-till management. Control rainfall treatments received water 3x per week, and extreme rainfall treatments received the same total amount of water but once every two weeks, to simulate less frequent but larger storms. In April 2015, potassium bromide (KBr) was added as a conservative tracer of water flow to all plots, and Br- concentrations in soil water at 1.2m depth were measured weekly from April through July. Soil water Br- concentrations increased and peaked more quickly under the extreme rainfall treatment, suggesting increased infiltration and solute transfer to depth compared to soils exposed to control rainfall patterns. Soil water Br- also increased and peaked more quickly in no-till than in conventional tillage treatments, indicating differences in flow paths between management systems. Soil moisture measured every 15 minutes at 10, 40, and 100cm depths corroborates tracer experiment results: rainfall events simulated in extreme rainfall treatments led to large increases in deep soil moisture, while the smaller rainfall events simulated under control conditions did not. Deep soil moisture in no-till treatments also increased sooner after water application as compared to in conventional soils. Our results suggest that exposure to more extreme rainfall patterns will likely increase infiltration depth and nutrient losses in agricultural soils. In particular, soils under no-till management, which leads to development of preferential flow paths, may be particularly vulnerable to vertical nutrient losses.
Soil Moisture Extremes Observed by METOP ASCAT: Was 2012 an Exceptional Year?
NASA Astrophysics Data System (ADS)
Wagner, Wolfgang; Paulik, Christoph; Hahn, Sebastian; Melzer, Thomas; Parinussa, Robert; de Jeu, Richard; Dorigo, Wouter; Chung, Daniel; Enenkel, Markus
2013-04-01
In summer 2012 the international press reported widely about the severe drought that had befallen large parts of the United States. Yet, the US drought was only one of several major droughts that occurred in 2012: Southeastern Europe, Central Asia, Brazil, India, Southern Australia and several other regions suffered from similarly dry soil conditions. This raises the question whether 2012 was an exceptionally dry year? In this presentation we will address this question by analyzing global soil moisture patterns as observed by the Advanced Scatterometer (ASCAT) flown on board of the METOP-A satellite. We firstly compare the 2012 ASCAT soil moisture data to all available ASCAT measurements acquired by the instrument since the launch of METOP-A in November 2006. Secondly, we compare the 2012 data to a long-term soil moisture data set derived by merging the ASCAT soil moisture data with other active and passive microwave soil moisture retrievals as described by Liu et al. (2012) and Wagner et al. (2012) (see also http://www.esa-soilmoisture-cci.org/). A first trend analysis of the latter long-term soil moisture data set carried out by Dorigo et al. (2012) has revealed that over the period 1988-2010 significant trends were observed over 27 % of the area covered by the data set, of which 73 % were negative (soil drying) and only 27 % were positive (soil wetting). In this presentation we will show how the inclusion of the years 2011 and 2012 affects the areal extent and strengths of these significant trends. REFERENCES Dorigo, W., R. de Jeu, D. Chung, R. Parinussa, Y. Liu, W. Wagner, D. Fernández-Prieto (2012) Evaluating global trends (1988-2010) in harmonized multi-satellite surface soil moisture, Geophysical Research Letters, 39, L18405, 1-7. Liu, Y.Y., W.A. Dorigo, R.M. Parinussa, R.A.M. de Jeu, W. Wagner, M.F. McCabe, J.P. Evans, A.I.J.M. van Dijk (2012) Trend-preserving blending of passive and active microwave soil moisture retrievals, Remote Sensing of Environment, 123, 280-297. Wagner, W., W. Dorigo, R. de Jeu, D. Fernandez, J. Benveniste, E. Haas, M. Ertl (2012) Fusion of active and passive microwave observations to create an Essential Climate Variable data record on soil moisture, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Annals), Volume I-7, XXII ISPRS Congress, Melbourne, Australia, 25 August-1 September 2012, 315-321.
NASA Astrophysics Data System (ADS)
Catalano, Franco; Alessandri, Andrea; De Felice, Matteo
2013-04-01
Climate change scenarios are expected to show an intensification of the hydrological cycle together with modifications of evapotranspiration and soil moisture content. Evapotranspiration changes have been already evidenced for the end of the 20th century. The variance of evapotranspiration has been shown to be strongly related to the variance of precipitation over land. Nevertheless, the feedbacks between evapotranspiration, soil moisture and precipitation have not yet been completely understood at present-day. Furthermore, soil moisture reservoirs are associated to a memory and thus their proper initialization may have a strong influence on predictability. In particular, the linkage between precipitation and soil moisture is modulated by the effects on evapotranspiration. Therefore, the investigation of the coupling between these variables appear to be of primary importance for the improvement of predictability over the continents. The coupled manifold (CM) technique (Navarra and Tribbia 2005) is a method designed to separate the effects of the variability of two variables which are connected. This method has proved to be successful for the analysis of different climate fields, like precipitation, vegetation and sea surface temperature. In particular, the coupled variables reveal patterns that may be connected with specific phenomena, thus providing hints regarding potential predictability. In this study we applied the CM to recent observational datasets of precipitation (from CRU), evapotranspiration (from GIMMS and MODIS satellite-based estimates) and soil moisture content (from ESA) spanning a time period of 23 years (1984-2006) with a monthly frequency. Different data stratification (monthly, seasonal, summer JJA) have been employed to analyze the persistence of the patterns and their characteristical time scales and seasonality. The three variables considered show a significant coupling among each other. Interestingly, most of the signal of the evapotranspiration-precipitation coupled terms comes from the summer (JJA), when convective motions increase sensitivity to surface conditions over land. The CM analysis of the response of evapotranspiration to soil moisture allowed a characterization of the robustness of the coupling between these two variables which has been identified as a key requirement for precipitation predictability (Koster et al. 2000). References Navarra, A., and J. Tribbia (2005), The coupled manifold, J. Atmos. Sci., 62, 310-330. Koster, R. D., M. J. Suarez, and M. Heiser (2000), Variance and predictability of precipitation at seasonal-to-interannual timescales, J. Hydrometeor., 1, 26-46.
Multi-instrument Method to Map Spatial and Temporal Patterns of Snowmelt Infiltration
NASA Astrophysics Data System (ADS)
Hyde, K.; Beverly, D.; Thayer, D.; Speckman, H. N.; Parsekian, A.; Kelleners, T.
2015-12-01
Mapping spatial patterns of relative soil moisture over time may improve understanding of snowmelt infiltration processes in heterogeneous systems. Conventional soil water measurement methods disturb soil properties and rocky materials generally limit installation of monitoring instruments to shallow depths in mountainous landscapes with snowmelt dominated hydrology. Modifications to existing technology combined with low impact installation methods provide high temporal and spatial resolution of relative soil moisture as well as a temperature profile and water table level. Closely spaced (10cm) electrical resistance pads are combined in a small diameter (2.54 cm) tube with temperature probes each 50cm, a pressure transducer, and a tube to extract groundwater for stable isotope analysis. This vertical probe array (VPA) extends 3.2m and is installed in a small diameter (4 cm) bore using a backpack drill limiting soil disturbance. Two VPAs are installed in the Snowy Range of Wyoming, one in a forested mountainous environment impacted by mortality by insects and disease and the other (limited to resistance pads only) in recently burned sagelands. Each VPA is co-located with meteorological stations. Eddy-covariance, sap flux, electrical resistivity, snowpack survey, and other hillslope eco-hydrology measurements accompany the fully instrumented VPA. Data are sampled and recorded at 5 or 15 minute intervals starting in December 2014. Over the winter both sites exhibit highly variable patterns of relatively dry soils with steady increase in wetness. Abrupt increases in relative wetness occurred with short periods of warming temperatures in Spring. Following a temperature increase in the forested site the relative moisture dramatically increased over a period of several hours at all depths as water level rose 1m within 8 hours. In contrast, following snowmelt relative moisture in the sageland site increased gradually and systematically with depth over a period of two weeks. The sage area also demonstrates sensitivity to rainfall events where the forested hillslope is insensitive to rain inputs. Long term monitoring at high temporal frequency will likely reveal other patterns expected to advance understanding of snowmelt infiltration processes at previously inaccessible depths within the vadose zone.
NASA Astrophysics Data System (ADS)
Schrön, M.; Fersch, B.; Jagdhuber, T.
2017-12-01
The representative determination of soil moisture across different spatial ranges and scales is still an important challenge in hydrology. While in situ measurements are trusted methods at the profile- or point-scale, cosmic-ray neutron sensors (CRNS) are renowned for providing volume averages for several hectares and tens of decimeters depth. On the other hand, airborne remote-sensing enables the coverage of regional scales, however limited to the top few centimeters of the soil.Common to all of these methods is a challenging data processing part, often requiring calibration with independent data. We investigated the performance and potential of three complementary observational methods for the determination of soil moisture below grassland in an alpine front-range river catchment (Rott, 55 km2) of southern Germany.We employ the TERENO preAlpine soil moisture monitoring network, along with additional soil samples taken throughout the catchment. Spatial soil moisture products have been generated using surveys of a car-mounted mobile CRNS (rover), and an aerial acquisition of the polarimetric synthetic aperture radar (F-SAR) of DLR.The study assesses (1) the viability of the different methods to estimate soil moisture for their respective scales and extents, and (2) how either method could support an improvement of the others. We found that in situ data can provide valuable information to calibrate the CRNS rover and to train the vegetation removal part of the polarimetric SAR (PolSAR) retrieval algorithm. Vegetation correction is mandatory to obtain the sub-canopy soil moisture patterns. While CRNS rover surveys can be used to evaluate the F-SAR product across scales, vegetation-related PolSAR products in turn can support the spatial correction of CRNS products for biomass water. Despite the different physical principles, the synthesis of the methods can provide reasonable soil moisture information by integrating from the plot to the landscape scale. The combination of in situ, CRNS, and remote-sensing data leads to substantial improvement, especially for the latter two. The study shows how interdisciplinary research can greatly advance the methodology and processing algorithms for individual geoscientific instruments and their hydrologically relevant products.
NASA Astrophysics Data System (ADS)
Usowicz, B.; Marczewski, W.; Lipiec, J.; Usowicz, J. B.; Sokolowska, Z.; Dabkowska-Naskret, H.; Hajnos, M.; Lukowski, M. I.
2009-04-01
The purpose is obtaining trustful ground based measurement data of SM (Soil Moisture) for validating SMOS, respectively to spatial and temporal distribution and variations. A use of Time Domain Reflectometric (TDR) method is fast, simple and less destructive, to the soil matter, than a usual standard gravimetric method. TDR tools operate efficiently, enable nearly instant measurements, and allow on collecting many measurements from numerous sites, even when operated manually in short time intervals. The method enables also very frequent sampling of SM at few selected fixed sites, when long terms of temporal variations are needed. In effect one obtains reasonably large data base for determining spatial and temporal distributions of SM. The study is devoted to determining a plan on collecting TDR data, in the scales of small and large field areas, and checking their relevance to those available from gravimetric methods. Finally, the ground based SM distributions are needed for validating other SM distributions, available remotely in larger scales, from the satellite data of ENVISAT-ASAR, and from SMOS (Soil Moisture and Ocean Salinity Mission) when it becomes operational. The ground based evaluations are served mainly by geo-statistical analysis. The space borne estimations are retrieved by image processing and physical models, proper to relevant Remote Sensing (RS) instruments on the orbit. Finally, validation must engage again the geo-statistical evaluations, to assess the agreement between direct and remote sensing means, and provide a measure of trust for extending the limited scales of the ground based data, on concluding the agreement in scales proper to the satellite data. The study is focused mainly on trustful evaluating data from the ground, provided independently on satellite data sources. SM ground based data are collected permanently at 2 selected tests sites, and temporary in areas around the tests sites, in one day sessions, repeated several times per vegetation season. Permanent measurements are provided in profiles, down to 50 cm below surface. Temporary SM measurements are collected by hand held TDR (FOM/mts type, Easy Test Ltd., Lublin, Poland) from the top surface layer (1-6 cm), in a grid covering small and large areas, containing few hundred sites. The same places are served by collecting soil samples for the gravimetric analysis of SM, bulk density, other physical and textural characteristics. Sessions on measurement in large areas on the scale of community are repeated for separate days. The two methods used were compared with correlation coefficient, regression equation and differences of values. The spatial variability of soil moisture from gravimetric and TDR measurements were analyzed using geostatistical methods. The semivariogram parameters were determined and mathematical functions were fitted to empirically derived semivariograms. These functions were used for estimation of spatial distribution of soil moisture in cultivated fields by the kriging method. The results showed that spatial distribution patterns of topsoil soil moisture in the investigated areas obtained from TDR and gravimetric methods were in general similar to each other. The TDR soil moisture contents were dependent on bulk density and texture of soil. In areas with fine-textured soils of lower soil bulk densities (approximately below 1.35 Mg m^-3) we observed that TDR soil moisture and spatial differentiation were greater compared to those with gravimetric method. However at higher bulk densities the inverse was true. The spatial patterns were further modified in areas with domination of coarse-textured soils. Decrease of measurement points results in smoothing soil moisture pattern and at the same time in a greater estimation error. The TDR method can be useful tool for ground moisture measurements and validation of satellite data. The use of specific calibration or correction for soil bulk density and texture with respect to the reflectometric method is recommended. The study is a contribution to the project SWEX (AO-3275) and funded by the Polish Ministry of Science and Higher Education (in part by Grant No. N305 046 31/1707 and in part by Grant No. N305 107 32/3865).
Landscape patterns of CH4 fluxes in an alpine tundra ecosystem
West, A.E.; Brooks, P.D.; Fisk, M.C.; Smith, Lesley K.; Holland, E.A.; Jaeger, C. H.; Babcock, S.; Lai, R.S.; Schmidt, S.K.
1999-01-01
We measured CH4 fluxes from three major plant communities characteristic of alpine tundra in the Colorado Front Range. Plant communities in this ecosystem are determined by soil moisture regimes induced by winter snowpack distribution. Spatial patterns of CH4 flux during the snow-free season corresponded roughly with these plant communities. In Carex-dominated meadows, which receive the most moisture from snowmelt, net CH4 production occurred. However, CH4 production in one Carex site (seasonal mean = +8.45 mg CH4 m-2 d-1) was significantly larger than in the other Carex sites (seasonal means = -0.06 and +0.05 mg CH4 m-2 d-1). This high CH4 flux may have resulted from shallower snowpack during the winter. In Acomastylis meadows, which have an intermediate moisture regime, CH4 oxidation dominated (seasonal mean = -0.43 mg CH4 m-2 d-1). In the windswept Kobresia meadow plant community, which receive the least amount of moisture from snowmelt, only CH4 oxidation was observed (seasonal mean = -0.77 mg CH4 m-2 d-1). Methane fluxes correlated with a different set of environmental factors within each plant community. In the Carex plant community, CH4 emission was limited by soil temperature. In the Acomastylis meadows, CH4 oxidation rates correlated positively with soil temperature and negatively with soil moisture. In the Kobresia community, CH4 oxidation was stimulated by precipitation. Thus, both snow-free season CH4 fluxes and the controls on those CH4 fluxes were related to the plant communities determined by winter snowpack.
Soil transference patterns on bras: Image processing and laboratory dragging experiments.
Murray, Kathleen R; Fitzpatrick, Robert W; Bottrill, Ralph S; Berry, Ron; Kobus, Hilton
2016-01-01
In a recent Australian homicide, trace soil on the victim's clothing suggested she was initially attacked in her front yard and not the park where her body was buried. However the important issue that emerged during the trial was how soil was transferred to her clothing. This became the catalyst for designing a range of soil transference experiments (STEs) to study, recognise and classify soil patterns transferred onto fabric when a body is dragged across a soil surface. Soil deposits of interest in this murder were on the victim's bra and this paper reports the results of anthropogenic soil transfer to bra-cups and straps caused by dragging. Transfer patterns were recorded by digital photography and photomicroscopy. Eight soil transfer patterns on fabric, specific to dragging as the transfer method, appeared consistently throughout the STEs. The distinctive soil patterns were largely dependent on a wide range of soil features that were measured and identified for each soil tested using X-ray Diffraction and Non-Dispersive Infra-Red analysis. Digital photographs of soil transfer patterns on fabric were analysed using image processing software to provide a soil object-oriented classification of all soil objects with a diameter of 2 pixels and above transferred. Although soil transfer patterns were easily identifiable by naked-eye alone, image processing software provided objective numerical data to support this traditional (but subjective) interpretation. Image software soil colour analysis assigned a range of Munsell colours to identify and compare trace soil on fabric to other trace soil evidence from the same location; without requiring a spectrophotometer. Trace soil from the same location was identified by linking soils with similar dominant and sub-dominant Munsell colour peaks. Image processing numerical data on the quantity of soil transferred to fabric, enabled a relationship to be discovered between soil type, clay mineralogy (smectite), particle size and soil moisture content that would not have been possible otherwise. Soil type (e.g. Anthropogenic, gravelly sandy loam soil or Natural, organic-rich soil), clay mineralogy (smectite) and soil moisture content were the greatest influencing factors in all the dragging soil transference tests (both naked eye and measured properties) to explain the eight categories of soil transference patterns recorded. This study was intended to develop a method for dragging soil transference laboratory experiments and create a baseline of preliminary soil type/property knowledge. Results confirm the need to better understand soil behaviour and properties of clothing fabrics by further testing of a wider range of soil types and clay mineral properties. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Blakenship, Clay B.; Zavodsky, Bradley T.
2014-01-01
As part of the NASA Soil Moisture Active Passive (SMAP) Early Adopter (EA) program, the NASA Shortterm Prediction Research and Transition (SPoRT) Center has implemented a data assimilation (DA) routine into the NASA Land Information System (LIS) for soil moisture retrievals from the European Space Agency's Soil Moisture Ocean Salinity (SMOS) satellite. The SMAP EA program promotes application-driven research to provide a fundamental understanding of how SMAP data products will be used to improve decision-making at operational agencies. SPoRT has partnered with select NOAA/NWS Weather Forecast Offices (WFOs) that use output from a real-time regional configuration of LIS, without soil moisture DA, to initialize local numerical weather prediction (NWP) models and enhance situational awareness. Improvements to local NWP with the current LIS have been demonstrated; however, a better representation of the land surface through assimilation of SMOS (and eventually SMAP) retrievals is expected to lead to further model improvement, particularly during warm-season months. SPoRT will collaborate with select WFOs to assess the impact of soil moisture DA on operational forecast situations. Assimilation of the legacy SMOS instrument data provides an opportunity to develop expertise in preparation for using SMAP data products shortly after the scheduled launch on 5 November 2014. SMOS contains a passive L-band radiometer that is used to retrieve surface soil moisture at 35-km resolution with an accuracy of 0.04 cu cm cm (exp -3). SMAP will feature a comparable passive L-band instrument in conjunction with a 3-km resolution active radar component of slightly degraded accuracy. A combined radar-radiometer product will offer unprecedented global coverage of soil moisture at high spatial resolution (9 km) for hydrometeorological applications, balancing the resolution and accuracy of the active and passive instruments, respectively. The LIS software framework manages land surface model (LSM) simulations and includes an Ensemble Kalman Filter for conducting land surface DA. SPoRT has added a module to read, quality-control and bias-correct swaths of Level II SMOS soil moisture retrievals prior to assimilation within LIS. The impact of SMOS DA is being tested using the Noah LSM. Experiments are being conducted to examine the impacts of SMOS soil moisture DA on the resulting LISNoah fields and subsequent NWP simulations using the Weather Research and Forecasting (WRF) model initialized with LIS-Noah output. LIS-Noah soil moisture will be validated against in situ observations from Texas A&M's North American Soil Moisture Database to reveal the impact and possible improvement in soil moisture trends through DA. WRF model NWP case studies will test the impacts of DA on the simulated near-surface and boundary-layer environments, and precipitation during both quiescent and disturbed weather scenarios. Emphasis will be placed on cases with large analysis increments, especially due to contributions from regional irrigation patterns that are not represented by precipitation input in the baseline LIS-Noah run. This poster presentation will describe the soil moisture DA methodology and highlight LIS-Noah and WRF simulation results with and without assimilation.
NASA Astrophysics Data System (ADS)
Wanders, N.; Karssenberg, D.; Bierkens, M. F. P.; Van Dam, J. C.; De Jong, S. M.
2012-04-01
Soil moisture is a key variable in the hydrological cycle and important in hydrological modelling. When assimilating soil moisture into flood forecasting models, the improvement of forecasting skills depends on the ability to accurately estimate the spatial and temporal patterns of soil moisture content throughout the river basin. Space-borne remote sensing may provide this information with a high temporal and spatial resolution and with a global coverage. Currently three microwave soil moisture products are available: AMSR-E, ASCAT and SMOS. The quality of these satellite-based products is often assessed by comparing them with in-situ observations of soil moisture. This comparison is however hampered by the difference in spatial and temporal support (i.e., resolution, scale), because the spatial resolution of microwave satellites is rather low compared to in-situ field measurements. Thus, the aim of this study is to derive a method to assess the uncertainty of microwave satellite soil moisture products at the correct spatial support. To overcome the difference in support size between in-situ soil moisture observations and remote sensed soil moisture, we used a stochastic, distributed unsaturated zone model (SWAP, van Dam (2000)) that is upscaled to the support of different satellite products. A detailed assessment of the SWAP model uncertainty is included to ensure that the uncertainty in satellite soil moisture is not overestimated due to an underestimation of the model uncertainty. We simulated unsaturated water flow up to a depth of 1.5m with a vertical resolution of 1 to 10 cm and on a horizontal grid of 1 km2 for the period Jan 2010 - Jun 2011. The SWAP model was first calibrated and validated on in-situ data of the REMEDHUS soil moisture network (Spain). Next, to evaluate the satellite products, the model was run for areas in the proximity of 79 meteorological stations in Spain, where model results were aggregated to the correct support of the satellite product by averaging model results from the 1 km2 grid within the remote sensing footprint. Overall 440 (AMSR-E, SMOS) to 680 (ASCAT) timeseries were compared to the aggregated SWAP model results, providing valuable information on the uncertainty of satellite soil moisture at the proper support. Our results show that temporal dynamics are best captured by ASCAT resulting in an average correlation of 0.72 with the model, while ASMR-E (0.41) and SMOS (0.42) are less capable of representing these dynamics. Standard deviations found for ASCAT and SMOS are low, 0.049 and 0.051m3m-3 respectively, while AMSR-E has a higher value of 0.062m3m-3. All standard deviations are higher than the average model uncertainty of 0.017m3m-3. All satellite products show a negative bias compared to the model results, with the largest value for SMOS. Satellite uncertainty is not found to be significantly related to topography, but is found to increase in densely vegetated areas. In general AMSR-E has most difficulties capturing soil moisture dynamics in Spain, while SMOS and mainly ASCAT have a fair to good performance. However, all products contain valuable information about the near-surface soil moisture over Spain. Van Dam, J.C., 2000, Field scale water flow and solute transport. SWAP model concepts, parameter estimation and case studies. Ph.D. thesis, Wageningen University
Zhang, Yi; Xie, Yong-Sheng; Hao, Ming-De; She, Xiao-Yan
2010-02-01
Taking a nine-year-old Fuji apple orchard in Loess Plateau as test object, this paper studied the effects of different patterns surface mulching (clean tillage, grass cover, plastic film mulch, straw mulch, and gravel mulch) on the soil properties and fruit trees growth and yield in this orchard. Grass cover induced the lowest differentiation of soil moisture profile, while gravel mulch induced the highest one. In treatment gravel mulch, the soil moisture content in apple trees root zone was the highest, which meant that there was more water available to apple trees. Surface mulching had significant effects on soil temperature, and generally resulted in a decrease in the maximum soil temperature. The exception was treatment plastic film mulch, in which, the soil temperature in summer exceeded the maximum allowable temperature for continuous root growth and physiological function. With the exception of treatment plastic film mulch, surface mulching increased the soil CO2 flux, which was the highest in treatment grass cover. Surface mulching also affected the proportion of various branch types and fruit yield. The proportion of medium-sized branches and fruit yield were the highest in treatment gravel mulch, while the fruit yield was the lowest in treatment grass cover. Factor analysis indicated that among the test surface mulching patterns, gravel mulch was most suitable for the apple orchards in gully region of Loess Plateau.
Tang, X.-L.; Zhou, G.-Y.; Liu, S.-G.; Zhang, D.-Q.; Liu, S.-Z.; Li, Ji; Zhou, C.-Y.
2006-01-01
The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (±SD) soil respiration rate in the DNR forests was (9.0 ± 4.6) Mg CO2-C/hm2per year, ranging from (6.1 ± 3.2) Mg CO2-C/hm2per year in early successional forests to (10.7 ± 4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities.
NASA Astrophysics Data System (ADS)
Venteris, E. R.; Tagestad, J. D.; Downs, J. L.; Murray, C. J.
2015-07-01
Cost-effective and reliable vegetation monitoring methods are needed for applications ranging from traditional agronomic mapping, to verifying the safety of geologic injection activities. A particular challenge is defining baseline crop conditions and subsequent anomalies from long term imagery records (Landsat) in the face of large spatiotemporal variability. We develop a new method for defining baseline crop response (near peak growth) using the normalized difference vegetation index (NDVI) from 26 years (1986-2011) of Landsat data for 400 km2 surrounding a planned geologic carbon sequestration site near Jacksonville, Illinois. The normal score transform (yNDVI) was applied on a field by field basis to accentuate spatial patterns and level differences due to planting times. We tested crop type and soil moisture (Palmer crop moisture index (CMI)) as predictors of expected crop condition. Spatial patterns in yNDVI were similar between corn and soybeans - the two major crops. Linear regressions between yNDVI and the cumulative CMI (CCMI) exposed complex interactions between crop condition, field location (topography and soils), and annual moisture. Wet toposequence positions (depressions) were negatively correlated to CCMI and dry positions (crests) positively correlated. However, only 21% of the landscape showed a statistically significant (p < 0.05) linear relationship. To map anomalous crop conditions, we defined a tolerance interval based on yNDVI statistics. Tested on an independent image (2013), 63 of 1483 possible fields showed unusual crop condition. While the method is not directly suitable for crop health assessment, the spatial patterns in correlation between yNDVI and CCMI have potential applications for pest damage detection and edaphological soil mapping, especially in the developing world.
NASA Astrophysics Data System (ADS)
Koyama, A.; Webb, C. T.; Johnson, N. G.; Brewer, P. E.; von Fischer, J. C.
2015-12-01
Methane uptake rates are known to have temporal variation in response to changing soil moisture levels. However, the relative importance of soil diffusivity vs. methanotroph physiology has not been disentangled to date. Testing methanotroph physiology in the laboratory can lead to misleading results due to changes in the fine-scale habitat where methanotrophs reside. To assay the soil moisture sensitivity of methanotrophs under field conditions, we studied 22 field plots scattered across eight Great Plains grassland sites that differed in precipitation regime and soil moisture, making ca. bi-weekly measures during the growing seasons over three years. Quantification of methanotroph activity was achieved from chamber-based measures of methane uptake coincident with SF6-derived soil diffusivity, and interpretation in a reaction-diffusion model. At each plot, we also measured soil water content (SWC), soil temperature and inorganic nitrogen (N) contents. We also assessed methanotroph community composition via 454 sequencing of the pmoA gene. Statistical analyses showed that methanotroph activity had a parabolic response with SWC (concave down), and significant differences in the shape of this response among sites. Moreover, we found that the SWC at peak methanotroph activity was strongly correlated with mean annual precipitation (MAP) of the site. The sequence data revealed distinct composition patterns, with structure that was associated with variation in MAP and soil texture. These results suggest that local precipitation regime shapes methanotroph community composition, which in turn lead to unique sensitivity of methane uptake rates with soil moisture. Our findings suggest that methanotroph activity may be more accurately modeled when the biological and environmental responses are explicitly described.
Riggs, Alan C.; Striegl, Robert G.; Maestas, Florentino B.; Morganwalp, David W.; Buxton, Herbert T.
1999-01-01
Automated opaque flux-chamber measurements of soil carbon dioxide (CO2) flux (soil respiration) into the atmosphere at the Amargosa Desert Research Site show seasonal and diel cycles of soil respiration that are closely linked with soil temperature and soil moisture. During 1998, soil respiration increased with soil warming through spring, reaching a maximum rate (not counting anomalously high values scattered through the record) of about 0.055 moles CO2 m-2 day-1 around Julian Day 120. Respiration rates then declined along with volumetric soil moisture content, tending to stay at or below about 0.02 moles CO2 per square meter per day (m-2 day -1) for the rest of the year, except after summer rainfalls when respiration sharply increased for short periods. The diel respiration pattern during dry spells is marked by a sharp rise in CO2 flux coincident with steeply rising soil temperatures in the morning, then dropping back to low levels about the time of maximum soil temperature. The reason for this pattern in unclear.
Correlated variation of floral and leaf traits along a moisture availability gradient.
Lambrecht, Susan C; Dawson, Todd E
2007-04-01
Variation in flower size is an important aspect of a plant's life history, yet few studies have shown how flower size varies with environmental conditions and to what extent foliar responses to the environment are correlated with flower size. The objectives of this study were to (1) develop a theoretical framework for linking flower size and leaf size to their costs and benefits, as assessed using foliar stable carbon isotope ratio (delta(13)C) under varying degrees of water limitation, and then (2) examine how variation in flower size within and among species growing along a naturally occurring moisture availability gradient correlates with variation in delta(13)C and leaf size. Five plant species were examined at three sites in Oregon. Intra- and inter-specific patterns of flower size in relation to moisture availability were the same: the ratios of the area of flower display to total leaf area and of individual flower area to leaf area were greater at sites with more soil moisture compared to those sites with less soil moisture. The increase in flower area per unit increase in leaf area was greater at sites with more soil moisture than at sites where water deficit can occur. Values of delta(13)C, an index of water-use efficiency, were greater for plants with larger floral size. The patterns we observed generalize across species, irrespective of overall plant morphology or pollination system. These correlations between flower size, moisture availability, and delta(13)C suggest that water loss from flowers can influence leaf responses to the environment, which in turn may indirectly mediate an effect on flower size.
NASA Astrophysics Data System (ADS)
A, G.; Velicogna, I.; Kimball, J. S.; Kim, Y.; Colliander, A.; Njoku, E. G.
2015-12-01
We combine soil moisture (SM) data from AMSR-E, AMSR-2 and SMAP, terrestrial water storage (TWS) changes from GRACE, in-situ groundwater measurements and atmospheric moisture data to delineate and characterize the evolution of drought and its impact on vegetation growth. GRACE TWS provides spatially continuous observations of total terrestrial water storage changes and regional drought extent, persistence and severity, while satellite derived soil moisture estimates provide enhanced delineation of plant-available soil moisture. Together these data provide complementary metrics quantifying available plant water supply. We use these data to investigate the supply changes from water components at different depth in relation to satellite based vegetation metrics, including vegetation greenness (NDVI) measures from MODIS and related higher order productivity (GPP) before, during and following the major drought events observed in the continental US for the past 14 years. We observe consistent trends and significant correlations between monthly time series of TWS, SM, NDVI and GPP. We study how changes in atmosphere moisture stress and coupling of water storage components at different depth impact on the spatial and temporal correlation between TWS, SM and vegetation metrics. In Texas, we find that surface SM and GRACE TWS agree with each other in general, and both capture the underlying water supply constraints to vegetation growth. Triggered by a transit increase in precipitation following the 2011 hydrological drought, vegetation productivity in Texas shows more sensitivity to surface SM than TWS. In the Great Plains, the correspondence between TWS and vegetation productivity is modulated by temperature-induced atmosphere moisture stress and by the coupling between surface soil moisture and groundwater through irrigation.
Remote sensing of agricultural crops and soils
NASA Technical Reports Server (NTRS)
Bauer, M. E. (Principal Investigator)
1982-01-01
Research results and accomplishments of sixteen tasks in the following areas are described: (1) corn and soybean scene radiation research; (2) soil moisture research; (3) sampling and aggregation research; (4) pattern recognition and image registration research; and (5) computer and data base services.
Response of Carbon Fluxes to Soil Moisture Variability across an Alaskan Tundra Landscape
NASA Astrophysics Data System (ADS)
Melton, S.; Natali, S.; Schade, J. D.; Holmes, R. M.; Mann, P. J.; Fiske, G. J.
2017-12-01
Soils in arctic and sub-arctic permafrost regions store large amounts of carbon (C), which is becoming more biologically available as soils warm and permafrost thaws. Microbial decay of organic forms of C can result in the production and emission of carbon dioxide (CO2) and methane (CH4), and the amount and form of C released into the atmosphere depend on organic matter composition and soil conditions. Soil moisture, which is a strong driver of microbial processes, varies spatially and temporally across tundra landscapes and may change dramatically as a result of permafrost thaw. The Yukon-Kuskokwim Delta (YKD) of Alaska is underlain by discontinuous permafrost and is particularly vulnerable to permafrost thaw and soil moisture changes associated with thaw. As permafrost thaws, some areas may dry as drainage increases with increasing thaw depth. Alternatively, permafrost thaw may lead to ground subsidence and saturation of previously dry soils. Our objective was to investigate patterns in C storage and processing across the landscape and in response to changes in soil moisture in the YKD. We analyzed soil C pools (0-30 cm) and CO2 and CH4 concentrations in soils from sites of different land cover and landscape position, including moist and dry peat plateaus, high and low intensity burned plateaus, fens, and drained lakes. We also conducted aerobic and anaerobic soil incubations to determine changes in CO2 and CH4 production under a range of soil moisture conditions. Soils from burned plateaus, which were drier and had lower C content than unburned soils, had higher CO2 production (per g soil) than unburned soils during aerobic incubations. Both increased and decreased moisture reduced CO2 production from soils. Soil drying increased net CH4 uptake in all aerobically-incubated burned soils, and wetting resulted in CH4 emissions from low intensity burn soils. CO2 and CH4 production from fen soils were higher than from the other landscape positions analyzed here. Our results suggest that soil drying could lead to decreased microbial respiration, whereas subsidence may result in increased methanogenesis. Additionally, amplified CH4 release from burned soils after rainfall events or subsidence may accompany the increased fire frequency projected in tundra regions.
NASA Astrophysics Data System (ADS)
Shi, Y.; Eissenstat, D. M.; He, Y.; Davis, K. J.
2017-12-01
Most current biogeochemical models are 1-D and represent one point in space. Therefore, they cannot resolve topographically driven land surface heterogeneity (e.g., lateral water flow, soil moisture, soil temperature, solar radiation) or the spatial pattern of nutrient availability. A spatially distributed forest biogeochemical model with nitrogen transport, Flux-PIHM-BGC, has been developed by coupling a 1-D mechanistic biogeochemical model Biome-BGC (BBGC) with a spatially distributed land surface hydrologic model, Flux-PIHM, and adding an advection dominated nitrogen transport module. Flux-PIHM is a coupled physically based model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model, and is augmented by adding a topographic solar radiation module. Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as land surface heterogeneities caused by topography. In the coupled Flux-PIHM-BGC model, each Flux-PIHM model grid couples a 1-D BBGC model, while nitrogen is transported among model grids via surface and subsurface water flow. In each grid, Flux-PIHM provides BBGC with soil moisture, soil temperature, and solar radiation, while BBGC provides Flux-PIHM with spatially-distributed leaf area index. The coupled Flux-PIHM-BGC model has been implemented at the Susquehanna/Shale Hills Critical Zone Observatory. The model-predicted aboveground vegetation carbon and soil carbon distributions generally agree with the macro patterns observed within the watershed. The importance of abiotic variables (including soil moisture, soil temperature, solar radiation, and soil mineral nitrogen) in predicting aboveground carbon distribution is calculated using a random forest. The result suggests that the spatial pattern of aboveground carbon is controlled by the distribution of soil mineral nitrogen. A Flux-PIHM-BGC simulation without the nitrogen transport module is also executed. The model without nitrogen transport fails in predicting the spatial patterns of vegetation carbon, which indicates the importance of having a nitrogen transport module in spatially distributed ecohydrologic modeling.
NASA Astrophysics Data System (ADS)
Finkenbiner, Catherine; Franz, Trenton E.; Avery, William Alexander; Heeren, Derek M.
2016-04-01
Global trends in consumptive water use indicate a growing and unsustainable reliance on water resources. Approximately 40% of total food production originates from irrigated agriculture. With increasing crop yield demands, water use efficiency must increase to maintain a stable food and water trade. This work aims to increase our understanding of soil hydrologic fluxes at intermediate spatial scales. Fixed and roving cosmic-ray neutron probes were combined in order to characterize the spatial and temporal patterns of soil moisture at three study sites across an East-West precipitation gradient in the state of Nebraska, USA. A coarse scale map was generated for the entire domain (122 km2) at each study site. We used a simplistic data merging technique to produce a statistical daily soil moisture product at a range of key spatial scales in support of current irrigation technologies: the individual sprinkler (˜102m2) for variable rate irrigation, the individual wedge (˜103m2) for variable speed irrigation, and the quarter section (0.82 km2) for uniform rate irrigation. Additionally, we were able to generate a daily soil moisture product over the entire study area at various key modeling and remote sensing scales 12, 32, and 122 km2. Our soil moisture products and derived soil properties were then compared against spatial datasets (i.e. field capacity and wilting point) from the US Department of Agriculture Web Soil Survey. The results show that our "observed" field capacity was higher compared to the Web Soil Survey products. We hypothesize that our results, when provided to irrigators, will decrease water losses due to runoff and deep percolation as sprinkler managers can better estimate irrigation application depth and times in relation to soil moisture depletion below field capacity and above maximum allowable depletion. The incorporation of this non-contact and pragmatic geophysical method into current irrigation practices across the state and globe has the potential to greatly increase agricultural water use efficiency at scale.
Estimation of Soil Moisture Under Vegetation Cover at Multiple Frequencies
NASA Astrophysics Data System (ADS)
Jadghuber, Thomas; Hajnsek, Irena; Weiß, Thomas; Papathanassiou, Konstantinos P.
2015-04-01
Soil moisture under vegetation cover was estimated by a polarimetric, iterative, generalized, hybrid decomposition and inversion approach at multiple frequencies (X-, C- and L-band). Therefore the algorithm, originally designed for longer wavelength (L-band), was adapted to deal with the short wavelength scattering scenarios of X- and C-band. The Integral Equation Method (IEM) was incorporated together with a pedo-transfer function of Dobson et al. to account for the peculiarities of short wavelength scattering at X- and C-band. DLR's F-SAR system acquired fully polarimetric SAR data in X-, C- and L-band over the Wallerfing test site in Lower Bavaria, Germany in 2014. Simultaneously, soil and vegetation measurements were conducted on different agricultural test fields. The results indicate a spatially continuous inversion of soil moisture in all three frequencies (inversion rates >92%), mainly due to the careful adaption of the vegetation volume removal including a physical constraining of the decomposition algorithm. However, for X- and C-band the inversion results reveal moisture pattern inconsistencies and in some cases an incorrectly high inversion of soil moisture at X-band. The validation with in situ measurements states a stable performance of 2.1- 7.6vol.% at L-band for the entire growing period. At C- and X-band a reliable performance of 3.7-13.4vol.% in RMSE can only be achieved after distinct filtering (X- band) leading to a loss of almost 60% in spatial inversion rate. Hence, a robust inversion for soil moisture estimation under vegetation cover can only be conducted at L-band due to a constant availability of the soil signal in contrast to higher frequencies (X- and C-band).
Applicability of common stomatal conductance models in maize under varying soil moisture conditions.
Wang, Qiuling; He, Qijin; Zhou, Guangsheng
2018-07-01
In the context of climate warming, the varying soil moisture caused by precipitation pattern change will affect the applicability of stomatal conductance models, thereby affecting the simulation accuracy of carbon-nitrogen-water cycles in ecosystems. We studied the applicability of four common stomatal conductance models including Jarvis, Ball-Woodrow-Berry (BWB), Ball-Berry-Leuning (BBL) and unified stomatal optimization (USO) models based on summer maize leaf gas exchange data from a soil moisture consecutive decrease manipulation experiment. The results showed that the USO model performed best, followed by the BBL model, BWB model, and the Jarvis model performed worst under varying soil moisture conditions. The effects of soil moisture made a difference in the relative performance among the models. By introducing a water response function, the performance of the Jarvis, BWB, and USO models improved, which decreased the normalized root mean square error (NRMSE) by 15.7%, 16.6% and 3.9%, respectively; however, the performance of the BBL model was negative, which increased the NRMSE by 5.3%. It was observed that the models of Jarvis, BWB, BBL and USO were applicable within different ranges of soil relative water content (i.e., 55%-65%, 56%-67%, 37%-79% and 37%-95%, respectively) based on the 95% confidence limits. Moreover, introducing a water response function, the applicability of the Jarvis and BWB models improved. The USO model performed best with or without introducing the water response function and was applicable under varying soil moisture conditions. Our results provide a basis for selecting appropriate stomatal conductance models under drought conditions. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Miller, G. R.; Gou, S.; Ferguson, I. M.; Maxwell, R. M.
2011-12-01
Savanna ecosystems present a well-known modeling challenge; understory grasses and overstory woody vegetation combine to form an open, heterogeneous canopy that creates strong spatial differences in soil moisture and evapotranspiration rates. In this analysis, we used ParFlow.CLM to create a stand-scale model of the Tonzi Ranch oak savanna, based on extensive topography, vegetation, soil, and hydrogeology data collected at the site. Measurements included canopy distribution and ground surface elevation from airborne Lidar, depth to groundwater from deep piezometers, soil and rock hydraulic conductivity, and leaf area index. We then compared the results to the site's long-term data records of radiative flux partitioning, obtained using the eddy-covariance method, and soil moisture, collected via a distributed network of capacitance probes. In order to obtain good agreement between the measured and modeled values, we identified several necessary modifications to the current CLM parameterization. These changes included the addition of a "winter grass" type and the alteration of the root structure and water stress functions to accommodate uptake of groundwater by deep roots. Finally, we compared variograms of site parameters and response variables and performed a scaling analysis relating ET and soil moisture variance to sampling size.
NASA Astrophysics Data System (ADS)
Polcher, Jan; Barella-Ortiz, Anaïs; Piles, Maria; Gelati, Emiliano; de Rosnay, Patricia
2017-04-01
The SMOS satellite, operated by ESA, observes the surface in the L-band. On continental surface these observations are sensitive to moisture and in particular surface-soil moisture (SSM). In this presentation we will explore how the observations of this satellite can be exploited over the Iberian Peninsula by comparing its results with two land surface models : ORCHIDEE and HTESSEL. Measured and modelled brightness temperatures show a good agreement in their temporal evolution, but their spatial structures are not consistent. An empirical orthogonal function analysis of the brightness temperature's error identifies a dominant structure over the south-west of the Iberian Peninsula which evolves during the year and is maximum in autumn and winter. Hypotheses concerning forcing-induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for the weak spatial correlations. The analysis of spatial inconsistencies between modelled and measured TBs is important, as these can affect the estimation of geophysical variables and TB assimilation in operational models, as well as result in misleading validation studies. When comparing the surface-soil moisture of the models with the product derived operationally by ESA from SMOS observations similar results are found. The spatial correlation over the IP between SMOS and ORCHIDEE SSM estimates is poor (ρ 0.3). A single value decomposition (SVD) analysis of rainfall and SSM shows that the co-varying patterns of these variables are in reasonable agreement between both products. Moreover the first three SVD soil moisture patterns explain over 80% of the SSM variance simulated by the model while the explained fraction is only 52% of the remotely sensed values. These results suggest that the rainfall-driven soil moisture variability may not account for the poor spatial correlation between SMOS and ORCHIDEE products. Other reasons have to be sought to explain the poor agreement in spatial patterns between satellite derived and modelled SSM. This presentation will hopefully contribute to the discussion of how SMOS and other observations can be used to prepare, carry-out and exploit a field campaign over the Iberian Peninsula which aims at improving our understanding of semi-arid land surface processes.
Jon C. Reggelbrugge
1997-01-01
ABSTRACT. We compared stomatal conductance, transpiration, plant water potential, and soil moisture depletion patterns for three shrub species common on early seral forest sites in southwestern Oregon following logging or fire. Our goal was to determine which of these species were more likely to be the strongest competitors with regenerating conifers. The three species...
Soil Carbon Dioxide Production and Surface Fluxes: Subsurface Physical Controls
NASA Astrophysics Data System (ADS)
Risk, D.; Kellman, L.; Beltrami, H.
Soil respiration is a critical determinant of landscape carbon balance. Variations in soil temperature and moisture patterns are important physical processes controlling soil respiration which need to be better understood. Relationships between soil respi- ration and physical controls are typically addressed using only surface flux data but other methods also exist which permit more rigorous interpretation of soil respira- tion processes. Here we use a combination of subsurface CO_{2} concentrations, surface CO_{2} fluxes and detailed physical monitoring of the subsurface envi- ronment to examine physical controls on soil CO_{2} production at four climate observatories in Eastern Canada. Results indicate that subsurface CO_{2} produc- tion is more strongly correlated to the subsurface thermal environment than the surface CO_{2} flux. Soil moisture was also found to have an important influence on sub- surface CO_{2} production, particularly in relation to the soil moisture - soil profile diffusivity relationship. Non-diffusive profile CO_{2} transport appears to be im- portant at these sites, resulting in a de-coupling of summertime surface fluxes from subsurface processes and violating assumptions that surface CO_{2} emissions are the result solely of diffusion. These results have implications for the study of soil respiration across a broad range of terrestrial environments.
Evaluation of Assimilated SMOS Soil Moisture Data for US Cropland Soil Moisture Monitoring
NASA Technical Reports Server (NTRS)
Yang, Zhengwei; Sherstha, Ranjay; Crow, Wade; Bolten, John; Mladenova, Iva; Yu, Genong; Di, Liping
2016-01-01
Remotely sensed soil moisture data can provide timely, objective and quantitative crop soil moisture information with broad geospatial coverage and sufficiently high resolution observations collected throughout the growing season. This paper evaluates the feasibility of using the assimilated ESA Soil Moisture Ocean Salinity (SMOS)Mission L-band passive microwave data for operational US cropland soil surface moisture monitoring. The assimilated SMOS soil moisture data are first categorized to match with the United States Department of Agriculture (USDA)National Agricultural Statistics Service (NASS) survey based weekly soil moisture observation data, which are ordinal. The categorized assimilated SMOS soil moisture data are compared with NASSs survey-based weekly soil moisture data for consistency and robustness using visual assessment and rank correlation. Preliminary results indicate that the assimilated SMOS soil moisture data highly co-vary with NASS field observations across a large geographic area. Therefore, SMOS data have great potential for US operational cropland soil moisture monitoring.
NASA Astrophysics Data System (ADS)
Shi, Y.; Eissenstat, D. M.; Davis, K. J.; He, Y.
2015-12-01
Forest carbon processes are affected by soil moisture, soil temperature and solar radiation. Most of the current biogeochemical models are 1-D and represent one point in space. Therefore they can neither resolve topographically driven hill-slope soil moisture patterns, nor simulate the nonlinear effects of soil moisture on carbon processes. A spatially-distributed biogeochemistry model, Flux-PIHM-BGC, has been developed by coupling the Biome-BGC (BBGC) model with a coupled physically-based land surface hydrologic model, Flux-PIHM. Flux-PIHM incorporates a land-surface scheme (adapted from the Noah land surface model) into the Penn State Integrated Hydrologic Model (PIHM). Because PIHM is capable of simulating lateral water flow and deep groundwater, Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. Flux-PIHM-BGC model was tested at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). The abundant observations at the SSHCZO, including eddy covariance fluxes, soil moisture, groundwater level, sap flux, stream discharge, litterfall, leaf area index, aboveground carbon stock, and soil carbon efflux, provided an ideal test bed for the coupled model. Model results show that when uniform solar radiation is used, vegetation carbon and soil carbon are positively correlated with soil moisture in space, which agrees with the observations within the watershed. When topographically-driven solar radiation is used, however, the wetter valley floor becomes radiation limited, and produces less vegetation and soil carbon than the drier hillslope due to the assumption that canopy height is uniform in the watershed. This contradicts with the observations, and suggests that a tree height model with dynamic allocation model are needed to reproduce the spatial variation of carbon processes within a watershed.
Pielström, Steffen; Roces, Flavio
2014-01-01
The Chaco leaf-cutting ant Atta vollenweideri is native to the clay-heavy soils of the Gran Chaco region in South America. Because of seasonal floods, colonies are regularly exposed to varying moisture across the soil profile, a factor that not only strongly influences workers' digging performance during nest building, but also determines the suitability of the soil for the rearing of the colony's symbiotic fungus. In this study, we investigated the effects of varying soil moisture on behaviours associated with underground nest building in A. vollenweideri. This was done in a series of laboratory experiments using standardised, plastic clay-water mixtures with gravimetric water contents ranging from relatively brittle material to mixtures close to the liquid limit. Our experiments showed that preference and group-level digging rate increased with increasing water content, but then dropped considerably for extremely moist materials. The production of vibrational recruitment signals during digging showed, on the contrary, a slightly negative linear correlation with soil moisture. Workers formed and carried clay pellets at higher rates in moist clay, even at the highest water content tested. Hence, their weak preference and low group-level excavation rate observed for that mixture cannot be explained by any inability to work with the material. More likely, extremely high moistures may indicate locations unsuitable for nest building. To test this hypothesis, we simulated a situation in which workers excavated an upward tunnel below accumulated surface water. The ants stopped digging about 12 mm below the interface soil/water, a behaviour representing a possible adaptation to the threat of water inflow field colonies are exposed to while digging under seasonally flooded soils. Possible roles of soil water in the temporal and spatial pattern of nest growth are discussed.
Soil temperature extrema recovery rates after precipitation cooling
NASA Technical Reports Server (NTRS)
Welker, J. E.
1984-01-01
From a one dimensional view of temperature alone variations at the Earth's surface manifest themselves in two cyclic patterns of diurnal and annual periods, due principally to the effects of diurnal and seasonal changes in solar heating as well as gains and losses of available moisture. Beside these two well known cyclic patterns, a third cycle has been identified which occurs in values of diurnal maxima and minima soil temperature extrema at 10 cm depth usually over a mesoscale period of roughly 3 to 14 days. This mesoscale period cycle starts with precipitation cooling of soil and is followed by a power curve temperature recovery. The temperature recovery clearly depends on solar heating of the soil with an increased soil moisture content from precipitation combined with evaporation cooling at soil temperatures lowered by precipitation cooling, but is quite regular and universal for vastly different geographical locations, and soil types and structures. The regularity of the power curve recovery allows a predictive model approach over the recovery period. Multivariable linear regression models alloy predictions of both the power of the temperature recovery curve as well as the total temperature recovery amplitude of the mesoscale temperature recovery, from data available one day after the temperature recovery begins.
Drought characteristics' role in widespread aspen forest mortality across Colorado, USA.
Anderegg, Leander D L; Anderegg, William R L; Abatzoglou, John; Hausladen, Alexandra M; Berry, Joseph A
2013-05-01
Globally documented widespread drought-induced forest mortality has important ramifications for plant community structure, ecosystem function, and the ecosystem services provided by forests. Yet the characteristics of drought seasonality, severity, and duration that trigger mortality events have received little attention despite evidence of changing precipitation regimes, shifting snow melt timing, and increasing temperature stress. This study draws upon stand level ecohydrology and statewide climate and spatial analysis to examine the drought characteristics implicated in the recent widespread mortality of trembling aspen (Populus tremuloides Michx.). We used isotopic observations of aspen xylem sap to determine water source use during natural and experimental drought in a region that experienced high tree mortality. We then drew upon multiple sources of climate data to characterize the drought that triggered aspen mortality. Finally, regression analysis was used to examine the drought characteristics most associated with the spatial patterns of aspen mortality across Colorado. Isotopic analysis indicated that aspens generally utilize shallow soil moisture with little plasticity during drought stress. Climate analysis showed that the mortality-inciting drought was unprecedented in the observational record, especially in 2002 growing season temperature and evaporative deficit, resulting in record low shallow soil moisture reserves. High 2002 summer temperature and low shallow soil moisture were most associated with the spatial patterns of aspen mortality. These results suggest that the 2002 drought subjected Colorado aspens to the most extreme growing season water stress of the past century by creating high atmospheric moisture demand and depleting the shallow soil moisture upon which aspens rely. Our findings highlight the important role of drought characteristics in mediating widespread aspen forest mortality, link this aspen die-off to regional climate change trends, and provide insight into future climate vulnerability of these forests. © 2013 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Mestas Valero, R. M.; Báez Bernal, D.; García Pomar, M. I.; Paz González, A.
2009-04-01
Frequency domain reflectometry (FDR) is becoming increasingly used for indirect water content determination in soils. In Galica, located in NW Spain, the humid region of this country, annual precipitation exceeds evapotranspiration. However, the yearly distribution of rainfall is irregular, so that supplementary irrigation during the dry warm summer is required often. This study aims to evaluate soil water use by grasslands and soil water regime patterns during the warm season from soil moisture measured at successive depths using FDR. The study sity is located at the experimental field of the Centre for Agricultural Research (CIAM) in Mabegondo, latitude 43°14' N and longitude 08°15' W. Soil moisture was monitored at six experimental plots from July to October 2008 two times per week using a portable FDR sensor. Measurements were made from 10 to 160 cm depth at 10 cm intervals. Moreover one of the plots was equipped with a continuous recording FDR-EnviroSCAN probe. Crop potential evapotranspiration (ETc) was estimated according to the of FAO version of the Penman-Monteith equation and the meteorological information required to apply this method was provided by a station located in the place experimental field. Cumulative rainfall along the study period was 195 mm, which is above the long-term mean and cumulative potential evapotranspiration was 264.7 mm. Using the water balance method the total value of actual evapotranspiration was estimated at 205.2 mm. Analysis of soil moisture content profiles allowed a description of soil water regime and main soil water withdrawal patterns under grassland. In general, grassland roots extracted most soil water from the 0-40 cm depth. In contrast, moisture content at the bottom of the profile was close to saturation, even the driest weeks of the study period. Continuous monitoring of soil water content allowed a more detailed characterization of dry and wet periods during the study season. The study data set may be useful for assessing draught risks and supplementary irrigation needs.
Comparative water relations of adjacent california shrub and grassland communities.
Davis, S D; Mooney, H A
1985-07-01
Much of the coastal mountains and foothills of central and southern California are covered by a mosaic of grassland, coastal sage scrub, and evergreen sclerophyllous shrubs (chaparral). In many cases, the borders between adjacent plant communities are stable. The cause of this stability is unknown. The purpose of our study was to examine the water use patterns of representative grasses, herbs, and shrubs across a grassland/chaparrel ecotone and determine the extent to which patterns of water use contribute to ecotone stability. In addition, we examined the effects of seed dispersal and animal herbivory. We found during spring months, when water was not limited, grassland species had a much higher leaf conductance to water vapor diffusion than chaparral plants. As the summer drought progressed, grassland species depleted available soil moisture first, bare zone plants second, and chaparral third, with one chaparral species (Quercus durata) showing no evidence of water stress. Soil moisture depletion patterns with depth and time corresponded to plant water status and root depth. Rabbit herbivory was highest in the chaparral and bare zone as indicated by high densities of rabbit pellets. Dispersal of grassland seeds into the chaparral and bare zone was low. Our results support the hypothesis that grassland species deplete soil moisture in the upper soil horizon early in the drought, preventing the establishment of chaparral seedlings or bare zone herbs. Also, grassland plants are prevented from invading the chaparral because of low seed dispersability and high animal herbivory in these regions.
The Sensitivity of Soil Moisture in Western U.S. Mountains to Changes in Snowmelt
NASA Astrophysics Data System (ADS)
Harpold, A. A.
2014-12-01
Snowmelt is the primary water source for human needs and ecosystems services in much of the Western U.S. Regional warming is expected to hasten snow disappearance and reduce snowpacks. The soil water budget strongly mediates the effects of changing snowmelt patterns by storing water and altering is partitioning to evaporation, transpiration, and runoff. This study therefore asked the research question, "Under what conditions was soil water availability coupled to snowmelt magnitudes and timing across Western U.S. mountains?" We posed three potential hypotheses to explain decoupling between soil water availability and snowmelt: 1. Contributions from post-snowmelt rainfall, 2. Longer growing season length and/or greater water demand, and/or 3. Insufficient soil water storage. Using 259 Snow Telemetry (SNOTEL) stations, we showed that the timing of Peak Soil Moisture (PSM) was strongly explained by snow disappearance (Pearson r-value of 0.62). However, differences in the coupling of PSM with DSD were dependent on soil and bedrock type, with well-drained areas having earlier PSM relative to DSD. A second analysis focused on 48 SNOTEL and Soil Climate Analysis Network (SCAN) stations in the Northwest and Intermountain Western U.S. where detailed soil hydraulic properties existed. We found the timing of snow disappearance was a strong influence (p<0.01) on the number of days per year that soil moisture was below wilting point at individual stations, whereas summer precipitation was a weaker predictor. We develop a framework to classify stations into three classes: 1. stations that were not subject to water stress from changing snowmelt patterns over the historical records, 2. stations subject to water stress during poor snowmelt years, and 3. stations that relied on rainfall to avoid water stress across historical records. Our combined results demonstrate that snow disappearance timing is a first-order control on soil water availability across many Western U.S. mountain ecosystems. However, soils properties could make areas more/less sensitive to changing snowpacks depending on seasonal precipitation patterns. This type of simple framework could be used to identify areas at risk of changing snowpacks and help constrain vegetation distributions as a consequence of climate change.
Distribution and abundance of fungi in the soils of Taylor Valley, Antarctica
Connell, L.; Redman, R.; Craig, S.; Rodriguez, R.
2006-01-01
The occurrence and distribution of culturable fungi in Taylor Valley, Antarctica was assessed in terms of soil habitat. Soil transects throughout the valley revealed differential habitat utilization between filamentous and non-filamentous (yeast and yeast-like) fungi. In addition, there were significant differences in species distribution patterns with respect to soil pH, moisture, distance from marine coastline, carbon, chlorophyll a, salinity, elevation and solar inputs. Filamentous fungal abundance is most closely associated with habitats having higher pH, and soil moistures. These close associations were not found with yeast and yeast-like fungi demonstrating that yeast and yeast-like fungi utilize a broader range of habitat. An intensive survey of the Victoria Land is necessary to gain a better understanding of their role in soil functioning and nutrient cycling processes. ?? 2006 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Martin, Francisco; Corbera, Jordi; Marchan, Juan Fernando; Camps, Adriano
2010-05-01
During the last years the importance of water management has grown considerably. Average temperatures exhibit an increasing pattern (0.77 °C during the last 20 years) that is expected to continue in the next years. These results in a decrease in the hydrical resources (15% during the last 20 years for the Catalan territori) being the expectative not very optimist. A tangible consequence was the drought episode that suffers Catalonia. It is within this scenario that the ‘Programa Català d'Observació de la Terra' (PCOT) as a unit of the official mapping agency of Catalonia, the ‘Institut Cartogràfic de Catalunya' (ICC) has detected the need to develop new tools to improve the management of water resources. The knowledge of soil moisture across a given region can help to efficiently manage the limited water resources. Present Earth Observations missions such as ESA's SMOS, or the future NASA's SMAP focus considerably their efforts in the estimation of soil moisture. The main drawbacks are the resolutions obtained (40 km for SMOS, 10 km for SMAP), which are not adequate for regional scale and territorial availability such as the case of Catalonia where a spatial resolution in a range between 20-30m. and 100-150m. is desired both for local actuations and to deteminate hidric soil patterns In this scenario, PCOT is carrying out an airborne soil moisture mission for the Catalan territory, taking advantage of the availability of ICC aircrafts and of more than 20 years of experience in making aircraft campaigns and operating hyperspectral airborne sensors such as CASI (0.75-1.4 µm) and TASI (8-11.5 µm) to respond to environmental and cartographic end users needs of geoinformation data, products and services. This mission will generate soil moisture maps over the Catalan region that will improve the water management, and will also be used for the study of the hydrological patterns of Catalonia. Soil moisture determination will be achieved by means of L-band radiometry, using a radiometer designed by the Passive Remote Sensing Group of the ‘Universitat Politècnica de Catalunya' (UPC). Spatial resolution enhancement or vegetation cover and surface roughness compensation will be improved by means of data fusion by using the operational CASI and TASI instruments flight simultaneously. Thus, L-band radiometer measurements will be combined with thermal and hyperspectral sensor measurements to obtain surface temperature and vegetation indexes, and thus allow improving the retrieval soil moisture. This airborne soil moisture mission program is supported by a Torres Quevedo grant awarded by the Spanish Ministry of Science and Innovation as well as by ICC/PCOT as one of the Earth Observation Demostration Program on the Water Cycle area of activity (named RADERO-Airborne Radiometry) . Running in parallel of technical and operational identification of drivers, RADERO takes into acount as a third paramount pillar, to guarantee the usefulness of RADERO, the improvement of awareness and feedback with end users. RADERO mission has set up an advisory board to check the mission analysis and design, under the supervision of the Catalan Agriculture Department among other scientific and potential end users.
NASA Astrophysics Data System (ADS)
Zhang, Ke; Yang, Tao; Ye, Jinyin; Li, Zhijia; Yu, Zhongbo
2017-04-01
Soil moisture is a key variable that regulates exchanges of water and energy between land surface and atmosphere. Soil moisture retrievals based on microwave satellite remote sensing have made it possible to estimate global surface (up to about 10 cm in depth) soil moisture routinely. Although there are many satellites operating, including NASA's Soil Moisture Acitive Passive mission (SMAP), ESA's Soil Moisture and Ocean Salinity mission (SMOS), JAXA's Advanced Microwave Scanning Radiometer 2 mission (AMSR2), and China's Fengyun (FY) missions, key differences exist between different satellite-based soil moisture products. In this study, we applied a single-channel soil moisture retrieval model forced by multiple sources of satellite brightness temperature observations to estimate consistent daily surface soil moisture across China at a spatial resolution of 25 km. By utilizing observations from multiple satellites, we are able to estimate daily soil moisture across the whole domain of China. We further developed a daily soil moisture accounting model and applied it to downscale the 25-km satellite-based soil moisture to 5 km. By comparing our estimated soil moisture with observations from a dense observation network implemented in Anhui Province, China, our estimated soil moisture results show a reasonably good agreement with the observations (RMSE < 0.1 and r > 0.8).
Forest floor and mineral soil respiration rates in a northern Minnesota red pine chronosequence
Powers, Matthew; Kolka, Randall; Bradford, John B.; Palik, Brian J.; Jurgensen, Martin
2018-01-01
We measured total soil CO2 efflux (RS) and efflux from the forest floor layers (RFF) in red pine (Pinus resinosaAit.) stands of different ages to examine relationships between stand age and belowground C cycling. Soil temperature and RS were often lower in a 31-year-old stand (Y31) than in 9-year-old (Y9), 61-year-old (Y61), or 123-year-old (Y123) stands. This pattern was most apparent during warm summer months, but there were no consistent differences in RFF among different-aged stands. RFF represented an average of 4–13% of total soil respiration, and forest floor removal increased moisture content in the mineral soil. We found no evidence of an age effect on the temperature sensitivity of RS, but respiration rates in Y61 and Y123 were less sensitive to low soil moisture than RS in Y9 and Y31. Our results suggest that soil respiration’s sensitivity to soil moisture may change more over the course of stand development than its sensitivity to soil temperature in red pine, and that management activities that alter landscape-scale age distributions in red pine forests could have significant impacts on rates of soil CO2 efflux from this forest type.
NASA Astrophysics Data System (ADS)
Oroza, C.; Bales, R. C.; Zheng, Z.; Glaser, S. D.
2017-12-01
Predicting the spatial distribution of soil moisture in mountain environments is confounded by multiple factors, including complex topography, spatial variably of soil texture, sub-surface flow paths, and snow-soil interactions. While remote-sensing tools such as passive-microwave monitoring can measure spatial variability of soil moisture, they only capture near-surface soil layers. Large-scale sensor networks are increasingly providing soil-moisture measurements at high temporal resolution across a broader range of depths than are accessible from remote sensing. It may be possible to combine these in-situ measurements with high-resolution LIDAR topography and canopy cover to estimate the spatial distribution of soil moisture at high spatial resolution at multiple depths. We study the feasibility of this approach using six years (2009-2014) of daily volumetric water content measurements at 10-, 30-, and 60-cm depths from the Southern Sierra Critical Zone Observatory. A non-parametric, multivariate regression algorithm, Random Forest, was used to predict the spatial distribution of depth-integrated soil-water storage, based on the in-situ measurements and a combination of node attributes (topographic wetness, northness, elevation, soil texture, and location with respect to canopy cover). We observe predictable patterns of predictor accuracy and independent variable ranking during the six-year study period. Predictor accuracy is highest during the snow-cover and early recession periods but declines during the dry period. Soil texture has consistently high feature importance. Other landscape attributes exhibit seasonal trends: northness peaks during the wet-up period, and elevation and topographic-wetness index peak during the recession and dry period, respectively.
Soil moisture and fungi affect seed survival in California grassland annual plants.
Mordecai, Erin A
2012-01-01
Survival of seeds in the seed bank is important for the population dynamics of many plant species, yet the environmental factors that control seed survival at a landscape level remain poorly understood. These factors may include soil moisture, vegetation cover, soil type, and soil pathogens. Because many soil fungi respond to moisture and host species, fungi may mediate environmental drivers of seed survival. Here, I measure patterns of seed survival in California annual grassland plants across 15 species in three experiments. First, I surveyed seed survival for eight species at 18 grasslands and coastal sage scrub sites ranging across coastal and inland Santa Barbara County, California. Species differed in seed survival, and soil moisture and geographic location had the strongest influence on survival. Grasslands had higher survival than coastal sage scrub sites for some species. Second, I used a fungicide addition and exotic grass thatch removal experiment in the field to tease apart the relative impact of fungi, thatch, and their interaction in an invaded grassland. Seed survival was lower in the winter (wet season) than in the summer (dry season), but fungicide improved winter survival. Seed survival varied between species but did not depend on thatch. Third, I manipulated water and fungicide in the laboratory to directly examine the relationship between water, fungi, and survival. Seed survival declined from dry to single watered to continuously watered treatments. Fungicide slightly improved seed survival when seeds were watered once but not continually. Together, these experiments demonstrate an important role of soil moisture, potentially mediated by fungal pathogens, in driving seed survival.
Spatial prediction of near surface soil water retention functions using hydrogeophysics
NASA Astrophysics Data System (ADS)
Gibson, J. P.; Franz, T. E.
2017-12-01
The hydrological community often turns to widely available spatial datasets such as SSURGO to characterize the spatial variability of soil across a landscape of interest. This has served as a reasonable first approximation when lacking localized soil data. However, previous work has shown that information loss within land surface models primarily stems from parameterization. Localized soil sampling is both expensive and time intense, and thus a need exists in connecting spatial datasets with ground observations. Given that hydrogeophysics is data-dense, rapid, and relatively easy to adopt, it is a promising technique to help dovetail localized soil sampling with larger spatial datasets. In this work, we utilize 2 geophysical techniques; cosmic ray neutron probe and electromagnetic induction, to identify temporally stable soil moisture patterns. This is achieved by measuring numerous times over a range of wet to dry field conditions in order to apply an empirical orthogonal function. We then present measured water retention functions of shallow cores extracted within each temporally stable zone. Lastly, we use soil moisture patterns as a covariate to predict soil hydraulic properties in areas without measurement and validate using a leave-one-out cross validation analysis. Using these approaches to better constrain soil hydraulic property variability, we speculate that further research can better estimate hydrologic fluxes in areas of interest.
NASA Astrophysics Data System (ADS)
Taylor, C.; Birch, C.; Parker, D.; Guichard, F.; Nikulin, G.; Dixon, N.
2013-12-01
Land surface properties influence the life cycle of convective systems across West Africa via space-time variability in sensible and latent heat fluxes. Previous observational and modelling studies have shown that areas with strong mesoscale variability in vegetation cover or soil moisture induce coherent structures in the daytime planetary boundary layer. In particular, horizontal gradients in sensible heat flux can induce convergence zones which favour the initiation of deep convection. A recent study based on satellite data (Taylor et al. 2011), illustrated the climatological importance of soil moisture gradients in the initiation of long-lived Mesoscale Convective Systems (MCS) in the Sahel. Here we provide a unique assessment of how models of different spatial resolutions represent soil moisture - precipitation feedbacks in the region, and compare their behaviour to observations. Specifically we examine whether the inability of large-scale models to capture the observed preference for afternoon rain over drier soil in semi-arid regions [Taylor et al., 2012] is due to inadequate spatial resolution and/or systematic bias in convective parameterisations. Firstly, we use a convection-permitting simulation at 4km resolution to explore the underlying mechanisms responsible for soil moisture controls on daytime convective initiation in the Sahel. The model reproduces very similar spatial structure as the observations in terms of antecedent soil moisture in the vicinity of a large sample of convective initiations. We then examine how this same model, run at coarser resolution, simulates the feedback of soil moisture on daily rainfall. In particular we examine the impact of switching on the convective parameterisation on rainfall persistence, and compare the findings with 10 regional climate models (RCMs). Finally, we quantify the impact of the feedback on dry-spell return times using a simple statistical model. The results highlight important weaknesses in convective parameterisations which are likely to impact land surface sensitivity studies and hydroclimatic variability on certain time and space scales. Taylor, C.M., Gounou, A., Guichard, F., Harris, P.P., Ellis, R.J.,Couvreux, F., and M. De Kauwe. 2011, Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns, Nature Geoscience, 4, 430-433, doi:10.1038/ngeo1173 Taylor, C.M., de Jeu, R.A.M., Guichard, F., Harris, P.P, and W.A. Dorigo. 2012, Afternoon rain more likely over drier soils, Nature, 489, 423-426, doi:10.1038/nature11377
Static sampling of dynamic processes - a paradox?
NASA Astrophysics Data System (ADS)
Mälicke, Mirko; Neuper, Malte; Jackisch, Conrad; Hassler, Sibylle; Zehe, Erwin
2017-04-01
Environmental systems monitoring aims at its core at the detection of spatio-temporal patterns of processes and system states, which is a pre-requisite for understanding and explaining their baffling heterogeneity. Most observation networks rely on distributed point sampling of states and fluxes of interest, which is combined with proxy-variables from either remote sensing or near surface geophysics. The cardinal question on the appropriate experimental design of such a monitoring network has up to now been answered in many different ways. Suggested approaches range from sampling in a dense regular grid using for the so-called green machine, transects along typical catenas, clustering of several observations sensors in presumed functional units or HRUs, arrangements of those cluster along presumed lateral flow paths to last not least a nested, randomized stratified arrangement of sensors or samples. Common to all these approaches is that they provide a rather static spatial sampling, while state variables and their spatial covariance structure dynamically change in time. It is hence of key interest how much of our still incomplete understanding stems from inappropriate sampling and how much needs to be attributed to an inappropriate analysis of spatial data sets. We suggest that it is much more promising to analyze the spatial variability of processes, for instance changes in soil moisture values, than to investigate the spatial variability of soil moisture states themselves. This is because wetting of the soil, reflected in a soil moisture increase, is causes by a totally different meteorological driver - rainfall - than drying of the soil. We hence propose that the rising and the falling limbs of soil moisture time series belong essentially to different ensembles, as they are influenced by different drivers. Positive and negative temporal changes in soil moisture need, hence, to be analyzed separately. We test this idea using the CAOS data set as a benchmark. Specifically, we expect the covariance structure of the positive temporal changes of soil moisture to be dominated by the spatial structure of rain- and through-fall and saturated hydraulic conductivity. The covariance in temporarily decreasing soil moisture during radiation driven conditions is expect to be dominated by the spatial structure of retention properties and plant transpiration. An analysis of soil moisture changes has furthermore the advantage that those are free from systematic measurement errors.
Zhang, Xinfang; Xu, Shijian; Li, Changming; Zhao, Lin; Feng, Huyuan; Yue, Guangyang; Ren, Zhengwei; Cheng, Guogdong
2014-01-01
In the Tibetan permafrost region, vegetation types and soil properties have been affected by permafrost degradation, but little is known about the corresponding patterns of their soil microbial communities. Thus, we analyzed the effects of vegetation types and their covariant soil properties on bacterial and fungal community structure and membership and bacterial community-level physiological patterns. Pyrosequencing and Biolog EcoPlates were used to analyze 19 permafrost-affected soil samples from four principal vegetation types: swamp meadow (SM), meadow (M), steppe (S) and desert steppe (DS). Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria dominated bacterial communities and the main fungal phyla were Ascomycota, Basidiomycota and Mucoromycotina. The ratios of Proteobacteria/Acidobacteria decreased in the order: SM>M>S>DS, whereas the Ascomycota/Basidiomycota ratios increased. The distributions of carbon and nitrogen cycling bacterial genera detected were related to soil properties. The bacterial communities in SM/M soils degraded amines/amino acids very rapidly, while polymers were degraded rapidly by S/DS communities. UniFrac analysis of bacterial communities detected differences among vegetation types. The fungal UniFrac community patterns of SM differed from the others. Redundancy analysis showed that the carbon/nitrogen ratio had the main effect on bacteria community structures and their diversity in alkaline soil, whereas soil moisture was mainly responsible for structuring fungal communities. Thus, microbial communities and their functioning are probably affected by soil environmental change in response to permafrost degradation. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Ding, Jingyi; Zhao, Wenwu; Daryanto, Stefani; Wang, Lixin; Fan, Hao; Feng, Qiang; Wang, Yaping
2017-05-01
Desert riparian forests are the main restored vegetation community in Heihe River basin. They provide critical habitats and a variety of ecosystem services in this arid environment. Since desert riparian forests are also sensitive to disturbance, examining the spatial distribution and temporal variation of these forests and their influencing factors is important to determine the limiting factors of vegetation recovery after long-term restoration. In this study, field experiment and remote sensing data were used to determine the spatial distribution and temporal variation of desert riparian forests and their relationship with the environmental factors. We classified five types of vegetation communities at different distances from the river channel. Community coverage and diversity formed a bimodal pattern, peaking at the distances of 1000 and 3000 m from the river channel. In general, the temporal normalized difference vegetation index (NDVI) trend from 2000 to 2014 was positive at different distances from the river channel, except for the region closest to the river bank (i.e. within 500 m from the river channel), which had been undergoing degradation since 2011. The spatial distribution of desert riparian forests was mainly influenced by the spatial heterogeneity of soil properties (e.g. soil moisture, bulk density and soil particle composition). Meanwhile, while the temporal variation of vegetation was affected by both the spatial heterogeneity of soil properties (e.g. soil moisture and soil particle composition) and to a lesser extent, the temporal variation of water availability (e.g. annual average and variability of groundwater, soil moisture and runoff). Since surface (0-30 cm) and deep (100-200 cm) soil moisture, bulk density and the annual average of soil moisture at 100 cm obtained from the remote sensing data were regarded as major determining factors of community distribution and temporal variation, conservation measures that protect the soil structure and prevent soil moisture depletion (e.g. artificial soil cover and water conveyance channels) were suggested to better protect desert riparian forests under climate change and intensive human disturbance.
Effects of continuous cover forestry on soil moisture pattern - Beginning steps of a Hungarian study
NASA Astrophysics Data System (ADS)
Kalicz, Péter; Bartha, Dénes; Brolly, Gábor; Csáfordi, Péter; Csiszár, Ágnes; Eredics, Attila; Gribovszki, Zoltán; Király, Géza; Kollár, Tamás; Korda, Márton; Kucsara, Mihály; Nótári, Krisztina; Kornél Szegedi, Balázs; Tiborcz, Viktor; Zagyvai, Gergely; Zagyvai-Kiss, Katalin Anita
2014-05-01
Nowadays Hungarian foresters encounter a new challenge. The traditional management practices do not meet anymore with the demand of the civil society. The good old clearcut is no more a supported technology in forest regeneration. The transition to the continuous cover forestry induces much higher spatial variability compared to the even aged, more or less homogeneous, monoculture stands. The gap cutting is one of the proposed key methods in the Hungarian forestry. There is an active discussion among forest professionals how to determine the optimal gap size to maintain ideal conditions for the seedlings. Among other open questions for example how the surrounding trees modify the moisture pattern of the forest floor in the gap? In the early steps of a multidisciplinary project we established four research plots to study the spatial and temporal variability of soil moisture in the forest gap and the surrounding undisturbed stand. Each plot is located in oak (Quercus spp.) stands. Natural regeneration of oak stands is more problematic in our climate compared to the beech (Fagus sylvatica) which is located in the more humid or semi-humid areas of our country. All plots are located in the western part of Hungary: close to Sopron, Bejcgyertyános, Vép and Vajszló settlements. The last plot is an extensive research area, which is located in the riparian zone of a tributary of Feketevíz River. We monitor here the close-to-surface groundwater level fluctuation with pressure transducers. With a diurnal fluctuation based method it is possible to quantify the evapotranspiration differences between the gap and the stand. In two of the remaining stands (Bejcgyertyános and Vép) the gaps were opened in 2010. The monitoring of soil moisture began in 2013. A mobile sensor is used to monitor soil-moisture in a regular grid. The spatial variability of soil-moisture time-series shows a characteristic pattern during the growing-season. The plot in Sopron was established in 2013. Gaps with three different sizes were opened and fenced round to close out wild game. The initial status of the gap was recorded by a terrestrial laser scanner (LIDAR). From the resulting 3D point cloud high-resolution digital terrain and canopy surface model are derived which will help the planned numerical modelling. To prevent the unnecessary disturbance in this plot, two perpendicular transects were selected in each gap. The soil-moisture is monitored along these lines together with additional investigations, for example throughfall, and litter interception, tension disc infiltrometry, plant composition and cover. The microclimatic parameters such as near surface air temperature, relative humidity, radiation, wind speed and soil temperature is continuously recorded along the transects and compared to a nearby reference meteorological station located at an open area. Acknowledgment: The research was financially supported by the TÁMOP-4.2.2.A-11/1/KONV-2012-0004 joint EU-national research project
Hydrologic control on redox and nitrogen dynamics in a peatland soil.
Rubol, Simonetta; Silver, Whendee L; Bellin, Alberto
2012-08-15
Soils are a dominant source of nitrous oxide (N(2)O), a potent greenhouse gas. However, the complexity of the drivers of N(2)O production and emissions has hindered our ability to predict the magnitude and spatial dynamics of N(2)O fluxes. Soil moisture can be considered a key driver because it influences oxygen (O(2)) supply, which feeds back on N(2)O sources (nitrification versus denitrification) and sinks (reduction to dinitrogen). Soil water content is directly linked to O(2) and redox potential, which regulate microbial metabolism and chemical transformations in the environment. Despite its importance, only a few laboratory studies have addressed the effects of hydrological transient dynamics on nitrogen (N) cycling in the vadose zone. To further investigate these aspects, we performed a long term experiment in a 1.5 m depth soil column supplemented by chamber experiments. With this experiment, we aimed to investigate how soil moisture dynamics influence redox sensitive N cycling in a peatland soil. As expected, increased soil moisture lowered O(2) concentrations and redox potential in the soil. The decline was more severe for prolonged saturated conditions than for short events and at deep than at the soil surface. Gaseous and dissolved N(2)O, dissolved nitrate (NO(3)(-)) and ammonium (NH(4)(+)) changed considerably along the soil column profile following trends in soil O(2) and redox potential. Hot spots of N(2)O concentrations corresponded to high variability in soil O(2) in the upper and lower parts of the column. Results from chamber experiments confirmed high NO(3)(-) reduction potential in soils, particularly from the bottom of the column. Under our experimental conditions, we identified a close coupling of soil O(2) and N(2)O dynamics, both of which lagged behind soil moisture changes. These results highlight the relationship among soil hydrologic properties, redox potential and N cycling, and suggest that models working at a daily scale need to consider soil O(2) dynamics in addition to soil moisture dynamics to accurately predict patterns in N(2)O fluxes. Copyright © 2012 Elsevier B.V. All rights reserved.
Assimilation of Passive and Active Microwave Soil Moisture Retrievals
NASA Technical Reports Server (NTRS)
Draper, C. S.; Reichle, R. H.; DeLannoy, G. J. M.; Liu, Q.
2012-01-01
Root-zone soil moisture is an important control over the partition of land surface energy and moisture, and the assimilation of remotely sensed near-surface soil moisture has been shown to improve model profile soil moisture [1]. To date, efforts to assimilate remotely sensed near-surface soil moisture at large scales have focused on soil moisture derived from the passive microwave Advanced Microwave Scanning Radiometer (AMSR-E) and the active Advanced Scatterometer (ASCAT; together with its predecessor on the European Remote Sensing satellites (ERS. The assimilation of passive and active microwave soil moisture observations has not yet been directly compared, and so this study compares the impact of assimilating ASCAT and AMSR-E soil moisture data, both separately and together. Since the soil moisture retrieval skill from active and passive microwave data is thought to differ according to surface characteristics [2], the impact of each assimilation on the model soil moisture skill is assessed according to land cover type, by comparison to in situ soil moisture observations.
A new concept to study the effect of climate change on different flood types
NASA Astrophysics Data System (ADS)
Nissen, Katrin; Nied, Manuela; Pardowitz, Tobias; Ulbrich, Uwe; Merz, Bruno
2014-05-01
Flooding is triggered by the interaction of various processes. Especially important are the hydrological conditions prior to the event (e.g. soil saturation, snow cover) and the meteorological conditions during flood development (e.g. rainfall, temperature). Depending on these (pre-) conditions different flood types may develop such as long-rain floods, short-rain floods, flash floods, snowmelt floods and rain-on-snow floods. A new concept taking these factors into account is introduced and applied to flooding in the Elbe River basin. During the period September 1957 to August 2002, 82 flood events are identified and classified according to their flood type. The hydrological and meteorological conditions at each day during the analysis period are detemined. In case of the hydrological conditions, a soil moisture pattern classification is carried out. Soil moisture is simulated with a rainfall-runoff model driven by atmospheric observations. Days of similar soil moisture patterns are identified by a principle component analysis and a subsequent cluster analysis on the leading principal components. The meteorological conditions are identified by applying a cluster analysis to the geopotential height, temperature and humidity fields of the ERA40 reanalysis data set using the SANDRA cluster algorithm. We are able to identify specific pattern combinations of hydrological pre-conditions and meteorological conditions which favour different flood types. Based on these results it is possible to analyse the effect of climate change on different flood types. As an example we show first results obtained using an ensemble of climate scenario simulations of ECHAM5 MPIOM model, taking only the changes in the meteorological conditions into account. According to the simulations, the frequency of the meteorological patterns favouring long-rain, short-rain and flash floods will not change significantly under future climate conditions. A significant increase is, however, predicted for the amount of precipitation associated with many of the relevant meteorological patterns. The increase varies between 12 and 67% depending on the weather pattern.
Evaluation of Long-term Soil Moisture Proxies in the U.S. Great Plains
NASA Astrophysics Data System (ADS)
Yuan, S.; Quiring, S. M.
2016-12-01
Soil moisture plays an important role in land-atmosphere interactions through both surface energy and water balances. However, despite its importance, there are few long-term records of observed soil moisture for investigating long-term spatial and temporal variations of soil moisture. Hence, it is necessary to find suitable approximations of soil moisture observations. 5 drought indices will be compared with simulated and observed soil moisture over the U.S. Great Plains during two time periods (1980 - 2012 and 2003 - 2012). Standardized Precipitation Index (SPI), Standardized Precipitation-Evapotranspiration Index (SPEI), Palmer Z Index (zindex) and Crop Moisture Index (CMI) will be calculated by PRISM data. The soil moisture simulations will be derived from NLDAS. In situ soil moisture will be obtained from North American Soil Moisture Database. The evaluation will focus on three main aspects: trends, variations and persistence. The results will support further research investigating long-term variations in soil moisture-climate interactions.
NASA Technical Reports Server (NTRS)
Parks, W. L. (Principal Investigator); Sewell, J. I.; Hilty, J. W.; Rennie, J. C.
1973-01-01
The author has identified the following significant results. The delineation of soil associations and detection of drainage patterns, erosion and sedimentation through the use of ERTS-1 imagery are shown. Corn blight and corn virus could not be detected from ERTS-1 and detection of forest composition was at a very low probability.
Wang, Zheng Ning; Wang, Xin Ping; Liu, Bo
2016-03-01
Rainfall partitioning by desert shrub canopy modifies the redistribution of incident rainfall under the canopy, and may affect the distribution pattern of soil moisture around the plant. This study examined the distribution of rainfall and the response of soil moisture beneath the canopy of two dominant desert shrubs, Caragana korshinskii and Artemisia ordosica, in the revegetation area at the southeastern edge of the Tengger Desert. The results showed that throughfall and stemflow ave-ragely occupied 74.4%, 11.3% and 61.8%, 5.5% of the gross precipitation for C. korshinskii and A. ordosica, respectively. The mean coefficients of variation (CV) of throughfall were 0.25 and 0.30, respectively. C. korshinski were more efficient than A. ordosica on stemflow generation. The depth of soil wetting front around the stem area was greater than other areas under shrub canopy for C. korshinski, and it was only significantly greater under bigger rain events for A. ordosica. The shrub canopy could cause the unevenness of soil wetting front under the canopy in consequence of rainfall redistribution induced by xerophytic shrub.
Nicholas J. Bouskill; Tana E. Wood; Richard Baran; Zhao Hao; Zaw Ye; Ben P. Bowen; Hsiao Chien Lim; Peter S. Nico; Hoi-Ying Holman; Benjamin Gilbert; Whendee L. Silver; Trent R. Northen; Eoin L. Brodie
2016-01-01
Climate model projections for tropical regions show clear perturbation of precipitation patterns leading to increased frequency and severity of drought in some regions. Previous work has shown declining soil moisture to be a strong driver of changes in microbial trait distribution, however...
Biochar can positively influence soil moisture relations
USDA-ARS?s Scientific Manuscript database
One major issue related to climate change is the potential to improve soil water relations in light of changes in future precipitation patterns or reductions in water availability in drier portions of the world (such as the western US). It appears that biochar may play a positive role, but that rol...
Using measures of information content and complexity of time series as hydrologic metrics
USDA-ARS?s Scientific Manuscript database
The information theory has been previously used to develop metrics that allowed to characterize temporal patterns in soil moisture dynamics, and to evaluate and to compare performance of soil water flow models. The objective of this study was to apply information and complexity measures to characte...
USDA-ARS?s Scientific Manuscript database
Accurate prediction of pesticide volatilization is important for the protection of human and environmental health. Due to the complexity of the volatilization process, sophisticated predictive models are needed, especially for dry soil conditions. A mathematical model was developed to allow simulati...
Hydrologic connectivity and threshold behavior of hillslopes with fragipans and soil pipe networks
USDA-ARS?s Scientific Manuscript database
Many concepts have been proposed to explain hydrologic connectivity of hillslopes with streams. Hydrologic connectivity is most often defined by qualitative assessment of spatial patterns in perched water tables or soil moisture on hillslopes without a direct linkage of the connection of water flow ...
USDA-ARS?s Scientific Manuscript database
Soil moisture is a key variable in understanding the hydrologic processes and energy fluxes at the land surface. In spite of new technologies for in-situ soil moisture measurements and increased availability of remotely sensed soil moisture data, scaling issues between soil moisture observations and...
Huang, Yu-Hsuan; Hung, Chih-Yu; Lin, I-Rhy; Kume, Tomonori; Menyailo, Oleg V; Cheng, Chih-Hsin
2017-11-15
Soil respiration contributes to a large quantity of carbon emissions in the forest ecosystem. In this study, the soil respiration rates at three Taiwanese forest plantations (two lowland and one mid-elevation) were investigated. We aimed to determine how soil respiration varies between lowland and mid-elevation forest plantations and identify the relative importance of biotic and abiotic factors affecting soil respiration. The results showed that the temporal patterns of soil respiration rates were mainly influenced by soil temperature and soil water content, and a combined soil temperature and soil water content model explained 54-80% of the variation. However, these two factors affected soil respiration differently. Soil temperature positively contributed to soil respiration, but a bidirectional relationship between soil respiration and soil water content was revealed. Higher soil moisture content resulted in higher soil respiration rates at the lowland plantations but led to adverse effects at the mid-elevation plantation. The annual soil respiration rates were estimated as 14.3-20.0 Mg C ha -1 year -1 at the lowland plantations and 7.0-12.2 Mg C ha -1 year -1 at the mid-elevation plantation. When assembled with the findings of previous studies, the annual soil respiration rates increased with the mean annual temperature and litterfall but decreased with elevation and the mean annual precipitation. A conceptual model of the biotic and abiotic factors affecting the spatial and temporal patterns of the soil respiration rate was developed. Three determinant factors were proposed: (i) elevation, (ii) stand characteristics, and (iii) soil temperature and soil moisture. The results indicated that changes in temperature and precipitation significantly affect soil respiration. Because of the high variability of soil respiration, more studies and data syntheses are required to accurately predict soil respiration in Taiwanese forests.
ERT to aid in WSN based early warning system for landslides
NASA Astrophysics Data System (ADS)
T, H.
2017-12-01
Amrita University's landslide monitoring and early warning system using Wireless Sensor Networks (WSN) consists of heterogeneous sensors like rain gauge, moisture sensor, piezometer, geophone, inclinometer, tilt meter etc. The information from the sensors are accurate and limited to that point. In order to monitor a large area, ERT can be used in conjunction with WSN technology. To accomplish the feasibility of ERT in landslide early warning along with WSN technology, we have conducted experiments in Amrita's landslide laboratory setup. The experiment was aimed to simulate landslide, and monitor the changes happening in the soil using moisture sensor and ERT. Simulating moisture values from resistivity measurements to a greater accuracy can help in landslide monitoring for large areas. For accomplishing the same we have adapted two mathematical approaches, 1) Regression analysis between resistivity measurements and actual moisture values from moisture sensor, and 2) Using Waxman Smith model to simulate moisture values from resistivity measurements. The simulated moisture values from Waxman Smith model is compared with the actual moisture values and the Mean Square Error (MSE) is found to be 46.33. Regression curve is drawn for the resistivity vs simulated moisture values from Waxman model, and it is compared with the regression curve of actual model, which is shown in figure-1. From figure-1, it is clear that there the regression curve from actual moisture values and the regression curve from simulated moisture values, follow the similar pattern and there is a small difference between them. Moisture values can be simulated to a greater accuracy using actual regression equation, but the limitation is that, regression curves will differ for different sites and different soils. Regression equation from actual moisture values can be used, if we have conducted experiment in the laboratory for a particular soil sample, otherwise with the knowledge of soil properties, Waxman model can be used to simulate moisture values. The promising results assure that, ERT measurements when used in conjunction with WSN technique, vital paramters triggering landslides like moisture can be simulated for a large area, which will help in providing early warning for large areas.
NASA Astrophysics Data System (ADS)
Saia, S. M.; Hofmeister, K.; Regan, J. M.; Buda, A. R.; Carrick, H. J.; Walter, M. T.
2016-12-01
Anthropogenic alteration of the soil phosphorus (P) cycle leads to subsequent water quality issues in agricultural dominated watersheds. In the humid Northeastern United States (NE US), variably saturated areas can generate surface runoff that transports P and stimulates biogeochemical processes; these hydrologically dynamic locations are often called biogeochemical `hotspots'. Many studies have evaluated nitrogen and carbon cycling in biogeochemical hot spots but few have focused on P. We hypothesized seasonally wet parts of the landscape (i.e., hotspots) have smaller biologically available P pools because runoff events frequently carry away nutrients like P. To test this hypothesis, we generated soil wetness index (SWI) maps from soil (SURRGO) and elevation (LiDAR rescaled to 3 m) data and used these maps to direct seasonal soil sampling near Klingerstown, Pennsylvania (PA) and Ithaca, New York (NY). We collected 5cm deep soil samples in PA (bimonthly) and NY (monthly) along soil moisture gradients for a range of land cover types (forest, fallow, and cropped) from May through October. We measured soil moisture in the field and percent organic matter (OM), pH, and three increasingly strong soil P extractions (dilute-salt-extractable P, oxalate-extractable P, and total-extractable P) in the laboratory. Our results indicated a negative relationship between dilute-salt-extractable P concentrations and SWI in PA and no relationship between these same variables in NY. We also found positive relationships between each of the three P extractions in PA but only a positive relationship between oxalate-extractable P and total-extractable P in NY. Our findings in PA support our hypothesis; namely, less biologically available P (i.e. dilute-salt-extractable P) is found in wetter areas of the landscape. However, divergent P availability patterns in NY point to further complexities and confounding variables in our understanding in soil P processes. Further studies will look into the importance of environmental variables such as OM and pH on P patterns under changing soil moisture regimes. The knowledge gained from this study will improve our understanding of P cycling in biogeochemical hotspots and can be used to improve the effectiveness of agricultural management practices in the NE US.
NASA Astrophysics Data System (ADS)
Bunzel, Felix; Müller, Wolfgang A.; Dobrynin, Mikhail; Fröhlich, Kristina; Hagemann, Stefan; Pohlmann, Holger; Stacke, Tobias; Baehr, Johanna
2018-01-01
We evaluate the impact of a new five-layer soil-hydrology scheme on seasonal hindcast skill of 2 m temperatures over Europe obtained with the Max Planck Institute Earth System Model (MPI-ESM). Assimilation experiments from 1981 to 2010 and 10-member seasonal hindcasts initialized on 1 May each year are performed with MPI-ESM in two soil configurations, one using a bucket scheme and one a new five-layer soil-hydrology scheme. We find the seasonal hindcast skill for European summer temperatures to improve with the five-layer scheme compared to the bucket scheme and investigate possible causes for these improvements. First, improved indirect soil moisture assimilation allows for enhanced soil moisture-temperature feedbacks in the hindcasts. Additionally, this leads to improved prediction of anomalies in the 500 hPa geopotential height surface, reflecting more realistic atmospheric circulation patterns over Europe.
Anticipating U.S. severe droughts - A NASA NEWS initiative on extremes
NASA Astrophysics Data System (ADS)
Wang, S.; Oglesby, R. J.; Hilburn, K. A.; Barandiaran, D.; Pan, M.; Pinker, R. T.; Wang, H.; Santanello, J. A.
2013-12-01
The 2012-2013 drought may not have been predictable as based on current schemes employed for such purposes, but it may have been anticipatable due to knowledge of key precursors such as favorable (remote) SST patterns, and reduced regional soil moisture and winter snow packs. A working group was assembled under the NASA Energy and Water cycle Study (NEWS) to examine the extent to which the 2012 drought could be anticipated and to put recent severe droughts in perspective. A recent NOAA report analyzing the drought of 2012 in the central US has concluded that the drought was not inherently predictable, representing a very anomalous atmospheric circulation pattern. This ';predictability' is based on what happened in the atmosphere, and further, depends on the capabilities of the predictive schemes currently employed. The current prediction schemes emphasize the role of the large-scale atmospheric circulation, but the extent to which the long wave patterns and subsequent short wave effects can be predicted in advance remains unclear. These schemes generally lack full consideration of the local surface state, especially the effect of precursor anomalies in key elements such as soil moisture and snow pack. It is also not clear how well they account for the effects of either interannual or lower-frequency oceanic anomaly patterns. The role of the aforesaid precursors, combined with knowledge of their state, allow some assessment of the ';likelihood' of drought that is not currently being considered. For example, by late winter of 2012 much of the central US was already experiencing dry conditions, including reduced soil moisture, and the snowpack in the Rockies was well below normal. SST patterns appear to have been largely neutral. While the manifestation of the resultant drought also critically dependent on the large-scale atmospheric circulation that subsequently developed, it is clear that the region was preconditioned towards being dry. The other factor about precursors of drought in the previous year. The Drought Monitor data indicated that the 2011 drought remains stronger than the 2012 one in the ';exceptional' category. This feature reflects the different scales in the atmospheric teleconnection pattern and the comparison of the two events can help determine the soil moisture (or lack of) impact on 2012's widespread drought that persisted into 2013. Our hypothesis is that even if one cannot predict the future atmospheric circulation patterns with much certainty for a given year, we may still be able to make some assessment of whether or not a drought may be likely to occur. We refer to this as anticipating drought. As precursors such as soil moisture and snowpack become important in potentially enhancing and prolonging the drought as it occurs, the actual drought that does subsequently occur will depend closely in magnitude and duration on the atmospheric circulation that unfolds.
Assessing Temporal Stability for Coarse Scale Satellite Moisture Validation in the Maqu Area, Tibet
Bhatti, Haris Akram; Rientjes, Tom; Verhoef, Wouter; Yaseen, Muhammad
2013-01-01
This study evaluates if the temporal stability concept is applicable to a time series of satellite soil moisture images so to extend the common procedure of satellite image validation. The area of study is the Maqu area, which is located in the northeastern part of the Tibetan plateau. The network serves validation purposes of coarse scale (25–50 km) satellite soil moisture products and comprises 20 stations with probes installed at depths of 5, 10, 20, 40, 80 cm. The study period is 2009. The temporal stability concept is applied to all five depths of the soil moisture measuring network and to a time series of satellite-based moisture products from the Advance Microwave Scanning Radiometer (AMSR-E). The in-situ network is also assessed by Pearsons's correlation analysis. Assessments by the temporal stability concept proved to be useful and results suggest that probe measurements at 10 cm depth best match to the satellite observations. The Mean Relative Difference plot for satellite pixels shows that a RMSM pixel can be identified but in our case this pixel does not overlay any in-situ station. Also, the RMSM pixel does not overlay any of the Representative Mean Soil Moisture (RMSM) stations of the five probe depths. Pearson's correlation analysis on in-situ measurements suggests that moisture patterns over time are more persistent than over space. Since this study presents first results on the application of the temporal stability concept to a series of satellite images, we recommend further tests to become more conclusive on effectiveness to broaden the procedure of satellite validation. PMID:23959237
NASA Technical Reports Server (NTRS)
Reichle, Rolf H.; Liu, Qing; Bindlish, Rajat; Cosh, Michael H.; Crow, Wade T.; deJeu, Richard; DeLannoy, Gabrielle J. M.; Huffman, George J.; Jackson, Thomas J.
2011-01-01
The contributions of precipitation and soil moisture observations to the skill of soil moisture estimates from a land data assimilation system are assessed. Relative to baseline estimates from the Modern Era Retrospective-analysis for Research and Applications (MERRA), the study investigates soil moisture skill derived from (i) model forcing corrections based on large-scale, gauge- and satellite-based precipitation observations and (ii) assimilation of surface soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E). Soil moisture skill is measured against in situ observations in the continental United States at 44 single-profile sites within the Soil Climate Analysis Network (SCAN) for which skillful AMSR-E retrievals are available and at four CalVal watersheds with high-quality distributed sensor networks that measure soil moisture at the scale of land model and satellite estimates. The average skill (in terms of the anomaly time series correlation coefficient R) of AMSR-E retrievals is R=0.39 versus SCAN and R=0.53 versus CalVal measurements. The skill of MERRA surface and root-zone soil moisture is R=0.42 and R=0.46, respectively, versus SCAN measurements, and MERRA surface moisture skill is R=0.56 versus CalVal measurements. Adding information from either precipitation observations or soil moisture retrievals increases surface soil moisture skill levels by IDDeltaR=0.06-0.08, and root zone soil moisture skill levels by DeltaR=0.05-0.07. Adding information from both sources increases surface soil moisture skill levels by DeltaR=0.13, and root zone soil moisture skill by DeltaR=0.11, demonstrating that precipitation corrections and assimilation of satellite soil moisture retrievals contribute similar and largely independent amounts of information.
van den Hurk, Bart; Kim, Hyungjun; Krinner, Gerhard; ...
2016-08-24
The Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP) is designed to provide a comprehensive assessment of land surface, snow and soil moisture feedbacks on climate variability and climate change, and to diagnose systematic biases in the land modules of current Earth system models (ESMs). Furthermore, the solid and liquid water stored at the land surface has a large influence on the regional climate, its variability and predictability, including effects on the energy, water and carbon cycles. Notably, snow and soil moisture affect surface radiation and flux partitioning properties, moisture storage and land surface memory. They both stronglymore » affect atmospheric conditions, in particular surface air temperature and precipitation, but also large-scale circulation patterns. But, models show divergent responses and representations of these feedbacks as well as systematic biases in the underlying processes. LS3MIP will provide the means to quantify the associated uncertainties and better constrain climate change projections, which is of particular interest for highly vulnerable regions (densely populated areas, agricultural regions, the Arctic, semi-arid and other sensitive terrestrial ecosystems). The experiments are subdivided in two components, the first addressing systematic land biases in offline mode (“LMIP”, building upon the 3rd phase of Global Soil Wetness Project; GSWP3) and the second addressing land feedbacks attributed to soil moisture and snow in an integrated framework (“LFMIP”, building upon the GLACE-CMIP blueprint).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
van den Hurk, Bart; Kim, Hyungjun; Krinner, Gerhard
The Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP) is designed to provide a comprehensive assessment of land surface, snow and soil moisture feedbacks on climate variability and climate change, and to diagnose systematic biases in the land modules of current Earth system models (ESMs). Furthermore, the solid and liquid water stored at the land surface has a large influence on the regional climate, its variability and predictability, including effects on the energy, water and carbon cycles. Notably, snow and soil moisture affect surface radiation and flux partitioning properties, moisture storage and land surface memory. They both stronglymore » affect atmospheric conditions, in particular surface air temperature and precipitation, but also large-scale circulation patterns. But, models show divergent responses and representations of these feedbacks as well as systematic biases in the underlying processes. LS3MIP will provide the means to quantify the associated uncertainties and better constrain climate change projections, which is of particular interest for highly vulnerable regions (densely populated areas, agricultural regions, the Arctic, semi-arid and other sensitive terrestrial ecosystems). The experiments are subdivided in two components, the first addressing systematic land biases in offline mode (“LMIP”, building upon the 3rd phase of Global Soil Wetness Project; GSWP3) and the second addressing land feedbacks attributed to soil moisture and snow in an integrated framework (“LFMIP”, building upon the GLACE-CMIP blueprint).« less
NASA Astrophysics Data System (ADS)
Zhao, L.; Wang, L.; Xiao, H.; Cheng, G.; Ruan, Y.; Zhou, M.; Wang, F.
2014-04-01
Deuterium excess (d-excess) of air moisture is traditionally considered as a conservative tracer of oceanic evaporation conditions. Recent studies challenge this view and emphasize the importance of vegetation activity in controlling the dynamics of air moisture d-excess. However direct field observations supporting the role of vegetation in d-excess variations is not well documented. In this study, we quantified d-excess of air moisture, leaf and xylem water of multiple dominant species as well as shallow soil water (5 and 10 cm) at hourly interval during three extensive field campaigns at two climatically different locations within the Heihe River Basin. The results showed that with the increase of temperature (T) and decrease of relative humidity (RH), the δD-δ18O plots of leaf water, xylem water and shallow soil water deviated gradually from their corresponding local meteoric water line. There were significant differences in d-excess values among different water pools at all the study sites. The most positive d-excess values were found in air moisture (9.3‰) and the most negative d-excess values (-85.6‰) were found in leaf water. The d-excess values of air moisture (dmoisture) and leaf water (dleaf) during the sunny days, and shallow soil water (dsoil) during the first sunny day after rain event showed strong diurnal patterns. There were significantly positive relationships between dleaf and RH and negative relationships between dmoisture and RH. The correlations of dleaf and dmoisture with T were opposite to their relationships with RH. In addition, we found the opposite diurnal variations for dleaf and dmoisture during the sunny day, and for dleaf during the sunny days, and shallow soil water dsoil and dmoisture during the first sunny day after rain event. Significant negative relationships were found between dleaf and dmoisture in all the sites during the sunny day. Our results provide direct evidence that dmoisture of the surface air at continental locations can be significantly altered by local processes, especially plant transpiration during the sunny days. The role of shallow soil water on dmoisture is generally much smaller but could be large at the sunny day right after rainfall events.
NASA Astrophysics Data System (ADS)
Lanka, Karthikeyan; Pan, Ming; Konings, Alexandra; Piles, María; D, Nagesh Kumar; Wood, Eric
2017-04-01
Traditionally, passive microwave retrieval algorithms such as Land Parameter Retrieval Model (LPRM) estimate simultaneously soil moisture and Vegetation Optical Depth (VOD) using brightness temperature (Tb) data. The algorithm requires a surface roughness parameter which - despite implications - is generally assumed to be constant at global scale. Due to inherent noise in the satellite data and retrieval algorithm, the VOD retrievals are usually observed to be highly fluctuating at daily scale which may not occur in reality. Such noisy VOD retrievals along with spatially invariable roughness parameter may affect the quality of soil moisture retrievals. The current work aims to smoothen the VOD retrievals (with an assumption that VOD remains constant over a period of time) and simultaneously generate, for the first time, global surface roughness map using multiple descending X-band Tb observations of AMSR-E. The methodology utilizes Tb values under a moving-time-window-setup to estimate concurrently the soil moisture of each day and a constant VOD in the window. Prior to this step, surface roughness parameter is estimated using the complete time series of Tb record. Upon carrying out the necessary sensitivity analysis, the smoothened VOD along with soil moisture retrievals is generated for the 10-year duration of AMSR-E (2002-2011) with a 7-day moving window using the LPRM framework. The spatial patterns of resulted global VOD maps are in coherence with vegetation biomass and climate conditions. The VOD results also exhibit a smoothening effect in terms of lower values of standard deviation. This is also evident from time series comparison of VOD and LPRM VOD retrievals without optimization over moving windows at several grid locations across the globe. The global surface roughness map also exhibited spatial patterns that are strongly influenced by topography and land use conditions. Some of the noticeable features include high roughness over mountainous regions and heavily vegetated tropical rainforests, low roughness in desert areas and moderate roughness value over higher latitudes. The new datasets of VOD and surface roughness can help improving the quality of soil moisture retrievals. Also, the methodology proposed is generic by nature and can be implemented over currently operating AMSR2, SMOS, and SMAP soil moisture missions.
NASA Astrophysics Data System (ADS)
Ji, Xinye; Shen, Chaopeng; Riley, William J.
2015-12-01
Soil moisture statistical fractal is an important tool for downscaling remotely-sensed observations and has the potential to play a key role in multi-scale hydrologic modeling. The fractal was first introduced two decades ago, but relatively little is known regarding how its scaling exponents evolve in time in response to climatic forcings. Previous studies have neglected the process of moisture re-distribution due to regional groundwater flow. In this study we used a physically-based surface-subsurface processes model and numerical experiments to elucidate the patterns and controls of fractal temporal evolution in two U.S. Midwest basins. Groundwater flow was found to introduce large-scale spatial structure, thereby reducing the scaling exponents (τ), which has implications for the transferability of calibrated parameters to predict τ. However, the groundwater effects depend on complex interactions with other physical controls such as soil texture and land use. The fractal scaling exponents, while in general showing a seasonal mode that correlates with mean moisture content, display hysteresis after storm events that can be divided into three phases, consistent with literature findings: (a) wetting, (b) re-organizing, and (c) dry-down. Modeling experiments clearly show that the hysteresis is attributed to soil texture, whose "patchiness" is the primary contributing factor. We generalized phenomenological rules for the impacts of rainfall, soil texture, groundwater flow, and land use on τ evolution. Grid resolution has a mild influence on the results and there is a strong correlation between predictions of τ from different resolutions. Overall, our results suggest that groundwater flow should be given more consideration in studies of the soil moisture statistical fractal, especially in regions with a shallow water table.
Kurganova, Irina; Teepe, Robert; Loftfield, Norman
2007-02-19
The repeated freeze-thaw events during cold season, freezing of soils in autumn and thawing in spring are typical for the tundra, boreal, and temperate soils. The thawing of soils during winter-summer transitions induces the release of decomposable organic carbon and acceleration of soil respiration. The winter-spring fluxes of CO2 from permanently and seasonally frozen soils are essential part of annual carbon budget varying from 5 to 50%. The mechanisms of the freeze-thaw activation are not absolutely clear and need clarifying. We investigated the effect of repeated freezing-thawing events on CO2 emission from intact arable and forest soils (Luvisols, loamy silt; Central Germany) at different moisture (65% and 100% of WHC). Due to the measurement of the CO2 flux in two hours intervals, the dynamics of CO2 emission during freezing-thawing events was described in a detailed way. At +10 degrees C (initial level) in soils investigated, carbon dioxide emission varied between 7.4 to 43.8 mg C m-2h-1 depending on land use and moisture. CO2 flux from the totally frozen soil never reached zero and amounted to 5 to 20% of the initial level, indicating that microbial community was still active at -5 degrees C. Significant burst of CO2 emission (1.2-1.7-fold increase depending on moisture and land use) was observed during thawing. There was close linear correlation between CO2 emission and soil temperature (R2 = 0.86-0.97, P < 0.001). Our investigations showed that soil moisture and land use governed the initial rate of soil respiration, duration of freezing and thawing of soil, pattern of CO2 dynamics and extra CO2 fluxes. As a rule, the emissions of CO2 induced by freezing-thawing were more significant in dry soils and during the first freezing-thawing cycle (FTC). The acceleration of CO2 emission was caused by different processes: the liberation of nutrients upon the soil freezing, biological activity occurring in unfrozen water films, and respiration of cold-adapted microflora.
Response of deep soil moisture to land use and afforestation in the semi-arid Loess Plateau, China
NASA Astrophysics Data System (ADS)
Yang, Lei; Wei, Wei; Chen, Liding; Mo, Baoru
2012-12-01
SummarySoil moisture is an effective water source for plant growth in the semi-arid Loess Plateau of China. Characterizing the response of deep soil moisture to land use and afforestation is important for the sustainability of vegetation restoration in this region. In this paper, the dynamics of soil moisture were quantified to evaluate the effect of land use on soil moisture at a depth of 2 m. Specifically, the gravimetric soil moisture content was measured in the soil layer between 0 and 8 m for five land use types in the Longtan catchment of the western Loess Plateau. The land use types included traditional farmland, native grassland, and lands converted from traditional farmland (pasture grassland, shrubland and forestland). Results indicate that the deep soil moisture content decreased more than 35% after land use conversion, and a soil moisture deficit appeared in all types of land with introduced vegetation. The introduced vegetation decreased the soil moisture content to levels lower than the reference value representing no human impact in the entire 0-8 m soil profile. No significant differences appeared between different land use types and introduced vegetation covers, especially in deeper soil layers, regardless of which plant species were introduced. High planting density was found to be the main reason for the severe deficit of soil moisture. Landscape management activities such as tillage activities, micro-topography reconstruction, and fallowed farmland affected soil moisture in both shallow and deep soil layers. Tillage and micro-topography reconstruction can be used as effective countermeasures to reduce the soil moisture deficit due to their ability to increase soil moisture content. For sustainable vegetation restoration in a vulnerable semi-arid region, the plant density should be optimized with local soil moisture conditions and appropriate landscape management practices.
Doubková, Marcela; Van Dijk, Albert I.J.M.; Sabel, Daniel; Wagner, Wolfgang; Blöschl, Günter
2012-01-01
The Sentinel-1 will carry onboard a C-band radar instrument that will map the European continent once every four days and the global land surface at least once every twelve days with finest 5 × 20 m spatial resolution. The high temporal sampling rate and operational configuration make Sentinel-1 of interest for operational soil moisture monitoring. Currently, updated soil moisture data are made available at 1 km spatial resolution as a demonstration service using Global Mode (GM) measurements from the Advanced Synthetic Aperture Radar (ASAR) onboard ENVISAT. The service demonstrates the potential of the C-band observations to monitor variations in soil moisture. Importantly, a retrieval error estimate is also available; these are needed to assimilate observations into models. The retrieval error is estimated by propagating sensor errors through the retrieval model. In this work, the existing ASAR GM retrieval error product is evaluated using independent top soil moisture estimates produced by the grid-based landscape hydrological model (AWRA-L) developed within the Australian Water Resources Assessment system (AWRA). The ASAR GM retrieval error estimate, an assumed prior AWRA-L error estimate and the variance in the respective datasets were used to spatially predict the root mean square error (RMSE) and the Pearson's correlation coefficient R between the two datasets. These were compared with the RMSE calculated directly from the two datasets. The predicted and computed RMSE showed a very high level of agreement in spatial patterns as well as good quantitative agreement; the RMSE was predicted within accuracy of 4% of saturated soil moisture over 89% of the Australian land mass. Predicted and calculated R maps corresponded within accuracy of 10% over 61% of the continent. The strong correspondence between the predicted and calculated RMSE and R builds confidence in the retrieval error model and derived ASAR GM error estimates. The ASAR GM and Sentinel-1 have the same basic physical measurement characteristics, and therefore very similar retrieval error estimation method can be applied. Because of the expected improvements in radiometric resolution of the Sentinel-1 backscatter measurements, soil moisture estimation errors can be expected to be an order of magnitude less than those for ASAR GM. This opens the possibility for operationally available medium resolution soil moisture estimates with very well-specified errors that can be assimilated into hydrological or crop yield models, with potentially large benefits for land-atmosphere fluxes, crop growth, and water balance monitoring and modelling. PMID:23483015
State of the Art in Large-Scale Soil Moisture Monitoring
NASA Technical Reports Server (NTRS)
Ochsner, Tyson E.; Cosh, Michael Harold; Cuenca, Richard H.; Dorigo, Wouter; Draper, Clara S.; Hagimoto, Yutaka; Kerr, Yan H.; Larson, Kristine M.; Njoku, Eni Gerald; Small, Eric E.;
2013-01-01
Soil moisture is an essential climate variable influencing land atmosphere interactions, an essential hydrologic variable impacting rainfall runoff processes, an essential ecological variable regulating net ecosystem exchange, and an essential agricultural variable constraining food security. Large-scale soil moisture monitoring has advanced in recent years creating opportunities to transform scientific understanding of soil moisture and related processes. These advances are being driven by researchers from a broad range of disciplines, but this complicates collaboration and communication. For some applications, the science required to utilize large-scale soil moisture data is poorly developed. In this review, we describe the state of the art in large-scale soil moisture monitoring and identify some critical needs for research to optimize the use of increasingly available soil moisture data. We review representative examples of 1) emerging in situ and proximal sensing techniques, 2) dedicated soil moisture remote sensing missions, 3) soil moisture monitoring networks, and 4) applications of large-scale soil moisture measurements. Significant near-term progress seems possible in the use of large-scale soil moisture data for drought monitoring. Assimilation of soil moisture data for meteorological or hydrologic forecasting also shows promise, but significant challenges related to model structures and model errors remain. Little progress has been made yet in the use of large-scale soil moisture observations within the context of ecological or agricultural modeling. Opportunities abound to advance the science and practice of large-scale soil moisture monitoring for the sake of improved Earth system monitoring, modeling, and forecasting.
Reconstructions of Soil Moisture for the Upper Colorado River Basin Using Tree-Ring Chronologies
NASA Astrophysics Data System (ADS)
Tootle, G.; Anderson, S.; Grissino-Mayer, H.
2012-12-01
Soil moisture is an important factor in the global hydrologic cycle, but existing reconstructions of historic soil moisture are limited. Tree-ring chronologies (TRCs) were used to reconstruct annual soil moisture in the Upper Colorado River Basin (UCRB). Gridded soil moisture data were spatially regionalized using principal components analysis and k-nearest neighbor techniques. Moisture sensitive tree-ring chronologies in and adjacent to the UCRB were correlated with regional soil moisture and tested for temporal stability. TRCs that were positively correlated and stable for the calibration period were retained. Stepwise linear regression was applied to identify the best predictor combinations for each soil moisture region. The regressions explained 42-78% of the variability in soil moisture data. We performed reconstructions for individual soil moisture grid cells to enhance understanding of the disparity in reconstructive skill across the regions. Reconstructions that used chronologies based on ponderosa pines (Pinus ponderosa) and pinyon pines (Pinus edulis) explained increased variance in the datasets. Reconstructed soil moisture was standardized and compared with standardized reconstructed streamflow and snow water equivalent from the same region. Soil moisture reconstructions were highly correlated with streamflow and snow water equivalent reconstructions, indicating reconstructions of soil moisture in the UCRB using TRCs successfully represent hydrologic trends, including the identification of periods of prolonged drought.
NASA Astrophysics Data System (ADS)
Espejo-Pérez, Antonio Jesus; Sainato, Claudia Mabel; Jairo Márquez-Molina, John; Giráldez, Juan Vicente; Vanderlinden, Karl
2014-05-01
Changes of land use without a correct planning may produce its deterioration with their social, economical and environmental irreversible consequences over short to medium time range. In Argentina, the expansion of soybean fields induced a reduction of the area of pastures dedicated to stockbreeding. As cattle activity is being progressively concentrated on small pens, at feedlots farms, problems of soil and water pollution, mainly by nitrate, have been detected. The characterization of the spatial and temporal variability of soil water content is very important because the mostly advective transport of solutes. To avoid intensive soil samplings, very expensive, one has to recur to geophysical exploration methods. The objective of this work was to identify risk areas within a feedlot of the NW zone of Buenos Aires Province, in Argentina through geophysical methods. The surveys were carried out with an electromagnetic induction profiler EMI-400 (GSSI) and a Time domain Reflectometry (TDR) survey of depth 0-0.10 m with soil sampling and measurement of moisture content with gravimetric method (0-1.0 m). Several trenches were dug inside the pens and also at a test site, where texture, apparent density, saturated hydraulic conductivity (Ks), electrical conductivity of the saturation paste extract and organic matter content (OM) were measured. The water retention curves for these soils were also determined. At one of the pens undisturbed soil columns were extracted at 3 locations. Laboratory analysis for 0-1.0 m indicated that soil texture was classified as sandy loam, average organic matter content (OM) was greater than 2.3% with low values of apparent density in the first 10 cm. The range of spatial dependence of data suggested that the number of soil samples could be reduced. Soil apparent electrical conductivity (ECa) and soil moisture were well correlated and indicated a clear spatial pattern in the corrals. TDR performance was acceptable to identify the spatial pattern of moisture, although the absolute values were far from the real values obtained by gravimetric method due to the effect of the high OM. The lower zone in one of the pens showed greater values of ECa and soil moisture, in agreement with a major water retention and a lower Ks. The water retention was higher in the other corral with higher variability in Ks. A general decrease of soil moisture was found near 0.2 m soil depth. Leaching experiments detected greater volumes with higher electrical conductivity in low lying areas of the pen. Although differences were not observed as clearly as before, the low and intermediate low areas of the pen showed a faster rate of leaching. In summary geophysical surveys allowed identifying risk areas of high ECa and moisture which in fact had higher volumes of leachate with elevated electrical conductivities. This may be a good approach to control and reduce soil and groundwater contamination and to model in future works the process in order to establish management decisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oberbauer, S.F.; Gillespie, C.T.; Cheng, Weixin
1996-08-01
Carbon dioxide efflux and soil microenvironment were measured in three upland tundra communities in the foothills of the Brooks Range in arctic Alaska to determine the magnitude of CO{sub 2} efflux rates and the relative importance of the belowground factors that influence them. Gas exchange and soil microenvironment measurements were made weekly between 14 June and 31 July 1990. The study communities included lichen-heath, a sparse community vegetated by lichens and dwarf ericaceous shrubs on rocky soils, moist Cassiope dwarf-shrub heath tundra, dominated by Carex and evergreen and deciduous shrubs on relatively deep organic soils, and dry Cassiope dwarf-shrub heathmore » of stone-stripe areas, which was of intermediate character. Rates of CO{sub 2} efflux were similar for the three communities until mid-season when they peaked at rates between 4.9 and 5.9 g m{sup {minus}2} d{sup {minus}1}. Following the mid-season peak, the rates in all three communities declined, particularly in the lichen-heath. Seasonal patterns of CO{sub 2} efflux, soil temperature, and soil moisture suggest changing limitations to CO{sub 2} efflux, soil temperature, and soil moisture suggest changing limitations to CO{sub 2} efflux over the course of the season. Rates of carbon dioxide efflux followed changes in soil temperature early in the season when soil moisture was highest. Mid-season efflux appeared to be limited by soil, moss, and lichen hydration until the end of July, when temperature again limited efflux. Differences between the communities were related to microenvironmental differences and probable differences in carbon quality. The presence of peat-forming mosses is suggested to play an important role in differences in efflux and micro-environment among the communities. 32 refs., 3 figs., 4 tab.« less
NASA Astrophysics Data System (ADS)
Zhao, L.; Wang, L.; Liu, X.; Xiao, H.; Ruan, Y.; Zhou, M.
2014-10-01
Deuterium excess (d-excess) of air moisture is traditionally considered a conservative tracer of oceanic evaporation conditions. Recent studies challenge this view and emphasize the importance of vegetation activity in controlling the dynamics of air moisture d-excess. However, direct field observations supporting the role of vegetation in d-excess variations are not well documented. In this study, we quantified the d-excess of air moisture, shallow soil water (5 and 10 cm) and plant water (leaf, root and xylem) of multiple dominant species at hourly intervals during three extensive field campaigns at two climatically different locations within the Heihe River basin, northwestern China. The ecosystems at the two locations range from forest to desert. The results showed that with the increase in temperature (T) and the decrease in relative humidity (RH), the δD-δ18O regression lines of leaf water, xylem water and shallow soil water deviated gradually from their corresponding local meteoric water line. There were significant differences in d-excess values between different water pools at all the study sites. The most positive d-excess values were found in air moisture (9.3‰) and the most negative d-excess values were found in leaf water (-85.6‰). The d-excess values of air moisture (dmoisture) and leaf water (dleaf) during the sunny days, and shallow soil water (dsoil) during the first sunny day after a rain event, showed strong diurnal patterns. There were significantly positive relationships between dleaf and RH and negative relationships between dmoisture and RH. The correlations of dleaf and dmoisture with T were opposite to their relationships with RH. In addition, we found opposite diurnal variations for dleaf and dmoisture during the sunny days, and for dsoil and dmoisture during the first sunny day after the rain event. The steady-state Craig-Gordon model captured the diurnal variations in dleaf, with small discrepancies in the magnitude. Overall, this study provides a comprehensive and high-resolution data set of d-excess of air moisture, leaf, root, xylem and soil water. Our results provide direct evidence that dmoisture of the surface air at continental locations can be significantly altered by local processes, especially plant transpiration during sunny days. The influence of shallow soil water on dmoisture is generally much smaller compared with that of plant transpiration, but the influence could be large on a sunny day right after rainfall events.
NASA Astrophysics Data System (ADS)
Volo, T. J.; Vivoni, E. R.; Martin, C. A.; Wang, Z.; Ruddell, B.
2012-12-01
Through the past several decades, rapid population growth in the arid American Southwest has dramatically changed patterns of plant-available water through municipal and residential irrigation systems that provide supplemental water to designed and managed urban landscape vegetation. Urban irrigation, including diversion of rainwater and addition of imported water, has thereby enabled the transformation of areas once covered by bare soil and low water-use, native desert plant species to large tracts of exotic, high water-use turf grass and shade trees. Despite the large percentage of residential water appropriated to irrigation purposes, models of urban hydrology often fail to include the impact that this anthropogenic input has on water, energy, and biomass conditions. This study utilizes two one-dimensional soil moisture models to examine the importance of representing different processes in a quantitative urban ecohydrology model under irrigation scenarios. Such processes include sub-daily energy fluxes, vertical redistribution of soil moisture, saturation- and infiltration-excess runoff mechanisms, seasonally variable irrigation scheduling, and soil moisture control on evapotranspiration rates. The analysis is informed by soil moisture observations from an experimental sensor network in the Phoenix, Arizona metropolitan area. The network includes data from several different landscape and irrigation treatments representative of pre- and post-development conditions in the region. By interpreting soil moisture levels in terms of plant water stress, this study analyzes the effectiveness of urban irrigation practices in arid climates. Furthermore, by identifying the necessary hydrologic processes to represent in an urban ecohydrology model, our results inform future work in adapting a distributed hydrologic model to desert urban settings where irrigation plays a significant role in minimizing plant water stress. An appropriate model of water and energy balances, calibrated using local meteorological forcing, can facilitate discussions with water managers and homeowners regarding optimal irrigation frequency, volume, duration, and seasonality for individual landscapes, while also aiding in water-efficient landscape design for growing cities in desert regions.
USDA-ARS?s Scientific Manuscript database
The extent to which soil resource availability, nutrients or moisture, contro1 the structure, function and diversity of plant communities has aroused considerableinterest in the past decade, and remains topical in light of global change. Numerous plant communities are controlled either by water or s...
USDA-ARS?s Scientific Manuscript database
Methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) fluxes from agricultural landscapes may contribute significantly to regional greenhouse gas budgets due to stimulation of soil microbial activity through fertilizer application and variable soil moisture effects. In this study, measuremen...
Barrier island community change: What controls it?
NASA Astrophysics Data System (ADS)
Dows, B.; Young, D.; Zinnert, J.
2014-12-01
Conversion from grassland to woody dominated communities has been observed globally. In recent decades, this pattern has been observed in coastal communities along the mid-Atlantic U.S. In coastal environments, a suite of biotic and abiotic factors interact as filters to determine plant community structure and distribution. Microclimatic conditions: soil and air temperature, soil moisture and salinity, and light attenuation under grass cover were measured across a grassland-woody encroachment gradient on a Virginia barrier island; to identify the primary factors that mediate this change. Woody establishment was associated with moderately dense (2200 shoots/m2) grass cover, but reduced at high (> 6200 shoots/ m2) and low (< 1250 shoots/ m2) densities. Moderately dense grass cover reduced light attenuation (82.50 % reduction) to sufficiently reduce soil temperature thereby limiting soil moisture evaporation. However, high grass density reduced light attenuation (98.7 % reduction) enough to inhibit establishment of woody species; whereas low grass density attenuated much less light (48.7 % reduction) which allowed for greater soil moisture evaporation. Soil salinity was dynamic as rainfall, tidal inundation, and sea spray produce spatiotemporal variation throughout the barrier island landscape. The importance of light and temperature were compounded as they also indirectly affect soil salinity via their affects on soil moisture. Determining how these biotic and abiotic factors relate to sea level rise and climate change will improve understanding coastal community response as global changes proceed. Understanding how community shifts affect ecosystem function and their potential to affect adjacent systems will also improve predictive ability of coastal ecosystem responses.
Fest, Benedikt; Wardlaw, Tim; Livesley, Stephen J; Duff, Thomas J; Arndt, Stefan K
2015-11-01
Disturbance associated with severe wildfires (WF) and WF simulating harvest operations can potentially alter soil methane (CH4 ) oxidation in well-aerated forest soils due to the effect on soil properties linked to diffusivity, methanotrophic activity or changes in methanotrophic bacterial community structure. However, changes in soil CH4 flux related to such disturbances are still rarely studied even though WF frequency is predicted to increase as a consequence of global climate change. We measured in-situ soil-atmosphere CH4 exchange along a wet sclerophyll eucalypt forest regeneration chronosequence in Tasmania, Australia, where the time since the last severe fire or harvesting disturbance ranged from 9 to >200 years. On all sampling occasions, mean CH4 uptake increased from most recently disturbed sites (9 year) to sites at stand 'maturity' (44 and 76 years). In stands >76 years since disturbance, we observed a decrease in soil CH4 uptake. A similar age dependency of potential CH4 oxidation for three soil layers (0.0-0.05, 0.05-0.10, 0.10-0.15 m) could be observed on incubated soils under controlled laboratory conditions. The differences in soil CH4 uptake between forest stands of different age were predominantly driven by differences in soil moisture status, which affected the diffusion of atmospheric CH4 into the soil. The observed soil moisture pattern was likely driven by changes in interception or evapotranspiration with forest age, which have been well described for similar eucalypt forest systems in south-eastern Australia. Our results imply that there is a large amount of variability in CH4 uptake at a landscape scale that can be attributed to stand age and soil moisture differences. An increase in severe WF frequency in response to climate change could potentially increase overall forest soil CH4 sinks. © 2015 John Wiley & Sons Ltd.
The Fate of Aspen in a World with Diminishing Snowpacks
NASA Astrophysics Data System (ADS)
Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Kemp, K. B.
2010-12-01
Aspen (Populus tremuloides) productivity is tightly coupled with soil moisture. In the mountainous regions of the western USA, annual replenishment of soil moisture commonly occurs during snowmelt. Therefore, snow pack depth and duration can play an important role in sustaining aspen productivity. The presence of almost 50 years of detailed climate data across an elevational transect in the Reynolds Creek Experimental Watershed (RCEW) in southwestern Idaho offers a novel opportunity to better understand the role of shifting precipitation patterns on aspen productivity. Over the past 50 years, the proportion of the precipitation falling in the form of snow decreased by almost a factor of 2 at mid to low elevations in the RCEW, coupled with a roughly four week advance of snow ablation, and decline of large snow drifts that release moisture into the early summer. Results from growth ring increment, stable isotope analysis, sapflux and a process model (Biome BGC), will be used to determine the impact of shifting precipitation patterns on tree productivity along this transect over the past 50 years. Aspen trees located on moist microsites continue to transpire water and maintain high stomatal conductance 21 days later in the growing season relative to individuals on drier microsites. Predictions of net primary productivity (NPP) in aspen are very sensitive to precipitation patterns. NPP becomes negative as early as day 183 (90 days post budbreak) for years with little winter and spring precipitation whereas, in years with ample winter and spring precipitation, NPP remains positive until day 260 when leaf fall occurs. These results give unique insight into the conditions that deciduous tree species will encounter in a warming climate where snow water equivalent continues to diminish and soil moisture declines soon after budbreak occurs.
Woodward, Andrea
1998-01-01
Relationships among environmental variables and occurrence of tree species were investigated at Hurricane Ridge in Olympic National Park, Washington, USA. A transect consisting of three plots was established down one north-and one south-facing slope in stands representing the typical elevational sequence of tree species. Tree species included subalpine fir (Abies lasiocarpa), Douglas-fir (Pseudotsuga menziesii), mountain hemlock (Tsuga mertensiana), and Pacific silver fir (Abies amabilis). Air and soil temperature, precipitation, and soil moisture were measured during three growing seasons. Snowmelt patterns, soil carbon and moisture release curves were also determined. The plots represented a wide range in soil water potential, a major determinant of tree species distribution (range of minimum values = -1.1 to -8.0 MPa for Pacific silver fir and Douglas-fir plots, respectively). Precipitation intercepted at plots depended on topographic location, storm direction and storm type. Differences in soil moisture among plots was related to soil properties, while annual differences at each plot were most often related to early season precipitation. Changes in climate due to a doubling of atmospheric CO2 will likely shift tree species distributions within, but not among aspects. Change will be buffered by innate tolerance of adult trees and the inertia of soil properties.
High resolution change estimation of soil moisture and its assimilation into a land surface model
NASA Astrophysics Data System (ADS)
Narayan, Ujjwal
Near surface soil moisture plays an important role in hydrological processes including infiltration, evapotranspiration and runoff. These processes depend non-linearly on soil moisture and hence sub-pixel scale soil moisture variability characterization is important for accurate modeling of water and energy fluxes at the pixel scale. Microwave remote sensing has evolved as an attractive technique for global monitoring of near surface soil moisture. A radiative transfer model has been tested and validated for soil moisture retrieval from passive microwave remote sensing data under a full range of vegetation water content conditions. It was demonstrated that soil moisture retrieval errors of approximately 0.04 g/g gravimetric soil moisture are attainable with vegetation water content as high as 5 kg/m2. Recognizing the limitation of low spatial resolution associated with passive sensors, an algorithm that uses low resolution passive microwave (radiometer) and high resolution active microwave (radar) data to estimate soil moisture change at the spatial resolution of radar operation has been developed and applied to coincident Passive and Active L and S band (PALS) and Airborne Synthetic Aperture Radar (AIRSAR) datasets acquired during the Soil Moisture Experiments in 2002 (SMEX02) campaign with root mean square error of 10% and a 4 times enhancement in spatial resolution. The change estimation algorithm has also been used to estimate soil moisture change at 5 km resolution using AMSR-E soil moisture product (50 km) in conjunction with the TRMM-PR data (5 km) for a 3 month period demonstrating the possibility of high resolution soil moisture change estimation using satellite based data. Soil moisture change is closely related to precipitation and soil hydraulic properties. A simple assimilation framework has been implemented to investigate whether assimilation of surface layer soil moisture change observations into a hydrologic model will potentially improve it performance. Results indicate an improvement in model prediction of near surface and deep layer soil moisture content when the update is performed to the model state as compared to free model runs. It is also seen that soil moisture change assimilation is able to mitigate the effect of erroneous precipitation input data.
NASA Astrophysics Data System (ADS)
Shrivastava, Sourabh; Kar, Sarat C.; Sharma, Anu Rani
2017-07-01
Variation of soil moisture during active and weak phases of summer monsoon JJAS (June, July, August, and September) is very important for sustenance of the crop and subsequent crop yield. As in situ observations of soil moisture are few or not available, researchers use data derived from remote sensing satellites or global reanalysis. This study documents the intercomparison of soil moisture from remotely sensed and reanalyses during dry spells within monsoon seasons in central India and central Myanmar. Soil moisture data from the European Space Agency (ESA)—Climate Change Initiative (CCI) has been treated as observed data and was compared against soil moisture data from the ECMWF reanalysis-Interim (ERA-I) and the climate forecast system reanalysis (CFSR) for the period of 2002-2011. The ESA soil moisture correlates rather well with observed gridded rainfall. The ESA data indicates that soil moisture increases over India from west to east and from north to south during monsoon season. The ERA-I overestimates the soil moisture over India, while the CFSR soil moisture agrees well with the remotely sensed observation (ESA). Over Myanmar, both the reanalysis overestimate soil moisture values and the ERA-I soil moisture does not show much variability from year to year. Day-to-day variations of soil moisture in central India and central Myanmar during weak monsoon conditions indicate that, because of the rainfall deficiency, the observed (ESA) and the CFSR soil moisture values are reduced up to 0.1 m3/m3 compared to climatological values of more than 0.35 m3/m3. This reduction is not seen in the ERA-I data. Therefore, soil moisture from the CFSR is closer to the ESA observed soil moisture than that from the ERA-I during weak phases of monsoon in the study region.
Validation of soil moisture ocean salinity (SMOS) satellite soil moisture products
USDA-ARS?s Scientific Manuscript database
The surface soil moisture state controls the partitioning of precipitation into infiltration and runoff. High-resolution observations of soil moisture will lead to improved flood forecasts, especially for intermediate to large watersheds where most flood damage occurs. Soil moisture is also key in d...
Pielström, Steffen; Roces, Flavio
2014-01-01
The Chaco leaf-cutting ant Atta vollenweideri is native to the clay-heavy soils of the Gran Chaco region in South America. Because of seasonal floods, colonies are regularly exposed to varying moisture across the soil profile, a factor that not only strongly influences workers' digging performance during nest building, but also determines the suitability of the soil for the rearing of the colony's symbiotic fungus. In this study, we investigated the effects of varying soil moisture on behaviours associated with underground nest building in A. vollenweideri. This was done in a series of laboratory experiments using standardised, plastic clay-water mixtures with gravimetric water contents ranging from relatively brittle material to mixtures close to the liquid limit. Our experiments showed that preference and group-level digging rate increased with increasing water content, but then dropped considerably for extremely moist materials. The production of vibrational recruitment signals during digging showed, on the contrary, a slightly negative linear correlation with soil moisture. Workers formed and carried clay pellets at higher rates in moist clay, even at the highest water content tested. Hence, their weak preference and low group-level excavation rate observed for that mixture cannot be explained by any inability to work with the material. More likely, extremely high moistures may indicate locations unsuitable for nest building. To test this hypothesis, we simulated a situation in which workers excavated an upward tunnel below accumulated surface water. The ants stopped digging about 12 mm below the interface soil/water, a behaviour representing a possible adaptation to the threat of water inflow field colonies are exposed to while digging under seasonally flooded soils. Possible roles of soil water in the temporal and spatial pattern of nest growth are discussed. PMID:24748382
Spatial structure and scaling of macropores in hydrological process at small catchment scale
NASA Astrophysics Data System (ADS)
Silasari, Rasmiaditya; Broer, Martine; Blöschl, Günter
2013-04-01
During rainfall events, the formation of overland flow can occur under the circumstances of saturation excess and/or infiltration excess. These conditions are affected by the soil moisture state which represents the soil water content in micropores and macropores. Macropores act as pathway for the preferential flows and have been widely studied locally. However, very little is known about their spatial structure and conductivity of macropores and other flow characteristic at the catchment scale. This study will analyze these characteristics to better understand its importance in hydrological processes. The research will be conducted in Petzenkirchen Hydrological Open Air Laboratory (HOAL), a 64 ha catchment located 100 km west of Vienna. The land use is divided between arable land (87%), pasture (5%), forest (6%) and paved surfaces (2%). Video cameras will be installed on an agricultural field to monitor the overland flow pattern during rainfall events. A wireless soil moisture network is also installed within the monitored area. These field data will be combined to analyze the soil moisture state and the responding surface runoff occurrence. The variability of the macropores spatial structure of the observed area (field scale) then will be assessed based on the topography and soil data. Soil characteristics will be supported with laboratory experiments on soil matrix flow to obtain proper definitions of the spatial structure of macropores and its variability. A coupled physically based distributed model of surface and subsurface flow will be used to simulate the variability of macropores spatial structure and its effect on the flow behaviour. This model will be validated by simulating the observed rainfall events. Upscaling from field scale to catchment scale will be done to understand the effect of macropores variability on larger scales by applying spatial stochastic methods. The first phase in this study is the installation and monitoring configuration of video cameras and soil moisture monitoring equipment to obtain the initial data of overland flow occurrence and soil moisture state relationships.
NASA Astrophysics Data System (ADS)
Demand, D.; Blume, T.; Weiler, M.
2017-12-01
Preferential flow in macropores significantly affects the distributions of water and solutes in soil and many studies showed its relevance worldwide. Although some models include this process as a second pore domain, little is known about the spatial patterns and temporal dynamics. For example, while flow in the matrix is usually modeled and parameterized based on soil texture, an influence of texture on non-capillary flow for a given land-use class is poorly understood. To investigate the temporal and spatial dynamics on preferential flow we used a four-year soil moisture dataset from the mesoscale Attert catchment (288 km²) in Luxembourg. This dataset contains time series from 126 soil profiles in different textures and two land-use classes (forest, grassland). The soil moisture probes were installed in 10, 30 and 50 cm depth and measured in a 5-minute temporal resolution. Events were defined by a soil moisture increase higher than the instrument noise after a precipitation sum of more than 1 mm. Precipitation was measured next to the profiles so that each location could be associated to its unique precipitation characteristics. For every event and profile the soil moisture reaction was classified in sequential (ordered by depth) and non-sequential response. A non-sequential soil moisture reaction was used as an indicator of preferential flow. For sequential flow, the velocity was determined by the first reaction between two vertically adjacent sensors. The sensor reaction and wetting front velocity was analyzed in the context of precipitation characteristics and initial soil water content. Grassland sites showed a lower proportion of non-sequential flow than forest sites. For forest, non-sequential response is dependent on texture, rainfall intensity and initial water content. This is less distinct for the grassland sites. Furthermore, sequential reactions show higher flow velocities at sites, which also have high percentage of non-sequential response. In contrast, grassland sites show a more homogenous wetting front independent of soil texture. Compared against common modelling approaches of soil water flow, measured velocities show clear evidence of preferential flow, especially for forest soils. The analysis also shows that vegetation can alter the soil properties above the textural properties alone.
A spatiotemporal analysis of hydrological patterns based on a wireless sensor network system
NASA Astrophysics Data System (ADS)
Plaza, F.; Slater, T. A.; Zhong, X.; Li, Y.; Liang, Y.; Liang, X.
2017-12-01
Understanding complicated spatiotemporal patterns of eco-hydrological variables at a small scale plays a profound role in improving predictability of high resolution distributed hydrological models. However, accurate and continuous monitoring of these complex patterns has become one of the main challenges in the environmental sciences. Wireless sensor networks (WSNs) have emerged as one of the most widespread potential solutions to achieve this. This study presents a spatiotemporal analysis of hydrological patterns (e.g., soil moisture, soil water potential, soil temperature and transpiration) based on observational data collected from a dense multi-hop wireless sensor network (WSN) in a steep-forested testbed located in Southwestern Pennsylvania, USA. At this WSN testbed with an approximate area of 3000 m2, environmental variables are collected from over 240 sensors that are connected to more than 100 heterogeneous motes. The sensors include the soil moisture of EC-5, soil temperature and soil water potential of MPS-1 and MPS-2, and sap flow sensors constructed in house. The motes consist of MICAz, IRIS and TelosB. In addition, several data loggers have been installed along the site to provide a comparative reference to the WSN measurements for the purpose of checking the WSN data quality. The edaphic properties monitored by the WSN sensors show strong agreement with the data logger measurements. Moreover, sap flow measurements, scaled to tree stand transpiration, are found to be reasonable. This study also investigates the feasibility and roles that these sensor measurements play in improving the performance of high-resolution distributed hydrological models. In particular, we explore this using a modified version of the Distributed Hydrological Soil Vegetation Model (DHSVM).
On the assimilation of satellite derived soil moisture in numerical weather prediction models
NASA Astrophysics Data System (ADS)
Drusch, M.
2006-12-01
Satellite derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analysed from the modelled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. Three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-range Weather Forecasts (ECMWF) have been performed for the two months period of June and July 2002: A control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating bias corrected TMI (TRMM Microwave Imager) derived soil moisture over the southern United States through a nudging scheme using 6-hourly departures. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analysed in the nudging experiment is the most accurate estimate when compared against in-situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage. The transferability of the results to other satellite derived soil moisture data sets will be discussed.
Evaluation of the validated soil moisture product from the SMAP radiometer
USDA-ARS?s Scientific Manuscript database
In this study, we used a multilinear regression approach to retrieve surface soil moisture from NASA’s Soil Moisture Active Passive (SMAP) satellite data to create a global dataset of surface soil moisture which is consistent with ESA’s Soil Moisture and Ocean Salinity (SMOS) satellite retrieved sur...
NASA Astrophysics Data System (ADS)
Gao, Shengguo; Zhu, Zhongli; Liu, Shaomin; Jin, Rui; Yang, Guangchao; Tan, Lei
2014-10-01
Soil moisture (SM) plays a fundamental role in the land-atmosphere exchange process. Spatial estimation based on multi in situ (network) data is a critical way to understand the spatial structure and variation of land surface soil moisture. Theoretically, integrating densely sampled auxiliary data spatially correlated with soil moisture into the procedure of spatial estimation can improve its accuracy. In this study, we present a novel approach to estimate the spatial pattern of soil moisture by using the BME method based on wireless sensor network data and auxiliary information from ASTER (Terra) land surface temperature measurements. For comparison, three traditional geostatistic methods were also applied: ordinary kriging (OK), which used the wireless sensor network data only, regression kriging (RK) and ordinary co-kriging (Co-OK) which both integrated the ASTER land surface temperature as a covariate. In Co-OK, LST was linearly contained in the estimator, in RK, estimator is expressed as the sum of the regression estimate and the kriged estimate of the spatially correlated residual, but in BME, the ASTER land surface temperature was first retrieved as soil moisture based on the linear regression, then, the t-distributed prediction interval (PI) of soil moisture was estimated and used as soft data in probability form. The results indicate that all three methods provide reasonable estimations. Co-OK, RK and BME can provide a more accurate spatial estimation by integrating the auxiliary information Compared to OK. RK and BME shows more obvious improvement compared to Co-OK, and even BME can perform slightly better than RK. The inherent issue of spatial estimation (overestimation in the range of low values and underestimation in the range of high values) can also be further improved in both RK and BME. We can conclude that integrating auxiliary data into spatial estimation can indeed improve the accuracy, BME and RK take better advantage of the auxiliary information compared to Co-OK, and BME outperforms RK by integrating the auxiliary data in a probability form.
NASA Astrophysics Data System (ADS)
Teng, W. L.; Shannon, H.
2010-12-01
The USDA World Agricultural Outlook Board (WAOB) coordinates the development of the monthly World Agricultural Supply and Demand Estimates (WASDE) for the U.S. and major foreign producing countries. Given the significant effect of weather on crop progress, conditions, and production, WAOB prepares frequent agricultural weather assessments in the Global Agricultural Decision Support Environment (GLADSE). Because the timing of the precipitation is often as important as the amount, in their effects on crop production, WAOB frequently examines precipitation time series to estimate crop productivity. An effective method for such assessment is the use of analog year comparisons, where precipitation time series, based on surface weather stations, from several historical years are compared with the time series from the current year. Once analog years are identified, crop yields can be estimated for the current season based on observed yields from the analog years, because of the similarities in the precipitation patterns. In this study, NASA satellite precipitation and soil moisture time series are used to identify analog years. Given that soil moisture often has a more direct effect than does precipitation on crop water availability, the time series of soil moisture could be more effective than that of precipitation, in identifying those years with similar crop yields. Retrospective analyses of analogs will be conducted to determine any reduction in the level of uncertainty in identifying analog years, and any reduction in false negatives or false positives. The comparison of analog years could potentially be improved by quantifying the selection of analogs, instead of the current visual inspection method. Various approaches to quantifying are currently being evaluated. This study is part of a larger effort to improve WAOB estimates by integrating NASA remote sensing soil moisture observations and research results into GLADSE, including (1) the integration of the Land Parameter Retrieval Model (LPRM) soil moisture algorithm for operational production and (2) the assimilation of LPRM soil moisture into the USDA Environmental Policy Integrated Climate (EPIC) crop model.
Round Robin evaluation of soil moisture retrieval models for the MetOp-A ASCAT Instrument
NASA Astrophysics Data System (ADS)
Gruber, Alexander; Paloscia, Simonetta; Santi, Emanuele; Notarnicola, Claudia; Pasolli, Luca; Smolander, Tuomo; Pulliainen, Jouni; Mittelbach, Heidi; Dorigo, Wouter; Wagner, Wolfgang
2014-05-01
Global soil moisture observations are crucial to understand hydrologic processes, earth-atmosphere interactions and climate variability. ESA's Climate Change Initiative (CCI) project aims to create a global consistent long-term soil moisture data set based on the merging of the best available active and passive satellite-based microwave sensors and retrieval algorithms. Within the CCI, a Round Robin evaluation of existing retrieval algorithms for both active and passive instruments was carried out. In this study we present the comparison of five different retrieval algorithms covering three different modelling principles applied to active MetOp-A ASCAT L1 backscatter data. These models include statistical models (Bayesian Regression and Support Vector Regression, provided by the Institute for Applied Remote Sensing, Eurac Research Viale Druso, Italy, and an Artificial Neural Network, provided by the Institute of Applied Physics, CNR-IFAC, Italy), a semi-empirical model (provided by the Finnish Meteorological Institute), and a change detection model (provided by the Vienna University of Technology). The algorithms were applied on L1 backscatter data within the period of 2007-2011, resampled to a 12.5 km grid. The evaluation was performed over 75 globally distributed, quality controlled in situ stations drawn from the International Soil Moisture Network (ISMN) using surface soil moisture data from the Global Land Data Assimilation System (GLDAS-) Noah land surface model as second independent reference. The temporal correlation between the data sets was analyzed and random errors of the the different algorithms were estimated using the triple collocation method. Absolute soil moisture values as well as soil moisture anomalies were considered including both long-term anomalies from the mean seasonal cycle and short-term anomalies from a five weeks moving average window. Results show a very high agreement between all five algorithms for most stations. A slight vegetation dependency of the errors and a spatial decorrelation of the performance patterns of the different algorithms was found. We conclude that future research should focus on understanding, combining and exploiting the advantages of all available modelling approaches rather than trying to optimize one approach to fit every possible condition.
NASA Soil Moisture Data Products and Their Incorporation in DREAM
NASA Technical Reports Server (NTRS)
Blonski, Slawomir; Holland, Donald; Henderson, Vaneshette
2005-01-01
NASA provides soil moisture data products that include observations from the Advanced Microwave Scanning Radiometer on the Earth Observing System Aqua satellite, field measurements from the Soil Moisture Experiment campaigns, and model predictions from the Land Information System and the Goddard Earth Observing System Data Assimilation System. Incorporation of the NASA soil moisture products in the Dust Regional Atmospheric Model is possible through use of the satellite observations of soil moisture to set initial conditions for the dust simulations. An additional comparison of satellite soil moisture observations with mesoscale atmospheric dynamics modeling is recommended. Such a comparison would validate the use of NASA soil moisture data in applications and support acceptance of satellite soil moisture data assimilation in weather and climate modeling.
Evaluation of SMAP Level 2 Soil Moisture Algorithms Using SMOS Data
NASA Technical Reports Server (NTRS)
Bindlish, Rajat; Jackson, Thomas J.; Zhao, Tianjie; Cosh, Michael; Chan, Steven; O'Neill, Peggy; Njoku, Eni; Colliander, Andreas; Kerr, Yann; Shi, J. C.
2011-01-01
The objectives of the SMAP (Soil Moisture Active Passive) mission are global measurements of soil moisture and land freeze/thaw state at 10 km and 3 km resolution, respectively. SMAP will provide soil moisture with a spatial resolution of 10 km with a 3-day revisit time at an accuracy of 0.04 m3/m3 [1]. In this paper we contribute to the development of the Level 2 soil moisture algorithm that is based on passive microwave observations by exploiting Soil Moisture Ocean Salinity (SMOS) satellite observations and products. SMOS brightness temperatures provide a global real-world, rather than simulated, test input for the SMAP radiometer-only soil moisture algorithm. Output of the potential SMAP algorithms will be compared to both in situ measurements and SMOS soil moisture products. The investigation will result in enhanced SMAP pre-launch algorithms for soil moisture.
NASA Astrophysics Data System (ADS)
Dodd, N. H.; Baird, A. J.; Wainwright, J.; Dunn, S. M.
2011-12-01
There are obvious surface expressions - in terms of vegetation patterning - of ecohydrological feedbacks on dryland and peatland hillslopes. Much less is known about subsurface ecohydrological patterns, and whether or not they 'map onto' surface patterns. Likewise, few attempts have been made to investigate how such ecohydrological patterns affect whole-hillslope hydrological behaviour or how widespread they are in non-dryland and non-peatland hillslopes. In this study we investigate surface and near- surface patterning in temperate hillslopes, which to date have been the focus of much hydrological work but little ecohydrological work. In particular, we consider the extent to which the direct and the indirect effects of past and present plant assemblages on local and whole-hillslope soil moisture conditions may contribute to patterning. We have conducted a field study of two temperate upland hillslopes in Northern Scotland, UK, on one of which human intervention plays a major part in shaping the landscape. Repeat measurements have been made of near- surface soil-moisture content, taken at lag distances of 0.25 m to 20 m, under different antecedent hydrological conditions together with characterisation of plant assemblages at the same points through both ground-based vegetation surveys of 1 m × 1 m plots and kite aerial photography (KAP) of > 20 m2 plots. Results from this have indicated that changes in ecohydrological patterns can occur over small spatial scales (< 1 m2) and short time scales (< 1 day). Comparison of values of near-surface soil moisture content with topographic wetness indices, calculated using 1 -m resolution topographic data collected in the field, has highlighted that topography does not explain all of the spatial variation in soil moisture content at this scale. KAP images allowed detection of vegetation patterns not obvious from the ground. Comparison of KAP images and historic aerial photographs has highlighted the persistence of vegetation patterns over time at both sites, and that the current structure of the landscape is clearly related to current and past vegetation management practices. Evidence of sustained patterning under relatively steady environmental conditions has prompted us to consider how internal system dynamics such as competition and facilitation between different plant assemblages, and persistence of ecological memory at a range of timescales may lead to a range of ecohydrological behaviours at the scale of whole hillslopes. To help conceptualize ways in which patterning may arise, we have built a two-dimensional cellular automata-type model in which local interactions between biotic and abiotic components have the potential to lead to emergence of larger-scale patterns within the model landscape. Results from the field study have been used to gauge how well temperate hillslope ecohydrological dynamics are represented in our model, and to check that local neighbourhood patterns in the model outputs resemble real-world patterning. Key words: temperate upland ecohydrology, plant assemblage dynamics, ecological memory, kite aerial photography, cellular automata.
NASA Technical Reports Server (NTRS)
Colliander, Andreas; Cosh, Michael H.; Misra, Sidharth; Jackson, Thomas J.; Crow, Wade T.; Chan, Steven; Bindlish, Rajat; Chae, Chun; Holifield Collins, Chandra; Yueh, Simon H.
2017-01-01
The NASA SMAP (Soil Moisture Active Passive) mission conducted the SMAP Validation Experiment 2015 (SMAPVEX15) in order to support the calibration and validation activities of SMAP soil moisture data products. The main goals of the experiment were to address issues regarding the spatial disaggregation methodologies for improvement of soil moisture products and validation of the in situ measurement upscaling techniques. To support these objectives high-resolution soil moisture maps were acquired with the airborne PALS (Passive Active L-band Sensor) instrument over an area in southeast Arizona that includes the Walnut Gulch Experimental Watershed (WGEW), and intensive ground sampling was carried out to augment the permanent in situ instrumentation. The objective of the paper was to establish the correspondence and relationship between the highly heterogeneous spatial distribution of soil moisture on the ground and the coarse resolution radiometer-based soil moisture retrievals of SMAP. The high-resolution mapping conducted with PALS provided the required connection between the in situ measurements and SMAP retrievals. The in situ measurements were used to validate the PALS soil moisture acquired at 1-km resolution. Based on the information from a dense network of rain gauges in the study area, the in situ soil moisture measurements did not capture all the precipitation events accurately. That is, the PALS and SMAP soil moisture estimates responded to precipitation events detected by rain gauges, which were in some cases not detected by the in situ soil moisture sensors. It was also concluded that the spatial distribution of the soil moisture resulted from the relatively small spatial extents of the typical convective storms in this region was not completely captured with the in situ stations. After removing those cases (approximately10 of the observations) the following metrics were obtained: RMSD (root mean square difference) of0.016m3m3 and correlation of 0.83. The PALS soil moisture was also compared to SMAP and in situ soil moisture at the 36-km scale, which is the SMAP grid size for the standard product. PALS and SMAP soil moistures were found to be very similar owing to the close match of the brightness temperature measurements and the use of a common soil moisture retrieval algorithm. Spatial heterogeneity, which was identified using the high-resolution PALS soil moisture and the intensive ground sampling, also contributed to differences between the soil moisture estimates. In general, discrepancies found between the L-band soil moisture estimates and the 5-cm depth in situ measurements require methodologies to mitigate the impact on their interpretations in soil moisture validation and algorithm development. Specifically, the metrics computed for the SMAP radiometer-based soil moisture product over WGEW will include errors resulting from rainfall, particularly during the monsoon season when the spatial distribution of soil moisture is especially heterogeneous.
NASA Astrophysics Data System (ADS)
Drusch, M.
2007-02-01
Satellite-derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analyzed from the modeled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. For this study, three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) have been performed for the 2-month period of June and July 2002: a control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating TMI (TRMM Microwave Imager) derived soil moisture over the southern United States. In this experimental run the satellite-derived soil moisture product is introduced through a nudging scheme using 6-hourly increments. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analyzed in the nudging experiment is the most accurate estimate when compared against in situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage.
Impact of SMOS soil moisture data assimilation on NCEP-GFS forecasts
NASA Astrophysics Data System (ADS)
Zhan, X.; Zheng, W.; Meng, J.; Dong, J.; Ek, M.
2012-04-01
Soil moisture is one of the few critical land surface state variables that have long memory to impact the exchanges of water, energy and carbon between the land surface and atmosphere. Accurate information about soil moisture status is thus required for numerical weather, seasonal climate and hydrological forecast as well as for agricultural production forecasts, water management and many other water related economic or social activities. Since the successful launch of ESA's soil moisture ocean salinity (SMOS) mission in November 2009, about 2 years of soil moisture retrievals has been collected. SMOS is believed to be the currently best satellite sensors for soil moisture remote sensing. Therefore, it becomes interesting to examine how the collected SMOS soil moisture data are compared with other satellite-sensed soil moisture retrievals (such as NASA's Advanced Microwave Scanning Radiometer -AMSR-E and EUMETSAT's Advanced Scatterometer - ASCAT)), in situ soil moisture measurements, and how these data sets impact numerical weather prediction models such as the Global Forecast System of NOAA-NCEP. This study implements the Ensemble Kalman filter in GFS to assimilate the AMSR-E, ASCAT and SMOS soil moisture observations after a quantitative assessment of their error rate based on in situ measurements from ground networks around contiguous United States. in situ soil moisture measurements from ground networks (such as USDA Soil Climate Analysis network - SCAN and NOAA's U.S. Climate Reference Network -USCRN) are used to evaluate the GFS soil moisture simulations (analysis). The benefits and uncertainties of assimilating the satellite data products in GFS are examined by comparing the GFS forecasts of surface temperature and rainfall with and without the assimilations. From these examinations, the advantages of SMOS soil moisture data products over other satellite soil moisture data sets will be evaluated. The next step toward operationally assimilating soil moisture and other land observations into GFS will also be discussed.
NASA Astrophysics Data System (ADS)
Singh, Gurjeet; Panda, Rabindra K.; Mohanty, Binayak P.; Jana, Raghavendra B.
2016-05-01
Strategic ground-based sampling of soil moisture across multiple scales is necessary to validate remotely sensed quantities such as NASA's Soil Moisture Active Passive (SMAP) product. In the present study, in-situ soil moisture data were collected at two nested scale extents (0.5 km and 3 km) to understand the trend of soil moisture variability across these scales. This ground-based soil moisture sampling was conducted in the 500 km2 Rana watershed situated in eastern India. The study area is characterized as sub-humid, sub-tropical climate with average annual rainfall of about 1456 mm. Three 3x3 km square grids were sampled intensively once a day at 49 locations each, at a spacing of 0.5 km. These intensive sampling locations were selected on the basis of different topography, soil properties and vegetation characteristics. In addition, measurements were also made at 9 locations around each intensive sampling grid at 3 km spacing to cover a 9x9 km square grid. Intensive fine scale soil moisture sampling as well as coarser scale samplings were made using both impedance probes and gravimetric analyses in the study watershed. The ground-based soil moisture samplings were conducted during the day, concurrent with the SMAP descending overpass. Analysis of soil moisture spatial variability in terms of areal mean soil moisture and the statistics of higher-order moments, i.e., the standard deviation, and the coefficient of variation are presented. Results showed that the standard deviation and coefficient of variation of measured soil moisture decreased with extent scale by increasing mean soil moisture.
NASA Astrophysics Data System (ADS)
Moghadas, Davood; Jadoon, Khan Zaib; McCabe, Matthew F.
2017-12-01
Monitoring spatiotemporal variations of soil water content (θ) is important across a range of research fields, including agricultural engineering, hydrology, meteorology and climatology. Low frequency electromagnetic induction (EMI) systems have proven to be useful tools in mapping soil apparent electrical conductivity (σa) and soil moisture. However, obtaining depth profile water content is an area that has not been fully explored using EMI. To examine this, we performed time-lapse EMI measurements using a CMD mini-Explorer sensor along a 10 m transect of a maize field over a 6 day period. Reference data were measured at the end of the profile via an excavated pit using 5TE capacitance sensors. In order to derive a time-lapse, depth-specific subsurface image of electrical conductivity (σ), we applied a probabilistic sampling approach, DREAM(ZS) , on the measured EMI data. The inversely estimated σ values were subsequently converted to θ using the Rhoades et al. (1976) petrophysical relationship. The uncertainties in measured σa, as well as inaccuracies in the inverted data, introduced some discrepancies between estimated σ and reference values in time and space. Moreover, the disparity between the measurement footprints of the 5TE and CMD Mini-Explorer sensors also led to differences. The obtained θ permitted an accurate monitoring of the spatiotemporal distribution and variation of soil water content due to root water uptake and evaporation. The proposed EMI measurement and modeling technique also allowed for detecting temporal root zone soil moisture variations. The time-lapse θ monitoring approach developed using DREAM(ZS) thus appears to be a useful technique to understand spatiotemporal patterns of soil water content and provide insights into linked soil moisture vegetation processes and the dynamics of soil moisture/infiltration processes.
Modeling soil moisture memory in savanna ecosystems
NASA Astrophysics Data System (ADS)
Gou, S.; Miller, G. R.
2011-12-01
Antecedent soil conditions create an ecosystem's "memory" of past rainfall events. Such soil moisture memory effects may be observed over a range of timescales, from daily to yearly, and lead to feedbacks between hydrological and ecosystem processes. In this study, we modeled the soil moisture memory effect on savanna ecosystems in California, Arizona, and Africa, using a system dynamics model created to simulate the ecohydrological processes at the plot-scale. The model was carefully calibrated using soil moisture and evapotranspiration data collected at three study sites. The model was then used to simulate scenarios with various initial soil moisture conditions and antecedent precipitation regimes, in order to study the soil moisture memory effects on the evapotranspiration of understory and overstory species. Based on the model results, soil texture and antecedent precipitation regime impact the redistribution of water within soil layers, potentially causing deeper soil layers to influence the ecosystem for a longer time. Of all the study areas modeled, soil moisture memory of California savanna ecosystem site is replenished and dries out most rapidly. Thus soil moisture memory could not maintain the high rate evapotranspiration for more than a few days without incoming rainfall event. On the contrary, soil moisture memory of Arizona savanna ecosystem site lasts the longest time. The plants with different root depths respond to different memory effects; shallow-rooted species mainly respond to the soil moisture memory in the shallow soil. The growing season of grass is largely depended on the soil moisture memory of the top 25cm soil layer. Grass transpiration is sensitive to the antecedent precipitation events within daily to weekly timescale. Deep-rooted plants have different responses since these species can access to the deeper soil moisture memory with longer time duration Soil moisture memory does not have obvious impacts on the phenology of woody plants, as these can maintain transpiration for a longer time even through the top soil layer dries out.
NASA Astrophysics Data System (ADS)
Mauritz, M.; Hale, I.; Lipson, D.
2010-12-01
Shrub <-> grassland conversions are a globally occurring phenomenon altering habitat structure, quality and nutrient cycling. Grasses and shrubs differ in their above and belowground biomass allocation, root architecture, phenology, litter quality and quantity. Conversion affects soil microbial communities, soil moisture and temperature and carbon (C) allocation patterns. However, the effect of conversion on C storage is regionally variable and there is no consistent direction of change. In Southern California invasion by annual grasses is a major threat to native shrub communities and it has been proposed that grass invasion increases NPP and ecosystem C storage (Wolkovich et al, 2009). In order to better understand how this shrub <-> grassland conversion changes ecosystem C storage it is important to understand the partitioning of soil respiration into autotrophic and heterotrophic components. Respiration was measured in plots under shrubs and grasses from February when it was cold and wet to July when it was hot and dry, capturing seasonal transitions in temperature and water availability. Roots were excluded under shrubs and grasses with root exclusion cores to quantify heterotrophic respiration. Using total soil respiration (Rt) = autotrophic respiration (root) (Ra)+ heterotrophic respiration (microbial) (Rh) the components contributing to total soil respiration can be evaluated. Respiration, soil moisture and temperature were measured daily at four hour intervals using Licor 8100 automated chamber measurements. Throughout the measurement period, Rt under grasses exceeded Rt under shrubs. Higher Rt levels under grasses were mainly due to higher Ra in grasses rather than changes in Rh. On average grass Ra was almost double shrub Ra. Higher grass respiration levels are partially explained by differences in soil moisture and temperature between shrubs and grasses. Respiration rates responded similarly to seasonal transitions regardless of treatment although Ra had a much stronger seasonal response. Across all months changes in respiration rates are explained by changes in soil moisture. However, within wet periods respiration rates increase with temperature. From February to April the soil was wet and respiration levels gradually increased as day time soil temperatures increased. From April onwards absence of precipitation events and rising soil temperatures caused the soils to rapidly dry out. As a result Rt rates declined and gradually converged with Rh levels. As soils dried, grass Ra declined more gradually than shrub Ra. This was contrary to our expectation that shrub roots would respire longer into the dry season because they have deeper roots and can access water. The high late-season levels of respiration observed in the grass community are possibly due to the presence of invasive forbs which have deep tap roots and continue to grow after the grasses have senesced. Conversion from native shrubs to annual invasive grasses increased both Rt and Rh which indicates changes in plant C allocation and decomposition rates of soil C. The continued encroachment of grasses on shrubland has important implications for the future of C storage in this system.
NASA Astrophysics Data System (ADS)
Chitu, Zenaida; Bogaard, Thom; Busuioc, Aristita; Burcea, Sorin; Adler, Mary-Jeanne; Sandric, Ionut
2015-04-01
Like in many parts of the world, in Romania, landslides represent recurrent phenomena that produce numerous damages to infrastructure every few years. Various studies on landslide occurrence in the Curvature Subcarpathians reveal that rainfall represents the most important triggering factor for landslides. Depending on rainfall characteristics and environmental factors different types of landslides were recorded in the Ialomita Subcarpathians: slumps, earthflows and complex landslides. This area, located in the western part of Curvature Subcarpathians, is characterized by a very complex geology whose main features are represented by the nappes system, the post tectonic covers, the diapirism phenomena and vertical faults. This work aims to investigate hydrological pre-conditions and rainfall characteristics which triggered slope failures in 2014 in the Ialomita Subcarpathians, Romania. Hydrological pre-conditions were investigated by means of water balance analysis and low flow techniques, while spatial and temporal patterns of rainfalls were estimated using radar data and six rain gauges. Additionally, six soil moisture stations that are fitted with volumetric soil moisture sensors and temperature soil sensors were used to estimate the antecedent soil moisture conditions.
NASA Technical Reports Server (NTRS)
White, Cary B.; Houser, Paul R.; Arain, Altaf M.; Yang, Zong-Liang; Syed, Kamran; Shuttleworth, W. James
1997-01-01
Meteorological measurements in the Walnut Gulch catchment in Arizona were used to synthesize a distributed, hourly-average time series of data across a 26.9 by 12.5 km area with a grid resolution of 480 m for a continuous 18-month period which included two seasons of monsoonal rainfall. Coupled surface-atmosphere model runs established the acceptability (for modelling purposes) of assuming uniformity in all meteorological variables other than rainfall. Rainfall was interpolated onto the grid from an array of 82 recording rain gauges. These meteorological data were used as forcing variables for an equivalent array of stand-alone Biosphere-Atmosphere Transfer Scheme (BATS) models to describe the evolution of soil moisture and surface energy fluxes in response to the prevalent, heterogeneous pattern of convective precipitation. The calculated area-average behaviour was compared with that given by a single aggregate BATS simulation forced with area-average meteorological data. Heterogeneous rainfall gives rise to significant but partly compensating differences in the transpiration and the intercepted rainfall components of total evaporation during rain storms. However, the calculated area-average surface energy fluxes given by the two simulations in rain-free conditions with strong heterogeneity in soil moisture were always close to identical, a result which is independent of whether default or site-specific vegetation and soil parameters were used. Because the spatial variability in soil moisture throughout the catchment has the same order of magnitude as the amount of rain failing in a typical convective storm (commonly 10% of the vegetation's root zone saturation) in a semi-arid environment, non-linearitv in the relationship between transpiration and the soil moisture available to the vegetation has limited influence on area-average surface fluxes.
Using Remotely Sensed Soil Moisture to Estimate Fire Risk in Tropical Peatlands
NASA Astrophysics Data System (ADS)
Dadap, N.; Cobb, A.; Hoyt, A.; Harvey, C. F.; Konings, A. G.
2017-12-01
Tropical peatlands in Equatorial Asia have become more vulnerable to fire due to deforestation and peatland drainage over the last 30 years. In these regions, water table depth has been shown to play an important role in mediating fire risk as it serves as a proxy for peat moisture content. However, water table depth observations are sparse and expensive. Soil moisture could provide a more direct indicator of fire risk than water table depth. In this study, we use new soil moisture retrievals from the Soil Moisture Active Passive (SMAP) satellite to demonstrate that - contrary to popular wisdom - remotely sensed soil moisture observations are possible over most Southeast Asian peatlands. Soil moisture estimation in this region was previously thought to be impossible over tropical peatlands because of dense vegetation cover. We show that vegetation density is sufficiently low across most Equatorial Asian peatlands to allow soil moisture estimation, and hypothesize that deforestation and other anthropogenic changes in land cover have combined to reduce overall vegetation density sufficient to allow soil moisture estimation. We further combine burned area estimates from the Global Fire Emissions Database and SMAP soil moisture retrievals to show that soil moisture provides a strong signal for fire risk in peatlands, with fires occurring at a much greater rate over drier soils. We will also develop an explicit fire risk model incorporating soil moisture with additional climatic, land cover, and anthropogenic predictor variables.
A microwave systems approach to measuring root zone soil moisture
NASA Technical Reports Server (NTRS)
Newton, R. W.; Paris, J. F.; Clark, B. V.
1983-01-01
Computer microwave satellite simulation models were developed and the program was used to test the ability of a coarse resolution passive microwave sensor to measure soil moisture over large areas, and to evaluate the effect of heterogeneous ground covers with the resolution cell on the accuracy of the soil moisture estimate. The use of realistic scenes containing only 10% to 15% bare soil and significant vegetation made it possible to observe a 60% K decrease in brightness temperature from a 5% soil moisture to a 35% soil moisture at a 21 cm microwave wavelength, providing a 1.5 K to 2 K per percent soil moisture sensitivity to soil moisture. It was shown that resolution does not affect the basic ability to measure soil moisture with a microwave radiometer system. Experimental microwave and ground field data were acquired for developing and testing a root zone soil moisture prediction algorithm. The experimental measurements demonstrated that the depth of penetration at a 21 cm microwave wavelength is not greater than 5 cm.
NASA Astrophysics Data System (ADS)
Minihane, M. R.; Freyberg, D. L.
2011-08-01
Identifying the dominant mechanisms controlling recharge in shallow sandy soils in tropical climates has received relatively little attention. Given the expansion of coastal fill using marine sands and the growth of coastal populations throughout the tropics, there is a need to better understand the nature of water balances in these settings. We use time series of field observations at a coastal landfill in Singapore coupled with numerical modeling using the Richards' equation to examine the impact of precipitation patterns on soil moisture dynamics, including percolation past the root zone and recharge, in such an environment. A threshold in total precipitation event depth, much more so than peak precipitation intensity, is the strongest event control on recharge. However, shallow antecedent moisture, and therefore the timing between events along with the seasonal depth to water table, also play significant roles in determining recharge amounts. For example, at our field site, precipitation events of less than 3 mm per event yield little to no direct recharge, but for larger events, moisture content changes below the root zone are linearly correlated to the product of the average antecedent moisture content and the total event precipitation. Therefore, water resources planners need to consider identifying threshold precipitation volumes, along with the multiple time scales that capture variability in event antecedent conditions and storm frequency in assessing the role of recharge in coastal water balances in tropical settings.
Plant water use affects competition for nitrogen: why drought favors invasive species in California.
Everard, Katherine; Seabloom, Eric W; Harpole, W Stanley; de Mazancourt, Claire
2010-01-01
Abstract: Classic resource competition theory typically treats resource supply rates as independent; however, nutrient supplies can be affected by plants indirectly, with important consequences for model predictions. We demonstrate this general phenomenon by using a model in which competition for nitrogen is mediated by soil moisture, with competitive outcomes including coexistence and multiple stable states as well as competitive exclusion. In the model, soil moisture regulates nitrogen availability through soil moisture dependence of microbial processes, leaching, and plant uptake. By affecting water availability, plants also indirectly affect nitrogen availability and may therefore alter the competitive outcome. Exotic annual species from the Mediterranean have displaced much of the native perennial grasses in California. Nitrogen and water have been shown to be potentially limiting in this system. We parameterize the model for a Californian grassland and show that soil moisture-mediated competition for nitrogen can explain the annual species' dominance in drier areas, with coexistence expected in wetter regions. These results are concordant with larger biogeographic patterns of grassland invasion in the Pacific states of the United States, in which annual grasses have invaded most of the hot, dry grasslands in California but perennial grasses dominate the moister prairies of northern California, Oregon, and Washington.
The Effect of Altered Soil Moisture on Hybridization Rate in a Crop-Wild System (Raphanus spp.)
Sneck, Michelle E.; Chaplin, Colleen; Mercer, Kristin L.
2016-01-01
Since plant mating choices are flexible and responsive to the environment, rates of spontaneous hybridization may vary across ecological clines. Developing a robust and predictive framework for rates of plant gene flow requires assessing the role of environmental sensitivity on plant reproductive traits, relative abundance, and pollen vectors. Therefore, across a soil moisture gradient, we quantified pollinator movement, life-history trait variation, and unidirectional hybridization rates from crop (Raphanus sativus) to wild (Raphanus raphanistrum) radish populations. Both radish species were grown together in relatively dry (no rain), relatively wet (double rain), or control soil moisture conditions in Ohio, USA. We measured wild and crop radish life-history, phenology and pollinator visitation patterns. To quantify hybridization rates from crop-to-wild species, we used a simply inherited morphological marker to detect F1 hybrid progeny. Although crop-to-wild hybridization did not respond to watering treatments, the abundance of hybrid offspring was higher in fruits produced late in the period of phenological overlap, when both species had roughly equal numbers of open flowers. Therefore, the timing of fruit production and its relationship to flowering overlap may be more important to hybrid zone formation in Raphanus spp. than soil moisture or pollen vector movements. PMID:27936159
USDA-ARS?s Scientific Manuscript database
In situ measurements of soil moisture are invaluable for calibrating and validating land surface models and satellite-based soil moisture retrievals. In addition, long-term time series of in situ soil moisture measurements themselves can reveal trends in the water cycle related to climate or land co...
NASA Astrophysics Data System (ADS)
Zhao, M.; A, G.; Velicogna, I.; Kimball, J. S.
2016-12-01
Drought is one of the major drivers of the reduction in terrestrial ecosystem productivity. Ecosystem productivity may not primarily be driven by present moisture conditions. Instead, earlier drought conditions may have the largest impact on vegetation growth. We investigate this time-lag effect in Australia by comparing MODIS NDVI data with multiple drought metrics that are sensitive to water deficits at different soil depths. These metrics include 1) soil moisture (SM) from microwave satellite-retrievals that is sensitive to top-centimeter SM variations; 2) the Palmer drought severity index (PDSI) which is sensitive to atmosphere moisture demand and shallow-depth ( 1 meter) SM changes; 3) the newly developed GRACE drought severity index (GRACE-DSI) that is sensitive to changes in overall terrestrial water storage component of the hydrologic cycle and complements satellite SM observations and the PDSI by providing information about deep groundwater storage changes. We quantify the temporal lags between NDVI and these drought metrics during 2002-2014. We find that the NDVI closely evolves with the GRACE-DSI but lags 1-3 months behind the PDSI and satellite-retrievals of SM in western Australia. This pattern however is reverse in eastern Australia. These contrasting NDVI response patterns indicate that vegetation in western Australia is more sensitive to water storage in relatively deeper soil depths than vegetation in the east. This suggests that, in western Australia, vegetation might experience a protracted recovery period after extreme drought since, usually, moisture recharge in deeper soil depths takes a relatively longer period. We conclude that the time-lag effect in Australia is associated with the relative depth of SM to which vegetation is most sensitive. We suggest that characterizing the relative vegetation moisture sensitive depth at the global scale is important for understanding the nature and pace of terrestrial ecosystem recovery from extreme drought events under the background of global climate change.
NASA Astrophysics Data System (ADS)
Hunt, E. D.; Otkin, J.; Zhong, Y.
2017-12-01
Flash drought, characterized by the rapid onset of abnormally warm and dry weather conditions that leads to the rapid depletion of soil moisture and rapid deteriorations in vegetation health. Flash recovery, on the other hand, is characterized by a period(s) of intense precipitation where drought conditions are quickly eradicated and may be replaced by saturated soils and flooding. Both flash drought and flash recovery are closely tied to the rapid depletion or recharge of root zone soil moisture; therefore, soil moisture observations are very useful for monitoring their evolution. However, in-situ soil moisture observations tend to be concentrated over small regions and thus other methods are needed to provide a spatially continuous depiction of soil moisture conditions. One option is to use top soil moisture retrievals from the Soil Moisture Active Passive (SMAP) sensor. SMAP provides routine coverage of surface soil moisture (0-5 cm) over most of the globe, including the timespan (2015) and region of interest (Texas) that are the focus of our study. This region had an unusual sequence of flash recovery-flash drought-flash recovery during an six-month period during 2015 that provides a valuable case study of rapid transitions between extreme soil moisture conditions. During this project, SMAP soil moisture retrievals are being used in combination with in-situ soil moisture observations and assimilated into the Land Information System (LIS) to provide information about soil moisture content. LIS also provides greenness vegetation fraction data over large regions. The relationship between soil moisture and vegetation conditions and the response of the vegetation to the rapidly changing conditions are also assessed using the satellite thermal infrared based Evaporative Stress Index (ESI) that depicts anomalies in evapotranspiration, along with other vegetation datasets (leaf area index, greenness fraction) derived using MODIS observations. Preliminary results with the Noah land surface model (inside of LIS) shows that it broadly captured the soil moisture evolution during the 2015 sequence but tended to underestimate the magnitude of soil moisture anomalies. The ESI also showed negative anomalies during the drought. These and other results will be presented at the annual meeting.
Dirmeyer, Paul A.; Wu, Jiexia; Norton, Holly E.; Dorigo, Wouter A.; Quiring, Steven M.; Ford, Trenton W.; Santanello, Joseph A.; Bosilovich, Michael G.; Ek, Michael B.; Koster, Randal D.; Balsamo, Gianpaolo; Lawrence, David M.
2018-01-01
Four land surface models in uncoupled and coupled configurations are compared to observations of daily soil moisture from 19 networks in the conterminous United States to determine the viability of such comparisons and explore the characteristics of model and observational data. First, observations are analyzed for error characteristics and representation of spatial and temporal variability. Some networks have multiple stations within an area comparable to model grid boxes; for those we find that aggregation of stations before calculation of statistics has little effect on estimates of variance, but soil moisture memory is sensitive to aggregation. Statistics for some networks stand out as unlike those of their neighbors, likely due to differences in instrumentation, calibration and maintenance. Buried sensors appear to have less random error than near-field remote sensing techniques, and heat dissipation sensors show less temporal variability than other types. Model soil moistures are evaluated using three metrics: standard deviation in time, temporal correlation (memory) and spatial correlation (length scale). Models do relatively well in capturing large-scale variability of metrics across climate regimes, but poorly reproduce observed patterns at scales of hundreds of kilometers and smaller. Uncoupled land models do no better than coupled model configurations, nor do reanalyses outperform free-running models. Spatial decorrelation scales are found to be difficult to diagnose. Using data for model validation, calibration or data assimilation from multiple soil moisture networks with different types of sensors and measurement techniques requires great caution. Data from models and observations should be put on the same spatial and temporal scales before comparison. PMID:29645013
NASA Technical Reports Server (NTRS)
Dirmeyer, Paul A.; Wu, Jiexia; Norton, Holly E.; Dorigo, Wouter A.; Quiring, Steven M.; Ford, Trenton W.; Santanello, Joseph A., Jr.; Bosilovich, Michael G.; Ek, Michael B.; Koster, Randal Dean;
2016-01-01
Four land surface models in uncoupled and coupled configurations are compared to observations of daily soil moisture from 19 networks in the conterminous United States to determine the viability of such comparisons and explore the characteristics of model and observational data. First, observations are analyzed for error characteristics and representation of spatial and temporal variability. Some networks have multiple stations within an area comparable to model grid boxes; for those we find that aggregation of stations before calculation of statistics has little effect on estimates of variance, but soil moisture memory is sensitive to aggregation. Statistics for some networks stand out as unlike those of their neighbors, likely due to differences in instrumentation, calibration and maintenance. Buried sensors appear to have less random error than near-field remote sensing techniques, and heat dissipation sensors show less temporal variability than other types. Model soil moistures are evaluated using three metrics: standard deviation in time, temporal correlation (memory) and spatial correlation (length scale). Models do relatively well in capturing large-scale variability of metrics across climate regimes, but poorly reproduce observed patterns at scales of hundreds of kilometers and smaller. Uncoupled land models do no better than coupled model configurations, nor do reanalyses out perform free-running models. Spatial decorrelation scales are found to be difficult to diagnose. Using data for model validation, calibration or data assimilation from multiple soil moisture networks with different types of sensors and measurement techniques requires great caution. Data from models and observations should be put on the same spatial and temporal scales before comparison.
Dirmeyer, Paul A; Wu, Jiexia; Norton, Holly E; Dorigo, Wouter A; Quiring, Steven M; Ford, Trenton W; Santanello, Joseph A; Bosilovich, Michael G; Ek, Michael B; Koster, Randal D; Balsamo, Gianpaolo; Lawrence, David M
2016-04-01
Four land surface models in uncoupled and coupled configurations are compared to observations of daily soil moisture from 19 networks in the conterminous United States to determine the viability of such comparisons and explore the characteristics of model and observational data. First, observations are analyzed for error characteristics and representation of spatial and temporal variability. Some networks have multiple stations within an area comparable to model grid boxes; for those we find that aggregation of stations before calculation of statistics has little effect on estimates of variance, but soil moisture memory is sensitive to aggregation. Statistics for some networks stand out as unlike those of their neighbors, likely due to differences in instrumentation, calibration and maintenance. Buried sensors appear to have less random error than near-field remote sensing techniques, and heat dissipation sensors show less temporal variability than other types. Model soil moistures are evaluated using three metrics: standard deviation in time, temporal correlation (memory) and spatial correlation (length scale). Models do relatively well in capturing large-scale variability of metrics across climate regimes, but poorly reproduce observed patterns at scales of hundreds of kilometers and smaller. Uncoupled land models do no better than coupled model configurations, nor do reanalyses outperform free-running models. Spatial decorrelation scales are found to be difficult to diagnose. Using data for model validation, calibration or data assimilation from multiple soil moisture networks with different types of sensors and measurement techniques requires great caution. Data from models and observations should be put on the same spatial and temporal scales before comparison.
NASA Astrophysics Data System (ADS)
Christiansen, Jesper; Elberling, Bo; Ribbons, Relena; Hedo, Javier; José Fernández Alonso, Maria; Krych, Lukasz; Sandris Nielsen, Dennis; Kitzler, Barbara
2016-04-01
Reactive nitrogen (N) in the environment has doubled relative to the natural global N cycle with consequences for biogeochemical cycling of soil N. Also, climate change is expected to alter precipitation patterns and increase soil temperatures which in Arctic environments may accelerate permafrost thawing. The combination of changes in the soil N cycle and hydrological regimes may alter microbial transformations of soil N with unknown impacts on N2O and N2 emissions from temperate and Arctic soils. We present the first results of soil N2O and N2 emissions, chemistry and microbial communities over soil hydrological gradients (upslope, intermediate and wet) across a global N deposition gradient. The global gradient covered an N-limited high Arctic tundra (Zackenberg-ZA), a pacific temperate rain forest (Vancouver Island-VI) and an N saturated forest in Austria (Klausenleopoldsdorf-KL). The N2O and N2 emissions were measured from intact cores at field moisture in a He-atmosphere system. Extractable NH4+ and NO3-, organic and microbial C and N and potential enzyme-activities were determined on soil samples. Soil genomic DNA was subjected to MiSeq-based tag-encoded 16S rRNA and ITS gene amplicon sequencing for the bacterial and fungal community structure. Similar soil moisture levels were observed for the upslope, intermediate and wet locations at ZA, VI and KL, respectively. Extractable NO3- was highest at the N rich KL and lowest at ZA and showed no trend with soil moisture similar to NH4+. At ZA and VI soil NH4+ was higher than NO3- indicating a tighter N cycling. N2O emissions increased with soil moisture at all sites. The N2O emissions for the wet locations ranked similarly to NO3- with the largest response to soil moisture at KL. N2 emissions were remarkably similar across the sites and increased with soil wetness. Microbial C and N also increased with soil moisture and were overall lowest at the N rich KL site. The potential activity of protease enzyme was site dependent indicating different capacities for N turnover of the microbial community. These findings indicate a positive feedback between increased soil N and wetter soils that promotes N2O relative to N2. These interactions may be site specific due to differential functional diversity of the soil microbial community. Future characterization of the community structure will shed light on the link between the role of microbial groups related to soil N cycling pathways and the resultant partitioning of N2O and N2 emissions in these contrasting environments.
Evaluation of a Soil Moisture Data Assimilation System Over West Africa
NASA Astrophysics Data System (ADS)
Bolten, J. D.; Crow, W.; Zhan, X.; Jackson, T.; Reynolds, C.
2009-05-01
A crucial requirement of global crop yield forecasts by the U.S. Department of Agriculture (USDA) International Production Assessment Division (IPAD) is the regional characterization of surface and sub-surface soil moisture. However, due to the spatial heterogeneity and dynamic nature of precipitation events and resulting soil moisture, accurate estimation of regional land surface-atmosphere interactions based sparse ground measurements is difficult. IPAD estimates global soil moisture using daily estimates of minimum and maximum temperature and precipitation applied to a modified Palmer two-layer soil moisture model which calculates the daily amount of soil moisture withdrawn by evapotranspiration and replenished by precipitation. We attempt to improve upon the existing system by applying an Ensemble Kalman filter (EnKF) data assimilation system to integrate surface soil moisture retrievals from the NASA Advanced Microwave Scanning Radiometer (AMSR-E) into the USDA soil moisture model. This work aims at evaluating the utility of merging satellite-retrieved soil moisture estimates with the IPAD two-layer soil moisture model used within the DBMS. We present a quantitative analysis of the assimilated soil moisture product over West Africa (9°N- 20°N; 20°W-20°E). This region contains many key agricultural areas and has a high agro- meteorological gradient from desert and semi-arid vegetation in the North, to grassland, trees and crops in the South, thus providing an ideal location for evaluating the assimilated soil moisture product over multiple land cover types and conditions. A data denial experimental approach is utilized to isolate the added utility of integrating remotely-sensed soil moisture by comparing assimilated soil moisture results obtained using (relatively) low-quality precipitation products obtained from real-time satellite imagery to baseline model runs forced with higher quality rainfall. An analysis of root-zone anomalies for each model simulation suggests that the assimilation of AMSR-E surface soil moisture retrievals can add significant value to USDA root-zone predictions derived from real-time satellite precipitation products.
NASA Astrophysics Data System (ADS)
Henneberg, Olga; Ament, Felix; Grützun, Verena
2018-05-01
Soil moisture amount and distribution control evapotranspiration and thus impact the occurrence of convective precipitation. Many recent model studies demonstrate that changes in initial soil moisture content result in modified convective precipitation. However, to quantify the resulting precipitation changes, the chaotic behavior of the atmospheric system needs to be considered. Slight changes in the simulation setup, such as the chosen model domain, also result in modifications to the simulated precipitation field. This causes an uncertainty due to stochastic variability, which can be large compared to effects caused by soil moisture variations. By shifting the model domain, we estimate the uncertainty of the model results. Our novel uncertainty estimate includes 10 simulations with shifted model boundaries and is compared to the effects on precipitation caused by variations in soil moisture amount and local distribution. With this approach, the influence of soil moisture amount and distribution on convective precipitation is quantified. Deviations in simulated precipitation can only be attributed to soil moisture impacts if the systematic effects of soil moisture modifications are larger than the inherent simulation uncertainty at the convection-resolving scale. We performed seven experiments with modified soil moisture amount or distribution to address the effect of soil moisture on precipitation. Each of the experiments consists of 10 ensemble members using the deep convection-resolving COSMO model with a grid spacing of 2.8 km. Only in experiments with very strong modification in soil moisture do precipitation changes exceed the model spread in amplitude, location or structure. These changes are caused by a 50 % soil moisture increase in either the whole or part of the model domain or by drying the whole model domain. Increasing or decreasing soil moisture both predominantly results in reduced precipitation rates. Replacing the soil moisture with realistic fields from different days has an insignificant influence on precipitation. The findings of this study underline the need for uncertainty estimates in soil moisture studies based on convection-resolving models.
Moisture-strength-constructability guidelines for subgrade foundation soils found in Indiana.
DOT National Transportation Integrated Search
2016-09-01
Soil moisture is an important indicator of constructability in the field. Construction activities become difficult when the soil moisture content is excessive, especially in fine-grained soils. Change orders caused by excessive soil moisture during c...
NASA Astrophysics Data System (ADS)
Navarro-Perez, E.; Natali, S.; Schade, J. D.; Holmes, R. M.; Mann, P. J.
2017-12-01
Climate change has altered patterns of temperature, emissions of greenhouse gases and increased fire frequencies, especially in the Artic. Until recently, the Arctic has been a carbon (C) sink, but have begun releasing C in recent years, likely in response to warming temperatures, permafrost thaw and resulting changes in microbial processes. In addition, increases in fire frequency and intensity are changing vegetation patterns, particularly the relative importance of mosses and lichens. These changes alter soil temperatures, nutrient availability, and moisture, consequently affecting microbial processes and the release of greenhouse gases (GHG) such as N2O, CO2 and CH4. The objective of this research was to understand how recent fires in the Yukon-Kuskokwim River Delta in southwest Alaska are affecting the emission of GHGs from peat plateau soils. We hypothesized that the presence of mosses and lichen would change soil moisture and temperature, leading to changes in GHG production after fire. We also hypothesized that fire would increase soil nutrient availability, which would increase microbial process rates and GHG emissions. To test these hypotheses, we measured N2O, CH4 and CO2 fluxes from moss and lichen patches in three burned and unburned areas and collected soil cores for analyses of gravimetric soil moisture, carbon and nitrogen concentrations, and N mineralization rates. Soil temperatures were measured in the field with a thermocouple. Results demonstrated low but measurable CH4 emissions from all patches, suggesting peat plateaus in the YK Delta may be CH4 sources. In addition, CO2 emissions were higher in soils under lichen patches in burned areas than unburned controls. Finally, results suggest that burned areas have higher concentrations of extractable NH4 and NO3, and that increased N may be increasing soil respiration.
NASA Astrophysics Data System (ADS)
Shi, Y.; Eissenstat, D. M.; Davis, K. J.; He, Y.
2016-12-01
Forest carbon processes are affected by, among other factors, soil moisture, soil temperature, soil nutrients and solar radiation. Most of the current biogeochemical models are 1-D and represent one point in space. Therefore, they cannot resolve the topographically driven hill-slope land surface heterogeneity or the spatial pattern of nutrient availability. A spatially distributed forest ecosystem model, Flux-PIHM-BGC, has been developed by coupling a 1-D mechanistic biogeochemical model Biome-BGC (BBGC) with a spatially distributed land surface hydrologic model, Flux-PIHM. Flux-PIHM is a coupled physically based model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. In the coupled Flux-PIHM-BGC model, each Flux-PIHM model grid couples a 1-D BBGC model, while soil nitrogen is transported among model grids via subsurface water flow. In each grid, Flux-PIHM provides BBGC with soil moisture, soil temperature, and solar radiation information, while BBGC provides Flux-PIHM with leaf area index. The coupled Flux-PIHM-BGC model has been implemented at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). Model results suggest that the vegetation and soil carbon distribution is primarily constrained by nitorgen availability (affected by nitorgen transport via topographically driven subsurface flow), and also constrained by solar radiation and root zone soil moisture. The predicted vegetation and soil carbon distribution generally agrees with the macro pattern observed within the watershed. The coupled ecosystem-hydrologic model provides an important tool to study the impact of topography on watershed carbon processes, as well as the impact of climate change on water resources.
Du, Baoming; Liu, Chunjiang; Kang, Hongzhang; Zhu, Penghua; Yin, Shan; Shen, Guangrong; Hou, Jingli; Ilvesniemi, Hannu
2014-01-01
Decreasing temperature and increasing precipitation along altitude gradients are typical mountain climate in subtropical China. In such a climate regime, identifying the patterns of the C stable isotope composition (δ13C) in plants and soils and their relations to the context of climate change is essential. In this study, the patterns of δ13C variation were investigated for tree leaves, litters, and soils in the natural secondary forests at four altitudes (219, 405, 780, and 1268 m a.s.l.) in Lushan Mountain, central subtropical China. For the dominant trees, both leaf and leaf-litter δ13C decreased as altitude increased from low to high altitude, whereas surface soil δ13C increased. The lower leaf δ13C at high altitudes was associated with the high moisture-related discrimination, while the high soil δ13C is attributed to the low temperature-induced decay. At each altitude, soil δ13C became enriched with soil depth. Soil δ13C increased with soil C concentrations and altitude, but decreased with soil depth. A negative relationship was also found between O-alkyl C and δ13C in litter and soil, whereas a positive relationship was observed between aromatic C and δ13C. Lower temperature and higher moisture at high altitudes are the predominant control factors of δ13C variation in plants and soils. These results help understand C dynamics in the context of global warming. PMID:24466099
Alba, Christina; NeSmith, Julienne E; Fahey, Catherine; Angelini, Christine; Flory, Stephen Luke
2017-03-01
Abiotic global change drivers affect ecosystem structure and function, but how they interact with biotic factors such as invasive plants is understudied. Such interactions may be additive, synergistic, or offsetting, and difficult to predict. We present methods to test the individual and interactive effects of drought and plant invasion on native ecosystems. We coupled a factorial common garden experiment containing resident communities exposed to drought (imposed with rainout shelters) and invasion with a field experiment where the invader was removed from sites spanning a natural soil moisture gradient. We detail treatments and their effects on abiotic conditions, including soil moisture, light, temperature, and humidity, which shape community and ecosystem responses. Ambient precipitation during the garden experiment exceeded historic norms despite severe drought in prior years. Soil moisture was 48% lower in drought than ambient plots, but the invader largely offset drought effects. Additionally, temperature and light were lower and humidity higher in invaded plots. Field sites spanned up to a 10-fold range in soil moisture and up to a 2.5-fold range in light availability. Invaded and resident vegetation did not differentially mediate soil moisture, unlike in the garden experiment. Herbicide effectively removed invaded and resident vegetation, with removal having site-specific effects on soil moisture and light availability. However, light was generally higher in invader-removal than control plots, whereas resident removal had less effect on light, similar to the garden experiment. Invasion mitigated a constellation of abiotic conditions associated with drought stress in the garden experiment. In the field, where other factors co-varied, these patterns did not emerge. Still, neither experiment suggested that drought and invasion will have synergistic negative effects on ecosystems, although invasion can limit light availability. Coupling factorial garden experiments with field experiments across environmental gradients will be effective for predicting how multiple stressors interact in natural systems.
NASA Astrophysics Data System (ADS)
Davis, M. L.; Konkel, J.; Welker, J. M.; Schaeffer, S. M.
2017-12-01
Soil moisture and soil temperature are critical to plant community distribution and soil carbon cycle processes in High Arctic tundra. As environmental drivers of soil biochemical processes, the predictability of soil moisture and soil temperature by vegetation zone in High Arctic landscapes has significant implications for the use of satellite imagery and vegetation distribution maps to estimate of soil gas flux rates. During the 2017 growing season, we monitored soil moisture and soil temperature weekly at 48 sites in dry tundra, moist tundra, and wet grassland vegetation zones in a High Arctic lake basin. Soil temperature in all three communities reflected fluctuations in air temperature throughout the season. Mean soil temperature was highest in the dry tundra community at 10.5±0.6ºC, however, did not differ between moist tundra and wet grassland communities (2.7±0.6 and 3.1±0.5ºC, respectively). Mean volumetric soil moisture differed significantly among all three plant communities with the lowest and highest soil moisture measured in the dry tundra and wet grassland (30±1.2 and 65±2.7%), respectively. For all three communities, soil moisture was highest during the early season snow melt. Soil moisture in wet grassland remained high with no significant change throughout the season, while significant drying occurred in dry tundra. The most significant change in soil moisture was measured in moist tundra, ranging from 61 to 35%. Our results show different gradients in soil moisture variability within each plant community where: 1) soil moisture was lowest in dry tundra with little change, 2) highest in wet grassland with negligible change, and 3) variable in moist tundra which slowly dried but remained moist. Consistently high soil moisture in wet grassland restricts this plant community to areas with no significant drying during summer. The moist tundra occupies the intermediary areas between wet grassland and dry tundra and experiences the widest range of soil moisture variability. As climate projections predict wetter summers in the High Arctic, expansion of areas with seasonally inundated soils and increased soil moisture variability could result in an expansion of wet grassland and moist tundra communities with a commensurate decrease in dry tundra area.
Response of spectral vegetation indices to soil moisture in grasslands and shrublands
Zhang, Li; Ji, Lei; Wylie, Bruce K.
2011-01-01
The relationships between satellite-derived vegetation indices (VIs) and soil moisture are complicated because of the time lag of the vegetation response to soil moisture. In this study, we used a distributed lag regression model to evaluate the lag responses of VIs to soil moisture for grasslands and shrublands at Soil Climate Analysis Network sites in the central and western United States. We examined the relationships between Moderate Resolution Imaging Spectroradiometer (MODIS)-derived VIs and soil moisture measurements. The Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) showed significant lag responses to soil moisture. The lag length varies from 8 to 56 days for NDVI and from 16 to 56 days for NDWI. However, the lag response of NDVI and NDWI to soil moisture varied among the sites. Our study suggests that the lag effect needs to be taken into consideration when the VIs are used to estimate soil moisture.
Soil Moisture Project Evaluation Workshop
NASA Technical Reports Server (NTRS)
Gilbert, R. H. (Editor)
1980-01-01
Approaches planned or being developed for measuring and modeling soil moisture parameters are discussed. Topics cover analysis of spatial variability of soil moisture as a function of terrain; the value of soil moisture information in developing stream flow data; energy/scene interactions; applications of satellite data; verifying soil water budget models; soil water profile/soil temperature profile models; soil moisture sensitivity analysis; combinations of the thermal model and microwave; determing planetary roughness and field roughness; how crust or a soil layer effects microwave return; truck radar; and truck/aircraft radar comparison.
Improving Evapotranspiration Estimates Using Multi-Platform Remote Sensing
NASA Astrophysics Data System (ADS)
Knipper, Kyle; Hogue, Terri; Franz, Kristie; Scott, Russell
2016-04-01
Understanding the linkages between energy and water cycles through evapotranspiration (ET) is uniquely challenging given its dependence on a range of climatological parameters and surface/atmospheric heterogeneity. A number of methods have been developed to estimate ET either from primarily remote-sensing observations, in-situ measurements, or a combination of the two. However, the scale of many of these methods may be too large to provide needed information about the spatial and temporal variability of ET that can occur over regions with acute or chronic land cover change and precipitation driven fluxes. The current study aims to improve the spatial and temporal variability of ET utilizing only satellite-based observations by incorporating a potential evapotranspiration (PET) methodology with satellite-based down-scaled soil moisture estimates in southern Arizona, USA. Initially, soil moisture estimates from AMSR2 and SMOS are downscaled to 1km through a triangular relationship between MODIS land surface temperature (MYD11A1), vegetation indices (MOD13Q1/MYD13Q1), and brightness temperature. Downscaled soil moisture values are then used to scale PET to actual ET (AET) at a daily, 1km resolution. Derived AET estimates are compared to observed flux tower estimates, the North American Land Data Assimilation System (NLDAS) model output (i.e. Variable Infiltration Capacity (VIC) Macroscale Hydrologic Model, Mosiac Model, and Noah Model simulations), the Operational Simplified Surface Energy Balance Model (SSEBop), and a calibrated empirical ET model created specifically for the region. Preliminary results indicate a strong increase in correlation when incorporating the downscaling technique to original AMSR2 and SMOS soil moisture values, with the added benefit of being able to decipher small scale heterogeneity in soil moisture (riparian versus desert grassland). AET results show strong correlations with relatively low error and bias when compared to flux tower estimates. In addition, AET results show improved bias to those reported by SSEBop, with similar correlations and errors when compared to the empirical ET model. Spatial patterns of estimated AET display patterns representative of the basin's elevation and vegetation characteristics, with improved spatial resolution and temporal heterogeneity when compared to previous models.
Beiler, Kevin J; Simard, Suzanne W; Lemay, Valerie; Durall, Daniel M
2012-12-01
Understanding ectomycorrhizal fungal (EMF) community structure is limited by a lack of taxonomic resolution and autecological information. Rhizopogon vesiculosus and Rhizopogon vinicolor (Basidiomycota) are morphologically and genetically related species. They are dominant members of interior Douglas-fir (Pseudotsuga menziesii var. glauca) EMF communities, but mechanisms leading to their coexistence are unknown. We investigated the microsite associations and foraging strategy of individual R. vesiculosus and R. vinicolor genets. Mycelia spatial patterns, pervasiveness and root colonization patterns of fungal genets were compared between Rhizopogon species and between xeric and mesic soil moisture regimes. Rhizopogon spp. mycelia were systematically excavated from the soil and identified using microsatellite DNA markers. Rhizopogon vesiculosus mycelia occurred at greater depth, were more spatially pervasive, and colonized more tree roots than R. vinicolor mycelia. Both species were frequently encountered in organic layers and between the interface of organic and mineral horizons. They were particularly abundant within microsites associated with soil moisture retention. The occurrence of R. vesiculosus shifted in the presence of R. vinicolor towards mineral soil horizons, where R. vinicolor was mostly absent. This suggests that competition and foraging strategy may contribute towards the vertical partitioning observed between these species. Rhizopogon vesiculosus and R. vinicolor mycelia systems occurred at greater mean depths and were more pervasive in mesic plots compared with xeric plots. The spatial continuity and number of trees colonized by genets of each species did not significantly differ between soil moisture regimes. © 2012 Blackwell Publishing Ltd.
Huang, Ming; Wu, Jin-Zhi; Li, You-Jun; Yao, Yu-Qing; Zhang, Can-Jun; Cai, Dian-Xiong; Jin, Ke
2009-06-01
A field experiment was conducted to study the effects of different tillage patterns, i.e., deep plowing once, no-tillage, subsoiling, and conventional tillage, on the flag leaf senescence and grain yield of winter wheat, as well as the soil moisture and nutrient status under dry farming. No-tillage and subsoiling increased the SOD and POD activities and the chlorophyll and soluble protein contents, decreased the MDA and O2(-.) contents, and postponed the senescence of flag leaf. Under non-tillage and subsoiling, the moisture content in 0-40 cm soil layer at anthesis and grain-filling stages was decreased by 4.13% and 6.23% and by 5.50% and 9.27%, respectively, and the contents of alkali-hydrolysable N, available P, and available K in this soil layer also increased significantly, compared with those under conventional tillage. Deep plowing once decreased the moisture content and increased the nutrients contents in 0-40 cm soil layer, but the decrement and increment were not significant. The post-anthesis biomass, post-anthesis dry matter translocation rate, and grain yield under no-tillage and subsoiling were 4.34% and 4.76%, 15.56% and 13.51%, and 10.22% and 9.26% higher than those under conventional tillage, respectively. It could be concluded that no-tillage and subsoiling provided better soil conditions for the post-anthesis growth of winter wheat, under which, the flag leaf senescence postponed, post-anthesis dry matter accumulation and translocation accelerated, and grain yield increased significantly, being the feasible tillage practices in dry farming winter wheat areas.
Malcolm North; Jiquan Chen; Brian Oakley; Bo Song; Mark Rudnicki; Andrew Gray; Jim Innes
2004-01-01
With fire suppression, many western forests are expected to have fewer gaps and higher stem density of shade-tolerant species as light competition becomes a more significant influence on stand pattern and composition. We compared species composition, structure, spatial pattern, and environmental factors such as light and soil moisture between two old-growth forests:...
NASA Technical Reports Server (NTRS)
Vandegriend, A. A.; Oneill, P. E.
1986-01-01
Using the De Vries models for thermal conductivity and heat capacity, thermal inertia was determined as a function of soil moisture for 12 classes of soil types ranging from sand to clay. A coupled heat and moisture balance model was used to describe the thermal behavior of the top soil, while microwave remote sensing was used to estimate the soil moisture content of the same top soil. Soil hydraulic parameters are found to be very highly correlated with the combination of soil moisture content and thermal inertia at the same moisture content. Therefore, a remotely sensed estimate of the thermal behavior of the soil from diurnal soil temperature observations and an independent remotely sensed estimate of soil moisture content gives the possibility of estimating soil hydraulic properties by remote sensing.
NASA Technical Reports Server (NTRS)
Bolten, John; Crow, Wade
2012-01-01
The added value of satellite-based surface soil moisture retrievals for agricultural drought monitoring is assessed by calculating the lagged rank correlation between remotely-sensed vegetation indices (VI) and soil moisture estimates obtained both before and after the assimilation of surface soil moisture retrievals derived from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) into a soil water balance model. Higher soil moisture/VI lag correlations imply an enhanced ability to predict future vegetation conditions using estimates of current soil moisture. Results demonstrate that the assimilation of AMSR-E surface soil moisture retrievals substantially improve the performance of a global drought monitoring system - particularly in sparsely-instrumented areas of the world where high-quality rainfall observations are unavailable.
NASA Astrophysics Data System (ADS)
Callegaro, Chiara; Ursino, Nadia
2016-04-01
Self-organizing vegetation patterns are natural water harvesting systems in arid and semi-arid regions of the world and should be imitated when designing man-managed water-harvesting systems for rain-fed crop. Disconnected vegetated and bare zones, functioning as a source-sink system of resources, sustain vegetation growth and reduce water and soil losses. Mechanisms such as soil crusting over bare areas and soil loosening in vegetated areas feed back to the local net facilitation effect and contribute to maintain the patterned landscape structure. Dis-connectivity of run-off production and run-on infiltration sites reduces runoff production at the landscape scale, and increases water retention in the vegetated patches. What is the effect of species adaptation to different resource niches on the landscape structure? A minimal model for two coexisting species and soil moisture balance was formulated, to improve our understanding of the effects of species differentiation on the dynamics of plants and water at single-pattern and landscape scale within a tiger bush type ecosystem. A basic assumption of our model was that soil moisture availability is a proxy for the environmental niche of plant species. Connectivity and dis-connectivity of specific niches of adaptation of two differing plant species was an input parameter of our model, in order to test the effect of coexistence on the ecosystem structure. The ecosystem structure is the model outcome, including: patterns persistence of coexisting species; patterns persistence of one species with exclusion of the other; patterns decline with just one species surviving in a non organized structure; bare landscape with loss of both species. Results suggest that pattern-forming-species communities arise as a result of complementary niche adaptation (niche dis-connecivity), whereas niche superposition (niche connectivity) may lead to impoverishment of environmental resources and loss of vegetation cover and diversity.
Vadose Zone as a Potential Carbon Source: a Look at Seasonal Spikes in Hyporheic Zone pCO2
NASA Astrophysics Data System (ADS)
Brandes, J.
2016-12-01
Connections between soils, terrestrial streams and the atmosphere are not yet thoroughly understood as contributing factors to the global carbon budget. We collected data from an undisturbed soil column adjacent to a small stream in a forested watershed in the H. J. Andrews Experimental Forest in the Western Cascades of Oregon in the United States. Our data includes: CO2 (ppm); temperature (oC); depth below water table (m); and soil moisture (cm3/cm3) and spans approximately one year. We are analyzing the data using the gradient method and have observed distinct seasonal patterns which may support previous research describing temporal processes. We can expect to see changing soil moisture characteristics which may promote either vertical CO2 diffusion out of the surface or vertical/lateral advection into subsurface flow. We hypothesize that there is flushing of soil CO2 into the hyporheic zone during precipitation events following soil CO2 buildup.
NASA Astrophysics Data System (ADS)
Usowicz, J. B.; Marczewski, W.; Usowicz, B.; Lukowski, M. I.; Lipiec, J.; Slominski, J.
2012-04-01
Soil moisture, together with soil and vegetation characteristics, plays an important role in exchange of water and energy between the land surface and the atmospheric boundary layer. Accurate knowledge of current and future spatial and temporal variation in soil moisture is not well known, nor easy to measure or predict. Knowledge of soil moisture in surface and root zone soil moisture is critical for achieving sustainable land and water management. The importance of SM is so high that this ECV is recommended by GCOS (Global Climate Observing System) to any attempts of evaluating of effects the climate change, and therefore it is one of the goals for observing the Earth by the ESA SMOS Mission (Soil Moisture and Ocean Salinity), globally. SMOS provides its observations by means of the interferometric radiometry method (1.4 GHz) from the orbit. In parallel, ten ground based stations are kept by IA PAN, in area of the Eastern Wall in Poland, in order to validate SMOS data and for other ground based agrophysical purposes. Soil moisture measurements obtained from ground and satellite measurements from SMOS were compared using Bland-Altman method of agreement, concordance correlation coefficient (CCC) and total deviation index (TDI). Observed similar changes in soil moisture, but the values obtained from satellite measurements were lower. Minor differences between the compared data are at higher moisture contents of soil and they grow with decreasing soil moisture. Soil moisture trends are maintained in the individual stations. Such distributions of soil moisture were mainly related to soil type. * The work was financially supported in part by the ESA Programme for European Cooperating States (PECS), No.98084 "SWEX-R, Soil Water and Energy Exchange/Research", AO3275.
NASA Astrophysics Data System (ADS)
Markewitz, D.; Sutter, L.; Richter, D. D., Jr.
2017-12-01
Soil Electrical Resistivity Tomography (ERT) was measured across the Calhoun Critical Zone Observatory in relation to land use cover. ERT can help identify patterns in soil and saprolite physical attributes and moisture content through multiple meters. ERT data were generated with an AGI Supersting R8 with a 28 probe dipole-dipole array on a 1.5 meter spacing providing information through the upper 9 m. In Nov/Dec 2016 ten soil pits were dug to 3m depth in agricultural fields, pine forests, and hardwood forests across the CCZO and ERT measures were taken centered on these pits. ERT values ranged from 200 to 2500 Ohm-m. ERT patterns in the agricultural field demonstrated a limited resistivity gradient (200-700 Ohm-m) appearing moist throughout. In contrast, research areas under pine and hardwood forest had stronger resistivity gradients reflecting both moisture and physical attributes (i.e., texture or rock content). For example, research area 2 under pine had an area of higher resistivity that correlated with a band of saprolite that was readily visible in the exposed profile. In research area 7 and 8 that included both pine and hardwood forest resistivity gradients had contradictory patterns of high to low resistivity from top to bottom. In research area 7 resistivity was highest at the surface and decreased with depth, a common pattern when water table is at depth. In research area 8 the inverse was observed with low resistivity above and resistivity increasing with depth, a pattern observed in upper landscape positions on ridges with moist clay above dry saprolite. ERT patterns did reflect a large difference in the measured agricultural fields compared to forest while other difference appeared to reflect landscape position.
Beyond clay - using selective extractions to improve predictions of soil carbon content
NASA Astrophysics Data System (ADS)
Rasmussen, C.; Berhe, A. A.; Blankinship, J. C.; Crow, S. E.; Druhan, J. L.; Heckman, K. A.; Keiluweit, M.; Lawrence, C. R.; Marin-Spiotta, E.; Plante, A. F.; Schaedel, C.; Schimel, J.; Sierra, C. A.; Thompson, A.; Wagai, R.; Wieder, W. R.
2016-12-01
A central component of modern soil carbon (C) models is the use of clay content to scale the relative partitioning of decomposing plant material to respiration and mineral stabilized soil C. However, numerous pedon to plot scale studies indicate that other soil mineral parameters, such as Fe- or Al-oxyhydroxide content and specific surface area, may be more effective than clay alone for predicting soil C content and stabilization. Here we directly address the following question: Are there soil physicochemical parameters that represent mineral C association and soil C content that can replace or be used in conjunction with clay content as scalars in soil C models. We explored the relationship of soil C content to a number of soil physicochemical and physiographic parameters using the National Cooperative Soil Survey database that contains horizon level data for > 62,000 pedons spanning global ecoregions and geographic areas. The data indicated significant variation in the degree of correlation among soil C, clay and Fe-/Al-oxyhydroxides with increasing moisture variability. Specifically, dry, water-limited systems (PET/MAP > 1) presented strong positive correlations between clay and soil C, that decreased significantly to little or no correlation in wet, energy-limited systems (PET/MAP < 1). In contrast, the correlation of soil C to oxalate extractable Al+Fe increased significantly with increasing moisture availability. This pattern was particularly well expressed for subsurface B horizons. Multivariate analyses indicated similar patterns, with clear climate and ecosystem level variation in the degree of correlation among soil C and soil physicochemical properties. The results indicate a need to modify current soil C models to incorporate additional C partitioning parameters that better account for climate and ecoregion variability in C stabilization mechanisms.
NASA Astrophysics Data System (ADS)
Berryman, E.; Barnard, H. R.; Brooks, P. D.; Adams, H.; Burns, M. A.; Wilson, W.; Stielstra, C. M.
2013-12-01
A current ecohydrological challenge is quantifying the exact nature of carbon (C) and water couplings across landscapes. An emerging framework of understanding places plant physiological processes as a central control over soil respiration, the largest source of CO2 to the atmosphere. In dry montane forests, spatial and temporal variability in forest physiological processes are governed by hydrological patterns. Critical feedbacks involving respiration, moisture supply and tree physiology are poorly understood and must be quantified at the landscape level to better predict carbon cycle implications of regional drought under future climate change. We present data from an experiment designed to capture landscape variability in key coupled hydrological and C processes in forests of Colorado's Front Range. Sites encompass three catchments within the Boulder Creek watershed, range from 1480 m to 3021 m above sea level and are co-located with the DOE Niwot Ridge Ameriflux site and the Boulder Creek Critical Zone Observatory. Key hydrological measurements (soil moisture, transpiration) are coupled with soil respiration measurements within each catchment at different landscape positions. This three-dimensional study design also allows for the examination of the role of water subsidies from uplands to lowlands in controlling respiration. Initial findings from 2012 reveal a moisture threshold response of the sensitivity of soil respiration to temperature. This threshold may derive from tree physiological responses to variation in moisture availability, which in turn is controlled by the persistence of snowpack. Using data collected in 2013, first, we determine whether respiration moisture thresholds represent triggers for transpiration at the individual tree level. Next, using stable isotope ratios of soil respiration and xylem and soil water, we compare the depths of respiration to depths of water uptake to assign tree vs. understory sources of respiration. This will help determine whether tree root-zone respiration exhibits a similar moisture threshold. Lastly, we examine whether moisture thresholds to temperature sensitivity are consistent across a range of snowpack persistence. Findings are compared to data collected from sites in Arizona and New Mexico to better establish the role of winter precipitation in governing growing season respiration rates. The outcome of this study will contribute to a better understanding of linkages among water, tree physiology, and soil respiration with the ultimate goal of scaling plot-level respiration fluxes to entire catchments.
USDA-ARS?s Scientific Manuscript database
NASA Soil Moisture Active Passive (SMAP) satellite mission was launched on January 31, 2015 to provide global mapping of high-resolution soil moisture and freeze thaw state every 2-3 days using an L-band (active) radar and an L-band (passive) radiometer. The radiometer-only soil moisture product (L2...
NASA Astrophysics Data System (ADS)
Singh, G.; Panda, R. K.; Mohanty, B.
2015-12-01
Prediction of root zone soil moisture status at field level is vital for developing efficient agricultural water management schemes. In this study, root zone soil moisture was estimated across the Rana watershed in Eastern India, by assimilation of near-surface soil moisture estimate from SMOS satellite into a physically-based Soil-Water-Atmosphere-Plant (SWAP) model. An ensemble Kalman filter (EnKF) technique coupled with SWAP model was used for assimilating the satellite soil moisture observation at different spatial scales. The universal triangle concept and artificial intelligence techniques were applied to disaggregate the SMOS satellite monitored near-surface soil moisture at a 40 km resolution to finer scale (1 km resolution), using higher spatial resolution of MODIS derived vegetation indices (NDVI) and land surface temperature (Ts). The disaggregated surface soil moisture were compared to ground-based measurements in diverse landscape using portable impedance probe and gravimetric samples. Simulated root zone soil moisture were compared with continuous soil moisture profile measurements at three monitoring stations. In addition, the impact of projected climate change on root zone soil moisture were also evaluated. The climate change projections of rainfall were analyzed for the Rana watershed from statistically downscaled Global Circulation Models (GCMs). The long-term root zone soil moisture dynamics were estimated by including a rainfall generator of likely scenarios. The predicted long term root zone soil moisture status at finer scale can help in developing efficient agricultural water management schemes to increase crop production, which lead to enhance the water use efficiency.
NASA Astrophysics Data System (ADS)
Burgin, M. S.; van Zyl, J. J.
2017-12-01
Traditionally, substantial ancillary data is needed to parametrize complex electromagnetic models to estimate soil moisture from polarimetric radar data. The Soil Moisture Active Passive (SMAP) baseline radar soil moisture retrieval algorithm uses a data cube approach, where a cube of radar backscatter values is calculated using sophisticated models. In this work, we utilize the empirical approach by Kim and van Zyl (2009) which is an optional SMAP radar soil moisture retrieval algorithm; it expresses radar backscatter of a vegetated scene as a linear function of soil moisture, hence eliminating the need for ancillary data. We use 2.5 years of L-band Aquarius radar and radiometer derived soil moisture data to determine two coefficients of a linear model function on a global scale. These coefficients are used to estimate soil moisture with 2.5 months of L-band SMAP and L-band PALSAR-2 data. The estimated soil moisture is compared with the SMAP Level 2 radiometer-only soil moisture product; the global unbiased RMSE of the SMAP derived soil moisture corresponds to 0.06-0.07 cm3/cm3. In this study, we leverage the three diverse L-band radar data sets to investigate the impact of pixel size and pixel heterogeneity on soil moisture estimation performance. Pixel sizes range from 100 km for Aquarius, over 3, 9, 36 km for SMAP, to 10m for PALSAR-2. Furthermore, we observe seasonal variation in the radar sensitivity to soil moisture which allows the identification and quantification of seasonally changing vegetation. Utilizing this information, we further improve the estimation performance. The research described in this paper is supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2017. All rights reserved.
The moisture response of soil heterotrophic respiration: Interaction with soil properties.
USDA-ARS?s Scientific Manuscript database
Soil moisture-respiration functions are used to simulate the various mechanisms determining the relations between soil moisture content and carbon mineralization. Soil models used in the simulation of global carbon fluxes often apply simplified functions assumed to represent an average moisture-resp...
SMAP Radiometer Captures Views of Global Soil Moisture
2015-05-06
These maps of global soil moisture were created using data from the radiometer instrument on NASA Soil Moisture Active Passive SMAP observatory. Evident are regions of increased soil moisture and flooding during April, 2015.
Investigating local controls on soil moisture temporal stability using an inverse modeling approach
NASA Astrophysics Data System (ADS)
Bogena, Heye; Qu, Wei; Huisman, Sander; Vereecken, Harry
2013-04-01
A better understanding of the temporal stability of soil moisture and its relation to local and nonlocal controls is a major challenge in modern hydrology. Both local controls, such as soil and vegetation properties, and non-local controls, such as topography and climate variability, affect soil moisture dynamics. Wireless sensor networks are becoming more readily available, which opens up opportunities to investigate spatial and temporal variability of soil moisture with unprecedented resolution. In this study, we employed the wireless sensor network SoilNet developed by the Forschungszentrum Jülich to investigate soil moisture variability of a grassland headwater catchment in Western Germany within the framework of the TERENO initiative. In particular, we investigated the effect of soil hydraulic parameters on the temporal stability of soil moisture. For this, the HYDRUS-1D code coupled with a global optimizer (DREAM) was used to inversely estimate Mualem-van Genuchten parameters from soil moisture observations at three depths under natural (transient) boundary conditions for 83 locations in the headwater catchment. On the basis of the optimized parameter sets, we then evaluated to which extent the variability in soil hydraulic conductivity, pore size distribution, air entry suction and soil depth between these 83 locations controlled the temporal stability of soil moisture, which was independently determined from the observed soil moisture data. It was found that the saturated hydraulic conductivity (Ks) was the most significant attribute to explain temporal stability of soil moisture as expressed by the mean relative difference (MRD).
Heather Erickson; Michael Keller; Eric Davidson
2001-01-01
The effects of changes in tropical land use on soil emissions of nitrous oxide (N2O) and nitric oxide (NO) are not well understood. We examined emissions of N2O and NO and their relationships to land use and forest composition, litterfall, soil nitrogen (N) pools and turnover, soil moisture, and patterns of carbon (C) cycling in a lower montane, subtropical wet region...
Value of Available Global Soil Moisture Products for Agricultural Monitoring
NASA Astrophysics Data System (ADS)
Mladenova, Iliana; Bolten, John; Crow, Wade; de Jeu, Richard
2016-04-01
The first operationally derived and publicly distributed global soil moil moisture product was initiated with the launch of the Advanced Scanning Microwave Mission on the NASA's Earth Observing System Aqua satellite (AMSR-E). AMSR-E failed in late 2011, but its legacy is continued by AMSR2, launched in 2012 on the JAXA Global Change Observation Mission-Water (GCOM-W) mission. AMSR is a multi-frequency dual-polarization instrument, where the lowest two frequencies (C- and X-band) were used for soil moisture retrieval. Theoretical research and small-/field-scale airborne campaigns, however, have demonstrated that soil moisture would be best monitored using L-band-based observations. This consequently led to the development and launch of the first L-band-based mission-the ESA's Soil Moisture Ocean Salinity (SMOS) mission (2009). In early 2015 NASA launched the second L-band-based mission, the Soil Moisture Active Passive (SMAP). These satellite-based soil moisture products have been demonstrated to be invaluable sources of information for mapping water stress areas, crop monitoring and yield forecasting. Thus, a number of agricultural agencies routinely utilize and rely on global soil moisture products for improving their decision making activities, determining global crop production and crop prices, identifying food restricted areas, etc. The basic premise of applying soil moisture observations for vegetation monitoring is that the change in soil moisture conditions will precede the change in vegetation status, suggesting that soil moisture can be used as an early indicator of expected crop condition change. Here this relationship was evaluated across multiple microwave frequencies by examining the lag rank cross-correlation coefficient between the soil moisture observations and the Normalized Difference Vegetation Index (NDVI). A main goal of our analysis is to evaluate and inter-compare the value of the different soil moisture products derived using L-band (SMOS) versus C-/X-band (AMSR2) observations. The soil moisture products analyzed here were derived using the Land Parameter Retrieval Model.
NASA Technical Reports Server (NTRS)
Laymon, Charles A.; Crosson, William L.; Limaye, Ashutosh; Manu, Andrew; Archer, Frank
2005-01-01
We compare soil moisture retrieved with an inverse algorithm with observations of mean moisture in the 0-6 cm soil layer. A significant discrepancy is noted between the retrieved and observed moisture. Using emitting depth functions as weighting functions to convert the observed mean moisture to observed effective moisture removes nearly one-half of the discrepancy noted. This result has important implications in remote sensing validation studies.
NASA Astrophysics Data System (ADS)
Ju, Tingting; Li, Xiaolan; Zhang, Hongsheng; Cai, Xuhui; Song, Yu
2018-06-01
Using the observational data of dust concentrations and meteorological parameters from 2011 to 2015, the effects of soil moisture and air humidity on dust emission were studied at long (monthly) and short (several days or hours) time scales over the Horqin Sandy Land area, Inner Mongolia of China. The results show that the monthly mean dust concentrations and dust fluxes within the near-surface layer had no obvious relationship with the monthly mean soil moisture content but had a slightly negative correlation with monthly mean air relative humidity from 2011 to 2015. The daily mean soil moisture exhibited a significantly negative correlation with the daily mean dust concentrations and dust fluxes, as soil moisture changed obviously. However, such negative correlation between soil moisture and dust emission disappeared on dust blowing days. Additionally, the effect of soil moisture on an important parameter for dust emission, the threshold friction velocity (u∗t), was investigated during several saltation-bombardment and/or aggregation-disintegration dust emission (SADE) events. Under dry soil conditions, the values of u∗t were not influenced by soil moisture content; however, when the soil moisture content was high, the values of u∗t increased with increasing soil moisture content.
Relation Between the Rainfall and Soil Moisture During Different Phases of Indian Monsoon
NASA Astrophysics Data System (ADS)
Varikoden, Hamza; Revadekar, J. V.
2018-03-01
Soil moisture is a key parameter in the prediction of southwest monsoon rainfall, hydrological modelling, and many other environmental studies. The studies on relationship between the soil moisture and rainfall in the Indian subcontinent are very limited; hence, the present study focuses the association between rainfall and soil moisture during different monsoon seasons. The soil moisture data used for this study are the ESA (European Space Agency) merged product derived from four passive and two active microwave sensors spanning over the period 1979-2013. The rainfall data used are India Meteorological Department gridded daily data. Both of these data sets are having a spatial resolution of 0.25° latitude-longitude grid. The study revealed that the soil moisture is higher during the southwest monsoon period similar to rainfall and during the pre-monsoon period, the soil moisture is lower. The annual cycle of both the soil moisture and rainfall has the similitude of monomodal variation with a peak during the month of August. The interannual variability of soil moisture and rainfall shows that they are linearly related with each other, even though they are not matched exactly for individual years. The study of extremes also exhibits the surplus amount of soil moisture during wet monsoon years and also the regions of surplus soil moisture are well coherent with the areas of high rainfall.
New Physical Algorithms for Downscaling SMAP Soil Moisture
NASA Astrophysics Data System (ADS)
Sadeghi, M.; Ghafari, E.; Babaeian, E.; Davary, K.; Farid, A.; Jones, S. B.; Tuller, M.
2017-12-01
The NASA Soil Moisture Active Passive (SMAP) mission provides new means for estimation of surface soil moisture at the global scale. However, for many hydrological and agricultural applications the spatial SMAP resolution is too low. To address this scale issue we fused SMAP data with MODIS observations to generate soil moisture maps at 1-km spatial resolution. In course of this study we have improved several existing empirical algorithms and introduced a new physical approach for downscaling SMAP data. The universal triangle/trapezoid model was applied to relate soil moisture to optical/thermal observations such as NDVI, land surface temperature and surface reflectance. These algorithms were evaluated with in situ data measured at 5-cm depth. Our results demonstrate that downscaling SMAP soil moisture data based on physical indicators of soil moisture derived from the MODIS satellite leads to higher accuracy than that achievable with empirical downscaling algorithms. Keywords: Soil moisture, microwave data, downscaling, MODIS, triangle/trapezoid model.
NASA Astrophysics Data System (ADS)
Wrona, Elizabeth; Rowlandson, Tracy L.; Nambiar, Manoj; Berg, Aaron A.; Colliander, Andreas; Marsh, Philip
2017-05-01
This study examines the Soil Moisture Active Passive soil moisture product on the Equal Area Scalable Earth-2 (EASE-2) 36 km Global cylindrical and North Polar azimuthal grids relative to two in situ soil moisture monitoring networks that were installed in 2015 and 2016. Results indicate that there is no relationship between the Soil Moisture Active Passive (SMAP) Level-2 passive soil moisture product and the upscaled in situ measurements. Additionally, there is very low correlation between modeled brightness temperature using the Community Microwave Emission Model and the Level-1 C SMAP brightness temperature interpolated to the EASE-2 Global grid; however, there is a much stronger relationship to the brightness temperature measurements interpolated to the North Polar grid, suggesting that the soil moisture product could be improved with interpolation on the North Polar grid.
Methods of measuring soil moisture in the field
Johnson, A.I.
1962-01-01
For centuries, the amount of moisture in the soil has been of interest in agriculture. The subject of soil moisture is also of great importance to the hydrologist, forester, and soils engineer. Much equipment and many methods have been developed to measure soil moisture under field conditions. This report discusses and evaluates the various methods for measurement of soil moisture and describes the equipment needed for each method. The advantages and disadvantages of each method are discussed and an extensive list of references is provided for those desiring to study the subject in more detail. The gravimetric method is concluded to be the most satisfactory method for most problems requiring onetime moisture-content data. The radioactive method is normally best for obtaining repeated measurements of soil moisture in place. It is concluded that all methods have some limitations and that the ideal method for measurement of soil moisture under field conditions has yet to be perfected.
NASA Astrophysics Data System (ADS)
Wu, Mousong; Sholze, Marko
2017-04-01
We investigated the importance of soil moisture data on assimilation of a terrestrial biosphere model (BETHY) for a long time period from 2010 to 2015. Totally, 101 parameters related to carbon turnover, soil respiration, as well as soil texture were selected for optimization within a carbon cycle data assimilation system (CCDAS). Soil moisture data from Soil Moisture and Ocean Salinity (SMOS) product was derived for 10 sites representing different plant function types (PFTs) as well as different climate zones. Uncertainty of SMOS soil moisture data was also estimated using triple collocation analysis (TCA) method by comparing with ASCAT dataset and BETHY forward simulation results. Assimilation of soil moisture to the system improved soil moisture as well as net primary productivity(NPP) and net ecosystem productivity (NEP) when compared with soil moisture derived from in-situ measurements and fluxnet datasets. Parameter uncertainties were largely reduced relatively to prior values. Using SMOS soil moisture data for assimilation of a terrestrial biosphere model proved to be an efficient approach in reducing uncertainty in ecosystem fluxes simulation. It could be further used in regional an global assimilation work to constrain carbon dioxide concentration simulation by combining with other sources of measurements.
Soil Moisture under Different Vegetation cover in response to Precipitation
NASA Astrophysics Data System (ADS)
Liang, Z.; Zhang, J.; Guo, B.; Ma, J.; Wu, Y.
2016-12-01
The response study of soil moisture to different precipitation and landcover is significant in the field of Hydropedology. The influence of precipitation to soil moisture is obvious in addition to individual stable aquifer. With data of Hillsborough County, Florida, USA, the alluvial wetland forest and ungrazed Bahia grass that under wet and dry periods were chosen as the research objects, respectively. HYDRUS-3D numerical simulation method was used to simulate soil moisture dynamics in the root zone (10-50 cm) of those vegetation. The soil moisture response to precipitation was analyzed. The results showed that the simulation results of alluvial wetland forest by HYDRUS-3D were better than that of the Bahia grass, and for the same vegetation, the simulation results of soil moisture under dry period were better. Precipitation was more in June, 2003, the soil moisture change of alluvial wetland forest in 10-30 cm soil layer and Bahia grass in 10 cm soil layer were consistent with the precipitation change conspicuously. The alluvial wetland forest soil moisture declined faster than Bahia grass under dry period, which demonstrated that Bahia grass had strong ability to hold water. Key words: alluvial wetland forest; Bahia grass; soil moisture; HYDRUS-3D; precipitation
USDA-ARS?s Scientific Manuscript database
This paper evaluates the retrieval of soil moisture in the top 5-cm layer at 3-km spatial resolution using L-band dual-copolarized Soil Moisture Active Passive (SMAP) synthetic aperture radar (SAR) data that mapped the globe every three days from mid-April to early July, 2015. Surface soil moisture ...
Soil Moisture Anomaly as Predictor of Crop Yield Deviation in Germany
NASA Astrophysics Data System (ADS)
Peichl, Michael; Thober, Stephan; Schwarze, Reimund; Meyer, Volker; Samaniego, Luis
2016-04-01
Natural hazards, such as droughts, have the potential to drastically diminish crop yield in rain-fed agriculture. For example, the drought in 2003 caused direct losses of 1.5 billion EUR only in Germany (COPA-COGECA 2003). Predicting crop yields allows to economize the mitigation of risks of weather extremes. Economic approaches for quantifying agricultural impacts of natural hazards mainly rely on temperature and related concepts. For instance extreme heat over the growing season is considered as best predictor of corn yield (Auffhammer and Schlenker 2014). However, those measures are only able to provide a proxy for the available water content in the root zone that ultimately determines plant growth and eventually crop yield. The aim of this paper is to analyse whether soil moisture has a causal effect on crop yield that can be exploited in improving adaptation measures. For this purpose, reduced form fixed effect panel models are developed with yield as dependent variable for both winter wheat and silo maize crops. The explanatory variables used are soil moisture anomalies, precipitation and temperature. The latter two are included to estimate the current state of the water balance. On the contrary, soil moisture provides an integrated signal over several months. It is also the primary source of water supply for plant growth. For each crop a single model is estimated for every month within the growing period to study the variation of the effects over time. Yield data is available for Germany as a whole on the level of administrative districts from 1990 to 2010. Station data by the German Weather Service are obtained for precipitation and temperature and are aggregated to the same spatial units. Simulated soil moisture computed by the mesoscale Hydrologic Model (mHM, www.ufz.de/mhm) is transformed into Soil Moisture Index (SMI), which represents the monthly soil water quantile and hence accounts directly for the water content available to plants. The results indicate that wet and dry soil moisture anomalies have a causal effect on crop yields. However, the effects vary in magnitude and direction for each crop depending on the month. For instance dry soil moisture anomalies in July, August and September reduce silo maize yield more than ten percent with respect to average conditions. Extreme wetness, however, increases silo maize yield in the same time period. A negative effect is observed for winter wheat during this period for both wet and dry anomalies. The reduction due to dry anomalies is smaller for winter wheat than for silo maize. This study shows that the impact of soil moisture anomalies varies dependent on months and crops. These evolving patterns provide new insights to improve adaptation measures for extreme soil moisture conditions. References Auffhammer, M., and W. Schlenker. 2014. "Empirical studies on agricultural impacts and adaptation." Energy Economics 46:555-561. COPA-COGECA. 2003. "Assessment of the impact of the heat wave and drought of the summer 2003 on agriculture and forestry." In Committee of Agricultural Organisations in the European Union General Committee for Agricultural Cooperation in the European Union, Brussels. p. 15.
Inter-Comparison of SMAP, SMOS and GCOM-W Soil Moisture Products
NASA Astrophysics Data System (ADS)
Bindlish, R.; Jackson, T. J.; Chan, S.; Burgin, M. S.; Colliander, A.; Cosh, M. H.
2016-12-01
The Soil Moisture Active Passive (SMAP) mission was launched on Jan 31, 2015. The goal of the SMAP mission is to produce soil moisture with accuracy better than 0.04 m3/m3 with a revisit frequency of 2-3 days. The validated standard SMAP passive soil moisture product (L2SMP) with a spatial resolution of 36 km was released in May 2016. Soil moisture observations from in situ sensors are typically used to validate the satellite estimates. But, in situ observations provide ground truth for limited amount of landcover and climatic conditions. Although each mission will have its own issues, observations by other satellite instruments can be play a role in the calibration and validation of SMAP. SMAP, SMOS and GCOM-W missions share some commonnalities because they are currently providing operational brightness temperature and soil moisture products. SMAP and SMOS operate at L-band but GCOM-W uses X-band observations for soil moisture estimation. All these missions use different ancillary data sources, parameterization and algorithm to retrieve soil moisture. Therefore, it is important to validate and to compare the consistency of these products. Soil moisture products from the different missions will be compared with the in situ observations. SMAP soil moisture products will be inter-compared at global scales with SMOS and GCOM-W soil moisture products. The major contribution of satellite product inter-comparison is that it allows the assessment of the quality of the products over wider geographical and climate domains. Rigorous assessment will lead to a more reliable and accurate soil moisture product from all the missions.
Effects of altered soil moisture on respiratory quotient in the Edwards Plateau
NASA Astrophysics Data System (ADS)
Sellers, M. A.; Hawkes, C.; Breecker, D.
2014-12-01
Climate change is expected to alter precipitation patterns around the world. The impacts of altered precipitation on ecosystem function will be partly controlled by soil microbes because of their primary role in soil carbon cycling. However, microbial responses to drought remain poorly understood, particularly local responses that might partly reflect specialization based on historical conditions. Here, we investigated the respiratory response of microbial communities originating from historically wetter and drier sites to both low and high soil moistures. We focused on the respiratory quotient (RQ= moles of CO2 produced per mole of O2 consumed), which varies with the oxidation state of organic carbon being respired and/or the compounds being synthesized by soil microbes. We hypothesized that there would be a shift in RQ across the gradient of soil moisture. Soils were collected from 13 sites across a steep precipitation gradient on the Edwards plateau in central Texas, air-dried, rewet at low or high soil moisture (6% or 24% gravimetric, respectively), and incubated in an atmosphere of 21% O2, 1% Ar, and balance He. After eight weeks, CO2, O2 and Ar in the headspace of incubation vials were measured by gas chromatography after separation of Ar and O2 at subambient temperature. Because of the high calcite content in soils on the Edwards plateau, we corrected the RQ values by assuming pH was buffered at 8 and then adding the calculated amount of CO2 dissolved in water in the incubations vials to the measured CO2 in the headspace. We found that uncorrected RQ values were slightly less than one and increased significantly with increasing mean annual precipitation. In contrast, corrected RQ values were greater than one and decreased with increasing mean annual precipitation. In both cases, we see a shift in RQ across the gradient, suggesting that differences in substrate utilization may vary based on origin across the gradient and with current level of soil moisture. This could provide insight into how microbial communities respond physiologically to shifts in environmental conditions, such as precipitation.
NASA Astrophysics Data System (ADS)
Zhang, Shuwen; Li, Haorui; Zhang, Weidong; Qiu, Chongjian; Li, Xin
2005-11-01
The paper investigates the ability to retrieve the true soil moisture profile by assimilating near-surface soil moisture into a soil moisture model with an ensemble Kaiman filter (EnKF) assimilation scheme, including the effect of ensemble size, update interval and nonlinearities in the profile retrieval, the required time for full retrieval of the soil moisture profiles, and the possible influence of the depth of the soil moisture observation. These questions are addressed by a desktop study using synthetic data. The “true” soil moisture profiles are generated from the soil moisture model under the boundary condition of 0.5 cm d-1 evaporation. To test the assimilation schemes, the model is initialized with a poor initial guess of the soil moisture profile, and different ensemble sizes are tested showing that an ensemble of 40 members is enough to represent the covariance of the model forecasts. Also compared are the results with those from the direct insertion assimilation scheme, showing that the EnKF is superior to the direct insertion assimilation scheme, for hourly observations, with retrieval of the soil moisture profile being achieved in 16 h as compared to 12 days or more. For daily observations, the true soil moisture profile is achieved in about 15 days with the EnKF, but it is impossible to approximate the true moisture within 18 days by using direct insertion. It is also found that observation depth does not have a significant effect on profile retrieval time for the EnKF. The nonlinearities have some negative influence on the optimal estimates of soil moisture profile but not very seriously.
Tian, Liming; Zhao, Lin; Wu, Xiaodong; Fang, Hongbing; Zhao, Yonghua; Yue, Guangyang; Liu, Guimin; Chen, Hao
2017-12-31
Vertical patterns and determinants of soil nutrients are critical to understand nutrient cycling in high-altitude ecosystems; however, they remain poorly understood in the alpine grassland due to lack of systematic field observations. In this study, we examined vertical distributions of soil nutrients and their influencing factors within the upper 1m of soil, using data of 68 soil profiles surveyed in the alpine grassland of the eastern Qinghai-Tibet Plateau. Soil organic carbon (SOC) and total nitrogen (TN) stocks decreased with depth in both alpine meadow (AM) and alpine steppe (AS), but remain constant along the soil profile in alpine swamp meadow (ASM). Total phosphorus, Ca 2+ , and Mg 2+ stocks slightly increased with depth in ASM. K + stock decreased with depth, while Na + stock increased slightly with depth among different vegetation types; however, SO 4 2- and Cl - stocks remained relatively uniform throughout different depth intervals in the alpine grassland. Except for SOC and TN, soil nutrient stocks in the top 20cm soils were significantly lower in ASM compared to those in AM and AS. Correlation analyses showed that SOC and TN stocks in the alpine grassland positively correlated with vegetation coverage, soil moisture, clay content, and silt content, while they negatively related to sand content and soil pH. However, base cation stocks revealed contrary relationships with those environmental variables compared to SOC and TN stocks. These correlations varied between vegetation types. In addition, no significant relationship was detected between topographic factors and soil nutrients. Our findings suggest that plant cycling and soil moisture primarily control vertical distributions of soil nutrients (e.g. K) in the alpine grassland and highlight that vegetation types in high-altitude permafrost regions significantly affect soil nutrients. Copyright © 2017 Elsevier B.V. All rights reserved.
Station for spatially distributed measurements of soil moisture and ambient temperature
NASA Astrophysics Data System (ADS)
Jankovec, Jakub; Šanda, Martin; Haase, Tomáš; Sněhota, Michal; Wild, Jan
2013-04-01
Third generation of combined thermal and soil moisture standalone field station coded TMS3 with wireless communication is presented. The device combines three thermometers (MAXIM/DALLAS Semiconductor DS7505U with -55 to +125°C range and 0.0625°C resolution, 0.5°C precision in 0 to +70°C range and 2°C precision out of this range). Soil moisture measurement is performed based on time domain transmission (TDT) principle for the full range of soil moisture with 0.025% resolution within the full possible soil moisture span for the most typical conditions of dry to saturated soils with safe margins to enable measurements in freezing, hot or saline soils. Principal compact version is designed for temperature measurements approximately at heights -10, 0 and +15 cm relative to soil surface when installed vertically and soil moisture measurements between 0 and 12 cm below surface. Set of buriable/subsurface stations each with 2.2 meter extension cord with soil and surface temperature measurement provides possibility to scan vertical soil profile for soil moisture and temperature at desired depths. USB equipped station is designed for streamed direct data acquisition in laboratory use in 1s interval. Station is also equipped with the shock sensor indicating the manipulation. Presented version incorporates life time permanent data storage (0.5 million logs). Current sensor design aims towards improved durability in harsh outdoor environment with reliable functioning in wet conditions withstanding mechanical or electric shock destruction. Insertion into the soil is possible by pressing with the use of a simple plastic cover. Data are retrieved by contact portable pocket collector (second generation) or by RFID wireless communication for hundreds meter distance (third generation) in either star pattern of GSM hub to stations or lined up GSM to station to another station both in comprised data packets. This option will allow online data harvesting and real time process control (e.g. optimized irrigation) by the end of 2013. User selected regimes of scanning in the field standalone model is 1,5 or 15 minutes for soil moisture and 1, 5, 10 or 15 minutes for the temperature (in their practical combinations) with a battery and datastorage lifetime ranging 1 - 10 years. Basic station diagnostics is recorded daily, comprehensive check is performed monthly. The TMS2 undergoes calibration on sets of soils. Disturbed and packed cylindrical soil samples (approx. 20 liter) were subject to forced bottom air ventilation to distribute the moisture evenly along vertical axis during drying the sample with increased intensity. Database of soil-specific calibration curves is being built for various soil samples. TMS2 station has been calibrated for soil materials: sandy loam, quartz sand and peat. Calibration on selected undisturbed 7 liter samples, previously CT scanned for correct sensor placement, is in the progress. Temperature and salinity influence on the soil moisture results in drift of 0.05%/°C and 7%/(in full range of 0 to 10 miliSiemens/cm) and additional 2%/(in the range of 10 to 20 miliSiemens/cm) as found in 100% moisture solution. Extended testing of TMS1 generation, predecessor of current design, is successfully performed in variety of field locations (central Europe, central Africa, Himalaya region). Results of long-term measurement at hundreds of localities are successfully used for i) evaluation of species-specific environmental requirements (for different species of plants, bryophytes and fungi) and ii) extrapolation of microclimatic conditions over large areas of rugged sandstone relief with assistance of accurate, LiDAR based, digital terrain model. TMS1 units are e.g. also applied for continuous measurement of temperature and moisture of coarse woody debris, which serves as an important substrate for establishment and growth of seedlings and is thus crucial for natural regeneration of many forest ecosystems. The research is supported by the Technology Agency of the Czech Republic projects No. TA01021283 and SGS12/130/OHK1/2T/11.
NASA Technical Reports Server (NTRS)
Paris, J. F.; Arya, L. M.; Davidson, S. A.; Hildreth, W. W.; Richter, J. C.; Rosenkranz, W. A.
1982-01-01
The NASA/JSC ground scatterometer system was used in a row structure and row direction effects experiment to understand these effects on radar remote sensing of soil moisture. Also, a modification of the scatterometer system was begun and is continuing, to allow cross-polarization experiments to be conducted in fiscal years 1982 and 1983. Preprocessing of the 1978 agricultural soil moisture experiment (ASME) data was completed. Preparations for analysis of the ASME data is fiscal year 1982 were completed. A radar image simulation procedure developed by the University of Kansas is being improved. Profile soil moisture model outputs were compared quantitatively for the same soil and climate conditions. A new model was developed and tested to predict the soil moisture characteristic (water tension versus volumetric soil moisture content) from particle-size distribution and bulk density data. Relationships between surface-zone soil moisture, surface flux, and subsurface moisture conditions are being studied as well as the ways in which measured soil moisture (as obtained from remote sensing) can be used for agricultural applications.
NASA Astrophysics Data System (ADS)
Dong, J.; Steele-Dunne, S. C.; Ochsner, T. E.; Van De Giesen, N.
2015-12-01
Soil moisture, hydraulic and thermal properties are critical for understanding the soil surface energy balance and hydrological processes. Here, we will discuss the potential of using soil temperature observations from Distributed Temperature Sensing (DTS) to investigate the spatial variability of soil moisture and soil properties. With DTS soil temperature can be measured with high resolution (spatial <1m, and temporal < 1min) in cables up to kilometers in length. Soil temperature evolution is primarily controlled by the soil thermal properties, and the energy balance at the soil surface. Hence, soil moisture, which affects both soil thermal properties and the energy that participates the evaporation process, is strongly correlated to the soil temperatures. In addition, the dynamics of the soil moisture is determined by the soil hydraulic properties.Here we will demonstrate that soil moisture, hydraulic and thermal properties can be estimated by assimilating observed soil temperature at shallow depths using the Particle Batch Smoother (PBS). The PBS can be considered as an extension of the particle filter, which allows us to infer soil moisture and soil properties using the dynamics of soil temperature within a batch window. Both synthetic and real field data will be used to demonstrate the robustness of this approach. We will show that the proposed method is shown to be able to handle different sources of uncertainties, which may provide a new view of using DTS observations to estimate sub-meter resolution soil moisture and properties for remote sensing product validation.
NASA Astrophysics Data System (ADS)
Bastola, S.; Dialynas, Y. G.; Arnone, E.; Bras, R. L.
2014-12-01
The spatial variability of soil, vegetation, topography, and precipitation controls hydrological processes, consequently resulting in high spatio-temporal variability of most of the hydrological variables, such as soil moisture. Limitation in existing measuring system to characterize this spatial variability, and its importance in various application have resulted in a need of reconciling spatially distributed soil moisture evolution model and corresponding measurements. Fully distributed ecohydrological model simulates soil moisture at high resolution soil moisture. This is relevant for range of environmental studies e.g., flood forecasting. They can also be used to evaluate the value of space born soil moisture data, by assimilating them into hydrological models. In this study, fine resolution soil moisture data simulated by a physically-based distributed hydrological model, tRIBS-VEGGIE, is compared with soil moisture data collected during the field campaign in Turkey river basin, Iowa. The soil moisture series at the 2 and 4 inch depth exhibited a more rapid response to rainfall as compared to bottom 8 and 20 inch ones. The spatial variability in two distinct land surfaces of Turkey River, IA, reflects the control of vegetation, topography and soil texture in the characterization of spatial variability. The comparison of observed and simulated soil moisture at various depth showed that model was able to capture the dynamics of soil moisture at a number of gauging stations. Discrepancies are large in some of the gauging stations, which are characterized by rugged terrain and represented, in the model, through large computational units.
Nicholas J. Bouskill; Hsiao Chien Lim; Sharon Borglin; Rohit Salve; Tana Wood; Whendee L. Silver; Eoin L. Brodie
2013-01-01
Global climate models project a decrease in the magnitude of precipitation in tropical regions. Changes in rainfall patterns have important implications for the moisture content and redox status of tropical soils, yet little is known about how these changes may affect microbial community structure. Specifically, does exposure to prior stress confer increased resistance...
Remote Sensing Soil Moisture Analysis by Unmanned Aerial Vehicles Digital Imaging
NASA Astrophysics Data System (ADS)
Yeh, C. Y.; Lin, H. R.; Chen, Y. L.; Huang, S. Y.; Wen, J. C.
2017-12-01
In recent years, remote sensing analysis has been able to apply to the research of climate change, environment monitoring, geology, hydro-meteorological, and so on. However, the traditional methods for analyzing wide ranges of surface soil moisture of spatial distribution surveys may require plenty resources besides the high cost. In the past, remote sensing analysis performed soil moisture estimates through shortwave, thermal infrared ray, or infrared satellite, which requires lots of resources, labor, and money. Therefore, the digital image color was used to establish the multiple linear regression model. Finally, we can find out the relationship between surface soil color and soil moisture. In this study, we use the Unmanned Aerial Vehicle (UAV) to take an aerial photo of the fallow farmland. Simultaneously, we take the surface soil sample from 0-5 cm of the surface. The soil will be baking by 110° C and 24 hr. And the software ImageJ 1.48 is applied for the analysis of the digital images and the hue analysis into Red, Green, and Blue (R, G, B) hue values. The correlation analysis is the result from the data obtained from the image hue and the surface soil moisture at each sampling point. After image and soil moisture analysis, we use the R, G, B and soil moisture to establish the multiple regression to estimate the spatial distributions of surface soil moisture. In the result, we compare the real soil moisture and the estimated soil moisture. The coefficient of determination (R2) can achieve 0.5-0.7. The uncertainties in the field test, such as the sun illumination, the sun exposure angle, even the shadow, will affect the result; therefore, R2 can achieve 0.5-0.7 reflects good effect for the in-suit test by using the digital image to estimate the soil moisture. Based on the outcomes of the research, using digital images from UAV to estimate the surface soil moisture is acceptable. However, further investigations need to be collected more than ten days (four times a day) data to verify the relation between the image hue and the soil moisture for reliable moisture estimated model. And it is better to use the digital single lens reflex camera to prevent the deformation of the image and to have a better auto exposure. Keywords: soil, moisture, remote sensing
NASA Astrophysics Data System (ADS)
Kim, S.; Arii, M.; Jackson, T. J.
2017-12-01
L-band airborne synthetic aperture radar (SAR) observations at 7-m spatial resolution were made over California shrublands to better understand the effects of soil and vegetation parameters on backscattering coefficient (σ0). Temporal changes in σ0 of up to 3 dB were highly correlated to surface soil moisture but not to vegetation, even though vegetation water content (VWC) varied seasonally by a factor of two. HH was always greater than VV, suggesting the importance of double-bounce scattering by the woody parts. However, the geometric and dielectric properties of the woody parts did not vary significantly over time. Instead the changes in VWC occurred primarily in thin leaves that may not meaningfully influence absorption and scattering. A physically-based model for single scattering by discrete elements of plants successfully simulated the magnitude of the temporal variations in HH, VV, and HH/VV with a difference of less than 0.9 dB. In order to simulate the observations, the VWC input of the plant to the model was formulated as a function of plant's dielectric property (water fraction) while the plant geometry remains static in time. In comparison, when the VWC input was characterized by the geometry of a growing plant, the model performed poorly in describing the observed patterns in the σ0 changes. The modeling results offer explanation of the observation that soil moisture correlated highly with σ0: the dominant mechanisms for HH and VV are double-bounce scattering by trunk, and soil surface scattering, respectively. The time-series inversion of the physical model was able to retrieve soil moisture with the difference of -0.037 m3/m3 (mean), 0.025 m3/m3 (standard deviation), and 0.89 (correlation). Together with the previous results over croplands using the SAR data offering 0.05 m3/m3 retrieval accuracy, we will demonstrate the efficacy of the model-based time-series soil moisture retrieval at field scales.
Zhao, Ruifeng; Zhou, Huarong; Qian, Yibing; Zhang, Jianjun
2006-06-01
A total of 16 quadrants of wetlands and surrounding lands in the mid- and lower reaches of Tarim River were surveyed, and the data about the characteristics of plant communities and environmental factors were collected and counted. By using PCA (principal component analysis) ordination and regression procedure, the distribution patterns of plant communities and the relationships between the characteristics of plant community structure and environmental factors were analyzed. The results showed that the distribution of the plant communities was closely related to soil moisture, salt, and nutrient contents. The accumulative contribution rate of soil moisture and salt contents in the first principal component accounted for 35.70%, and that of soil nutrient content in the second principal component reached 25.97%. There were 4 types of habitats for the plant community distribution, i. e., fenny--light salt--medium nutrient, moist--medium salt--medium nutrient, mesophytic--medium salt--low nutrient, and medium xerophytic-heavy salt--low nutrient. Along these habitats, swamp vegetation, meadow vegetation, riparian sparse forest, halophytic desert, and salinized shrub were distributed. In the wetlands and surrounding lands of mid- and lower reaches of Tarim River, the ecological dominance of the plant communities was markedly and unitary-linearly correlated with the compound gradient of soil moisture and salt contents. The relationships between species diversity, ecological dominance, and compound gradient of soil moisture and salt contents were significantly accorded to binary-linear regression model.
Method for evaluating moisture tensions of soils using spectral data
NASA Technical Reports Server (NTRS)
Peterson, John B. (Inventor)
1982-01-01
A method is disclosed which permits evaluation of soil moisture utilizing remote sensing. Spectral measurements at a plurality of different wavelengths are taken with respect to sample soils and the bidirectional reflectance factor (BRF) measurements produced are submitted to regression analysis for development therefrom of predictable equations calculated for orderly relationships. Soil of unknown reflective and unknown soil moisture tension is thereafter analyzed for bidirectional reflectance and the resulting data utilized to determine the soil moisture tension of the soil as well as providing a prediction as to the bidirectional reflectance of the soil at other moisture tensions.
Seasonal characteristics of flood regimes across the Alpine-Carpathian range.
Parajka, J; Kohnová, S; Bálint, G; Barbuc, M; Borga, M; Claps, P; Cheval, S; Dumitrescu, A; Gaume, E; Hlavčová, K; Merz, R; Pfaundler, M; Stancalie, G; Szolgay, J; Blöschl, G
2010-11-17
The aim of this paper is to analyse the differences in the long-term regimes of extreme precipitation and floods across the Alpine-Carpathian range using seasonality indices and atmospheric circulation patterns to understand the main flood-producing processes. This is supported by cluster analyses to identify areas of similar flood processes, both in terms of precipitation forcing and catchment processes. The results allow to isolate regions of similar flood generation processes including southerly versus westerly circulation patterns, effects of soil moisture seasonality due to evaporation and effects of soil moisture seasonality due to snow melt. In many regions of the Alpine-Carpathian range, there is a distinct shift in flood generating processes with flood magnitude as evidenced by a shift from summer to autumn floods. It is argued that the synoptic approach proposed here is valuable in both flood analysis and flood estimation.
Seasonal characteristics of flood regimes across the Alpine–Carpathian range
Parajka, J.; Kohnová, S.; Bálint, G.; Barbuc, M.; Borga, M.; Claps, P.; Cheval, S.; Dumitrescu, A.; Gaume, E.; Hlavčová, K.; Merz, R.; Pfaundler, M.; Stancalie, G.; Szolgay, J.; Blöschl, G.
2010-01-01
Summary The aim of this paper is to analyse the differences in the long-term regimes of extreme precipitation and floods across the Alpine–Carpathian range using seasonality indices and atmospheric circulation patterns to understand the main flood-producing processes. This is supported by cluster analyses to identify areas of similar flood processes, both in terms of precipitation forcing and catchment processes. The results allow to isolate regions of similar flood generation processes including southerly versus westerly circulation patterns, effects of soil moisture seasonality due to evaporation and effects of soil moisture seasonality due to snow melt. In many regions of the Alpine–Carpathian range, there is a distinct shift in flood generating processes with flood magnitude as evidenced by a shift from summer to autumn floods. It is argued that the synoptic approach proposed here is valuable in both flood analysis and flood estimation. PMID:25067854
NASA Astrophysics Data System (ADS)
Giraldo, Mario A.; Bosch, David; Madden, Marguerite; Usery, Lynn; Kvien, Craig
2008-08-01
SummaryThis research addressed the temporal and spatial variation of soil moisture (SM) in a heterogeneous landscape. The research objective was to investigate soil moisture variation in eight homogeneous 30 by 30 m plots, similar to the pixel size of a Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper plus (ETM+) image. The plots were adjacent to eight stations of an in situ soil moisture network operated by the United States Department of Agriculture-Agriculture Research Service USDA-ARS in Tifton, GA. We also studied five adjacent agricultural fields to examine the effect of different landuses/land covers (LULC) (grass, orchard, peanuts, cotton and bare soil) on the temporal and spatial variation of soil moisture. Soil moisture field data were collected on eight occasions throughout 2005 and January 2006 to establish comparisons within and among eight homogeneous plots. Consistently throughout time, analysis of variance (ANOVA) showed high variation in the soil moisture behavior among the plots and high homogeneity in the soil moisture behavior within them. A precipitation analysis for the eight sampling dates throughout the year 2005 showed similar rainfall conditions for the eight study plots. Therefore, soil moisture variation among locations was explained by in situ local conditions. Temporal stability geostatistical analysis showed that soil moisture has high temporal stability within the small plots and that a single point reading can be used to monitor soil moisture status for the plot within a maximum 3% volume/volume (v/v) soil moisture variation. Similarly, t-statistic analysis showed that soil moisture status in the upper soil layer changes within 24 h. We found statistical differences in the soil moisture between the different LULC in the agricultural fields as well as statistical differences between these fields and the adjacent 30 by 30 m plots. From this analysis, it was demonstrated that spatial proximity is not enough to produce similar soil moisture, since t-test's among adjacent plots with different LULCs showed significant differences. These results confirm that a remote sensing approach that considers homogeneous LULC landscape fragments can be used to identify landscape units of similar soil moisture behavior under heterogeneous landscapes. In addition, the in situ USDA-ARS network will serve better in remote sensing studies in which sensors with fine spatial resolution are evaluated. This study is a first step towards identifying landscape units that can be monitored using the single point reading of the USDA-ARS stations network.
Giraldo, M.A.; Bosch, D.; Madden, M.; Usery, L.; Kvien, Craig
2008-01-01
This research addressed the temporal and spatial variation of soil moisture (SM) in a heterogeneous landscape. The research objective was to investigate soil moisture variation in eight homogeneous 30 by 30 m plots, similar to the pixel size of a Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper plus (ETM+) image. The plots were adjacent to eight stations of an in situ soil moisture network operated by the United States Department of Agriculture-Agriculture Research Service USDA-ARS in Tifton, GA. We also studied five adjacent agricultural fields to examine the effect of different landuses/land covers (LULC) (grass, orchard, peanuts, cotton and bare soil) on the temporal and spatial variation of soil moisture. Soil moisture field data were collected on eight occasions throughout 2005 and January 2006 to establish comparisons within and among eight homogeneous plots. Consistently throughout time, analysis of variance (ANOVA) showed high variation in the soil moisture behavior among the plots and high homogeneity in the soil moisture behavior within them. A precipitation analysis for the eight sampling dates throughout the year 2005 showed similar rainfall conditions for the eight study plots. Therefore, soil moisture variation among locations was explained by in situ local conditions. Temporal stability geostatistical analysis showed that soil moisture has high temporal stability within the small plots and that a single point reading can be used to monitor soil moisture status for the plot within a maximum 3% volume/volume (v/v) soil moisture variation. Similarly, t-statistic analysis showed that soil moisture status in the upper soil layer changes within 24 h. We found statistical differences in the soil moisture between the different LULC in the agricultural fields as well as statistical differences between these fields and the adjacent 30 by 30 m plots. From this analysis, it was demonstrated that spatial proximity is not enough to produce similar soil moisture, since t-test's among adjacent plots with different LULCs showed significant differences. These results confirm that a remote sensing approach that considers homogeneous LULC landscape fragments can be used to identify landscape units of similar soil moisture behavior under heterogeneous landscapes. In addition, the in situ USDA-ARS network will serve better in remote sensing studies in which sensors with fine spatial resolution are evaluated. This study is a first step towards identifying landscape units that can be monitored using the single point reading of the USDA-ARS stations network. ?? 2008 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Gines, G. A.; Bea, J. G.; Palaoag, T. D.
2018-03-01
Soil serves a medium for plants growth. One factor that affects soil moisture is drought. Drought has been a major cause of agricultural disaster. Agricultural drought is said to occur when soil moisture is insufficient to meet crop water requirements, resulting in yield losses. In this research, it aimed to characterize soil moisture level for Rice and Maize Crops using Arduino and applying fuzzy logic. System architecture for soil moisture sensor and water pump were the basis in developing the equipment. The data gathered was characterized by applying fuzzy logic. Based on the results, applying fuzzy logic in validating the characterization of soil moisture level for Rice and Maize crops is accurate as attested by the experts. This will help the farmers in monitoring the soil moisture level of the Rice and Maize crops.
Soil Moisture Memory in Climate Models
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Suarez, Max J.; Zukor, Dorothy J. (Technical Monitor)
2000-01-01
Water balance considerations at the soil surface lead to an equation that relates the autocorrelation of soil moisture in climate models to (1) seasonality in the statistics of the atmospheric forcing, (2) the variation of evaporation with soil moisture, (3) the variation of runoff with soil moisture, and (4) persistence in the atmospheric forcing, as perhaps induced by land atmosphere feedback. Geographical variations in the relative strengths of these factors, which can be established through analysis of model diagnostics and which can be validated to a certain extent against observations, lead to geographical variations in simulated soil moisture memory and thus, in effect, to geographical variations in seasonal precipitation predictability associated with soil moisture. The use of the equation to characterize controls on soil moisture memory is demonstrated with data from the modeling system of the NASA Seasonal-to-Interannual Prediction Project.
NASA Technical Reports Server (NTRS)
Tsegaye, T.; Coleman, T.; Senwo, Z.; Shaffer, D.; Zou, X.
1998-01-01
Little is known about the landuse management effect on soil moisture and soil pH distribution on a landscape covered with dense tropical forest vegetation. This study was conducted at three locations where the history of the landuse management is different. Soil moisture was measured using a 6-cm three-rod Time Domain Reflectometery (TDR) probe. Disturbed soil samples were taken from the top 5-cm at the up, mid, and foothill landscape position from the same spots where soil moisture was measured. The results showed that soil moisture varies with landscape position and depth at all three locations. Soil pH and moisture variability were found to be affected by the change in landuse management and landscape position. Soil moisture distribution usually expected to be relatively higher in the foothill (P3) area of these forests than the uphill (P1) position. However, our results indicated that in the Luquillo and Guanica site the surface soil moisture was significantly higher for P1 than P3 position. These suggest that the surface and subsurface drainage in these two sites may have been poor due to the nature of soil formation and type.
A comparison of soil-moisture loss from forested and clearcut areas in West Virginia
Charles A. Troendle
1970-01-01
Soil-moisture losses from forested and clearcut areas were compared on the Fernow Experimental Forest. As expected, hardwood forest soils lost most moisture while revegetated clearcuttings, clearcuttings, and barren areas lost less, in that order. Soil-moisture losses from forested soils also correlated well with evapotranspiration and streamflow.
NASA Astrophysics Data System (ADS)
Martínez, G.; Vanderlinden, K.; Giraldez, J. V.; Espejo, A. J.; Muriel, J. L.
2009-12-01
Soil moisture plays an important role in a wide variety of biogeochemical fluxes in the soil-plant-atmosphere system and governs the (eco)hydrological response of a catchment to an external forcing such as rainfall. Near-surface electromagnetic induction (EMI) sensors that measure the soil apparent electrical conductivity (ECa) provide a fast and non-invasive means for characterizing this response at the field or catchment scale through high-resolution time-lapse mapping. Here we show how ECa maps, obtained before and after an intense rainfall event of 125 mm h-1, elucidate differences in soil moisture patterns and hydrologic response of an experimental field as a consequence of differed soil management. The dryland field (Vertisol) was located in SW Spain and cropped with a typical wheat-sunflower-legume rotation. Both, near-surface and subsurface ECa (ECas and ECad, respectively), were measured using the EM38-DD EMI sensor in a mobile configuration. Raw ECa measurements and Mean Relative Differences (MRD) provided information on soil moisture patterns while time-lapse maps were used to evaluate the hydrologic response of the field. ECa maps of the field, measured before and after the rainfall event showed similar patterns. The field depressions where most of water and sediments accumulated had the highest ECa and MRD values. The SE-oriented soil, which was deeper and more exposed to sun and wind, showed the lowest ECa and MRD. The largest differences raised in the central part of the field where a high ECa and MRD area appeared after the rainfall event as a consequence of the smaller soil depth and a possible subsurface flux concentration. Time-lapse maps of both ECa and MRD were also similar. The direct drill plots showed higher increments of ECa and MRD as a result of the smaller runoff production. Time-lapse ECa increments showed a bimodal distribution differentiating clearly the direct drill from the conventional and minimum tillage plots. However this kind of distribution could not be shown using MRD differences since they come from standardized distributions. Field-extend time-lapse ECa maps can provide useful images of the hydrological response of agricultural fields which can be used to evaluate different soil management strategies or to aid the assessment of biogeochemical fluxes at the field scale.
NASA Astrophysics Data System (ADS)
Ansari Amoli, Abdolreza; Lopez-Baeza, Ernesto; Mahmoudi, Ali; Mahmoodi, Ali
2016-07-01
Synergistic Use of SMOS Measurements with SMAP Derived and In-situ Data over the Valencia Anchor Station by Using a Downscaling Technique Ansari Amoli, A.(1),Mahmoodi, A.(2) and Lopez-Baeza, E.(3) (1) Department of Earth Physics and Thermodynamics, University of Valencia, Spain (2) Centre d'Etudes Spatiales de la BIOsphère (CESBIO), France (3) Department of Earth Physics and Thermodynamics, University of Valencia, Spain Soil moisture products from active sensors are not operationally available. Passive remote sensors return more accurate estimates, but their resolution is much coarser. One solution to overcome this problem is the synergy between radar and radiometric data by using disaggregation (downscaling) techniques. Few studies have been conducted to merge high resolution radar and coarse resolution radiometer measurements in order to obtain an intermediate resolution product. In this paper we present an algorithm using combined available SMAP (Soil Moisture Active and Passive) radar and SMOS (Soil Moisture and Ocean Salinity) radiometer measurements to estimate surface soil moisture over the Valencia Anchor Station (VAS), Valencia, Spain. The goal is to combine the respective attributes of the radar and radiometer observations to estimate soil moisture at a resolution of 3 km. The algorithm disaggregates the coarse resolution SMOS (15 km) radiometer brightness temperature product based on the spatial variation of the high resolution SMAP (3 km) radar backscatter. The disaggregation of the radiometer brightness temperature uses the radar backscatter spatial patterns within the radiometer footprint that are inferred from the radar measurements. For this reason the radar measurements within the radiometer footprint are scaled by parameters that are derived from the temporal fluctuations in the radar and radiometer measurements.
Using NASA UAVSAR Datasets to Link Soil Moisture to Crop Conditions
NASA Astrophysics Data System (ADS)
Davitt, A. W. D.; McDonald, K. C.; Azarderakhsh, M.; Winter, J.
2015-12-01
California and The Central Valley are experiencing one of that region's worst, persistent droughts, which represents the continuation of a prolonged drought that started in the early 2000's. Due to the continued drought, many agricultural regions in The Central Valley have been experiencing water shortages, negatively impacting agricultural production and the socio-economics of the region. Due to these impacts, there has been an increased incentive to find new ways to conserve water for use in irrigation. Recent advances in remote sensing techniques provide the ability for end users to better understand field conditions so they may make more informed decisions on irrigation timing and amounts. However, a good understanding of soil moisture and its role in crop health and yield is lacking to support informed water management decisions. Though known to be important, a robust understanding of the role of the spatio-temporal patterns in soil moisture linked to crop health is lacking. Remote sensing platforms such as NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) provide the capacity to obtain within-field measurements to estimate within-field and field-to-field variability in soil moisture. UAVSAR radar images acquired from 2010 to 2014 for Yolo County, California are being examined to determine the suitability of high resolution (field scale) multi-temporal L-band radar backscatter imagery for soil moisture assessment and crop conditions through the growing season. By using such data and linking to in-situ meteorology measurements, modeling (MIMICS), and other remote sensing derived datasets (Sentinel, Landsat, MODIS, and TOPS-SIMS), an integrated monitoring system can potentially support the assessment of agricultural field conditions. This allows growers to optimize the use of limited water supplies through informed water management practices, potentially improving crop conditions and yield in a water stressed region.
On Simulating the Mid-western-us Drought of 1988 with a GCM
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Mocko, D. M.; Lau, William K.-M.; Atlas, R.
2002-01-01
The primary cause of the midwestern North American drought in the summer of 1988 has been identified to be the La Nina SST anomalies. Yet with the SST anomalies prescribed, this drought has not been simulated satisfactorily by any general circulation model. Seven simulation-experiments, each containing an ensemble of 4-sets of simulations, were conducted with the GEOS GCM for both 1987 and 1988. All simulations started from January 1 and continued through the end of August. In the first baseline case, Case 1, only the SST anomalies and some vegetation parameters were prescribed, while everything else (such as soil moisture, snow-cover, and clouds) was interactive. The GCM did produce some of the circulation features of a drought over North America, but they could only be identified on the planetary scales. The 1988 minus 1987 precipitation differences show that the GCM was successful in simulating reduced precipitation in the mid-west, but the accompanying circulation anomalies were not well simulated, leading one to infer that the GCM has simulated the drought for the wrong reason. To isolate the causes for this unremarkable circulation, analyzed winds and soil moisture were prescribed in Case 2 and Case 3 as continuous updates by direct replacement of the GCM-predicted fields. These cases show that a large number of simulation biases emanate from wind biases that are carried into the North American region from surroundings regions. Inclusion of soil moisture also helps to ameliorate the strong feedback, perhaps even stronger than that of the real atmosphere, between soil moisture and precipitation. Case 2 simulated one type of surface temperature anomaly pattern, whereas Case 3 with the prescribed soil moisture produced another.
Conceptualizing the self organization of cloud cells, cold pools and soil moisture
NASA Astrophysics Data System (ADS)
Henneberg, O.; Härter, J. O. M.
2017-12-01
Convective-type cloud is the cause of extreme, short-duration precipitation, challenging weather forecasting and climate modeling. Such extremes are ultimately tied to the uneven redistribution of water in the course of convective self organization and possibly the interaction between clouds [1]. Over land, moisture is organized through: cloud cells, cold pools, and the land surface. Each of these generally capture and release moisture at different rates, e.g. cold pools form quickly but dissipate slowly. Such distinct timescales have implications for the emergent dynamics.Incorporating such distinct time scales, we here present a conceptual model for the spatio-temporal self organization within the diurnal cycle of convection and describe the possible role of soil moisture memory in serving as a predisposition for extremes.We bolster our findings by high resolution, large eddy simulations: Sensible and latent heat fluxes, which are determined by the soil moisture content, can influence the stability of the atmosphere. The onset of initial precipitation is affected by such heat release, which in turn is modified by previous precipitation. Starting from static heat sources, we quantify how their spatial distribution affects the self organization and thus onset, duration and strength of precipitation events in an idealized model setup. Furthermore, an extended model setup with inhomogeneous, self organized distributions of latent and sensible heat fluxes is used to contrast how emergent soil moisture patterns impact on the selforganization structure of convection. Our findings may have implications for the role of land use changes regarding the development of extreme convective precipitation.Reference[1] Moseley et al. (2016) "Intensification of convective extremes driven by cloud-cloud interaction", Nature Geosc. , 9, 748-752
Application of Terrestrial Microwave Remote Sensing to Agricultural Drought Monitoring
NASA Astrophysics Data System (ADS)
Crow, W. T.; Bolten, J. D.
2014-12-01
Root-zone soil moisture information is a valuable diagnostic for detecting the onset and severity of agricultural drought. Current attempts to globally monitor root-zone soil moisture are generally based on the application of soil water balance models driven by observed meteorological variables. Such systems, however, are prone to random error associated with: incorrect process model physics, poor parameter choices and noisy meteorological inputs. The presentation will describe attempts to remediate these sources of error via the assimilation of remotely-sensed surface soil moisture retrievals from satellite-based passive microwave sensors into a global soil water balance model. Results demonstrate the ability of satellite-based soil moisture retrieval products to significantly improve the global characterization of root-zone soil moisture - particularly in data-poor regions lacking adequate ground-based rain gage instrumentation. This success has lead to an on-going effort to implement an operational land data assimilation system at the United States Department of Agriculture's Foreign Agricultural Service (USDA FAS) to globally monitor variations in root-zone soil moisture availability via the integration of satellite-based precipitation and soil moisture information. Prospects for improving the performance of the USDA FAS system via the simultaneous assimilation of both passive and active-based soil moisture retrievals derived from the upcoming NASA Soil Moisture Active/Passive mission will also be discussed.
The Contribution of Soil Moisture Information to Forecast Skill: Two Studies
NASA Technical Reports Server (NTRS)
Koster, Randal
2010-01-01
This talk briefly describes two recent studies on the impact of soil moisture information on hydrological and meteorological prediction. While the studies utilize soil moisture derived from the integration of large-scale land surface models with observations-based meteorological data, the results directly illustrate the potential usefulness of satellite-derived soil moisture information (e.g., from SMOS and SMAP) for applications in prediction. The first study, the GEWEX- and ClIVAR-sponsored GLACE-2 project, quantifies the contribution of realistic soil moisture initialization to skill in subseasonal forecasts of precipitation and air temperature (out to two months). The multi-model study shows that soil moisture information does indeed contribute skill to the forecasts, particularly for air temperature, and particularly when the initial local soil moisture anomaly is large. Furthermore, the skill contributions tend to be larger where the soil moisture initialization is more accurate, as measured by the density of the observational network contributing to the initialization. The second study focuses on streamflow prediction. The relative contributions of snow and soil moisture initialization to skill in streamflow prediction at seasonal lead, in the absence of knowledge of meteorological anomalies during the forecast period, were quantified with several land surface models using uniquely designed numerical experiments and naturalized streamflow data covering mUltiple decades over the western United States. In several basins, accurate soil moisture initialization is found to contribute significant levels of predictive skill. Depending on the date of forecast issue, the contributions can be significant out to leads of six months. Both studies suggest that improvements in soil moisture initialization would lead to increases in predictive skill. The relevance of SMOS and SMAP satellite-based soil moisture information to prediction are discussed in the context of these studies.
NASA Astrophysics Data System (ADS)
Hüsami Afşar, M.; Bulut, B.; Yilmaz, M. T.
2017-12-01
Soil moisture is one of the fundamental parameters of the environment that plays a major role in carbon, energy, and water cycles. Spatial distribution and temporal changes of soil moisture is one of the important components in climatic, ecological and natural hazards at global, regional and local levels scales. Therefore retrieval of soil moisture datasets has a great importance in these studies. Given soil moisture can be retrieved through different platforms (i.e., in-situ measurements, numerical modeling, and remote sensing) for the same location and time period, it is often desirable to evaluate these different datasets to assign the most accurate estimates for different purposes. During last decades, efforts have been given to provide evaluations about different soil moisture products based on various statistical analysis of the soil moisture time series (i.e., comparison of correlation, bias, and their error standard deviation). On the other hand, there is still need for the comparisons of the soil moisture products in drought analysis context. In this study, LPRM and NOAH Land Surface Model soil moisture datasets are investigated in drought analysis context using station-based watershed average datasets obtained over four USDA ARS watersheds as ground truth. Here, the drought analysis are performed using the standardized soil moisture datasets (i.e., zero mean and one standard deviation) while the droughts are defined as consecutive negative anomalies less than -1 for longer than 3 months duration. Accordingly, the drought characteristics (duration and severity) and false alarm and hit/miss ratios of LPRM and NOAH datasets are validated using station-based datasets as ground truth. Results showed that although the NOAH soil moisture products have better correlations, LPRM based soil moisture retrievals show better consistency in drought analysis. This project is supported by TUBITAK Project number 114Y676.
Is the Pearl River basin, China, drying or wetting? Seasonal variations, causes and implications
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Li, Jianfeng; Gu, Xihui; Shi, Peijun
2018-07-01
Soil moisture plays crucial roles in the hydrological cycle and is also a critical link between land surface and atmosphere. The Pearl River basin (PRb) is climatically subtropical and tropical and is highly sensitive to climate changes. In this study, seasonal soil moisture changes across the PRb were analyzed using the Variable Infiltration Capacity (VIC) model forced by the gridded 0.5° × 0.5° climatic observations. Seasonal changes of soil moisture in both space and time were investigated using the Mann-Kendall trend test method. Potential influencing factors behind seasonal soil moisture changes such as precipitation and temperature were identified using the Maximum Covariance Analysis (MCA) technique. The results indicated that: (1) VIC model performs well in describing changing properties of soil moisture across the PRb; (2) Distinctly different seasonal features of soil moisture can be observed. Soil moisture in spring decreased from east to west parts of the PRb. In summer however, soil moisture was higher in east and west parts but was lower in central parts of the PRb; (3) A significant drying trend was identified over the PRb in autumn, while no significant drying trends can be detected in other seasons; (4) The increase/decrease in precipitation can generally explain the wetting/drying tendency of soil moisture. However, warming temperature contributed significantly to the drying trends and these drying trends were particularly evident during autumn and winter; (5) Significant decreasing precipitation and increasing temperature combined to trigger substantially decreasing soil moisture in autumn. In winter, warming temperature is the major reason behind decreased soil moisture although precipitation is in slightly decreasing tendency. Season variations of soil moisture and related implications for hydro-meteorological processes in the subtropical and tropical river basins over the globe should arouse considerable human concerns.
NASA Astrophysics Data System (ADS)
Arumugam, S.; Mazrooei, A.; Lakshmi, V.; Wood, A.
2017-12-01
Subseasonal-to-seasonal (S2S) forecasts of soil moisture and streamflow provides critical information for water and agricultural systems to support short-term planning and mangement. This study evaluates the role of observed streamflow and remotely-sensed soil moisture from SMAP (Soil Moisture Active Passive) mission in improving S2S streamflow and soil moisture forecasting using data assimilation (DA). We first show the ability to forecast soil moisture at monthly-to-seaasonal time scale by forcing climate forecasts with NASA's Land Information System and then compares the developed soil moisture forecast with the SMAP data over the Southeast US. Our analyses show significant skill in forecasting real-time soil moisture over 1-3 months using climate information. We also show that the developed soil moisture forecasts capture the observed severe drought conditions (2007-2008) over the Southeast US. Following that, we consider both SMAP data and observed streamflow for improving S2S streamflow and soil moisture forecasts for a pilot study area, Tar River basin, in NC. Towards this, we consider variational assimilation (VAR) of gauge-measured daily streamflow data in improving initial hydrologic conditions of Variable Infiltration Capacity (VIC) model. The utility of data assimilation is then assessed in improving S2S forecasts of streamflow and soil moisture through a retrospective analyses. Furthermore, the optimal frequency of data assimilation and optimal analysis window (number of past observations to use) are also assessed in order to achieve the maximum improvement in S2S forecasts of streamflow and soil moisture. Potential utility of updating initial conditions using DA and providing skillful forcings are also discussed.
NASA Astrophysics Data System (ADS)
Akbar, Ruzbeh; Short Gianotti, Daniel; McColl, Kaighin A.; Haghighi, Erfan; Salvucci, Guido D.; Entekhabi, Dara
2018-03-01
The soil water content profile is often well correlated with the soil moisture state near the surface. They share mutual information such that analysis of surface-only soil moisture is, at times and in conjunction with precipitation information, reflective of deeper soil fluxes and dynamics. This study examines the characteristic length scale, or effective depth Δz, of a simple active hydrological control volume. The volume is described only by precipitation inputs and soil water dynamics evident in surface-only soil moisture observations. To proceed, first an observation-based technique is presented to estimate the soil moisture loss function based on analysis of soil moisture dry-downs and its successive negative increments. Then, the length scale Δz is obtained via an optimization process wherein the root-mean-squared (RMS) differences between surface soil moisture observations and its predictions based on water balance are minimized. The process is entirely observation-driven. The surface soil moisture estimates are obtained from the NASA Soil Moisture Active Passive (SMAP) mission and precipitation from the gauge-corrected Climate Prediction Center daily global precipitation product. The length scale Δz exhibits a clear east-west gradient across the contiguous United States (CONUS), such that large Δz depths (>200 mm) are estimated in wetter regions with larger mean precipitation. The median Δz across CONUS is 135 mm. The spatial variance of Δz is predominantly explained and influenced by precipitation characteristics. Soil properties, especially texture in the form of sand fraction, as well as the mean soil moisture state have a lesser influence on the length scale.
Variation in microbial activity in histosols and its relationship to soil moisture.
Tate, R L; Terry, R E
1980-08-01
Microbial biomass, dehydrogenase activity, carbon metabolism, and aerobic bacterial populations were examined in cropped and fallow Pahokee muck (a lithic medisaprist) of the Florida Everglades. Dehydrogenase activity was two- to sevenfold greater in soil cropped to St. Augustinegrass (Stenotaphrum secundatum (Walt) Kuntz) compared with uncropped soil, whereas biomass ranged from equivalence in the two soils to a threefold stimulation in the cropped soil. Biomass in soil cropped to sugarcane (Saccharum spp. L) approximated that from the grass field, whereas dehydrogenase activities of the cane soil were nearly equivalent to those of the fallow soil. Microbial biomass, dehydrogenase activity, aerobic bacterial populations, and salicylate oxidation rates all correlated with soil moisture levels. These data indicate that within the moisture ranges detected in the surface soils, increased moisture stimulated microbial activity, whereas within the soil profile where moisture ranges reached saturation, increased moisture inhibited aerobic activities and stimulated anaerobic processes.
Variation in Microbial Activity in Histosols and Its Relationship to Soil Moisture †
Tate, Robert L.; Terry, Richard E.
1980-01-01
Microbial biomass, dehydrogenase activity, carbon metabolism, and aerobic bacterial populations were examined in cropped and fallow Pahokee muck (a lithic medisaprist) of the Florida Everglades. Dehydrogenase activity was two- to sevenfold greater in soil cropped to St. Augustinegrass (Stenotaphrum secundatum (Walt) Kuntz) compared with uncropped soil, whereas biomass ranged from equivalence in the two soils to a threefold stimulation in the cropped soil. Biomass in soil cropped to sugarcane (Saccharum spp. L) approximated that from the grass field, whereas dehydrogenase activities of the cane soil were nearly equivalent to those of the fallow soil. Microbial biomass, dehydrogenase activity, aerobic bacterial populations, and salicylate oxidation rates all correlated with soil moisture levels. These data indicate that within the moisture ranges detected in the surface soils, increased moisture stimulated microbial activity, whereas within the soil profile where moisture ranges reached saturation, increased moisture inhibited aerobic activities and stimulated anaerobic processes. PMID:16345610
NASA Astrophysics Data System (ADS)
Sanchez-Mejia, Z. M.; Papuga, S. A.
2013-12-01
In semiarid regions, where water resources are limited and precipitation dynamics are changing, understanding land surface-atmosphere interactions that regulate the coupled soil moisture-precipitation system is key for resource management and planning. We present a modeling approach to study soil moisture and albedo controls on planetary boundary layer height (PBLh). We used data from the Santa Rita Creosote Ameriflux site and Tucson Airport atmospheric sounding to generate empirical relationships between soil moisture, albedo and PBLh. We developed empirical relationships and show that at least 50% of the variation in PBLh can be explained by soil moisture and albedo. Then, we used a stochastically driven two-layer bucket model of soil moisture dynamics and our empirical relationships to model PBLh. We explored soil moisture dynamics under three different mean annual precipitation regimes: current, increase, and decrease, to evaluate at the influence on soil moisture on land surface-atmospheric processes. While our precipitation regimes are simple, they represent future precipitation regimes that can influence the two soil layers in our conceptual framework. For instance, an increase in annual precipitation, could impact on deep soil moisture and atmospheric processes if precipitation events remain intense. We observed that the response of soil moisture, albedo, and the PBLh will depend not only on changes in annual precipitation, but also on the frequency and intensity of this change. We argue that because albedo and soil moisture data are readily available at multiple temporal and spatial scales, developing empirical relationships that can be used in land surface - atmosphere applications are of great value.
Climate Prediction Center - United States Drought Information
Crop Moisture Indices  Soil Moisture Percentiles (based on NLDAS)  Standardized Runoff Index (based /Minimum  Mean Surface Hydrology (based on NLDAS)  Total Soil Moisture  Total SM Change  MOSAIC Soil Moisture Profile  NOAH Soil Moisture Profile  NOAH Soil T Profile  Evaporation  E-P Â
An overview of the measurements of soil moisture and modeling of moisture flux in FIFE
NASA Technical Reports Server (NTRS)
Wang, J. R.
1992-01-01
Measurements of soil moisture and calculations of moisture transfer in the soil medium and at the air-soil interface were performed over a 15-km by 15-km test site during FIFE in 1987 and 1989. The measurements included intensive soil moisture sampling at the ground level and surveys at aircraft altitudes by several passive and active microwave sensors as well as a gamma radiation device.
NASA Technical Reports Server (NTRS)
Ballard, Jerrell R., Jr.; Howington, Stacy E.; Cinnella, Pasquale; Smith, James A.
2011-01-01
The temperature and moisture regimes in a forest are key components in the forest ecosystem dynamics. Observations and studies indicate that the internal temperature distribution and moisture content of the tree influence not only growth and development, but onset and cessation of cambial activity [1], resistance to insect predation[2], and even affect the population dynamics of the insects [3]. Moreover, temperature directly affects the uptake and metabolism of population from the soil into the tree tissue [4]. Additional studies show that soil and atmospheric temperatures are significant parameters that limit the growth of trees and impose treeline elevation limitation [5]. Directional thermal infrared radiance effects have long been observed in natural backgrounds [6]. In earlier work, we illustrated the use of physically-based models to simulate directional effects in thermal imaging [7-8]. In this paper, we illustrated the use of physically-based models to simulate directional effects in thermal, and net radiation in a adeciduous forest using our recently developed three-dimensional, macro-scale computational tool that simulates the heat and mass transfer interaction in a soil-root-stem systems (SRSS). The SRSS model includes the coupling of existing heat and mass transport tools to stimulate the diurnal internal and external temperatures, internal fluid flow and moisture distribution, and heat flow in the system.
The potential of SMAP soil moisture data for analyzing droughts
NASA Astrophysics Data System (ADS)
Rajasekaran, E.; Das, N. N.; Entekhabi, D.; Yueh, S. H.
2017-12-01
Identification of the onset and the end of droughts are important for socioeconomic planning. Different datasets and tools are either available or being generated for drought analysis to recognize the status of drought. The aim of this study is to understand the potential of the SMAP soil moisture (SM) data for identification of onset, persistence and withdrawal of droughts over the Contiguous United States. We are using the SMAP-passive level 3 soil moisture observations and the United States Drought Monitor (http://droughtmonitor.unl.edu) data for understanding the relation between change in SM and drought severity. The daily observed SM data are temporally averaged to match the weekly drought monitor data and subsequently the weekly, monthly, 3 monthly and 6 monthly change in SM and drought severity were estimated. The analyses suggested that the change in SM and drought severity are correlated especially over the mid-west and west coast of USA at monthly and longer time scales. The spatial pattern of the SM change maps clearly indicated the regions that are moving between different levels of drought severity. Further, the time series of effective saturation [Se =(θ-θr)/(θs-θr)] indicated the temporal dynamics of drought conditions over California which is recovering from a long-term drought. Additional analyses are being carried out to develop statistics between drought severity and soil moisture level.
Vandecar, Karen L; Lawrence, Deborah; Wood, Tana; Oberbauer, Steven F; Das, Rishiraj; Tully, Katherine; Schwendenmann, Luitgard
2009-09-01
The productivity of many tropical wet forests is generally limited by bioavailable phosphorus (P). Microbial activity is a key regulator of P availability in that it determines both the supply of P through organic matter decomposition and the depletion of bioavailable P through microbial uptake. Both microbial uptake and mineralization occur rapidly, and their net effect on P availability varies with soil moisture, temperature, and soil organic matter quantity and quality. Exploring the mechanisms driving P availability at fine temporal scales can provide insight into the coupling of carbon, water, and nutrient cycles, and ultimately, the response of tropical forests to climate change. Despite the recognized importance of P cycling to the dynamics of wet tropical forests and their potential sensitivity to short-term fluctuations in bioavailable P, the diurnal pattern of P remains poorly understood. This study quantifies diurnal fluctuations in labile soil P and evaluates the importance of biotic and abiotic factors in driving these patterns. To this end, measurements of labile P were made every other hour in a Costa Rican wet tropical forest oxisol. Spatial and temporal variation in Bray-extractable P were investigated in relation to ecosystem carbon flux, soil CO2 efflux, soil moisture, soil temperature, solar radiation, and sap-flow velocity. Spatially averaged bi-hourly (every two hours) labile P ranged from 0.88 to 2.48 microg/g across days. The amplitude in labile P throughout the day was 0.61-0.82 microg/g (41-54% of mean P concentrations) and was characterized by a bimodal pattern with a decrease at midday. Labile P increased with soil CO2 efflux and soil temperature and declined with increasing sap flow and solar radiation. Together, soil CO2 efflux, soil temperature, and sap flow explained 86% of variation in labile P.
NASA Astrophysics Data System (ADS)
Wu, Qiusheng; Liu, Hongxing; Wang, Lei; Deng, Chengbin
2016-03-01
High quality soil moisture datasets are required for various environmental applications. The launch of the Advanced Microwave Scanning Radiometer 2 (AMSR2) on board the Global Change Observation Mission 1-Water (GCOM-W1) in May 2012 has provided global near-surface soil moisture data, with an average revisit frequency of two days. Since AMSR2 is a new passive microwave system in operation, it is very important to evaluate the quality of AMSR2 products before widespread utilization of the data for scientific research. In this paper, we provide a comprehensive evaluation of the AMSR2 soil moisture products retrieved by the Japan Aerospace Exploration Agency (JAXA) algorithm. The evaluation was performed for a three-year period (July 2012-June 2015) over the contiguous United States. The AMSR2 soil moisture products were evaluated by comparing ascending and descending overpass products to each other as well as comparing them to in situ soil moisture observations of 598 monitoring stations obtained from the International Soil Moisture Network (ISMN). The accuracy of AMSR2 soil moisture product was evaluated against several types of monitoring networks, and for different land cover types and ecoregions. Three performance metrics, including mean difference (MD), root mean squared difference (RMSD), and correlation coefficient (R), were used in our accuracy assessment. Our evaluation results revealed that AMSR2 soil moisture retrievals are generally lower than in situ measurements. The AMSR2 soil moisture retrievals showed the best agreement with in situ measurements over the Great Plains and the worst agreement over forested areas. This study offers insights into the suitability and reliability of AMSR2 soil moisture products for different ecoregions. Although AMSR2 soil moisture retrievals represent useful and effective measurements for some regions, further studies are required to improve the data accuracy.
NASA Astrophysics Data System (ADS)
Cui, Y.; Long, D.; Hong, Y.; Zeng, C.; Han, Z.
2016-12-01
Reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau Yaokui Cui, Di Long, Yang Hong, Chao Zeng, and Zhongying Han State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China Abstract: Soil moisture is a key variable in the exchange of water and energy between the land surface and the atmosphere, especially over the Tibetan Plateau (TP) which is climatically and hydrologically sensitive as the world's third pole. Large-scale consistent and continuous soil moisture datasets are of importance to meteorological and hydrological applications, such as weather forecasting and drought monitoring. The Fengyun-3B Microwave Radiation Imager (FY-3B/MWRI) soil moisture product is one of relatively new passive microwave products. The FY-3B/MWRI soil moisture product is reconstructed using the back-propagation neural network (BP-NN) based on reconstructed MODIS products, i.e., LST, NDVI, and albedo using different gap-filling methods. The reconstruction method of generating the soil moisture product not only considers the relationship between the soil moisture and the NDVI, LST, and albedo, but also the relationship between the soil moisture and the four-dimensional variation using the longitude, latitude, DEM and day of year (DOY). Results show that the soil moisture could be well reconstructed with R2 larger than 0.63, and RMSE less than 0.1 cm3 cm-3 and bias less than 0.07 cm3 cm-3 for both frozen and unfrozen periods, compared with in-situ measurements in the central TP. The reconstruction method is subsequently applied to generate spatially consistent and temporally continuous surface soil moisture over the TP. The reconstructed FY-3B/MWRI soil moisture product could be valuable in studying meteorology, hydrology, and agriculture over the TP. Keywords: FY-3B/MWRI; Soil moisture; Reconstruction; Tibetan Plateau
Downscaled soil moisture from SMAP evaluated using high density observations
USDA-ARS?s Scientific Manuscript database
Recently, a soil moisture downscaling algorithm based on a regression relationship between daily temperature changes and daily average soil moisture was developed to produce an enhanced spatial resolution on soil moisture product for the Advanced Microwave Scanning Radiometer–EOS (AMSR-E) satellite ...
Data assimilation to extract soil moisture information from SMAP observations
USDA-ARS?s Scientific Manuscript database
This study compares different methods to extract soil moisture information through the assimilation of Soil Moisture Active Passive (SMAP) observations. Neural Network(NN) and physically-based SMAP soil moisture retrievals were assimilated into the NASA Catchment model over the contiguous United Sta...
NASA Technical Reports Server (NTRS)
Wiesnet, D. R. (Principal Investigator); Mcginnis, D. F.; Matson, M.
1980-01-01
The author has identified the following significant results. The HCMM thermal data are useful for monitoring estuarine surface thermal patterns. Estuarine thermal patterns, are, under certain conditions, indicative of the surface tidal current circulation patterns. Under optimum conditions, estuaries as small as the Cooper River (i.e., approximately 100 sq km) can be monitored for tidal/thermal circulation patterns by HCMM-type IR sensors.
NASA Astrophysics Data System (ADS)
Williams, Charles; Turner, Andrew
2015-04-01
It is generally acknowledged that anthropogenic land use changes, such as a shift from forested land into irrigated agriculture, may have an impact on regional climate and, in particular, rainfall patterns in both time and space. India provides an excellent example of a country in which widespread land use change has occurred during the last century, as the country tries to meet its growing demand for food. Of primary concern for agriculture is the Indian summer monsoon (ISM), which displays considerable seasonal and subseasonal variability. Although it is evident that changing rainfall variability will have a direct impact on land surface processes (such as soil moisture variability), the reverse impact is less well understood. However, the role of soil moisture in the coupling between the land surface and atmosphere needs to be properly explored before any potential impact of changing soil moisture variability on ISM rainfall can be understood. This paper attempts to address this issue, by conducting a number of sensitivity experiments using a state-of-the-art climate model from the UK Meteorological Office Hadley Centre: HadGEM2. Several experiments are undertaken, with the only difference between them being the extent to which soil moisture is coupled to the atmosphere. Firstly, the land surface is fully coupled to the atmosphere, globally (as in standard model configurations); secondly, the land surface is entirely uncoupled from the atmosphere, again globally, with soil moisture values being prescribed on a daily basis; thirdly, the land surface is uncoupled from the atmosphere over India but fully coupled elsewhere; and lastly, vice versa (i.e. the land surface is coupled to the atmosphere over India but uncoupled elsewhere). Early results from this study suggest certain 'hotspot' regions where the impact of soil moisture coupling/uncoupling may be important, and many of these regions coincide with previous studies. Focusing on the third experiment, i.e. uncoupled over India and coupled elsewhere, preliminary results suggest an increase in rainfall, surface temperature and pressure over northern India and the Himalayas, as well as a decrease in rainfall over the Bay of Bengal and the Maritime Continent. Other metrics, such as the northward propagation of intraseasonal rainfall variability and sensible and latent heat fluxes, are also discussed.
NASA Astrophysics Data System (ADS)
Xu, Lina; Niu, Ruiqing; Li, Jiong; Dong, Yanfang
2011-12-01
Soil moisture is the important indicator of climate, hydrology, ecology, agriculture and other parameters of the land surface and atmospheric interface. Soil moisture plays an important role on the water and energy exchange at the land surface/atmosphere interface. Remote sensing can provide information on large area quickly and easily, so it is significant to do research on how to monitor soil moisture by remote sensing. This paper presents a method to assess soil moisture status using Landsat TM data over Three Gorges area in China based on TVDI. The potential of Temperature- Vegetation Dryness Index (TVDI) from Landsat TM data in assessing soil moisture was investigated in this region. After retrieving land surface temperature and vegetation index a TVDI model based on the features of Ts-NDVI space is established. And finally, soil moisture status is estimated according to TVDI. It shows that TVDI has the advantages of stability and high accuracy to estimating the soil moisture status.
Evaluating Land-Atmosphere Interactions with the North American Soil Moisture Database
NASA Astrophysics Data System (ADS)
Giles, S. M.; Quiring, S. M.; Ford, T.; Chavez, N.; Galvan, J.
2015-12-01
The North American Soil Moisture Database (NASMD) is a high-quality observational soil moisture database that was developed to study land-atmosphere interactions. It includes over 1,800 monitoring stations the United States, Canada and Mexico. Soil moisture data are collected from multiple sources, quality controlled and integrated into an online database (soilmoisture.tamu.edu). The period of record varies substantially and only a few of these stations have an observation record extending back into the 1990s. Daily soil moisture observations have been quality controlled using the North American Soil Moisture Database QAQC algorithm. The database is designed to facilitate observationally-driven investigations of land-atmosphere interactions, validation of the accuracy of soil moisture simulations in global land surface models, satellite calibration/validation for SMOS and SMAP, and an improved understanding of how soil moisture influences climate on seasonal to interannual timescales. This paper provides some examples of how the NASMD has been utilized to enhance understanding of land-atmosphere interactions in the U.S. Great Plains.
NASA Giovanni: A Tool for Visualizing, Analyzing, and Inter-Comparing Soil Moisture Data
NASA Technical Reports Server (NTRS)
Teng, William; Rui, Hualan; Vollmer, Bruce; deJeu, Richard; Fang, Fan; Lei, Guang-Dih
2012-01-01
There are many existing satellite soil moisture algorithms and their derived data products, but there is no simple way for a user to inter-compare the products or analyze them together with other related data (e.g., precipitation). An environment that facilitates such inter-comparison and analysis would be useful for validation of satellite soil moisture retrievals against in situ data and for determining the relationships between different soil moisture products. The latter relationships are particularly important for applications users, for whom the continuity of soil moisture data, from whatever source, is critical. A recent example was provided by the sudden demise of EOS Aqua AMSR-E and the end of its soil moisture data production, as well as the end of other soil moisture products that had used the AMSR-E brightness temperature data. The purpose of the current effort is to create an environment, as part of the NASA Giovanni family of portals, that facilitates inter-comparisons of soil moisture algorithms and their derived data products.
Microwave remote sensing and its application to soil moisture detection
NASA Technical Reports Server (NTRS)
Newton, R. W. (Principal Investigator)
1977-01-01
The author has identified the following significant results. Experimental measurements were utilized to demonstrate a procedure for estimating soil moisture, using a passive microwave sensor. The investigation showed that 1.4 GHz and 10.6 GHz can be used to estimate the average soil moisture within two depths; however, it appeared that a frequency less than 10.6 GHz would be preferable for the surface measurement. Average soil moisture within two depths would provide information on the slope of the soil moisture gradient near the surface. Measurements showed that a uniform surface roughness similar to flat tilled fields reduced the sensitivity of the microwave emission to soil moisture changes. Assuming that the surface roughness was known, the approximate soil moisture estimation accuracy at 1.4 GHz calculated for a 25% average soil moisture and an 80% degree of confidence, was +3% and -6% for a smooth bare surface, +4% and -5% for a medium rough surface, and +5.5% and -6% for a rough surface.
Eucalyptus water use greater than rainfall input - possible explanation from southern India
NASA Astrophysics Data System (ADS)
Calder, I. R.; Rosier, P. T. W.; Prasanna, K. T.; Parameswarappa, S.
Hydrological and silvicultural studies carried out in southern India on the effects of plantations of Eucalyptus and other fast growing exotic tree species have determined the impacts of these plantations on water resources, erosion, soil nutrient status and growth rates at sites of differing rainfall and soil depth in Karnataka. Whilst providing new information on these issues, the studies also raised two important questions: what was the explanation for the anomalous result that the water use of 3400 mm from Eucalyptus plantations at Hosakote over a three year period exceeded the rainfall of 2100 mm over the same period and why were growth rates of woodlots on most farmer's fields higher than those of plantations on land owned by the Karnataka Forest Department? The records of the soil moisture depletion patterns under these plantations from the day of planting provide the basis for the answers to both questions: i) whilst roots are penetrating into deeper soil layers, they are able to extract from a reservoir of water additional to that available from the rainfall each year, ii) farmer's land on which short rooted agricultural crops have been grown previously is likely to have a much higher soil water status than land previously under forest or scrub vegetation. These new studies have also established that the development of the drying front under the Eucalyptus camaldulensis plantations is very rapid, indicating average root extension rates in excess of 2.5 m per year, whilst those under Tectona grandis and Artocarpus heterophyllus advanced at approximately half the rate. These results have obvious implications for the long term sustainability of growth rates from these plantations and the recharge of groundwater. The authors believe that this study may be the first to report neutron probe soil moisture depletion observations, from the date of planting, beneath tree plantations in a dry climate. The extent to which the roots were able to penetrate raises the question of whether other studies, which have estimated water use from soil moisture observations in dry climates, may have seriously underestimated both the actual soil moisture depletion and the water use through having soil moisture measurements located to insufficient depth.
Estimating Surface Soil Moisture in Simulated AVIRIS Spectra
NASA Technical Reports Server (NTRS)
Whiting, Michael L.; Li, Lin; Ustin, Susan L.
2004-01-01
Soil albedo is influenced by many physical and chemical constituents, with moisture being the most influential on the spectra general shape and albedo (Stoner and Baumgardner, 1981). Without moisture, the intrinsic or matrix reflectance of dissimilar soils varies widely due to differences in surface roughness, particle and aggregate sizes, mineral types, including salts, and organic matter contents. The influence of moisture on soil reflectance can be isolated by comparing similar soils in a study of the effects that small differences in moisture content have on reflectance. However, without prior knowledge of the soil physical and chemical constituents within every pixel, it is nearly impossible to accurately attribute the reflectance variability in an image to moisture or to differences in the physical and chemical constituents in the soil. The effect of moisture on the spectra must be eliminated to use hyperspectral imagery for determining minerals and organic matter abundances of bare agricultural soils. Accurate soil mineral and organic matter abundance maps from air- and space-borne imagery can improve GIS models for precision farming prescription, and managing irrigation and salinity. Better models of soil moisture and reflectance will also improve the selection of soil endmembers for spectral mixture analysis.
Biogeographic patterns of soil diazotrophic communities across six forests in the North America.
Tu, Qichao; Deng, Ye; Yan, Qingyun; Shen, Lina; Lin, Lu; He, Zhili; Wu, Liyou; Van Nostrand, Joy D; Buzzard, Vanessa; Michaletz, Sean T; Enquist, Brian J; Weiser, Michael D; Kaspari, Michael; Waide, Robert B; Brown, James H; Zhou, Jizhong
2016-06-01
Soil diazotrophs play important roles in ecosystem functioning by converting atmospheric N2 into biologically available ammonium. However, the diversity and distribution of soil diazotrophic communities in different forests and whether they follow biogeographic patterns similar to macroorganisms still remain unclear. By sequencing nifH gene amplicons, we surveyed the diversity, structure and biogeographic patterns of soil diazotrophic communities across six North American forests (126 nested samples). Our results showed that each forest harboured markedly different soil diazotrophic communities and that these communities followed traditional biogeographic patterns similar to plant and animal communities, including the taxa-area relationship (TAR) and latitudinal diversity gradient. Significantly higher community diversity and lower microbial spatial turnover rates (i.e. z-values) were found for rainforests (~0.06) than temperate forests (~0.1). The gradient pattern of TARs and community diversity was strongly correlated (r(2) > 0.5) with latitude, annual mean temperature, plant species richness and precipitation, and weakly correlated (r(2) < 0.25) with pH and soil moisture. This study suggests that even microbial subcommunities (e.g. soil diazotrophs) follow general biogeographic patterns (e.g. TAR, latitudinal diversity gradient), and indicates that the metabolic theory of ecology and habitat heterogeneity may be the major underlying ecological mechanisms shaping the biogeographic patterns of soil diazotrophic communities. © 2016 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Zavodsky, Bradley T.; White, Kristopher D.; Bell, Jesse E.
2015-01-01
This paper provided a brief background on the work being done at NASA SPoRT and the CDC to create a soil moisture climatology over the CONUS at high spatial resolution, and to provide a valuable source of soil moisture information to the CDC for monitoring conditions that could favor the development of Valley Fever. The soil moisture climatology has multi-faceted applications for both the NOAA/NWS situational awareness in the areas of drought and flooding, and for the Public Health community. SPoRT plans to increase its interaction with the drought monitoring and Public Health communities by enhancing this testbed soil moisture anomaly product. This soil moisture climatology run will also serve as a foundation for upgrading the real-time (currently southeastern CONUS) SPoRT-LIS to a full CONUS domain based on LIS version 7 and incorporating real-time GVF data from the Suomi-NPP Visible Infrared Imaging Radiometer Suite (Vargas et al. 2013) into LIS-Noah. The upgraded SPoRT-LIS run will serve as a testbed proof-of-concept of a higher-resolution NLDAS-2 modeling member. The climatology run will be extended to near real-time using the NLDAS-2 meteorological forcing from 2011 to present. The fixed 1981-2010 climatology shall provide the soil moisture "normals" for the production of real-time soil moisture anomalies. SPoRT also envisions a web-mapping type of service in which an end-user could put in a request for either an historical or real-time soil moisture anomaly graph for a specified county (as exemplified by Figure 2) and/or for local and regional maps of soil moisture proxy percentiles. Finally, SPoRT seeks to assimilate satellite soil moisture data from the current Soil Moisture Ocean Salinity (SMOS; Blankenship et al. 2014) and the recently-launched NASA Soil Moisture Active Passive (SMAP; Entekhabi et al. 2010) missions, using the EnKF capability within LIS. The 9-km combined active radar and passive microwave retrieval product from SMAP (Das et al. 2011) has the potential to provide valuable information about the near-surface soil moisture state for improving land surface modeling output.
Long-Term Evaluation of the AMSR-E Soil Moisture Product Over the Walnut Gulch Watershed, AZ
NASA Astrophysics Data System (ADS)
Bolten, J. D.; Jackson, T. J.; Lakshmi, V.; Cosh, M. H.; Drusch, M.
2005-12-01
The Advanced Microwave Scanning Radiometer -Earth Observing System (AMSR-E) was launched aboard NASA's Aqua satellite on May 4th, 2002. Quantitative estimates of soil moisture using the AMSR-E provided data have required routine radiometric data calibration and validation using comparisons of satellite observations, extended targets and field campaigns. The currently applied NASA EOS Aqua ASMR-E soil moisture algorithm is based on a change detection approach using polarization ratios (PR) of the calibrated AMSR-E channel brightness temperatures. To date, the accuracy of the soil moisture algorithm has been investigated on short time scales during field campaigns such as the Soil Moisture Experiments in 2004 (SMEX04). Results have indicated self-consistency and calibration stability of the observed brightness temperatures; however the performance of the moisture retrieval algorithm has been poor. The primary objective of this study is to evaluate the quality of the current version of the AMSR-E soil moisture product for a three year period over the Walnut Gulch Experimental Watershed (150 km2) near Tombstone, AZ; the northern study area of SMEX04. This watershed is equipped with hourly and daily recording of precipitation, soil moisture and temperature via a network of raingages and a USDA-NRCS Soil Climate Analysis Network (SCAN) site. Surface wetting and drying are easily distinguished in this area due to the moderately-vegetated terrain and seasonally intense precipitation events. Validation of AMSR-E derived soil moisture is performed from June 2002 to June 2005 using watershed averages of precipitation, and soil moisture and temperature data from the SCAN site supported by a surface soil moisture network. Long-term assessment of soil moisture algorithm performance is investigated by comparing temporal variations of moisture estimates with seasonal changes and precipitation events. Further comparisons are made with a standard soil dataset from the European Centre for Medium-Range Weather Forecasts. The results of this research will contribute to a better characterization of the low biases and discrepancies currently observed in the AMSR-E soil moisture product.
Data documentation for the bare soil experiment at the University of Arkansas
NASA Technical Reports Server (NTRS)
Waite, W. P.; Scott, H. D. (Principal Investigator); Hancock, G. D.
1980-01-01
The reflectivities of several controlled moisture test plots were investigated. These test plots were of a similar soil texture which was clay loam and were prepared to give a desired initial soil moisture and density profile. Measurements were conducted on the plots as the soil water redistributed for both long term and diurnal cycles. These measurements included reflectivity, gravimetric and volumetric soil moisture, soil moisture potential, and soil temperature.
Soil moisture dynamics and smoldering combustion limits of pocosin soils in North Carolina, USA
James Reardon; Gary Curcio; Roberta Bartlette
2009-01-01
Smoldering combustion of wetland organic soils in the south-eastern USA is a serious management concern. Previous studies have reported smoldering was sensitive to a wide range of moisture contents, but studies of soil moisture dynamics and changing smoldering combustion potential in wetland communities are limited. Linking soil moisture measurements with estimates of...
USDA-ARS?s Scientific Manuscript database
NASA’s Soil Moisture Active Passive (SMAP) mission, scheduled for launch in 2014, will carry the first combined L-band radar and radiometer system with the objective of mapping near surface soil moisture and freeze/thaw state globally at near-daily time step (2-3 days). SMAP will provide three soil ...
Inferring Soil Moisture Memory from Streamflow Observations Using a Simple Water Balance Model
NASA Technical Reports Server (NTRS)
Orth, Rene; Koster, Randal Dean; Seneviratne, Sonia I.
2013-01-01
Soil moisture is known for its integrative behavior and resulting memory characteristics. Soil moisture anomalies can persist for weeks or even months into the future, making initial soil moisture a potentially important contributor to skill in weather forecasting. A major difficulty when investigating soil moisture and its memory using observations is the sparse availability of long-term measurements and their limited spatial representativeness. In contrast, there is an abundance of long-term streamflow measurements for catchments of various sizes across the world. We investigate in this study whether such streamflow measurements can be used to infer and characterize soil moisture memory in respective catchments. Our approach uses a simple water balance model in which evapotranspiration and runoff ratios are expressed as simple functions of soil moisture; optimized functions for the model are determined using streamflow observations, and the optimized model in turn provides information on soil moisture memory on the catchment scale. The validity of the approach is demonstrated with data from three heavily monitored catchments. The approach is then applied to streamflow data in several small catchments across Switzerland to obtain a spatially distributed description of soil moisture memory and to show how memory varies, for example, with altitude and topography.
Multifrequency remote sensing of soil moisture. [Guymon, Oklahoma and Dalhart, Texas
NASA Technical Reports Server (NTRS)
Theis, S. W.; Mcfarland, M. J.; Rosenthal, W. D.; Jones, C. L. (Principal Investigator)
1982-01-01
Multifrequency sensor data collected at Guymon, Oklahoma and Dalhart, Texas using NASA's C-130 aircraft were used to determine which of the all-weather microwave sensors demonstrated the highest correlation to surface soil moisture over optimal bare soil conditions, and to develop and test techniques which use visible/infrared sensors to compensate for the vegetation effect in this sensor's response to soil moisture. The L-band passive microwave radiometer was found to be the most suitable single sensor system to estimate soil moisture over bare fields. In comparison to other active and passive microwave sensors the L-band radiometer (1) was influenced least by ranges in surface roughness; (2) demonstrated the most sensitivity to soil moisture differences in terms of the range of return from the full range of soil moisture; and (3) was less sensitive to errors in measurement in relation to the range of sensor response. L-band emissivity related more strongly to soil moisture when moisture was expressed as percent of field capacity. The perpendicular vegetation index as determined from the visible/infrared sensors was useful as a measure of the vegetation effect on the L-band radiometer response to soil moisture.
Evaluation of soil pH and moisture content on in-situ ozonation of pyrene in soils.
Luster-Teasley, S; Ubaka-Blackmoore, N; Masten, S J
2009-08-15
In this study, pyrene spiked soil (300 ppm) was ozonated at pH levels of 2, 6, and 8 and three moisture contents. It was found that soil pH and moisture content impacted the effectiveness of PAH oxidation in unsaturated soils. In air-dried soils, as pH increased, removal increased, such that pyrene removal efficiencies at pH 6 and pH 8 reached 95-97% at a dose of 2.22 mg O(3)/mg pyrene. Ozonation at 16.2+/-0.45 mg O(3)/ppm pyrene in soil resulted in 81-98% removal of pyrene at all pH levels tested. Saturated soils were tested at dry, 5% or 10% moisture conditions. The removal of pyrene was slower in moisturized soils, with the efficiency decreasing as the moisture content increased. Increasing the pH of the soil having a moisture content of 5% resulted in improved pyrene removals. On the contrary, in the soil having a moisture content of 10%, as the pH increased, pyrene removal decreased. Contaminated PAH soils were stored for 6 months to compare the efficiency of PAH removal in freshly contaminated soil and aged soils. PAH adsorption to soil was found to increase with longer exposure times; thus requiring much higher doses of ozone to effectively oxidize pyrene.
Liu, Ya; Pan, Xianzhang; Wang, Changkun; Li, Yanli; Shi, Rongjie
2015-01-01
Robust models for predicting soil salinity that use visible and near-infrared (vis–NIR) reflectance spectroscopy are needed to better quantify soil salinity in agricultural fields. Currently available models are not sufficiently robust for variable soil moisture contents. Thus, we used external parameter orthogonalization (EPO), which effectively projects spectra onto the subspace orthogonal to unwanted variation, to remove the variations caused by an external factor, e.g., the influences of soil moisture on spectral reflectance. In this study, 570 spectra between 380 and 2400 nm were obtained from soils with various soil moisture contents and salt concentrations in the laboratory; 3 soil types × 10 salt concentrations × 19 soil moisture levels were used. To examine the effectiveness of EPO, we compared the partial least squares regression (PLSR) results established from spectra with and without EPO correction. The EPO method effectively removed the effects of moisture, and the accuracy and robustness of the soil salt contents (SSCs) prediction model, which was built using the EPO-corrected spectra under various soil moisture conditions, were significantly improved relative to the spectra without EPO correction. This study contributes to the removal of soil moisture effects from soil salinity estimations when using vis–NIR reflectance spectroscopy and can assist others in quantifying soil salinity in the future. PMID:26468645
NASA Astrophysics Data System (ADS)
Martens, B.; Miralles, D.; Lievens, H.; Fernández-Prieto, D.; Verhoest, N. E. C.
2016-06-01
Terrestrial evaporation is an essential variable in the climate system that links the water, energy and carbon cycles over land. Despite this crucial importance, it remains one of the most uncertain components of the hydrological cycle, mainly due to known difficulties to model the constraints imposed by land water availability on terrestrial evaporation. The main objective of this study is to assimilate satellite soil moisture observations from the Soil Moisture and Ocean Salinity (SMOS) mission into an existing evaporation model. Our over-arching goal is to find an optimal use of satellite soil moisture that can help to improve our understanding of evaporation at continental scales. To this end, the Global Land Evaporation Amsterdam Model (GLEAM) is used to simulate evaporation fields over continental Australia for the period September 2010-December 2013. SMOS soil moisture observations are assimilated using a Newtonian Nudging algorithm in a series of experiments. Model estimates of surface soil moisture and evaporation are validated against soil moisture probe and eddy-covariance measurements, respectively. Finally, an analogous experiment in which Advanced Microwave Scanning Radiometer (AMSR-E) soil moisture is assimilated (instead of SMOS) allows to perform a relative assessment of the quality of both satellite soil moisture products. Results indicate that the modelled soil moisture from GLEAM can be improved through the assimilation of SMOS soil moisture: the average correlation coefficient between in situ measurements and the modelled soil moisture over the complete sample of stations increased from 0.68 to 0.71 and a statistical significant increase in the correlations is achieved for 17 out of the 25 individual stations. Our results also suggest a higher accuracy of the ascending SMOS data compared to the descending data, and overall higher quality of SMOS compared to AMSR-E retrievals over Australia. On the other hand, the effect of soil moisture data assimilation on the evaporation fields is very mild, and difficult to assess due to the limited availability of eddy-covariance data. Nonetheless, our continental-scale simulations indicate that the assimilation of soil moisture can have a substantial impact on the estimated dynamics of evaporation in water-limited regimes. Progressing towards our goal of using satellite soil moisture to increase understanding of global land evaporation, future research will focus on the global application of this methodology and the consideration of multiple evaporation models.
NASA Astrophysics Data System (ADS)
Cao, W.; Sheng, Y.
2017-12-01
The soil moisture movement is an important carrier of material cycle and energy flow among the various geo-spheres in the cold regions. It is very critical to protect the alpine ecology and hydrologic cycle in Qinghai-Tibet Plateau. Especially, it becomes one of the key problems to reveal the spatial-temporal variability of soil moisture movement and its main influence factors in earth system science. Thus, this research takes the north slope of Bayan Har Mountains in Qinghai-Tibet Plateau as a case study. The present study firstly investigates the change of permafrost moisture in different slope positions and depths. Based on this investigation, this article attempts to investigate the spatial variability of permafrost moisture and identifies the key influence factors in different terrain conditions. The method of classification and regression tree (CART) is adopted to identify the main controlling factors influencing the soil moisture movement. And the relationships between soil moisture and environmental factors are revealed by the use of the method of canonical correspondence analysis (CCA). The results show that: 1) the change of the soil moisture on the permafrost slope is divided into 4 stages, including the freezing stability phase, the rapid thawing phase, the thawing stability phase and the fast freezing phase; 2) this greatly enhances the horizontal flow in the freezing period due to the terrain slope and the freezing-thawing process. Vertical migration is the mainly form of the soil moisture movement. It leads to that the soil-moisture content in the up-slope is higher than that in the down-slope. On the contrary, the soil-moisture content in the up-slope is lower than that in the down-slope during the melting period; 3) the main environmental factors which affect the slope-permafrost soil-moisture are elevation, soil texture, soil temperature and vegetation coverage. But there are differences in the impact factors of the soil moisture in different freezing-thawing stages; 4) the main factors that affect the slope-permafrost soil-moisture at the shallow depth of 0-20cm are slope, elevation and vegetation coverage. And the main factors influencing the soil moisture at the middle and lower depth are complex.
Soil moisture observations using L-, C-, and X-band microwave radiometers
NASA Astrophysics Data System (ADS)
Bolten, John Dennis
The purpose of this thesis is to further the current understanding of soil moisture remote sensing under varying conditions using L-, C-, and X-band. Aircraft and satellite instruments are used to investigate the effects of frequency and spatial resolution on soil moisture sensitivity. The specific objectives of the research are to examine multi-scale observed and modeled microwave radiobrightness, evaluate new EOS Aqua Advanced Microwave Scanning Radiometer (AMSR-E) brightness temperature and soil moisture retrievals, and examine future satellite-based technologies for soil moisture sensing. The cycling of Earth's water, energy and carbon is vital to understanding global climate. Over land, these processes are largely dependent on the amount of moisture within the top few centimeters of the soil. However, there are currently no methods available that can accurately characterize Earth's soil moisture layer at the spatial scales or temporal resolutions appropriate for climate modeling. The current work uses ground truth, satellite and aircraft remote sensing data from three large-scale field experiments having different land surface, topographic and climate conditions. A physically-based radiative transfer model is used to simulate the observed aircraft and satellite measurements using spatially and temporally co-located surface parameters. A robust analysis of surface heterogeneity and scaling is possible due to the combination of multiple datasets from a range of microwave frequencies and field conditions. Accurate characterization of spatial and temporal variability of soil moisture during the three field experiments is achieved through sensor calibration and algorithm validation. Comparisons of satellite observations and resampled aircraft observations are made using soil moisture from a Numerical Weather Prediction (NWP) model in order to further demonstrate a soil moisture correlation where point data was unavailable. The influence of vegetation, spatial scaling, and surface heterogeneity on multi-scale soil moisture prediction is presented. This work demonstrates that derived soil moisture using remote sensing provides a better coverage of soil moisture spatial variability than traditional in-situ sensors. Effects of spatial scale were shown to be less significant than frequency on soil moisture sensitivity. Retrievals of soil moisture using the current methods proved inadequate under some conditions; however, this study demonstrates the need for concurrent spaceborne frequencies including L-, C, and X-band.
Inversion of Farmland Soil Moisture in Large Region Based on Modified Vegetation Index
NASA Astrophysics Data System (ADS)
Wang, J. X.; Yu, B. S.; Zhang, G. Z.; Zhao, G. C.; He, S. D.; Luo, W. R.; Zhang, C. C.
2018-04-01
Soil moisture is an important parameter for agricultural production. Efficient and accurate monitoring of soil moisture is an important link to ensure the safety of agricultural production. Remote sensing technology has been widely used in agricultural moisture monitoring because of its timeliness, cyclicality, dynamic tracking of changes in things, easy access to data, and extensive monitoring. Vegetation index and surface temperature are important parameters for moisture monitoring. Based on NDVI, this paper introduces land surface temperature and average temperature for optimization. This article takes the soil moisture in winter wheat growing area in Henan Province as the research object, dividing Henan Province into three main regions producing winter wheat and dividing the growth period of winter wheat into the early, middle and late stages on the basis of phenological characteristics and regional characteristics. Introducing appropriate correction factor during the corresponding growth period of winter wheat, correcting the vegetation index in the corresponding area, this paper establishes regression models of soil moisture on NDVI and soil moisture on modified NDVI based on correlation analysis and compare models. It shows that modified NDVI is more suitable as a indicator of soil moisture because of the better correlation between soil moisture and modified NDVI and the higher prediction accuracy of the regression model of soil moisture on modified NDVI. The research in this paper has certain reference value for winter wheat farmland management and decision-making.
Puértolas, Jaime; Conesa, María R.; Ballester, Carlos; Dodd, Ian C.
2015-01-01
Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0–10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm3 cm–3 for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. PMID:25547916
Puértolas, Jaime; Conesa, María R; Ballester, Carlos; Dodd, Ian C
2015-04-01
Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0-10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm(3) cm(-3) for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
NASA Astrophysics Data System (ADS)
Mishra, V.; Cruise, J. F.; Mecikalski, J. R.
2015-12-01
Developing accurate vertical soil moisture profiles with minimum input requirements is important to agricultural as well as land surface modeling. Earlier studies show that the principle of maximum entropy (POME) can be utilized to develop vertical soil moisture profiles with accuracy (MAE of about 1% for a monotonically dry profile; nearly 2% for monotonically wet profiles and 3.8% for mixed profiles) with minimum constraints (surface, mean and bottom soil moisture contents). In this study, the constraints for the vertical soil moisture profiles were obtained from remotely sensed data. Low resolution (25 km) MW soil moisture estimates (AMSR-E) were downscaled to 4 km using a soil evaporation efficiency index based disaggregation approach. The downscaled MW soil moisture estimates served as a surface boundary condition, while 4 km resolution TIR based Atmospheric Land Exchange Inverse (ALEXI) estimates provided the required mean root-zone soil moisture content. Bottom soil moisture content is assumed to be a soil dependent constant. Mulit-year (2002-2011) gridded profiles were developed for the southeastern United States using the POME method. The soil moisture profiles were compared to those generated in land surface models (Land Information System (LIS) and an agricultural model DSSAT) along with available NRCS SCAN sites in the study region. The end product, spatial soil moisture profiles, can be assimilated into agricultural and hydrologic models in lieu of precipitation for data scarce regions.Developing accurate vertical soil moisture profiles with minimum input requirements is important to agricultural as well as land surface modeling. Previous studies have shown that the principle of maximum entropy (POME) can be utilized with minimal constraints to develop vertical soil moisture profiles with accuracy (MAE = 1% for monotonically dry profiles; MAE = 2% for monotonically wet profiles and MAE = 3.8% for mixed profiles) when compared to laboratory and field data. In this study, vertical soil moisture profiles were developed using the POME model to evaluate an irrigation schedule over a maze field in north central Alabama (USA). The model was validated using both field data and a physically based mathematical model. The results demonstrate that a simple two-constraint entropy model under the assumption of a uniform initial soil moisture distribution can simulate most soil moisture profiles within the field area for 6 different soil types. The results of the irrigation simulation demonstrated that the POME model produced a very efficient irrigation strategy with loss of about 1.9% of the total applied irrigation water. However, areas of fine-textured soil (i.e. silty clay) resulted in plant stress of nearly 30% of the available moisture content due to insufficient water supply on the last day of the drying phase of the irrigation cycle. Overall, the POME approach showed promise as a general strategy to guide irrigation in humid environments, with minimum input requirements.
Drought monitoring with soil moisture active passive (SMAP) measurements
NASA Astrophysics Data System (ADS)
Mishra, Ashok; Vu, Tue; Veettil, Anoop Valiya; Entekhabi, Dara
2017-09-01
Recent launch of space-borne systems to estimate surface soil moisture may expand the capability to map soil moisture deficit and drought with global coverage. In this study, we use Soil Moisture Active Passive (SMAP) soil moisture geophysical retrieval products from passive L-band radiometer to evaluate its applicability to forming agricultural drought indices. Agricultural drought is quantified using the Soil Water Deficit Index (SWDI) based on SMAP and soil properties (field capacity and available water content) information. The soil properties are computed using pedo-transfer function with soil characteristics derived from Harmonized World Soil Database. The SMAP soil moisture product needs to be rescaled to be compatible with the soil parameters derived from the in situ stations. In most locations, the rescaled SMAP information captured the dynamics of in situ soil moisture well and shows the expected lag between accumulations of precipitation and delayed increased in surface soil moisture. However, the SMAP soil moisture itself does not reveal the drought information. Therefore, the SMAP based SWDI (SMAP_SWDI) was computed to improve agriculture drought monitoring by using the latest soil moisture retrieval satellite technology. The formulation of SWDI does not depend on longer data and it will overcome the limited (short) length of SMAP data for agricultural drought studies. The SMAP_SWDI is further compared with in situ Atmospheric Water Deficit (AWD) Index. The comparison shows close agreement between SMAP_SWDI and AWD in drought monitoring over Contiguous United States (CONUS), especially in terms of drought characteristics. The SMAP_SWDI was used to construct drought maps for CONUS and compared with well-known drought indices, such as, AWD, Palmer Z-Index, sc-PDSI and SPEI. Overall the SMAP_SWDI is an effective agricultural drought indicator and it provides continuity and introduces new spatial mapping capability for drought monitoring. As an agricultural drought index, SMAP_SWDI has potential to capture short term moisture information similar to AWD and related drought indices.
National Centers for Environmental Prediction
) soilm1 0-10cm soil moisture soilm2 10-40cm soil moisture soilm3 40-100cm soil moisture soilm4 100-200cm soil moisture soilt1 0-10cm soil temperature soilt2 10-40cm soil temperature soilt3 40-100cm soil temperature soilt4 100-200cm soil temperature thick700.ptype 850-700mb thickness precipitation type thick850
NASA Astrophysics Data System (ADS)
Baldwin, D.; Manfreda, S.; Keller, K.; Smithwick, E. A. H.
2017-03-01
Satellite-based near-surface (0-2 cm) soil moisture estimates have global coverage, but do not capture variations of soil moisture in the root zone (up to 100 cm depth) and may be biased with respect to ground-based soil moisture measurements. Here, we present an ensemble Kalman filter (EnKF) hydrologic data assimilation system that predicts bias in satellite soil moisture data to support the physically based Soil Moisture Analytical Relationship (SMAR) infiltration model, which estimates root zone soil moisture with satellite soil moisture data. The SMAR-EnKF model estimates a regional-scale bias parameter using available in situ data. The regional bias parameter is added to satellite soil moisture retrievals before their use in the SMAR model, and the bias parameter is updated continuously over time with the EnKF algorithm. In this study, the SMAR-EnKF assimilates in situ soil moisture at 43 Soil Climate Analysis Network (SCAN) monitoring locations across the conterminous U.S. Multivariate regression models are developed to estimate SMAR parameters using soil physical properties and the moderate resolution imaging spectroradiometer (MODIS) evapotranspiration data product as covariates. SMAR-EnKF root zone soil moisture predictions are in relatively close agreement with in situ observations when using optimal model parameters, with root mean square errors averaging 0.051 [cm3 cm-3] (standard error, s.e. = 0.005). The average root mean square error associated with a 20-fold cross-validation analysis with permuted SMAR parameter regression models increases moderately (0.082 [cm3 cm-3], s.e. = 0.004). The expected regional-scale satellite correction bias is negative in four out of six ecoregions studied (mean = -0.12 [-], s.e. = 0.002), excluding the Great Plains and Eastern Temperate Forests (0.053 [-], s.e. = 0.001). With its capability of estimating regional-scale satellite bias, the SMAR-EnKF system can predict root zone soil moisture over broad extents and has applications in drought predictions and other operational hydrologic modeling purposes.
Toward improving the representation of the water cycle at High Northern Latitudes
NASA Astrophysics Data System (ADS)
Lahoz, William; Svendby, Tove; Hamer, Paul; Blyverket, Jostein; Kristiansen, Jørn; Luijting, Hanneke
2016-04-01
The rapid warming at northern latitude regions in recent decades has resulted in a lengthening of the growing season, greater photosynthetic activity and enhanced carbon sequestration by the ecosystem. These changes are likely to intensify summer droughts, tree mortality and wildfires. A potential major climate change feedback is the release of carbon-bearing compounds from soil thawing. These changes make it important to have information on the land surface (soil moisture and temperature) at high northern latitude regions. The availability of soil moisture measurements from several satellite platforms provides an opportunity to address issues associated with the effects of climate change, e.g., assessing multi-decadal links between increasing temperatures, snow cover, soil moisture variability and vegetation dynamics. The relatively poor information on water cycle parameters for biomes at northern high latitudes make it important that efforts are expended on improving the representation of the water cycle at these latitudes. In a collaboration between NILU and Met Norway, we evaluate the soil moisture observations over Norway from the ESA satellite SMOS (Soil Moisture and Ocean Salinity) using in situ ground based soil moisture measurements, with reference to drought and flood episodes. We will use data assimilation of the quality-controlled SMOS soil moisture observations into a land surface model and a numerical weather prediction model to assess the added value from satellite observations of soil moisture for improving the representation of the water cycle at high northern latitudes. This presentation provides first results from this work. We discuss the evaluation of SMOS soil moisture data (and from other satellites) against ground-based in situ data over Norway; the performance of the SMOS soil moisture data for selected drought and flood conditions over Norway; and the first results from data assimilation experiments with land surface models and numerical weather prediction models. Analyses include information on root zone soil moisture. We provide evidence of the value of satellite soil measurements over Norway, including their fidelity, and their impact at improving the representation of the hydrological cycle over northern high latitudes. We indicate benefits from these results for multi-decadal soil moisture datasets such as that from the ESA CCI for soil moisture.
SMERGE: A multi-decadal root-zone soil moisture product for CONUS
NASA Astrophysics Data System (ADS)
Crow, W. T.; Dong, J.; Tobin, K. J.; Torres, R.
2017-12-01
Multi-decadal root-zone soil moisture products are of value for a range of water resource and climate applications. The NASA-funded root-zone soil moisture merging project (SMERGE) seeks to develop such products through the optimal merging of land surface model predictions with surface soil moisture retrievals acquired from multi-sensor remote sensing products. This presentation will describe the creation and validation of a daily, multi-decadal (1979-2015), vertically-integrated (both surface to 40 cm and surface to 100 cm), 0.125-degree root-zone product over the contiguous United States (CONUS). The modeling backbone of the system is based on hourly root-zone soil moisture simulations generated by the Noah model (v3.2) operating within the North American Land Data Assimilation System (NLDAS-2). Remotely-sensed surface soil moisture retrievals are taken from the multi-sensor European Space Agency Climate Change Initiative soil moisture data set (ESA CCI SM). In particular, the talk will detail: 1) the exponential smoothing approach used to convert surface ESA CCI SM retrievals into root-zone soil moisture estimates, 2) the averaging technique applied to merge (temporally-sporadic) remotely-sensed with (continuous) NLDAS-2 land surface model estimates of root-zone soil moisture into the unified SMERGE product, and 3) the validation of the SMERGE product using long-term, ground-based soil moisture datasets available within CONUS.
Global response of the growing season to soil moisture and topography
NASA Astrophysics Data System (ADS)
Guevara, M.; Arroyo, C.; Warner, D. L.; Equihua, J.; Lule, A. V.; Schwartz, A.; Taufer, M.; Vargas, R.
2017-12-01
Soil moisture has a direct influence in plant productivity. Plant productivity and its greenness can be inferred by remote sensing with higher spatial detail than soil moisture. The objective was to improve the coarse scale of currently available satellite soil moisture estimates and identify areas of strong coupling between the interannual variability soil moisture and the maximum greenness vegetation fraction (MGVF) at the global scale. We modeled, cross-validated and downscaled remotely sensed soil moisture using machine learning and digital terrain analysis across 23 years (1991-2013) of available data. Improving the accuracy (0.69-0.87 % of cross-validated explained variance) and the spatial detail (from 27 to 15km) of satellite soil moisture, we filled temporal gaps of information across vegetated areas where satellite soil moisture does not work properly. We found that 7.57% of global vegetated area shows strong correlation with our downscaled product (R2>0.5, Fig. 1). We found a dominant positive response of vegetation greenness to topography-based soil moisture across water limited environments, however, the tropics and temperate environments of higher latitudes showed a sparse negative response. We conclude that topography can be used to effectively improve the spatial detail of globally available remotely sensed soil moisture, which is convenient to generate unbiased comparisons with global vegetation dynamics, and better inform land and crop modeling efforts.
Soil Moisture and the Persistence of North American Drought.
NASA Astrophysics Data System (ADS)
Oglesby, Robert J.; Erickson, David J., III
1989-11-01
We describe numerical sensitivity experiments exploring the effects of soil moisture on North American summertime climate using the NCAR CCMI, a 12-layer global atmospheric general circulation model. In particular. the hypothesis that reduced soil moisture may help induce and amplify warm, dry summers over midlatitude continental interiors is examined. Equilibrium climate statistics are computed for the perpetual July model response to imposed soil moisture anomalies over North America between 36° and 49°N. In addition, the persistence of imposed soil moisture anomalies is examined through use of the seasonal cycle mode of operation with use of various initial atmospheric states both equilibrated and nonequilibrated to the initial soil moisture anomaly.The climate statistics generated by thew model simulations resemble in a general way those of the summer of 1988, when extensive heat and drought occurred over much of North America. A reduction in soil moisture in the model leads to an increase in surface temperature, lower surface pressure, increased ridging aloft, and a northward shift of the jet stream. Low-level moisture advection from the Gulf of Mexico is important in determining where persistent soil moisture deficits can be maintained. In seasonal cycle simulations, it lock longer for an initially unequilibrated atmosphere to respond to the imposed soil moisture anomaly, via moisture transport from the Gulf of Mexico, than when initially the atmosphere was in equilibrium with the imposed anomaly., i.e., the initial state was obtained from the appropriate perpetual July simulation. The results demonstrate the important role of soil moisture in prolonging and/or amplifying North American summertime drought.
NASA Astrophysics Data System (ADS)
Shi, Pu; Thorlacius, Sigurdur; Keller, Thomas; Keller, Martin; Schulin, Rainer
2017-04-01
Soil aggregate breakdown under rainfall impact is an important process in interrill erosion, but is not represented explicitly in water erosion models. Aggregate breakdown not only reduces infiltration through surface sealing during rainfall, but also determines the size distribution of the disintegrated fragments and thus their availability for size-selective sediment transport and re-deposition. An adequate representation of the temporal evolution of fragment mass size distribution (FSD) during rainfall events and the dependence of this dynamics on factors such as rainfall intensity and soil moisture content may help improve mechanistic erosion models. Yet, little is known about the role of those factors in the dynamics of aggregate breakdown under field conditions. In this study, we conducted a series of artificial rainfall experiments on a field silt loam soil to investigate aggregate breakdown dynamics at different rainfall intensity (RI) and initial soil water content (IWC). We found that the evolution of FSD in the course of a rainfall event followed a consistent two-stage pattern in all treatments. The fragment mean weight diameter (MWD) drastically decreased in an approximately exponential way at the beginning of a rainfall event, followed by a further slow linear decrease in the second stage. We proposed an empirical model that describes this temporal pattern of MWD decrease during a rainfall event and accounts for the effects of RI and IWC on the rate parameters. The model was successfully tested using an independent dataset, showing its potential to be used in erosion models for the prediction of aggregate breakdown. The FSD at the end of the experimental rainfall events differed significantly among treatments, indicating that different aggregate breakdown mechanisms responded differently to the variation in initial soil moisture and rainfall intensity. These results provide evidence that aggregate breakdown dynamics needs to be considered in a case-specific manner in modelling sediment mobilization and transport during water erosion events.
NASA Technical Reports Server (NTRS)
Crosson, William L.; Laymon, Charles A.; Inguva, Ramarao; Schamschula, Marius; Caulfield, John
1998-01-01
Knowledge of the amount of water in the soil is of great importance to many earth science disciplines. Soil moisture is a key variable in controlling the exchange of water and energy between the land surface and the atmosphere. Thus, soil moisture information is valuable in a wide range of applications including weather and climate, runoff potential and flood control, early warning of droughts, irrigation, crop yield forecasting, soil erosion, reservoir management, geotechnical engineering, and water quality. Despite the importance of soil moisture information, widespread and continuous measurements of soil moisture are not possible today. Although many earth surface conditions can be measured from satellites, we still cannot adequately measure soil moisture from space. Research in soil moisture remote sensing began in the mid 1970s shortly after the surge in satellite development. Recent advances in remote sensing have shown that soil moisture can be measured, at least qualitatively, by several methods. Quantitative measurements of moisture in the soil surface layer have been most successful using both passive and active microwave remote sensing, although complications arise from surface roughness and vegetation type and density. Early attempts to measure soil moisture from space-borne microwave instruments were hindered by what is now considered sub-optimal wavelengths (shorter than 5 cm) and the coarse spatial resolution of the measurements. L-band frequencies between 1 and 3 GHz (10-30 cm) have been deemed optimal for detection of soil moisture in the upper few centimeters of soil. The Electronically Steered Thinned Array Radiometer (ESTAR), an aircraft-based instrument operating a 1,4 GHz, has shown great promise for soil moisture determination. Initiatives are underway to develop a similar instrument for space. Existing space-borne synthetic aperture radars (SARS) operating at C- and L-band have also shown some potential to detect surface wetness. The advantage of radar is its much higher resolution than passive microwave systems, but it is currently hampered by surface roughness effects and the lack of a good algorithm based on a single frequency and single polarization. In addition, its repeat frequency is generally low (about 40 days). In the meantime, two new radiometers offer some hope for remote sensing of soil moisture from space. The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), launched in November 1997, possesses a 10.65 GHz channel and the Advanced Microwave Scanning Radiometer (AMSR) on both the ADEOS-11 and Earth Observing System AM-1 platforms to be launched in 1999 possesses a 6.9 GHz channel. Aside from issues about interference from vegetation, the coarse resolution of these data will provide considerable challenges pertaining to their application. The resolution of TMI is about 45 km and that of AMSR is about 70 km. These resolutions are grossly inconsistent with the scale of soil moisture processes and the spatial variability of factors that control soil moisture. Scale disparities such as these are forcing us to rethink how we assimilate data of various scales in hydrologic models. Of particular interest is how to assimilate soil moisture data by reconciling the scale disparity between what we can expect from present and future remote sensing measurements of soil moisture and modeling soil moisture processes. It is because of this disparity between the resolution of space-based sensors and the scale of data needed for capturing the spatial variability of soil moisture and related properties that remote sensing of soil moisture has not met with more widespread success. Within a single footprint of current sensors at the wavelengths optimal for this application, in most cases there is enormous heterogeneity in soil moisture created by differences in landcover, soils and topography, as well as variability in antecedent precipitation. It is difficult to interpret the meaning of 'mean' soil moisture under such conditions and even more difficult to apply such a value. Because of the non-linear relationships between near-surface soil moisture and other variables of interest, such as surface energy fluxes and runoff, mean soil moisture has little applicability at such large scales. It is for these reasons that the use of remote sensing in conjunction with a hydrologic model appears to be of benefit in capturing the complete spatial and temporal structure of soil moisture. This paper is Part I of a four-part series describing a method for intermittently assimilating remotely-sensed soil moisture information to improve performance of a distributed land surface hydrology model. The method, summarized in section II, involves the following components, each of which is detailed in the indicated section of the paper or subsequent papers in this series: Forward radiative transfer model methods (section II and Part IV); Use of a Kalman filter to assimilate remotely-sensed soil moisture estimates with the model profile (section II and Part IV); Application of a soil hydrology model to capture the continuous evolution of the soil moisture profile within and below the root zone (section III); Statistical aggregation techniques (section IV and Part II); Disaggregation techniques using a neural network approach (section IV and Part III); and Maximum likelihood and Bayesian algorithms for inversely solving for the soil moisture profile in the upper few cm (Part IV).
NASA Astrophysics Data System (ADS)
Dorigo, W. A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; Robock, A.; Jackson, T.
2011-02-01
In situ measurements of soil moisture are invaluable for calibrating and validating land surface models and satellite-based soil moisture retrievals. In addition, long-term time series of in situ soil moisture measurements themselves can reveal trends in the water cycle related to climate or land cover change. Nevertheless, on a worldwide basis the number of meteorological networks and stations measuring soil moisture, in particular on a continuous basis, is still limited and the data they provide lack standardization of technique and protocol. To overcome many of these limitations, the International Soil Moisture Network (ISMN; http://www.ipf.tuwien.ac.at/insitu) was initiated to serve as a centralized data hosting facility where globally available in situ soil moisture measurements from operational networks and validation campaigns are collected, harmonized, and made available to users. Data collecting networks share their soil moisture datasets with the ISMN on a voluntary and no-cost basis. Incoming soil moisture data are automatically transformed into common volumetric soil moisture units and checked for outliers and implausible values. Apart from soil water measurements from different depths, important metadata and meteorological variables (e.g., precipitation and soil temperature) are stored in the database. These will assist the user in correctly interpreting the soil moisture data. The database is queried through a graphical user interface while output of data selected for download is provided according to common standards for data and metadata. Currently (status January 2011), the ISMN contains data of 16 networks and more than 500 stations located in the North America, Europe, Asia, and Australia. The time period spanned by the entire database runs from 1952 until the present, although most datasets have originated during the last decade. The database is rapidly expanding, which means that both the number of stations and the time period covered by the existing stations are still growing. Hence, it will become an increasingly important resource for validating and improving satellite-derived soil moisture products and studying climate related trends. As the ISMN is animated by the scientific community itself, we invite potential networks to enrich the collection by sharing their in situ soil moisture data.
NASA Astrophysics Data System (ADS)
Dorigo, W. A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Gruber, A.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; Robock, A.; Jackson, T.
2011-05-01
In situ measurements of soil moisture are invaluable for calibrating and validating land surface models and satellite-based soil moisture retrievals. In addition, long-term time series of in situ soil moisture measurements themselves can reveal trends in the water cycle related to climate or land cover change. Nevertheless, on a worldwide basis the number of meteorological networks and stations measuring soil moisture, in particular on a continuous basis, is still limited and the data they provide lack standardization of technique and protocol. To overcome many of these limitations, the International Soil Moisture Network (ISMN; http://www.ipf.tuwien.ac.at/insitu) was initiated to serve as a centralized data hosting facility where globally available in situ soil moisture measurements from operational networks and validation campaigns are collected, harmonized, and made available to users. Data collecting networks share their soil moisture datasets with the ISMN on a voluntary and no-cost basis. Incoming soil moisture data are automatically transformed into common volumetric soil moisture units and checked for outliers and implausible values. Apart from soil water measurements from different depths, important metadata and meteorological variables (e.g., precipitation and soil temperature) are stored in the database. These will assist the user in correctly interpreting the soil moisture data. The database is queried through a graphical user interface while output of data selected for download is provided according to common standards for data and metadata. Currently (status May 2011), the ISMN contains data of 19 networks and more than 500 stations located in North America, Europe, Asia, and Australia. The time period spanned by the entire database runs from 1952 until the present, although most datasets have originated during the last decade. The database is rapidly expanding, which means that both the number of stations and the time period covered by the existing stations are still growing. Hence, it will become an increasingly important resource for validating and improving satellite-derived soil moisture products and studying climate related trends. As the ISMN is animated by the scientific community itself, we invite potential networks to enrich the collection by sharing their in situ soil moisture data.
USDA-ARS?s Scientific Manuscript database
The contrast between the point-scale nature of current ground-based soil moisture instrumentation and the footprint resolution (typically >100 square kilometers) of satellites used to retrieve soil moisture poses a significant challenge for the validation of data products from satellite missions suc...
Remote sensing of an agricultural soil moisture network in Walnut Creek, Iowa
USDA-ARS?s Scientific Manuscript database
The calibration and validation of soil moisture remote sensing products is complicated by the logistics of installing a soil moisture network for a long term period in an active landscape. Usually soil moisture sensors are added to existing precipitation networks which have as a singular requiremen...
Evaluation of SMOS soil moisture products over the CanEx-SM10 area
USDA-ARS?s Scientific Manuscript database
The Soil Moisture and Ocean Salinity (SMOS) Earth observation satellite was launched in November 2009 to provide global soil moisture and ocean salinity measurements based on L-Band passive microwave measurements. Since its launch, different versions of SMOS soil moisture products processors have be...
SMOS soil moisture validation with U.S. in situ newworks
USDA-ARS?s Scientific Manuscript database
Estimation of soil moisture at large scale has been performed using several satellite-based passive microwave sensors using a variety of retrieval methods. The most recent source of soil moisture is the European Space Agency Soil Moisture and Ocean Salinity (SMOS) mission. Since it is a new sensor u...
Potential of bias correction for downscaling passive microwave and soil moisture data
USDA-ARS?s Scientific Manuscript database
Passive microwave satellites such as SMOS (Soil Moisture and Ocean Salinity) or SMAP (Soil Moisture Active Passive) observe brightness temperature (TB) and retrieve soil moisture at a spatial resolution greater than most hydrological processes. Bias correction is proposed as a simple method to disag...
Validation of SMAP surface soil moisture products with core validation sites
USDA-ARS?s Scientific Manuscript database
The NASA Soil Moisture Active Passive (SMAP) mission has utilized a set of core validation sites as the primary methodology in assessing the soil moisture retrieval algorithm performance. Those sites provide well-calibrated in situ soil moisture measurements within SMAP product grid pixels for diver...
Evaluating soil moisture retrievals from ESA's SMOS and NASA's SMAP brightness temperature datasets
USDA-ARS?s Scientific Manuscript database
Two satellites are currently monitoring surface soil moisture (SM) from L-band observations: SMOS (Soil Moisture and Ocean Salinity), a European Space Agency (ESA) satellite that was launched on November 2, 2009 and SMAP (Soil Moisture Active Passive), a National Aeronautics and Space Administration...
Estimating error cross-correlations in soil moisture data sets using extended collocation analysis
USDA-ARS?s Scientific Manuscript database
Consistent global soil moisture records are essential for studying the role of hydrologic processes within the larger earth system. Various studies have shown the benefit of assimilating satellite-based soil moisture data into water balance models or merging multi-source soil moisture retrievals int...
Precipitation estimation using L-Band and C-Band soil moisture retrievals
USDA-ARS?s Scientific Manuscript database
An established methodology for estimating precipitation amounts from satellite-based soil moisture retrievals is applied to L-band products from the Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) satellite missions and to a C-band product from the Advanced Scatterome...
USDA-ARS?s Scientific Manuscript database
Soil moisture is an intrinsic state variable that varies considerably in space and time. From a hydrologic viewpoint, soil moisture controls runoff, infiltration, storage and drainage. Soil moisture determines the partitioning of the incoming radiation between latent and sensible heat fluxes. Althou...
NASA Astrophysics Data System (ADS)
Cotrufo, M. F.; Alberti, G.; Inglima, I.; Marjanović, H.; Lecain, D.; Zaldei, A.; Peressotti, A.; Miglietta, F.
2011-09-01
Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 58 % and 220 %, respectively, as compared to the control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction in precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodlands. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long-term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long-term soil C stocks.
NASA Astrophysics Data System (ADS)
Cotrufo, M. F.; Alberti, G.; Inglima, I.; Marjanović, H.; Lecain, D.; Zaldei, A.; Peressotti, A.; Miglietta, F.
2011-06-01
Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. The throughfall manipulation experiment started in 2004 and we report data up to the 2009 growing season. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 50 % and 220 %, respectively, as compared to control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction of precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodland. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long term soil C stocks.
NASA Astrophysics Data System (ADS)
Azorin-Molina, Cesar; Vicente-Serrano, Sergio M.; Cerdà, Artemi
2013-04-01
Within the Soil Erosion and Degradation Research Group Experimental Stations, soil moisture is being researched as a key factor of the soil hydrology and soil erosion (Cerdà, 1995; Cerda, 1997; Cerdà 1998). This because under semiarid conditions soil moisture content plays a crucial role for agriculture, forest, groundwater recharge and soil chemistry and scientific improvement is of great interest in agriculture, hydrology and soil sciences. Soil moisture has been seeing as the key factor for plant photosynthesis, respiration and transpiration in orchards (Schneider and Childers, 1941) and plant growth (Veihmeyer and Hendrickson, 1950). Moreover, soil moisture determine the root growth and distribution (Levin et al., 1979) and the soil respiration ( Velerie and Orchard, 1983). Water content is expressed as a ratio, ranging from 0 (dry) to the value of soil porosity at saturation (wet). In this study we present 1-year of soil moisture measurements at two experimental sites in the Valencia region, Eastern Spain: one representing rainfed orchard typical from the Mediterranean mountains (El Teularet-Sierra de Enguera), and a second site corresponding to an irrigated orange crop (Alcoleja). The EC-5 soil moisture smart sensor S-SMC-M005 integrated with the field-proven ECH2O™ Sensor and a 12-bit A/D has been choosen for measuring soil water content providing ±3% accuracy in typical soil conditions. Soil moisture measurements were carried out at 5-minute intervals from January till December 2012. In addition, soil moisture was measured at two depths in each landscape: 2 and 20 cm depth - in order to retrieve a representative vertical cross-section of soil moisture. Readings are provided directly from 0 (dry) to 0.450 m3/m3 (wet) volumetric water content. The soil moisture smart sensor is conected to a HOBO U30 Station - GSM-TCP which also stored 5-minute temperature, relative humidity, dew point, global solar radiation, precipitation, wind speed and wind direction data. These complementary atmospheric measurements will serve to explain the intraannual and vertical variations observed in the soil moisture content in both experimental landscapes. This kind of study is aimed to understand the soil moisture content in two different environments such as irrigated rainfed orchards in a semi-arid region. For instance, these measurements have a direct impact on water availability for crops, plant transpiration and could have practical applications to schedule irrigation. Additionally, soil water content has also implications for erosion processes. Key Words: Water, Agriculture, Irrigation, Eastern Spain, Citrus. Acknowledgements The research projects GL2008-02879/BTE and LEDDRA 243857 supported this research. References Cerdà, A. 1995. Soil moisture regime under simulated rainfall in a three years abandoned field in Southeast Spain. Physics and Chemistry of The Earth, 20 (3-4), 271-279. Cerdà, A. 1997. Seasonal Changes of the Infiltration Rates in a Typical Mediterranean Scrubland on Limestone in Southeast Spain. Journal of Hydrology, 198 (1-4) 198-209 Cerdà, A. 1998. Effect of climate on surface flow along a climatological gradient in Israel. A field rainfall simulation approach. Journal of Arid Environments, 38, 145-159. Levin, I., Assaf, R., and Bravdo, B. 1979. Soil moisture and root distribution in an apple orchard irrigated by tricklers. Plant and Soil, 52, 31-40. Schneider, G. W. And Childers, N.F. 1941. Influence of soil moisture on photosynthesis, respiration and transpiration of apples leaves. Plant Physiol., 16, 565-583. Valerie, A. and Orchard, F.J. Cook. 1983. Relationship between soil respiration and soil moisture. Soil Biology and Biochemistry, 15, 447-453. Veihmeyer, F. J. and Hendrickson, A. H. 1950. Soil Moisture in Relation to Plant Growth. Annual Review of Plant Physiology, 1, 285-304.
Inventory of File gfs.t06z.sfluxgrbf00.grib2
Volumetric Soil Moisture Content [Fraction] 007 0.1-0.4 m below ground SOILW analysis Volumetric Soil Volumetric Soil Moisture Content [Fraction] 068 1-2 m below ground SOILW analysis Volumetric Soil Moisture analysis Temperature [K] 071 0-0.1 m below ground SOILL analysis Liquid Volumetric Soil Moisture (non
Towards soil property retrieval from space: Proof of concept using in situ observations
NASA Astrophysics Data System (ADS)
Bandara, Ranmalee; Walker, Jeffrey P.; Rüdiger, Christoph
2014-05-01
Soil moisture is a key variable that controls the exchange of water and energy fluxes between the land surface and the atmosphere. However, the temporal evolution of soil moisture is neither easy to measure nor monitor at large scales because of its high spatial variability. This is mainly a result of the local variation in soil properties and vegetation cover. Thus, land surface models are normally used to predict the evolution of soil moisture and yet, despite their importance, these models are based on low-resolution soil property information or typical values. Therefore, the availability of more accurate and detailed soil parameter data than are currently available is vital, if regional or global soil moisture predictions are to be made with the accuracy required for environmental applications. The proposed solution is to estimate the soil hydraulic properties via model calibration to remotely sensed soil moisture observation, with in situ observations used as a proxy in this proof of concept study. Consequently, the feasibility is assessed, and the level of accuracy that can be expected determined, for soil hydraulic property estimation of duplex soil profiles in a semi-arid environment using near-surface soil moisture observations under naturally occurring conditions. The retrieved soil hydraulic parameters were then assessed by their reliability to predict the root zone soil moisture using the Joint UK Land Environment Simulator model. When using parameters that were retrieved using soil moisture observations, the root zone soil moisture was predicted to within an accuracy of 0.04 m3/m3, which is an improvement of ∼0.025 m3/m3 on predictions that used published values or pedo-transfer functions.
Soil water dynamics during precipitation in genetic horizons of Retisol
NASA Astrophysics Data System (ADS)
Zaleski, Tomasz; Klimek, Mariusz; Kajdas, Bartłomiej
2017-04-01
Retisols derived from silty deposits dominate in the soil cover of the Carpathian Foothills. The hydrophysical properties of these are determined by the grain-size distribution of the parent material and the soil's "primary" properties shaped in the deposition process. The other contributing factors are the soil-forming processes, such as lessivage (leaching of clay particles), and the morphogenetic processes that presently shape the relief. These factors are responsible for the "secondary" differentiation of hydrophysical properties across the soil profile. Both the primary and secondary hydrophysical properties of soils (the rates of water retention, filtration and infiltration, and the moisture distribution over the soil profile) determine their ability to take in rainfall, the amount of rainwater taken in, and the ways of its redistribution. The aims of the study, carried out during 2015, were to investigate the dynamics of soil moisture in genetic horizons of Retisol derived from silty deposits and to recognize how fast and how deep water from precipitation gets into soil horizons. Data of soil moisture were measured using 5TM moisture and temperature sensor and collected by logger Em50 (Decagon Devices USA). Data were captured every 10 minutes from 6 sensors at depths: - 10 cm, 20 cm, 40 cm, 60 cm and 80 cm. Precipitation data come from meteorological station situated 50 m away from the soil profile. Two zones differing in the type of water regime were distinguished in Retisol: an upper zone comprising humic and eluvial horizons, and a lower zone consisting of illuvial and parent material horizons. The upper zone shows smaller retention of water available for plants, and relatively wide fluctuations in moisture content, compared to the lower zone. The lower zone has stable moisture content during the vegetation season, with values around the water field capacity. Large changes in soil moisture were observed while rainfall. These changes depend on the volume of the precipitation and soil moisture before the precipitation. The following changes of moisture in the soil profile during precipitation were distinguished: if soil moisture in upper zone horizons oscillates around field capacity (higher than 0.30 m3ṡm-3) there is an evident increase in soil moisture also in the lower zone horizons. If soil moisture in the upper zone horizons is much lower than the field capacity (less than 0.20 m3ṡm-3), the soil moisture in the lower zone has very little fluctuations. The range of wetting front in the soil profile depends on the volume of the precipitation and soil moisture. The heavier precipitation, the wetting front in soil profile reaches deeper horizons. The wetter the soil is, the faster soil moisture in the deeper genetic horizons increase. This Research was financed by the Ministry of Science and Higher Education of the Republic of Poland, DS No. 3138/KGiOG/2016.
Arvela, H.; Holmgren, O.; Hänninen, P.
2016-01-01
The effect of soil moisture on seasonal variation in soil air and indoor radon is studied. A brief review of the theory of the effect of soil moisture on soil air radon has been presented. The theoretical estimates, together with soil moisture measurements over a period of 10 y, indicate that variation in soil moisture evidently is an important factor affecting the seasonal variation in soil air radon concentration. Partitioning of radon gas between the water and air fractions of soil pores is the main factor increasing soil air radon concentration. On two example test sites, the relative standard deviation of the calculated monthly average soil air radon concentration was 17 and 26 %. Increased soil moisture in autumn and spring, after the snowmelt, increases soil gas radon concentrations by 10–20 %. In February and March, the soil gas radon concentration is in its minimum. Soil temperature is also an important factor. High soil temperature in summer increased the calculated soil gas radon concentration by 14 %, compared with winter values. The monthly indoor radon measurements over period of 1 y in 326 Finnish houses are presented and compared with the modelling results. The model takes into account radon entry, climate and air exchange. The measured radon concentrations in autumn and spring were higher than expected and it can be explained by the seasonal variation in the soil moisture. The variation in soil moisture is a potential factor affecting markedly to the high year-to-year variation in the annual or seasonal average radon concentrations, observed in many radon studies. PMID:25899611
NASA Astrophysics Data System (ADS)
Bertoldi, Giacomo; Brenner, Johannes; Notarnicola, Claudia; Greifeneder, Felix; Nicolini, Irene; Della Chiesa, Stefano; Niedrist, Georg; Tappeiner, Ulrike
2015-04-01
Soil moisture content (SMC) is a key factor for numerous processes, including runoff generation, groundwater recharge, evapotranspiration, soil respiration, and biological productivity. Understanding the controls on the spatial and temporal variability of SMC in mountain catchments is an essential step towards improving quantitative predictions of catchment hydrological processes and related ecosystem services. The interacting influences of precipitation, soil properties, vegetation, and topography on SMC and the influence of SMC patterns on runoff generation processes have been extensively investigated (Vereecken et al., 2014). However, in mountain areas, obtaining reliable SMC estimations is still challenging, because of the high variability in topography, soil and vegetation properties. In the last few years, there has been an increasing interest in the estimation of surface SMC at local scales. On the one hand, low cost wireless sensor networks provide high-resolution SMC time series. On the other hand, active remote sensing microwave techniques, such as Synthetic Aperture Radars (SARs), show promising results (Bertoldi et al. 2014). As these data provide continuous coverage of large spatial extents with high spatial resolution (10-20 m), they are particularly in demand for mountain areas. However, there are still limitations related to the fact that the SAR signal can penetrate only a few centimeters in the soil. Moreover, the signal is strongly influenced by vegetation, surface roughness and topography. In this contribution, we analyse the spatial and temporal dynamics of surface and root-zone SMC (2.5 - 5 - 25 cm depth) of alpine meadows and pastures in the Long Term Ecological Research (LTER) Area Mazia Valley (South Tyrol - Italy) with different techniques: (I) a network of 18 stations; (II) field campaigns with mobile ground sensors; (III) 20-m resolution RADARSAT2 SAR images; (IV) numerical simulations using the GEOtop hydrological model (Rigon et al., 2006; Endrizzi et al., 2014). The objective of this work is to understand the physical controls of the observed SCM patterns. In particular, we want to investigate: • How the SMC signal propagates with depth, to understand the capability of SAR surface SMC observations to predict root-zone SMC. • The role of land management and vegetation properties with respect to soil and bedrock properties in determining SMC spatial variability and temporal patterns. In this context, we use the GEOtop model to understand if a relationship exists between the observed SMC patterns and the underlying runoff generation processes. Results show that meadows and pastures have different behaviours. Meadows are in general wetter because of irrigation and the presence of soils with higher organic content and higher water holding capacity. Moreover, surface and root depth SCM dynamics are correlated. In contrast, pastures are drier, with lower vegetation density and more compact soils due animal trampling. Because of shallow soils and impermeable bedrock, root zone SMC shows a different behaviour with respect to the surface, with occurrence of sub-surface saturation excess, as verified from numerical experiments performed with the hydrological model. Results suggest how SAR retrieved surface SMC can be used to extrapolate root zone SMC, when soil properties are homogenous and differences in vegetation density are properly accounted with a robust retrieval processes (Pasolli et al., in press 2015). However, in situations characterized by shallow subsurface saturation excess flow, a more sophisticated modelling approach is required to estimate root zone SMC using remote sensing observations. Bertoldi, G., Della, S., Notarnicola, C., Pasolli, L., Niedrist, G., & Tappeiner, U. (2014). Estimation of soil moisture patterns in mountain grasslands by means of SAR RADARSAT2 images and hydrological modeling, 516, 245-257. doi:10.1016/j.jhydrol.2014.02.018 Endrizzi, S., Gruber, S., Dall'Amico, M., & Rigon, R. (2014). GEOtop 2.0: simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects. Geoscientific Model Development, 7(6), 2831-2857. doi:10.5194/gmd-7-2831-2014 Pasolli, L., Notarnicola, C., Bertoldi, G., Bruzzone, L., Remegaldo, R., Niedrist, G, Della Chiesa S., Tappeiner, U., Zebisch, M. (2014): Multi-scale assessment of soil moisture variability in mountain areas by using active radar images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, in press 2015. Rigon, R., Bertoldi, G., & Over, T. M. (2006). GEOtop: A Distributed Hydrological Model with Coupled Water and Energy Budgets. Journal of Hydrometeorology, 7, 371-388. Vereecken, H., Huisman, J. A., Pachepsky, Y., Montzka, C., van der Kruk, J., Bogena, H., … Vanderborght, J. (2014). On the spatio-temporal dynamics of soil moisture at the field scale. Journal of Hydrology. doi:http://dx.doi.org/10.1016/j.jhydrol.2013.11.061
The Impact of Microwave-Derived Surface Soil Moisture on Watershed Hydrological Modeling
NASA Technical Reports Server (NTRS)
ONeill, P. E.; Hsu, A. Y.; Jackson, T. J.; Wood, E. F.; Zion, M.
1997-01-01
The usefulness of incorporating microwave-derived soil moisture information in a semi-distributed hydrological model was demonstrated for the Washita '92 experiment in the Little Washita River watershed in Oklahoma. Initializing the hydrological model with surface soil moisture fields from the ESTAR airborne L-band microwave radiometer on a single wet day at the start of the study period produced more accurate model predictions of soil moisture than a standard hydrological initialization with streamflow data over an eight-day soil moisture drydown.
The impact of non-isothermal soil moisture transport on evaporation fluxes in a maize cropland
NASA Astrophysics Data System (ADS)
Shao, Wei; Coenders-Gerrits, Miriam; Judge, Jasmeet; Zeng, Yijian; Su, Ye
2018-06-01
The process of evaporation interacts with the soil, which has various comprehensive mechanisms. Multiphase flow models solve air, vapour, water, and heat transport equations to simulate non-isothermal soil moisture transport of both liquid water and vapor flow, but are only applied in non-vegetated soils. For (sparsely) vegetated soils often energy balance models are used, however these lack the detailed information on non-isothermal soil moisture transport. In this study we coupled a multiphase flow model with a two-layer energy balance model to study the impact of non-isothermal soil moisture transport on evaporation fluxes (i.e., interception, transpiration, and soil evaporation) for vegetated soils. The proposed model was implemented at an experimental agricultural site in Florida, US, covering an entire maize-growing season (67 days). As the crops grew, transpiration and interception became gradually dominated, while the fraction of soil evaporation dropped from 100% to less than 20%. The mechanisms of soil evaporation vary depending on the soil moisture content. After precipitation the soil moisture content increased, exfiltration of the liquid water flow could transport sufficient water to sustain evaporation from soil, and the soil vapor transport was not significant. However, after a sufficient dry-down period, the soil moisture content significantly reduced, and the soil vapour flow significantly contributed to the upward moisture transport in topmost soil. A sensitivity analysis found that the simulations of moisture content and temperature at the soil surface varied substantially when including the advective (i.e., advection and mechanical dispersion) vapour transport in simulation, including the mechanism of advective vapour transport decreased soil evaporation rate under wet condition, while vice versa under dry condition. The results showed that the formulation of advective soil vapor transport in a soil-vegetation-atmosphere transfer continuum can affect the simulated evaporation fluxes, especially under dry condition.
Spatial and temporal variability of soil moisture on the field with and without plants*
NASA Astrophysics Data System (ADS)
Usowicz, B.; Marczewski, W.; Usowicz, J. B.
2012-04-01
Spatial and temporal variability of the natural environment is its inherent and unavoidable feature. Every element of the environment is characterized by its own variability. One of the kinds of variability in the natural environment is the variability of the soil environment. To acquire better and deeper knowledge and understanding of the temporal and spatial variability of the physical, chemical and biological features of the soil environment, we should determine the causes that induce a given variability. Relatively stable features of soil include its texture and mineral composition; examples of those variables in time are the soil pH or organic matter content; an example of a feature with strong dynamics is the soil temperature and moisture content. The aim of this study was to identify the variability of soil moisture on the field with and without plants using geostatistical methods. The soil moisture measurements were taken on the object with plant canopy and without plants (as reference). The measurements of soil moisture and meteorological components were taken within the period of April-July. The TDR moisture sensors covered 5 cm soil layers and were installed in the plots in the soil layers of 0-0.05, 0.05-0.1, 0.1-0.15, 0.2-0.25, 0.3-0.35, 0.4-0.45, 0.5-0.55, 0.8-0.85 m. Measurements of soil moisture were taken once a day, in the afternoon hours. For the determination of reciprocal correlation, precipitation data and data from soil moisture measurements with the TDR meter were used. Calculations of reciprocal correlation of precipitation and soil moisture at various depths were made for three objects - spring barley, rye, and bare soil, at the level of significance of p<0.05. No significant reciprocal correlation was found between the precipitation and soil moisture in the soil profile for any of the objects studied. Although the correlation analysis indicates a lack of correlation between the variables under consideration, observation of the soil moisture runs in particular objects and of precipitation distribution shows clearly that rainfall has an effect on the soil moisture. The amount of precipitation water that increased the soil moisture depended on the strength of the rainfall, on the hydrological properties of the soil (primarily the soil density), the status of the plant cover, and surface runoff. Basing on the precipitation distribution and on the soil moisture runs, an attempt was made at finding a temporal and spatial relationship between those variables, employing for the purpose the geostatistical methods which permit time and space to be included in the analysis. The geostatistical parameters determined showed the temporal dependence of moisture distribution in the soil profile, with the autocorrelation radius increasing with increasing depth in the profile. The highest values of the radius were observed in the plots with plant cover below the arable horizon, and the lowest in the arable horizon on the barley and fallow plots. The fractal dimensions showed a clear decrease in values with increasing depth in the plots with plant cover, while in the bare plots they were relatively constant within the soil profile under study. Therefore, they indicated that the temporal distribution of soil moisture within the soil profile in the bare field was more random in character than in the plots with plants. The results obtained and the analyses indicate that the moisture in the soil profile, its variability and determination, are significantly affected by the type and condition of plant canopy. The differentiation in moisture content between the plots studied resulted from different precipitation interception and different intensity of water uptake by the roots. * The work was financially supported in part by the ESA Programme for European Cooperating States (PECS), No.98084 "SWEX-R, Soil Water and Energy Exchange/Research", AO-3275.
Ultrasound Algorithm Derivation for Soil Moisture Content Estimation
NASA Technical Reports Server (NTRS)
Belisle, W.R.; Metzl, R.; Choi, J.; Aggarwal, M. D.; Coleman, T.
1997-01-01
Soil moisture content can be estimated by evaluating the velocity at which sound waves travel through a known volume of solid material. This research involved the development of three soil algorithms relating the moisture content to the velocity at which sound waves moved through dry and moist media. Pressure and shear wave propagation equations were used in conjunction with soil property descriptions to derive algorithms appropriate for describing the effects of moisture content variation on the velocity of sound waves in soils with and without complete soil pore water volumes, An elementary algorithm was used to estimate soil moisture contents ranging from 0.08 g/g to 0.5 g/g from sound wave velocities ranging from 526 m/s to 664 m/s. Secondary algorithms were also used to estimate soil moisture content from sound wave velocities through soils with pores that were filled predominantly with air or water.
Huang, Gang; Zhao, Xue-yong; Huang, Ying-xin; Su, Yan-gui
2009-03-01
Based on the investigation data of vegetation and soil moisture regime of Caragana microphylla shrubs widely distributed in Horqin sandy land, the spatiotemporal variations of soil moisture regime and soil water storage of artificial sand-fixing C. microphylla shrubs at different topographical sites in the sandy land were studied, and the evapotranspiration was measured by water balance method. The results showed that the soil moisture content of the shrubs was the highest in the lowland of dunes, followed by in the middle, and in the crest of the dunes, and increased with increasing depth. No water stress occurred during the growth season of the shrubs. Soil moisture content of the shrubs was highly related to precipitation event, and the relationship of soil moisture content with precipitation was higher in deep soil layer (50-180 cm) than in shallow soil layer (0-50 cm). The variation coefficient of soil moisture content was also higher in deep layer than in shallow layer. Soil water storage was increasing in the whole growth season of the shrubs, which meant that the accumulation of soil water occurred in this area. The evapotranspiriation of the shrubs occupied above 64% of the precipitation.
NASA Technical Reports Server (NTRS)
Bolten, John D.; Lakshmi, Venkat
2009-01-01
The Soil Moisture Experiments conducted in Iowa in the summer of 2002 (SMEX02) had many remote sensing instruments that were used to study the spatial and temporal variability of soil moisture. The sensors used in this paper (a subset of the suite of sensors) are the AQUA satellite-based AMSR-E (Advanced Microwave Scanning Radiometer- Earth Observing System) and the aircraft-based PSR (Polarimetric Scanning Radiometer). The SMEX02 design focused on the collection of near simultaneous brightness temperature observations from each of these instruments and in situ soil moisture measurements at field- and domain- scale. This methodology provided a basis for a quantitative analysis of the soil moisture remote sensing potential of each instrument using in situ comparisons and retrieved soil moisture estimates through the application of a radiative transfer model. To this end, the two sensors are compared with respect to their estimation of soil moisture.
USDA-ARS?s Scientific Manuscript database
Remote sensing of soil moisture has reached a level of maturity and accuracy for which the retrieved products can be used to improve hydrological and meteorological applications. In this study, the soil moisture product from the European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) is used...
USDA-ARS?s Scientific Manuscript database
The validation of the soil moisture retrievals from the recently-launched NASA Soil Moisture Active/Passive (SMAP) satellite is important prior to their full public release. Uncertainty in attempts to characterize footprint-scale surface-layer soil moisture using point-scale ground observations has ...
Soil-moisture constants and their variation
Walter M. Broadfoot; Hubert D. Burke
1958-01-01
"Constants" like field capacity, liquid limit, moisture equivalent, and wilting point are used by most students and workers in soil moisture. These constants may be equilibrium points or other values that describe soil moisture. Their values under specific soil and cover conditions have been discussed at length in the literature, but few general analyses and...
USDA-ARS?s Scientific Manuscript database
Soil moisture is an intrinsic state variable that varies considerably in space and time. Although soil moisture is highly variable, repeated measurements of soil moisture at the field or small watershed scale can often reveal certain locations as being temporally stable and representative of the are...
USDA-ARS?s Scientific Manuscript database
A very promising technique for spatial disaggregation of soil moisture is on the combination of radiometer and radar observations. Despite their demonstrated potential for long term large scale monitoring of soil moisture, passive and active have their disadvantages in terms of temporal and spatial ...
Calibration and validation of the COSMOS rover for surface soil moisture
USDA-ARS?s Scientific Manuscript database
The mobile COsmic-ray Soil Moisture Observing System (COSMOS) rover may be useful for validating satellite-based estimates of near surface soil moisture, but the accuracy with which the rover can measure 0-5 cm soil moisture has not been previously determined. Our objectives were to calibrate and va...
NASA Technical Reports Server (NTRS)
Soman, Vishwas V.; Crosson, William L.; Laymon, Charles; Tsegaye, Teferi
1998-01-01
Soil moisture is an important component of analysis in many Earth science disciplines. Soil moisture information can be obtained either by using microwave remote sensing or by using a hydrologic model. In this study, we combined these two approaches to increase the accuracy of profile soil moisture estimation. A hydrologic model was used to analyze the errors in the estimation of soil moisture using the data collected during Huntsville '96 microwave remote sensing experiment in Huntsville, Alabama. Root mean square errors (RMSE) in soil moisture estimation increase by 22% with increase in the model input interval from 6 hr to 12 hr for the grass-covered plot. RMSEs were reduced for given model time step by 20-50% when model soil moisture estimates were updated using remotely-sensed data. This methodology has a potential to be employed in soil moisture estimation using rainfall data collected by a space-borne sensor, such as the Tropical Rainfall Measuring Mission (TRMM) satellite, if remotely-sensed data are available to update the model estimates.
NASA Astrophysics Data System (ADS)
Borma, L. D. S.; Oliveira, R. S.; Silva, R. D.; Chaparro Saaveedra, O. F.; Barros, F. V.; Bittencourt, P.
2015-12-01
Droughts and floods are part of the Amazon weather pattern, but in face of climate change, it has been expected an increase in their intensity and duration. Forests are important regulators of climate. However, it is still unknown how they respond to an increase in frequency and intensity of extreme droughts. Additionally, there are great uncertainties related with the forest behavior in an enriched CO2 environment. For the Amazon rainforest, some authors report forest growth in a drier climate, while others report forest mortality in these same conditions. The crucial factor in this process seem the linkage between atmospheric demand from water and its provision by soil moisture, intermediated by the plants. In theory, in regions where soil moisture is high, even in the absence of rainfall conditions, water exists in enough quantity to meet the atmospheric demand, and majority of plants behave as an evergreen forest. This is the case, for example, for some research sites of equatorial regions of the Amazon forest, which tend to increase evapotranspiration rates in dry season, when the atmospheric demand is higher. However, the extent to which soil moisture decreases, the plant is no longer able to meet the atmospheric demand, limiting evapotranspiration and possibly, entering in a dormant state. To understand the forest response to droughts, in terms of its potential to maintain or reduce evapotranspiration rates, it is necessary to know water dynamics in soil and soil layers where plants are able to extract water. It's a challenge, considering the great variability of soils and plants that forms the huge biodiversity of the Amazon forest. Here, we present an experiment design based on isotopic analyzes in a small watershed in Amazon basin. In order to understand the dynamics of the water used by the plant during the evaporation process, isotope analysis were carried out in soil water collected from shallow and deep groundwater, in the water collected on the bark of plants and rainfall water, intercepted or not by the canopy. These results were analyzed in conjunction with the soil properties, its moisture retention capacity and groundwater level variations. This study presents some insights about the capability of this methodology to answer questions related to the soil moisture sources and forest response to droughts.
Simelane, David O
2007-06-01
Laboratory studies were conducted to determine the influence of soil texture, moisture and surface cracks on adult preference and survival of the root-feeding flea beetle, Longitarsus bethae Savini and Escalona (Coleoptera: Chrysomelidae), a natural enemy of the weed, Lantana camara L. (Verbenaceae). Adult feeding, oviposition preference, and survival of the immature stages of L. bethae were examined at four soil textures (clayey, silty loam, sandy loam, and sandy soil), three soil moisture levels (low, moderate, and high), and two soil surface conditions (with or without surface cracks). Both soil texture and moisture had no influence on leaf feeding and colonization by adult L. bethae. Soil texture had a significant influence on oviposition, with adults preferring to lay on clayey and sandy soils to silty or sandy loam soils. However, survival to adulthood was significantly higher in clayey soils than in other soil textures. There was a tendency for females to deposit more eggs at greater depth in both clayey and sandy soils than in other soil textures. Although oviposition preference and depth of oviposition were not influenced by soil moisture, survival in moderately moist soils was significantly higher than in other moisture levels. Development of immature stages in high soil moisture levels was significantly slower than in other soil moisture levels. There were no variations in the body size of beetles that emerged from different soil textures and moisture levels. Females laid almost three times more eggs on cracked than on noncracked soils. It is predicted that clayey and moderately moist soils will favor the survival of L. bethae, and under these conditions, damage to the roots is likely to be high. This information will aid in the selection of suitable release sites where L. bethae would be most likely to become established.
Smith, J.A.; Chiou, C.T.; Kammer, J.A.; Kile, D.E.
1990-01-01
This report presents data on the sorption of trichloroethene (TCE) vapor to vadose-zone soil above a contaminated water-table aquifer at Picatinny Arsenal in Morris County, NJ. To assess the impact of moisture on TCE sorption, batch experiments on the sorption of TCE vapor by the field soil were carried out as a function of relative humidity. The TCE sorption decreases as soil moisture content increases from zero to saturation soil moisture content (the soil moisture content in equilibrium with 100% relative humidity). The moisture content of soil samples collected from the vadose zone was found to be greater than the saturation soil-moisture content, suggesting that adsorption of TCE by the mineral fraction of the vadose-zone soil should be minimal relative to the partition uptake by soil organic matter. Analyses of soil and soil-gas samples collected from the field indicate that the ratio of the concentration of TCE on the vadose-zone soil to its concentration in the soil gas is 1-3 orders of magnitude greater than the ratio predicted by using an assumption of equilibrium conditions. This apparent disequilibrium presumably results from the slow desorption of TCE from the organic matter of the vadose-zone soil relative to the dissipation of TCE vapor from the soil gas.
Assessment of Version 4 of the SMAP Passive Soil Moisture Standard Product
NASA Technical Reports Server (NTRS)
O'neill, P. O.; Chan, S.; Bindlish, R.; Jackson, T.; Colliander, A.; Dunbar, R.; Chen, F.; Piepmeier, Jeffrey R.; Yueh, S.; Entekhabi, D.;
2017-01-01
NASAs Soil Moisture Active Passive (SMAP) mission launched on January 31, 2015 into a sun-synchronous 6 am6 pm orbit with an objective to produce global mapping of high-resolution soil moisture and freeze-thaw state every 2-3 days. The SMAP radiometer began acquiring routine science data on March 31, 2015 and continues to operate nominally. SMAPs radiometer-derived standard soil moisture product (L2SMP) provides soil moisture estimates posted on a 36-km fixed Earth grid using brightness temperature observations and ancillary data. A beta quality version of L2SMP was released to the public in October, 2015, Version 3 validated L2SMP soil moisture data were released in May, 2016, and Version 4 L2SMP data were released in December, 2016. Version 4 data are processed using the same soil moisture retrieval algorithms as previous versions, but now include retrieved soil moisture from both the 6 am descending orbits and the 6 pm ascending orbits. Validation of 19 months of the standard L2SMP product was done for both AM and PM retrievals using in situ measurements from global core calval sites. Accuracy of the soil moisture retrievals averaged over the core sites showed that SMAP accuracy requirements are being met.
The global distribution and dynamics of surface soil moisture
NASA Astrophysics Data System (ADS)
McColl, Kaighin A.; Alemohammad, Seyed Hamed; Akbar, Ruzbeh; Konings, Alexandra G.; Yueh, Simon; Entekhabi, Dara
2017-01-01
Surface soil moisture has a direct impact on food security, human health and ecosystem function. It also plays a key role in the climate system, and the development and persistence of extreme weather events such as droughts, floods and heatwaves. However, sparse and uneven observations have made it difficult to quantify the global distribution and dynamics of surface soil moisture. Here we introduce a metric of soil moisture memory and use a full year of global observations from NASA's Soil Moisture Active Passive mission to show that surface soil moisture--a storage believed to make up less than 0.001% of the global freshwater budget by volume, and equivalent to an, on average, 8-mm thin layer of water covering all land surfaces--plays a significant role in the water cycle. Specifically, we find that surface soil moisture retains a median 14% of precipitation falling on land after three days. Furthermore, the retained fraction of the surface soil moisture storage after three days is highest over arid regions, and in regions where drainage to groundwater storage is lowest. We conclude that lower groundwater storage in these regions is due not only to lower precipitation, but also to the complex partitioning of the water cycle by the surface soil moisture storage layer at the land surface.
NASA Astrophysics Data System (ADS)
Sanchez-Mejia, Zulia Mayari; Papuga, Shirley A.
2014-01-01
We present an observational analysis examining soil moisture control on surface energy dynamics and planetary boundary layer characteristics. Understanding soil moisture control on land-atmosphere interactions will become increasingly important as climate change continues to alter water availability. In this study, we analyzed 4 years of data from the Santa Rita Creosote Ameriflux site. We categorized our data independently in two ways: (1) wet or dry seasons and (2) one of the four cases within a two-layer soil moisture framework for the root zone based on the presence or absence of moisture in shallow (0-20 cm) and deep (20-60 cm) soil layers. Using these categorizations, we quantified the soil moisture control on surface energy dynamics and planetary boundary layer characteristics using both average responses and linear regression. Our results highlight the importance of deep soil moisture in land-atmosphere interactions. The presence of deep soil moisture decreased albedo by about 10%, and significant differences were observed in evaporative fraction even in the absence of shallow moisture. The planetary boundary layer height (PBLh) was largest when the whole soil profile was dry, decreasing by about 1 km when the whole profile was wet. Even when shallow moisture was absent but deep moisture was present the PBLh was significantly lower than when the entire profile was dry. The importance of deep moisture is likely site-specific and modulated through vegetation. Therefore, understanding these relationships also provides important insights into feedbacks between vegetation and the hydrologic cycle and their consequent influence on the climate system.
NASA Astrophysics Data System (ADS)
Tang, S.; Dong, L.; Lu, P.; Zhou, K.; Wang, F.; Han, S.; Min, M.; Chen, L.; Xu, N.; Chen, J.; Zhao, P.; Li, B.; Wang, Y.
2016-12-01
Due to the lack of observing data which match the satellite pixel size, the inversion accuracy of satellite products in Tibetan Plateau(TP) is difficult to be evaluated. Hence, the in situ observations are necessary to support the calibration and validation activities. Under the support of the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III) projec a multi-scale automatic observatory of soil moisture and temperature served for satellite product validation (TIPEX-III-SMTN) were established in Tibetan Plateau. The observatory consists of two regional scale networks, including the Naqu network and the Geji network. The Naqu network is located in the north of TP, and characterized by alpine grasslands. The Geji network is located in the west of TP, and characterized by marshes. Naqu network includes 33 stations, which are deployed in a 75KM*75KM region according to a pre-designed pattern. At Each station, soil moisture and temperature are measured by five sensors at five soil depths. One sensor is vertically inserted into 0 2 cm depth to measure the averaged near-surface soil moisture and temperature. The other four sensors are horizontally inserted at 5, 10, 20, and 30 cm depths, respectively. The data are recorded every 10 minutes. A wireless transmission system is applied to transmit the data in real time, and a dual power supply system is adopted to keep the continuity of the observation. The construction of Naqu network has been accomplished in August, 2015, and Geji network will be established before Oct., 2016. Observations acquired from TIPEX-III-SMTN can be used to validate satellite products with different spatial resolution, and TIPEX-III-SMTN can also be used as a complementary of the existing similar networks in this area, such as CTP-SMTMN (the multiscale Soil Moistureand Temperature Monitoring Network on the central TP) . Keywords: multi-scale soil moisture soil temperature, Tibetan Plateau Acknowledgments: This work was jointly supported by CMA Special Fund for Scientific Research in the Public Interest (Grant No. GYHY201406001, GYHY201206008-01), and Climate change special fund (QHBH2014)'
NASA Astrophysics Data System (ADS)
Bircher, Simone; Richaume, Philippe; Mahmoodi, Ali; Mialon, Arnaud; Fernandez-Moran, Roberto; Wigneron, Jean-Pierre; Demontoux, François; Jonard, François; Weihermüller, Lutz; Andreasen, Mie; Rautiainen, Kimmo; Ikonen, Jaakko; Schwank, Mike; Drusch, Mattias; Kerr, Yann H.
2017-04-01
From the passive L-band microwave radiometer onboard the Soil Moisture and Ocean Salinity (SMOS) space mission global surface soil moisture data is retrieved every 2 - 3 days. Thus far, the empirical L-band Microwave Emission of the Biosphere (L-MEB) radiative transfer model applied in the SMOS soil moisture retrieval algorithm is exclusively calibrated over test sites in dry and temperate climate zones. Furthermore, the included dielectric mixing model relating soil moisture to relative permittivity accounts only for mineral soils. However, soil moisture monitoring over the higher Northern latitudes is crucial since these regions are especially sensitive to climate change. A considerable positive feedback is expected if thawing of these extremely organic soils supports carbon decomposition and release to the atmosphere. Due to differing structural characteristics and thus varying bound water fractions, the relative permittivity of organic material is lower than that of the most mineral soils at a given water content. This assumption was verified by means of L-band relative permittivity laboratory measurements of organic and mineral substrates from various sites in Denmark, Finland, Scotland and Siberia using a resonant cavity. Based on these data, a simple empirical dielectric model for organic soils was derived and implemented in the SMOS Soil Moisture Level 2 Prototype Processor (SML2PP). Unfortunately, the current SMOS retrieved soil moisture product seems to show unrealistically low values compared to in situ soil moisture data collected from organic surface layers in North America, Europe and the Tibetan Plateau so that the impact of the dielectric model for organic soils cannot really be tested. A simplified SMOS processing scheme yielding higher soil moisture levels has recently been proposed and is presently under investigation. Furthermore, recalibration of the model parameters accounting for vegetation and roughness effects that were thus far only evaluated using the default dielectric model for mineral soils is ongoing for the "organic" L-MEB version. Additionally, in order to decide where a soil moisture retrieval using the "organic" dielectric model should be triggered, information on soil organic matter content in the soil surface layer has to be considered in the retrieval algorithm. For this purpose, SoilGrids (www.soilgrids.org) providing soil organic carbon content (SOCC) in g/kg is under study. A SOCC threshold based on the relation between the SoilGrids' SOCC and the presence of organic soil surface layers (relevant to alter the microwave L-band emissions from the land surface) in the SoilGrids' source soil profile information has to be established. In this communication, we present the current status of the above outlined studies with the objective to advance towards an improved soil moisture retrieval for organic-rich soils from SMOS passive microwave L-band observations.
Li, Ming Ze; Gao, Yuan Ke; Di, Xue Ying; Fan, Wen Yi
2016-03-01
The moisture content of forest surface soil is an important parameter in forest ecosystems. It is practically significant for forest ecosystem related research to use microwave remote sensing technology for rapid and accurate estimation of the moisture content of forest surface soil. With the aid of TDR-300 soil moisture content measuring instrument, the moisture contents of forest surface soils of 120 sample plots at Tahe Forestry Bureau of Daxing'anling region in Heilongjiang Province were measured. Taking the moisture content of forest surface soil as the dependent variable and the polarization decomposition parameters of C band Quad-pol SAR data as independent variables, two types of quantitative estimation models (multilinear regression model and BP-neural network model) for predicting moisture content of forest surface soils were developed. The spatial distribution of moisture content of forest surface soil on the regional scale was then derived with model inversion. Results showed that the model precision was 86.0% and 89.4% with RMSE of 3.0% and 2.7% for the multilinear regression model and the BP-neural network model, respectively. It indicated that the BP-neural network model had a better performance than the multilinear regression model in quantitative estimation of the moisture content of forest surface soil. The spatial distribution of forest surface soil moisture content in the study area was then obtained by using the BP neural network model simulation with the Quad-pol SAR data.
Where did my wifi go? Measuring soil moisture using wifi signal strength
NASA Astrophysics Data System (ADS)
Hut, Rolf; de Jeu, Richard
2015-04-01
Soil moisture is tricky to measure. Currently soil moisture is measured at small footprints using probes and other field devices, or at large footprints using satellites. Promising developments in measuring soil moisture are using fiber optic cables for measurements along a line, or using cosmos rays for field scale measurements. In this demonstration we present a low cost alternative to measure soil moisture at footprints of a few square meters. We use a wifi hotspot and a wifi dongle, both mounted in a cantenna for beam forming. We aim the hotspot on a piece of soil and put the dongle in the path of the reflection. By logging the signal strength of the wifi netwerk, we have a proxy for soil moisture. A first proof of concept is presented.
NASA Astrophysics Data System (ADS)
Singh, G.; Das, N. N.; Panda, R. K.; Mohanty, B.; Entekhabi, D.; Bhattacharya, B. K.
2016-12-01
Soil moisture status at high resolution (1-10 km) is vital for hydrological, agricultural and hydro-metrological applications. The NASA Soil Moisture Active Passive (SMAP) mission had potential to provide reliable soil moisture estimate at finer spatial resolutions (3 km and 9 km) at the global extent, but suffered a malfunction of its radar, consequently making the SMAP mission observations only from radiometer that are of coarse spatial resolution. At present, the availability of high-resolution soil moisture product is limited, especially in developing countries like India, which greatly depends on agriculture for sustaining a huge population. Therefore, an attempt has been made in the reported study to combine the C-band synthetic aperture radar (SAR) data from Radar Imaging Satellite (RISAT) of the Indian Space Research Organization (ISRO) with the SMAP mission L-band radiometer data to obtain high-resolution (1 km and 3 km) soil moisture estimates. In this study, a downscaling approach (Active-Passive Algorithm) implemented for the SMAP mission was used to disaggregate the SMAP radiometer brightness temperature (Tb) using the fine resolution SAR backscatter (σ0) from RISAT. The downscaled high-resolution Tb was then subjected to tau-omega model in conjunction with high-resolution ancillary data to retrieve soil moisture at 1 and 3 km scale. The retrieved high-resolution soil moisture estimates were then validated with ground based soil moisture measurement under different hydro-climatic regions of India. Initial results show tremendous potential and reasonable accuracy for the retrieved soil moisture at 1 km and 3 km. It is expected that ISRO will implement this approach to produce high-resolution soil moisture estimates for the Indian subcontinent.
Large-area Soil Moisture Surveys Using a Cosmic-ray Rover: Approaches and Results from Australia
NASA Astrophysics Data System (ADS)
Hawdon, A. A.; McJannet, D. L.; Renzullo, L. J.; Baker, B.; Searle, R.
2017-12-01
Recent improvements in satellite instrumentation has increased the resolution and frequency of soil moisture observations, and this in turn has supported the development of higher resolution land surface process models. Calibration and validation of these products is restricted by the mismatch of scales between remotely sensed and contemporary ground based observations. Although the cosmic ray neutron soil moisture probe can provide estimates soil moisture at a scale useful for the calibration and validation purposes, it is spatially limited to a single, fixed location. This scaling issue has been addressed with the development of mobile soil moisture monitoring systems that utilizes the cosmic ray neutron method, typically referred to as a `rover'. This manuscript describes a project designed to develop approaches for undertaking rover surveys to produce soil moisture estimates at scales comparable to satellite observations and land surface process models. A custom designed, trailer-mounted rover was used to conduct repeat surveys at two scales in the Mallee region of Victoria, Australia. A broad scale survey was conducted at 36 x 36 km covering an area of a standard SMAP pixel and an intensive scale survey was conducted over a 10 x 10 km portion of the broad scale survey, which is at a scale equivalent to that used for national water balance modelling. We will describe the design of the rover, the methods used for converting neutron counts into soil moisture and discuss factors controlling soil moisture variability. We found that the intensive scale rover surveys produced reliable soil moisture estimates at 1 km resolution and the broad scale at 9 km resolution. We conclude that these products are well suited for future analysis of satellite soil moisture retrievals and finer scale soil moisture models.
NASA Astrophysics Data System (ADS)
Wanders, N.; Bierkens, M. F. P.; de Jong, S. M.; de Roo, A.; Karssenberg, D.
2014-08-01
Large-scale hydrological models are nowadays mostly calibrated using observed discharge. As a result, a large part of the hydrological system, in particular the unsaturated zone, remains uncalibrated. Soil moisture observations from satellites have the potential to fill this gap. Here we evaluate the added value of remotely sensed soil moisture in calibration of large-scale hydrological models by addressing two research questions: (1) Which parameters of hydrological models can be identified by calibration with remotely sensed soil moisture? (2) Does calibration with remotely sensed soil moisture lead to an improved calibration of hydrological models compared to calibration based only on discharge observations, such that this leads to improved simulations of soil moisture content and discharge? A dual state and parameter Ensemble Kalman Filter is used to calibrate the hydrological model LISFLOOD for the Upper Danube. Calibration is done using discharge and remotely sensed soil moisture acquired by AMSR-E, SMOS, and ASCAT. Calibration with discharge data improves the estimation of groundwater and routing parameters. Calibration with only remotely sensed soil moisture results in an accurate identification of parameters related to land-surface processes. For the Upper Danube upstream area up to 40,000 km2, calibration on both discharge and soil moisture results in a reduction by 10-30% in the RMSE for discharge simulations, compared to calibration on discharge alone. The conclusion is that remotely sensed soil moisture holds potential for calibration of hydrological models, leading to a better simulation of soil moisture content throughout the catchment and a better simulation of discharge in upstream areas. This article was corrected on 15 SEP 2014. See the end of the full text for details.
Overland flow dynamics through visual observation using time-lapse photographs
NASA Astrophysics Data System (ADS)
Silasari, Rasmiaditya; Blöschl, Günter
2016-04-01
Overland flow process on agricultural land is important to be investigated as it affects the stream discharge and water quality assessment. During rainfall events the formation of overland flow may happen through different processes (i.e. Hortonian or saturation excess overland flow) based on the governing soil hydraulic parameters (i.e. soil infiltration rate, soil water capacity). The dynamics of the soil water state and the processes will affect the surface runoff response which can be analyzed visually by observing the saturation patterns with a camera. Although visual observation was proven useful in laboratory experiments, the technique is not yet assessed for natural rainfall events. The aim of this work is to explore the use of time-lapse photographs of naturally occurring-saturation patterns in understanding the threshold processes of overland flow generation. The image processing produces orthographic projection of the saturation patterns which will be used to assess the dynamics of overland flow formation in relation with soil moisture state and rainfall magnitude. The camera observation was performed at Hydrological Open Air Laboratory (HOAL) catchment at Petzenkirchen, Lower Austria. The catchment covers an area of 66 ha dominated with agricultural land (87%). The mean annual precipitation and mean annual flow at catchment outlet are 750 mm and 4 l/s, respectively. The camera was set to observe the overland flow along a thalweg on an arable field which was drained in 1950s and has advantages of: (1) representing agricultural land as the dominant part of the catchment, (2) adjacent to the stream with clear visibility (no obstructing objects, such as trees), (3) drained area provides extra cases in understanding the response of tile drain outflow to overland flow formation and vice versa, and (4) in the vicinity of TDT soil moisture stations. The camera takes a picture with 1280 x 720 pixels resolution every minute and sends it directly in a PC via fiber-optic network. Exterior orientation is required to project the observed saturation patterns in the photographs onto orthographic map. This was done by georeferencing the on-field GPS points taken throughout the camera field of view to the orthographic map obtained from an airborne laser scanning (ALS) campaign. Based on the projected saturation patterns, the patterns dynamics were analyzed in relation to soil moisture state and rainfall magnitude for events in autumn and winter 2014. From the observed events during saturated soil condition, tile drain flow reacted within one hour after the rain started, while no sign of saturation pattern evolving into overland flow was observed. Within two hours after the rain started, overland flow was fully formed along the thalweg which flowed to the erosion gully and created signal at the discharge station almost immediately. From the surface roughness aspect, field management is an important factor of overland flow development as surface runoff was formed faster along the tractor tracks. In overall, time-lapse photographs have potentials to qualitatively assess the saturation patterns dynamics during rainfall events with high time resolution and wide area coverage.
NASA Astrophysics Data System (ADS)
Fahim, A. M.; Shen, R.; Yue, Z.; Di, W.; Mushtaq Shah, S.
2015-12-01
Moisture in the upper most layer of soil column from 14 different models under Coupled Model Intercomparison Project Phase-5 (CMIP5) project were analyzed for four seasons of the year. Aim of this study was to explore variability in soil moisture over south Asia using multi model ensemble and relationship between summer rainfall and soil moisture for spring and summer season. GLDAS (Global Land Data Assimilation System) dataset set was used for comparing CMIP5 ensemble mean soil moisture in different season. Ensemble mean represents soil moisture well in accordance with the geographical features; prominent arid regions are indicated profoundly. Empirical Orthogonal Function (EOF) analysis was applied to study the variability. First component of EOF explains 17%, 16%, 11% and 11% variability for spring, summer, autumn and winter season respectively. Analysis reveal increasing trend in soil moisture over most parts of Afghanistan, Central and north western parts of Pakistan, northern India and eastern to south eastern parts of China, in spring season. During summer, south western part of India exhibits highest negative trend while rest of the study area show minute trend (increasing or decreasing). In autumn, south west of India is under highest negative loadings. During winter season, north western parts of study area show decreasing trend. Summer rainfall has very week (negative or positive) spatial correlation, with spring soil moisture, while possess higher correlation with summer soil moisture. Our studies have significant contribution to understand complex nature of land - atmosphere interactions, as soil moisture prediction plays an important role in the cycle of sink and source of many air pollutants. Next level of research should be on filling the gaps between accurately measuring the soil moisture using satellite remote sensing and land surface modelling. Impact of soil moisture in tracking down different types of pollutant will also be studied.
Use of visible, near-infrared, and thermal infrared remote sensing to study soil moisture
NASA Technical Reports Server (NTRS)
Blanchard, M. B.; Greeley, R.; Goettelman, R.
1974-01-01
Two methods are described which are used to estimate soil moisture remotely using the 0.4- to 14.0 micron wavelength region: (1) measurement of spectral reflectance, and (2) measurement of soil temperature. The reflectance method is based on observations which show that directional reflectance decreases as soil moisture increases for a given material. The soil temperature method is based on observations which show that differences between daytime and nighttime soil temperatures decrease as moisture content increases for a given material. In some circumstances, separate reflectance or temperature measurements yield ambiguous data, in which case these two methods may be combined to obtain a valid soil moisture determination. In this combined approach, reflectance is used to estimate low moisture levels; and thermal inertia (or thermal diffusivity) is used to estimate higher levels. The reflectance method appears promising for surface estimates of soil moisture, whereas the temperature method appears promising for estimates of near-subsurface (0 to 10 cm).
Use of visible, near-infrared, and thermal infrared remote sensing to study soil moisture
NASA Technical Reports Server (NTRS)
Blanchard, M. B.; Greeley, R.; Goettelman, R.
1974-01-01
Two methods are used to estimate soil moisture remotely using the 0.4- to 14.0-micron wavelength region: (1) measurement of spectral reflectance, and (2) measurement of soil temperature. The reflectance method is based on observations which show that directional reflectance decreases as soil moisture increases for a given material. The soil temperature method is based on observations which show that differences between daytime and nighttime soil temperatures decrease as moisture content increases for a given material. In some circumstances, separate reflectance or temperature measurements yield ambiguous data, in which case these two methods may be combined to obtain a valid soil moisture determination. In this combined approach, reflectance is used to estimate low moisture levels; and thermal inertia (or thermal diffusivity) is used to estimate higher levels. The reflectance method appears promising for surface estimates of soil moisture, whereas the temperature method appears promising for estimates of near-subsurface (0 to 10 cm).
Using lagged dependence to identify (de)coupled surface and subsurface soil moisture values
NASA Astrophysics Data System (ADS)
Carranza, Coleen D. U.; van der Ploeg, Martine J.; Torfs, Paul J. J. F.
2018-04-01
Recent advances in radar remote sensing popularized the mapping of surface soil moisture at different spatial scales. Surface soil moisture measurements are used in combination with hydrological models to determine subsurface soil moisture values. However, variability of soil moisture across the soil column is important for estimating depth-integrated values, as decoupling between surface and subsurface can occur. In this study, we employ new methods to investigate the occurrence of (de)coupling between surface and subsurface soil moisture. Using time series datasets, lagged dependence was incorporated in assessing (de)coupling with the idea that surface soil moisture conditions will be reflected at the subsurface after a certain delay. The main approach involves the application of a distributed-lag nonlinear model (DLNM) to simultaneously represent both the functional relation and the lag structure in the time series. The results of an exploratory analysis using residuals from a fitted loess function serve as a posteriori information to determine (de)coupled values. Both methods allow for a range of (de)coupled soil moisture values to be quantified. Results provide new insights into the decoupled range as its occurrence among the sites investigated is not limited to dry conditions.
A model of the CO2 exchanges between biosphere and atmosphere in the tundra
NASA Technical Reports Server (NTRS)
Labgaa, Rachid R.; Gautier, Catherine
1992-01-01
A physical model of the soil thermal regime in a permafrost terrain has been developed and validated with soil temperature measurements at Barrow, Alaska. The model calculates daily soil temperatures as a function of depth and average moisture contents of the organic and mineral layers using a set of five climatic variables, i.e., air temperature, precipitation, cloudiness, wind speed, and relative humidity. The model is not only designed to study the impact of climate change on the soil temperature and moisture regime, but also to provide the input to a decomposition and net primary production model. In this context, it is well known that CO2 exchanges between the terrestrial biosphere and the atmosphere are driven by soil temperature through decomposition of soil organic matter and root respiration. However, in tundra ecosystems, net CO2 exchange is extremely sensitive to soil moisture content; therefore it is necessary to predict variations in soil moisture in order to assess the impact of climate change on carbon fluxes. To this end, the present model includes the representation of the soil moisture response to changes in climatic conditions. The results presented in the foregoing demonstrate that large errors in soil temperature and permafrost depth estimates arise from neglecting the dependence of the soil thermal regime on soil moisture contents. Permafrost terrain is an example of a situation where soil moisture and temperature are particularly interrelated: drainage conditions improve when the depth of the permafrost increases; a decrease in soil moisture content leads to a decrease in the latent heat required for the phase transition so that the heat penetrates faster and deeper, and the maximum depth of thaw increases; and as excepted, soil thermal coefficients increase with moisture.
What is the philosophy of modelling soil moisture movement?
NASA Astrophysics Data System (ADS)
Chen, J.; Wu, Y.
2009-12-01
In laboratory, the soil moisture movement in the different soil textures has been analysed. From field investigation, at a spot, the soil moisture movement in the root zone, vadose zone and shallow aquifer has been explored. In addition, on ground slopes, the interflow in the near surface soil layers has been studied. Along the regions near river reaches, the expansion and shrink of the saturated area due to rainfall occurrences have been observed. From those previous explorations regarding soil moisture movement, numerical models to represent this hydrologic process have been developed. However, generally, due to high heterogeneity and stratification of soil in a basin, modelling soil moisture movement is rather challenging. Normally, some empirical equations or artificial manipulation are employed to adjust the soil moisture movement in various numerical models. In this study, we inspect the soil moisture movement equations used in a watershed model, SWAT (Soil and Water Assessment Tool) (Neitsch et al., 2005), to examine the limitations of our knowledge in such a hydrologic process. Then, we adopt the features of a topographic-information based on a hydrologic model, TOPMODEL (Beven and Kirkby, 1979), to enhance the representation of soil moisture movement in SWAT. Basically, the results of the study reveal, to some extent, the philosophy of modelling soil moisture movement in numerical models, which will be presented in the conference. Beven, K.J. and Kirkby, M.J., 1979. A physically based variable contributing area model of basin hydrology. Hydrol. Science Bulletin, 24: 43-69. Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J.R. and King, K.W., 2005. Soil and Water Assessment Tool Theoretical Documentation, Grassland, soil and research service, Temple, TX.
NASA Astrophysics Data System (ADS)
Chitu, Zenaida; Bogaard, Thom; Adler, Mary-Jeanne; Steele-Dunne, Susan; Hrachowitz, Markus; Busuioc, Aristita; Sandric, Ionut; Istrate, Alexandru
2014-05-01
Like in many parts of the world, landslides represent in Romania recurrent phenomena that produce numerous damages to the infrastructure every few years. The high frequency of landslide events over the world has resulted to the development of many early warning systems that are based on the definition of rainfall thresholds triggering landslides. In Romania in particular, recent studies exploring the temporal occurrence of landslides have revealed that rainfall represents the most important triggering factor for landslides. The presence of low permeability soils and gentle slope degrees in the Ialomita Subcarpathians of Romania makes that cumulated precipitation over variable time interval and the hydraulic response of the soil plays a key role in landslides triggering. In order to identify the slope responses to rainfall events in this particular area we investigate the variability of soil moisture and its relationship to landslide events in three Subcarpathians catchments (Cricovul Dulce, Bizididel and Vulcana) by combining in situ measurements, satellite-based radiometry and hydrological modelling. For the current study, hourly soil moisture measurements from six soil moisture monitoring stations that are fitted with volumetric soil moisture sensors, temperature soil sensors and rain gauges sensors are used. Pedotransfer functions will be applied in order to infer hydraulic soil properties from soil texture sampled from 50 soil profiles. The information about spatial and temporal variability of soil moisture content will be completed with the Level 2 soil moisture products from the Soil Moisture and Ocean Salinity (SMOS) mission. A time series analysis of soil moisture is planned to be integrated to landslide and rainfall time series in order to determine a preliminary rainfall threshold triggering landslides in Ialomita Subcarpathians.
Hydrologic responses to restored wildfire regimes revealed by soil moisture-vegetation relationships
NASA Astrophysics Data System (ADS)
Boisramé, Gabrielle; Thompson, Sally; Stephens, Scott
2018-02-01
Many forested mountain watersheds worldwide evolved with frequent fire, which Twentieth Century fire suppression activities eliminated, resulting in unnaturally dense forests with high water demand. Restoration of pre-suppression forest composition and structure through a variety of management activities could improve forest resilience and water yields. This study explores the potential for "managed wildfire", whereby naturally ignited fires are allowed to burn, to alter the water balance. Interest in this type of managed wildfire is increasing, yet its long-term effects on water balance are uncertain. We use soil moisture as a spatially-distributed hydrologic indicator to assess the influence of vegetation, fire history and landscape position on water availability in the Illilouette Creek Basin in Yosemite National Park. Over 6000 manual surface soil moisture measurements were made over a period of three years, and supplemented with continuous soil moisture measurements over the top 1m of soil in three sites. Random forest and linear mixed effects models showed a dominant effect of vegetation type and history of vegetation change on measured soil moisture. Contemporary and historical vegetation maps were used to upscale the soil moisture observations to the basin and infer soil moisture under fire-suppressed conditions. Little change in basin-averaged soil moisture was inferred due to managed wildfire, but the results indicated that large localized increases in soil moisture had occurred, which could have important impacts on local ecology or downstream flows.
Quantifying the influence of deep soil moisture on ecosystem albedo: The role of vegetation
NASA Astrophysics Data System (ADS)
Sanchez-Mejia, Zulia Mayari; Papuga, Shirley Anne; Swetish, Jessica Blaine; van Leeuwen, Willem Jan Dirk; Szutu, Daphne; Hartfield, Kyle
2014-05-01
As changes in precipitation dynamics continue to alter the water availability in dryland ecosystems, understanding the feedbacks between the vegetation and the hydrologic cycle and their influence on the climate system is critically important. We designed a field campaign to examine the influence of two-layer soil moisture control on bare and canopy albedo dynamics in a semiarid shrubland ecosystem. We conducted this campaign during 2011 and 2012 within the tower footprint of the Santa Rita Creosote Ameriflux site. Albedo field measurements fell into one of four Cases within a two-layer soil moisture framework based on permutations of whether the shallow and deep soil layers were wet or dry. Using these Cases, we identified differences in how shallow and deep soil moisture influence canopy and bare albedo. Then, by varying the number of canopy and bare patches within a gridded framework, we explore the influence of vegetation and soil moisture on ecosystem albedo. Our results highlight the importance of deep soil moisture in land surface-atmosphere interactions through its influence on aboveground vegetation characteristics. For instance, we show how green-up of the vegetation is triggered by deep soil moisture, and link deep soil moisture to a decrease in canopy albedo. Understanding relationships between vegetation and deep soil moisture will provide important insights into feedbacks between the hydrologic cycle and the climate system.
NASA Astrophysics Data System (ADS)
Cui, Yaokui; Long, Di; Hong, Yang; Zeng, Chao; Zhou, Jie; Han, Zhongying; Liu, Ronghua; Wan, Wei
2016-12-01
Soil moisture is a key variable in the exchange of water and energy between the land surface and the atmosphere, especially over the Tibetan Plateau (TP) which is climatically and hydrologically sensitive as the Earth's 'third pole'. Large-scale spatially consistent and temporally continuous soil moisture datasets are of great importance to meteorological and hydrological applications, such as weather forecasting and drought monitoring. The Fengyun-3B Microwave Radiation Imager (FY-3B/MWRI) soil moisture product is a relatively new passive microwave product, with the satellite being launched on November 5, 2010. This study validates and reconstructs FY-3B/MWRI soil moisture across the TP. First, the validation is performed using in situ measurements within two in situ soil moisture measurement networks (1° × 1° and 0.25° × 0.25°), and also compared with the Essential Climate Variable (ECV) soil moisture product from multiple active and passive satellite soil moisture products using new merging procedures. Results show that the ascending FY-3B/MWRI product outperforms the descending product. The ascending FY-3B/MWRI product has almost the same correlation as the ECV product with the in situ measurements. The ascending FY-3B/MWRI product has better performance than the ECV product in the frozen season and under the lower NDVI condition. When the NDVI is higher in the unfrozen season, uncertainty in the ascending FY-3B/MWRI product increases with increasing NDVI, but it could still capture the variability in soil moisture. Second, the FY-3B/MWRI soil moisture product is subsequently reconstructed using the back-propagation neural network (BP-NN) based on reconstructed MODIS products, i.e., LST, NDVI, and albedo. The reconstruction method of generating the soil moisture product not only considers the relationship between the soil moisture and NDVI, LST, and albedo, but also the relationship between the soil moisture and four-dimensional variations using the longitude, latitude, DEM and day of year (DOY). Results show that the soil moisture could be well reconstructed with R2 higher than 0.56, RMSE less than 0.1 cm3 cm-3, and Bias less than 0.07 cm3 cm-3 for both frozen and unfrozen seasons, compared with the in situ measurements at the two networks. Third, the reconstruction method is applied to generate surface soil moisture over the TP. Both original and reconstructed FY-3B/MWRI soil moisture products could be valuable in studying meteorology, hydrology, and ecosystems over the TP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grossiord, Charlotte; Sevanto, Sanna Annika; Limousin, Jean -Marc
Tree transpiration depends on biotic and abiotic factors that might change in the future, including precipitation and soil moisture status. Although short-term sap flux responses to soil moisture and evaporative demand have been the subject of attention before, the relative sensitivity of sap flux to these two factors under long-term changes in soil moisture conditions has rarely been determined experimentally. We tested how long-term artificial change in soil moisture affects the sensitivity of tree-level sap flux to daily atmospheric vapor pressure deficit ( VPD) and soil moisture variations, and the generality of these effects across forest types and environments usingmore » four manipulative sites in mature forests. Exposure to relatively long-term (two to six years) soil moisture reduction decreases tree sap flux sensitivity to daily VPD and relative extractable water ( REW) variations, leading to lower sap flux even under high soil moisture and optimal VPD. Inversely, trees subjected to long-term irrigation showed a significant increase in their sensitivity to daily VPD and REW, but only at the most water-limited site. The ratio between the relative change in soil moisture manipulation and the relative change in sap flux sensitivity to VPD and REW variations was similar across sites suggesting common adjustment mechanisms to long-term soil moisture status across environments for evergreen tree species. Altogether, our results show that long-term changes in soil water availability, and subsequent adjustments to these novel conditions, could play a critical and increasingly important role in controlling forest water use in the future.« less
Grossiord, Charlotte; Sevanto, Sanna Annika; Limousin, Jean -Marc; ...
2017-12-14
Tree transpiration depends on biotic and abiotic factors that might change in the future, including precipitation and soil moisture status. Although short-term sap flux responses to soil moisture and evaporative demand have been the subject of attention before, the relative sensitivity of sap flux to these two factors under long-term changes in soil moisture conditions has rarely been determined experimentally. We tested how long-term artificial change in soil moisture affects the sensitivity of tree-level sap flux to daily atmospheric vapor pressure deficit ( VPD) and soil moisture variations, and the generality of these effects across forest types and environments usingmore » four manipulative sites in mature forests. Exposure to relatively long-term (two to six years) soil moisture reduction decreases tree sap flux sensitivity to daily VPD and relative extractable water ( REW) variations, leading to lower sap flux even under high soil moisture and optimal VPD. Inversely, trees subjected to long-term irrigation showed a significant increase in their sensitivity to daily VPD and REW, but only at the most water-limited site. The ratio between the relative change in soil moisture manipulation and the relative change in sap flux sensitivity to VPD and REW variations was similar across sites suggesting common adjustment mechanisms to long-term soil moisture status across environments for evergreen tree species. Altogether, our results show that long-term changes in soil water availability, and subsequent adjustments to these novel conditions, could play a critical and increasingly important role in controlling forest water use in the future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grossiord, Charlotte; Sevanto, Sanna; Limousin, Jean-Marc
Tree transpiration depends on biotic and abiotic factors that might change in the future, including precipitation and soil moisture status. Although short-term sap flux responses to soil moisture and evaporative demand have been the subject of attention before, the relative sensitivity of sap flux to these two factors under long-term changes in soil moisture conditions has rarely been determined experimentally. We tested how long-term artificial change in soil moisture affects the sensitivity of tree-level sap flux to daily atmospheric vapor pressure deficit (VPD) and soil moisture variations, and the generality of these effects across forest types and environments using fourmore » manipulative sites in mature forests. Exposure to relatively long-term (two to six years) soil moisture reduction decreases tree sap flux sensitivity to daily VPD and relative extractable water (REW) variations, leading to lower sap flux even under high soil moisture and optimal VPD. Inversely, trees subjected to long-term irrigation showed a significant increase in their sensitivity to daily VPD and REW, but only at the most water-limited site. The ratio between the relative change in soil moisture manipulation and the relative change in sap flux sensitivity to VPD and REW variations was similar across sites suggesting common adjustment mechanisms to long-term soil moisture status across environments for evergreen tree species. Overall, our results show that long-term changes in soil water availability, and subsequent adjustments to these novel conditions, could play a critical and increasingly important role in controlling forest water use in the future.« less
Analysis of ASAR Wide Swath Mode time series for the retrieval of soil moisture in mountainous areas
NASA Astrophysics Data System (ADS)
Greifeneder, Felix; Notarnicola, Claudia; Cuozzo, Giovanni; Spindler, Nadine; Bertoldi, Giacomo; Della Chiesa, Stefano; Niedrist, Georg; Stamenkovic, Jelena; Wagner, Wolgang
2014-05-01
Soil moisture is a key element in the global cycles of water, energy, and carbon. Knowledge on the spatial and temporal distribution of the soil moisture content (SMC) is therefore essential for a number of hydrological applications as well as earth sciences like meteorology or climatology (Heathman et al., 2003). In the last few years there has been an increasing interest towards the estimation of SMC at local scales using active microwave sensors (Barret et al., 2009). Compared to passive microwave sensors, SAR offers the potential to provide data at high spatial resolution (modern sensors can acquire images with up to approximately 1 m), which is particularly important in mountainous areas. So far, these areas have been considered only marginally in research and only pioneer studies can be found in the literature (Brocca et al., 2012; Bertoldi et al. 2013). In this work we analyzed the temporal and spatial dynamics of the surface SMC (0 - 5 cm depth) on the basis of ground data collected by fixed meteorological stations located in the emerging Long-Term Ecological Research (LTER) site Mazia Valley (Province of Bolzano, South Tyrol, Italy), SAR data from ENVISATs ASAR sensor, wide swath (WS) mode (acquired between 2005 and 2012), and SMC estimates from the hydrological model GEOtop (Endrizzi et al., 2013). The SMC retrieval process was based on the support vector regression (SVR) method introduced by Pasolli et al. (2011). The training of the algorithm was based on data acquired in 2010. Furthermore, the SAR backscatter and derived SMC have been compared with time-series derived from the distributed hydrological model GEOtop. The differences in terms of temporal and spatial dynamic have been analyzed. The main goal of this work is to evaluate the spatial and temporal patterns of SAR derived SMC at field scale and to correlate them with ground information. This is a preparatory study to establish a methodology for the retrieval of SMC with high spatial and temporal sampling and to improve retrieval accuracies by integrating temporal information from different sources of ancillary data and from SAR time-series. It was found that the dynamics of both, temporal and spatial SMC patterns obtained from various data sources (ASAR, GEOtop and meteorological stations), show a similar general temporal behaviour that indicates the robustness of the retrieval algorithm with ASAR WS. However, depending on land cover, soil type and local topographic conditions different spatial patters can be found between SMC estimations coming from ASAR and from the GEOtop model. Introducing information on the temporal behaviour of the SAR signal proves to be a promising method for increasing the confidence and accuracy in estimating SMC, complementing hydrological model predictions. Following steps were identified as critical for the retrieval process: the topographic correction and geocoding of SAR data and the calibration of the meteorological stations. Both factors can have significant influence on the quality of SMC estimation. The accuracy of meteorological input and soil parameterization were identified as the most crucial challenges for SMC derived from hydrological modeling. References Barrett, B. W., E. Dwyer, and P. Whelan. "Soil moisture retrieval from active spaceborne microwave observations: An evaluation of current techniques." Remote Sensing 1, no. 3 (2009): 210-242. Bertoldi, G., S. Della Chiesa, C. Notarnicola, L. Pasolli, G. Niedrist, and U. Tappeiner. "Estimation of soil moisture patterns in mountain grasslands by means of SAR RADARSAT 2 images and hydrological modeling." Journal of Hydrology (2014). under revision. Brocca, L., A. Tarpanelli, T. Moramarco, F. Melone, S. M. Ratto, M. Cauduro, S. Ferraris et al. "Soil Moisture Estimation in Alpine Catchments through Modeling and Satellite Observations." Vadose Zone Journal (2013). Endrizzi, S., S. Gruber, M. Dall'Amico, and R. Rigon. "GEOtop 2.0: simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects." Geoscientific Model Development Discussions 6, no. 4 (2013): 6279-6341. Heathman, G. C., P. J. Starks, L. R. Ahuja, and T. J. Jackson. "Assimilation of surface soil moisture to estimate profile soil water content." Journal of Hydrology 279, no. 1 (2003): 1-17. Pasolli, L., C. Notarnicola, L. Bruzzone, G. Bertoldi, S. Della Chiesa, V. Hell, G. Niedrist. "Estimation of Soil Moisture in an Alpine catchment with RADARSAT2 Images." Applied and Environmental Soil Science 2011 (2011)
NASA Astrophysics Data System (ADS)
Mamet, S. D.; Chun, K. P.; Metsaranta, J. M.; Barr, A. G.; Johnstone, J. F.
2015-08-01
Recent declines in productivity and tree survival have been widely observed in boreal forests. We used early warning signals (EWS) in tree ring data to anticipate premature mortality in jack pine (Pinus banksiana)—an extensive and dominant species occurring across the moisture-limited southern boreal forest in North America. We sampled tree rings from 113 living and 84 dead trees in three soil moisture regimes (subxeric, submesic, subhygric) in central Saskatchewan, Canada. We reconstructed annual increments of tree basal area to investigate (1) whether we could detect EWS related to mortality of individual trees, and (2) how water availability and tree growth history may explain the mortality warning signs. EWS were evident as punctuated changes in growth patterns prior to transition to an alternative state of reduced growth before dying. This transition was likely triggered by a combination of severe drought and insect outbreak. Higher moisture availability associated with a soil moisture gradient did not appear to reduce tree sensitivity to stress-induced mortality. Our results suggest tree rings offer considerable potential for detecting critical transitions in tree growth, which are linked to premature mortality.
A Citizen Science Soil Moisture Sensor to Support SMAP Calibration/Validation
NASA Astrophysics Data System (ADS)
Podest, E.; Das, N. N.
2016-12-01
The Soil Moisture Active Passive (SMAP) satellite mission was launched in Jan. 2015 and is currently acquiring global measurements of soil moisture in the top 5 cm of the soil every 3 days. SMAP has partnered with the GLOBE program to engage students from around the world to collect in situ soil moisture and help validate SMAP measurements. The current GLOBE SMAP soil moisture protocol consists in collecting a soil sample, weighing, drying and weighing it again in order to determine the amount of water in the soil. Preparation and soil sample collection can take up to 20 minutes and drying can take up to 3 days. We have hence developed a soil moisture measurement device based on Arduino-like microcontrollers along with off-the-shelf and homemade sensors that are accurate, robust, inexpensive and quick and easy to use so that they can be implemented by the GLOBE community and citizen scientists alike. This talk will discuss building, calibration and validation of the soil moisture measuring device and assessing the quality of the measurements collected. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
Practical Considerations of Moisture in Baled Biomass Feedstocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
William A. Smith; Ian J. Bonner; Kevin L. Kenney
2013-01-01
Agricultural residues make up a large portion of the immediately available biomass feedstock for renewable energy markets. Current collection and storage methods rely on existing feed and forage practices designed to preserve nutrients and properties of digestibility. Low-cost collection and storage practices that preserve carbohydrates across a range of inbound moisture contents are needed to assure the economic and technical success of the emerging biomass industry. This study examines the movement of moisture in storage and identifies patterns of migration resulting from several on-farm storage systems and their impacts on moisture measurement and dry matter recovery. Baled corn stover andmore » energy sorghum were stored outdoors in uncovered, tarp-covered, or wrapped stacks and sampled periodically to measure moisture and dry matter losses. Interpolation between discrete sampling locations in the stack improved bulk moisture content estimates and showed clear patterns of accumulation and re-deposition. Atmospheric exposure, orientation, and contact with barriers (i.e., soil, tarp, and wrap surfaces) were found to cause the greatest amount of moisture heterogeneity within stacks. Although the bulk moisture content of many stacks remained in the range suitable for aerobic stability, regions of high moisture were sufficient to support microbial activity, thus support dry matter loss. Stack configuration, orientation, and coverage methods are discussed relative to impact on moisture management and dry matter preservation. Additionally, sample collection and data analysis are discussed relative to assessment at the biorefinery as it pertains to stability in storage, queuing, and moisture carried into processing.« less
NASA Astrophysics Data System (ADS)
Pellizzaro, Grazia; Ventura, Andrea; Bortolu, Sara; Duce, Pierpaolo
2017-04-01
Mediterranean shrubs are an important component of Mediterranean vegetation communities. In this kind of vegetation, live fuel is a relevant component of the available fuel which catches fire and, consequently, its water content plays an important role in determining fire occurrence and spread. In live plant, water content patterns are related to both environmental conditions (e.g. meteorological variables, soil water availability) and ecophysiological characteristics of the plant species. According to projections on future climate, an increase in risk of summer droughts is likely to take place in Southern Europe. More prolonged drought seasons induced by climatic changes are likely to influence general flammability characteristics of fuel. In addition, variations in precipitation and mean temperature could directly affect fuel water status and length of critical periods of high ignition danger for Mediterranean ecosystems. The aims of this work were to analyse the influence of both weather seasonality and inter-annual weather variability on live fuel moisture content within and among some common Mediterranean species, and to investigate the effects of prolonged drought season on live moisture content dynamic. The study was carried out in North Sardinia (Italy). Measurements of LFMC seasonal pattern of two really common and flammable Mediterranean shrub species (Cistus monspeliensis and Rosmarinus officinalis) were performed periodically for 8 years. Meteorological variables were also recorded. Relationships between live fuel moisture content and environmental conditions (i.e. rainfall, air temperature and soil moisture) were investigated and effects of different lengths of drought season on LFMC pattern were analysed. Results showed that distribution and amount of rainfall affected seasonal variation of live fuel moisture content. In particular more prolonged drought seasons caused a longer period in which LFMC was below 95 -100% that is commonly considered as critical threshold for fire ignition and spread. This impact was particular evident at the begin of the autumn whereas a limited water availability in spring seemed to have less strongly influenced moisture content in the Mediterranean shrubs that we studied.
NASA Astrophysics Data System (ADS)
Ťupek, Boris; Launiainen, Samuli; Peltoniemi, Mikko; Heikkinen, Jukka; Lehtonen, Aleksi
2016-04-01
Litter decomposition rates of the most process based soil carbon models affected by environmental conditions are linked with soil heterotrophic CO2 emissions and serve for estimating soil carbon sequestration; thus due to the mass balance equation the variation in measured litter inputs and measured heterotrophic soil CO2 effluxes should indicate soil carbon stock changes, needed by soil carbon management for mitigation of anthropogenic CO2 emissions, if sensitivity functions of the applied model suit to the environmental conditions e.g. soil temperature and moisture. We evaluated the response forms of autotrophic and heterotrophic forest floor respiration to soil temperature and moisture in four boreal forest sites of the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) by a soil trenching experiment during year 2015 in southern Finland. As expected both autotrophic and heterotrophic forest floor respiration components were primarily controlled by soil temperature and exponential regression models generally explained more than 90% of the variance. Soil moisture regression models on average explained less than 10% of the variance and the response forms varied between Gaussian for the autotrophic forest floor respiration component and linear for the heterotrophic forest floor respiration component. Although the percentage of explained variance of soil heterotrophic respiration by the soil moisture was small, the observed reduction of CO2 emissions with higher moisture levels suggested that soil moisture response of soil carbon models not accounting for the reduction due to excessive moisture should be re-evaluated in order to estimate right levels of soil carbon stock changes. Our further study will include evaluation of process based soil carbon models by the annual heterotrophic respiration and soil carbon stocks.
The use of remotely sensed soil moisture data in large-scale models of the hydrological cycle
NASA Technical Reports Server (NTRS)
Salomonson, V. V.; Gurney, R. J.; Schmugge, T. J.
1985-01-01
Manabe (1982) has reviewed numerical simulations of the atmosphere which provided a framework within which an examination of the dynamics of the hydrological cycle could be conducted. It was found that the climate is sensitive to soil moisture variability in space and time. The challenge arises now to improve the observations of soil moisture so as to provide up-dated boundary condition inputs to large scale models including the hydrological cycle. Attention is given to details regarding the significance of understanding soil moisture variations, soil moisture estimation using remote sensing, and energy and moisture balance modeling.
Evaluation of HCMM data for assessing soil moisture and water table depth. [South Dakota
NASA Technical Reports Server (NTRS)
Moore, D. G.; Heilman, J. L.; Tunheim, J. A.; Westin, F. C.; Heilman, W. E.; Beutler, G. A.; Ness, S. D. (Principal Investigator)
1981-01-01
Soil moisture in the 0-cm to 4-cm layer could be estimated with 1-mm soil temperatures throughout the growing season of a rainfed barley crop in eastern South Dakota. Empirical equations were developed to reduce the effect of canopy cover when radiometrically estimating the soil temperature. Corrective equations were applied to an aircraft simulation of HCMM data for a diversity of crop types and land cover conditions to estimate the soil moisture. The average difference between observed and measured soil moisture was 1.6% of field capacity. Shallow alluvial aquifers were located with HCMM predawn data. After correcting the data for vegetation differences, equations were developed for predicting water table depths within the aquifer. A finite difference code simulating soil moisture and soil temperature shows that soils with different moisture profiles differed in soil temperatures in a well defined functional manner. A significant surface thermal anomaly was found to be associated with shallow water tables.
Assessing predictability of a hydrological stochastic-dynamical system
NASA Astrophysics Data System (ADS)
Gelfan, Alexander
2014-05-01
The water cycle includes the processes with different memory that creates potential for predictability of hydrological system based on separating its long and short memory components and conditioning long-term prediction on slower evolving components (similar to approaches in climate prediction). In the face of the Panta Rhei IAHS Decade questions, it is important to find a conceptual approach to classify hydrological system components with respect to their predictability, define predictable/unpredictable patterns, extend lead-time and improve reliability of hydrological predictions based on the predictable patterns. Representation of hydrological systems as the dynamical systems subjected to the effect of noise (stochastic-dynamical systems) provides possible tool for such conceptualization. A method has been proposed for assessing predictability of hydrological system caused by its sensitivity to both initial and boundary conditions. The predictability is defined through a procedure of convergence of pre-assigned probabilistic measure (e.g. variance) of the system state to stable value. The time interval of the convergence, that is the time interval during which the system losses memory about its initial state, defines limit of the system predictability. The proposed method was applied to assess predictability of soil moisture dynamics in the Nizhnedevitskaya experimental station (51.516N; 38.383E) located in the agricultural zone of the central European Russia. A stochastic-dynamical model combining a deterministic one-dimensional model of hydrothermal regime of soil with a stochastic model of meteorological inputs was developed. The deterministic model describes processes of coupled heat and moisture transfer through unfrozen/frozen soil and accounts for the influence of phase changes on water flow. The stochastic model produces time series of daily meteorological variables (precipitation, air temperature and humidity), whose statistical properties are similar to those of the corresponding series of the actual data measured at the station. Beginning from the initial conditions and being forced by Monte-Carlo generated synthetic meteorological series, the model simulated diverging trajectories of soil moisture characteristics (water content of soil column, moisture of different soil layers, etc.). Limit of predictability of the specific characteristic was determined through time of stabilization of variance of the characteristic between the trajectories, as they move away from the initial state. Numerical experiments were carried out with the stochastic-dynamical model to analyze sensitivity of the soil moisture predictability assessments to uncertainty in the initial conditions, to determine effects of the soil hydraulic properties and processes of soil freezing on the predictability. It was found, particularly, that soil water content predictability is sensitive to errors in the initial conditions and strongly depends on the hydraulic properties of soil under both unfrozen and frozen conditions. Even if the initial conditions are "well-established", the assessed predictability of water content of unfrozen soil does not exceed 30-40 days, while for frozen conditions it may be as long as 3-4 months. The latter creates opportunity for utilizing the autumn water content of soil as the predictor for spring snowmelt runoff in the region under consideration.
Effects of Climate and Social Change on Pasture Productivity and Area in the Alay Valley, Kyrgyzstan
NASA Astrophysics Data System (ADS)
Zhang, L.; Smithwick, E. A. H.
2017-12-01
The high elevation Alay Valley, located in the central Asian country of Kyrgyzstan, has experienced substantial socio-political and environmental changes in recent decades, resulting from the collapse of the Soviet Union and an increase in average annual temperature from 1.8 C to 2.7 C between 1990 and 2014. However, the consequences of these changes on pastureland productivity and area has not been previously assessed, despite the critical cultural and economic importance of pasturelands for sustaining livelihoods in this region. We assessed spatial and temporal patterns of soil moisture, pasture productivity and pasture area in the Alay Valley. Supervised classification was performed on Landsat imagery over the study region to distinguish pastures and agricultural land in order to relate changes in soil moisture to specific land classes. Root Zone Soil Moisture (RZSM) was estimated between May 2015 and June 2017 from Soil Moisture Active Passive L4 RZSM product. Average monthly NDVI for 2016 was calculated to obtain seasonal patterns in productivity of the pasturelands in the region. Results show that annual RZSM trends closely matched those of precipitation, as RZSM peaks during May (the wettest month) and decreases during the dry summer. The NDVI trend is also notable as it peaks very early in June before declining due to limited precipitation and grazing practices. There has been a sharp increase in pasturelands encompassing the bank of the Kyzyl Suu river from 1993 to 2016. Likely due to turmoil from collapse of the USSR, the area of pasturelands decreased slightly from 59.98 to 55.99 km^2 from 1993-1994, corresponding with a decline in livestock count and GDP per capita. The area of pasturelands has since recovered and is hovering around 104.47 - 107.95 km^2 between 2009-2016. Overall results highlight both sensitivity and resilience of high elevation pasture to coupled socio-environmental drivers.
SMOS/SMAP Synergy for SMAP Level 2 Soil Moisture Algorithm Evaluation
NASA Technical Reports Server (NTRS)
Bindlish, Rajat; Jackson, Thomas J.; Zhao, Tianjie; Cosh, Michael; Chan, Steven; O'Neill, Peggy; Njoku, Eni; Colliander, Andreas; Kerr, Yann
2011-01-01
Soil Moisture Active Passive (SMAP) satellite has been proposed to provide global measurements of soil moisture and land freeze/thaw state at 10 km and 3 km resolutions, respectively. SMAP would also provide a radiometer-only soil moisture product at 40-km spatial resolution. This product and the supporting brightness temperature observations are common to both SMAP and European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission. As a result, there are opportunities for synergies between the two missions. These include exploiting the data for calibration and validation and establishing longer term L-band brightness temperature and derived soil moisture products. In this investigation we will be using SMOS brightness temperature, ancillary data, and soil moisture products to develop and evaluate a candidate SMAP L2 passive soil moisture retrieval algorithm. This work will begin with evaluations based on the SMOS product grids and ancillary data sets and transition to those that will be used by SMAP. An important step in this analysis is reprocessing the multiple incidence angle observations provided by SMOS to a global brightness temperature product that simulates the constant 40 degree incidence angle observations that SMAP will provide. The reprocessed brightness temperature data provide a basis for evaluating different SMAP algorithm alternatives. Several algorithms are being considered for the SMAP radiometer-only soil moisture retrieval. In this first phase, we utilized only the Single Channel Algorithm (SCA), which is based on the radiative transfer equation and uses the channel that is most sensitive to soil moisture (H-pol). Brightness temperature is corrected sequentially for the effects of temperature, vegetation, roughness (dynamic ancillary data sets) and soil texture (static ancillary data set). European Centre for Medium-Range Weather Forecasts (ECMWF) estimates of soil temperature for the top layer (as provided as part of the SMOS ancillary data) were used to correct for surface temperature effects and to derive microwave emissivity. ECMWF data were also used for precipitation forecasts, presence of snow, and frozen ground. Vegetation options are described below. One year of soil moisture observations from a set of four watersheds in the U.S. were used to evaluate four different retrieval methodologies: (1) SMOS soil moisture estimates (version 400), (2) SeA soil moisture estimates using the SMOS/SMAP data with SMOS estimated vegetation optical depth, which is part of the SMOS level 2 product, (3) SeA soil moisture estimates using the SMOS/SMAP data and the MODIS-based vegetation climatology data, and (4) SeA soil moisture estimates using the SMOS/SMAP data and actual MODIS observations. The use of SMOS real-world global microwave observations and the analyses described here will help in the development and selection of different land surface parameters and ancillary observations needed for the SMAP soil moisture algorithms. These investigations will greatly improve the quality and reliability of this SMAP product at launch.
Design and Test of a Soil Profile Moisture Sensor Based on Sensitive Soil Layers
Liu, Cheng; Qian, Hongzhou; Cao, Weixing; Ni, Jun
2018-01-01
To meet the demand of intelligent irrigation for accurate moisture sensing in the soil vertical profile, a soil profile moisture sensor was designed based on the principle of high-frequency capacitance. The sensor consists of five groups of sensing probes, a data processor, and some accessory components. Low-resistivity copper rings were used as components of the sensing probes. Composable simulation of the sensor’s sensing probes was carried out using a high-frequency structure simulator. According to the effective radiation range of electric field intensity, width and spacing of copper ring were set to 30 mm and 40 mm, respectively. A parallel resonance circuit of voltage-controlled oscillator and high-frequency inductance-capacitance (LC) was designed for signal frequency division and conditioning. A data processor was used to process moisture-related frequency signals for soil profile moisture sensing. The sensor was able to detect real-time soil moisture at the depths of 20, 30, and 50 cm and conduct online inversion of moisture in the soil layer between 0–100 cm. According to the calibration results, the degree of fitting (R2) between the sensor’s measuring frequency and the volumetric moisture content of soil sample was 0.99 and the relative error of the sensor consistency test was 0–1.17%. Field tests in different loam soils showed that measured soil moisture from our sensor reproduced the observed soil moisture dynamic well, with an R2 of 0.96 and a root mean square error of 0.04. In a sensor accuracy test, the R2 between the measured value of the proposed sensor and that of the Diviner2000 portable soil moisture monitoring system was higher than 0.85, with a relative error smaller than 5%. The R2 between measured values and inversed soil moisture values for other soil layers were consistently higher than 0.8. According to calibration test and field test, this sensor, which features low cost, good operability, and high integration, is qualified for precise agricultural irrigation with stable performance and high accuracy. PMID:29883420
Disaggregation Of Passive Microwave Soil Moisture For Use In Watershed Hydrology Applications
NASA Astrophysics Data System (ADS)
Fang, Bin
In recent years the passive microwave remote sensing has been providing soil moisture products using instruments on board satellite/airborne platforms. Spatial resolution has been restricted by the diameter of antenna which is inversely proportional to resolution. As a result, typical products have a spatial resolution of tens of kilometers, which is not compatible for some hydrological research applications. For this reason, the dissertation explores three disaggregation algorithms that estimate L-band passive microwave soil moisture at the subpixel level by using high spatial resolution remote sensing products from other optical and radar instruments were proposed and implemented in this investigation. The first technique utilized a thermal inertia theory to establish a relationship between daily temperature change and average soil moisture modulated by the vegetation condition was developed by using NLDAS, AVHRR, SPOT and MODIS data were applied to disaggregate the 25 km AMSR-E soil moisture to 1 km in Oklahoma. The second algorithm was built on semi empirical physical models (NP89 and LP92) derived from numerical experiments between soil evaporation efficiency and soil moisture over the surface skin sensing depth (a few millimeters) by using simulated soil temperature derived from MODIS and NLDAS as well as AMSR-E soil moisture at 25 km to disaggregate the coarse resolution soil moisture to 1 km in Oklahoma. The third algorithm modeled the relationship between the change in co-polarized radar backscatter and the remotely sensed microwave change in soil moisture retrievals and assumed that change in soil moisture was a function of only the canopy opacity. The change detection algorithm was implemented using aircraft based the remote sensing data from PALS and UAVSAR that were collected in SMPAVEX12 in southern Manitoba, Canada. The PALS L-band h-polarization radiometer soil moisture retrievals were disaggregated by combining them with the PALS and UAVSAR L-band hh-polarization radar spatial resolutions of 1500 m and 5 m/800 m, respectively. All three algorithms were validated using ground measurements from network in situ stations or handheld hydra probes. The validation results demonstrate the practicability on coarse resolution passive microwave soil moisture products.