NASA Astrophysics Data System (ADS)
Singh, Gurjeet; Panda, Rabindra K.; Mohanty, Binayak P.; Jana, Raghavendra B.
2016-05-01
Strategic ground-based sampling of soil moisture across multiple scales is necessary to validate remotely sensed quantities such as NASA's Soil Moisture Active Passive (SMAP) product. In the present study, in-situ soil moisture data were collected at two nested scale extents (0.5 km and 3 km) to understand the trend of soil moisture variability across these scales. This ground-based soil moisture sampling was conducted in the 500 km2 Rana watershed situated in eastern India. The study area is characterized as sub-humid, sub-tropical climate with average annual rainfall of about 1456 mm. Three 3x3 km square grids were sampled intensively once a day at 49 locations each, at a spacing of 0.5 km. These intensive sampling locations were selected on the basis of different topography, soil properties and vegetation characteristics. In addition, measurements were also made at 9 locations around each intensive sampling grid at 3 km spacing to cover a 9x9 km square grid. Intensive fine scale soil moisture sampling as well as coarser scale samplings were made using both impedance probes and gravimetric analyses in the study watershed. The ground-based soil moisture samplings were conducted during the day, concurrent with the SMAP descending overpass. Analysis of soil moisture spatial variability in terms of areal mean soil moisture and the statistics of higher-order moments, i.e., the standard deviation, and the coefficient of variation are presented. Results showed that the standard deviation and coefficient of variation of measured soil moisture decreased with extent scale by increasing mean soil moisture.
NASA Technical Reports Server (NTRS)
Jones, E. B.
1975-01-01
The soil moisture ground-truth measurements and ground-cover descriptions taken at three soil moisture survey sites located near Lafayette, Indiana; St. Charles, Missouri; and Centralia, Missouri are given. The data were taken on November 10, 1975, in connection with airborne remote sensing missions being flown by the Environmental Research Institute of Michigan under the auspices of the National Aeronautics and Space Administration. Emphasis was placed on the soil moisture in bare fields. Soil moisture was sampled in the top 0 to 1 in. and 0 to 6 in. by means of a soil sampling push tube. These samples were then placed in plastic bags and awaited gravimetric analysis.
NASA Technical Reports Server (NTRS)
Arya, L. M.; Phinney, D. E. (Principal Investigator)
1980-01-01
Soil moisture data acquired to support the development of algorithms for estimating surface soil moisture from remotely sensed backscattering of microwaves from ground surfaces are presented. Aspects of field uniformity and variability of gravimetric soil moisture measurements are discussed. Moisture distribution patterns are illustrated by frequency distributions and contour plots. Standard deviations and coefficients of variation relative to degree of wetness and agronomic features of the fields are examined. Influence of sampling depth on observed moisture content an variability are indicated. For the various sets of measurements, soil moisture values that appear as outliers are flagged. The distribution and legal descriptions of the test fields are included along with examinations of soil types, agronomic features, and sampling plan. Bulk density data for experimental fields are appended, should analyses involving volumetric moisture content be of interest to the users of data in this report.
NASA Astrophysics Data System (ADS)
Liao, Kaihua; Zhou, Zhiwen; Lai, Xiaoming; Zhu, Qing; Feng, Huihui
2017-04-01
The identification of representative soil moisture sampling sites is important for the validation of remotely sensed mean soil moisture in a certain area and ground-based soil moisture measurements in catchment or hillslope hydrological studies. Numerous approaches have been developed to identify optimal sites for predicting mean soil moisture. Each method has certain advantages and disadvantages, but they have rarely been evaluated and compared. In our study, surface (0-20 cm) soil moisture data from January 2013 to March 2016 (a total of 43 sampling days) were collected at 77 sampling sites on a mixed land-use (tea and bamboo) hillslope in the hilly area of Taihu Lake Basin, China. A total of 10 methods (temporal stability (TS) analyses based on 2 indices, K-means clustering based on 6 kinds of inputs and 2 random sampling strategies) were evaluated for determining optimal sampling sites for mean soil moisture estimation. They were TS analyses based on the smallest index of temporal stability (ITS, a combination of the mean relative difference and standard deviation of relative difference (SDRD)) and based on the smallest SDRD, K-means clustering based on soil properties and terrain indices (EFs), repeated soil moisture measurements (Theta), EFs plus one-time soil moisture data (EFsTheta), and the principal components derived from EFs (EFs-PCA), Theta (Theta-PCA), and EFsTheta (EFsTheta-PCA), and global and stratified random sampling strategies. Results showed that the TS based on the smallest ITS was better (RMSE = 0.023 m3 m-3) than that based on the smallest SDRD (RMSE = 0.034 m3 m-3). The K-means clustering based on EFsTheta (-PCA) was better (RMSE <0.020 m3 m-3) than these based on EFs (-PCA) and Theta (-PCA). The sampling design stratified by the land use was more efficient than the global random method. Forty and 60 sampling sites are needed for stratified sampling and global sampling respectively to make their performances comparable to the best K-means method (EFsTheta-PCA). Overall, TS required only one site, but its accuracy was limited. The best K-means method required <8 sites and yielded high accuracy, but extra soil and terrain information is necessary when using this method. The stratified sampling strategy can only be used if no pre-knowledge about soil moisture variation is available. This information will help in selecting the optimal methods for estimation the area mean soil moisture.
Soil moisture by extraction and gas chromatography
NASA Technical Reports Server (NTRS)
Merek, E. L.; Carle, G. C.
1973-01-01
To determine moisture content of soils rapidly and conveniently extract moisture with methanol and determine water content of methanol extract by gas chromatography. Moisture content of sample is calculated from weight of water and methanol in aliquot and weight of methanol added to sample.
Spatial-temporal variability of soil moisture and its estimation across scales
NASA Astrophysics Data System (ADS)
Brocca, L.; Melone, F.; Moramarco, T.; Morbidelli, R.
2010-02-01
The soil moisture is a quantity of paramount importance in the study of hydrologic phenomena and soil-atmosphere interaction. Because of its high spatial and temporal variability, the soil moisture monitoring scheme was investigated here both for soil moisture retrieval by remote sensing and in view of the use of soil moisture data in rainfall-runoff modeling. To this end, by using a portable Time Domain Reflectometer, a sequence of 35 measurement days were carried out within a single year in seven fields located inside the Vallaccia catchment, central Italy, with area of 60 km2. Every sampling day, soil moisture measurements were collected at each field over a regular grid with an extension of 2000 m2. The optimization of the monitoring scheme, with the aim of an accurate mean soil moisture estimation at the field and catchment scale, was addressed by the statistical and the temporal stability. At the field scale, the number of required samples (NRS) to estimate the field-mean soil moisture within an accuracy of 2%, necessary for the validation of remotely sensed soil moisture, ranged between 4 and 15 for almost dry conditions (the worst case); at the catchment scale, this number increased to nearly 40 and it refers to almost wet conditions. On the other hand, to estimate the mean soil moisture temporal pattern, useful for rainfall-runoff modeling, the NRS was found to be lower. In fact, at the catchment scale only 10 measurements collected in the most "representative" field, previously determined through the temporal stability analysis, can reproduce the catchment-mean soil moisture with a determination coefficient, R2, higher than 0.96 and a root-mean-square error, RMSE, equal to 2.38%. For the "nonrepresentative" fields the accuracy in terms of RMSE decreased, but similar R2 coefficients were found. This insight can be exploited for the sampling in a generic field when it is sufficient to know an index of soil moisture temporal pattern to be incorporated in conceptual rainfall-runoff models. The obtained results can address the soil moisture monitoring network design from which a reliable soil moisture temporal pattern at the catchment scale can be derived.
An overview of the measurements of soil moisture and modeling of moisture flux in FIFE
NASA Technical Reports Server (NTRS)
Wang, J. R.
1992-01-01
Measurements of soil moisture and calculations of moisture transfer in the soil medium and at the air-soil interface were performed over a 15-km by 15-km test site during FIFE in 1987 and 1989. The measurements included intensive soil moisture sampling at the ground level and surveys at aircraft altitudes by several passive and active microwave sensors as well as a gamma radiation device.
NASA Astrophysics Data System (ADS)
Ran, Youhua; Li, Xin; Jin, Rui; Kang, Jian; Cosh, Michael H.
2017-01-01
Monitoring and estimating grid-mean soil moisture is very important for assessing many hydrological, biological, and biogeochemical processes and for validating remotely sensed surface soil moisture products. Temporal stability analysis (TSA) is a valuable tool for identifying a small number of representative sampling points to estimate the grid-mean soil moisture content. This analysis was evaluated and improved using high-quality surface soil moisture data that were acquired by a wireless sensor network in a high-intensity irrigated agricultural landscape in an arid region of northwestern China. The performance of the TSA was limited in areas where the representative error was dominated by random events, such as irrigation events. This shortcoming can be effectively mitigated by using a stratified TSA (STSA) method, proposed in this paper. In addition, the following methods were proposed for rapidly and efficiently identifying representative sampling points when using TSA. (1) Instantaneous measurements can be used to identify representative sampling points to some extent; however, the error resulting from this method is significant when validating remotely sensed soil moisture products. Thus, additional representative sampling points should be considered to reduce this error. (2) The calibration period can be determined from the time span of the full range of the grid-mean soil moisture content during the monitoring period. (3) The representative error is sensitive to the number of calibration sampling points, especially when only a few representative sampling points are used. Multiple sampling points are recommended to reduce data loss and improve the likelihood of representativeness at two scales.
A Citizen Science Soil Moisture Sensor to Support SMAP Calibration/Validation
NASA Astrophysics Data System (ADS)
Podest, E.; Das, N. N.
2016-12-01
The Soil Moisture Active Passive (SMAP) satellite mission was launched in Jan. 2015 and is currently acquiring global measurements of soil moisture in the top 5 cm of the soil every 3 days. SMAP has partnered with the GLOBE program to engage students from around the world to collect in situ soil moisture and help validate SMAP measurements. The current GLOBE SMAP soil moisture protocol consists in collecting a soil sample, weighing, drying and weighing it again in order to determine the amount of water in the soil. Preparation and soil sample collection can take up to 20 minutes and drying can take up to 3 days. We have hence developed a soil moisture measurement device based on Arduino-like microcontrollers along with off-the-shelf and homemade sensors that are accurate, robust, inexpensive and quick and easy to use so that they can be implemented by the GLOBE community and citizen scientists alike. This talk will discuss building, calibration and validation of the soil moisture measuring device and assessing the quality of the measurements collected. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
Method for evaluating moisture tensions of soils using spectral data
NASA Technical Reports Server (NTRS)
Peterson, John B. (Inventor)
1982-01-01
A method is disclosed which permits evaluation of soil moisture utilizing remote sensing. Spectral measurements at a plurality of different wavelengths are taken with respect to sample soils and the bidirectional reflectance factor (BRF) measurements produced are submitted to regression analysis for development therefrom of predictable equations calculated for orderly relationships. Soil of unknown reflective and unknown soil moisture tension is thereafter analyzed for bidirectional reflectance and the resulting data utilized to determine the soil moisture tension of the soil as well as providing a prediction as to the bidirectional reflectance of the soil at other moisture tensions.
Smith, J.A.; Chiou, C.T.; Kammer, J.A.; Kile, D.E.
1990-01-01
This report presents data on the sorption of trichloroethene (TCE) vapor to vadose-zone soil above a contaminated water-table aquifer at Picatinny Arsenal in Morris County, NJ. To assess the impact of moisture on TCE sorption, batch experiments on the sorption of TCE vapor by the field soil were carried out as a function of relative humidity. The TCE sorption decreases as soil moisture content increases from zero to saturation soil moisture content (the soil moisture content in equilibrium with 100% relative humidity). The moisture content of soil samples collected from the vadose zone was found to be greater than the saturation soil-moisture content, suggesting that adsorption of TCE by the mineral fraction of the vadose-zone soil should be minimal relative to the partition uptake by soil organic matter. Analyses of soil and soil-gas samples collected from the field indicate that the ratio of the concentration of TCE on the vadose-zone soil to its concentration in the soil gas is 1-3 orders of magnitude greater than the ratio predicted by using an assumption of equilibrium conditions. This apparent disequilibrium presumably results from the slow desorption of TCE from the organic matter of the vadose-zone soil relative to the dissipation of TCE vapor from the soil gas.
[Bare Soil Moisture Inversion Model Based on Visible-Shortwave Infrared Reflectance].
Zheng, Xiao-po; Sun, Yue-jun; Qin, Qi-ming; Ren, Hua-zhong; Gao, Zhong-ling; Wu, Ling; Meng, Qing-ye; Wang, Jin-liang; Wang, Jian-hua
2015-08-01
Soil is the loose solum of land surface that can support plants. It consists of minerals, organics, atmosphere, moisture, microbes, et al. Among its complex compositions, soil moisture varies greatly. Therefore, the fast and accurate inversion of soil moisture by using remote sensing is very crucial. In order to reduce the influence of soil type on the retrieval of soil moisture, this paper proposed a normalized spectral slope and absorption index named NSSAI to estimate soil moisture. The modeling of the new index contains several key steps: Firstly, soil samples with different moisture level were artificially prepared, and soil reflectance spectra was consequently measured using spectroradiometer produced by ASD Company. Secondly, the moisture absorption spectral feature located at shortwave wavelengths and the spectral slope of visible wavelengths were calculated after analyzing the regular spectral feature change patterns of different soil at different moisture conditions. Then advantages of the two features at reducing soil types' effects was synthesized to build the NSSAI. Thirdly, a linear relationship between NSSAI and soil moisture was established. The result showed that NSSAI worked better (correlation coefficient is 0.93) than most of other traditional methods in soil moisture extraction. It can weaken the influences caused by soil types at different moisture levels and improve the bare soil moisture inversion accuracy.
A method for soil moisture probes calibration and validation of satellite estimates.
Holzman, Mauro; Rivas, Raúl; Carmona, Facundo; Niclòs, Raquel
2017-01-01
Optimization of field techniques is crucial to ensure high quality soil moisture data. The aim of the work is to present a sampling method for undisturbed soil and soil water content to calibrated soil moisture probes, in a context of the SMOS (Soil Moisture and Ocean Salinity) mission MIRAS Level 2 soil moisture product validation in Pampean Region of Argentina. The method avoids soil alteration and is recommended to calibrated probes based on soil type under a freely drying process at ambient temperature. A detailed explanation of field and laboratory procedures to obtain reference soil moisture is shown. The calibration results reflected accurate operation for the Delta-T thetaProbe ML2x probes in most of analyzed cases (RMSE and bias ≤ 0.05 m 3 /m 3 ). Post-calibration results indicated that the accuracy improves significantly applying the adjustments of the calibration based on soil types (RMSE ≤ 0.022 m 3 /m 3 , bias ≤ -0.010 m 3 /m 3 ). •A sampling method that provides high quality data of soil water content for calibration of probes is described.•Importance of calibration based on soil types.•A calibration process for similar soil types could be suitable in practical terms, depending on the required accuracy level.
Soil moisture estimation using reflected solar and emitted thermal infrared radiation
NASA Technical Reports Server (NTRS)
Jackson, R. D.; Cihlar, J.; Estes, J. E.; Heilman, J. L.; Kahle, A.; Kanemasu, E. T.; Millard, J.; Price, J. C.; Wiegand, C. L.
1978-01-01
Classical methods of measuring soil moisture such as gravimetric sampling and the use of neutron moisture probes are useful for cases where a point measurement is sufficient to approximate the water content of a small surrounding area. However, there is an increasing need for rapid and repetitive estimations of soil moisture over large areas. Remote sensing techniques potentially have the capability of meeting this need. The use of reflected-solar and emitted thermal-infrared radiation, measured remotely, to estimate soil moisture is examined.
NASA Technical Reports Server (NTRS)
Colliander, Andreas; Cosh, Michael H.; Misra, Sidharth; Jackson, Thomas J.; Crow, Wade T.; Chan, Steven; Bindlish, Rajat; Chae, Chun; Holifield Collins, Chandra; Yueh, Simon H.
2017-01-01
The NASA SMAP (Soil Moisture Active Passive) mission conducted the SMAP Validation Experiment 2015 (SMAPVEX15) in order to support the calibration and validation activities of SMAP soil moisture data products. The main goals of the experiment were to address issues regarding the spatial disaggregation methodologies for improvement of soil moisture products and validation of the in situ measurement upscaling techniques. To support these objectives high-resolution soil moisture maps were acquired with the airborne PALS (Passive Active L-band Sensor) instrument over an area in southeast Arizona that includes the Walnut Gulch Experimental Watershed (WGEW), and intensive ground sampling was carried out to augment the permanent in situ instrumentation. The objective of the paper was to establish the correspondence and relationship between the highly heterogeneous spatial distribution of soil moisture on the ground and the coarse resolution radiometer-based soil moisture retrievals of SMAP. The high-resolution mapping conducted with PALS provided the required connection between the in situ measurements and SMAP retrievals. The in situ measurements were used to validate the PALS soil moisture acquired at 1-km resolution. Based on the information from a dense network of rain gauges in the study area, the in situ soil moisture measurements did not capture all the precipitation events accurately. That is, the PALS and SMAP soil moisture estimates responded to precipitation events detected by rain gauges, which were in some cases not detected by the in situ soil moisture sensors. It was also concluded that the spatial distribution of the soil moisture resulted from the relatively small spatial extents of the typical convective storms in this region was not completely captured with the in situ stations. After removing those cases (approximately10 of the observations) the following metrics were obtained: RMSD (root mean square difference) of0.016m3m3 and correlation of 0.83. The PALS soil moisture was also compared to SMAP and in situ soil moisture at the 36-km scale, which is the SMAP grid size for the standard product. PALS and SMAP soil moistures were found to be very similar owing to the close match of the brightness temperature measurements and the use of a common soil moisture retrieval algorithm. Spatial heterogeneity, which was identified using the high-resolution PALS soil moisture and the intensive ground sampling, also contributed to differences between the soil moisture estimates. In general, discrepancies found between the L-band soil moisture estimates and the 5-cm depth in situ measurements require methodologies to mitigate the impact on their interpretations in soil moisture validation and algorithm development. Specifically, the metrics computed for the SMAP radiometer-based soil moisture product over WGEW will include errors resulting from rainfall, particularly during the monsoon season when the spatial distribution of soil moisture is especially heterogeneous.
Remote Sensing Soil Moisture Analysis by Unmanned Aerial Vehicles Digital Imaging
NASA Astrophysics Data System (ADS)
Yeh, C. Y.; Lin, H. R.; Chen, Y. L.; Huang, S. Y.; Wen, J. C.
2017-12-01
In recent years, remote sensing analysis has been able to apply to the research of climate change, environment monitoring, geology, hydro-meteorological, and so on. However, the traditional methods for analyzing wide ranges of surface soil moisture of spatial distribution surveys may require plenty resources besides the high cost. In the past, remote sensing analysis performed soil moisture estimates through shortwave, thermal infrared ray, or infrared satellite, which requires lots of resources, labor, and money. Therefore, the digital image color was used to establish the multiple linear regression model. Finally, we can find out the relationship between surface soil color and soil moisture. In this study, we use the Unmanned Aerial Vehicle (UAV) to take an aerial photo of the fallow farmland. Simultaneously, we take the surface soil sample from 0-5 cm of the surface. The soil will be baking by 110° C and 24 hr. And the software ImageJ 1.48 is applied for the analysis of the digital images and the hue analysis into Red, Green, and Blue (R, G, B) hue values. The correlation analysis is the result from the data obtained from the image hue and the surface soil moisture at each sampling point. After image and soil moisture analysis, we use the R, G, B and soil moisture to establish the multiple regression to estimate the spatial distributions of surface soil moisture. In the result, we compare the real soil moisture and the estimated soil moisture. The coefficient of determination (R2) can achieve 0.5-0.7. The uncertainties in the field test, such as the sun illumination, the sun exposure angle, even the shadow, will affect the result; therefore, R2 can achieve 0.5-0.7 reflects good effect for the in-suit test by using the digital image to estimate the soil moisture. Based on the outcomes of the research, using digital images from UAV to estimate the surface soil moisture is acceptable. However, further investigations need to be collected more than ten days (four times a day) data to verify the relation between the image hue and the soil moisture for reliable moisture estimated model. And it is better to use the digital single lens reflex camera to prevent the deformation of the image and to have a better auto exposure. Keywords: soil, moisture, remote sensing
NASA Astrophysics Data System (ADS)
Moghaddam, M.; Silva, A. R. D.; Akbar, R.; Clewley, D.
2015-12-01
The Soil moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) wireless sensor network has been developed to support Calibration and Validation activities (Cal/Val) for large scale soil moisture remote sensing missions (SMAP and AirMOSS). The technology developed here also readily supports small scale hydrological studies by providing sub-kilometer widespread soil moisture observations. An extensive collection of semi-sparse sensor clusters deployed throughout north-central California and southern Arizona provide near real time soil moisture measurements. Such a wireless network architecture, compared to conventional single points measurement profiles, allows for significant and expanded soil moisture sampling. The work presented here aims at discussing and highlighting novel and new technology developments which increase in situ soil moisture measurements' accuracy, reliability, and robustness with reduced data delivery latency. High efficiency and low maintenance custom hardware have been developed and in-field performance has been demonstrated for a period of three years. The SoilSCAPE technology incorporates (a) intelligent sensing to prevent erroneous measurement reporting, (b) on-board short term memory for data redundancy, (c) adaptive scheduling and sampling capabilities to enhance energy efficiency. A rapid streamlined data delivery architecture openly provides distribution of in situ measurements to SMAP and AirMOSS cal/val activities and other interested parties.
Core vs. Bulk Samples in Soil-Moisture Tension Analyses
Walter M. Broadfoot
1954-01-01
The usual laboratory procedure in determining soil-moisture tension values is to use "undisturbed" soil cores for tensions up to 60 cm. of water and bulk soil samples for higher tensions. Low tensions are usually obtained with a tension table and the higher tensions by use of pressure plate apparatus. In tension analysis at the Vicksburg Infiltration Project...
A multiyear study of soil moisture patterns across agricultural and forested landscapes
NASA Astrophysics Data System (ADS)
Georgakakos, C. B.; Hofmeister, K.; O'Connor, C.; Buchanan, B.; Walter, T.
2017-12-01
This work compares varying spatial and temporal soil moisture patterns in wet and dry years between forested and agricultural landscapes. This data set spans 6 years (2012-2017) of snow-free soil moisture measurements across multiple watersheds and land covers in New York State's Finger Lakes region. Due to the relatively long sampling period, we have captured fluctuations in soil moisture dynamics across wetter, dryer, and average precipitation years. We can therefore analyze response of land cover types to precipitation under varying climatic and hydrologic conditions. Across the study period, mean soil moisture in forest soils was significantly drier than in agricultural soils, and exhibited a smaller range of moisture conditions. In the drought year of 2016, soil moisture at all sites was significantly drier compared to the other years. When comparing the effects of land cover and year on soil moisture, we found that land cover had a more significant influence. Understanding the difference in landscape soil moisture dynamics between forested and agricultural land will help predict watershed responses to changing precipitation patterns in the future.
Wang, Shuai; Fu, Bojie; Gao, Guangyao; Zhou, Ji; Jiao, Lei; Liu, Jianbo
2015-12-01
Soil moisture pulses are a prerequisite for other land surface pulses at various spatiotemporal scales in arid and semi-arid areas. The temporal dynamics and profile variability of soil moisture in relation to land cover combinations were studied along five slopes transect on the Loess Plateau during the rainy season of 2011. Within the 3 months of the growing season coupled with the rainy season, all of the soil moisture was replenished in the area, proving that a type stability exists between different land cover soil moisture levels. Land cover combinations disturbed the trend determined by topography and increased soil moisture variability in space and time. The stability of soil moisture resulting from the dynamic processes could produce stable patterns on the slopes. The relationships between the mean soil moisture and vertical standard deviation (SD) and coefficient of variation (CV) were more complex, largely due to the fact that different land cover types had distinctive vertical patterns of soil moisture. The spatial SD of each layer had a positive correlation and the spatial CV exhibited a negative correlation with the increase in mean soil moisture. The soil moisture stability implies that sampling comparisons in this area can be conducted at different times to accurately compare different land use types.
Use of Ultrasonic Technology for Soil Moisture Measurement
NASA Technical Reports Server (NTRS)
Choi, J.; Metzl, R.; Aggarwal, M. D.; Belisle, W.; Coleman, T.
1997-01-01
In an effort to improve existing soil moisture measurement techniques or find new techniques using physics principles, a new technique is presented in this paper using ultrasonic techniques. It has been found that ultrasonic velocity changes as the moisture content changes. Preliminary values of velocities are 676.1 m/s in dry soil and 356.8 m/s in 100% moist soils. Intermediate values can be calibrated to give exact values for the moisture content in an unknown sample.
G. Geoff Wang; Shongming Huang; Robert A. Monserud; Ryan J. Klos
2004-01-01
Lodgepole pine site index was examined in relation to synoptic measures of topography, soil moisture, and soil nutrients in Alberta. Data came from 214 lodgepole pine-dominated stands sampled as a part of the provincial permanent sample plot program. Spatial location (elevation, latitude, and longitude) and natural subregions (NSRs) were topographic variables that...
Lavado Contador, J F; Maneta, M; Schnabel, S
2006-10-01
The capability of Artificial Neural Network models to forecast near-surface soil moisture at fine spatial scale resolution has been tested for a 99.5 ha watershed located in SW Spain using several easy to achieve digital models of topographic and land cover variables as inputs and a series of soil moisture measurements as training data set. The study methods were designed in order to determining the potentials of the neural network model as a tool to gain insight into soil moisture distribution factors and also in order to optimize the data sampling scheme finding the optimum size of the training data set. Results suggest the efficiency of the methods in forecasting soil moisture, as a tool to assess the optimum number of field samples, and the importance of the variables selected in explaining the final map obtained.
Static sampling of dynamic processes - a paradox?
NASA Astrophysics Data System (ADS)
Mälicke, Mirko; Neuper, Malte; Jackisch, Conrad; Hassler, Sibylle; Zehe, Erwin
2017-04-01
Environmental systems monitoring aims at its core at the detection of spatio-temporal patterns of processes and system states, which is a pre-requisite for understanding and explaining their baffling heterogeneity. Most observation networks rely on distributed point sampling of states and fluxes of interest, which is combined with proxy-variables from either remote sensing or near surface geophysics. The cardinal question on the appropriate experimental design of such a monitoring network has up to now been answered in many different ways. Suggested approaches range from sampling in a dense regular grid using for the so-called green machine, transects along typical catenas, clustering of several observations sensors in presumed functional units or HRUs, arrangements of those cluster along presumed lateral flow paths to last not least a nested, randomized stratified arrangement of sensors or samples. Common to all these approaches is that they provide a rather static spatial sampling, while state variables and their spatial covariance structure dynamically change in time. It is hence of key interest how much of our still incomplete understanding stems from inappropriate sampling and how much needs to be attributed to an inappropriate analysis of spatial data sets. We suggest that it is much more promising to analyze the spatial variability of processes, for instance changes in soil moisture values, than to investigate the spatial variability of soil moisture states themselves. This is because wetting of the soil, reflected in a soil moisture increase, is causes by a totally different meteorological driver - rainfall - than drying of the soil. We hence propose that the rising and the falling limbs of soil moisture time series belong essentially to different ensembles, as they are influenced by different drivers. Positive and negative temporal changes in soil moisture need, hence, to be analyzed separately. We test this idea using the CAOS data set as a benchmark. Specifically, we expect the covariance structure of the positive temporal changes of soil moisture to be dominated by the spatial structure of rain- and through-fall and saturated hydraulic conductivity. The covariance in temporarily decreasing soil moisture during radiation driven conditions is expect to be dominated by the spatial structure of retention properties and plant transpiration. An analysis of soil moisture changes has furthermore the advantage that those are free from systematic measurement errors.
Hector Ramirez; Alexander Fernald; Andres Cibils; Michelle Morris; Shad Cox; Michael Rubio
2008-01-01
Clearing oneseed juniper (Juniperus monosperma) may make more water available for aquifer recharge or herbaceous vegetation growth, but the effects of tree treatment on soil moisture dynamics are not fully understood. This study investigated juniper treatment effects on understory herbaceous vegetation concurrently with soil moisture dynamics using vegetation sampling...
Using SMAP to identify structural errors in hydrologic models
NASA Astrophysics Data System (ADS)
Crow, W. T.; Reichle, R. H.; Chen, F.; Xia, Y.; Liu, Q.
2017-12-01
Despite decades of effort, and the development of progressively more complex models, there continues to be underlying uncertainty regarding the representation of basic water and energy balance processes in land surface models. Soil moisture occupies a central conceptual position between atmosphere forcing of the land surface and resulting surface water fluxes. As such, direct observations of soil moisture are potentially of great value for identifying and correcting fundamental structural problems affecting these models. However, to date, this potential has not yet been realized using satellite-based retrieval products. Using soil moisture data sets produced by the NASA Soil Moisture Active/Passive mission, this presentation will explore the use of the remotely-sensed soil moisture data products as a constraint to reject certain types of surface runoff parameterizations within a land surface model. Results will demonstrate that the precision of the SMAP Level 4 Surface and Root-Zone soil moisture product allows for the robust sampling of correlation statistics describing the true strength of the relationship between pre-storm soil moisture and subsequent storm-scale runoff efficiency (i.e., total storm flow divided by total rainfall both in units of depth). For a set of 16 basins located in the South-Central United States, we will use these sampled correlations to demonstrate that so-called "infiltration-excess" runoff parameterizations under predict the importance of pre-storm soil moisture for determining storm-scale runoff efficiency. To conclude, we will discuss prospects for leveraging this insight to improve short-term hydrologic forecasting and additional avenues for SMAP soil moisture products to provide process-level insight for hydrologic modelers.
NASA Technical Reports Server (NTRS)
Tsegaye, T.; Coleman, T.; Senwo, Z.; Shaffer, D.; Zou, X.
1998-01-01
Little is known about the landuse management effect on soil moisture and soil pH distribution on a landscape covered with dense tropical forest vegetation. This study was conducted at three locations where the history of the landuse management is different. Soil moisture was measured using a 6-cm three-rod Time Domain Reflectometery (TDR) probe. Disturbed soil samples were taken from the top 5-cm at the up, mid, and foothill landscape position from the same spots where soil moisture was measured. The results showed that soil moisture varies with landscape position and depth at all three locations. Soil pH and moisture variability were found to be affected by the change in landuse management and landscape position. Soil moisture distribution usually expected to be relatively higher in the foothill (P3) area of these forests than the uphill (P1) position. However, our results indicated that in the Luquillo and Guanica site the surface soil moisture was significantly higher for P1 than P3 position. These suggest that the surface and subsurface drainage in these two sites may have been poor due to the nature of soil formation and type.
Soil Moisture Retrieval with Airborne PALS Instrument over Agricultural Areas in SMAPVEX16
NASA Technical Reports Server (NTRS)
Colliander, Andreas; Jackson, Thomas J.; Cosh, Mike; Misra, Sidharth; Bindlish, Rajat; Powers, Jarrett; McNairn, Heather; Bullock, P.; Berg, A.; Magagi, A.;
2017-01-01
NASA's SMAP (Soil Moisture Active Passive) calibration and validation program revealed that the soil moisture products are experiencing difficulties in meeting the mission requirements in certain agricultural areas. Therefore, the mission organized airborne field experiments at two core validation sites to investigate these anomalies. The SMAP Validation Experiment 2016 included airborne observations with the PALS (Passive Active L-band Sensor) instrument and intensive ground sampling. The goal of the PALS measurements are to investigate the soil moisture retrieval algorithm formulation and parameterization under the varying (spatially and temporally) conditions of the agricultural domains and to obtain high resolution soil moisture maps within the SMAP pixels. In this paper the soil moisture retrieval using the PALS brightness temperature observations in SMAPVEX16 is presented.
Scaling an in situ network for high resolution modeling during SMAPVEX15
NASA Astrophysics Data System (ADS)
Coopersmith, E. J.; Cosh, M. H.; Jacobs, J. M.; Jackson, T. J.; Crow, W. T.; Holifield Collins, C.; Goodrich, D. C.; Colliander, A.
2015-12-01
Among the greatest challenges within the field of soil moisture estimation is that of scaling sparse point measurements within a network to produce higher resolution map products. Large-scale field experiments present an ideal opportunity to develop methodologies for this scaling, by coupling in situ networks, temporary networks, and aerial mapping of soil moisture. During the Soil Moisture Active Passive Validation Experiments in 2015 (SMAPVEX15) in and around the USDA-ARS Walnut Gulch Experimental Watershed and LTAR site in southeastern Arizona, USA, a high density network of soil moisture stations was deployed across a sparse, permanent in situ network in coordination with intensive soil moisture sampling and an aircraft campaign. This watershed is also densely instrumented with precipitation gages (one gauge/0.57 km2) to monitor the North American Monsoon System, which dominates the hydrologic cycle during the summer months in this region. Using the precipitation and soil moisture time series values provided, a physically-based model is calibrated that will provide estimates at the 3km, 9km, and 36km scales. The results from this model will be compared with the point-scale gravimetric samples, aircraft-based sensor, and the satellite-based products retrieved from NASA's Soil Moisture Active Passive mission.
An Arduino Based Citizen Science Soil Moisture Sensor in Support of SMAP and GLOBE
NASA Astrophysics Data System (ADS)
Podest, E.; Das, N. N.; Rajasekaran, E.; Jeyaram, R.; Lohrli, C.; Hovhannesian, H.; Fairbanks, G.
2017-12-01
Citizen science allows individuals anywhere in the world to engage in science by collecting environmental variables. One of the longest running platforms for the collection of in situ variables is the GLOBE program, which is international in scope and encourages students and citizen scientists alike to collect in situ measurements. NASA's Soil Moisture Active Passive (SMAP) satellite mission, which has been acquiring global soil moisture measurements every 3 days of the top 5 cm of the soil since 2015, has partnered with the GLOBE program to engage students from around the world to collect in situ soil moisture and help validate SMAP measurements. The current GLOBE SMAP soil moisture protocol consists in collecting a soil sample, weighing, drying and weighing it again in order to determine the amount of water in the soil. Preparation and soil sample collection can take up to 20 minutes and drying can take up to 3 days. We have hence developed a soil moisture measurement device based on Arduino- microcontrollers along with off-the-shelf and homemade sensors that are accurate, robust, inexpensive and quick and easy to use so that they can be implemented by the GLOBE community and citizen scientists alike. In addition, we have developed a phone app, which interfaces with the Arduino, displays the soil moisture value and send the measurement to the GLOBE database. This talk will discuss building, calibration and validation of the soil moisture measuring device and assessing the quality of the measurements collected. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
Soil moisture variation patterns observed in Hand County, South Dakota
NASA Technical Reports Server (NTRS)
Jones, E. B.; Owe, M.; Schmugge, T. J. (Principal Investigator)
1981-01-01
Soil moisture data were taken during 1976 (April, June, October), 1977 (April, May, June), and 1978 (May, June, July) Hand County, South Dakota as part of the ground truth used in NASA's aircraft experiments to study the use of microwave radiometers for the remote sensing of soil moisture. The spatial variability observed on the ground during each of the sampling events was studied. The data reported are the mean gravimetric soil moisture contained in three surface horizon depths: 0 to 2.5, 0 to 5 and 0 to 10 cm. The overall moisture levels ranged from extremely dry conditions in June 1976 to very wet in May 1978, with a relatively even distribution of values within that range. It is indicated that well drained sites have to be partitioned from imperfectly drained areas when attempting to characterize the general moisture profile throughout an area of varying soil and cover type conditions. It is also found that the variability in moisture content is greatest in the 0 to 2.5 cm measurements and decreases as the measurements are integrated over a greater depth. It is also determined that the sampling intensity of 10 measurements per km is adequate to estimate the mean moisture with an uncertainty of + or - 3 percent under average moisture conditions in areas of moderate to good drainage.
NASA Astrophysics Data System (ADS)
Singh, G.; Panda, R. K.; Mohanty, B.
2015-12-01
Prediction of root zone soil moisture status at field level is vital for developing efficient agricultural water management schemes. In this study, root zone soil moisture was estimated across the Rana watershed in Eastern India, by assimilation of near-surface soil moisture estimate from SMOS satellite into a physically-based Soil-Water-Atmosphere-Plant (SWAP) model. An ensemble Kalman filter (EnKF) technique coupled with SWAP model was used for assimilating the satellite soil moisture observation at different spatial scales. The universal triangle concept and artificial intelligence techniques were applied to disaggregate the SMOS satellite monitored near-surface soil moisture at a 40 km resolution to finer scale (1 km resolution), using higher spatial resolution of MODIS derived vegetation indices (NDVI) and land surface temperature (Ts). The disaggregated surface soil moisture were compared to ground-based measurements in diverse landscape using portable impedance probe and gravimetric samples. Simulated root zone soil moisture were compared with continuous soil moisture profile measurements at three monitoring stations. In addition, the impact of projected climate change on root zone soil moisture were also evaluated. The climate change projections of rainfall were analyzed for the Rana watershed from statistically downscaled Global Circulation Models (GCMs). The long-term root zone soil moisture dynamics were estimated by including a rainfall generator of likely scenarios. The predicted long term root zone soil moisture status at finer scale can help in developing efficient agricultural water management schemes to increase crop production, which lead to enhance the water use efficiency.
Spatial Dependence of Physical Attributes and Mechanical Properties of Ultisol in a Sugarcane Field.
Tavares, Uilka Elisa; Rolim, Mário Monteiro; de Oliveira, Veronildo Souza; Pedrosa, Elvira Maria Regis; Siqueira, Glécio Machado; Magalhães, Adriana Guedes
2015-01-01
This study investigates the effect of conventional tillage and application of the monoculture of sugar cane on soil health. Variables like density, moisture, texture, consistency limits, and preconsolidation stress were taken as indicators of soil quality. The measurements were made at a 120 × 120 m field cropped with sugar cane under conventional tillage. The objective of this work was to characterize the soil and to study the spatial dependence of the physical and mechanical attributes. Then, undisturbed soil samples were collected to measure bulk density, moisture content and preconsolidation stress and disturbed soil samples for classification of soil texture, and consistency limits. The soil texture indicated that soil can be characterized as sandy clay soil and a sandy clay loam soil, and the consistency limits indicated that the soil presents an inorganic low plasticity clay. The preconsolidation tests tillage in soil moisture content around 19% should be avoided or should be chosen a management of soil with lighter vehicles in this moisture content, to avoid risk of compaction. Using geostatistical techniques mapping was possible to identify areas of greatest conservation soil and greater disturbance of the ground.
Spatial Dependence of Physical Attributes and Mechanical Properties of Ultisol in a Sugarcane Field
Tavares, Uilka Elisa; Monteiro Rolim, Mário; Souza de Oliveira, Veronildo; Maria Regis Pedrosa, Elvira; Siqueira, Glécio Machado; Guedes Magalhães, Adriana
2015-01-01
This study investigates the effect of conventional tillage and application of the monoculture of sugar cane on soil health. Variables like density, moisture, texture, consistency limits, and preconsolidation stress were taken as indicators of soil quality. The measurements were made at a 120 × 120 m field cropped with sugar cane under conventional tillage. The objective of this work was to characterize the soil and to study the spatial dependence of the physical and mechanical attributes. Then, undisturbed soil samples were collected to measure bulk density, moisture content and preconsolidation stress and disturbed soil samples for classification of soil texture, and consistency limits. The soil texture indicated that soil can be characterized as sandy clay soil and a sandy clay loam soil, and the consistency limits indicated that the soil presents an inorganic low plasticity clay. The preconsolidation tests tillage in soil moisture content around 19% should be avoided or should be chosen a management of soil with lighter vehicles in this moisture content, to avoid risk of compaction. Using geostatistical techniques mapping was possible to identify areas of greatest conservation soil and greater disturbance of the ground. PMID:26167528
NASA Astrophysics Data System (ADS)
Robinet, Jérémy; von Hebel, Christian; van der Kruk, Jan; Govers, Gerard; Vanderborght, Jan
2016-04-01
As highlighted by many authors, classical or geophysical techniques for measuring soil moisture such as destructive soil sampling, neutron probes or Time Domain Reflectometry (TDR) have some major drawbacks. Among other things, they provide point scale information, are often intrusive and time-consuming. ElectroMagnetic Induction (EMI) instruments are often cited as a promising alternative hydrogeophysical methods providing more efficiently soil moisture measurements ranging from hillslope to catchment scale. The overall objective of our research project is to investigate whether a combination of geophysical techniques at various scales can be used to study the impact of land use change on temporal and spatial variations of soil moisture and soil properties. In our work, apparent electrical conductivity (ECa) patterns are obtained with an EM multiconfiguration system. Depth profiles of ECa were subsequently inferred through a calibration-inversion procedure based on TDR data. The obtained spatial patterns of these profiles were linked to soil profile and soil water content distributions. Two catchments with contrasting land use (agriculture vs. natural forest) were selected in a subtropical region in the south of Brazil. On selected slopes within the catchments, combined EMI and TDR measurements were carried out simultaneously, under different atmospheric and soil moisture conditions. Ground-truth data for soil properties were obtained through soil sampling and auger profiles. The comparison of these data provided information about the potential of the EMI technique to deliver qualitative and quantitative information about the variability of soil moisture and soil properties.
Moisture effect in prompt gamma measurements from soil samples.
Naqvi, A A; Khiari, F Z; Liadi, F A; Khateeb-Ur-Rehman; Raashid, M A; Isab, A H
2016-09-01
The variation in intensity of 1.78MeV silicon, 6.13MeV oxygen, and 2.22MeV hydrogen prompt gamma rays from soil samples due to the addition of 5.1, 7.4, 9.7, 11.9 and 14.0wt% water was studied for 14MeV incident neutron beams utilizing a LaBr3:Ce gamma ray detector. The intensities of 1.78MeV and 6.13MeV gamma rays from silicon and oxygen, respectively, decreased with increasing sample moisture. The intensity of 2.22MeV hydrogen gamma rays increases with moisture. The decrease in intensity of silicon and oxygen gamma rays with moisture concentration indicates a loss of 14MeV neutron flux, while the increase in intensity of 2.22MeV gamma rays with moisture indicates an increase in thermal neutron flux due to increasing concentration of moisture. The experimental intensities of silicon, oxygen and hydrogen prompt gamma rays, measured as a function of moisture concentration in the soil samples, are in good agreement with the theoretical results obtained through Monte Carlo calculations. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shuler, J.; McNamara, J. P.; Benner, S. G.; Kohn, M. J.; Evans, S.
2017-12-01
The ecohydrologic separation (ES) hypothesis states that streams and plants return different soil water compartments to the atmosphere and that these compartments bear distinct isotopic compositions that can be used to infer soil water mobility. Recent studies have found isotopic evidence for ES in a variety of ecosystems, though interpretations of these data vary. ES investigations frequently suffer from low sampling frequencies as well as incomplete or missing soil moisture and matric potential data to support assumptions of soil water mobility. We sampled bulk soil water every 2-3 weeks in the upper 1 m of a hillslope profile from May 2016 to July 2017 in a semi-arid watershed outside Boise, ID. Twig samples of three plant species were also collected concurrently. Plant and soil water samples extracted via cryogenic vacuum distillation were analyzed for δ2H and δ18O composition. Soil moisture and soil matric potential sensors were installed at five and four depths in the profile, respectively. Shallow bulk soil water was progressively enriched in both isotopes over the growing season and plotted along a soil evaporation line in a plot of δ2H versus δ18O. Plant water during the growing season plotted below both the Local Meteoric Water Line and soil evaporation line. Plant water isotopic composition could not be traced to any source sampled in this study. Additionally, soil moisture and matric potential data revealed that soils were well-drained and that mobile soil water was unavailable throughout most of the growing season at the depths sampled. Soil water isotopic composition alone failed to predict mobility as observed in soil moisture and matric potential data. These results underscore the need for standard hydrologic definitions for the mobile and immobile compartments of soil water in future studies of the ES hypothesis and ecohydrologic processes in general.
The impact of extreme environmental factors on the mineralization potential of the soil
NASA Astrophysics Data System (ADS)
Zinyakova, Natalia; Semenov, Vyacheslav
2016-04-01
Warming, drying, wetting are the prevalent disturbing natural impacts that affect the upper layers of uncultivated and arable soils. The effect of drying-wetting cycles act as a physiological stress for the soil microbial community and cause changes in its structure, the partial death or lysis of the microbial biomass. The mobilization of the SOM and the stabilization of the potentially mineralizable components lead to change of mineralization potential in the soil. To test the effects of different moisture regime on plant growth and soil biological properties, plot experiment with the gray forest soil including trials with plants (corn) and bare fallow was performed. Different regimes of soil moisture (conditionally optimal, relatively deficient soil moisture and repeated cycles of drying-wetting) were created. Control of soil moisture was taken every two or three days. Gas sampling was carried out using closed chambers. Soil samples were collected at the end of the pot experiment. The potentially mineralizable content of soil organic carbon (SOC) was measured by biokinetic method based on (1) aerobic incubation of soil samples under constant temperature and moisture conditions during 158 days, (2) quantitation of C-CO2, and (3) fitting of C-CO2 cumulative curve by a model of first-order kinetic. Total soil organic carbon was measured by Tyrin's wet chemical oxidation method. Permanent deficient moisture in the soil favored the preservation of potentially mineralizable SOC. Two repeated cycles of drying-wetting did not reduce the potentially mineralizable carbon content in comparison with control under optimal soil moisture during 90 days of experiment. The emission loss of C-CO2 from the soil with plants was 1.4-1.7 times higher than the decrease of potentially mineralizable SOC due to the contribution of root respiration. On the contrary, the decrease of potentially mineralized SOC in the soil without plants was 1.1-1.2 times larger than C-CO2 emissions from the soil as a result of stabilization processes. Thus, the alternation of drying-wetting cycles results in 1) the death of microbial biomass and recolonization of the soil microorganisms; 2) favors the splitting and degradation of soil aggregates, as well as the reaggregation and stabilization of aggregates; 3) contributes to the mobilization of the SOM and also 4) initiates the stabilization of the potentially mineralizable components. The effect of drying-wetting cycles is expressed not so much in the loss of the total soil organic carbon as in the degradation of the SOM quality with decreasing its mineralization potential. We can conclude that different soil moisture regimes lead to essential changes of mineralization potential in the gray forest soil. The amount of mineralization loss soil carbon via C-CO2 emission is directly associated with the decrease of potentially mineralizable carbon. Deficient moisture is a reason for temporarily sequestration of SOC potentially mineralizable under optimal moisture. This work was supported by RSF. Project number 14-14-00625
NASA Technical Reports Server (NTRS)
Wang, J. R.; Hsu, A.; Shi, J. C.; ONeill, P. E.; Engman, E. T.
1997-01-01
Six SIR-C L-band measurements over the Little Washita River watershed in Chickasha, Oklahoma during 11-17 April 1994 have been analyzed for studying the change of soil moisture in the region. Two algorithms developed recently for estimation of moisture content in bare soil were applied to these measurements and the results were compared with those sampled on the ground. There is a good agreement between the values of soil moisture estimated by either one of the algorithms and those measured from ground sampling for bare or sparsely vegetated fields. The standard error from this comparison is on the order of 0.05-0.06 cu cm/cu cm, which is comparable to that expected from a regression between backscattering coefficients and measured soil moisture. Both algorithms provide a poor estimation of soil moisture or fail to give solutions to areas covered with moderate or dense vegetation. Even for bare soils the number of pixels that bear no numerical solution from the application of either one of the two algorithms to the data is not negligible. Results from using one of these algorithms indicate that the fraction of these pixels becomes larger as the bare soils become drier. The other algorithm generally gives a larger fraction of these pixels when the fields are vegetation-covered. The implication and impact of these features are discussed in this article.
NASA Astrophysics Data System (ADS)
van Wesemael, Bas; Nocita, Marco
2016-04-01
One of the problems for mapping of soil organic carbon (SOC) at large-scale based on visible - near and short wave infrared (VIS-NIR-SWIR) remote sensing techniques is the spatial variation of topsoil moisture when the images are collected. Soil moisture is certainly an aspect causing biased SOC estimations, due to the problems in discriminating reflectance differences due to either variations in organic matter or soil moisture, or their combination. In addition, the difficult validation procedures make the accurate estimation of soil moisture from optical airborne a major challenge. After all, the first millimeters of the soil surface reflect the signal to the airborne sensor and show a large spatial, vertical and temporal variation in soil moisture. Hence, the difficulty of assessing the soil moisture of this thin layer at the same moment of the flight. The creation of a soil moisture proxy, directly retrievable from the hyperspectral data is a priority to improve the large-scale prediction of SOC. This paper aims to verify if the application of the normalized soil moisture index (NSMI) to Airborne Prima Experiment (APEX) hyperspectral images could improve the prediction of SOC. The study area was located in the loam region of Wallonia, Belgium. About 40 samples were collected from bare fields covered by the flight lines, and analyzed in the laboratory. Soil spectra, corresponding to the sample locations, were extracted from the images. Once the NSMI was calculated for the bare fields' pixels, spatial patterns, presumably related to within field soil moisture variations, were revealed. SOC prediction models, built using raw and pre-treated spectra, were generated from either the full dataset (general model), or pixels belonging to one of the two classes of NSMI values (NSMI models). The best result, with a RMSE after validation of 1.24 g C kg-1, was achieved with a NSMI model, compared to the best general model, characterized by a RMSE of 2.11 g C kg-1. These results confirmed the advantage to controlling the effect of soil moisture on the detection of SOC. The NSMI proved to be a flexible concept, due to the possible use of different SWIR wavelengths, and ease of use, because measurements of soil moisture by other techniques are not needed. However, in the future, it will be important to assess the effectiveness of the NSMI for different soil types, and other hyperspectral sensors.
Remote sensing of soil moisture using airborne hyperspectral data
Finn, M.; Lewis, M.; Bosch, D.; Giraldo, Mario; Yamamoto, K.; Sullivan, D.; Kincaid, R.; Luna, R.; Allam, G.; Kvien, Craig; Williams, M.
2011-01-01
Landscape assessment of soil moisture is critical to understanding the hydrological cycle at the regional scale and in broad-scale studies of biophysical processes affected by global climate changes in temperature and precipitation. Traditional efforts to measure soil moisture have been principally restricted to in situ measurements, so remote sensing techniques are often employed. Hyperspectral sensors with finer spatial resolution and narrow band widths may offer an alternative to traditional multispectral analysis of soil moisture, particularly in landscapes with high spatial heterogeneity. This preliminary research evaluates the ability of remotely sensed hyperspectral data to quantify soil moisture for the Little River Experimental Watershed (LREW), Georgia. An airborne hyperspectral instrument with a short-wavelength infrared (SWIR) sensor was flown in 2005 and 2007 and the results were correlated to in situ soil moisture values. A significant statistical correlation (R2 value above 0.7 for both sampling dates) for the hyperspectral instrument data and the soil moisture probe data at 5.08 cm (2 inches) was determined. While models for the 20.32 cm (8 inches) and 30.48 cm (12 inches) depths were tested, they were not able to estimate soil moisture to the same degree.
Remote sensing of soil moisture using airborne hyperspectral data
Finn, Michael P.; Lewis, Mark (David); Bosch, David D.; Giraldo, Mario; Yamamoto, Kristina H.; Sullivan, Dana G.; Kincaid, Russell; Luna, Ronaldo; Allam, Gopala Krishna; Kvien, Craig; Williams, Michael S.
2011-01-01
Landscape assessment of soil moisture is critical to understanding the hydrological cycle at the regional scale and in broad-scale studies of biophysical processes affected by global climate changes in temperature and precipitation. Traditional efforts to measure soil moisture have been principally restricted to in situ measurements, so remote sensing techniques are often employed. Hyperspectral sensors with finer spatial resolution and narrow band widths may offer an alternative to traditional multispectral analysis of soil moisture, particularly in landscapes with high spatial heterogeneity. This preliminary research evaluates the ability of remotely sensed hyperspectral data to quantify soil moisture for the Little River Experimental Watershed (LREW), Georgia. An airborne hyperspectral instrument with a short-wavelength infrared (SWIR) sensor was flown in 2005 and 2007 and the results were correlated to in situ soil moisture values. A significant statistical correlation (R 2 value above 0.7 for both sampling dates) for the hyperspectral instrument data and the soil moisture probe data at 5.08 cm (2 inches) was determined. While models for the 20.32 cm (8 inches) and 30.48 cm (12 inches) depths were tested, they were not able to estimate soil moisture to the same degree.
NASA Astrophysics Data System (ADS)
Meyer, N.; Welp, G.; Amelung, W.
2018-02-01
The temperature sensitivity of heterotrophic soil respiration is crucial for modeling carbon dynamics but it is variable. Presently, however, most models employ a fixed value of 1.5 or 2.0 for the increase of soil respiration per 10°C increase in temperature (Q10). Here we identified the variability of Q10 at a regional scale (Rur catchment, Germany/Belgium/Netherlands). We divided the study catchment into environmental soil classes (ESCs), which we define as unique combinations of land use, aggregated soil groups, and texture. We took nine soil samples from each ESC (108 samples) and incubated them at four soil moisture levels and five temperatures (5-25°C). We hypothesized that Q10 variability is controlled by soil organic carbon (SOC) degradability and soil moisture and that ESC can be used as a widely available proxy for Q10, owing to differences in SOC degradability. Measured Q10 values ranged from 1.2 to 2.8 and were correlated with indicators of SOC degradability (e.g., pH, r = -0.52). The effect of soil moisture on Q10 was variable: Q10 increased with moisture in croplands but decreased in forests. The ESC captured significant parts of Q10 variability under dry (R2 = 0.44) and intermediate (R2 = 0.36) moisture conditions, where Q10 increased in the order cropland
NASA Astrophysics Data System (ADS)
Kaleita, A. L.
2013-12-01
Identifying field-scale soil moisture patterns, and quantifying their impact on hydrology and nutrient flux, is currently limited by the time and resources required to do sufficient monitoring. A small number of monitoring locations or occasions may not be sufficient to capture the true spatial and temporal dynamics of these patterns. While process models can help to fill in data gaps, it is often difficult if not impossible to effectively parameterize them at the field and sub-field scale. Thus, empirical methods that can optimize sampling and mapping of soil moisture by using a minimal amount of readily available data may be of significant value. LiDAR is one source of such readily available data. Various topographic indices, including relative elevation, land slope, curvature, and slope aspect are known to influence soil moisture patterns, though the exact nature of that relationship appears to vary from study to study. The objective of this study was to use these data to identify critical sampling locations for mapping soil moisture, and to upscale point measurements at those locations to both a single field-average value, and to a high-resolution pattern map for the field. This study analyzed in-situ soil moisture measurements from the working agricultural field in Story County, Iowa. Theta probe soil moisture measurement values were taken every 50 meters on a 300 x 250 meter grid (~18 acres) during the summer growing seasons of 2004, 2005, 2007, and 2008. The elevation in the field varies by approximately 5 meters and the grid covers six different soil types and a variety of different landscape positions throughout the field. We used self-organizing maps (SOMs) and K-means clustering algorithms to split apart the field study area into distinct categories of similarly-characterized locations. We then used the SOM and clustering metrics to identify locations within each group that were representative of the behavior of that group of locations. We developed a weighted upscaling process to estimate a whole-field average soil moisture content from these few critical samples, and we compared the results to those obtained through the more traditional 'temporal stability' approach. The cluster-based approach was as good as and often better than the temporal stability approach, with the significant advantage that the former does not require any initial period of exhaustive soil moisture monitoring, whereas the latter does. A second objective was to use the classification results of the landscape data to interpolate these sparse critical sampling point data over the whole field. Using what we term 'feature-space interpolation' we were able to re-create a high-resolution soil moisture map for the field using only three measurements, by giving locations with similar landscape characteristics similar soil moisture values. The results showed a small but significant statistical improvement over traditional distance-based interpolation methods, and the resulting patterns also had stronger correlation with end-of-season yield, suggesting this approach may have valuable applications in production agriculture decision-making and assessment.
NASA Technical Reports Server (NTRS)
Rao, R. G. S.; Ulaby, F. T.
1977-01-01
The paper examines optimal sampling techniques for obtaining accurate spatial averages of soil moisture, at various depths and for cell sizes in the range 2.5-40 acres, with a minimum number of samples. Both simple random sampling and stratified sampling procedures are used to reach a set of recommended sample sizes for each depth and for each cell size. Major conclusions from statistical sampling test results are that (1) the number of samples required decreases with increasing depth; (2) when the total number of samples cannot be prespecified or the moisture in only one single layer is of interest, then a simple random sample procedure should be used which is based on the observed mean and SD for data from a single field; (3) when the total number of samples can be prespecified and the objective is to measure the soil moisture profile with depth, then stratified random sampling based on optimal allocation should be used; and (4) decreasing the sensor resolution cell size leads to fairly large decreases in samples sizes with stratified sampling procedures, whereas only a moderate decrease is obtained in simple random sampling procedures.
Li, Ming Ze; Gao, Yuan Ke; Di, Xue Ying; Fan, Wen Yi
2016-03-01
The moisture content of forest surface soil is an important parameter in forest ecosystems. It is practically significant for forest ecosystem related research to use microwave remote sensing technology for rapid and accurate estimation of the moisture content of forest surface soil. With the aid of TDR-300 soil moisture content measuring instrument, the moisture contents of forest surface soils of 120 sample plots at Tahe Forestry Bureau of Daxing'anling region in Heilongjiang Province were measured. Taking the moisture content of forest surface soil as the dependent variable and the polarization decomposition parameters of C band Quad-pol SAR data as independent variables, two types of quantitative estimation models (multilinear regression model and BP-neural network model) for predicting moisture content of forest surface soils were developed. The spatial distribution of moisture content of forest surface soil on the regional scale was then derived with model inversion. Results showed that the model precision was 86.0% and 89.4% with RMSE of 3.0% and 2.7% for the multilinear regression model and the BP-neural network model, respectively. It indicated that the BP-neural network model had a better performance than the multilinear regression model in quantitative estimation of the moisture content of forest surface soil. The spatial distribution of forest surface soil moisture content in the study area was then obtained by using the BP neural network model simulation with the Quad-pol SAR data.
Results from SMAP Validation Experiments 2015 and 2016
NASA Astrophysics Data System (ADS)
Colliander, A.; Jackson, T. J.; Cosh, M. H.; Misra, S.; Crow, W.; Powers, J.; Wood, E. F.; Mohanty, B.; Judge, J.; Drewry, D.; McNairn, H.; Bullock, P.; Berg, A. A.; Magagi, R.; O'Neill, P. E.; Yueh, S. H.
2017-12-01
NASA's Soil Moisture Active Passive (SMAP) mission was launched in January 2015. The objective of the mission is global mapping of soil moisture and freeze/thaw state. Well-characterized sites with calibrated in situ soil moisture measurements are used to determine the quality of the soil moisture data products; these sites are designated as core validation sites (CVS). To support the CVS-based validation, airborne field experiments are used to provide high-fidelity validation data and to improve the SMAP retrieval algorithms. The SMAP project and NASA coordinated airborne field experiments at three CVS locations in 2015 and 2016. SMAP Validation Experiment 2015 (SMAPVEX15) was conducted around the Walnut Gulch CVS in Arizona in August, 2015. SMAPVEX16 was conducted at the South Fork CVS in Iowa and Carman CVS in Manitoba, Canada from May to August 2016. The airborne PALS (Passive Active L-band Sensor) instrument mapped all experiment areas several times resulting in 30 coincidental measurements with SMAP. The experiments included intensive ground sampling regime consisting of manual sampling and augmentation of the CVS soil moisture measurements with temporary networks of soil moisture sensors. Analyses using the data from these experiments have produced various results regarding the SMAP validation and related science questions. The SMAPVEX15 data set has been used for calibration of a hyper-resolution model for soil moisture product validation; development of a multi-scale parameterization approach for surface roughness, and validation of disaggregation of SMAP soil moisture with optical thermal signal. The SMAPVEX16 data set has been already used for studying the spatial upscaling within a pixel with highly heterogeneous soil texture distribution; for understanding the process of radiative transfer at plot scale in relation to field scale and SMAP footprint scale over highly heterogeneous vegetation distribution; for testing a data fusion based soil moisture downscaling approach; and for investigating soil moisture impact on estimation of vegetation fluorescence from airborne measurements. The presentation will describe the collected data and showcase some of the most important results achieved so far.
Effect of temporal sampling and timing for soil moisture measurements at field scale
NASA Astrophysics Data System (ADS)
Snapir, B.; Hobbs, S.
2012-04-01
Estimating soil moisture at field scale is valuable for various applications such as irrigation scheduling in cultivated watersheds, flood and drought prediction, waterborne disease spread assessment, or even determination of mobility with lightweight vehicles. Synthetic aperture radar on satellites in low Earth orbit can provide fine resolution images with a repeat time of a few days. For an Earth observing satellite, the choice of the orbit is driven in particular by the frequency of measurements required to meet a certain accuracy in retrieving the parameters of interest. For a given target, having only one image every week may not enable to capture the full dynamic range of soil moisture - soil moisture can change significantly within a day when rainfall occurs. Hence this study focuses on the effect of temporal sampling and timing of measurements in terms of error on the retrieved signal. All the analyses are based on in situ measurements of soil moisture (acquired every 30 min) from the OzNet Hydrological Monitoring Network in Australia for different fields over several years. The first study concerns sampling frequency. Measurements at different frequencies were simulated by sub-sampling the original data. Linear interpolation was used to estimate the missing intermediate values, and then this time series was compared to the original. The difference between these two signals is computed for different levels of sub-sampling. Results show that the error increases linearly when the interval is less than 1 day. For intervals longer than a day, a sinusoidal component appears on top of the linear growth due to the diurnal variation of surface soil moisture. Thus, for example, the error with measurements every 4.5 days can be slightly less than the error with measurements every 2 days. Next, for a given sampling interval, this study evaluated the effect of the time during the day at which measurements are made. Of course when measurements are very frequent the time of acquisition does not matter, but when few measurements are available (sampling interval > 1 day), the time of acquisition can be important. It is shown that with daily measurements the error can double depending on the time of acquisition. This result is very sensitive to the phase of the sinusoidal variation of soil moisture. For example, in autumn for a given field with soil moisture ranging from 7.08% to 11.44% (mean and standard deviation being respectively 8.68% and 0.74%), daily measurements at 2 pm lead to a mean error of 0.47% v/v, while daily measurements at 9 am/pm produce a mean error of 0.24% v/v. The minimum of the sinusoid occurs every afternoon around 2 pm, after interpolation, measurements acquired at this time underestimate soil moisture, whereas measurements around 9 am/pm correspond to nodes of the sinusoid, hence they represent the average soil moisture. These results concerning the frequency and the timing of measurements can potentially drive the schedule of satellite image acquisition over some fields.
Bento, F de M M; Marques, R N; Costa, M L Z; Walder, J M M; Silva, A P; Parra, J R P
2010-08-01
This study aimed to evaluate adult emergence and duration of the pupal stage of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), and emergence of the fruit fly parasitoid, Diachasmimorpha longicaudata (Ashmead), under different moisture conditions in four soil types, using soil water matric potential. Pupal stage duration in C. capitata was influenced differently for males and females. In females, only soil type affected pupal stage duration, which was longer in a clay soil. In males, pupal stage duration was individually influenced by moisture and soil type, with a reduction in pupal stage duration in a heavy clay soil and in a sandy clay, with longer duration in the clay soil. As matric potential decreased, duration of the pupal stage of C. capitata males increased, regardless of soil type. C. capitata emergence was affected by moisture, regardless of soil type, and was higher in drier soils. The emergence of D. longicaudata adults was individually influenced by soil type and moisture factors, and the number of emerged D. longicaudata adults was three times higher in sandy loam and lower in a heavy clay soil. Always, the number of emerged adults was higher at higher moisture conditions. C. capitata and D. longicaudata pupal development was affected by moisture and soil type, which may facilitate pest sampling and allow release areas for the parasitoid to be defined under field conditions.
Peat soils stabilization using Effective Microorganisms (EM)
NASA Astrophysics Data System (ADS)
Yusof, N. Z.; Samsuddin, N. S.; Hanif, M. F.; Syed Osman, S. B.
2018-04-01
Peat soil is known as geotechnical problematic soil since it is the softest soil having highly organic and moisture content which led to high compressibility, low shear strength and long-term settlement. The aim of this study was to obtain the stabilized peat soils using the Effective Microorganisms (EM). The volume of EM added and mixed with peat soils varied with 2%, 4%, 6%, 8% and 10% and then were cured for 7, 14 and 21 days. The experiment was done for uncontrolled and controlled moisture content. Prior conducting the main experiments, the physical properties such as moisture content, liquid limit, specific gravity, and plastic limit etc. were measure for raw peat samples. The Unconfined Compressive Strength (UCS) test was performed followed by regression analysis to check the effect of EM on the soil strength. Obtained results have shown that the mix design for controlled moisture contents showed the promising improvement in their compressive strength. The peat soil samples with 10% of EM shows the highest increment in UCS value and the percentage of increments are in the range of 44% to 65% after curing for 21 days. The regression analysis of the EM with the soil compressive strength showed that in controlled moisture conditions, EM significantly improved the soil stability as the value of R2 ranged between 0.97 – 0.78. The results have indicated that the addition of EM in peat soils provides significant improving in the strength of the soil as well as the other engineering properties.
NASA Astrophysics Data System (ADS)
Chitu, Zenaida; Bogaard, Thom; Adler, Mary-Jeanne; Steele-Dunne, Susan; Hrachowitz, Markus; Busuioc, Aristita; Sandric, Ionut; Istrate, Alexandru
2014-05-01
Like in many parts of the world, landslides represent in Romania recurrent phenomena that produce numerous damages to the infrastructure every few years. The high frequency of landslide events over the world has resulted to the development of many early warning systems that are based on the definition of rainfall thresholds triggering landslides. In Romania in particular, recent studies exploring the temporal occurrence of landslides have revealed that rainfall represents the most important triggering factor for landslides. The presence of low permeability soils and gentle slope degrees in the Ialomita Subcarpathians of Romania makes that cumulated precipitation over variable time interval and the hydraulic response of the soil plays a key role in landslides triggering. In order to identify the slope responses to rainfall events in this particular area we investigate the variability of soil moisture and its relationship to landslide events in three Subcarpathians catchments (Cricovul Dulce, Bizididel and Vulcana) by combining in situ measurements, satellite-based radiometry and hydrological modelling. For the current study, hourly soil moisture measurements from six soil moisture monitoring stations that are fitted with volumetric soil moisture sensors, temperature soil sensors and rain gauges sensors are used. Pedotransfer functions will be applied in order to infer hydraulic soil properties from soil texture sampled from 50 soil profiles. The information about spatial and temporal variability of soil moisture content will be completed with the Level 2 soil moisture products from the Soil Moisture and Ocean Salinity (SMOS) mission. A time series analysis of soil moisture is planned to be integrated to landslide and rainfall time series in order to determine a preliminary rainfall threshold triggering landslides in Ialomita Subcarpathians.
NASA Astrophysics Data System (ADS)
Hardie, Marcus; Lisson, Shaun; Doyle, Richard; Cotching, William
2013-01-01
Preferential flow in agricultural soils has been demonstrated to result in agrochemical mobilisation to shallow ground water. Land managers and environmental regulators need simple cost effective techniques for identifying soil - land use combinations in which preferential flow occurs. Existing techniques for identifying preferential flow have a range of limitations including; often being destructive, non in situ, small sampling volumes, or are subject to artificial boundary conditions. This study demonstrated that high frequency soil moisture monitoring using a multi-sensory capacitance probe mounted within a vertically rammed access tube, was able to determine the occurrence, depth, and wetting front velocity of preferential flow events following rainfall. Occurrence of preferential flow was not related to either rainfall intensity or rainfall amount, rather preferential flow occurred when antecedent soil moisture content was below 226 mm soil moisture storage (0-70 cm). Results indicate that high temporal frequency soil moisture monitoring may be used to identify soil type - land use combinations in which the presence of preferential flow increases the risk of shallow groundwater contamination by rapid transport of agrochemicals through the soil profile. However use of high frequency based soil moisture monitoring to determine agrochemical mobilisation risk may be limited by, inability to determine the volume of preferential flow, difficulty observing macropore flow at high antecedent soil moisture content, and creation of artificial voids during installation of access tubes in stony soils.
Within-field variability of plant and soil parameters
NASA Technical Reports Server (NTRS)
Ulaby, F. T. (Principal Investigator); Brisco, B.; Dobson, C.
1981-01-01
The variability of ground truth data collected for vegetation experiments was investigated. Two fields of wheat and one field of corn were sampled on two different dates. The variability of crop and soil parameters within a field, between two fields of the same type, and within a field over time were compared statistically. The number of samples from each test site required in order to be able to determine with confidence the mean and standard deviations for a given variable was determined. Eight samples were found to be adequate for plant height determinations, while twenty samples were required for plant moisture and soil moisture characterization. Eighteen samples were necessary for detecting within field variability over time and for between field variability for the same crop. The necessary sample sites vary according to the physiological growth stage of the crop and recent weather events that affect the moisture and/or height characteristics of the field in question.
Dielectric constants of soils at microwave frequencies-2
NASA Technical Reports Server (NTRS)
Wang, J.; Schmugge, T.; Williams, D.
1978-01-01
The dielectric constants of several soil samples were measured at frequencies of 5 and 19 GHz using the infinite transmission line method. The results of these measurements are presented and discussed with respect to soil types and texture structures. A comparison is made with other measurements at 1.4 GHz. At all three frequencies, the dependence of dielectric constant on soil moisture can be approximated by two straight lines. At low moisture, the slope is less than at high moisture level. The intersection of the two lines is believed to be a function of soil texture.
Data documentation for the bare soil experiment at the University of Arkansas, June - August 1980
NASA Technical Reports Server (NTRS)
Sadeghi, A. M.
1984-01-01
The primary objective of this study is to evaluate the relationships between soil moisture and reflectivity of a bare soil, using microwave techniques. A drainage experiment was conducted on a Captina silt loam in cooperation with personnel in the Electrical Engineering Department. Measurements included soil moisture pressures at various depths, neutron probe measurements, gravimetric moisture samples, and reflectivity of the soil surface at selected frequencies including 1.5 and 6.0 GHz and at the incident angle of 45 deg. All measurements were made in conjuction with that of reflectivity data.
Testate amoebae communities sensitive to surface moisture conditions in Patagonian peatlands
NASA Astrophysics Data System (ADS)
Loisel, J.; Booth, R.; Charman, D.; van Bellen, S.; Yu, Z.
2017-12-01
Here we examine moss surface samples that were collected during three field campaigns (2005, 2010, 2014) across southern Patagonian peatlands to assess the potential use of testate amoebae and 13C isotope data as proxy indicators of soil moisture. These proxies have been widely tested across North America, but their use as paleoecological tools remains sparse in the southern hemisphere. Samples were collected along a hydrological gradient spanning a range of water table depth from 0cm in wet hollows to over 85cm in dry hummocks. Moss moisture content was measured in the field. Over 25 taxa were identified, with many of them not found in North America. Ordinations indicate statistically significant and dominant effects of soil moisture and water table depth on testate assemblages, though interestingly 13C is even more strongly correlated with testates amoebae than direct soil conditions. It is possible that moss 13C signature constitutes a compound indicator that represents seasonal soil moisture better than opportunistic sampling during field campaigns. There is no significant effect of year or site across the dataset. In addition to providing a training set that translates testate amoebae moisture tolerance range into water tabel depth for Patagonian peatlands, we also compare our results with those from the North American training set to show that, despite 'novel' Patagonian taxa, the robustness of international training sets is probably sufficient to quantify most changes in soil moisture from any site around the world. We also identify key indicator species that are shown to be of universal value in peat-based hydrological reconstructions.
NASA Astrophysics Data System (ADS)
Franz, T. E.; Avery, W. A.; Wahbi, A.; Dercon, G.; Heng, L.; Strauss, P.
2017-12-01
The use of the Cosmic Ray Neutron Sensor (CRNS) for the detection of field-scale soil moisture ( 20 ha) has been the subject of a multitude research applications over the past decade. One exciting area within agriculture aims to provide soil moisture and soil property information for irrigation scheduling. The CRNS technology exists in both a stationary and mobile form. The use of a mobile CRNS opens possibilities for application in many diverse environments. This work details the use of a mobile "backpack" CRNS device in high elevation heterogeneous terrain in the alpine mountains of western Austria. This research demonstrates the utilization of established calibration and validation techniques associated with the use of the CRNS within difficult to reach landscapes that are either inaccessible or impractical to both the stationary CRNS and other more traditional soil moisture sensing technology. Field work was conducted during the summer of 2016 in the Rauris valley of the Austrian Alps at three field sites located at different representative elevations within the same Rauris watershed. Calibrations of the "backpack" CRNS were performed at each site along with data validation via in-situ Time Domain Reflectometry (TDR) and gravimetric soil sampling. Validation data show that the relationship between in-situ soil moisture data determined via TDR and soil sampling and soil moisture data determined via the mobile CRNS is strong (RMSE <2.5 % volumetric). The efficacy of this technique in remote alpine landscapes shows great potential for use in early warning systems for landslides and flooding, watershed hydrology, and high elevation agricultural water management.
Passive Microwave Remote Sensing of Soil Moisture
NASA Technical Reports Server (NTRS)
Njoku, Eni G.; Entekhabi, Dara
1996-01-01
Microwave remote sensing provides a unique capability for direct observation of soil moisture. Remote measurements from space afford the possibility of obtaining frequent, global sampling of soil moisture over a large fraction of the Earth's land surface. Microwave measurements have the benefit of being largely unaffected by cloud cover and variable surface solar illumination, but accurate soil moisture estimates are limited to regions that have either bare soil or low to moderate amounts of vegetation cover. A particular advantage of passive microwave sensors is that in the absence of significant vegetation cover soil moisture is the dominant effect on the received signal. The spatial resolutions of passive Microwave soil moisture sensors currently considered for space operation are in the range 10-20 km. The most useful frequency range for soil moisture sensing is 1-5 GHz. System design considerations include optimum choice of frequencies, polarizations, and scanning configurations, based on trade-offs between requirements for high vegetation penetration capability, freedom from electromagnetic interference, manageable antenna size and complexity, and the requirement that a sufficient number of information channels be available to correct for perturbing geophysical effects. This paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods. Particularly promising are methods for optimally assimilating passive microwave data into hydrologic models. Further studies are needed to investigate the effects on microwave observations of within-footprint spatial heterogeneity of vegetation cover and subsurface soil characteristics, and to assess the limitations imposed by heterogeneity on the retrievability of large-scale soil moisture information from remote observations.
NASA Technical Reports Server (NTRS)
Wang, James R.; Shiue, James C.; Schmugge, Thomas J.; Engman, Edwin T.
1990-01-01
The NASA Langley Research Center's L-band pushbroom microwave radiometer (PBMR) aboard the NASA C-130 aircraft was used to map surface soil moisture at and around the Konza Prairie Natural Research Area in Kansas during the four intensive field campaigns of FIFE in May-October 1987. There was a total of 11 measurements was made when soils were known to be saturated. This measurement was used for the calibration of the vegetation effect on the microwave absorption. Based on this calibration, the data from other measurements on other days were inverted to generate the soil moisture maps. Good agreement was found when the estimated soil moisture values were compared to those independently measured on the ground at a number of widely separated locations. There was a slight bias between the estimated and measured values, the estimated soil moisture on the average being lower by about 1.8 percent. This small bias, however, was accounted for by the difference in time of the radiometric measurements and the soil moisture ground sampling.
NASA Astrophysics Data System (ADS)
Giraldo, Mario A.; Bosch, David; Madden, Marguerite; Usery, Lynn; Kvien, Craig
2008-08-01
SummaryThis research addressed the temporal and spatial variation of soil moisture (SM) in a heterogeneous landscape. The research objective was to investigate soil moisture variation in eight homogeneous 30 by 30 m plots, similar to the pixel size of a Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper plus (ETM+) image. The plots were adjacent to eight stations of an in situ soil moisture network operated by the United States Department of Agriculture-Agriculture Research Service USDA-ARS in Tifton, GA. We also studied five adjacent agricultural fields to examine the effect of different landuses/land covers (LULC) (grass, orchard, peanuts, cotton and bare soil) on the temporal and spatial variation of soil moisture. Soil moisture field data were collected on eight occasions throughout 2005 and January 2006 to establish comparisons within and among eight homogeneous plots. Consistently throughout time, analysis of variance (ANOVA) showed high variation in the soil moisture behavior among the plots and high homogeneity in the soil moisture behavior within them. A precipitation analysis for the eight sampling dates throughout the year 2005 showed similar rainfall conditions for the eight study plots. Therefore, soil moisture variation among locations was explained by in situ local conditions. Temporal stability geostatistical analysis showed that soil moisture has high temporal stability within the small plots and that a single point reading can be used to monitor soil moisture status for the plot within a maximum 3% volume/volume (v/v) soil moisture variation. Similarly, t-statistic analysis showed that soil moisture status in the upper soil layer changes within 24 h. We found statistical differences in the soil moisture between the different LULC in the agricultural fields as well as statistical differences between these fields and the adjacent 30 by 30 m plots. From this analysis, it was demonstrated that spatial proximity is not enough to produce similar soil moisture, since t-test's among adjacent plots with different LULCs showed significant differences. These results confirm that a remote sensing approach that considers homogeneous LULC landscape fragments can be used to identify landscape units of similar soil moisture behavior under heterogeneous landscapes. In addition, the in situ USDA-ARS network will serve better in remote sensing studies in which sensors with fine spatial resolution are evaluated. This study is a first step towards identifying landscape units that can be monitored using the single point reading of the USDA-ARS stations network.
Giraldo, M.A.; Bosch, D.; Madden, M.; Usery, L.; Kvien, Craig
2008-01-01
This research addressed the temporal and spatial variation of soil moisture (SM) in a heterogeneous landscape. The research objective was to investigate soil moisture variation in eight homogeneous 30 by 30 m plots, similar to the pixel size of a Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper plus (ETM+) image. The plots were adjacent to eight stations of an in situ soil moisture network operated by the United States Department of Agriculture-Agriculture Research Service USDA-ARS in Tifton, GA. We also studied five adjacent agricultural fields to examine the effect of different landuses/land covers (LULC) (grass, orchard, peanuts, cotton and bare soil) on the temporal and spatial variation of soil moisture. Soil moisture field data were collected on eight occasions throughout 2005 and January 2006 to establish comparisons within and among eight homogeneous plots. Consistently throughout time, analysis of variance (ANOVA) showed high variation in the soil moisture behavior among the plots and high homogeneity in the soil moisture behavior within them. A precipitation analysis for the eight sampling dates throughout the year 2005 showed similar rainfall conditions for the eight study plots. Therefore, soil moisture variation among locations was explained by in situ local conditions. Temporal stability geostatistical analysis showed that soil moisture has high temporal stability within the small plots and that a single point reading can be used to monitor soil moisture status for the plot within a maximum 3% volume/volume (v/v) soil moisture variation. Similarly, t-statistic analysis showed that soil moisture status in the upper soil layer changes within 24 h. We found statistical differences in the soil moisture between the different LULC in the agricultural fields as well as statistical differences between these fields and the adjacent 30 by 30 m plots. From this analysis, it was demonstrated that spatial proximity is not enough to produce similar soil moisture, since t-test's among adjacent plots with different LULCs showed significant differences. These results confirm that a remote sensing approach that considers homogeneous LULC landscape fragments can be used to identify landscape units of similar soil moisture behavior under heterogeneous landscapes. In addition, the in situ USDA-ARS network will serve better in remote sensing studies in which sensors with fine spatial resolution are evaluated. This study is a first step towards identifying landscape units that can be monitored using the single point reading of the USDA-ARS stations network. ?? 2008 Elsevier B.V.
Microwave remote sensing of soil moisture content over bare and vegetated fields
NASA Technical Reports Server (NTRS)
Wang, J. R.; Shiue, J. C.; Mcmurtrey, J. E., III (Principal Investigator)
1980-01-01
The author has identified the following significant results. Ground truth of soil moisture content, and ambient air and soil temperatures were acquired concurrently with measurements of soil moisture in bare fields and fields covered with grass, corn, and soybeans obtained with 1.4 GHz and 5 GHz radiometers mounted on a truck. The biomass of the vegetation was sampled about once a week. The measured brightness temperatures over the bare fields were compared with those of radiative transfer model calculations using as inputs the acquired soil moisture and temperatures data with appropriate values of dielectric constants for soil-water mixtures. A good agreement was found between the calculated and measured results over 10 deg to 70 deg incident angles. The presence of vegetation reduced the sensitivity of soil moisture sensing. At 1.4 GHz the sensitivity reduction ranged from about 20% for 10 cm tall grassland cover to over 50 to 60% for the dense soybean field. At 5 GHz corresponding reduction in sensitivity ranged from approximately 70% to approximately 90%.
Microwave remote sensing of soil moisture content over bare and vegetated fields
NASA Technical Reports Server (NTRS)
Wang, J. R.; Shiue, J. C.; Mcmurtrey, J. E., III
1980-01-01
Remote measurements of soil moisture contents over bare fields and fields covered with orchard grass, corn, and soybean were made during October 1979 with 1.4 GHz and 5 GHz microwave radiometers mounted on a truck. Ground truth of soil moisture content, ambient air, and soil temperatures was acquired concurrently with the radiometric measurements. The biomass of the vegetation was sampled about once a week. The measured brightness temperatures over bare fields were compared with those of radiative transfer model calculations using as inputs the acquired soil moisture and temperature data with appropriate values of dielectric constants for soil-water mixtures. Good agreement was found between the calculated and the measured results over 10-70 deg incident angles. The presence of vegetation was found to reduce the sensitivity of soil moisture sensing. At 1.4 GHz the sensitivity reduction ranged from approximately 20% for 10-cm tall grassland to over 60% for the dense soybean field. At 5 GHz the corresponding reduction in sensitivity ranged from approximately 70 to approximately 90%.
NASA Astrophysics Data System (ADS)
Martens, B.; Miralles, D.; Lievens, H.; Fernández-Prieto, D.; Verhoest, N. E. C.
2016-06-01
Terrestrial evaporation is an essential variable in the climate system that links the water, energy and carbon cycles over land. Despite this crucial importance, it remains one of the most uncertain components of the hydrological cycle, mainly due to known difficulties to model the constraints imposed by land water availability on terrestrial evaporation. The main objective of this study is to assimilate satellite soil moisture observations from the Soil Moisture and Ocean Salinity (SMOS) mission into an existing evaporation model. Our over-arching goal is to find an optimal use of satellite soil moisture that can help to improve our understanding of evaporation at continental scales. To this end, the Global Land Evaporation Amsterdam Model (GLEAM) is used to simulate evaporation fields over continental Australia for the period September 2010-December 2013. SMOS soil moisture observations are assimilated using a Newtonian Nudging algorithm in a series of experiments. Model estimates of surface soil moisture and evaporation are validated against soil moisture probe and eddy-covariance measurements, respectively. Finally, an analogous experiment in which Advanced Microwave Scanning Radiometer (AMSR-E) soil moisture is assimilated (instead of SMOS) allows to perform a relative assessment of the quality of both satellite soil moisture products. Results indicate that the modelled soil moisture from GLEAM can be improved through the assimilation of SMOS soil moisture: the average correlation coefficient between in situ measurements and the modelled soil moisture over the complete sample of stations increased from 0.68 to 0.71 and a statistical significant increase in the correlations is achieved for 17 out of the 25 individual stations. Our results also suggest a higher accuracy of the ascending SMOS data compared to the descending data, and overall higher quality of SMOS compared to AMSR-E retrievals over Australia. On the other hand, the effect of soil moisture data assimilation on the evaporation fields is very mild, and difficult to assess due to the limited availability of eddy-covariance data. Nonetheless, our continental-scale simulations indicate that the assimilation of soil moisture can have a substantial impact on the estimated dynamics of evaporation in water-limited regimes. Progressing towards our goal of using satellite soil moisture to increase understanding of global land evaporation, future research will focus on the global application of this methodology and the consideration of multiple evaporation models.
NASA Astrophysics Data System (ADS)
Flores, A. N.; Entekhabi, D.; Bras, R. L.
2007-12-01
Soil hydraulic and thermal properties (SHTPs) affect both the rate of moisture redistribution in the soil column and the volumetric soil water capacity. Adequately constraining these properties through field and lab analysis to parameterize spatially-distributed hydrology models is often prohibitively expensive. Because SHTPs vary significantly at small spatial scales individual soil samples are also only reliably indicative of local conditions, and these properties remain a significant source of uncertainty in soil moisture and temperature estimation. In ensemble-based soil moisture data assimilation, uncertainty in the model-produced prior estimate due to associated uncertainty in SHTPs must be taken into account to avoid under-dispersive ensembles. To treat SHTP uncertainty for purposes of supplying inputs to a distributed watershed model we use the restricted pairing (RP) algorithm, an extension of Latin Hypercube (LH) sampling. The RP algorithm generates an arbitrary number of SHTP combinations by sampling the appropriate marginal distributions of the individual soil properties using the LH approach, while imposing a target rank correlation among the properties. A previously-published meta- database of 1309 soils representing 12 textural classes is used to fit appropriate marginal distributions to the properties and compute the target rank correlation structure, conditioned on soil texture. Given categorical soil textures, our implementation of the RP algorithm generates an arbitrarily-sized ensemble of realizations of the SHTPs required as input to the TIN-based Realtime Integrated Basin Simulator with vegetation dynamics (tRIBS+VEGGIE) distributed parameter ecohydrology model. Soil moisture ensembles simulated with RP- generated SHTPs exhibit less variance than ensembles simulated with SHTPs generated by a scheme that neglects correlation among properties. Neglecting correlation among SHTPs can lead to physically unrealistic combinations of parameters that exhibit implausible hydrologic behavior when input to the tRIBS+VEGGIE model.
Topographic effects on denitrification in drained agricultural fields
USDA-ARS?s Scientific Manuscript database
Denitrification is affected by soil moisture, while soil moisture can be affected by topography. Therefore, denitrification can be spatially correlated to topographic gradients. Three prior converted fields on the Delmarva Peninsula were sampled spatially for denitrification enzyme activity. The up...
Remote monitoring of soil moisture using airborne microwave radiometers
NASA Technical Reports Server (NTRS)
Kroll, C. L.
1973-01-01
The current status of microwave radiometry is provided. The fundamentals of the microwave radiometer are reviewed with particular reference to airborne operations, and the interpretative procedures normally used for the modeling of the apparent temperature are presented. Airborne microwave radiometer measurements were made over selected flight lines in Chickasha, Oklahoma and Weslaco, Texas. Extensive ground measurements of soil moisture were made in support of the aircraft mission over the two locations. In addition, laboratory determination of the complex permittivities of soil samples taken from the flight lines were made with varying moisture contents. The data were analyzed to determine the degree of correlation between measured apparent temperatures and soil moisture content.
Averill, Colin; Waring, Bonnie G; Hawkes, Christine V
2016-05-01
Soil moisture constrains the activity of decomposer soil microorganisms, and in turn the rate at which soil carbon returns to the atmosphere. While increases in soil moisture are generally associated with increased microbial activity, historical climate may constrain current microbial responses to moisture. However, it is not known if variation in the shape and magnitude of microbial functional responses to soil moisture can be predicted from historical climate at regional scales. To address this problem, we measured soil enzyme activity at 12 sites across a broad climate gradient spanning 442-887 mm mean annual precipitation. Measurements were made eight times over 21 months to maximize sampling during different moisture conditions. We then fit saturating functions of enzyme activity to soil moisture and extracted half saturation and maximum activity parameter values from model fits. We found that 50% of the variation in maximum activity parameters across sites could be predicted by 30-year mean annual precipitation, an indicator of historical climate, and that the effect is independent of variation in temperature, soil texture, or soil carbon concentration. Based on this finding, we suggest that variation in the shape and magnitude of soil microbial response to soil moisture due to historical climate may be remarkably predictable at regional scales, and this approach may extend to other systems. If historical contingencies on microbial activities prove to be persistent in the face of environmental change, this approach also provides a framework for incorporating historical climate effects into biogeochemical models simulating future global change scenarios. © 2016 John Wiley & Sons Ltd.
2014-02-01
moisture level of 14% dry soil mass was maintained for the duration of the study by weekly additions of ASTM Type I water. Soil samples were collected...maintain the initial soil moisture level. One cluster of Orchard grass straw was harvested from a set of randomly selected replicate containers...decomposition is among the most integrating processes within the soil ecosystem because it involves complex interactions of soil microbial, plant , and
Efficient low-power wireless communication setup for an autonomous soil moisture sensor
NASA Astrophysics Data System (ADS)
Surducan, Vasile; Surducan, Emanoil
2017-12-01
During July 2016 - September 2017, a micro-irrigation system was set up and tested in field and greenhouse-like conditions, using eight inexpensive soil moisture sensors designed and manufactured in our institute. Each sensor was powered by accumulators charged by an (8 × 14) cm2 solar panel. The energy budget was carefully managed to allow long operating time for both the moisture sensor and the irrigation automation. We present here the hardware-software setup implemented in our proprietary moisture sensor for wireless communication, using Bluetooth Low Energy modules (BLE). The autonomy of the system may reach 4-5 cloudy days without the need of recharging the accumulators from the sun. Over the entire operating period, the moisture sensors send data wirelessly every sampling time (15 to 30 minutes) following water drips on the soil for the next 30 seconds, pushed by a low power micro pump. The micro-irrigation process is repeated every sampling time, until the soil moisture threshold is reached. In between the operating states, the sensor and watering automation go to sleep. The software algorithm ensures low energy (max. 2.8 mWh) consumption for the moisture sensor and 20 mWh for the irrigation automation, substantially increasing the accumulators discharge cycle.
Urease activity in different soils of Egypt.
el-Shinnawi, M M
1978-01-01
Samples from two depths (0--15 and 15--30 cm) of five Egyptian soils: sandy, calcareous, fertile alluvial, saline alluvial, and alkali alluvial were tested for urease activity. Samples were treated with farmyard manure at rates of 0 and 0.5% C, and moisture at levels of 50, 65, and 80% of the water holding capacity. The studied Egyptian soils showed different activities of urease. Decreases in the values were shown by depth of sampling and varied in their intensities according to soil type, except for saline soil which revealed an opposite trend by the higher activity of its sub-surface layer. Order of activity was the following: fertile, saline, alkali, calcareous, and sandy soil. Farmyard manure slightly increased the activity of the enzyme. Incubation of moistened samples revealed that the optimum moisture content was 50% of W.H.C. for the tested soils, except for saline which showed best results at 65% of W.H.C.
Design and Test of a Soil Profile Moisture Sensor Based on Sensitive Soil Layers
Liu, Cheng; Qian, Hongzhou; Cao, Weixing; Ni, Jun
2018-01-01
To meet the demand of intelligent irrigation for accurate moisture sensing in the soil vertical profile, a soil profile moisture sensor was designed based on the principle of high-frequency capacitance. The sensor consists of five groups of sensing probes, a data processor, and some accessory components. Low-resistivity copper rings were used as components of the sensing probes. Composable simulation of the sensor’s sensing probes was carried out using a high-frequency structure simulator. According to the effective radiation range of electric field intensity, width and spacing of copper ring were set to 30 mm and 40 mm, respectively. A parallel resonance circuit of voltage-controlled oscillator and high-frequency inductance-capacitance (LC) was designed for signal frequency division and conditioning. A data processor was used to process moisture-related frequency signals for soil profile moisture sensing. The sensor was able to detect real-time soil moisture at the depths of 20, 30, and 50 cm and conduct online inversion of moisture in the soil layer between 0–100 cm. According to the calibration results, the degree of fitting (R2) between the sensor’s measuring frequency and the volumetric moisture content of soil sample was 0.99 and the relative error of the sensor consistency test was 0–1.17%. Field tests in different loam soils showed that measured soil moisture from our sensor reproduced the observed soil moisture dynamic well, with an R2 of 0.96 and a root mean square error of 0.04. In a sensor accuracy test, the R2 between the measured value of the proposed sensor and that of the Diviner2000 portable soil moisture monitoring system was higher than 0.85, with a relative error smaller than 5%. The R2 between measured values and inversed soil moisture values for other soil layers were consistently higher than 0.8. According to calibration test and field test, this sensor, which features low cost, good operability, and high integration, is qualified for precise agricultural irrigation with stable performance and high accuracy. PMID:29883420
Design and Test of a Soil Profile Moisture Sensor Based on Sensitive Soil Layers.
Gao, Zhenran; Zhu, Yan; Liu, Cheng; Qian, Hongzhou; Cao, Weixing; Ni, Jun
2018-05-21
To meet the demand of intelligent irrigation for accurate moisture sensing in the soil vertical profile, a soil profile moisture sensor was designed based on the principle of high-frequency capacitance. The sensor consists of five groups of sensing probes, a data processor, and some accessory components. Low-resistivity copper rings were used as components of the sensing probes. Composable simulation of the sensor’s sensing probes was carried out using a high-frequency structure simulator. According to the effective radiation range of electric field intensity, width and spacing of copper ring were set to 30 mm and 40 mm, respectively. A parallel resonance circuit of voltage-controlled oscillator and high-frequency inductance-capacitance (LC) was designed for signal frequency division and conditioning. A data processor was used to process moisture-related frequency signals for soil profile moisture sensing. The sensor was able to detect real-time soil moisture at the depths of 20, 30, and 50 cm and conduct online inversion of moisture in the soil layer between 0⁻100 cm. According to the calibration results, the degree of fitting ( R ²) between the sensor’s measuring frequency and the volumetric moisture content of soil sample was 0.99 and the relative error of the sensor consistency test was 0⁻1.17%. Field tests in different loam soils showed that measured soil moisture from our sensor reproduced the observed soil moisture dynamic well, with an R ² of 0.96 and a root mean square error of 0.04. In a sensor accuracy test, the R ² between the measured value of the proposed sensor and that of the Diviner2000 portable soil moisture monitoring system was higher than 0.85, with a relative error smaller than 5%. The R ² between measured values and inversed soil moisture values for other soil layers were consistently higher than 0.8. According to calibration test and field test, this sensor, which features low cost, good operability, and high integration, is qualified for precise agricultural irrigation with stable performance and high accuracy.
Assessment of Evapotranspiration and Soil Moisture Content Across Different Scales of Observation
Verstraeten, Willem W.; Veroustraete, Frank; Feyen, Jan
2008-01-01
The proper assessment of evapotranspiration and soil moisture content are fundamental in food security research, land management, pollution detection, nutrient flows, (wild-) fire detection, (desert) locust, carbon balance as well as hydrological modelling; etc. This paper takes an extensive, though not exhaustive sample of international scientific literature to discuss different approaches to estimate land surface and ecosystem related evapotranspiration and soil moisture content. This review presents: (i)a summary of the generally accepted cohesion theory of plant water uptake and transport including a shortlist of meteorological and plant factors influencing plant transpiration;(ii)a summary on evapotranspiration assessment at different scales of observation (sap-flow, porometer, lysimeter, field and catchment water balance, Bowen ratio, scintillometer, eddy correlation, Penman-Monteith and related approaches);(iii)a summary on data assimilation schemes conceived to estimate evapotranspiration using optical and thermal remote sensing; and(iv)for soil moisture content, a summary on soil moisture retrieval techniques at different spatial and temporal scales is presented. Concluding remarks on the best available approaches to assess evapotranspiration and soil moisture content with and emphasis on remote sensing data assimilation, are provided. PMID:27879697
Remote Sensing of Soil Moisture: A Comparison of Optical and Thermal Methods
NASA Astrophysics Data System (ADS)
Foroughi, H.; Naseri, A. A.; Boroomandnasab, S.; Sadeghi, M.; Jones, S. B.; Tuller, M.; Babaeian, E.
2017-12-01
Recent technological advances in satellite and airborne remote sensing have provided new means for large-scale soil moisture monitoring. Traditional methods for soil moisture retrieval require thermal and optical RS observations. In this study we compared the traditional trapezoid model parameterized based on the land surface temperature - normalized difference vegetation index (LST-NDVI) space with the recently developed optical trapezoid model OPTRAM parameterized based on the shortwave infrared transformed reflectance (STR)-NDVI space for an extensive sugarcane field located in Southwestern Iran. Twelve Landsat-8 satellite images were acquired during the sugarcane growth season (April to October 2016). Reference in situ soil moisture data were obtained at 22 locations at different depths via core sampling and oven-drying. The obtained results indicate that the thermal/optical and optical prediction methods are comparable, both with volumetric moisture content estimation errors of about 0.04 cm3 cm-3. However, the OPTRAM model is more efficient because it does not require thermal data and can be universally parameterized for a specific location, because unlike the LST-soil moisture relationship, the reflectance-soil moisture relationship does not significantly vary with environmental variables (e.g., air temperature, wind speed, etc.).
DOE Office of Scientific and Technical Information (OSTI.GOV)
KB Olsen; GW Patton; R Poreda
2000-07-05
In 1999, soil gas samples for helium-3 measurements were collected at two locations on the Hanford Site. Eight soil gas sampling points ranging in depth from 1.5 to 9.8 m (4.9 to 32 ft) below ground surface (bgs) in two clusters were installed adjacent to well 699-41-1, south of the Hanford Townsite. Fifteen soil gas sampling points, ranging in depth from 2.1 to 3.2 m (7 to 10.4 ft) bgs, were installed to the north and east of the 100 KE Reactor. Gas phase soil moisture samples were collected using silica gel traps from all eight sampling locations adjacent tomore » well 699-41-1 and eight locations at the 100 K Area. No detectable tritium (<240 pCi/L) was found in the soil moisture samples from either the Hanford Townsite or 100 K Area sampling points. This suggests that tritiated moisture from groundwater is not migrating upward to the sampling points and there are no large vadose zone sources of tritium at either location. Helium-3 analyses of the soil gas samples showed significant enrichments relative to ambient air helium-3 concentrations with a depth dependence consistent with a groundwater source from decay of tritium. Helium-3/helium-4 ratios (normalized to the abundances in ambient air) at the Hanford Townsite ranged from 1.012 at 1.5 m (5 ft) bgs to 2.157 at 9.8 m (32 ft) bgs. Helium-3/helium-4 ratios at the 100 K Area ranged from 0.972 to 1.131. Based on results from the 100 K Area, the authors believe that a major tritium plume does not lie within that study area. The data also suggest there may be a tritium groundwater plume or a source of helium-3 to the southeast of the study area. They recommend that the study be continued by placing additional soil gas sampling points along the perimeter road to the west and to the south of the initial study area.« less
The use of Vacutainer tubes for collection of soil samples for helium analysis
Hinkle, Margaret E.; Kilburn, James E.
1979-01-01
Measurements of the helium concentration of soil samples collected and stored in Vacutainer-brand evacuated glass tubes show that Vacutainers are reliable containers for soil collection. Within the limits of reproducibility, helium content of soils appears to be independent of variations in soil temperature, barometric pressure, and quantity of soil moisture present in the sample.
Impacts of soil moisture content on visual soil evaluation
NASA Astrophysics Data System (ADS)
Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Bondi, Giulia; Creamer, Rachel; Holden, Nick
2017-04-01
Visual Soil Examination and Evaluation (VSE) techniques offer tools for soil quality assessment. They involve the visual and tactile assessment of soil properties such as aggregate size and shape, porosity, redox morphology, soil colour and smell. An increasing body of research has demonstrated the reliability and utility of VSE techniques. However a number of limitations have been identified, including the potential impact of soil moisture variation during sampling. As part of a national survey of grassland soil quality in Ireland, an evaluation of the impact of soil moisture on two widely used VSE techniques was conducted. The techniques were Visual Evaluation of Soil Structure (VESS) (Guimarães et al., 2011) and Visual Soil Assessment (VSA) (Shepherd, 2009). Both generate summarising numeric scores that indicate soil structural quality, though employ different scoring mechanisms. The former requires the assessment of properties concurrently and the latter separately. Both methods were deployed on 20 sites across Ireland representing a range of soils. Additional samples were taken for soil volumetric water (θ) determination at 5-10 and 10-20 cm depth. No significant correlation was observed between θ 5-10 cm and either VSE technique. However, VESS scores were significantly related to θ 10-20 cm (rs = 0.40, sig = 0.02) while VSA scores were not (rs = -0.33, sig = 0.06). VESS and VSA scores can be grouped into quality classifications (good, moderate and poor). No significant mean difference was observed between θ 5-10 cm or θ 10-20 cm according to quality classification by either method. It was concluded that VESS scores may be affected by soil moisture variation while VSA appear unaffected. The different scoring mechanisms, where the separate assessment and scoring of individual properties employed by VSA, may limit soil moisture effects. However, moisture content appears not to affect overall structural quality classification by either method. References Guimarães, R.M.C., Ball, B.C. & Tormena, C.A. 2011. Improvements in the visual evaluation of soil structure, Soil Use and Management, 27, 3: 395-403 Shepherd, G.T. 2009. Visual Soil Assessment. Field guide for pastoral grazing and cropping on flat to rolling country. 2nd edn. Horizons regional council, New Zealand.
Towards Validation of SMAP: SMAPEX-4 & -5
NASA Technical Reports Server (NTRS)
Ye, Nan; Walker, Jeffrey; Wu, Xiaoling; Jackson, Thomas; Renzullo, Luigi; Merlin, Olivier; Rudiger, Christoph; Entekhabi, Dara; DeJeu, Richard; Kim, Edward
2016-01-01
The L-band (1 - 2 GHz) microwave remote sensing has been widely acknowledged as the most promising method to monitor regional to global soil moisture. Consequently, the Soil Moisture Active Passive (SMAP) satellite applied this technique to provide global soil moisture every 2 to 3 days. To verify the performance of SMAP, the fourth and fifth campaign of SMAP Experiments (SMAPEx-4 -5) were carried out at the beginning of the SMAP operational phase in the Murrumbidgee River catchment, southeast Australia. The airborne radar and radiometer observations together with ground sampling on soil moisture, vegetation water content, and surface roughness were collected in coincidence with SMAP overpasses. The SMAPEx-4 and -5 data sets will benefit to SMAP post-launch calibration andvalidation under Australian land surface conditions.
Experimental study of nonlinear ultrasonic behavior of soil materials during the compaction.
Chen, Jun; Wang, Hao; Yao, Yangping
2016-07-01
In this paper, the nonlinear ultrasonic behavior of unconsolidated granular medium - soil during the compaction is experimentally studied. The second harmonic generation technique is adopted to investigate the change of microstructural void in materials during the compaction process of loose soils. The nonlinear parameter is measured with the change of two important environmental factors i.e. moisture content and impact energy of compaction. It is found the nonlinear parameter of soil material presents a similar variation pattern with the void ratio of soil samples, corresponding to the increased moisture content and impact energy. A same optimum moisture content is found by observing the variation of nonlinear parameter and void ratio with respect to moisture content. The results indicate that the unconsolidated soil is manipulated by a strong material nonlinearity during the compaction procedure. The developed experimental technique based on the second harmonic generation could be a fast and convenient testing method for the determination of optimum moisture content of soil materials, which is very useful for the better compaction effect of filled embankment for civil infrastructures in-situ. Copyright © 2016 Elsevier B.V. All rights reserved.
Station for spatially distributed measurements of soil moisture and ambient temperature
NASA Astrophysics Data System (ADS)
Jankovec, Jakub; Šanda, Martin; Haase, Tomáš; Sněhota, Michal; Wild, Jan
2013-04-01
Third generation of combined thermal and soil moisture standalone field station coded TMS3 with wireless communication is presented. The device combines three thermometers (MAXIM/DALLAS Semiconductor DS7505U with -55 to +125°C range and 0.0625°C resolution, 0.5°C precision in 0 to +70°C range and 2°C precision out of this range). Soil moisture measurement is performed based on time domain transmission (TDT) principle for the full range of soil moisture with 0.025% resolution within the full possible soil moisture span for the most typical conditions of dry to saturated soils with safe margins to enable measurements in freezing, hot or saline soils. Principal compact version is designed for temperature measurements approximately at heights -10, 0 and +15 cm relative to soil surface when installed vertically and soil moisture measurements between 0 and 12 cm below surface. Set of buriable/subsurface stations each with 2.2 meter extension cord with soil and surface temperature measurement provides possibility to scan vertical soil profile for soil moisture and temperature at desired depths. USB equipped station is designed for streamed direct data acquisition in laboratory use in 1s interval. Station is also equipped with the shock sensor indicating the manipulation. Presented version incorporates life time permanent data storage (0.5 million logs). Current sensor design aims towards improved durability in harsh outdoor environment with reliable functioning in wet conditions withstanding mechanical or electric shock destruction. Insertion into the soil is possible by pressing with the use of a simple plastic cover. Data are retrieved by contact portable pocket collector (second generation) or by RFID wireless communication for hundreds meter distance (third generation) in either star pattern of GSM hub to stations or lined up GSM to station to another station both in comprised data packets. This option will allow online data harvesting and real time process control (e.g. optimized irrigation) by the end of 2013. User selected regimes of scanning in the field standalone model is 1,5 or 15 minutes for soil moisture and 1, 5, 10 or 15 minutes for the temperature (in their practical combinations) with a battery and datastorage lifetime ranging 1 - 10 years. Basic station diagnostics is recorded daily, comprehensive check is performed monthly. The TMS2 undergoes calibration on sets of soils. Disturbed and packed cylindrical soil samples (approx. 20 liter) were subject to forced bottom air ventilation to distribute the moisture evenly along vertical axis during drying the sample with increased intensity. Database of soil-specific calibration curves is being built for various soil samples. TMS2 station has been calibrated for soil materials: sandy loam, quartz sand and peat. Calibration on selected undisturbed 7 liter samples, previously CT scanned for correct sensor placement, is in the progress. Temperature and salinity influence on the soil moisture results in drift of 0.05%/°C and 7%/(in full range of 0 to 10 miliSiemens/cm) and additional 2%/(in the range of 10 to 20 miliSiemens/cm) as found in 100% moisture solution. Extended testing of TMS1 generation, predecessor of current design, is successfully performed in variety of field locations (central Europe, central Africa, Himalaya region). Results of long-term measurement at hundreds of localities are successfully used for i) evaluation of species-specific environmental requirements (for different species of plants, bryophytes and fungi) and ii) extrapolation of microclimatic conditions over large areas of rugged sandstone relief with assistance of accurate, LiDAR based, digital terrain model. TMS1 units are e.g. also applied for continuous measurement of temperature and moisture of coarse woody debris, which serves as an important substrate for establishment and growth of seedlings and is thus crucial for natural regeneration of many forest ecosystems. The research is supported by the Technology Agency of the Czech Republic projects No. TA01021283 and SGS12/130/OHK1/2T/11.
Temporal changes in soil water repellency linked to the soil respiration and CH4 and CO2 fluxes
NASA Astrophysics Data System (ADS)
Qassem, Khalid; Urbanek, Emilia; van Keulen, Geertje
2014-05-01
Soil water repellency (SWR) is known to be a spatially and temporally variable phenomenon. The seasonal changes in soil moisture lead to development of soil water repellency, which in consequence may affect the microbial activity and in consequence alter the CO2 and CH4 fluxes from soils. Soil microbial activity is strongly linked to the temperature and moisture status of the soil. In terms of CO2 flux intermediate moisture contents are most favourable for the optimal microbial activity and highest CO2 fluxes. Methanogenesis occurs primarily in anaerobic water-logged habitats while methanotrophy is a strictly aerobic process. In the study we hypothesise that the changes in CO2 and CH4 fluxes are closely linked to critical moisture thresholds for soil water repellency. This research project aims to adopt a multi-disciplinary approach to comprehensively determine the effect of SWR on CO2 and CH4 fluxes. Research is conducted in situ at four sites exhibiting SWR in the southern UK. Flux measurements are carried out concomitant with meteorological and SWR observations Field observations are supported by laboratory measurements carried out on intact soil samples collected at the above identified field sites. The laboratory analyses are conducted under constant temperatures with controlled changes of soil moisture content. Methanogenic and Methanotrophic microbial populations are being analysed at different SWR and moisture contents using the latest metagenomic and metatranscriptomic approaches. Currently available data show that greenhouse gas flux are closely linked with soil moisture thresholds for SWR development.
NASA Astrophysics Data System (ADS)
Bogena, H. R.; Metzen, D.; Baatz, R.; Hendricks Franssen, H.; Huisman, J. A.; Montzka, C.; Vereecken, H.
2011-12-01
Measurements of low-energy secondary neutron intensity above the soil surface by cosmic-ray soil moisture probes (CRP) can be used to estimate soil moisture content. CRPs utilise the fact that high-energy neutrons initiated by cosmic rays are moderated (slowed to lower energies) most effectively by collisions with hydrogen atoms contained in water molecules in the soil. The conversion of neutron intensity to soil moisture content can potentially be complicated because neutrons are also moderated by aboveground water storage (e.g. vegetation water content, canopy storage of interception). Recently, it was demonstrated experimentally that soil moisture content derived from CRP measurements agrees well with average moisture content from gravimetric soil samples taken within the footprint of the cosmic ray probe, which is proposed to be up to several hundred meters in size [1]. However, the exact extension and shape of the CRP integration footprint is still an open question and it is also unclear how CRP measurements are affected by the soil moisture distribution within the footprint both in horizontal and vertical directions. In this paper, we will take advantage of an extensive wireless soil moisture sensor network covering most of the estimated footprint of the CRP. The network consists of 150 nodes and 900 soil moisture sensors which were installed in the small forested Wüstebach catchment (~27 ha) in the framework of the Transregio32 and the Helmholtz initiative TERENO (Terrestrial Environmental Observatories) [2]. This unique soil moisture data set provides a consistent picture of the hydrological status of the catchment in a high spatial and temporal resolution and thus the opportunity to evaluate the CRP measurements in a rigorous way. We will present first results of the comparison with a specific focus on the sensitivity of the CRP measurements to soil moisture variation in both the horizontal and vertical direction. Furthermore, the influence of forest biomass and shallow groundwater table fluctuations on the attenuation of cosmic-ray neutrons will be considered.
NASA Astrophysics Data System (ADS)
Lakshmi, V.; Mladenova, I. E.; Narayan, U.
2009-12-01
Soil moisture is known to be an essential factor in controlling the partitioning of rainfall into surface runoff and infiltration and solar energy into latent and sensible heat fluxes. Remote sensing has long proven its capability to obtain soil moisture in near real-time. However, at the present time we have the Advanced Scanning Microwave Radiometer (AMSR-E) on board NASA’s AQUA platform is the only satellite sensor that supplies a soil moisture product. AMSR-E coarse spatial resolution (~ 50 km at 6.9 GHz) strongly limits its applicability for small scale studies. A very promising technique for spatial disaggregation by combining radar and radiometer observations has been demonstrated by the authors using a methodology is based on the assumption that any change in measured brightness temperature and backscatter from one to the next time step is due primarily to change in soil wetness. The approach uses radiometric estimates of soil moisture at a lower resolution to compute the sensitivity of radar to soil moisture at the lower resolution. This estimate of sensitivity is then disaggregated using vegetation water content, vegetation type and soil texture information, which are the variables on which determine the radar sensitivity to soil moisture and are generally available at a scale of radar observation. This change detection algorithm is applied to several locations. We have used aircraft observed active and passive data over Walnut Creek watershed in Central Iowa in 2002; the Little Washita Watershed in Oklahoma in 2003 and the Murrumbidgee Catchment in southeastern Australia for 2006. All of these locations have different soils and land cover conditions which leads to a rigorous test of the disaggregation algorithm. Furthermore, we compare the derived high spatial resolution soil moisture to in-situ sampling and ground observation networks
NASA Astrophysics Data System (ADS)
Becker, R.; Gebremichael, M.; Marker, M.
2015-12-01
Soil moisture is one of the main input variables for hydrological models. However due to the high spatial and temporal variability of soil properties it is often difficult to obtain accurate soil information at the required resolution. The new satellite SMAP promises to deliver soil moisture information at higher resolutions and could therefore improve the results of hydrological models. Nevertheless it still has to be investigated how precisely the SMAP soil moisture data can be used to delineate rainfall-runoff generation processes and if SMAP imagery can significantly improve the results of surface runoff models. Important parameters to understand the spatiotemporal distribution of soil humidity are infiltration and hydraulic conductivities apart from soil texture and macrostructure. During the SMAPVEX15-field campaign data on hydraulic conductivity and infiltration rates is collected in the Walnut Gulch Experimental Watershed (WGEW) in Southeastern Arizona in order to analyze the spatiotemporal variability of soil hydraulic properties. A Compact Constant Head Permeameter is used for in situ measurements of saturated hydraulic conductivity within the soil layers and a Hood Infiltrometer is used to determine infiltration rates at the undisturbed soil surface. Sampling sites were adjacent to the USDA-ARS meteorological and soil moisture measuring sites in the WGEW to take advantage of the long-term database of soil and climate data. Furthermore a sample plot of 3x3km was selected, where the spatial variability of soil hydraulic properties within a SMAP footprint was investigated. The results of the ground measurement based analysis are then compared with the remote sensing data derived from SMAP and aircraft-based microwave data to determine how well these spatiotemporal variations are captured by the remotely sensed data with the final goal of evaluating the use of future satellite soil moisture products for the improvement of rainfall runoff models. The results reveal several interesting features on the spatiotemporal variability of soil moisture at multiple scales, and the capabilities and limitations of remote sensing derived products in reproducing them.
NASA Astrophysics Data System (ADS)
Zhang, W.; Yi, Y.; Yang, K.; Kimball, J. S.
2016-12-01
The Tibetan Plateau (TP) is underlain by the world's largest extent of alpine permafrost ( 2.5×106 km2), dominated by sporadic and discontinuous permafrost with strong sensitivity to climate warming. Detailed permafrost distributions and patterns in most of the TP region are still unknown due to extremely sparse in-situ observations in this region characterized by heterogeneous land cover and large temporal dynamics in surface soil moisture conditions. Therefore, satellite-based temperature and moisture observations are essential for high-resolution mapping of permafrost distribution and soil active layer changes in the TP region. In this study, we quantify the TP regional permafrost distribution at 1-km resolution using a detailed satellite data-driven soil thermal process model (GIPL2). The soil thermal model is calibrated and validated using in-situ soil temperature/moisture observations from the CAMP/Tibet field campaign (9 sites: 0-300 cm soil depth sampling from 1997-2007), a multi-scale soil moisture and temperature monitoring network in the central TP (CTP-SMTMN, 57 sites: 5-40 cm, 2010-2014) and across the whole plateau (China Meteorology Administration, 98 sites: 0-320 cm, 2000-2015). Our preliminary results using the CAMP/Tibet and CTP-SMTMN network observations indicate strong controls of surface thermal and soil moisture conditions on soil freeze/thaw dynamics, which vary greatly with underlying topography, soil texture and vegetation cover. For regional mapping of soil freeze/thaw and permafrost dynamics, we use the most recent soil moisture retrievals from the NASA SMAP (Soil Moisture Active Passive) sensor to account for the effects of temporal soil moisture dynamics on soil thermal heat transfer, with surface thermal conditions defined by MODIS (Moderate Resolution Imaging Spectroradiometer) land surface temperature records. Our study provides the first 1-km map of spatial patterns and recent changes of permafrost conditions in the TP.
Mode Decomposition Methods for Soil Moisture Prediction
NASA Astrophysics Data System (ADS)
Jana, R. B.; Efendiev, Y. R.; Mohanty, B.
2014-12-01
Lack of reliable, well-distributed, long-term datasets for model validation is a bottle-neck for most exercises in soil moisture analysis and prediction. Understanding what factors drive soil hydrological processes at different scales and their variability is very critical to further our ability to model the various components of the hydrologic cycle more accurately. For this, a comprehensive dataset with measurements across scales is very necessary. Intensive fine-resolution sampling of soil moisture over extended periods of time is financially and logistically prohibitive. Installation of a few long term monitoring stations is also expensive, and needs to be situated at critical locations. The concept of Time Stable Locations has been in use for some time now to find locations that reflect the mean values for the soil moisture across the watershed under all wetness conditions. However, the soil moisture variability across the watershed is lost when measuring at only time stable locations. We present here a study using techniques such as Dynamic Mode Decomposition (DMD) and Discrete Empirical Interpolation Method (DEIM) that extends the concept of time stable locations to arrive at locations that provide not simply the average soil moisture values for the watershed, but also those that can help re-capture the dynamics across all locations in the watershed. As with the time stability, the initial analysis is dependent on an intensive sampling history. The DMD/DEIM method is an application of model reduction techniques for non-linearly related measurements. Using this technique, we are able to determine the number of sampling points that would be required for a given accuracy of prediction across the watershed, and the location of those points. Locations with higher energetics in the basis domain are chosen first. We present case studies across watersheds in the US and India. The technique can be applied to other hydro-climates easily.
Microwave radiometer experiment of soil moisture sensing at BARC test site during summer 1981
NASA Technical Reports Server (NTRS)
Wang, J.; Jackson, T.; Engman, E. T.; Gould, W.; Fuchs, J.; Glazer, W.; Oneill, P.; Schmugge, T. J.; Mcmurtrey, J., III
1984-01-01
Soil moisture was measured by truck mounted microwave radiometers at the frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz. The soil textures in the two test sites were different so that the soil type effect of microwave radiometric response could be studied. Several fields in each test site were prepared with different surface roughnesses and vegetation covers. Ground truth on the soil moisture, temperature, and the biomass of the vegetation was acquired in support of the microwave radiometric measurements. Soil bulk density for each of the fields in both test sites was sampled. The soils in both sites were measured mechanically and chemically. A tabulation of the measured data is presented and the sensors and operational problems associated with the measurements are discussed.
W.H. McNab
1991-01-01
Soil moisture content was intensively sampled in three, 1-acre blocks containing an opening and surrounding mature upland hardwoods. Openings covering 0.19-0.26 ac were created by group-selection cutting, and they were occupied by 1-year-old trees and shrubs.
Fraters, Dico; Boom, Gerard J F L; Boumans, Leo J M; de Weerd, Henk; Wolters, Monique
2017-02-01
The solute concentration in the subsoil beneath the root zone is an important parameter for leaching assessment. Drainage centrifugation is considered a simple and straightforward method of determining soil solution chemistry. Although several studies have been carried out to determine whether this method is robust, hardly any results are available for loess subsoils. To study the effect of centrifugation conditions on soil moisture recovery and solute concentration, we sampled the subsoil (1.5-3.0 m depth) at commercial farms in the loess region of the Netherlands. The effect of time (20, 35, 60, 120 and 240 min) on recovery was studied at two levels of the relative centrifugal force (733 and 6597g). The effect of force on recovery was studied by centrifugation for 35 min at 117, 264, 733, 2932, 6597 and 14,191g. All soil moisture samples were chemically analysed. This study shows that drainage centrifugation offers a robust, reproducible and standardised way for determining solute concentrations in mobile soil moisture in silt loam subsoils. The centrifugal force, rather than centrifugation time, has a major effect on recovery. The maximum recovery for silt loams at field capacity is about 40%. Concentrations of most solutes are fairly constant with an increasing recovery, as most solutes, including nitrate, did not show a change in concentration with an increasing recovery.
Manrique-Alba, Àngela; Ruiz-Yanetti, Samantha; Moutahir, Hassane; Novak, Klemen; De Luis, Martin; Bellot, Juan
2017-01-01
In Mediterranean areas with limited availability of water, an accurate knowledge of growth response to hydrological variables could contribute to improving management and stability of forest resources. The main goal of this study is to assess the temporal dynamic of soil moisture to better understand the water-growth relationship of Pinus halepensis forests in semiarid areas. The estimates of modelled soil moisture and measured tree growth were used at four sites dominated by afforested Pinus halepensis Mill. in south-eastern Spain with 300 to 609mm mean annual precipitation. Firstly, dendrochronological samples were extracted and the widths of annual tree rings were measured to compute basal area increments (BAI). Secondly, soil moisture was estimated over 20 hydrological years (1992-2012) by means of the HYDROBAL ecohydrological model. Finally, the tree growth was linked, to mean monthly and seasonal temperature, precipitation and soil moisture. Results depict the effect of soil moisture on growth (BAI) and explain 69-73% of the variance in semiarid forests, but only 51% in the subhumid forests. This highlights the fact that that soil moisture is a suitable and promising variable to explain growth variations of afforested Pinus halepensis in semiarid conditions and useful for guiding adaptation plans to respond pro-actively to water-related global challenges. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kaiser, Michael; Grunwald, Dennis; Koch, Heinz-Josef; Rauber, Rolf; Ludwig, Bernard
2017-04-01
The formation of aggregates is of large importance for the structure and the storage of organic matter (OM) in soil. Although positive effects of organic soil additives on the formation of macro-aggregates (> 250 µm) have been reported, the influence of biochar especially applied in combination with other organic amendments remains unclear. Furthermore, studies on the effect of varying soil moisture conditions in form of drying-rewetting cycles on soil aggregate dynamics in the presence of biochar are almost missing. The objectives of this study were to analyze the effects of biochar and slurry applied to the soil individually or in combination on the formation of macro-aggregates under constant and under varying moisture conditions. We sampled four silty loam soils, carefully crushed the soil macro-aggregates, and incubated the soil at 15 °C for 60 days with the following additions: (i) none (control), (ii) biochar (12 % of dry soil mass), (iii) slurry (150 kg N ha-1), (iv) biochar (6 %) + slurry (75 kg N ha-1), (v) biochar (12 %) + slurry (75 kg N ha-1), (vi) biochar (6 %) + slurry (150 kg N ha-1) and (vii) biochar (12 %) + slurry (150 kg N ha-1). The samples were further subdivided into two groups that were incubated under conditions of constant soil moisture and of three drying-rewetting cycles. The CO2 fluxes were continuously measured during the incubation period and the samples were analyzed for microbial biomass C, macro-aggregate yields and macro-aggregate-associated C after finishing the experiment. We found the application of biochar to result in lower macro-aggregate yields with or without slurry compared to the control or the individual slurry application. In contrast, similar or higher C contents in the macro-aggregate fraction of the biochar treatments as compared to the control or slurry treatments were found indicating an occlusion of biochar in macro-aggregates. Due to the sorption characteristics of biochar, we assume the aggregate formation to be partially abiotic with direct interactions between biochar, (adsorbed) slurry, and the mineral phase of the soil. Therefore, in the presence of slurry, a prolonged period of microbial processing does not seem to be necessary to render the biochar suitable to form aggregates. Drying and rewetting of the samples resulted in significantly lower aggregate yields especially for the biochar/slurry mixtures. The drying of slurry as thought to be the most important macro-aggregate binding agent in these treatments might irreversibly disrupt large amounts of the macro-aggregates formed. Additionally, the general lower microbial biomass C and CO2 emissions for the samples experiencing drying-rewetting cycles compared to the constantly moist soils point toward less microbial activity under varying moisture conditions. This might have led to less microbial derived aggregate binding agents contributing to the lower aggregate yields found for the samples from the drying-rewetting treatments. Beside the amount and type of binding agents derived from organic soil additives, the formation and stability of soil macro-aggregate seem also to be controlled by climatically controlled soil moisture conditions.
NASA Astrophysics Data System (ADS)
Azza, Gorrab; Zribi, Mehrez; Baghdadi, Nicolas; Mougenot, Bernard; Boulet, Gilles; Lili-Chabaane, Zohra
2015-04-01
Mapping surface soil moisture with meter-scale spatial resolution is appropriate for multi- domains particularly hydrology and agronomy. It allows water resources and irrigation management decisions, drought monitoring and validation of multi-hydrological water balance models. In the last years, various studies have demonstrated the large potential of radar remote sensing data, mainly from C frequency band, to retrieve soil moisture. However, the accuracy of the soil moisture estimation, by inversing backscattering radar coefficients (σ°), is affected by the influence of surface roughness and vegetation biomass contributions. In recent years, different empirical, semi empirical and physical approaches are developed for bare soil conditions, to estimate accurately spatial soil moisture variability. In this study, we propose an approach based on the change detection method for the retrieval of surface soil moisture at a higher spatial resolution. The proposal algorithm combines multi-temporal X-band SAR images (TerraSAR-X) with different continuous thetaprobe measurements. Seven thetaprobe stations are installed at different depths over the central semi arid region of Tunisia (9°23' - 10°17' E, 35° 1'-35°55' N). They cover approximately the entire of our study site and provide regional scale information. Ground data were collected over agricultural bare soil fields simultaneously to various TerraSAR-X data acquired during 2013-2014 and 2014-2015. More than fourteen test fields were selected for each spatial acquisition campaign, with variations in soil texture and in surface soil roughness. For each date, we considered the volumetric water content with thetaprobe instrument and gravimetric sampling; we measured also the roughness parameters with pin profilor. To retrieve soil moisture from X-band SAR data, we analyzed statistically the sensitivity between radar measurements and ground soil moisture derived from permanent thetaprobe stations. Our analyses are applied over bare soil class identified from an optical image SPOT / HRV acquired in the same period of the measurements. Results have shown linear relationship for the radar signals as a function of volumetric soil moisture with high sensitivity about 0.21 dB/vol%. For estimation of change in soil moisture, we considered two options: On the first one, we applied the change detection approach between successive radar images (∆σ°) assuming unchanged soil roughness effects. Our soil moisture retrieval algorithm was validated on the basis of comparisons between estimated and in situ soil moisture measurements over test fields. Using this option, results have shown an accuracy (RMSE) of about 4.8 %. Secondly, we corrected the sensitivity of the radar backscatter images to the surface roughness variability. Results have shown a reduction of the difference between the retrieved soil moisture and ground measurements with an RMSE about 3.7%.
Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images
NASA Astrophysics Data System (ADS)
Cumbrera, Ramiro; Tarquis, Ana M.; Gascó, Gabriel; Millán, Humberto
2012-07-01
SummaryImage analysis could be a useful tool for investigating the spatial patterns of apparent soil moisture at multiple resolutions. The objectives of the present work were (i) to define apparent soil moisture patterns from vertical planes of Vertisol pit images and (ii) to describe the scaling of apparent soil moisture distribution using fractal parameters. Twelve soil pits (0.70 m long × 0.60 m width × 0.30 m depth) were excavated on a bare Mazic Pellic Vertisol. Six of them were excavated in April/2011 and six pits were established in May/2011 after 3 days of a moderate rainfall event. Digital photographs were taken from each Vertisol pit using a Kodak™ digital camera. The mean image size was 1600 × 945 pixels with one physical pixel ≈373 μm of the photographed soil pit. Each soil image was analyzed using two fractal scaling exponents, box counting (capacity) dimension (DBC) and interface fractal dimension (Di), and three prefractal scaling coefficients, the total number of boxes intercepting the foreground pattern at a unit scale (A), fractal lacunarity at the unit scale (Λ1) and Shannon entropy at the unit scale (S1). All the scaling parameters identified significant differences between both sets of spatial patterns. Fractal lacunarity was the best discriminator between apparent soil moisture patterns. Soil image interpretation with fractal exponents and prefractal coefficients can be incorporated within a site-specific agriculture toolbox. While fractal exponents convey information on space filling characteristics of the pattern, prefractal coefficients represent the investigated soil property as seen through a higher resolution microscope. In spite of some computational and practical limitations, image analysis of apparent soil moisture patterns could be used in connection with traditional soil moisture sampling, which always renders punctual estimates.
Simultaneous field measurements of biogenic emissions of nitric oxide and nitrous oxide
NASA Technical Reports Server (NTRS)
Anderson, Iris Cofman; Levine, Joel S.
1987-01-01
Seasonal and diurnal emissions of NO and N2O from agricultural sites in Jamestown, Virginia and Boulder, Colorado are estimated in terms of soil temperature; percent moisture; and exchangeable nitrate, nitrite, and ammonium concentrations. The techniques and procedures used to analyze the soil parameters are described. The spatial and temporal variability of the NO and N2O emissions is studied. A correlation between NO fluxes in the Virginia sample and nitrate concentration, temperature, and percent moisture is detected, and NO fluxes for the Colorado site correspond with temperature and moisture. It is observed that the N2O emissions are only present when percent moisture approaches or exceeds the field capacity of the soil. The data suggest that NO is produced primarily by nitrification in aerobic soils, and N2O is formed by denitrification in anaerobic soils.
NASA Astrophysics Data System (ADS)
Reppucci, Antonio; Moreno, Laura
2010-12-01
Information on Soil moisture spatial and temporal evolution is of great importance for managing the utilization of soils and vegetation, in particular in environments where the water resources are scarce. In-situ measurement of soil moisture are costly and not able to sample the spatial behaviour of a whole region. Thanks to their all weather capability and wide coverage, Synthetic Aperture Radar (SAR) images offer the opportunity to monitor large area with high resolution. This study presents the results of a project, partially founded by the Catalan government, to improve the monitoring of soil moisture using Earth Observation data. In particular the project is focused on the calibration of existing semi-empirical algorithm in the area of study. This will be done using co-located SAR and in-situ measurements acquired during several field campaigns. Observed deviations between SAR measurements and in-situ measurement are discussed.
NASA Astrophysics Data System (ADS)
Thongkhao, Thanakrit; Phantuwongraj, Sumet; Choowong, Montri; Thitimakorn, Thanop; Charusiri, Punya
2015-11-01
One devastating landslide event in northern Thailand occurred in 2006 at Ban Nong Pla village, Chiang Klang highland of Nan province after, a massive amount of residual soil moved from upstream to downstream, via creek tributaries, into a main stream after five days of unusual heavy rainfall. In this paper, the geological and engineering properties of residual soil derived fromsedimentary rocks were analyzed and integrated. Geological mapping, electrical resistivity survey and test pits were carried out along three transect lines together with systematic collection of undisturbed and disturbed residual soil samples. As a result, the average moisture content in soil is 24.83% with average specific gravity of 2.68,whereas the liquid limit is 44.93%, plastic limit is 29.35% and plastic index is 15.58%. The cohesion of soil ranges between 0.096- 1.196 ksc and the angle of internal friction is between 11.51 and 35.78 degrees. This suggests that the toughness properties of soil change when moisture content increases. Results from electrical resistivity survey reveal that soil thicknesses above the bedrock along three transects range from 2 to 9 m. The soil shear strength reach the rate of high decreases in the range of 72 to 95.6% for residual soil from shale, siltstone and sandstone, respectively. Strength of soil decreaseswhen the moisture content in soil increases. Shear strength also decreases when the moisture content changes. Therefore, the natural soil slope in the study area will be stable when the moisture content in soil level is equal to one, but when the moisture content between soil particle increases, strength of soil will decrease resulting in soil strength decreasing.
NASA Astrophysics Data System (ADS)
Bogena, Heye R.; Huisman, Johan A.; Rosenbaum, Ulrike; Weuthen, Ansgar; Vereecken, Harry
2010-05-01
Soil water content plays a key role in partitioning water and energy fluxes and controlling the pattern of groundwater recharge. Despite the importance of soil water content, it is not yet measured in an operational way at larger scales. The aim of this paper is to present the potential of real-time monitoring for the analysis of soil moisture patterns at the catchment scale using the recently developed wireless sensor network SoilNet [1], [2]. SoilNet is designed to measure soil moisture, salinity and temperature in several depths (e.g. 5, 20 and 50 cm). Recently, a small forest catchment Wüstebach (~27 ha) has been instrumented with 150 sensor nodes and more than 1200 soil sensors in the framework of the Transregio32 and the Helmholtz initiative TERENO (Terrestrial Environmental Observatories). From August to November 2009, more than 6 million soil moisture measurements have been performed. We will present first results from a statistical and geostatistical analysis of the data. The observed spatial variability of soil moisture corresponds well with the 800-m scale variability described in [3]. The very low scattering of the standard deviation versus mean soil moisture plots indicates that sensor network data shows less artificial soil moisture variations than soil moisture data originated from measurement campaigns. The variograms showed more or less the same nugget effect, which indicates that the sum of the sub-scale variability and the measurement error is rather time-invariant. Wet situations showed smaller spatial variability, which is attributed to saturated soil water content, which poses an upper limit and is typically not strongly variable in headwater catchments with relatively homogeneous soil. The spatiotemporal variability in soil moisture at 50 cm depth was significantly lower than at 5 and 20 cm. This finding indicates that the considerable variability of the top soil is buffered deeper in the soil due to lateral and vertical water fluxes. Topographic features showed the strongest correlation with soil moisture during dry periods, indicating that the control of topography on the soil moisture pattern depends on the soil water status. Interpolation using the external drift kriging method demonstrated that the high sampling density allows capturing the key patterns of soil moisture variation in the Wüstebach catchment. References: [1] Bogena, H.R., J.A. Huisman, C. Oberdörster, H. Vereecken (2007): Evaluation of a low-cost soil water content sensor for wireless network applications. Journal of Hydrology: 344, 32- 42. [2] Rosenbaum, U., Huisman, J.A., Weuthen, A., Vereecken, H. and Bogena, H.R. (2010): Quantification of sensor-to-sensor variability of the ECH2O EC-5, TE and 5TE sensors in dielectric liquids. Accepted for publication in Vadose Zone Journal (09/2009). [3] Famiglietti J.S., D. Ryu, A. A. Berg, M. Rodell and T. J. Jackson (2008), Field observations of soil moisture variability across scales, Water Resour. Res. 44, W01423, doi:10.1029/2006WR005804.
NASA Astrophysics Data System (ADS)
Lehman, B. M.; Niemann, J. D.
2008-12-01
Soil moisture exerts significant control over the partitioning of latent and sensible energy fluxes, the magnitude of both vertical and lateral water fluxes, the physiological and water-use characteristics of vegetation, and nutrient cycling. Considerable progress has been made in determining how soil characteristics, topography, and vegetation influence spatial patterns of soil moisture in humid environments at the catchment, hillslope, and plant scales. However, understanding of the controls on soil moisture patterns beyond the plant scale in semi-arid environments remains more limited. This study examines the relationships between the spatial patterns of near surface soil moisture (upper 5 cm), terrain indices, and soil properties in a small, semi-arid, montane catchment. The 8 ha catchment, located in the Cache La Poudre River Canyon in north-central Colorado, has a total relief of 115 m and an average elevation of 2193 m. It is characterized by steep slopes and shallow, gravelly/sandy soils with scattered granite outcroppings. Depth to bedrock ranges from 0 m to greater than 1 m. Vegetation in the catchment is highly correlated with topographic aspect. In particular, north-facing hillslopes are predominately vegetated by ponderosa pines, while south-facing slopes are mostly vegetated by several shrub species. Soil samples were collected at a 30 m resolution to characterize soil texture and bulk density, and several datasets consisting of more than 300 point measurements of soil moisture were collected using time domain reflectometry (TDR) between Fall 2007 and Summer 2008 at a 15 m resolution. Results from soil textural analysis performed with sieving and the ASTM standard hydrometer method show that soil texture is finer on the north-facing hillslope than on the south-facing hillslope. Cos(aspect) is the best univariate predictor of silts, while slope is the best predictor of coarser fractions up to fine gravel. Bulk density increases with depth but shows no significant relationship with topographic indices. When the catchment average soil moisture is low, the variance of soil moisture increases with the average. When the average is high, the variance remains relatively constant. Little of the variation in soil moisture is explained by topographic indices when the catchment is either very wet or dry; however, when the average soil moisture takes on intermediate values, cos(aspect) is consistently the best predictor among the terrain indices considered.
Williams, Michele L.; LeJeune, Jeffrey T.
2015-01-01
Food-borne pathogen persistence in soil fundamentally affects the production of safe vegetables and small fruits. Interventions that reduce pathogen survival in soil would have positive impacts on food safety by minimizing preharvest contamination entering the food chain. Laboratory-controlled studies determined the effects of soil pH, moisture content, and soil organic matter (SOM) on the survivability of this pathogen through the creation of single-parameter gradients. Longitudinal field-based studies were conducted in Ohio to quantify the extent to which field soils suppressed Escherichia coli O157:H7 survival. In all experiments, heat-sensitive microorganisms were responsible for the suppression of E. coli O157 in soil regardless of the chemical composition of the soil. In laboratory-based studies, soil pH and moisture content were primary drivers of E. coli O157 survival, with increases in pH after 48 h (P = 0.02) and decreases in moisture content after 48 h (P = 0.007) significantly increasing the log reduction of E. coli O157 numbers. In field-based experiments, E. coli O157 counts from both heated and unheated samples were sensitive to both season (P = 0.004 for heated samples and P = 0.001 for unheated samples) and region (P = 0.002 for heated samples and P = 0.001 for unheated samples). SOM was observed to be a more significant driver of pathogen suppression than the other two factors after 48 h at both planting and harvest (P = 0.002 at planting and P = 0.058 at harvest). This research reinforces the need for both laboratory-controlled experiments and longitudinal field-based experiments to unravel the complex relationships controlling the survival of introduced organisms in soil. PMID:25934621
NASA Astrophysics Data System (ADS)
Zhang, X.; Zhao, W.; Liu, Y.; Fang, X.
2017-12-01
Soil water overconsumption is threatening the sustainability of regional vegetation rehabilitation in the Loess Plateau of China. The use of fractal geometry theory in describing soil quality improves the accuracy of the relevant research. Typical grasslands, shrublands, forests, cropland and orchards under different precipitation regimes were selected, and in this study, the spatial distribution of the relationship between soil moisture and soil particle size in typical slopes on Loess Plateau were investigated to provide support for the predict of soil moisture by using soil physical characteristics in the Loess Plateau. During the sampling year, the mean annual precipitation gradients were divided at an interval of 70 mm from 370mm to 650mm. Grasslands with Medicago sativa L. or Stipa bungeana Trin., shrublands with Caragana Korshinskii Kom. or Hippophae rhamnoides L., forests with Robinia pseudoacacia Linn., orchards with apple trees and croplands with corn or potatoes were chosen to represent the natural grassland. A soil auger with a diameter of 5 cm was used to obtain soil samples at depths of 0-5 m at intervals of 20 cm.The Van Genuchten model, fractal theory and redundancy analysis (RDA) were used to estimate and analyze the soil water characteristic curve, soil particle size distribution, and fractal dimension and the correlations between the relevant parameters. The results showed that (1) the change of the singular fractal dimension is positively correlated with soil water content, while D0 (capacity dimension) is negatively correlated with soil water content as the depth increases; (2) the relationship between soil moisture and soil particle size shows differences under different plants and precipitation gradient.
USDA-ARS?s Scientific Manuscript database
The calibration and validation of soil moisture remote sensing products is complicated by the logistics of installing a soil moisture network for a long term period in an active landscape. Therefore, these stations are located along field boundaries or in non-representative sites with regards to so...
DITT: a computer program for Data Interpretation for Torsional Tests
Chen, Albert T.F.
1979-01-01
Measurements of the helium concentration of soil samples collected and stored in Vacutainer-brand evacuated glass tubes show that Vacutainers are reliable containers for soil collection. Within the limits of reproducibility, helium content of soils appears to be independent of variations in soil temperature, barometric pressure, and quantity of soil moisture present in the sample.
Soil moisture sensors for continuous monitoring
Amer, Saud A.; Keefer, T. O.; Weltz, M.A.; Goodrich, David C.; Bach, Leslie
1995-01-01
Certain physical and chemical properties of soil vary with soil water content. The relationship between these properties and water content is complex and involves both the pore structure and constituents of the soil solution. One of the most economical techniques to quantify soil water content involves the measurement of electrical resistance of a dielectric medium that is in equilibrium with the soil water content. The objective of this research was to test the reliability and accuracy of fiberglass soil-moisture electrical resistance sensors (ERS) as compared to gravimetric sampling and Time Domain Reflectometry (TDR). The response of the ERS was compared to gravimetric measurements at eight locations on the USDA-ABS Walnut Gulch Experimental Watershed. The comparisons with TDR sensors were made at three additional locations on the same watershed. The high soil rock content (>45 percent) at seven locations resulted in consistent overestimation of soil water content by the ERS method. Where rock content was less than 10 percent, estimation of soil water was within 5 percent of the gravimetric soil water content. New methodology to calibrate the ERS sensors for rocky soils will need to be developed before soil water content values can be determined with these sensors. (KEY TERMS: soil moisture; soil water; infiltration; instrumentation; soil moisture sensors.)
Martínez-Murillo, J F; Hueso-González, P; Ruiz-Sinoga, J D
2017-10-01
Soil mapping has been considered as an important factor in the widening of Soil Science and giving response to many different environmental questions. Geostatistical techniques, through kriging and co-kriging techniques, have made possible to improve the understanding of eco-geomorphologic variables, e.g., soil moisture. This study is focused on mapping of topsoil moisture using geostatistical techniques under different Mediterranean climatic conditions (humid, dry and semiarid) in three small watersheds and considering topography and soil properties as key factors. A Digital Elevation Model (DEM) with a resolution of 1×1m was derived from a topographical survey as well as soils were sampled to analyzed soil properties controlling topsoil moisture, which was measured during 4-years. Afterwards, some topography attributes were derived from the DEM, the soil properties analyzed in laboratory, and the topsoil moisture was modeled for the entire watersheds applying three geostatistical techniques: i) ordinary kriging; ii) co-kriging considering as co-variate topography attributes; and iii) co-kriging ta considering as co-variates topography attributes and gravel content. The results indicated topsoil moisture was more accurately mapped in the dry and semiarid watersheds when co-kriging procedure was performed. The study is a contribution to improve the efficiency and accuracy of studies about the Mediterranean eco-geomorphologic system and soil hydrology in field conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Assessment of soil moisture dynamics on an irrigated maize field using cosmic ray neutron sensing
NASA Astrophysics Data System (ADS)
Scheiffele, Lena Maria; Baroni, Gabriele; Oswald, Sascha E.
2015-04-01
In recent years cosmic ray neutron sensing (CRS) developed as a valuable, indirect and non-invasive method to estimate soil moisture at a scale of tens of hectares, covering the gap between point scale measurements and large scale remote sensing techniques. The method is particularly promising in cropped and irrigated fields where invasive installation of belowground measurement devices could conflict with the agricultural management. However, CRS is affected by all hydrogen pools in the measurement footprint and a fast growing biomass provides some challenges for the interpretation of the signal and application of the method for detecting soil moisture. For this aim, in this study a cosmic ray probe was installed on a field near Braunschweig (Germany) during one maize growing season (2014). The field was irrigated in stripes of 50 m width using sprinkler devices for a total of seven events. Three soil sampling campaigns were conducted throughout the growing season to assess the effect of different hydrogen pools on calibration results. Additionally, leaf area index and biomass measurements were collected to provide the relative contribution of the biomass on the CRS signal. Calibration results obtained with the different soil sampling campaigns showed some discrepancy well correlated with the biomass growth. However, after the calibration function was adjusted to account also for lattice water and soil organic carbon, thus representing an equivalent water content of the soil, the differences decreased. Soil moisture estimated with CRS responded well to precipitation and irrigation events, confirming also the effective footprint of the method (i.e., radius 300 m) and showing occurring water stress for the crop. Thus, the dynamics are in agreement with the soil moisture determined with point scale measurements but they are less affected by the heterogeneous moisture conditions within the field. For this reason, by applying a detailed calibration, CRS proves to be a valuable method for the application on agricultural sites to assess and improve irrigation management.
Implications of complete watershed soil moisture measurements to hydrologic modeling
NASA Technical Reports Server (NTRS)
Engman, E. T.; Jackson, T. J.; Schmugge, T. J.
1983-01-01
A series of six microwave data collection flights for measuring soil moisture were made over a small 7.8 square kilometer watershed in southwestern Minnesota. These flights were made to provide 100 percent coverage of the basin at a 400 m resolution. In addition, three flight lines were flown at preselected areas to provide a sample of data at a higher resolution of 60 m. The low level flights provide considerably more information on soil moisture variability. The results are discussed in terms of reproducibility, spatial variability and temporal variability, and their implications for hydrologic modeling.
Assimilation of SMOS Retrievals in the Land Information System
NASA Technical Reports Server (NTRS)
Blankenship, Clay B.; Case, Jonathan L.; Zavodsky, Bradley T.; Crosson, William L.
2016-01-01
The Soil Moisture and Ocean Salinity (SMOS) satellite provides retrievals of soil moisture in the upper 5 cm with a 30-50 km resolution and a mission accuracy requirement of 0.04 cm(sub 3 cm(sub -3). These observations can be used to improve land surface model soil moisture states through data assimilation. In this paper, SMOS soil moisture retrievals are assimilated into the Noah land surface model via an Ensemble Kalman Filter within the NASA Land Information System. Bias correction is implemented using Cumulative Distribution Function (CDF) matching, with points aggregated by either land cover or soil type to reduce sampling error in generating the CDFs. An experiment was run for the warm season of 2011 to test SMOS data assimilation and to compare assimilation methods. Verification of soil moisture analyses in the 0-10 cm upper layer and root zone (0-1 m) was conducted using in situ measurements from several observing networks in the central and southeastern United States. This experiment showed that SMOS data assimilation significantly increased the anomaly correlation of Noah soil moisture with station measurements from 0.45 to 0.57 in the 0-10 cm layer. Time series at specific stations demonstrate the ability of SMOS DA to increase the dynamic range of soil moisture in a manner consistent with station measurements. Among the bias correction methods, the correction based on soil type performed best at bias reduction but also reduced correlations. The vegetation-based correction did not produce any significant differences compared to using a simple uniform correction curve.
Assimilation of SMOS Retrievals in the Land Information System
Blankenship, Clay B.; Case, Jonathan L.; Zavodsky, Bradley T.; Crosson, William L.
2018-01-01
The Soil Moisture and Ocean Salinity (SMOS) satellite provides retrievals of soil moisture in the upper 5 cm with a 30-50 km resolution and a mission accuracy requirement of 0.04 cm3 cm−3. These observations can be used to improve land surface model soil moisture states through data assimilation. In this paper, SMOS soil moisture retrievals are assimilated into the Noah land surface model via an Ensemble Kalman Filter within the NASA Land Information System. Bias correction is implemented using Cumulative Distribution Function (CDF) matching, with points aggregated by either land cover or soil type to reduce sampling error in generating the CDFs. An experiment was run for the warm season of 2011 to test SMOS data assimilation and to compare assimilation methods. Verification of soil moisture analyses in the 0-10 cm upper layer and root zone (0-1 m) was conducted using in situ measurements from several observing networks in the central and southeastern United States. This experiment showed that SMOS data assimilation significantly increased the anomaly correlation of Noah soil moisture with station measurements from 0.45 to 0.57 in the 0-10 cm layer. Time series at specific stations demonstrate the ability of SMOS DA to increase the dynamic range of soil moisture in a manner consistent with station measurements. Among the bias correction methods, the correction based on soil type performed best at bias reduction but also reduced correlations. The vegetation-based correction did not produce any significant differences compared to using a simple uniform correction curve. PMID:29367795
Low-field NMR logging sensor for measuring hydraulic parameters of model soils
NASA Astrophysics Data System (ADS)
Sucre, Oscar; Pohlmeier, Andreas; Minière, Adrien; Blümich, Bernhard
2011-08-01
SummaryKnowing the exact hydraulic parameters of soils is very important for improving water management in agriculture and for the refinement of climate models. Up to now, however, the investigation of such parameters has required applying two techniques simultaneously which is time-consuming and invasive. Thus, the objective of this current study is to present only one technique, i.e., a new non-invasive method to measure hydraulic parameters of model soils by using low-field nuclear magnetic resonance (NMR). Hereby, two model clay or sandy soils were respectively filled in a 2 m-long acetate column having an integrated PVC tube. After the soils were completely saturated with water, a low-field NMR sensor was moved up and down in the PVC tube to quantitatively measure along the whole column the initial water content of each soil sample. Thereafter, both columns were allowed to drain. Meanwhile, the NMR sensor was set at a certain depth to measure the water content of that soil slice. Once the hydraulic equilibrium was reached in each of the two columns, a final moisture profile was taken along the whole column. Three curves were subsequently generated accordingly: (1) the initial moisture profile, (2) the evolution curve of the moisture depletion at that particular depth, and (3) the final moisture profile. All three curves were then inverse analyzed using a MATLAB code over numerical data produced with the van Genuchten-Mualem model. Hereby, a set of values ( α, n, θr and θs) was found for the hydraulic parameters for the soils under research. Additionally, the complete decaying NMR signal could be analyzed through Inverse Laplace Transformation and averaged on the 1/ T2 space. Through measurement of the decay in pure water, the effect on the relaxation caused by the sample could be estimated from the obtained spectra. The migration of the sample-related average <1/ T2, Sample> with decreasing saturation speaks for a enhancement of the surface relaxation as the soil dries, in concordance with results found by other authors. In conclusion, this low-field mobile NMR technique has proven itself to be a fast and a non-invasive mean to investigate the hydraulic behavior of soils and to explore microscopical aspect of the water retained in them. In the future, the sensor should allow easy soil moisture measurements on-field.
NASA Technical Reports Server (NTRS)
Jones, C. L.; Mcfarland, M. J.; Rosethal, W. D.; Theis, S. W. (Principal Investigator)
1982-01-01
In an effort to investigate aircraft multisensor responses to soil moisture and vegetation in agricultural fields, an intensive ground sampling program was conducted in Guymon, Oklahoma and Dalhart, Texas in conjunction with aircraft data collected for visible/infrared and passive and active microwave systems. Field selections, sampling techniques, data processing, and the aircraft schedule are discussed for both sites. Field notes are included along with final (normalized and corrected) data sets.
Baskan, Oguz; Kosker, Yakup; Erpul, Gunay
2013-12-01
Modeling spatio-temporal variation of soil moisture with depth in the soil profile plays an important role for semi-arid crop production from an agro-hydrological perspective. This study was performed in Guvenc Catchment. Two soil series that were called Tabyabayir (TaS) and Kervanpinari (KeS) and classified as Leptosol and Vertisol Soil Groups were used in this research. The TeS has a much shallower (0-34 cm) than the KeS (0-134 cm). At every sampling time, a total of geo-referenced 100 soil moisture samples were taken based on horizon depths. The results indicated that soil moisture content changed spatially and temporally with soil texture and profile depth significantly. In addition, land use was to be important factor when soil was shallow. When the soil conditions were towards to dry, higher values for the coefficient of variation (CV) were observed for TaS (58 and 43% for A and C horizons, respectively); however, the profile CV values were rather stable at the KeS. Spatial variability range of TaS was always higher at both dry and wet soil conditions when compared to that of KeS. Excessive drying of soil prevented to describe any spatial model for surface horizon, additionally resulting in a high nugget variance in the subsurface horizon for the TaS. On the contrary to TaS, distribution maps were formed all horizons for the KeS at any measurement times. These maps, depicting both dry and wet soil conditions through the profile depth, are highly expected to reduce the uncertainty associated with spatially and temporally determining the hydraulic responses of the catchment soils.
The potentiation of zinc toxicity by soil moisture in a boreal forest ecosystem.
Owojori, Olugbenga J; Siciliano, Steven D
2015-03-01
Northern boreal forests often experience forest dieback as a result of metal ore mining and smelting. The common solution is to lime the soil, which increases pH, reducing metal toxicity and encouraging recovery. In certain situations, however, such as in Flin Flon, Manitoba, Canada, liming has yielded only moderate benefits, with some locations responding well to liming and other locations not at all. In an effort to increase the effectiveness of the ecorestoration strategy, the authors investigated if these differences in liming responsiveness were linked to differences in toxicity. Toxicity of metal-impacted Flin Flon soils on the oribatid mite Oppia nitens and the collembolan Folsomia candida was assessed, with a view toward identifying the metal of concern in the area. The effects of moisture content on metal sorption, uptake, and toxicity to the invertebrates were also investigated. Toxicity tests with the invertebrates were conducted using either Flin Flon soils or artificial soils with moisture content adjusted to 30%, 45%, 60%, or 75% of the maximum water-holding capacity of the soil samples. The Relative to Cd Toxicity Model identified Zn as the metal of concern in the area, and this was confirmed using validation tests with field contaminated soils. Furthermore, increasing the moisture content in soils increased the amount of mobile Zn available for uptake with the ion exchange resin. Survival and reproduction of both invertebrates were reduced under Zn exposure as moisture level increased. Thus, moisture-collecting landforms, which are often also associated with high Zn concentrations at Flin Flon, have, as a result, higher Zn toxicity to the soil ecosystem because of increases in soil moisture. © 2014 SETAC.
USDA-ARS?s Scientific Manuscript database
Soil hydraulic properties can be retrieved from physical sampling of soil, via surveys, but this is time consuming and only as accurate as the scale of the sample. Remote sensing provides an opportunity to get pertinent soil properties at large scales, which is very useful for large scale modeling....
Assessment of Evapotranspiration and Soil Moisture Content Across Different Scales of Observation.
Verstraeten, Willem W; Veroustraete, Frank; Feyen, Jan
2008-01-09
The proper assessment of evapotranspiration and soil moisture content arefundamental in food security research, land management, pollution detection, nutrient flows,(wild-) fire detection, (desert) locust, carbon balance as well as hydrological modelling; etc.This paper takes an extensive, though not exhaustive sample of international scientificliterature to discuss different approaches to estimate land surface and ecosystem relatedevapotranspiration and soil moisture content. This review presents:(i) a summary of the generally accepted cohesion theory of plant water uptake andtransport including a shortlist of meteorological and plant factors influencing planttranspiration;(ii) a summary on evapotranspiration assessment at different scales of observation (sapflow,porometer, lysimeter, field and catchment water balance, Bowen ratio,scintillometer, eddy correlation, Penman-Monteith and related approaches);(iii) a summary on data assimilation schemes conceived to estimate evapotranspirationusing optical and thermal remote sensing; and(iv) for soil moisture content, a summary on soil moisture retrieval techniques atdifferent spatial and temporal scales is presented.Concluding remarks on the best available approaches to assess evapotranspiration and soilmoisture content with and emphasis on remote sensing data assimilation, are provided.
Measuring Soil Moisture in Skeletal Soils Using a COSMOS Rover
NASA Astrophysics Data System (ADS)
Medina, C.; Neely, H.; Desilets, D.; Mohanty, B.; Moore, G. W.
2017-12-01
The presence of coarse fragments directly influences the volumetric water content of the soil. Current surface soil moisture sensors often do not account for the presence of coarse fragments, and little research has been done to calibrate these sensors under such conditions. The cosmic-ray soil moisture observation system (COSMOS) rover is a passive, non-invasive surface soil moisture sensor with a footprint greater than 100 m. Despite its potential, the COSMOS rover has yet to be validated in skeletal soils. The goal of this study was to validate measurements of surface soil moisture as taken by a COSMOS rover on a Texas skeletal soil. Data was collected for two soils, a Marfla clay loam and Chinati-Boracho-Berrend association, in West Texas. Three levels of data were collected: 1) COSMOS surveys at three different soil moistures, 2) electrical conductivity surveys within those COSMOS surveys, and 3) ground-truth measurements. Surveys with the COSMOS rover covered an 8000-h area and were taken both after large rain events (>2") and a long dry period. Within the COSMOS surveys, the EM38-MK2 was used to estimate the spatial distribution of coarse fragments in the soil around two COSMOS points. Ground truth measurements included coarse fragment mass and volume, bulk density, and water content at 3 locations within each EM38 survey. Ground-truth measurements were weighted using EM38 data, and COSMOS measurements were validated by their distance from the samples. There was a decrease in water content as the percent volume of coarse fragment increased. COSMOS estimations responded to both changes in coarse fragment percent volume and the ground-truth volumetric water content. Further research will focus on creating digital soil maps using landform data and water content estimations from the COSMOS rover.
[Effects of soil trituration size on adsorption of oxytetracycline on soils].
Qi, Rui-Huan; Li, Zhao-Jun; Long, Jian; Fan, Fei-Fei; Liang, Yong-Chao
2011-02-01
In order to understand the effects of soil trituration size on adsorption of oxytetracycline (OTC) on soils, two contrasting soils including moisture soil and purplish soil were selected to investigate adsorption of OTC on these soils, at the scales of no more than 0.20 mm, 0.84 mm, 0.25 mm and 0.15 mm, using the method of batch equilibrium experiments respectively. The results presented as the following: (1) Adsorption amount of OTC on moisture soil and purplish soil increased with the sampling time, and reached to equilibration at 24 h. First-order kinetic model, second-order kinetic model, parabolic-diffusion kinetic model, Elovich kinetic model, and two-constant kinetic model could be used to fit the changes in adsorption on soils with sampling time. Adsorption of OTC on two soils consisted of two processes such as quick adsorption and slow adsorption. Quick adsorption process happened during the period of 0-0.5 h. The adsorption rates of OTC on soils were higher at the small trituration size than those at the large trituration size, and at the same trituration size, the k(f) of purplish soil was about two times higher than those of moisture soil. (2) Adsorption isotherms of OTC on two soils with different trituration sizes were deviated from the linear model. The data were fitted well to Freundlich and Langmuir models, with the correlation coefficients between 0.956 and 0.999. The values of k(f) and q(m) for purplish soil were higher than those for moisture soil. At the same soil, adsorption amount of OTC increased with the decreases of soil trituration size. The results suggested that it is important to select the appropriate trituration size, based on the physical and chemical properties such as soil particle composition and so on, when the fate of antibiotics on soils was investigated.
NASA Astrophysics Data System (ADS)
Colliander, A.; Jackson, T. J.; Chan, S.; Bindlish, R.; O'Neill, P. E.; Chazanoff, S. L.; McNairn, H.; Bullock, P.; Powers, J.; Wiseman, G.; Berg, A. A.; Magagi, R.; Njoku, E. G.
2014-12-01
NASA's (National Aeronautics and Space Administration) Soil Moisture Active Passive (SMAP) mission is scheduled for launch in early January 2015. For pre-launch soil moisture algorithm development and validation, the SMAP project and NASA coordinated a SMAP Validation Experiment 2012 (SMAPVEX12) together with Agriculture and Agri-Food Canada in the vicinity of Winnipeg, Canada in June 7-July 19, 2012. Coincident active and passive airborne L-band data were acquired using the Passive Active L-band System (PALS) on 17 days during the experiment. Simultaneously with the PALS measurements, soil moisture ground truth data were collected manually. The vegetation and surface roughness were sampled on non-flight days. The SMAP mission will produce surface (top 5 cm) soil moisture products a) using a combination of its L-band radiometer and SAR (Synthetic Aperture Radar) measurements, b) using the radiometer measurement only, and c) using the SAR measurements only. The SMAPVEX12 data are being utilized for the development and testing of the algorithms applied for generating these soil moisture products. This talk will focus on presenting results of retrieving surface soil moisture using the PALS radiometer. The issues that this retrieval faces are very similar to those faced by the global algorithm using the SMAP radiometer. However, the different spatial resolution of the two observations has to be accounted for in the analysis. The PALS 3 dB footprint in the experiment was on the order of 1 km, whereas the SMAP radiometer has a footprint of about 40 km. In this talk forward modeled brightness temperature over the manually sampled fields and the retrieved soil moisture over the entire experiment domain are presented and discussed. In order to provide a retrieval product similar to that of the SMAP passive algorithm, various ancillary information had to be obtained for the SMAPVEX12 domain. In many cases there are multiple options on how to choose and reprocess these data. The derivation of these data elements and their impact on the retrieval and the spatial scales of the different observations are also discussed. In particular, land cover and soil type heterogeneity have a dramatic impact on parameterization of the algorithm when going from finer to coarser spatial resolutions.
SMAP Validation Experiment 2015 (SMAPVEX15)
NASA Astrophysics Data System (ADS)
Colliander, A.; Jackson, T. J.; Cosh, M. H.; Misra, S.; Crow, W. T.; Chae, C. S.; Moghaddam, M.; O'Neill, P. E.; Entekhabi, D.; Yueh, S. H.
2015-12-01
NASA's (National Aeronautics and Space Administration) Soil Moisture Active Passive (SMAP) mission was launched in January 2015. The objective of the mission is global mapping of soil moisture and freeze/thaw state. For soil moisture algorithm validation, the SMAP project and NASA coordinated SMAPVEX15 around the Walnut Gulch Experimental Watershed (WGEW) in Tombstone, Arizona on August 1-19, 2015. The main goals of SMAPVEX15 are to understand the effects and contribution of heterogeneity on the soil moisture retrievals, evaluate the impact of known RFI sources on retrieval, and analyze the brightness temperature product calibration and heterogeneity effects. Additionally, the campaign aims to contribute to the validation of GPM (Global Precipitation Mission) data products. The campaign will feature three airborne microwave instruments: PALS (Passive Active L-band System), UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) and AirMOSS (Airborne Microwave Observatory of Subcanopy and Subsurface). PALS has L-band radiometer and radar, and UAVSAR and AirMOSS have L- and P-band synthetic aperture radars, respectively. The PALS instrument will map the area on seven days coincident with SMAP overpasses; UAVSAR and AirMOSS on four days. WGEW was selected as the experiment site due to the rainfall patterns in August and existing dense networks of precipitation gages and soil moisture sensors. An additional temporary network of approximately 80 soil moisture stations was deployed in the region. Rainfall observations were supplemented with two X-band mobile scanning radars, approximately 25 tipping bucket rain gauges, three laser disdrometers, and three vertically-profiling K-band radars. Teams were on the field to take soil moisture samples for gravimetric soil moisture, bulk density and rock fraction determination as well as to measure surface roughness and vegetation water content. In this talk we will present preliminary results from the experiment including comparisons between SMAP and PALS soil moisture retrievals with respect to the in situ measurements. Acknowledgement: This work was carried out in part at Jet Propulsion Laboratory, California Institute of Technology under contract with National Aeronautics and Space Administration.
The advanced qualtiy control techniques planned for the Internation Soil Moisture Network
NASA Astrophysics Data System (ADS)
Xaver, A.; Gruber, A.; Hegiova, A.; Sanchis-Dufau, A. D.; Dorigo, W. A.
2012-04-01
In situ soil moisture observations are essential to evaluate and calibrate modeled and remotely sensed soil moisture products. Although a number of meteorological networks and field campaigns measuring soil moisture exist on a global and long-term scale, their observations are not easily accessible and lack standardization of both technique and protocol. Thus, handling and especially comparing these datasets with satellite products or land surface models is a demanding issue. To overcome these limitations the International Soil Moisture Network (ISMN; http://www.ipf.tuwien.ac.at/insitu/) has been initiated to act as a centralized data hosting facility. One advantage of the ISMN is that users are able to access the harmonized datasets easily through a web portal. Another advantage is the fully automated processing chain including the data harmonization in terms of units and sampling interval, but even more important is the advanced quality control system each measurement has to run through. The quality of in situ soil moisture measurements is crucial for the validation of satellite- and model-based soil moisture retrievals; therefore a sophisticated quality control system was developed. After a check for plausibility and geophysical limits a quality flag is added to each measurement. An enhanced flagging mechanism was recently defined using a spectrum based approach to detect spurious spikes, jumps and plateaus. The International Soil Moisture Network has already evolved to one of the most important distribution platforms for in situ soil moisture observations and is still growing. Currently, data from 27 networks in total covering more than 800 stations in Europe, North America, Australia, Asia and Africa is hosted by the ISMN. Available datasets also include historical datasets as well as near real-time measurements. The improved quality control system will provide important information for satellite-based as well as land surface model-based validation studies.
Real-time soil sensing based on fiber optics and spectroscopy
NASA Astrophysics Data System (ADS)
Li, Minzan
2005-08-01
Using NIR spectroscopic techniques, correlation analysis and regression analysis for soil parameter estimation was conducted with raw soil samples collected in a cornfield and a forage field. Soil parameters analyzed were soil moisture, soil organic matter, nitrate nitrogen, soil electrical conductivity and pH. Results showed that all soil parameters could be evaluated by NIR spectral reflectance. For soil moisture, a linear regression model was available at low moisture contents below 30 % db, while an exponential model can be used in a wide range of moisture content up to 100 % db. Nitrate nitrogen estimation required a multi-spectral exponential model and electrical conductivity could be evaluated by a single spectral regression. According to the result above mentioned, a real time soil sensor system based on fiber optics and spectroscopy was developed. The sensor system was composed of a soil subsoiler with four optical fiber probes, a spectrometer, and a control unit. Two optical fiber probes were used for illumination and the other two optical fiber probes for collecting soil reflectance from visible to NIR wavebands at depths around 30 cm. The spectrometer was used to obtain the spectra of reflected lights. The control unit consisted of a data logging device, a personal computer, and a pulse generator. The experiment showed that clear photo-spectral reflectance was obtained from the underground soil. The soil reflectance was equal to that obtained by the desktop spectrophotometer in laboratory tests. Using the spectral reflectance, the soil parameters, such as soil moisture, pH, EC and SOM, were evaluated.
NASA Astrophysics Data System (ADS)
Kamiri, Hellen; Kreye, Christine; Becker, Mathias
2013-04-01
Wetland soils play an important role as storage compartments for water, carbon and nutrients. These soils implies various conditions, depending on the water regimes that affect several important microbial and physical-chemical processes which in turn influence the transformation of organic and inorganic components of nitrogen, carbon, soil acidity and other nutrients. Particularly, soil carbon and nitrogen play an important role in determining the productivity of a soil whereas management practices could determine the rate and magnitude of nutrient turnover. A study was carried out in a floodplain wetland planted with rice in North-west Tanzania- East Africa to determine the effects of different management practices and soil water regimes on paddy soil organic carbon and nitrogen. Four management treatments were compared: (i) control (non weeded plots); (ii) weeded plots; (iii) N fertilized plots, and (iv) non-cropped (non weeded plots). Two soil moisture regimes included soil under field capacity (rainfed conditions) and continuous water logging compared side-by-side. Soil were sampled at the start and end of the rice cropping seasons from the two fields differentiated by moisture regimes during the wet season 2012. The soils differed in the total organic carbon and nitrogen between the treatments. Soil management including weeding and fertilization is seen to affect soil carbon and nitrogen regardless of the soil moisture conditions. Particularly, the padddy soils were higher in the total organic carbon under continuous water logged field. These findings are preliminary and a more complete understanding of the relationships between management and soil moisture on the temporal changes of soil properties is required before making informed decisions on future wetland soil carbon and nitrogen dynamics. Keywords: Management, nitrogen, paddy soil, total carbon, Tanzania,
Issa, Salah; Wood, Martin
2005-02-01
The influence of different moisture and aeration conditions on the degradation of atrazine and isoproturon was investigated in environmental samples aseptically collected from surface and sub-surface zones of agricultural land. The materials were maintained at two moisture contents corresponding to just above field capacity or 90% of field capacity. Another two groups of samples were adjusted with water to above field capacity, and, at zero time, exposed to drying-rewetting cycles. Atrazine was more persistent (t(1/2) = 22-35 days) than isoproturon (t(1/2) = 5-17 days) in samples maintained at constant moisture conditions. The rate of degradation for both herbicides was higher in samples maintained at a moisture content of 90% of field capacity than in samples with higher moisture contents. The reduction in moisture content in samples undergoing desiccation from above field capacity to much lower than field capacity enhanced the degradation of isoproturon (t(1/2) = 9-12 days) but reduced the rate of atrazine degradation (t(1/2) = 23-35 days). This demonstrates the variability between different micro-organisms in their susceptibility to desiccation. Under anaerobic conditions generated in anaerobic jars, atrazine degraded much more rapidly than isoproturon in materials taken from three soil profiles (0-250 cm depth). It is suggested that some specific micro-organisms are able to survive and degrade herbicide under severe conditions of desiccation. Copyright (c) 2005 Society of Chemical Industry.
Electrical properties of lunar soil dependence on frequency, temperature and moisture.
NASA Technical Reports Server (NTRS)
Strangway, D. W.; Chapman, W. B.; Olhoeft, G. R.; Carnes, J.
1972-01-01
It was found that the dielectric constant and loss tangent of lunar soil samples in the range from 100 Hz to 1 MHz are not strongly dependent on frequency provided care is taken to avoid exposure of the sample to atmospheric air containing moisture. The loss tangent value obtained is lower by nearly a factor 10 than any previously reported value. The measurement data imply that the surface layers of the moon are probably extremely transparent to radiowaves.
NASA Astrophysics Data System (ADS)
Karssenberg, D.; Wanders, N.; de Roo, A.; de Jong, S.; Bierkens, M. F.
2013-12-01
Large-scale hydrological models are nowadays mostly calibrated using observed discharge. As a result, a large part of the hydrological system that is not directly linked to discharge, in particular the unsaturated zone, remains uncalibrated, or might be modified unrealistically. Soil moisture observations from satellites have the potential to fill this gap, as these provide the closest thing to a direct measurement of the state of the unsaturated zone, and thus are potentially useful in calibrating unsaturated zone model parameters. This is expected to result in a better identification of the complete hydrological system, potentially leading to improved forecasts of the hydrograph as well. Here we evaluate this added value of remotely sensed soil moisture in calibration of large-scale hydrological models by addressing two research questions: 1) Which parameters of hydrological models can be identified by calibration with remotely sensed soil moisture? 2) Does calibration with remotely sensed soil moisture lead to an improved calibration of hydrological models compared to approaches that calibrate only with discharge, such that this leads to improved forecasts of soil moisture content and discharge as well? To answer these questions we use a dual state and parameter ensemble Kalman filter to calibrate the hydrological model LISFLOOD for the Upper Danube area. Calibration is done with discharge and remotely sensed soil moisture acquired by AMSR-E, SMOS and ASCAT. Four scenarios are studied: no calibration (expert knowledge), calibration on discharge, calibration on remote sensing data (three satellites) and calibration on both discharge and remote sensing data. Using a split-sample approach, the model is calibrated for a period of 2 years and validated for the calibrated model parameters on a validation period of 10 years. Results show that calibration with discharge data improves the estimation of groundwater parameters (e.g., groundwater reservoir constant) and routing parameters. Calibration with only remotely sensed soil moisture results in an accurate calibration of parameters related to land surface process (e.g., the saturated conductivity of the soil), which is not possible when calibrating on discharge alone. For the upstream area up to 40000 km2, calibration on both discharge and soil moisture results in a reduction by 10-30 % in the RMSE for discharge simulations, compared to calibration on discharge alone. For discharge in the downstream area, the model performance due to assimilation of remotely sensed soil moisture is not increased or slightly decreased, most probably due to the longer relative importance of the routing and contribution of groundwater in downstream areas. When microwave soil moisture is used for calibration the RMSE of soil moisture simulations decreases from 0.072 m3m-3 to 0.062 m3m-3. The conclusion is that remotely sensed soil moisture holds potential for calibration of hydrological models leading to a better simulation of soil moisture content throughout and a better simulation of discharge in upstream areas, particularly if discharge observations are sparse.
NASA Astrophysics Data System (ADS)
Semenov, Mikhail; Zhuravleva, Anna; Semenov, Vyacheslav; Yevdokimov, Ilya; Larionova, Alla
2017-04-01
Recent climate scenarios predict not only continued global warming but also an increased frequency and intensity of extreme climatic events such as strong changes in temperature and precipitation regimes. Microorganisms are well known to be more sensitive to changes in environmental conditions than to other soil chemical and physical parameters. In this study, we determined the shifts in soil microbial community structure as well as indicative taxa in soils under three moisture regimes using high-throughput Illumina sequencing and range of bioinformatics approaches for the assessment of sequence data. Incubation experiments were performed in soil-filled (Greyic Phaeozems Albic) rhizoboxes with maize and without plants. Three contrasting moisture regimes were being simulated: 1) optimal wetting (OW), a watering 2-3 times per week to maintain soil moisture of 20-25% by weight; 2) periodic wetting (PW), with alternating periods of wetting and drought; and 3) constant insufficient wetting (IW), while soil moisture of 12% by weight was permanently maintained. Sampled fresh soils were homogenized, and the total DNA of three replicates was extracted using the FastDNA® SPIN kit for Soil. DNA replicates were combined in a pooled sample and the DNA was used for PCR with specific primers for the 16S V3 and V4 regions. In order to compare variability between different samples and replicates within a single sample, some DNA replicates treated separately. The products were purified and submitted to Illumina MiSeq sequencing. Sequence data were evaluated by alpha-diversity (Chao1 and Shannon H' diversity indexes), beta-diversity (UniFrac and Bray-Curtis dissimilarity), heatmap, tagcloud, and plot-bar analyses using the MiSeq Reporter Metagenomics Workflow and R packages (phyloseq, vegan, tagcloud). Shannon index varied in a rather narrow range (4.4-4.9) with the lowest values for microbial communities under PW treatment. Chao1 index varied from 385 to 480, being a more flexible indicator than Shannon index. Chao1 had similar values for OW and IW communities, but alpha-diversity of microbial communities has sharply decreased under PW treatment. There was no visible difference in beta-diversity depending on sampling date and wetting regime, however, it could be possible to distinguish microbial communities in soils with maize and without plants. The presence of maize was acting as scattering agent, making microbial communities more distinguished. In all studied samples, the most dominant phyla were Proteobacteria, Firmicutes, Verrucomicrobia, Actinobacteria, and Acidobacteria. Chthoniobacter, Bacillus, Alicyclobacillus, Rhodoplanes, Cohnella, Kaistobacter, and Solibacter were the most abundant genera. Moreover, these genera were found as the most reactive and variable taxa in microbial community. Thus, DNA high-throughput sequencing revealed no dramatic shifts in bacterial community structure in soils under different moisture regimes. However, this technique allowed us to determine the effect of wetting regime and the presence of plants on soil microbial community which were adaptable to insufficient wetting, but lost diversity under periodic wetting. Furthermore, we detected the indicative taxa which dominate in microbial communities and at the same time strongly react to environmental changes.
A multi-frequency radiometric measurement of soil moisture content over bare and vegetated fields
NASA Technical Reports Server (NTRS)
Wang, J. R.; Schmugge, T. J.; Mcmurtrey, J. E., III; Gould, W. I.; Glazar, W. S.; Fuchs, J. E. (Principal Investigator)
1981-01-01
A USDA Beltsville Agricultural Research Center site was used for an experiment in which soil moisture remote sensing over bare, grass, and alfalfa fields was conducted over a three-month period using 0.6 GHz, 1.4 GHz, and 10.6 GHz Dicke-type microwave radiometers mounted on mobile towers. Ground truth soil moisture content and ambient air and sil temperatures were obtained concurrently with the radiometric measurements. Biomass of the vegetation cover was sampled about once a week. Soil density for each of the three fields was measured several times during the course of the experiment. Results of the radiometric masurements confirm the frequency dependence of moisture sensing sensitivity reduction reported earlier. Observations over the bare, wet field show that the measured brightness temperature is lowest at 5.0 GHz and highest of 0.6 GHz frequency, a result contrary to expectation based on the estimated dielectric permittivity of soil water mixtures and current radiative transfer model in that frequency range.
Statistical process control applied to mechanized peanut sowing as a function of soil texture.
Zerbato, Cristiano; Furlani, Carlos Eduardo Angeli; Ormond, Antonio Tassio Santana; Gírio, Lucas Augusto da Silva; Carneiro, Franciele Morlin; da Silva, Rouverson Pereira
2017-01-01
The successful establishment of agricultural crops depends on sowing quality, machinery performance, soil type and conditions, among other factors. This study evaluates the operational quality of mechanized peanut sowing in three soil types (sand, silt, and clay) with variable moisture contents. The experiment was conducted in three locations in the state of São Paulo, Brazil. The track-sampling scheme was used for 80 sampling locations of each soil type. Descriptive statistics and statistical process control (SPC) were used to evaluate the quality indicators of mechanized peanut sowing. The variables had normal distributions and were stable from the viewpoint of SPC. The best performance for peanut sowing density, normal spacing, and the initial seedling growing stand was found for clayey soil followed by sandy soil and then silty soil. Sandy or clayey soils displayed similar results regarding sowing depth, which was deeper than in the silty soil. Overall, the texture and the moisture of clayey soil provided the best operational performance for mechanized peanut sowing.
Statistical process control applied to mechanized peanut sowing as a function of soil texture
Furlani, Carlos Eduardo Angeli; da Silva, Rouverson Pereira
2017-01-01
The successful establishment of agricultural crops depends on sowing quality, machinery performance, soil type and conditions, among other factors. This study evaluates the operational quality of mechanized peanut sowing in three soil types (sand, silt, and clay) with variable moisture contents. The experiment was conducted in three locations in the state of São Paulo, Brazil. The track-sampling scheme was used for 80 sampling locations of each soil type. Descriptive statistics and statistical process control (SPC) were used to evaluate the quality indicators of mechanized peanut sowing. The variables had normal distributions and were stable from the viewpoint of SPC. The best performance for peanut sowing density, normal spacing, and the initial seedling growing stand was found for clayey soil followed by sandy soil and then silty soil. Sandy or clayey soils displayed similar results regarding sowing depth, which was deeper than in the silty soil. Overall, the texture and the moisture of clayey soil provided the best operational performance for mechanized peanut sowing. PMID:28742095
Evaluation of Assimilated SMOS Soil Moisture Data for US Cropland Soil Moisture Monitoring
NASA Technical Reports Server (NTRS)
Yang, Zhengwei; Sherstha, Ranjay; Crow, Wade; Bolten, John; Mladenova, Iva; Yu, Genong; Di, Liping
2016-01-01
Remotely sensed soil moisture data can provide timely, objective and quantitative crop soil moisture information with broad geospatial coverage and sufficiently high resolution observations collected throughout the growing season. This paper evaluates the feasibility of using the assimilated ESA Soil Moisture Ocean Salinity (SMOS)Mission L-band passive microwave data for operational US cropland soil surface moisture monitoring. The assimilated SMOS soil moisture data are first categorized to match with the United States Department of Agriculture (USDA)National Agricultural Statistics Service (NASS) survey based weekly soil moisture observation data, which are ordinal. The categorized assimilated SMOS soil moisture data are compared with NASSs survey-based weekly soil moisture data for consistency and robustness using visual assessment and rank correlation. Preliminary results indicate that the assimilated SMOS soil moisture data highly co-vary with NASS field observations across a large geographic area. Therefore, SMOS data have great potential for US operational cropland soil moisture monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lydia Vaughn; Margaret Torn; Rachel Porras
Dataset includes Delta14C measurements made from CO2 that was collected and purified in 2012-2014 from surface soil chambers, soil pore space, and background atmosphere. In addition to 14CO2 data, dataset includes co-located measurements of CO2 and CH4 flux, soil and air temperature, and soil moisture. Measurements and field samples were taken from intensive study site 1 areas A, B, and C, and the site 0 and AB transects, from specified positions in high-centered, flat-centered, and low centered polygons.
A high resolution method for soil moisture mapping at large spatial and temporal scales
NASA Astrophysics Data System (ADS)
moreno, D.; Sayde, C.; Ochsner, T. E.; Sorin, C.; Selker, J. S.
2013-12-01
Soil moisture is a critical component of the planet's water budget, yet precise measurement of its dynamics across the critical scales of 0.1-1,000 m continues to be an area of great uncertainty. Here we present the preliminary results for a large scale installation of soil moisture quantification based on the work of Sayde et al. (2010) using actively heated fiber optic with a DTS system capable of soil moisture measurements at high spatial (reporting every 0.125 m) and temporal resolution (read as frequently as each 15 min)). The fiber optic (FO) sensing cables were installed in 2 sections: 1) a highly resolved multi-scale spiral 75m x 65m in size, 530 m total path length, and 2) a 770 m transect in the foot print of the cosmos cosmic ray probe installed at the site. In each of those 2 sections, the FO cables were deployed at 3 depths: 5, 10, and 15 cm. In this system the FO sensing system provides measurements of soil moisture at >39,000 locations simultaneously for each heat pulse. In addition, six soil monitoring stations along the fiber optic path were installed to provide additional validation and calibration of the DTS data. Finally, gravimetric soil moisture and soil thermal samplings were performed periodically to provide additional distributed validation and calibration of the DTS data. The ability of this DTS FO system to provide soil moisture measurements over four orders of magnitude in spatial scale (0.1 - 1,000m) will allow better understanding of the spatio-temporal variability in soil moisture in the field, which is essential to develop protocols for calibration and validation of large scale soil moisture remote sensing data (such as NASA airMOSS soil moisture air flights). The material is based upon work supported by NASA under award NNX12AP58G, with equipment and assistance also provided by CTEMPs.org with support from the National Science Foundation under Grant Number 1129003. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NASA or the National Science Foundation.. Sayde, C., C. Gregory, M. Gil-Rodriguez, N. Tufillaro, S. Tyler, N. van de Giesen, M. English, R. Cuenca, and J.S. Selker (2010), Feasibility of soil moisture monitoring with heated fiber optics, Water Resour. Res., 46, W06201, doi:10.1029/2009WR007846.
NASA Astrophysics Data System (ADS)
Sinclair, Scott; Pegram, Geoff; Mengitsu, Michael; Everson, Colin
2015-04-01
Timeous knowledge of the spatial distribution of soil moisture and evapotranspiration over a large region in fine detail has great value for coping with two weather extremes: flash floods and droughts, since the state of the wetness of the land surface has a major impact on runoff response. Also, the ability to monitor the wetness of the soil and the actual evapotranspiration over large regions, without having to laboriously take expensive samples, is a bonus for agricultural managers who need to predict crop yields. We present samples of the daily national Soil Moisture and Evapotranspiration estimates on a grid of 7300 locations centred in 12 km squares, then move on to the results of a validation study for soil moisture and evapotranspiration estimated using the PyTOPKAPI hydrological model in Land Surface Modelling mode, a system called HYLARSMET. The HYLARSMET estimates are compared with detailed evapotranspiration and soil moisture measurements made at the Baynesfield experimental farm in the KwaZulu-Natal province of South Africa, run by the University of KZN. The HYLARSMET evapotranspiration estimates compared very well with the measured estimates for the two chosen crop types, in spite of the fact that the HYLARSMET estimates were not designed to explicitly account for the crop types at each site. The same seasonality effects were evident in all 3 estimates, and there was a stronger ET relationship between HYLARSMET and the Soybean site (Pearson r = 0.81) than for Maize, (r = 0.59). The soil moisture relationship was stronger between the two in situ measured estimates (r = 0.98 at 0.5 m depth) than it was between HYLARSMET and the field estimates (r about 0.52 in both cases). Overall there was a reasonably good relationship between HYLARSMET and the in situ measurements of ET and SM at each site, indicating the value of the modelling procedure.
Advanced microwave soil moisture studies. [Big Sioux River Basin, Iowa
NASA Technical Reports Server (NTRS)
Dalsted, K. J.; Harlan, J. C.
1983-01-01
Comparisons of low level L-band brightness temperature (TB) and thermal infrared (TIR) data as well as the following data sets: soil map and land cover data; direct soil moisture measurement; and a computer generated contour map were statistically evaluated using regression analysis and linear discriminant analysis. Regression analysis of footprint data shows that statistical groupings of ground variables (soil features and land cover) hold promise for qualitative assessment of soil moisture and for reducing variance within the sampling space. Dry conditions appear to be more conductive to producing meaningful statistics than wet conditions. Regression analysis using field averaged TB and TIR data did not approach the higher sq R values obtained using within-field variations. The linear discriminant analysis indicates some capacity to distinguish categories with the results being somewhat better on a field basis than a footprint basis.
Soil Gas Sample Handling: Evaluation of Water Removal and Sample Ganging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritz, Brad G.; Abrecht, David G.; Hayes, James C.
2016-10-31
Soil gas sampling is currently conducted in support of Nuclear Test Ban treaty verification. Soil gas samples are collected and analyzed for isotopes of interest. Some issues that can impact sampling and analysis of these samples are excess moisture and sample processing time. Here we discuss three potential improvements to the current sampling protocol; a desiccant for water removal, use of molecular sieve to remove CO 2 from the sample during collection, and a ganging manifold to allow composite analysis of multiple samples.
NASA Technical Reports Server (NTRS)
Jackson, T.; Hsu, A. Y.; ONeill, P. E.
1999-01-01
This study extends a previous investigation on estimating surface soil moisture using the Special Sensor Microwave/Imager (SSM/I) over a grassland region. Although SSM/I is not optimal for soil moisture retrieval, it can under some conditions provide information. Rigorous analyses over land have been difficult due to the lack of good validation data sets. A scientific objective of the Southern Great Plains 1997 (SGP97) Hydrology Experiment was to investigate whether the retrieval algorithms for surface soil moisture developed at higher spatial resolution using truck-and aircraft-based passive microwave sensors can be extended to the coarser resolutions expected from satellite platform. With the data collected for the SGP97, the objective of this study is to compare the surface soil moisture estimated from the SSM/I data with those retrieved from the L-band Electronically Scanned Thinned Array Radiometer (ESTAR) data, the core sensor for the experiment, using the same retrieval algorithm. The results indicated that an error of estimate of 7.81% could be achieved with SSM/I data as contrasted to 2.82% with ESTAR data over three intensive sampling areas of different vegetation regimes. It confirms the results of previous study that SSM/I data can be used to retrieve surface soil moisture information at a regional scale under certain conditions.
Assessment of initial soil moisture conditions for event-based rainfall-runoff modelling
NASA Astrophysics Data System (ADS)
Tramblay, Yves; Bouvier, Christophe; Martin, Claude; Didon-Lescot, Jean-François; Todorovik, Dragana; Domergue, Jean-Marc
2010-06-01
Flash floods are the most destructive natural hazards that occur in the Mediterranean region. Rainfall-runoff models can be very useful for flash flood forecasting and prediction. Event-based models are very popular for operational purposes, but there is a need to reduce the uncertainties related to the initial moisture conditions estimation prior to a flood event. This paper aims to compare several soil moisture indicators: local Time Domain Reflectometry (TDR) measurements of soil moisture, modelled soil moisture through the Interaction-Sol-Biosphère-Atmosphère (ISBA) component of the SIM model (Météo-France), antecedent precipitation and base flow. A modelling approach based on the Soil Conservation Service-Curve Number method (SCS-CN) is used to simulate the flood events in a small headwater catchment in the Cevennes region (France). The model involves two parameters: one for the runoff production, S, and one for the routing component, K. The S parameter can be interpreted as the maximal water retention capacity, and acts as the initial condition of the model, depending on the antecedent moisture conditions. The model was calibrated from a 20-flood sample, and led to a median Nash value of 0.9. The local TDR measurements in the deepest layers of soil (80-140 cm) were found to be the best predictors for the S parameter. TDR measurements averaged over the whole soil profile, outputs of the SIM model, and the logarithm of base flow also proved to be good predictors, whereas antecedent precipitations were found to be less efficient. The good correlations observed between the TDR predictors and the S calibrated values indicate that monitoring soil moisture could help setting the initial conditions for simplified event-based models in small basins.
NASA Astrophysics Data System (ADS)
Zhang, Ke; Yang, Tao; Ye, Jinyin; Li, Zhijia; Yu, Zhongbo
2017-04-01
Soil moisture is a key variable that regulates exchanges of water and energy between land surface and atmosphere. Soil moisture retrievals based on microwave satellite remote sensing have made it possible to estimate global surface (up to about 10 cm in depth) soil moisture routinely. Although there are many satellites operating, including NASA's Soil Moisture Acitive Passive mission (SMAP), ESA's Soil Moisture and Ocean Salinity mission (SMOS), JAXA's Advanced Microwave Scanning Radiometer 2 mission (AMSR2), and China's Fengyun (FY) missions, key differences exist between different satellite-based soil moisture products. In this study, we applied a single-channel soil moisture retrieval model forced by multiple sources of satellite brightness temperature observations to estimate consistent daily surface soil moisture across China at a spatial resolution of 25 km. By utilizing observations from multiple satellites, we are able to estimate daily soil moisture across the whole domain of China. We further developed a daily soil moisture accounting model and applied it to downscale the 25-km satellite-based soil moisture to 5 km. By comparing our estimated soil moisture with observations from a dense observation network implemented in Anhui Province, China, our estimated soil moisture results show a reasonably good agreement with the observations (RMSE < 0.1 and r > 0.8).
NASA Astrophysics Data System (ADS)
Toosi, E. R.; Yu, J.; Doane, T. A.; Guber, A.; Rivers, M. L.; Marsh, T. L.; Ali, K.; Kravchenko, A. N.
2015-12-01
Enduring challenges in understanding soil organic matter (SOM) stability and emission of greenhouse gases (GHGs) from soil stem from complexities of soil processes, many of which occur at micro-scales. The goal of this study is to evaluate the interactive effects soil pore characteristics, soil moisture levels, inherent SOM levels and properties, and substrate quality, on GHGs emission, and accelerated decomposition of native SOM following addition of fresh substrate i.e. priming. Our core hypothesis is that soil pore characteristics play a major role as a mediator in (i) the decomposition of organic matter regardless of its source (i.e. litter vs. native SOM) or substrate quality, as well as in (ii) GHGs emissions. Samples with prevalence of small (<10 μm) vs. large (>30 μm) pores were prepared from soils with similar properties but under long-term contrasting management. The samples were incubated (110 d) at low and optimum soil moisture conditions after addition of high quality (13C-soybean) and low quality (13C-corn) substrate. Headspace gas was analyzed for 13C-CO2 and GHGs on a regularly basis (day 1, 3, 7, 14, 24, 36, 48, 60, 72, 90, and 110). Selected samples were scanned at the early stage of decomposition (7, 14, 24 d) at 2-6 μm resolutions using X-ray computed μ tomography in order to: (1) quantify soil pore characteristics; (2) visualize and quantify distribution of soil moisture within samples of different pore characteristics; and (3) to visualize and measure losses of decomposing plant residue. Initial findings indicate that, consistent with our hypotheses, pore characteristics influenced GHGs emission, and intensity and pattern of plant residue decomposition. The importance of pores was highly pronounced in presence of added plant residue where greater N2O emission occurred in samples with dominant large pores, in contrast to CO2. Further findings will be discussed upon completion of the study and analysis of the results.
The COsmic-ray Soil Moisture Interaction Code (COSMIC) for use in data assimilation
NASA Astrophysics Data System (ADS)
Shuttleworth, J.; Rosolem, R.; Zreda, M.; Franz, T.
2013-08-01
Soil moisture status in land surface models (LSMs) can be updated by assimilating cosmic-ray neutron intensity measured in air above the surface. This requires a fast and accurate model to calculate the neutron intensity from the profiles of soil moisture modeled by the LSM. The existing Monte Carlo N-Particle eXtended (MCNPX) model is sufficiently accurate but too slow to be practical in the context of data assimilation. Consequently an alternative and efficient model is needed which can be calibrated accurately to reproduce the calculations made by MCNPX and used to substitute for MCNPX during data assimilation. This paper describes the construction and calibration of such a model, COsmic-ray Soil Moisture Interaction Code (COSMIC), which is simple, physically based and analytic, and which, because it runs at least 50 000 times faster than MCNPX, is appropriate in data assimilation applications. The model includes simple descriptions of (a) degradation of the incoming high-energy neutron flux with soil depth, (b) creation of fast neutrons at each depth in the soil, and (c) scattering of the resulting fast neutrons before they reach the soil surface, all of which processes may have parameterized dependency on the chemistry and moisture content of the soil. The site-to-site variability in the parameters used in COSMIC is explored for 42 sample sites in the COsmic-ray Soil Moisture Observing System (COSMOS), and the comparative performance of COSMIC relative to MCNPX when applied to represent interactions between cosmic-ray neutrons and moist soil is explored. At an example site in Arizona, fast-neutron counts calculated by COSMIC from the average soil moisture profile given by an independent network of point measurements in the COSMOS probe footprint are similar to the fast-neutron intensity measured by the COSMOS probe. It was demonstrated that, when used within a data assimilation framework to assimilate COSMOS probe counts into the Noah land surface model at the Santa Rita Experimental Range field site, the calibrated COSMIC model provided an effective mechanism for translating model-calculated soil moisture profiles into aboveground fast-neutron count when applied with two radically different approaches used to remove the bias between data and model.
Microbial degradation of sulfentrazone in a Brazilian rhodic hapludox soil
Martinez, Camila O.; Silva, Celia Maria M. S.; Fay, Elisabeth F.; Abakerli, Rosangela B.; Maia, Aline H. N.; Durrant, Lucia R.
2010-01-01
Sulfentrazone is amongst the most widely used herbicides for treating the main crops in the State of São Paulo, Brazil, but few studies are available on the biotransformation of this compound in Brazilian soils. Soil samples of Rhodic Hapludox soil were supplemented with sulfentrazone (0.7 µg active ingredient (a.i.) g-1 soil) and maintained at 27°C. The soil moisture content was corrected to 30, 70 or 100 % water holding capacity (WHC) and maintained constant until the end of the experimental period. Herbicide-free soil samples were used as controls. Another experiment was carried out using soil samples maintained at a constant moisture content of 70% WHC, supplemented or otherwise with the herbicide, and submitted to different temperatures of 15, 30 and 40° C. In both experiments, aliquots were removed after various incubation periods for the quantitative analysis of sulfentrazone residues by gas chromatography. Herbicide-degrading microorganisms were isolated and identified. After 120 days a significant effect on herbicide degradation was observed for the factor of temperature, degradation being higher at 30 and 40° C. A half-life of 91.6 days was estimated at 27° C and 70 % WHC. The soil moisture content did not significantly affect sulfentrazone degradation and the microorganisms identified as potential sulfentrazone degraders were Nocardia brasiliensis and Penicillium sp. The present study enhanced the prospects for future studies on the bio-prospecting for microbial populations related to the degradation of sulfentrazone, and may also contribute to the development of strategies for the bioremediation of sulfentrazone-polluted soils. PMID:24031483
Lin, Ding-Yan; Lee, Yi-Pin; Li, Chiu-Ping; Chi, Kai-Hsien; Liang, Bo-Wei P.; Liu, Wen-Yao; Wang, Chih-Cheng; Lin, Susana; Chen, Ting-Chien; Yeh, Kuei-Jyum C.; Hsu, Ping-Chi; Hsu, Yi-Chyun; Chao, How-Ran; Tsou, Tsui-Chun
2014-01-01
Our goal was to determine dioxin levels in 800 soil samples collected from Taiwan. An in vitro DR-CALUX® assay was carried out with the help of an automated Soxhlet system and fast cleanup column. The mean dioxin level of 800 soil samples was 36.0 pg-bioanalytical equivalents (BEQs)/g dry weight (d.w.). Soil dioxin-BEQs were higher in northern Taiwan (61.8 pg-BEQ/g d.w.) than in central, southern, and eastern Taiwan (22.2, 24.9, and 7.80 pg-BEQ/g d.w., respectively). Analysis of multiple linear regression models identified four major predictors of dioxin-BEQs including soil sampling location (β = 0.097, p < 0.001), land use (β = 0.065, p < 0.001), soil brightness (β = 0.170, p < 0.001), and soil moisture (β = 0.051, p = 0.020), with adjusted R2 = 0.947 (p < 0.001) (n = 662). An univariate logistic regression analysis with the cut-off point of 33.4 pg-BEQ/g d.w. showed significant odds ratios (ORs) for soil sampling location (OR = 2.43, p < 0.001), land use (OR = 1.47, p < 0.001), and soil brightness (OR = 2.83, p = 0.009). In conclusion, four variables, including soil sampling location, land use, soil brightness, and soil moisture, may be related to soil-dioxin contamination. Soil samples collected in northern Taiwan, and especially in Bade City, soils near industrial areas, and soils with darker color may contain higher dioxin-BEQ levels. PMID:24806195
Microstrip Ring Resonator for Soil Moisture Measurements
NASA Technical Reports Server (NTRS)
Sarabandi, Kamal; Li, Eric S.
1993-01-01
Accurate determination of spatial soil moisture distribution and monitoring its temporal variation have a significant impact on the outcomes of hydrologic, ecologic, and climatic models. Development of a successful remote sensing instrument for soil moisture relies on the accurate knowledge of the soil dielectric constant (epsilon(sub soil)) to its moisture content. Two existing methods for measurement of dielectric constant of soil at low and high frequencies are, respectively, the time domain reflectometry and the reflection coefficient measurement using an open-ended coaxial probe. The major shortcoming of these methods is the lack of accurate determination of the imaginary part of epsilon(sub soil). In this paper a microstrip ring resonator is proposed for the accurate measurement of soil dielectric constant. In this technique the microstrip ring resonator is placed in contact with soil medium and the real and imaginary parts of epsilon(sub soil) are determined from the changes in the resonant frequency and the quality factor of the resonator respectively. The solution of the electromagnetic problem is obtained using a hybrid approach based on the method of moments solution of the quasi-static formulation in conjunction with experimental data obtained from reference dielectric samples. Also a simple inversion algorithm for epsilon(sub soil) = epsilon'(sub r) + j(epsilon"(sub r)) based on regression analysis is obtained. It is shown that the wide dynamic range of the measured quantities provides excellent accuracy in the dielectric constant measurement. A prototype microstrip ring resonator at L-band is designed and measurements of soil with different moisture contents are presented and compared with other approaches.
Evaluation of uncertainty in field soil moisture estimations by cosmic-ray neutron sensing
NASA Astrophysics Data System (ADS)
Scheiffele, Lena Maria; Baroni, Gabriele; Schrön, Martin; Ingwersen, Joachim; Oswald, Sascha E.
2017-04-01
Cosmic-ray neutron sensing (CRNS) has developed into a valuable, indirect and non-invasive method to estimate soil moisture at the field scale. It provides continuous temporal data (hours to days), relatively large depth (10-70 cm), and intermediate spatial scale measurements (hundreds of meters), thereby overcoming some of the limitations in point measurements (e.g., TDR/FDR) and of remote sensing products. All these characteristics make CRNS a favorable approach for soil moisture estimation, especially for applications in cropped fields and agricultural water management. Various studies compare CRNS measurements to soil sensor networks and show a good agreement. However, CRNS is sensitive to more characteristics of the land-surface, e.g. additional hydrogen pools, soil bulk density, and biomass. Prior to calibration the standard atmospheric corrections are accounting for the effects of air pressure, humidity and variations in incoming neutrons. In addition, the standard calibration approach was further extended to account for hydrogen in lattice water and soil organic material. Some corrections were also proposed to account for water in biomass. Moreover, the sensitivity of the probe was found to decrease with distance and a weighting procedure for the calibration datasets was introduced to account for the sensors' radial sensitivity. On the one hand, all the mentioned corrections showed to improve the accuracy in estimated soil moisture values. On the other hand, they require substantial additional efforts in monitoring activities and they could inherently contribute to the overall uncertainty of the CRNS product. In this study we aim (i) to quantify the uncertainty in the field soil moisture estimated by CRNS and (ii) to understand the role of the different sources of uncertainty. To this end, two experimental sites in Germany were equipped with a CRNS probe and compared to values of a soil moisture network. The agricultural fields were cropped with winter wheat (Pforzheim, 2013) and maize (Braunschweig, 2014) and differ in soil type and management. The results confirm a general good agreement between soil moisture estimated by CRNS and the soil moisture network. However, several sources of uncertainty were identified i.e., overestimation of dry conditions, strong effects of the additional hydrogen pools and an influence of the vertical soil moisture profile. Based on that, a global sensitivity analysis based on Monte Carlo sampling can be performed and evaluated in terms of soil moisture and footprint characteristics. The results allow quantifying the role of the different factors and identifying further improvements in the method.
Costanzo, J P; Litzgus, J D; Iverson, J B; Lee, R E
1998-11-01
Hatchling painted turtles (Chrysemys picta) hibernate in their shallow natal nests where temperatures occasionally fall below -10 C during cold winters. Because the thermal limit of freeze tolerance in this species is approximately -4 C, hatchlings rely on supercooling to survive exposure to extreme cold. We investigated the influence of environmental ice nuclei on susceptibility to inoculative freezing in hatchling C. picta indigenous to the Sandhills of west-central Nebraska. In the absence of external ice nuclei, hatchlings cooled to -14.6 1.9 C (mean s.e.m.; N=5) before spontaneously freezing. Supercooling capacity varied markedly among turtles cooled in physical contact with sandy soil collected from nesting locales or samples of the native soil to which water-binding agents (clay or peat) had been added, despite the fact that all substrata contained the same amount of moisture (7.5 % moisture, w/w). The temperature of crystallization (Tc) of turtles exposed to frozen native soil was -1.6 0.4 C (N=5), whereas turtles exposed to frozen soil/clay and soil/peat mixtures supercooled extensively (mean Tc values approximately -13 C). Hatchlings cooled in contact with drier (less than or equal to 4 % moisture) native soil also supercooled extensively. Thus, inoculative freezing is promoted by exposure to sandy soils containing abundant moisture and little clay or organic matter. Soil collected at turtle nesting locales in mid and late winter contained variable amounts of moisture (4-15 % w/w) and organic matter (1-3 % w/w). In addition to ice, the soil at turtle nesting locales may harbor inorganic and organic ice nuclei that may also seed the freezing of hatchlings. Bulk samples of native soil, which were autoclaved to destroy any organic nuclei, nucleated aqueous solutions at approximately -7 C (Tc range -6.1 to -8.2 C). Non-autoclaved samples contained water-extractable, presumably organic, ice nuclei (Tc range -4.4 to -5.3 C). Ice nuclei of both classes varied in potency among turtle nesting locales. Interaction with ice nuclei in the winter microenvironment determines whether hatchling C. picta remain supercooled or freeze and may ultimately account for differential mortality in nests at a given locale and for variation in winter survival rates among populations.
Dissolved organic carbon in soil solution of peat-moorsh soils on Kuwasy Mire
NASA Astrophysics Data System (ADS)
Jaszczyński, J.; Sapek, A.
2009-04-01
Key words: peat-moorsh soils, soil solution, dissolved organic carbon (DOC), temperature of soil, redox potential. The objective this study was the dissolved organic carbon concentration (DOC) in soil solution on the background of soil temperature, moisture and redox potential. The investigations were localized on the area of drained and agricultural used Kuwasy Mire, which are situated in the middle basin of Biebrza River, in North-East Poland. Research point was placed on a low peat soil of 110 cm depth managed as extensive grassland. The soil was recognized as peat-moorsh with the second degree of the moorshing process (with 20 cm of moorsh layer). The ceramic suction cups were installed in three replications at 30 cm depth of soil profile. The soil solution was continuously sampled by pomp of the automatic field station. The successive samples comprised of solution collected at the intervals of 21 days. Simultaneously, at the 20, 30 and 40 cm soil depths the measurements of temperature and determination of soil moisture and redox potential were made automatically. The mean twenty-four hours data were collected. The concentrations of DOC were determined by means of the flow colorimeter using the Skalar standard methods. Presented observations were made in 2001-2006. Mean DOC concentration in soil solution was 66 mg.dm-3 within all research period. A significant positive correlation between studied compound concentration and temperature of soil at 30 cm depth was observed; (correlation coefficient - r=0.55, number of samples - n=87). The highest DOC concentrations were observed during the season from July to October, when also a lower ground water level occurred. The DOC concentration in soil solution showed as well a significant correlation with the soil redox potential at 20 cm level. On this depth of describing soil profile a frontier layer between moorshing layer and peat has been existed. This layer is the potentially most active in the respect to biochemical transformation. On the other hand it wasn't possible to shown dependences on the DOC concentration from soil moisture. That probably results from a huge water-holding capacity of these type of peat soils, which are keeping a high moisture content even at a long time after decreasing of the groundwater table.
Regulation of Microbial Herbicide Transformation by Coupled Moisture and Oxygen Dynamics in Soil
NASA Astrophysics Data System (ADS)
Marschmann, G.; Pagel, H.; Uksa, M.; Streck, T.; Milojevic, T.; Rezanezhad, F.; Van Cappellen, P.
2017-12-01
The key processes of herbicide fate in agricultural soils are well-characterized. However, most of these studies are from batch experiments that were conducted under optimal aerobic conditions. In order to delineate the processes controlling herbicide (i.e., phenoxy herbicide 2-methyl-4-chlorophenoxyacetic acid, MCPA) turnover in soil under variable moisture conditions, we conducted a state-of-the-art soil column experiment, with a highly instrumented automated soil column system, under constant and oscillating water table regimes. In this system, the position of the water table was imposed using a computer-controlled, multi-channel pump connected to a hydrostatic equilibrium reservoir and a water storage reservoir. The soil samples were collected from a fertilized, arable and carbon-limited agricultural field site in Germany. The efflux of CO2 was determined from headspace gas measurements as an integrated signal of microbial respiration activity. Moisture and oxygen profiles along the soil column were monitored continuously using high-resolution moisture content probes and luminescence-based Multi Fiber Optode (MuFO) microsensors, respectively. Pore water and solid-phase samples were collected periodically at 8 depths and analyzed for MCPA, dissolved inorganic and organic carbon concentrations as well as the abundance of specific MCPA-degrading bacteria. The results indicated a clear effect of the water table fluctuations on CO2 fluxes, with lower fluxes during imbibition periods and enhanced CO2 fluxes after drainage. In this presentation, we focus on the results of temporal changes in the vertical distribution of herbicide, specific herbicide degraders, organic carbon concentration, moisture content and oxygen. We expect that the high spatial and temporal resolution of measurements from this experiment will allow robust calibration of a reactive transport model for the soil columns, with subsequent identification and quantification of rate limiting processes of MCPA turnover. This will ultimately improve our overall understanding of herbicide fate processes as a function of soil water regime.
The different behaviors of glyphosate and AMPA in compost-amended soil.
Erban, Tomas; Stehlik, Martin; Sopko, Bruno; Markovic, Martin; Seifrtova, Marcela; Halesova, Tatana; Kovaricek, Pavel
2018-09-01
The broad-spectrum herbicide glyphosate is one of the most widely used pesticides. Both glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA), persist in waters; thus, their environmental fates are of interest. We investigated the influence of compost dose, sampling depth, moisture and saturated hydraulic conductivity (K s ) on the persistence of these substances. The amounts of AMPA quantified by triple quadrupole liquid chromatography-mass spectrometry (LC-QqQ-MS/MS) using isotopically labeled extraction standards were higher than those of glyphosate and differed among the samples. Both glyphosate and AMPA showed gradually decreasing concentrations with soil depth, and bootstrapped ANOVA showed significant differences between the contents of glyphosate and AMPA and their behavior related to different compost dosages and sampling depths. However, the compost dose alone did not cause significant differences among samples. Bayesian statistics revealed that the amounts of glyphosate and AMPA were both dependent on the sampling depth and compost dose, but differences were found when considering the physical factors of K s and moisture. Glyphosate was influenced by moisture but not K s , whereas AMPA was influenced by K s but not moisture. Importantly, we found behavioral differences between glyphosate and its major metabolite, AMPA, related to the physical properties of K s and moisture. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zhang, Jianguo; Xu, Xinwen; Li, Shengyu; Zhao, Ying; Zhang, Afeng; Zhang, Tibin; Jiang, Rui
2016-01-01
Freshwater resources are scarce in desert regions. Highly saline groundwater of different salinity is being used to drip irrigate the Taklimakan Desert Highway Shelterbelt with a double-branch-pipe system controlling the irrigation cycles. In this study, to evaluate the dynamics of soil moisture and salinity under the current irrigation system, soil samples were collected to a 2-m depth in the shelterbelt planted for different years and irrigated with different groundwater salinities, and soil moisture and salinity were analyzed. The results showed that both depletion of soil moisture and increase of topsoil salinity occurred simultaneously during one irrigation cycle. Soil moisture decreased from 27.4% to 2.4% for a 15-day irrigation cycle and from 26.4% to 2.7% for a 10-day-cycle, respectively. Topsoil electrical conductivity (EC) increased from 0.64 to 3.32 dS/m and 0.70 to 3.99 dS/m for these two irrigation cycles. With increased shelterbelt age, profiled average soil moisture (0–200 cm) reduced from 12.8% (1-year) to 7.1% (10-year); however, soil moisture in 0–20-cm increased, while topsoil salinity decreased. In addition, irrigation salinity mainly affected soil salinity in the 0–20-cm range. We conclude that water supply with the double-branch-pipe is a feasible irrigation method for the Taklimakan Desert Highway Shelterbelt, and our findings provide a model for shelterbelt construction and sustainable management when using highly saline water for irrigation in analogous habitats. PMID:27711244
NASA Astrophysics Data System (ADS)
Tromp-van Meerveld, I.; McDonnell, J.
2009-05-01
We present an assessment of electromagnetic induction (EM) as a potential rapid and non-invasive method to map soil moisture patterns at the Panola (GA, USA) hillslope. We address the following questions regarding the applicability of EM measurements for hillslope hydrological investigations: (1) Can EM be used for soil moisture measurements in areas with shallow soils?; (2) Can EM represent the temporal and spatial patterns of soil moisture throughout the year?; and (3) can multiple frequencies be used to extract additional information content from the EM approach and explain the depth profile of soil moisture? We found that the apparent conductivity measured with the multi-frequency GEM-300 was linearly related to soil moisture measured with an Aqua-pro capacitance sensor below a threshold conductivity and represented the temporal patterns in soil moisture well. During spring rainfall events that wetted only the surface soil layers the apparent conductivity measurements explained the soil moisture dynamics at depth better than the surface soil moisture dynamics. All four EM frequencies (7290, 9090, 11250, and 14010 Hz) were highly correlated and linearly related to each other and could be used to predict soil moisture. This limited our ability to use the four different EM frequencies to obtain a soil moisture profile with depth. The apparent conductivity patterns represented the observed spatial soil moisture patterns well when the individually fitted relationships between measured soil moisture and apparent conductivity were used for each measurement point. However, when the same (master) relationship was used for all measurement locations, the soil moisture patterns were smoothed and did not resemble the observed soil moisture patterns very well. In addition, the range in calculated soil moisture values was reduced compared to observed soil moisture. Part of the smoothing was likely due to the much larger measurement area of the GEM-300 compared to the Aqua-pro soil moisture measurements.
Assimilation of Passive and Active Microwave Soil Moisture Retrievals
NASA Technical Reports Server (NTRS)
Draper, C. S.; Reichle, R. H.; DeLannoy, G. J. M.; Liu, Q.
2012-01-01
Root-zone soil moisture is an important control over the partition of land surface energy and moisture, and the assimilation of remotely sensed near-surface soil moisture has been shown to improve model profile soil moisture [1]. To date, efforts to assimilate remotely sensed near-surface soil moisture at large scales have focused on soil moisture derived from the passive microwave Advanced Microwave Scanning Radiometer (AMSR-E) and the active Advanced Scatterometer (ASCAT; together with its predecessor on the European Remote Sensing satellites (ERS. The assimilation of passive and active microwave soil moisture observations has not yet been directly compared, and so this study compares the impact of assimilating ASCAT and AMSR-E soil moisture data, both separately and together. Since the soil moisture retrieval skill from active and passive microwave data is thought to differ according to surface characteristics [2], the impact of each assimilation on the model soil moisture skill is assessed according to land cover type, by comparison to in situ soil moisture observations.
Niu, Yu Jie; Zhou, Jian Wei; Yang, Si Wei; Wang, Gui Zhen; Liu, Li; Hua, Li Min
2017-05-18
For understanding the effect of aspect and altitude of hill on soil moisture and temperature as well as the vegetation community, we selected an alpine meadow located on a hill in north-eastern Tibet Plateau as our study area. Data on soil moisture and temperature, as well as plant distribution pattern in this mountain ecosystem were collected. We used regression analysis, CCA ordination and variance decomposition, to determine the impacts of the key factors (aspect, altitude, soil temperature and moisture) on plant diversity distribution in 189 sample sites of the hill. The results showed that the plant diversity of shady aspect and bottomland was highest and lowest, respectively. The plant diversity of the shady aspect and on the ridge of the hill increased initially and then decreased with the increasing altitude, but the plant diversity of the sunny aspect increased with the increasing altitude. At 0-30 cm soil layer, the soil temperature of the sunny aspect was higher than that of other aspects, but the soil temperature at 0-20 cm soil layer did not change with the increa-sing altitude. The soil moisture of shady aspect was higher than that of other aspects, and increased with the increasing altitude. The aspect and altitude explained 100% of soil temperature changes and 51.8% of soil moisture variation. Aspect alone explained 72.2% of soil temperature variation and altitude alone explained 51.8% of soil moisture variation, which had the highest contribution rate individually. Most plants were distributed on the shady aspect and on the ridge, and at medium altitude. Sedges mainly grew on the shady aspect, while Gramineae grew on the sunny aspect, the ridge was an ecotone. Cyperaceae, Gramineae and Leguminosae were mainly distributed in low altitude zone. Hill aspect and altitude totally explained 28.6% of plant abundance variation, hill aspect alone explained 19.9% of plant abundance variation. The management of grassland production and ecological restoration in alpine meadow ecosystem should consider the effect of landform on soil and vegetation, and the hill aspect should be priority factor instead of altitude when planning management interventions.
Multiscale soil moisture estimates using static and roving cosmic-ray soil moisture sensors
NASA Astrophysics Data System (ADS)
McJannet, David; Hawdon, Aaron; Baker, Brett; Renzullo, Luigi; Searle, Ross
2017-12-01
Soil moisture plays a critical role in land surface processes and as such there has been a recent increase in the number and resolution of satellite soil moisture observations and the development of land surface process models with ever increasing resolution. Despite these developments, validation and calibration of these products has been limited because of a lack of observations on corresponding scales. A recently developed mobile soil moisture monitoring platform, known as the rover
, offers opportunities to overcome this scale issue. This paper describes methods, results and testing of soil moisture estimates produced using rover surveys on a range of scales that are commensurate with model and satellite retrievals. Our investigation involved static cosmic-ray neutron sensors and rover surveys across both broad (36 × 36 km at 9 km resolution) and intensive (10 × 10 km at 1 km resolution) scales in a cropping district in the Mallee region of Victoria, Australia. We describe approaches for converting rover survey neutron counts to soil moisture and discuss the factors controlling soil moisture variability. We use independent gravimetric and modelled soil moisture estimates collected across both space and time to validate rover soil moisture products. Measurements revealed that temporal patterns in soil moisture were preserved through time and regression modelling approaches were utilised to produce time series of property-scale soil moisture which may also have applications in calibration and validation studies or local farm management. Intensive-scale rover surveys produced reliable soil moisture estimates at 1 km resolution while broad-scale surveys produced soil moisture estimates at 9 km resolution. We conclude that the multiscale soil moisture products produced in this study are well suited to future analysis of satellite soil moisture retrievals and finer-scale soil moisture models.
NASA Astrophysics Data System (ADS)
Spengler, D.; Kuester, T.; Frick, A.; Scheffler, D.; Kaufmann, H.
2013-10-01
Surface soil moisture content is one of the key variables used for many applications especially in hydrology, meteorology and agriculture. Hyperspectral remote sensing provides effective methodologies for mapping soil moisture content over a broad area by different indices such as NSMI [1,2] and SMGM [3]. Both indices can achieve a high accuracy for non-vegetation influenced soil samples, but their accuracy is limited in case of the presence of vegetation. Since, the increase of the vegetation cover leads to non-linear variations of the indices. In this study a new methodology for moisture indices correcting the influence of vegetation is presented consisting of several processing steps. First, hyperspectral reflectance data are classified in terms of crop type and growth stage. Second, based on these parameters 3D plant models from a database used to simulate typical canopy reflectance considering variations in the canopy structure (e.g. plant density and distribution) and the soil moisture content for actual solar illumination and sensor viewing angles. Third, a vegetation correction function is developed, based on the calculated soil moisture indices and vegetation indices of the simulated canopy reflectance data. Finally this function is applied on hyperspectral image data. The method is tested on two hyperspectral image data sets of the AISA DUAL at the test site Fichtwald in Germany. The results show a significant improvements compared to solely use of NSMI index. Up to a vegetation cover of 75 % the correction function minimise the influences of vegetation cover significantly. If the vegetation is denser the method leads to inadequate quality to predict the soil moisture content. In summary it can be said that applying the method on weakly to moderately overgrown with vegetation locations enables a significant improvement in the quantification of soil moisture and thus greatly expands the scope of NSMI.
Evaluation of Long-term Soil Moisture Proxies in the U.S. Great Plains
NASA Astrophysics Data System (ADS)
Yuan, S.; Quiring, S. M.
2016-12-01
Soil moisture plays an important role in land-atmosphere interactions through both surface energy and water balances. However, despite its importance, there are few long-term records of observed soil moisture for investigating long-term spatial and temporal variations of soil moisture. Hence, it is necessary to find suitable approximations of soil moisture observations. 5 drought indices will be compared with simulated and observed soil moisture over the U.S. Great Plains during two time periods (1980 - 2012 and 2003 - 2012). Standardized Precipitation Index (SPI), Standardized Precipitation-Evapotranspiration Index (SPEI), Palmer Z Index (zindex) and Crop Moisture Index (CMI) will be calculated by PRISM data. The soil moisture simulations will be derived from NLDAS. In situ soil moisture will be obtained from North American Soil Moisture Database. The evaluation will focus on three main aspects: trends, variations and persistence. The results will support further research investigating long-term variations in soil moisture-climate interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunahara, G.I.; Renoux, A.Y.; Dodard, S.
1995-12-31
The environmental impact of energetic substances (TNT, RDX, GAP, NC) in soil is being examined using ecotoxicity bioassays. An extraction method was characterized to optimize bioassay assessment of TNT toxicity in different soil types. Using the Microtox{trademark} (Photobacterium phosphoreum) assay and non-extracted samples, TNT was most acutely toxic (IC{sub 50} = 1--9 PPM) followed by RDX and GAP; NC did not show obvious toxicity (probably due to solubility limitations). TNT (in 0.25% DMSO) yielded an IC{sub 50} 0.98 + 0.10 (SD) ppm. The 96h-EC{sub 50} (Selenastrum capricornutum growth inhibition) of TNT (1. 1 ppm) was higher than GAP and RDX;more » NC was not apparently toxic (probably due to solubility limitations). Soil samples (sand or a silt-sand mix) were spiked with either 2,000 or 20,000 mg TNT/kg soil, and were adjusted to 20% moisture. Samples were later mixed with acetonitrile, sonicated, and then treated with CaCl{sub 2} before filtration, HPLC and ecotoxicity analyses. Results indicated that: the recovery of TNT from soil (97.51% {+-} 2.78) was independent of the type of soil or moisture content; CaCl{sub 2} interfered with TNT toxicity and acetonitrile extracts could not be used directly for algal testing. When TNT extracts were diluted to fixed concentrations, similar TNT-induced ecotoxicities were generally observed and suggested that, apart from the expected effects of TNT concentrations in the soil, the soil texture and the moisture effects were minimal. The extraction procedure permits HPLC analyses as well as ecotoxicity testing and minimizes secondary soil matrix effects. Studies will be conducted to study the toxic effects of other energetic substances present in soil using this approach.« less
NASA Astrophysics Data System (ADS)
Smits, K. M.; Sakaki, T.; Limsuwat, A.; Illangasekare, T. H.
2009-05-01
It is widely recognized that liquid water, water vapor and temperature movement in the subsurface near the land/atmosphere interface are strongly coupled, influencing many agricultural, biological and engineering applications such as irrigation practices, the assessment of contaminant transport and the detection of buried landmines. In these systems, a clear understanding of how variations in water content, soil drainage/wetting history, porosity conditions and grain size affect the soil's thermal behavior is needed, however, the consideration of all factors is rare as very few experimental data showing the effects of these variations are available. In this study, the effect of soil moisture, drainage/wetting history, and porosity on the thermal conductivity of sandy soils with different grain sizes was investigated. For this experimental investigation, several recent sensor based technologies were compiled into a Tempe cell modified to have a network of sampling ports, continuously monitoring water saturation, capillary pressure, temperature, and soil thermal properties. The water table was established at mid elevation of the cell and then lowered slowly. The initially saturated soil sample was subjected to slow drainage, wetting, and secondary drainage cycles. After liquid water drainage ceased, evaporation was induced at the surface to remove soil moisture from the sample to obtain thermal conductivity data below the residual saturation. For the test soils studied, thermal conductivity increased with increasing moisture content, soil density and grain size while thermal conductivity values were similar for soil drying/wetting behavior. Thermal properties measured in this study were then compared with independent estimates made using empirical models from literature. These soils will be used in a proposed set of experiments in intermediate scale test tanks to obtain data to validate methods and modeling tools used for landmine detection.
USDA-ARS?s Scientific Manuscript database
Soil moisture is a key variable in understanding the hydrologic processes and energy fluxes at the land surface. In spite of new technologies for in-situ soil moisture measurements and increased availability of remotely sensed soil moisture data, scaling issues between soil moisture observations and...
Soil Carbon Dioxide and Methane Fluxes in a Costa Rican Premontane Wet Forest
NASA Astrophysics Data System (ADS)
Hempel, L. A.; Schade, G. W.; Pfohl, A.
2011-12-01
A significant amount of the global terrestrial biomass is found in tropical forests, and soil respiration is a vital part of its carbon cycling. However, data on soil trace gas flux rates in the tropics are sparse, especially from previously disturbed regions. To expand the database on carbon cycling in the tropics, this study examined soil flux rate and its variability for CO2 and CH4 in a secondary premontane wet forest south of Arenal Volcano in Costa Rica. Data were collected over a six-week period in June and July 2011 during the transition from dry to wet season. Trace gas sampling was performed at three sub-canopy sites of different elevations. The soil is of volcanic origin with a low bulk density, likely an Andisol. An average KCl pH of 4.8 indicates exchangeable aluminum is present, and a NaF pH>11 indicates the soil is dominated by short-range order minerals. Ten-inch diameter PVC rings were used as static flux chambers without soil collars. To find soil CO2 efflux rates, a battery-powered LICOR 840A CO2-H2O Gas Analyzer was used to take measurements in the field, logging CO2 concentration every ten seconds. Additionally, six, 10-mL Nylon syringes were filled with gas samples at 0, 1, 7, 14, 21, and 28 minutes after closing the chambers. These samples were analyzed the same day with a SRI 8610 Gas Chromatograph for concentrations of CO2 and CH4. The average CO2 efflux calculated was 1.7±0.8E-2 g/m2/min, and did not differ between the applied analytical methods. Soil respiration depended strongly on soil moisture, with decreasing efflux rates at higher water-filled pore space values. An annual soil respiration rate of 8.5E3 g/m2/yr was estimated by applying the observed relationship between soil moisture and CO2 efflux to annual soil moisture measurements. The relatively high respiration rates could be caused by the high soil moisture and low soil bulk density, providing optimal conditions for microbial respiration. Several diurnal sampling periods at one site showed that respiration was highest in the early evening, possibly caused by increased root respiration lagging daytime photosynthesis. Measured average CH4 flux was -7.9±6.2E-6 g/m2/min, similar to literature values; its variability was high with no temperature or soil moisture dependence discernible. However, calculated rates show that the forest was a net sink for methane, indicating that the soils were sufficiently well-drained despite high precipitation rates. Future measurements in this NSF-REU program will evaluate the role of water and root respiration in greater detail and will also incorporate sub-canopy and boundary layer gradient measurements to investigate other aspects of the carbon cycle in this environment.
Influences of Moisture Regimes and Functional Plant Types on Nutrient Cycling in Permafrost Regions
NASA Astrophysics Data System (ADS)
McCaully, R. E.; Arendt, C. A.; Newman, B. D.; Heikoop, J. M.; Wilson, C. J.; Sevanto, S.; Wales, N. A.; Wullschleger, S.
2017-12-01
In the permafrost-dominated Arctic, climatic feedbacks exist between permafrost, soil moisture, functional plant type and presence of nutrients. Functional plant types present within the Arctic regulate and respond to changes in hydrologic regimes and nutrient cycling. Specifically, alders are a member of the birch family that use root nodules to fix nitrogen, which is a limiting nutrient strongly linked to fertilizing Arctic ecosystems. Previous investigations in the Seward Peninsula, AK show elevated presence of nitrate within and downslope of alder patches in degraded permafrost systems, with concentrations an order of magnitude greater than that of nitrate measured above these patches. Further observations within these degraded permafrost systems are crucial to assess whether alders are drivers of, or merely respond to, nitrate fluxes. In addition to vegetative feedbacks with nitrate supply, previous studies have also linked low moisture content to high nitrate production. Within discontinuous permafrost regions, the absence of permafrost creates well-drained regions with unsaturated soils whereas the presence of permafrost limits vertical drainage of soil-pore water creating elevated soil moisture content, which likely corresponds to lower nitrate concentrations. We investigate these feedbacks further in the Seward Peninsula, AK, through research supported by the United States Department of Energy Next Generation Ecosystem Experiment (NGEE) - Arctic. Using soil moisture and thaw depth as proxies to determine the extent of permafrost degradation, we identify areas of discontinuous permafrost over a heterogeneous landscape and collect co-located soilwater chemistry samples to highlight the complex relationships that exist between alder patches, soil moisture regimes, the presence of permafrost and available nitrate supply. Understanding the role of nitrogen in degrading permafrost systems, in the context of both vegetation present and soil moisture, is crucial to understand the impacts of a warming climate on biogeochemical cycling in permafrost regions.
NASA Technical Reports Server (NTRS)
Katzberg, Stephen J.; Torres, Omar; Grant, Michael S.; Masters, Dallas
2006-01-01
Extensive reflected GPS data was collected using a GPS reflectometer installed on an HC130 aircraft during the Soil Moisture Experiment 2002 (SMEX02) near Ames, Iowa. At the same time, widespread surface truth data was acquired in the form of point soil moisture profiles, areal sampling of near-surface soil moisture, total green biomass and precipitation history, among others. Previously, there have been no reported efforts to calibrate reflected GPS data sets acquired over land. This paper reports the results of two approaches to calibration of the data that yield consistent results. It is shown that estimating the strength of the reflected signals by either (1) assuming an approximately specular surface reflection or (2) inferring the surface slope probability density and associated normalization constants give essentially the same results for the conditions encountered in SMEX02. The corrected data is converted to surface reflectivity and then to dielectric constant as a test of the calibration approaches. Utilizing the extensive in-situ soil moisture related data this paper also presents the results of comparing the GPS-inferred relative dielectric constant with the Wang-Schmugge model frequently used to relate volume moisture content to dielectric constant. It is shown that the calibrated GPS reflectivity estimates follow the expected dependence of permittivity with volume moisture, but with the following qualification: The soil moisture value governing the reflectivity appears to come from only the top 1-2 centimeters of soil, a result consistent with results found for other microwave techniques operating at L-band. Nevertheless, the experimentally derived dielectric constant is generally lower than predicted. Possible explanations are presented to explain this result.
NASA Astrophysics Data System (ADS)
Bargsten, A.; Andreae, M. O.; Meixner, F. X.
2009-04-01
Within the framework of the EGER project (ExchanGE processes in mountainous Regions) soil samples have been taken from the spruce forest site "Weidenbrunnen" (Fichtelgebirge, Germany) in September 2008 to determine the NO exchange in the laboratory and for a series of soil analyses. The soil was sampled below different understorey vegetation covers: young Norway spruce, moss/litter, blueberries and grass. We investigated the net NO release rate from corresponding organic layers as well as from the A horizon of respective soils. Additionally we measured pH, C/N ratio, contents of ammonium, nitrate, and organic C, bulk density, the thickness of the organic layer and the quality of the organic matter. Net NO release rates (as well as the NO production and NO consumption rates) from the soil samples were determined by a fully automated laboratory incubation & fumigation system. Purified dry air passed five dynamic incubation chambers, four containing water saturated soil samples and one reference chamber. By this procedure, the soil samples dried out slowly (within 2-6 days), covering the full range of soil moisture (0-300% gravimetric soil moisture). To quantify NO production and NO consumption rates separately, soil samples were fumigated with zero-air (approx. 0 ppb NO) and air of 133 ppb NO. The chambers were placed in a thermostatted cabinet for incubation at 10 an 20Ë C. NO and H2O concentrations at the outlet of the five dynamic chambers were measured sequentially by chemiluminescence and IR-absorption based analyzers, switching corresponding valves every two minutes. Net NO release rates were determined from the NO concentration difference between soil containing and reference chambers. Corresponding measurements of H2O mixing ratio yielded the evaporation loss of the soil samples, which (referenced to the gravimetric soil water content before and after the incubation experiment) provided the individual soil moisture contents of each soil samples during the incubation experiment. Our contribution focus net NO release rates, NO production and NO consumption rates of spruce forest soils sampled under different understorey vegetation covers. Generally, organic layers show significant higher NO production and NO consumption rates than the soils from the corresponding A horizons. Soils under the understorey vegetation cover "moos/litter" revealed the lowest NO production and NO consumption rates. Net NO release rates, NO production and NO consumption rates of soil samples obtained below the four different under- storey vegetation covers will be discussed in terms of pH, C/N ratio, contents of ammonium, nitrate, and organic C, bulk density, thickness of organic layer, as well as quality of the organic matter.
NASA Astrophysics Data System (ADS)
Tromp-van Meerveld, H. J.; McDonnell, J. J.
2009-04-01
SummaryHillslopes are fundamental landscape units, yet represent a difficult scale for measurements as they are well-beyond our traditional point-scale techniques. Here we present an assessment of electromagnetic induction (EM) as a potential rapid and non-invasive method to map soil moisture patterns at the hillslope scale. We test the new multi-frequency GEM-300 for spatially distributed soil moisture measurements at the well-instrumented Panola hillslope. EM-based apparent conductivity measurements were linearly related to soil moisture measured with the Aqua-pro capacitance sensor below a threshold conductivity and represented the temporal patterns in soil moisture well. During spring rainfall events that wetted only the surface soil layers the apparent conductivity measurements explained the soil moisture dynamics at depth better than the surface soil moisture dynamics. All four EM frequencies (7.290, 9.090, 11.250, and 14.010 kHz) were highly correlated and linearly related to each other and could be used to predict soil moisture. This limited our ability to use the four different EM frequencies to obtain a soil moisture profile with depth. The apparent conductivity patterns represented the observed spatial soil moisture patterns well when the individually fitted relationships between measured soil moisture and apparent conductivity were used for each measurement point. However, when the same (master) relationship was used for all measurement locations, the soil moisture patterns were smoothed and did not resemble the observed soil moisture patterns very well. In addition the range in calculated soil moisture values was reduced compared to observed soil moisture. Part of the smoothing was likely due to the much larger measurement area of the GEM-300 compared to the soil moisture measurements.
Effects of varying soil moisture contents and vegetation canopies on microwave emissions
NASA Technical Reports Server (NTRS)
Burke, H.-H. K.; Schmugge, T. J.
1982-01-01
Results of NASA airborne passive microwave scans of bare and vegetated fields for comparison with ground truth tests are discussed and a model for atmospheric scattering of radiation by vegetation is detailed. On-board radiometers obtained data at 21, 2.8, and 1.67 cm during three passes over each of 46 fields, 28 of which were bare and the others having wheat or alfalfa. Ground-based sampling included moisture in five layers down to 15 cm in addition to soil temperature. The relationships among the brightness temperature and soil moisture, as well as the surface roughness and the vegetation canopy were examined. A model was developed for the dielectric coefficient and volume scattering for a vegetation medium. L- to C-band data were found useful for retrieving soil information directly. A surface moisture content of 5-35% yielded an emissivity of 0.9-0.7. The data agreed well with a combined multilayer radiative transfer model with simple roughness correction.
NASA Astrophysics Data System (ADS)
Schrön, M.; Fersch, B.; Jagdhuber, T.
2017-12-01
The representative determination of soil moisture across different spatial ranges and scales is still an important challenge in hydrology. While in situ measurements are trusted methods at the profile- or point-scale, cosmic-ray neutron sensors (CRNS) are renowned for providing volume averages for several hectares and tens of decimeters depth. On the other hand, airborne remote-sensing enables the coverage of regional scales, however limited to the top few centimeters of the soil.Common to all of these methods is a challenging data processing part, often requiring calibration with independent data. We investigated the performance and potential of three complementary observational methods for the determination of soil moisture below grassland in an alpine front-range river catchment (Rott, 55 km2) of southern Germany.We employ the TERENO preAlpine soil moisture monitoring network, along with additional soil samples taken throughout the catchment. Spatial soil moisture products have been generated using surveys of a car-mounted mobile CRNS (rover), and an aerial acquisition of the polarimetric synthetic aperture radar (F-SAR) of DLR.The study assesses (1) the viability of the different methods to estimate soil moisture for their respective scales and extents, and (2) how either method could support an improvement of the others. We found that in situ data can provide valuable information to calibrate the CRNS rover and to train the vegetation removal part of the polarimetric SAR (PolSAR) retrieval algorithm. Vegetation correction is mandatory to obtain the sub-canopy soil moisture patterns. While CRNS rover surveys can be used to evaluate the F-SAR product across scales, vegetation-related PolSAR products in turn can support the spatial correction of CRNS products for biomass water. Despite the different physical principles, the synthesis of the methods can provide reasonable soil moisture information by integrating from the plot to the landscape scale. The combination of in situ, CRNS, and remote-sensing data leads to substantial improvement, especially for the latter two. The study shows how interdisciplinary research can greatly advance the methodology and processing algorithms for individual geoscientific instruments and their hydrologically relevant products.
NASA Technical Reports Server (NTRS)
Reichle, Rolf H.; Liu, Qing; Bindlish, Rajat; Cosh, Michael H.; Crow, Wade T.; deJeu, Richard; DeLannoy, Gabrielle J. M.; Huffman, George J.; Jackson, Thomas J.
2011-01-01
The contributions of precipitation and soil moisture observations to the skill of soil moisture estimates from a land data assimilation system are assessed. Relative to baseline estimates from the Modern Era Retrospective-analysis for Research and Applications (MERRA), the study investigates soil moisture skill derived from (i) model forcing corrections based on large-scale, gauge- and satellite-based precipitation observations and (ii) assimilation of surface soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E). Soil moisture skill is measured against in situ observations in the continental United States at 44 single-profile sites within the Soil Climate Analysis Network (SCAN) for which skillful AMSR-E retrievals are available and at four CalVal watersheds with high-quality distributed sensor networks that measure soil moisture at the scale of land model and satellite estimates. The average skill (in terms of the anomaly time series correlation coefficient R) of AMSR-E retrievals is R=0.39 versus SCAN and R=0.53 versus CalVal measurements. The skill of MERRA surface and root-zone soil moisture is R=0.42 and R=0.46, respectively, versus SCAN measurements, and MERRA surface moisture skill is R=0.56 versus CalVal measurements. Adding information from either precipitation observations or soil moisture retrievals increases surface soil moisture skill levels by IDDeltaR=0.06-0.08, and root zone soil moisture skill levels by DeltaR=0.05-0.07. Adding information from both sources increases surface soil moisture skill levels by DeltaR=0.13, and root zone soil moisture skill by DeltaR=0.11, demonstrating that precipitation corrections and assimilation of satellite soil moisture retrievals contribute similar and largely independent amounts of information.
Spectral reflectance of surface soils: Relationships with some soil properties
NASA Technical Reports Server (NTRS)
Kiesewetter, C. H.
1983-01-01
Using a published atlas of reflectance curves and physicochemical properties of soils, a statistical analysis was carried out. Reflectance bands which correspond to five of the wavebands used by NASA's Thematic Mapper were examined for relationships to specific soil properties. The properties considered in this study include: Sand Content, Silt Content, Clay Content, Organic Matter Content, Cation Exchange Capacity, Iron Oxide Content and Moisture Content. Regression of these seven properties on the mean values of five TM bands produced results that indicate that the predictability of the properties can be increased by stratifying the data. The data was stratified by parent material, taxonomic order, temperature zone, moisture zone and climate (combined temperature and moisture). The best results were obtained when the sample was examined by climatic classes. The middle Infra-red bands, 5 and 7, as well as the visible bands, 2 and 3, are significant in the model. The near Infra-red band, band 4, is almost as useful and should be included in any studies. General linear modeling procedures examined relationships of the seven properties with certain wavebands in the stratified samples.
Mapping The Temporal and Spatial Variability of Soil Moisture Content Using Proximal Soil Sensing
NASA Astrophysics Data System (ADS)
Virgawati, S.; Mawardi, M.; Sutiarso, L.; Shibusawa, S.; Segah, H.; Kodaira, M.
2018-05-01
In studies related to soil optical properties, it has been proven that visual and NIR soil spectral response can predict soil moisture content (SMC) using proper data analysis techniques. SMC is one of the most important soil properties influencing most physical, chemical, and biological soil processes. The problem is how to provide reliable, fast and inexpensive information of SMC in the subsurface from numerous soil samples and repeated measurement. The use of spectroscopy technology has emerged as a rapid and low-cost tool for extensive investigation of soil properties. The objective of this research was to develop calibration models based on laboratory Vis-NIR spectroscopy to estimate the SMC at four different growth stages of the soybean crop in Yogyakarta Province. An ASD Field-spectrophotoradiometer was used to measure the reflectance of soil samples. The partial least square regression (PLSR) was performed to establish the relationship between the SMC with Vis-NIR soil reflectance spectra. The selected calibration model was used to predict the new samples of SMC. The temporal and spatial variability of SMC was performed in digital maps. The results revealed that the calibration model was excellent for SMC prediction. Vis-NIR spectroscopy was a reliable tool for the prediction of SMC.
A surface temperature and moisture parameterization for use in mesoscale numerical models
NASA Technical Reports Server (NTRS)
Tremback, C. J.; Kessler, R.
1985-01-01
A modified multi-level soil moisture and surface temperature model is presented for use as in defining lower boundary conditions in mesoscale weather models. Account is taken of the hydraulic and thermal diffusion properties of the soil, their variations with soil type, and the mixing ratio at the surface. Techniques are defined for integrating the surface input into the multi-level scheme. Sample simulation runs were performed with the modified model and the original model defined by Pielke, et al. (1977, 1981). The models were applied to regional weather forecasting over soils composed of sand and clay loam. The new form of the model avoided iterations necessary in the earlier version of the model and achieved convergence at reasonable profiles for surface temperature and moisture in regions where the earlier version of the model failed.
Stochastic Analysis and Probabilistic Downscaling of Soil Moisture
NASA Astrophysics Data System (ADS)
Deshon, J. P.; Niemann, J. D.; Green, T. R.; Jones, A. S.
2017-12-01
Soil moisture is a key variable for rainfall-runoff response estimation, ecological and biogeochemical flux estimation, and biodiversity characterization, each of which is useful for watershed condition assessment. These applications require not only accurate, fine-resolution soil-moisture estimates but also confidence limits on those estimates and soil-moisture patterns that exhibit realistic statistical properties (e.g., variance and spatial correlation structure). The Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) model downscales coarse-resolution (9-40 km) soil moisture from satellite remote sensing or land-surface models to produce fine-resolution (10-30 m) estimates. The model was designed to produce accurate deterministic soil-moisture estimates at multiple points, but the resulting patterns do not reproduce the variance or spatial correlation of observed soil-moisture patterns. The primary objective of this research is to generalize the EMT+VS model to produce a probability density function (pdf) for soil moisture at each fine-resolution location and time. Each pdf has a mean that is equal to the deterministic soil-moisture estimate, and the pdf can be used to quantify the uncertainty in the soil-moisture estimates and to simulate soil-moisture patterns. Different versions of the generalized model are hypothesized based on how uncertainty enters the model, whether the uncertainty is additive or multiplicative, and which distributions describe the uncertainty. These versions are then tested by application to four catchments with detailed soil-moisture observations (Tarrawarra, Satellite Station, Cache la Poudre, and Nerrigundah). The performance of the generalized models is evaluated by comparing the statistical properties of the simulated soil-moisture patterns to those of the observations and the deterministic EMT+VS model. The versions of the generalized EMT+VS model with normally distributed stochastic components produce soil-moisture patterns with more realistic statistical properties than the deterministic model. Additionally, the results suggest that the variance and spatial correlation of the stochastic soil-moisture variations do not vary consistently with the spatial-average soil moisture.
Response of deep soil moisture to land use and afforestation in the semi-arid Loess Plateau, China
NASA Astrophysics Data System (ADS)
Yang, Lei; Wei, Wei; Chen, Liding; Mo, Baoru
2012-12-01
SummarySoil moisture is an effective water source for plant growth in the semi-arid Loess Plateau of China. Characterizing the response of deep soil moisture to land use and afforestation is important for the sustainability of vegetation restoration in this region. In this paper, the dynamics of soil moisture were quantified to evaluate the effect of land use on soil moisture at a depth of 2 m. Specifically, the gravimetric soil moisture content was measured in the soil layer between 0 and 8 m for five land use types in the Longtan catchment of the western Loess Plateau. The land use types included traditional farmland, native grassland, and lands converted from traditional farmland (pasture grassland, shrubland and forestland). Results indicate that the deep soil moisture content decreased more than 35% after land use conversion, and a soil moisture deficit appeared in all types of land with introduced vegetation. The introduced vegetation decreased the soil moisture content to levels lower than the reference value representing no human impact in the entire 0-8 m soil profile. No significant differences appeared between different land use types and introduced vegetation covers, especially in deeper soil layers, regardless of which plant species were introduced. High planting density was found to be the main reason for the severe deficit of soil moisture. Landscape management activities such as tillage activities, micro-topography reconstruction, and fallowed farmland affected soil moisture in both shallow and deep soil layers. Tillage and micro-topography reconstruction can be used as effective countermeasures to reduce the soil moisture deficit due to their ability to increase soil moisture content. For sustainable vegetation restoration in a vulnerable semi-arid region, the plant density should be optimized with local soil moisture conditions and appropriate landscape management practices.
State of the Art in Large-Scale Soil Moisture Monitoring
NASA Technical Reports Server (NTRS)
Ochsner, Tyson E.; Cosh, Michael Harold; Cuenca, Richard H.; Dorigo, Wouter; Draper, Clara S.; Hagimoto, Yutaka; Kerr, Yan H.; Larson, Kristine M.; Njoku, Eni Gerald; Small, Eric E.;
2013-01-01
Soil moisture is an essential climate variable influencing land atmosphere interactions, an essential hydrologic variable impacting rainfall runoff processes, an essential ecological variable regulating net ecosystem exchange, and an essential agricultural variable constraining food security. Large-scale soil moisture monitoring has advanced in recent years creating opportunities to transform scientific understanding of soil moisture and related processes. These advances are being driven by researchers from a broad range of disciplines, but this complicates collaboration and communication. For some applications, the science required to utilize large-scale soil moisture data is poorly developed. In this review, we describe the state of the art in large-scale soil moisture monitoring and identify some critical needs for research to optimize the use of increasingly available soil moisture data. We review representative examples of 1) emerging in situ and proximal sensing techniques, 2) dedicated soil moisture remote sensing missions, 3) soil moisture monitoring networks, and 4) applications of large-scale soil moisture measurements. Significant near-term progress seems possible in the use of large-scale soil moisture data for drought monitoring. Assimilation of soil moisture data for meteorological or hydrologic forecasting also shows promise, but significant challenges related to model structures and model errors remain. Little progress has been made yet in the use of large-scale soil moisture observations within the context of ecological or agricultural modeling. Opportunities abound to advance the science and practice of large-scale soil moisture monitoring for the sake of improved Earth system monitoring, modeling, and forecasting.
Reconstructions of Soil Moisture for the Upper Colorado River Basin Using Tree-Ring Chronologies
NASA Astrophysics Data System (ADS)
Tootle, G.; Anderson, S.; Grissino-Mayer, H.
2012-12-01
Soil moisture is an important factor in the global hydrologic cycle, but existing reconstructions of historic soil moisture are limited. Tree-ring chronologies (TRCs) were used to reconstruct annual soil moisture in the Upper Colorado River Basin (UCRB). Gridded soil moisture data were spatially regionalized using principal components analysis and k-nearest neighbor techniques. Moisture sensitive tree-ring chronologies in and adjacent to the UCRB were correlated with regional soil moisture and tested for temporal stability. TRCs that were positively correlated and stable for the calibration period were retained. Stepwise linear regression was applied to identify the best predictor combinations for each soil moisture region. The regressions explained 42-78% of the variability in soil moisture data. We performed reconstructions for individual soil moisture grid cells to enhance understanding of the disparity in reconstructive skill across the regions. Reconstructions that used chronologies based on ponderosa pines (Pinus ponderosa) and pinyon pines (Pinus edulis) explained increased variance in the datasets. Reconstructed soil moisture was standardized and compared with standardized reconstructed streamflow and snow water equivalent from the same region. Soil moisture reconstructions were highly correlated with streamflow and snow water equivalent reconstructions, indicating reconstructions of soil moisture in the UCRB using TRCs successfully represent hydrologic trends, including the identification of periods of prolonged drought.
Evaluation of soil quality indicators in paddy soils under different crop rotation systems
NASA Astrophysics Data System (ADS)
Nadimi-Goki, Mandana; Bini, Claudio; Haefele, Stephan; Abooei, Monireh
2013-04-01
Evaluation of soil quality indicators in paddy soils under different crop rotation systems Soil quality, by definition, reflects the capacity to sustain plant and animal productivity, maintain or enhance water and air quality, and promote plant and animal health. Soil quality assessment is an essential issue in soil management for agriculture and natural resource protection. This study was conducted to detect the effects of four crop rotation systems (rice-rice-rice, soya-rice-rice, fallow-rice and pea-soya-rice) on soil quality indicators (soil moisture, porosity, bulk density, water-filled pore space, pH, extractable P, CEC, OC, OM, microbial respiration, active carbon) in paddy soils of Verona area, Northern Italy. Four adjacent plots which managed almost similarly, over five years were selected. Surface soil samples were collected from each four rotation systems in four times, during growing season. Each soil sample was a composite of sub-samples taken from 3 points within 350 m2 of agricultural land. A total of 48 samples were air-dried and passed through 2mm sieve, for some chemical, biological, and physical measurements. Statistical analysis was done using SPSS. Statistical results revealed that frequency distribution of most data was normal. The lowest CV% was related to pH. Analysis of variance (ANOVA) and comparison test showed that there are significant differences in soil quality indicators among crop rotation systems and sampling times. Results of multivariable regression analysis revealed that soil respiration had positively correlation coefficient with soil organic matter, soil moisture and cation exchange capacity. Overall results indicated that the rice rotation with legumes such as bean and soybean improved soil quality over a long time in comparison to rice-fallow rotation, and this is reflected in rice yield. Keywords: Soil quality, Crop Rotation System, Paddy Soils, Italy
NASA Astrophysics Data System (ADS)
Park, Seonyoung; Im, Jungho; Park, Sumin; Rhee, Jinyoung
2017-04-01
Soil moisture is one of the most important keys for understanding regional and global climate systems. Soil moisture is directly related to agricultural processes as well as hydrological processes because soil moisture highly influences vegetation growth and determines water supply in the agroecosystem. Accurate monitoring of the spatiotemporal pattern of soil moisture is important. Soil moisture has been generally provided through in situ measurements at stations. Although field survey from in situ measurements provides accurate soil moisture with high temporal resolution, it requires high cost and does not provide the spatial distribution of soil moisture over large areas. Microwave satellite (e.g., advanced Microwave Scanning Radiometer on the Earth Observing System (AMSR2), the Advanced Scatterometer (ASCAT), and Soil Moisture Active Passive (SMAP)) -based approaches and numerical models such as Global Land Data Assimilation System (GLDAS) and Modern- Era Retrospective Analysis for Research and Applications (MERRA) provide spatial-temporalspatiotemporally continuous soil moisture products at global scale. However, since those global soil moisture products have coarse spatial resolution ( 25-40 km), their applications for agriculture and water resources at local and regional scales are very limited. Thus, soil moisture downscaling is needed to overcome the limitation of the spatial resolution of soil moisture products. In this study, GLDAS soil moisture data were downscaled up to 1 km spatial resolution through the integration of AMSR2 and ASCAT soil moisture data, Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), and Moderate Resolution Imaging Spectroradiometer (MODIS) data—Land Surface Temperature, Normalized Difference Vegetation Index, and Land cover—using modified regression trees over East Asia from 2013 to 2015. Modified regression trees were implemented using Cubist, a commercial software tool based on machine learning. An optimization based on pruning of rules derived from the modified regression trees was conducted. Root Mean Square Error (RMSE) and Correlation coefficients (r) were used to optimize the rules, and finally 59 rules from modified regression trees were produced. The results show high validation r (0.79) and low validation RMSE (0.0556m3/m3). The 1 km downscaled soil moisture was evaluated using ground soil moisture data at 14 stations, and both soil moisture data showed similar temporal patterns (average r=0.51 and average RMSE=0.041). The spatial distribution of the 1 km downscaled soil moisture well corresponded with GLDAS soil moisture that caught both extremely dry and wet regions. Correlation between GLDAS and the 1 km downscaled soil moisture during growing season was positive (mean r=0.35) in most regions.
NASA Astrophysics Data System (ADS)
Montzka, C.; Rötzer, K.; Bogena, H. R.; Vereecken, H.
2017-12-01
Improving the coarse spatial resolution of global soil moisture products from SMOS, SMAP and ASCAT is currently an up-to-date topic. Soil texture heterogeneity is known to be one of the main sources of soil moisture spatial variability. A method has been developed that predicts the soil moisture standard deviation as a function of the mean soil moisture based on soil texture information. It is a closed-form expression using stochastic analysis of 1D unsaturated gravitational flow in an infinitely long vertical profile based on the Mualem-van Genuchten model and first-order Taylor expansions. With the recent development of high resolution maps of basic soil properties such as soil texture and bulk density, relevant information to estimate soil moisture variability within a satellite product grid cell is available. Here, we predict for each SMOS, SMAP and ASCAT grid cell the sub-grid soil moisture variability based on the SoilGrids1km data set. We provide a look-up table that indicates the soil moisture standard deviation for any given soil moisture mean. The resulting data set provides important information for downscaling coarse soil moisture observations of the SMOS, SMAP and ASCAT missions. Downscaling SMAP data by a field capacity proxy indicates adequate accuracy of the sub-grid soil moisture patterns.
Variability and scaling of hydraulic properties for 200 Area soils, Hanford Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaleel, R.; Freeman, E.J.
Over the years, data have been obtained on soil hydraulic properties at the Hanford Site. Much of these data have been obtained as part of recent site characterization activities for the Environmental Restoration Program. The existing data on vadose zone soil properties are, however, fragmented and documented in reports that have not been formally reviewed and released. This study helps to identify, compile, and interpret all available data for the principal soil types in the 200 Areas plateau. Information on particle-size distribution, moisture retention, and saturated hydraulic conductivity (K{sub s}) is available for 183 samples from 12 sites in themore » 200 Areas. Data on moisture retention and K{sub s} are corrected for gravel content. After the data are corrected and cataloged, hydraulic parameters are determined by fitting the van Genuchten soil-moisture retention model to the data. A nonlinear parameter estimation code, RETC, is used. The unsaturated hydraulic conductivity relationship can subsequently be predicted using the van Genuchten parameters, Mualem`s model, and laboratory-measured saturated hydraulic conductivity estimates. Alternatively, provided unsaturated conductivity measurements are available, the moisture retention curve-fitting parameters, Mualem`s model, and a single unsaturated conductivity measurement can be used to predict unsaturated conductivities for the desired range of field moisture regime.« less
NASA Astrophysics Data System (ADS)
Senanayake, I. P.; Yeo, I. Y.; Tangdamrongsub, N.; Willgoose, G. R.; Hancock, G. R.; Wells, T.; Fang, B.; Lakshmi, V.
2017-12-01
Long-term soil moisture datasets at high spatial resolution are important in agricultural, hydrological, and climatic applications. The soil moisture estimates can be achieved using satellite remote sensing observations. However, the satellite soil moisture data are typically available at coarse spatial resolutions ( several tens of km), therefore require further downscaling. Different satellite soil moisture products have to be conjointly employed in developing a consistent time-series of high resolution soil moisture, while the discrepancies amongst different satellite retrievals need to be resolved. This study aims to downscale three different satellite soil moisture products, the Soil Moisture and Ocean Salinity (SMOS, 25 km), the Soil Moisture Active Passive (SMAP, 36 km) and the SMAP-Enhanced (9 km), and to conduct an inter-comparison of the downscaled results. The downscaling approach is developed based on the relationship between the diurnal temperature difference and the daily mean soil moisture content. The approach is applied to two sub-catchments (Krui and Merriwa River) of the Goulburn River catchment in the Upper Hunter region (NSW, Australia) to estimate soil moisture at 1 km resolution for 2015. The three coarse spatial resolution soil moisture products and their downscaled results will be validated with the in-situ observations obtained from the Scaling and Assimilation of Soil Moisture and Streamflow (SASMAS) network. The spatial and temporal patterns of the downscaled results will also be analysed. This study will provide the necessary insights for data selection and bias corrections to maintain the consistency of a long-term high resolution soil moisture dataset. The results will assist in developing a time-series of high resolution soil moisture data over the south-eastern Australia.
Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond-Lamberty, Ben; Smith, A. Peyton; Bailey, Vanessa L.
Rapid climatic changes, rising air temperatures, and increased fires are expected to drive permafrost degradation and alter soil carbon (C) cycling in many high-latitude ecosystems. How these soils will respond to changes in their temperature, moisture, and overlying vegetation is uncertain but critical to understand given the large soil C stocks in these regions. We used a laboratory experiment to examine how temperature and moisture control CO 2 and CH 4 emissions from mineral soils sampled from the bottom of the annual active layer, i.e., directly above permafrost, in an Alaskan boreal forest. Gas emissions from 30 cores, subjected tomore » two temperatures and either field moisture conditions or experimental drought, were tracked over a 100-day incubation; we also measured a variety of physical and chemical characteristics of the cores. Gravimetric water content was 0.31 ± 0.12 (unitless) at the beginning of the incubation; cores at field moisture were unchanged at the end, but drought cores had declined to 0.06 ± 0.04. Daily CO 2 fluxes were positively correlated with incubation chamber temperature, core water content, and percent soil nitrogen. They also had a temperature sensitivity ( Q 10) of 1.3 and 1.9 for the field moisture and drought treatments, respectively. Daily CH 4 emissions were most strongly correlated with percent nitrogen, but neither temperature nor water content was a significant first-order predictor of CH 4 fluxes. The cumulative production of C from CO 2 was over 6 orders of magnitude higher than that from CH 4; cumulative CO 2 was correlated with incubation temperature and moisture treatment, with drought cores producing 52–73 % lower C. Cumulative CH 4 production was unaffected by any treatment. These results suggest that deep active-layer soils may be sensitive to changes in soil moisture under aerobic conditions, a critical factor as discontinuous permafrost thaws in interior Alaska. Furthermore, deep but unfrozen high-latitude soils have been shown to be strongly affected by long-term experimental warming, and these results provide insight into their future dynamics and feedback potential with future climate change.« less
Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils
Bond-Lamberty, Ben; Smith, A. Peyton; Bailey, Vanessa L.
2016-12-21
Rapid climatic changes, rising air temperatures, and increased fires are expected to drive permafrost degradation and alter soil carbon (C) cycling in many high-latitude ecosystems. How these soils will respond to changes in their temperature, moisture, and overlying vegetation is uncertain but critical to understand given the large soil C stocks in these regions. We used a laboratory experiment to examine how temperature and moisture control CO 2 and CH 4 emissions from mineral soils sampled from the bottom of the annual active layer, i.e., directly above permafrost, in an Alaskan boreal forest. Gas emissions from 30 cores, subjected tomore » two temperatures and either field moisture conditions or experimental drought, were tracked over a 100-day incubation; we also measured a variety of physical and chemical characteristics of the cores. Gravimetric water content was 0.31 ± 0.12 (unitless) at the beginning of the incubation; cores at field moisture were unchanged at the end, but drought cores had declined to 0.06 ± 0.04. Daily CO 2 fluxes were positively correlated with incubation chamber temperature, core water content, and percent soil nitrogen. They also had a temperature sensitivity ( Q 10) of 1.3 and 1.9 for the field moisture and drought treatments, respectively. Daily CH 4 emissions were most strongly correlated with percent nitrogen, but neither temperature nor water content was a significant first-order predictor of CH 4 fluxes. The cumulative production of C from CO 2 was over 6 orders of magnitude higher than that from CH 4; cumulative CO 2 was correlated with incubation temperature and moisture treatment, with drought cores producing 52–73 % lower C. Cumulative CH 4 production was unaffected by any treatment. These results suggest that deep active-layer soils may be sensitive to changes in soil moisture under aerobic conditions, a critical factor as discontinuous permafrost thaws in interior Alaska. Furthermore, deep but unfrozen high-latitude soils have been shown to be strongly affected by long-term experimental warming, and these results provide insight into their future dynamics and feedback potential with future climate change.« less
Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils
NASA Astrophysics Data System (ADS)
Bond-Lamberty, Ben; Smith, A. Peyton; Bailey, Vanessa
2016-12-01
Rapid climatic changes, rising air temperatures, and increased fires are expected to drive permafrost degradation and alter soil carbon (C) cycling in many high-latitude ecosystems. How these soils will respond to changes in their temperature, moisture, and overlying vegetation is uncertain but critical to understand given the large soil C stocks in these regions. We used a laboratory experiment to examine how temperature and moisture control CO2 and CH4 emissions from mineral soils sampled from the bottom of the annual active layer, i.e., directly above permafrost, in an Alaskan boreal forest. Gas emissions from 30 cores, subjected to two temperatures and either field moisture conditions or experimental drought, were tracked over a 100-day incubation; we also measured a variety of physical and chemical characteristics of the cores. Gravimetric water content was 0.31 ± 0.12 (unitless) at the beginning of the incubation; cores at field moisture were unchanged at the end, but drought cores had declined to 0.06 ± 0.04. Daily CO2 fluxes were positively correlated with incubation chamber temperature, core water content, and percent soil nitrogen. They also had a temperature sensitivity (Q10) of 1.3 and 1.9 for the field moisture and drought treatments, respectively. Daily CH4 emissions were most strongly correlated with percent nitrogen, but neither temperature nor water content was a significant first-order predictor of CH4 fluxes. The cumulative production of C from CO2 was over 6 orders of magnitude higher than that from CH4; cumulative CO2 was correlated with incubation temperature and moisture treatment, with drought cores producing 52-73 % lower C. Cumulative CH4 production was unaffected by any treatment. These results suggest that deep active-layer soils may be sensitive to changes in soil moisture under aerobic conditions, a critical factor as discontinuous permafrost thaws in interior Alaska. Deep but unfrozen high-latitude soils have been shown to be strongly affected by long-term experimental warming, and these results provide insight into their future dynamics and feedback potential with future climate change.
The role of tree species and soil moisture in soil organic matter stabilization and destabilization
NASA Astrophysics Data System (ADS)
Hatten, J. A.; Dewey, J.; Roberts, S.; McNeal, K.; Shaman, A.
2014-12-01
Inputs of labile organic substrates to soils are commonly associated with elevated soil organic carbon mineralization rates; this process is known as the priming effect. Plant presence and soil conditions (i.e. water regime, nutrient status) are known to be interacting factors governing priming. In this study, we examine the role of differing species, loblolly pine (Pinus taeda L.) and nuttall oak (Quercus texana B.), and moisture regimes (low and high) upon the soil priming effect in a fine textured soil. We explore whether there is depletion of original soil carbon and concurrent replacement through addition of fresh organic matter from the planted tree species. By employing a series of planted and plant-free pots in a greenhouse mesocosm study, we were able to characterize the composition of soil organic matter and its carbon with the use of CuO oxidation products (e.g. lignin, cutin/suberin biomarkers). Carbon was elevated on the low moisture samples relative to all other treatments, and the C:N ratio suggests that newly produced plant carbon replaced original soil carbon. The soil lignin content of the planted treatments was lower than the plant-free treatments suggesting that lignin present in the original soil may have been preferentially degraded by priming and not replaced. We will discuss the utility of CuO oxidation products to explore soil organic carbon dynamics and the implications of understanding the role of species and soil moisture in predicting the response of soil carbon to land use and climate change.
High resolution change estimation of soil moisture and its assimilation into a land surface model
NASA Astrophysics Data System (ADS)
Narayan, Ujjwal
Near surface soil moisture plays an important role in hydrological processes including infiltration, evapotranspiration and runoff. These processes depend non-linearly on soil moisture and hence sub-pixel scale soil moisture variability characterization is important for accurate modeling of water and energy fluxes at the pixel scale. Microwave remote sensing has evolved as an attractive technique for global monitoring of near surface soil moisture. A radiative transfer model has been tested and validated for soil moisture retrieval from passive microwave remote sensing data under a full range of vegetation water content conditions. It was demonstrated that soil moisture retrieval errors of approximately 0.04 g/g gravimetric soil moisture are attainable with vegetation water content as high as 5 kg/m2. Recognizing the limitation of low spatial resolution associated with passive sensors, an algorithm that uses low resolution passive microwave (radiometer) and high resolution active microwave (radar) data to estimate soil moisture change at the spatial resolution of radar operation has been developed and applied to coincident Passive and Active L and S band (PALS) and Airborne Synthetic Aperture Radar (AIRSAR) datasets acquired during the Soil Moisture Experiments in 2002 (SMEX02) campaign with root mean square error of 10% and a 4 times enhancement in spatial resolution. The change estimation algorithm has also been used to estimate soil moisture change at 5 km resolution using AMSR-E soil moisture product (50 km) in conjunction with the TRMM-PR data (5 km) for a 3 month period demonstrating the possibility of high resolution soil moisture change estimation using satellite based data. Soil moisture change is closely related to precipitation and soil hydraulic properties. A simple assimilation framework has been implemented to investigate whether assimilation of surface layer soil moisture change observations into a hydrologic model will potentially improve it performance. Results indicate an improvement in model prediction of near surface and deep layer soil moisture content when the update is performed to the model state as compared to free model runs. It is also seen that soil moisture change assimilation is able to mitigate the effect of erroneous precipitation input data.
Buch, Andressa Cristhy; Schmelz, Rüdiger M; Niva, Cintia Carla; Correia, Maria Elizabeth Fernandes; Silva-Filho, Emmanoel Vieira
2017-05-01
Soil provides many ecosystem services that are essential to maintain its quality and healthy development of the flora, fauna and human well-being. Environmental mercury levels may harm the survival and diversity of the soil fauna. In this respect, efforts have been made to establish limit values of mercury (Hg) in soils to terrestrial fauna. Soil organisms such as earthworms and enchytraeids have intimate contact with trace metals in soil by their oral and dermal routes, reflecting the potentially adverse effects of this contaminant. The main goal of this study was to obtain Hg critical concentrations under normal and extreme conditions of moisture in tropical soils to Enchytraeus crypticus to order to assess if climate change may potentiate their acute and chronic toxicity effects. Tropical soils were sampled from of two Forest Conservation Units of the Rio de Janeiro State - Brazil, which has been contaminated by Hg atmospheric depositions. Worms were exposed to three moisture conditions, at 20%, 50% and 80% of water holding capacity, respectively, and in combination with different Hg (HgCl 2 ) concentrations spiked in three types of tropical soil (two natural soils and one artificial soil). The tested concentrations ranged from 0 to 512mg Hg kg -1 dry weight. Results indicate that the Hg toxicity is higher under increased conditions of moisture, significantly affecting survival and reproduction rate. Copyright © 2017 Elsevier Inc. All rights reserved.
Filion, Rébecca; Bernier, Monique; Paniconi, Claudio; Chokmani, Karem; Melis, Massimo; Soddu, Antonino; Talazac, Manon; Lafortune, Francois-Xavier
2016-02-01
The aim of this study is to investigate the potential of radar (ENVISAT ASAR and RADARSAT-2) and LANDSAT data to generate reliable soil moisture maps to support water management and agricultural practice in Mediterranean regions, particularly during dry seasons. The study is based on extensive field surveys conducted from 2005 to 2009 in the Campidano plain of Sardinia, Italy. A total of 12 small bare soil fields were sampled for moisture, surface roughness, and texture values. From field scale analysis with ENVISAT ASAR (C-band, VV polarized, descending mode, incidence angle from 15.0° to 31.4°), an empirical model for estimating bare soil moisture was established, with a coefficient of determination (R(2)) of 0.85. LANDSAT TM5 images were also used for soil moisture estimation using the TVX slope (temperature/vegetation index), and in this case the best linear relationship had an R(2) of 0.81. A cross-validation on the two empirical models demonstrated the potential of C-band SAR data for estimation of surface moisture, with and R(2) of 0.76 (bias +0.3% and RMSE 7%) for ENVISAT ASAR and 0.54 (bias +1.3% and RMSE 5%) for LANDSAT TM5. The two models developed at plot level were then applied over the Campidano plain and assessed via multitemporal and spatial analyses, in the latter case against soil permeability data from a pedological map of Sardinia. Encouraging estimated soil moisture (ESM) maps were obtained for the SAR-based model, whereas the LANDSAT-based model would require a better field data set for validation, including ground data collected on vegetated fields. ESM maps showed sensitivity to soil drainage qualities or drainage potential, which could be useful in irrigation management and other agricultural applications. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shrivastava, Sourabh; Kar, Sarat C.; Sharma, Anu Rani
2017-07-01
Variation of soil moisture during active and weak phases of summer monsoon JJAS (June, July, August, and September) is very important for sustenance of the crop and subsequent crop yield. As in situ observations of soil moisture are few or not available, researchers use data derived from remote sensing satellites or global reanalysis. This study documents the intercomparison of soil moisture from remotely sensed and reanalyses during dry spells within monsoon seasons in central India and central Myanmar. Soil moisture data from the European Space Agency (ESA)—Climate Change Initiative (CCI) has been treated as observed data and was compared against soil moisture data from the ECMWF reanalysis-Interim (ERA-I) and the climate forecast system reanalysis (CFSR) for the period of 2002-2011. The ESA soil moisture correlates rather well with observed gridded rainfall. The ESA data indicates that soil moisture increases over India from west to east and from north to south during monsoon season. The ERA-I overestimates the soil moisture over India, while the CFSR soil moisture agrees well with the remotely sensed observation (ESA). Over Myanmar, both the reanalysis overestimate soil moisture values and the ERA-I soil moisture does not show much variability from year to year. Day-to-day variations of soil moisture in central India and central Myanmar during weak monsoon conditions indicate that, because of the rainfall deficiency, the observed (ESA) and the CFSR soil moisture values are reduced up to 0.1 m3/m3 compared to climatological values of more than 0.35 m3/m3. This reduction is not seen in the ERA-I data. Therefore, soil moisture from the CFSR is closer to the ESA observed soil moisture than that from the ERA-I during weak phases of monsoon in the study region.
Validation of soil moisture ocean salinity (SMOS) satellite soil moisture products
USDA-ARS?s Scientific Manuscript database
The surface soil moisture state controls the partitioning of precipitation into infiltration and runoff. High-resolution observations of soil moisture will lead to improved flood forecasts, especially for intermediate to large watersheds where most flood damage occurs. Soil moisture is also key in d...
NASA Astrophysics Data System (ADS)
Penna, Daniele; Gobbi, Alberto; Mantese, Nicola; Borga, Marco
2010-05-01
Hydrological processes driving runoff generation in mountain basins depend on a wide number of factors which are often strictly interconnected. Among them, topography is widely recognized as one of the dominant controls influencing soil moisture distribution in the root zone, depth to water table and location and extent of saturated areas possibly prone to runoff production. Morphological properties of catchments are responsible for the alternation between steep slopes and relatively flat areas which have the potentials to control the storage/release of water and hence the hydrological response of the whole watershed. This work aims to: i) identify the role of topography as the main factor controlling the spatial distribution of near-surface soil moisture; ii) evaluate the possible switch in soil moisture spatial organization between wet and relatively dry periods and the stability of patterns during triggering of surface/subsurface runoff; iii) assess the possible connection between the develop of an ephemeral river network and the groundwater variations, examining the influence of the catchment topographical properties on the hydrological response. Hydro-meteorological data were collected in a small subcatchment (Larch Creek Catchment, 0.033 km²) of Rio Vauz basin (1.9 km²), in the eastern Italian Alps. Precipitation, discharge, water table level over a net of 14 piezometric wells and volumetric soil moisture at 0-30 cm depth were monitored continuously during the late spring-early autumn months in 2007 and 2008. Soil water content at 0-6 and 0-20 cm depth was measured manually during 22 field surveys in summer 2007 over a 44-sampling point experimental plot (approximately 3000 m²). In summer 2008 the sampling grid was extended to 64 points (approximately 4500 m²) and 28 field surveys were carried out. The length of the ephemeral stream network developed during rainfall events was assessed by a net of 24 Overland Flow Detectors (OFDs), which are able to detect the presence/absence of surface runoff. Results show a significant correlation between plot-averaged soil moisture at 0-20 cm depth, local slope and local curvature, while poor correlations were found with aspect and solar radiation: this suggests a sharp control of the catchment topological architecture (likely coupled with soil properties) on soil moisture distribution. This was also confirmed by the visual inspection of interpolated maps which reveal the persistence of high values of soil moisture in hollow areas and, conversely, of low values over the hillslopes. Moreover, a strong correlation between plot-averaged soil moisture patterns over time, with no decline after rainfall events, indicates a good temporal stability of water content distribution and its independence from the triggering of surface flow and transient lateral subsurface flow during wet conditions. The analysis of the time lag between storm centroid and piezometric peak shows an increasing delay of water table reaction with increasing distance from the stream, revealing different groundwater dynamics between the near-stream and the hillslope zone. Furthermore, the significant correlation between groundwater time lag monitored for the net of piezometers and the local slope suggests a topographical influence on the temporal and spatial variability of subsurface runoff. Finally, the extent of the ephemeral stream network was clearly dependent on the amount of precipitation but a different percentage of active OFDs and piezometers for the same rainfall event suggests a decoupling between patterns of surface and subsurface flows in the study area. Key words: topographical controls, soil moisture patterns, groundwater level, overland flow.
On the assimilation of satellite derived soil moisture in numerical weather prediction models
NASA Astrophysics Data System (ADS)
Drusch, M.
2006-12-01
Satellite derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analysed from the modelled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. Three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-range Weather Forecasts (ECMWF) have been performed for the two months period of June and July 2002: A control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating bias corrected TMI (TRMM Microwave Imager) derived soil moisture over the southern United States through a nudging scheme using 6-hourly departures. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analysed in the nudging experiment is the most accurate estimate when compared against in-situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage. The transferability of the results to other satellite derived soil moisture data sets will be discussed.
NASA Astrophysics Data System (ADS)
Espejo-Pérez, Antonio Jesus; Sainato, Claudia Mabel; Jairo Márquez-Molina, John; Giráldez, Juan Vicente; Vanderlinden, Karl
2014-05-01
Changes of land use without a correct planning may produce its deterioration with their social, economical and environmental irreversible consequences over short to medium time range. In Argentina, the expansion of soybean fields induced a reduction of the area of pastures dedicated to stockbreeding. As cattle activity is being progressively concentrated on small pens, at feedlots farms, problems of soil and water pollution, mainly by nitrate, have been detected. The characterization of the spatial and temporal variability of soil water content is very important because the mostly advective transport of solutes. To avoid intensive soil samplings, very expensive, one has to recur to geophysical exploration methods. The objective of this work was to identify risk areas within a feedlot of the NW zone of Buenos Aires Province, in Argentina through geophysical methods. The surveys were carried out with an electromagnetic induction profiler EMI-400 (GSSI) and a Time domain Reflectometry (TDR) survey of depth 0-0.10 m with soil sampling and measurement of moisture content with gravimetric method (0-1.0 m). Several trenches were dug inside the pens and also at a test site, where texture, apparent density, saturated hydraulic conductivity (Ks), electrical conductivity of the saturation paste extract and organic matter content (OM) were measured. The water retention curves for these soils were also determined. At one of the pens undisturbed soil columns were extracted at 3 locations. Laboratory analysis for 0-1.0 m indicated that soil texture was classified as sandy loam, average organic matter content (OM) was greater than 2.3% with low values of apparent density in the first 10 cm. The range of spatial dependence of data suggested that the number of soil samples could be reduced. Soil apparent electrical conductivity (ECa) and soil moisture were well correlated and indicated a clear spatial pattern in the corrals. TDR performance was acceptable to identify the spatial pattern of moisture, although the absolute values were far from the real values obtained by gravimetric method due to the effect of the high OM. The lower zone in one of the pens showed greater values of ECa and soil moisture, in agreement with a major water retention and a lower Ks. The water retention was higher in the other corral with higher variability in Ks. A general decrease of soil moisture was found near 0.2 m soil depth. Leaching experiments detected greater volumes with higher electrical conductivity in low lying areas of the pen. Although differences were not observed as clearly as before, the low and intermediate low areas of the pen showed a faster rate of leaching. In summary geophysical surveys allowed identifying risk areas of high ECa and moisture which in fact had higher volumes of leachate with elevated electrical conductivities. This may be a good approach to control and reduce soil and groundwater contamination and to model in future works the process in order to establish management decisions.
Wickland, K.P.; Neff, J.C.
2008-01-01
Black spruce forests are a dominant covertype in the boreal forest region, and they inhabit landscapes that span a wide range of hydrologic and thermal conditions. These forests often have large stores of soil organic carbon. Recent increases in temperature at northern latitudes may be stimulating decomposition rates of this soil carbon. It is unclear, however, how changes in environmental conditions influence decomposition in these systems, and if substrate controls of decomposition vary with hydrologic and thermal regime. We addressed these issues by investigating the effects of temperature, moisture, and organic matter chemical characteristics on decomposition of fibric soil horizons from three black spruce forest sites. The sites varied in drainage and permafrost, and included a "Well Drained" site where permafrost was absent, and "Moderately well Drained" and "Poorly Drained" sites where permafrost was present at about 0.5 m depth. Samples collected from each site were incubated at five different moisture contents (2, 25, 50, 75, and 100% saturation) and two different temperatures (10??C and 20??C) in a full factorial design for two months. Organic matter chemistry was analyzed using pyrolysis gas chromatography-mass spectrometry prior to incubation, and after incubation on soils held at 20??C, 50% saturation. Mean cumulative mineralization, normalized to initial carbon content, ranged from 0.2% to 4.7%, and was dependent on temperature, moisture, and site. The effect of temperature on mineralization was significantly influenced by moisture content, as mineralization was greatest at 20??C and 50-75% saturation. While the relative effects of temperature and moisture were similar for all soils, mineralization rates were significantly greater for samples from the "Well Drained" site compared to the other sites. Variations in the relative abundances of polysaccharide-derivatives and compounds of undetermined source (such as toluene, phenol, 4-methyl phenol, and several unidentifiable compounds) could account for approximately 44% of the variation in mineralization across all sites under ideal temperature and moisture conditions. Based on our results, changes in temperature and moisture likely have similar, additive effects on in situ soil organic matter (SOM) decomposition across a wide range of black spruce forest systems, while variations in SOM chemistry can lead to significant differences in decomposition rates within and among forest sites. ?? 2007 Springer Science+Business Media B.V.
Evaluation of the validated soil moisture product from the SMAP radiometer
USDA-ARS?s Scientific Manuscript database
In this study, we used a multilinear regression approach to retrieve surface soil moisture from NASA’s Soil Moisture Active Passive (SMAP) satellite data to create a global dataset of surface soil moisture which is consistent with ESA’s Soil Moisture and Ocean Salinity (SMOS) satellite retrieved sur...
NASA Soil Moisture Data Products and Their Incorporation in DREAM
NASA Technical Reports Server (NTRS)
Blonski, Slawomir; Holland, Donald; Henderson, Vaneshette
2005-01-01
NASA provides soil moisture data products that include observations from the Advanced Microwave Scanning Radiometer on the Earth Observing System Aqua satellite, field measurements from the Soil Moisture Experiment campaigns, and model predictions from the Land Information System and the Goddard Earth Observing System Data Assimilation System. Incorporation of the NASA soil moisture products in the Dust Regional Atmospheric Model is possible through use of the satellite observations of soil moisture to set initial conditions for the dust simulations. An additional comparison of satellite soil moisture observations with mesoscale atmospheric dynamics modeling is recommended. Such a comparison would validate the use of NASA soil moisture data in applications and support acceptance of satellite soil moisture data assimilation in weather and climate modeling.
Evaluation of SMAP Level 2 Soil Moisture Algorithms Using SMOS Data
NASA Technical Reports Server (NTRS)
Bindlish, Rajat; Jackson, Thomas J.; Zhao, Tianjie; Cosh, Michael; Chan, Steven; O'Neill, Peggy; Njoku, Eni; Colliander, Andreas; Kerr, Yann; Shi, J. C.
2011-01-01
The objectives of the SMAP (Soil Moisture Active Passive) mission are global measurements of soil moisture and land freeze/thaw state at 10 km and 3 km resolution, respectively. SMAP will provide soil moisture with a spatial resolution of 10 km with a 3-day revisit time at an accuracy of 0.04 m3/m3 [1]. In this paper we contribute to the development of the Level 2 soil moisture algorithm that is based on passive microwave observations by exploiting Soil Moisture Ocean Salinity (SMOS) satellite observations and products. SMOS brightness temperatures provide a global real-world, rather than simulated, test input for the SMAP radiometer-only soil moisture algorithm. Output of the potential SMAP algorithms will be compared to both in situ measurements and SMOS soil moisture products. The investigation will result in enhanced SMAP pre-launch algorithms for soil moisture.
The effect of soil type on the bioremediation of petroleum contaminated soils.
Haghollahi, Ali; Fazaelipoor, Mohammad Hassan; Schaffie, Mahin
2016-09-15
In this research the bioremediation of four different types of contaminated soils was monitored as a function of time and moisture content. The soils were categorized as sandy soil containing 100% sand (type I), clay soil containing more than 95% clay (type II), coarse grained soil containing 68% gravel and 32% sand (type III), and coarse grained with high clay content containing 40% gravel, 20% sand, and 40% clay (type IV). The initially clean soils were contaminated with gasoil to the concentration of 100 g/kg, and left on the floor for the evaporation of light hydrocarbons. A full factorial experimental design with soil type (four levels), and moisture content (10 and 20%) as the factors was employed. The soils were inoculated with petroleum degrading microorganisms. Soil samples were taken on days 90, 180, and 270, and the residual total petroleum hydrocarbon (TPH) was extracted using soxhlet apparatus. The moisture content of the soils was kept almost constant during the process by intermittent addition of water. The results showed that the efficiency of bioremediation was affected significantly by the soil type (Pvalue < 0.05). The removal percentage was the highest (70%) for the sandy soil with the initial TPH content of 69.62 g/kg, and the lowest for the clay soil (23.5%) with the initial TPH content of 69.70 g/kg. The effect of moisture content on bioremediation was not statistically significant for the investigated levels. The removal percentage in the clay soil was improved to 57% (within a month) in a separate experiment by more frequent mixing of the soil, indicating low availability of oxygen as a reason for low degradation of hydrocarbons in the clay soil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Controlling moisture content of wood samples using a modified soil-pan decay method
Jerrold E. Winandy; Simon F. Curling; Patricia K. Lebow
2005-01-01
In wood, the threshold level below which decay cannot occur varies with species or type of wood product and other factors such as temperature, humidity, and propensity of exposure or service-use to allow rain-induced wetting and subsequent drying. The ability to control wood moisture content (MC) during laboratory decay testing could allow research on the moisture...
NASA Astrophysics Data System (ADS)
Steele-Dunne, Susan; Polo Bermejo, Jaime; Judge, Jasmeet; Bongiovanni, Tara; Chakrabarti, Subit; Liu, Pang-Wei; Bragdon, James; Hornbuckle, Brian
2017-04-01
Vegetation cover confounds soil moisture retrieval from both active and passive microwave remote sensing observations. Vegetation attenuates the signal from the soil as well as contributing to emission and scattering. The goal of this study was to characterize the vertical distribution of moisture within an agricultural canopy, to examine how this varies during the growing season and to determine the influence these changes have on emission and backscatter from the surface. To this end, an extensive campaign of destructive sampling was conducted in a rain-fed corn field at Buckeye, Iowa within the SMAPVEX16-IA study domain. The experiment duration extended from the beginning of IOP1 to the end of IOP2, i.e. from May 18 to August 16 2016. Destructive vegetation sampling was performed on most days upon which SMAP had both an ascending and a descending pass. On these days, destructive samples were collected at 6pm and 6pm unless the weather conditions were prohibitive. In addition to measuring the bulk vegetation water content for comparison to the SMAP retrieved VWC, the samples were split into leaves and stems. To study the vertical profiles, leaf moisture content was measured as a function of collar height and the stem was cut into 10cm sections. The influence of plant development on the bulk and profile VWC was clearly discernible in the observations. Diurnal variations in bulk VWC were relatively small due to moisture availability in the root zone. SMAP brightness temperatures, and tower-based observations from the University of Florida radiometer and radar systems were analyzed to investigate the impact of VWC variations on emission and backscatter. Dynamic variations in SMAP retrieved soil moisture were notably larger than those observed in-situ, particularly during the early growing season. This may be attributed to the difference between observed VWC and that used in the SMAP retrieval during the early growing season. Backscatter (and RVI) increased, as expected, in response to accumulating biomass, though retaining some sensitivity to soil moisture variations. Polarization-dependent diurnal differences of up to 2dB were observed in the backscatter from the fully grown corn canopy.
NASA Astrophysics Data System (ADS)
Drusch, M.
2007-02-01
Satellite-derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analyzed from the modeled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. For this study, three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) have been performed for the 2-month period of June and July 2002: a control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating TMI (TRMM Microwave Imager) derived soil moisture over the southern United States. In this experimental run the satellite-derived soil moisture product is introduced through a nudging scheme using 6-hourly increments. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analyzed in the nudging experiment is the most accurate estimate when compared against in situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage.
Impact of SMOS soil moisture data assimilation on NCEP-GFS forecasts
NASA Astrophysics Data System (ADS)
Zhan, X.; Zheng, W.; Meng, J.; Dong, J.; Ek, M.
2012-04-01
Soil moisture is one of the few critical land surface state variables that have long memory to impact the exchanges of water, energy and carbon between the land surface and atmosphere. Accurate information about soil moisture status is thus required for numerical weather, seasonal climate and hydrological forecast as well as for agricultural production forecasts, water management and many other water related economic or social activities. Since the successful launch of ESA's soil moisture ocean salinity (SMOS) mission in November 2009, about 2 years of soil moisture retrievals has been collected. SMOS is believed to be the currently best satellite sensors for soil moisture remote sensing. Therefore, it becomes interesting to examine how the collected SMOS soil moisture data are compared with other satellite-sensed soil moisture retrievals (such as NASA's Advanced Microwave Scanning Radiometer -AMSR-E and EUMETSAT's Advanced Scatterometer - ASCAT)), in situ soil moisture measurements, and how these data sets impact numerical weather prediction models such as the Global Forecast System of NOAA-NCEP. This study implements the Ensemble Kalman filter in GFS to assimilate the AMSR-E, ASCAT and SMOS soil moisture observations after a quantitative assessment of their error rate based on in situ measurements from ground networks around contiguous United States. in situ soil moisture measurements from ground networks (such as USDA Soil Climate Analysis network - SCAN and NOAA's U.S. Climate Reference Network -USCRN) are used to evaluate the GFS soil moisture simulations (analysis). The benefits and uncertainties of assimilating the satellite data products in GFS are examined by comparing the GFS forecasts of surface temperature and rainfall with and without the assimilations. From these examinations, the advantages of SMOS soil moisture data products over other satellite soil moisture data sets will be evaluated. The next step toward operationally assimilating soil moisture and other land observations into GFS will also be discussed.
Modeling soil moisture memory in savanna ecosystems
NASA Astrophysics Data System (ADS)
Gou, S.; Miller, G. R.
2011-12-01
Antecedent soil conditions create an ecosystem's "memory" of past rainfall events. Such soil moisture memory effects may be observed over a range of timescales, from daily to yearly, and lead to feedbacks between hydrological and ecosystem processes. In this study, we modeled the soil moisture memory effect on savanna ecosystems in California, Arizona, and Africa, using a system dynamics model created to simulate the ecohydrological processes at the plot-scale. The model was carefully calibrated using soil moisture and evapotranspiration data collected at three study sites. The model was then used to simulate scenarios with various initial soil moisture conditions and antecedent precipitation regimes, in order to study the soil moisture memory effects on the evapotranspiration of understory and overstory species. Based on the model results, soil texture and antecedent precipitation regime impact the redistribution of water within soil layers, potentially causing deeper soil layers to influence the ecosystem for a longer time. Of all the study areas modeled, soil moisture memory of California savanna ecosystem site is replenished and dries out most rapidly. Thus soil moisture memory could not maintain the high rate evapotranspiration for more than a few days without incoming rainfall event. On the contrary, soil moisture memory of Arizona savanna ecosystem site lasts the longest time. The plants with different root depths respond to different memory effects; shallow-rooted species mainly respond to the soil moisture memory in the shallow soil. The growing season of grass is largely depended on the soil moisture memory of the top 25cm soil layer. Grass transpiration is sensitive to the antecedent precipitation events within daily to weekly timescale. Deep-rooted plants have different responses since these species can access to the deeper soil moisture memory with longer time duration Soil moisture memory does not have obvious impacts on the phenology of woody plants, as these can maintain transpiration for a longer time even through the top soil layer dries out.
Using satellite image data to estimate soil moisture
NASA Astrophysics Data System (ADS)
Chuang, Chi-Hung; Yu, Hwa-Lung
2017-04-01
Soil moisture is considered as an important parameter in various study fields, such as hydrology, phenology, and agriculture. In hydrology, soil moisture is an significant parameter to decide how much rainfall that will infiltrate into permeable layer and become groundwater resource. Although soil moisture is a critical role in many environmental studies, so far the measurement of soil moisture is using ground instrument such as electromagnetic soil moisture sensor. Use of ground instrumentation can directly obtain the information, but the instrument needs maintenance and consume manpower to operation. If we need wide range region information, ground instrumentation probably is not suitable. To measure wide region soil moisture information, we need other method to achieve this purpose. Satellite remote sensing techniques can obtain satellite image on Earth, this can be a way to solve the spatial restriction on instrument measurement. In this study, we used MODIS data to retrieve daily soil moisture pattern estimation, i.e., crop water stress index (cwsi), over the year of 2015. The estimations are compared with the observations at the soil moisture stations from Taiwan Bureau of soil and water conservation. Results show that the satellite remote sensing data can be helpful to the soil moisture estimation. Further analysis can be required to obtain the optimal parameters for soil moisture estimation in Taiwan.
Sensitivity of Active and Passive Microwave Observations to Soil Moisture during Growing Corn
NASA Astrophysics Data System (ADS)
Judge, J.; Monsivais-Huertero, A.; Liu, P.; De Roo, R. D.; England, A. W.; Nagarajan, K.
2011-12-01
Soil moisture (SM) in the root zone is a key factor governing water and energy fluxes at the land surface and its accurate knowledge is critical to predictions of weather and near-term climate, nutrient cycles, crop-yield, and ecosystem productivity. Microwave observations, such as those at L-band, are highly sensitive to soil moisture in the upper few centimeters (near-surface). The two satellite-based missions dedicated to soil moisture estimation include, the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission and the planned NASA Soil Moisture Active/Passive (SMAP) [4] mission. The SMAP mission will include active and passive sensors at L-band to provide global observations of SM, with a repeat coverage of every 2-3 days. These observations can significantly improve root zone soil moisture estimates through data assimilation into land surface models (LSMs). Both the active (radar) and passive (radiometer) microwave sensors measure radiation quantities that are functions of soil dielectric constant and exhibit similar sensitivities to SM. In addition to the SM sensitivity, radar backscatter is highly sensitive to roughness of soil surface and scattering within the vegetation. These effects may produce a much larger dynamic range in backscatter than that produced due to SM changes alone. In this study, we discuss the field observations of active and passive signatures of growing corn at L-band from several seasons during the tenth Microwave, Water and Energy Balance Experiment (MicroWEX-10) conducted in North Central Florida, and to understand the sensitivity of these signatures to soil moisture under dynamic vegetation conditions. The MicroWEXs are a series of season-long field experiments conducted during the growing seasons of sweet corn, cotton, and energy cane over the past six years (for example, [22]). The corn was planted on July 5 and harvested on September 23, 2011 during MicroWEX-10. The size of the field was 0.04 km2 and the soils at the site were Lakeland fine sand, with 89% sand content by volume. The crop was heavily irrigated via a linear move irrigation system. Every 15-minute ground-based passive and active microwave observations at L-band were conducted at an incidence angle of 40°. In addition, concurrent observations were conducted of soil moisture, temperature, heat flux at various depths in the root zone, along with concurrent micrometeorological conditions. Weekly vegetation sampling included measurements of LAI, green and dry biomass of stems, leaves, and ears, crop height and width, vertical distribution of moisture in the canopy, leaf size and orientation, other phonological observations. Such observations at high temporal density allow detailed sensitivity analyses as the vegetation grows.
Using Remotely Sensed Soil Moisture to Estimate Fire Risk in Tropical Peatlands
NASA Astrophysics Data System (ADS)
Dadap, N.; Cobb, A.; Hoyt, A.; Harvey, C. F.; Konings, A. G.
2017-12-01
Tropical peatlands in Equatorial Asia have become more vulnerable to fire due to deforestation and peatland drainage over the last 30 years. In these regions, water table depth has been shown to play an important role in mediating fire risk as it serves as a proxy for peat moisture content. However, water table depth observations are sparse and expensive. Soil moisture could provide a more direct indicator of fire risk than water table depth. In this study, we use new soil moisture retrievals from the Soil Moisture Active Passive (SMAP) satellite to demonstrate that - contrary to popular wisdom - remotely sensed soil moisture observations are possible over most Southeast Asian peatlands. Soil moisture estimation in this region was previously thought to be impossible over tropical peatlands because of dense vegetation cover. We show that vegetation density is sufficiently low across most Equatorial Asian peatlands to allow soil moisture estimation, and hypothesize that deforestation and other anthropogenic changes in land cover have combined to reduce overall vegetation density sufficient to allow soil moisture estimation. We further combine burned area estimates from the Global Fire Emissions Database and SMAP soil moisture retrievals to show that soil moisture provides a strong signal for fire risk in peatlands, with fires occurring at a much greater rate over drier soils. We will also develop an explicit fire risk model incorporating soil moisture with additional climatic, land cover, and anthropogenic predictor variables.
A microwave systems approach to measuring root zone soil moisture
NASA Technical Reports Server (NTRS)
Newton, R. W.; Paris, J. F.; Clark, B. V.
1983-01-01
Computer microwave satellite simulation models were developed and the program was used to test the ability of a coarse resolution passive microwave sensor to measure soil moisture over large areas, and to evaluate the effect of heterogeneous ground covers with the resolution cell on the accuracy of the soil moisture estimate. The use of realistic scenes containing only 10% to 15% bare soil and significant vegetation made it possible to observe a 60% K decrease in brightness temperature from a 5% soil moisture to a 35% soil moisture at a 21 cm microwave wavelength, providing a 1.5 K to 2 K per percent soil moisture sensitivity to soil moisture. It was shown that resolution does not affect the basic ability to measure soil moisture with a microwave radiometer system. Experimental microwave and ground field data were acquired for developing and testing a root zone soil moisture prediction algorithm. The experimental measurements demonstrated that the depth of penetration at a 21 cm microwave wavelength is not greater than 5 cm.
Predicting effects of climate change on the composition and function of soil microbial communities
NASA Astrophysics Data System (ADS)
Dubinsky, E.; Brodie, E.; Myint, C.; Ackerly, D.; van Nostrand, J.; Bird, J.; Zhou, J.; Andersen, G.; Firestone, M.
2008-12-01
Complex soil microbial communities regulate critical ecosystem processes that will be altered by climate change. A critical step towards predicting the impacts of climate change on terrestrial ecosystems is to determine the primary controllers of soil microbial community composition and function, and subsequently evaluate climate change scenarios that alter these controllers. We surveyed complex soil bacterial and archaeal communities across a range of climatic and edaphic conditions to identify critical controllers of soil microbial community composition in the field and then tested the resulting predictions using a 2-year manipulation of precipitation and temperature using mesocosms of California annual grasslands. Community DNA extracted from field soils sampled from six different ecosystems was assayed for bacterial and archaeal communities using high-density phylogenetic microarrays as well as functional gene arrays. Correlations among the relative abundances of thousands of microbial taxa and edaphic factors such as soil moisture and nutrient content provided a basis for predicting community responses to changing soil conditions. Communities of soil bacteria and archaea were strongly structured by single environmental predictors, particularly variables related to soil water. Bacteria in the Actinomycetales and Bacilli consistently demonstrated a strong negative response to increasing soil moisture, while taxa in a greater variety of lineages responded positively to increasing soil moisture. In the climate change experiment, overall bacterial community structure was impacted significantly by total precipitation but not by plant species. Changes in soil moisture due to decreased rainfall resulted in significant and predictable alterations in community structure. Over 70% of the bacterial taxa in common with the cross-ecosystem study responded as predicted to altered precipitation, with the most conserved response from Actinobacteria. The functional consequences of these predictable changes in community composition were measured with functional arrays that detect genes involved in the metabolism of carbon, nitrogen and other elements. The response of soil microbial communities to altered precipitation can be predicted from the distribution of microbial taxa across moisture gradients.
USDA-ARS?s Scientific Manuscript database
In situ measurements of soil moisture are invaluable for calibrating and validating land surface models and satellite-based soil moisture retrievals. In addition, long-term time series of in situ soil moisture measurements themselves can reveal trends in the water cycle related to climate or land co...
Unified Science Information Model for SoilSCAPE using the Mercury Metadata Search System
NASA Astrophysics Data System (ADS)
Devarakonda, Ranjeet; Lu, Kefa; Palanisamy, Giri; Cook, Robert; Santhana Vannan, Suresh; Moghaddam, Mahta Clewley, Dan; Silva, Agnelo; Akbar, Ruzbeh
2013-12-01
SoilSCAPE (Soil moisture Sensing Controller And oPtimal Estimator) introduces a new concept for a smart wireless sensor web technology for optimal measurements of surface-to-depth profiles of soil moisture using in-situ sensors. The objective is to enable a guided and adaptive sampling strategy for the in-situ sensor network to meet the measurement validation objectives of spaceborne soil moisture sensors such as the Soil Moisture Active Passive (SMAP) mission. This work is being carried out at the University of Michigan, the Massachusetts Institute of Technology, University of Southern California, and Oak Ridge National Laboratory. At Oak Ridge National Laboratory we are using Mercury metadata search system [1] for building a Unified Information System for the SoilSCAPE project. This unified portal primarily comprises three key pieces: Distributed Search/Discovery; Data Collections and Integration; and Data Dissemination. Mercury, a Federally funded software for metadata harvesting, indexing, and searching would be used for this module. Soil moisture data sources identified as part of this activity such as SoilSCAPE and FLUXNET (in-situ sensors), AirMOSS (airborne retrieval), SMAP (spaceborne retrieval), and are being indexed and maintained by Mercury. Mercury would be the central repository of data sources for cal/val for soil moisture studies and would provide a mechanism to identify additional data sources. Relevant metadata from existing inventories such as ORNL DAAC, USGS Clearinghouse, ARM, NASA ECHO, GCMD etc. would be brought in to this soil-moisture data search/discovery module. The SoilSCAPE [2] metadata records will also be published in broader metadata repositories such as GCMD, data.gov. Mercury can be configured to provide a single portal to soil moisture information contained in disparate data management systems located anywhere on the Internet. Mercury is able to extract, metadata systematically from HTML pages or XML files using a variety of methods including OAI-PMH [3]. The Mercury search interface then allows users to perform simple, fielded, spatial and temporal searches across a central harmonized index of metadata. Mercury supports various metadata standards including FGDC, ISO-19115, DIF, Dublin-Core, Darwin-Core, and EML. This poster describes in detail how Mercury implements the Unified Science Information Model for Soil moisture data. References: [1]Devarakonda R., et al. Mercury: reusable metadata management, data discovery and access system. Earth Science Informatics (2010), 3(1): 87-94. [2]Devarakonda R., et al. Daymet: Single Pixel Data Extraction Tool. http://daymet.ornl.gov/singlepixel.html (2012). Last Accesses 10-01-2013 [3]Devarakonda R., et al. Data sharing and retrieval using OAI-PMH. Earth Science Informatics (2011), 4(1): 1-5.
NASA Astrophysics Data System (ADS)
Hunt, E. D.; Otkin, J.; Zhong, Y.
2017-12-01
Flash drought, characterized by the rapid onset of abnormally warm and dry weather conditions that leads to the rapid depletion of soil moisture and rapid deteriorations in vegetation health. Flash recovery, on the other hand, is characterized by a period(s) of intense precipitation where drought conditions are quickly eradicated and may be replaced by saturated soils and flooding. Both flash drought and flash recovery are closely tied to the rapid depletion or recharge of root zone soil moisture; therefore, soil moisture observations are very useful for monitoring their evolution. However, in-situ soil moisture observations tend to be concentrated over small regions and thus other methods are needed to provide a spatially continuous depiction of soil moisture conditions. One option is to use top soil moisture retrievals from the Soil Moisture Active Passive (SMAP) sensor. SMAP provides routine coverage of surface soil moisture (0-5 cm) over most of the globe, including the timespan (2015) and region of interest (Texas) that are the focus of our study. This region had an unusual sequence of flash recovery-flash drought-flash recovery during an six-month period during 2015 that provides a valuable case study of rapid transitions between extreme soil moisture conditions. During this project, SMAP soil moisture retrievals are being used in combination with in-situ soil moisture observations and assimilated into the Land Information System (LIS) to provide information about soil moisture content. LIS also provides greenness vegetation fraction data over large regions. The relationship between soil moisture and vegetation conditions and the response of the vegetation to the rapidly changing conditions are also assessed using the satellite thermal infrared based Evaporative Stress Index (ESI) that depicts anomalies in evapotranspiration, along with other vegetation datasets (leaf area index, greenness fraction) derived using MODIS observations. Preliminary results with the Noah land surface model (inside of LIS) shows that it broadly captured the soil moisture evolution during the 2015 sequence but tended to underestimate the magnitude of soil moisture anomalies. The ESI also showed negative anomalies during the drought. These and other results will be presented at the annual meeting.
Evaluation of a Soil Moisture Data Assimilation System Over West Africa
NASA Astrophysics Data System (ADS)
Bolten, J. D.; Crow, W.; Zhan, X.; Jackson, T.; Reynolds, C.
2009-05-01
A crucial requirement of global crop yield forecasts by the U.S. Department of Agriculture (USDA) International Production Assessment Division (IPAD) is the regional characterization of surface and sub-surface soil moisture. However, due to the spatial heterogeneity and dynamic nature of precipitation events and resulting soil moisture, accurate estimation of regional land surface-atmosphere interactions based sparse ground measurements is difficult. IPAD estimates global soil moisture using daily estimates of minimum and maximum temperature and precipitation applied to a modified Palmer two-layer soil moisture model which calculates the daily amount of soil moisture withdrawn by evapotranspiration and replenished by precipitation. We attempt to improve upon the existing system by applying an Ensemble Kalman filter (EnKF) data assimilation system to integrate surface soil moisture retrievals from the NASA Advanced Microwave Scanning Radiometer (AMSR-E) into the USDA soil moisture model. This work aims at evaluating the utility of merging satellite-retrieved soil moisture estimates with the IPAD two-layer soil moisture model used within the DBMS. We present a quantitative analysis of the assimilated soil moisture product over West Africa (9°N- 20°N; 20°W-20°E). This region contains many key agricultural areas and has a high agro- meteorological gradient from desert and semi-arid vegetation in the North, to grassland, trees and crops in the South, thus providing an ideal location for evaluating the assimilated soil moisture product over multiple land cover types and conditions. A data denial experimental approach is utilized to isolate the added utility of integrating remotely-sensed soil moisture by comparing assimilated soil moisture results obtained using (relatively) low-quality precipitation products obtained from real-time satellite imagery to baseline model runs forced with higher quality rainfall. An analysis of root-zone anomalies for each model simulation suggests that the assimilation of AMSR-E surface soil moisture retrievals can add significant value to USDA root-zone predictions derived from real-time satellite precipitation products.
NASA Astrophysics Data System (ADS)
Henneberg, Olga; Ament, Felix; Grützun, Verena
2018-05-01
Soil moisture amount and distribution control evapotranspiration and thus impact the occurrence of convective precipitation. Many recent model studies demonstrate that changes in initial soil moisture content result in modified convective precipitation. However, to quantify the resulting precipitation changes, the chaotic behavior of the atmospheric system needs to be considered. Slight changes in the simulation setup, such as the chosen model domain, also result in modifications to the simulated precipitation field. This causes an uncertainty due to stochastic variability, which can be large compared to effects caused by soil moisture variations. By shifting the model domain, we estimate the uncertainty of the model results. Our novel uncertainty estimate includes 10 simulations with shifted model boundaries and is compared to the effects on precipitation caused by variations in soil moisture amount and local distribution. With this approach, the influence of soil moisture amount and distribution on convective precipitation is quantified. Deviations in simulated precipitation can only be attributed to soil moisture impacts if the systematic effects of soil moisture modifications are larger than the inherent simulation uncertainty at the convection-resolving scale. We performed seven experiments with modified soil moisture amount or distribution to address the effect of soil moisture on precipitation. Each of the experiments consists of 10 ensemble members using the deep convection-resolving COSMO model with a grid spacing of 2.8 km. Only in experiments with very strong modification in soil moisture do precipitation changes exceed the model spread in amplitude, location or structure. These changes are caused by a 50 % soil moisture increase in either the whole or part of the model domain or by drying the whole model domain. Increasing or decreasing soil moisture both predominantly results in reduced precipitation rates. Replacing the soil moisture with realistic fields from different days has an insignificant influence on precipitation. The findings of this study underline the need for uncertainty estimates in soil moisture studies based on convection-resolving models.
Geophysical characterization of soil moisture spatial patterns in a tillage experiment
NASA Astrophysics Data System (ADS)
Martinez, G.; Vanderlinden, K.; Giráldez, J. V.; Muriel, J. L.
2009-04-01
Knowledge on the spatial soil moisture pattern can improve the characterisation of the hydrological response of either field-plots or small watersheds. Near-surface geophysical methods, such as electromagnetic induction (EMI), provide a means to map such patterns using non-invasive and non-destructive measurements of the soil apparent electrical conductivity (ECa. In this study ECa was measured using an EMI sensor and used to characterize spatially the hydrologic response of a cropped field to an intense shower. The study site is part of a long-term tillage experiment in Southern Spain in which Conventional Tillage (CT), Direct Drilling (DD) and Minimum Tillage (MT) are being evaluated since 1982. Soil ECa was measured before and after a rain event of 115 mm, near the soil surface and at deeper depth (ECas and ECad, respectively) using the EM38-DD EMI sensor. Simultaneously, elevation data were collected at each sampling point to generate a Digital Elevation Model (DEM). Soil moisture during the first survey was close to permanent wilting point and near field capacity during the second survey. For the first survey, both ECas and ECad, were higher in the CT and MT than in the DD plots. After the rain event, rill erosion appeared only in CT and MT plots were soil was uncovered, matching the drainage lines obtained from the DEM. Apparent electrical conductivity increased all over the field plot with higher increments in the DD plots. These plots showed the highest ECas and ECad values, in contrast to the spatial pattern found during the first sampling. Difference maps obtained from the two ECas and ECad samplings showed a clear difference between DD plots and CT and MT plots due to their distinct hydrologic response. Water infiltration was higher in the soil of the DD plots than in the MT and CT plots, as reflected by their ECad increment. Higher ECa increments were observed in the depressions of the terrain, where water and sediments accumulated. On the contrary, the most elevated places of the field showed lower ECa increments. When soil is wet topography dominates the hydrologic response of the field, while under drier conditions, hydraulic conductivity controls the soil water dynamics. These results show that when static soil properties, e.g. clay content, are spatially uniform, ECa can detect changes in dynamic properties like soil moisture content, characterizing their spatial pattern.
A comparison of radiative transfer models for predicting the microwave emission from soils
NASA Technical Reports Server (NTRS)
Schmugge, T. J.; Choudhury, B. J.
1980-01-01
Two general types of numerical models for predicting microwave emission from soils are compared-coherent and noncoherent. In the former, radiation in the soil is treated coherently, and the boundary conditions on the electric fields across the layer boundaries are used to calculate the radiation intensity. In the latter, the radiation is assumed to be noncoherent, and the intensities of the radiation are considered directly. The results of the two approaches may be different because of the effects of interference, which can cause the transmitted intensity at the surface (i.e., emissivity) to be sometimes higher and sometimes lower for the coherent case than for the noncoherent case, depending on the relative phases of reflected fields from the lower layers. This coupling between soil layers in the coherent models leads to greater soil moisture sampling depths observed with this type of model, and is the major difference that is found between the two types of models. In noncoherent models, the emissivity is determined by the dielectric constraint at the air/soil interface. The subsequent differences in the results are functions of both the frequency of the radiation being considered and the steepness of the moisture gradient near the surface. The calculations were performed at frequencies of 1.4 and 19.4 GHz and for two sets of soil profiles. Little difference was observed between the models at 19.4 GHz; and only at the lower frequency were differences apparent because of the greater soil moisture sampling depth at this frequency.
Moisture-strength-constructability guidelines for subgrade foundation soils found in Indiana.
DOT National Transportation Integrated Search
2016-09-01
Soil moisture is an important indicator of constructability in the field. Construction activities become difficult when the soil moisture content is excessive, especially in fine-grained soils. Change orders caused by excessive soil moisture during c...
NASA Technical Reports Server (NTRS)
Vanbavel, C. H. M.; Lascano, R. J.
1982-01-01
A comprehensive, yet fairly simple model of water disposition in a bare soil profile under the sequential impact of rain storms and other atmospheric influences, as they occur from hour to hour is presented. This model is intended mostly to support field studies of soil moisture dynamics by our current team, to serve as a background for the microwave measurements, and, eventually, to serve as a point of departure for soil moisture predictions for estimates based in part upon airborne measurements. The main distinction of the current model is that it accounts not only for the moisture flow in the soil-atmosphere system, but also for the energy flow and, hence, calculates system temperatures. Also, the model is of a dynamic nature, capable of supporting any required degree of resolution in time and space. Much critical testing of the sample is needed before the complexities of the hydrology of a vegetated surface can be related meaningfully to microwave observations.
NASA Astrophysics Data System (ADS)
Tuttle, S. E.; Salvucci, G.
2012-12-01
Soil moisture influences many hydrological processes in the water and energy cycles, such as runoff generation, groundwater recharge, and evapotranspiration, and thus is important for climate modeling, water resources management, agriculture, and civil engineering. Large-scale estimates of soil moisture are produced almost exclusively from remote sensing, while validation of remotely sensed soil moisture has relied heavily on ground truthing, which is at an inherently smaller scale. Here we present a complementary method to determine the information content in different soil moisture products using only large-scale precipitation data (i.e. without modeling). This study builds on the work of Salvucci [2001], Saleem and Salvucci [2002], and Sun et al. [2011], in which precipitation was conditionally averaged according to soil moisture level, resulting in moisture-outflow curves that estimate the dependence of drainage, runoff, and evapotranspiration on soil moisture (i.e. sigmoidal relations that reflect stressed evapotranspiration for dry soils, roughly constant flux equal to potential evaporation minus capillary rise for moderately dry soils, and rapid drainage for very wet soils). We postulate that high quality satellite estimates of soil moisture, using large-scale precipitation data, will yield similar sigmoidal moisture-outflow curves to those that have been observed at field sites, while poor quality estimates will yield flatter, less informative curves that explain less of the precipitation variability. Following this logic, gridded ¼ degree NLDAS precipitation data were compared to three AMSR-E derived soil moisture products (VUA-NASA, or LPRM [Owe et al., 2001], NSIDC [Njoku et al., 2003], and NSIDC-LSP [Jones & Kimball, 2011]) for a period of nine years (2001-2010) across the contiguous United States. Gaps in the daily soil moisture data were filled using a multiple regression model reliant on past and future soil moisture and precipitation, and soil moisture was then converted to a ranked wetness index, in order to reconcile the wide range and magnitude of the soil moisture products. Generalized linear models were employed to fit a polynomial model to precipitation, given wetness index. Various measures of fit (e.g. log likelihood) were used to judge the amount of information in each soil moisture product, as indicated by the amount of precipitation variability explained by the fitted model. Using these methods, regional patterns appear in soil moisture product performance.
The effects of the physical and chemical properties of soils on the spectral reflectance of soils
NASA Technical Reports Server (NTRS)
Montgomery, O. L.; Baumgardner, M. F.
1974-01-01
The effects of organic matter, free iron oxides, texture, moisture content, and cation exchange capacity on the spectral reflectance of soils were investigated along with techniques for differentiating soil orders by computer analysis of multispectral data. By collecting soil samples of benchmark soils from the different climatic regions within the United States and using the extended wavelength field spectroradiometer to obtain reflectance values and curves for each sample, average curves were constructed for each soil order. Results indicate that multispectral analysis may be a valuable tool for delineating and quantifying differences between soils.
Playa Soil Moisture and Evaporation Dynamics During the MATERHORN Field Program
NASA Astrophysics Data System (ADS)
Hang, Chaoxun; Nadeau, Daniel F.; Jensen, Derek D.; Hoch, Sebastian W.; Pardyjak, Eric R.
2016-06-01
We present an analysis of field data collected over a desert playa in western Utah, USA in May 2013, the most synoptically active month of the year, as part of the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program. The results show that decreasing surface albedo, decreasing Bowen ratio and increasing net radiation with increasing soil moisture sustained a powerful positive feedback mechanism promoting large evaporation rates immediately following rain events. Additionally, it was found that, while nocturnal evaporation was negligible during dry periods, it was quite significant (up to 30 % of the daily cumulative flux) during nights following rain events. Our results further show that the highest spatial variability in surface soil moisture is found under dry conditions. Finally, we report strong spatial heterogeneities in evaporation rates following a rain event. The cumulative evaporation for the different sampling sites over a five-day period varied from ≈ 0.1 to ≈ 6.6 mm. Overall, this study allows us to better understand the mechanisms underlying soil moisture dynamics of desert playas as well as evaporation following occasional rain events.
Shrestha, Pravin Malla; Kammann, Claudia; Lenhart, Katharina; Dam, Bomba; Liesack, Werner
2012-01-01
Microbial oxidation is the only biological sink for atmospheric methane. We assessed seasonal changes in atmospheric methane oxidation and the underlying methanotrophic communities in grassland near Giessen (Germany), along a soil moisture gradient. Soil samples were taken from the surface layer (0–10 cm) of three sites in August 2007, November 2007, February 2008 and May 2008. The sites showed seasonal differences in hydrological parameters. Net uptake rates varied seasonally between 0 and 70 μg CH4 m−2 h−1. Greatest uptake rates coincided with lowest soil moisture in spring and summer. Over all sites and seasons, the methanotrophic communities were dominated by uncultivated methanotrophs. These formed a monophyletic cluster defined by the RA14, MHP and JR1 clades, referred to as upland soil cluster alphaproteobacteria (USCα)-like group. The copy numbers of pmoA genes ranged between 3.8 × 105–1.9 × 106 copies g−1 of soil. Temperature was positively correlated with CH4 uptake rates (P<0.001), but had no effect on methanotrophic population dynamics. The soil moisture was negatively correlated with CH4 uptake rates (P<0.001), but showed a positive correlation with changes in USCα-like diversity (P<0.001) and pmoA gene abundance (P<0.05). These were greatest at low net CH4 uptake rates during winter times and coincided with an overall increase in bacterial 16S rRNA gene abundances (P<0.05). Taken together, soil moisture had a significant but opposed effect on CH4 uptake rates and methanotrophic population dynamics, the latter being increasingly stimulated by soil moisture contents >50 vol% and primarily related to members of the MHP clade. PMID:22189499
Shrestha, Pravin Malla; Kammann, Claudia; Lenhart, Katharina; Dam, Bomba; Liesack, Werner
2012-06-01
Microbial oxidation is the only biological sink for atmospheric methane. We assessed seasonal changes in atmospheric methane oxidation and the underlying methanotrophic communities in grassland near Giessen (Germany), along a soil moisture gradient. Soil samples were taken from the surface layer (0-10 cm) of three sites in August 2007, November 2007, February 2008 and May 2008. The sites showed seasonal differences in hydrological parameters. Net uptake rates varied seasonally between 0 and 70 μg CH(4) m(-2) h(-1). Greatest uptake rates coincided with lowest soil moisture in spring and summer. Over all sites and seasons, the methanotrophic communities were dominated by uncultivated methanotrophs. These formed a monophyletic cluster defined by the RA14, MHP and JR1 clades, referred to as upland soil cluster alphaproteobacteria (USCα)-like group. The copy numbers of pmoA genes ranged between 3.8 × 10(5)-1.9 × 10(6) copies g(-1) of soil. Temperature was positively correlated with CH(4) uptake rates (P<0.001), but had no effect on methanotrophic population dynamics. The soil moisture was negatively correlated with CH(4) uptake rates (P<0.001), but showed a positive correlation with changes in USCα-like diversity (P<0.001) and pmoA gene abundance (P<0.05). These were greatest at low net CH(4) uptake rates during winter times and coincided with an overall increase in bacterial 16S rRNA gene abundances (P<0.05). Taken together, soil moisture had a significant but opposed effect on CH(4) uptake rates and methanotrophic population dynamics, the latter being increasingly stimulated by soil moisture contents >50 vol% and primarily related to members of the MHP clade.
Estimating Long Term Surface Soil Moisture in the GCIP Area From Satellite Microwave Observations
NASA Technical Reports Server (NTRS)
Owe, Manfred; deJeu, Vrije; VandeGriend, Adriaan A.
2000-01-01
Soil moisture is an important component of the water and energy balances of the Earth's surface. Furthermore, it has been identified as a parameter of significant potential for improving the accuracy of large-scale land surface-atmosphere interaction models. However, accurate estimates of surface soil moisture are often difficult to make, especially at large spatial scales. Soil moisture is a highly variable land surface parameter, and while point measurements are usually accurate, they are representative only of the immediate site which was sampled. Simple averaging of point values to obtain spatial means often leads to substantial errors. Since remotely sensed observations are already a spatially averaged or areally integrated value, they are ideally suited for measuring land surface parameters, and as such, are a logical input to regional or larger scale land process models. A nine-year database of surface soil moisture is being developed for the Central United States from satellite microwave observations. This region forms much of the GCIP study area, and contains most of the Mississippi, Rio Grande, and Red River drainages. Daytime and nighttime microwave brightness temperatures were observed at a frequency of 6.6 GHz, by the Scanning Multichannel Microwave Radiometer (SMMR), onboard the Nimbus 7 satellite. The life of the SMMR instrument spanned from Nov. 1978 to Aug. 1987. At 6.6 GHz, the instrument provided a spatial resolution of approximately 150 km, and an orbital frequency over any pixel-sized area of about 2 daytime and 2 nighttime passes per week. Ground measurements of surface soil moisture from various locations throughout the study area are used to calibrate the microwave observations. Because ground measurements are usually only single point values, and since the time of satellite coverage does not always coincide with the ground measurements, the soil moisture data were used to calibrate a regional water balance for the top 1, 5, and 10 cm surface layers in order to interpolate daily surface moisture values. Such a climate-based approach is often more appropriate for estimating large-area spatially averaged soil moisture because meteorological data are generally more spatially representative than isolated point measurements of soil moisture. Vegetation radiative transfer characteristics, such as the canopy transmissivity, were estimated from vegetation indices such as the Normalized Difference Vegetation Index (NDVI) and the 37 GHz Microwave Polarization Difference Index (MPDI). Passive microwave remote sensing presents the greatest potential for providing regular spatially representative estimates of surface soil moisture at global scales. Real time estimates should improve weather and climate modelling efforts, while the development of historical data sets will provide necessary information for simulation and validation of long-term climate and global change studies.
NASA Astrophysics Data System (ADS)
Willgoose, G. R.; Chen, M.; Cohen, S.; Saco, P. M.; Hancock, G. R.
2013-12-01
In humid areas it is generally considered that soil moisture scales spatially according to the wetness index of the landscape. This scaling arises from lateral flow downslope of ground water within the soil zone. However, in semi-arid and drier regions, this lateral flow is small and fluxes are dominated by vertical flows driven by infiltration and evapotranspiration. Thus, in the absence of runon processes, soil moisture at a location is more driven by local factors such as soil and vegetation properties at that location rather than upstream processes draining to that point. The 'apparent' spatial randomness of soil and vegetation properties generally suggests that soil moisture for semi-arid regions is spatially random. In this presentation a new analysis of neutron probe data during summer from the Tarrawarra site near Melbourne, Australia shows persistent spatial organisation of soil moisture over several years. This suggests a link between permanent features of the catchment (e.g. soil properties) and soil moisture distribution, even though the spatial pattern of soil moisture during the 4 summers monitored appears spatially random. This and other data establishes a prima facie case that soil variations drive spatial variation in soil moisture. Accordingly, we used a previously published spatial scaling relationship for soil properties derived using the mARM pedogenesis model to simulate the spatial variation of soil grading. This soil grading distribution was used in the Rosetta pedotransfer model to derive a spatial distribution of soil functional properties (e.g. saturated hydraulic conductivity, porosity). These functional properties were then input into the HYDRUS-1D soil moisture model and soil moisture simulated for 3 years at daily resolution. The HYDRUS model used had previously been calibrated to field observed soil moisture data at our SASMAS field site. The scaling behaviour of soil moisture derived from this modelling will be discussed and compared with observed data from our SASMAS field sites.
NASA Astrophysics Data System (ADS)
Taylor, C.; Birch, C.; Parker, D.; Guichard, F.; Nikulin, G.; Dixon, N.
2013-12-01
Land surface properties influence the life cycle of convective systems across West Africa via space-time variability in sensible and latent heat fluxes. Previous observational and modelling studies have shown that areas with strong mesoscale variability in vegetation cover or soil moisture induce coherent structures in the daytime planetary boundary layer. In particular, horizontal gradients in sensible heat flux can induce convergence zones which favour the initiation of deep convection. A recent study based on satellite data (Taylor et al. 2011), illustrated the climatological importance of soil moisture gradients in the initiation of long-lived Mesoscale Convective Systems (MCS) in the Sahel. Here we provide a unique assessment of how models of different spatial resolutions represent soil moisture - precipitation feedbacks in the region, and compare their behaviour to observations. Specifically we examine whether the inability of large-scale models to capture the observed preference for afternoon rain over drier soil in semi-arid regions [Taylor et al., 2012] is due to inadequate spatial resolution and/or systematic bias in convective parameterisations. Firstly, we use a convection-permitting simulation at 4km resolution to explore the underlying mechanisms responsible for soil moisture controls on daytime convective initiation in the Sahel. The model reproduces very similar spatial structure as the observations in terms of antecedent soil moisture in the vicinity of a large sample of convective initiations. We then examine how this same model, run at coarser resolution, simulates the feedback of soil moisture on daily rainfall. In particular we examine the impact of switching on the convective parameterisation on rainfall persistence, and compare the findings with 10 regional climate models (RCMs). Finally, we quantify the impact of the feedback on dry-spell return times using a simple statistical model. The results highlight important weaknesses in convective parameterisations which are likely to impact land surface sensitivity studies and hydroclimatic variability on certain time and space scales. Taylor, C.M., Gounou, A., Guichard, F., Harris, P.P., Ellis, R.J.,Couvreux, F., and M. De Kauwe. 2011, Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns, Nature Geoscience, 4, 430-433, doi:10.1038/ngeo1173 Taylor, C.M., de Jeu, R.A.M., Guichard, F., Harris, P.P, and W.A. Dorigo. 2012, Afternoon rain more likely over drier soils, Nature, 489, 423-426, doi:10.1038/nature11377
The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert.
Li, Bonan; Wang, Lixin; Kaseke, Kudzai F; Li, Lin; Seely, Mary K
2016-01-01
Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is also uncertain to what extent rainfall controls soil moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to nineteen months' continuous daily records of rainfall and soil moisture (from January 2014 to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in the Namib Desert are reported. A process-based model simulating the stochastic soil moisture dynamics in water-limited systems was used to study the relationships between soil moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation parameters under diverse soil textures was also investigated. Our field observations showed that surface soil moisture dynamics generally follow rainfall patterns at the two gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a significant relationship with rainfall pattern. The modeling results suggested that most of the soil moisture dynamics can be simulated except the daily fluctuations, which may require a modification of the model structure to include non-rainfall components. Sensitivity analyses suggested that soil hygroscopic point (sh) and field capacity (sfc) were two main parameters controlling soil moisture output, though permanent wilting point (sw) was also very sensitive under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall, the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling results as well as sensitivity analyses provide soil moisture baseline information for future monitoring and the prediction of soil moisture patterns in the Namib Desert.
The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert
Li, Bonan; Wang, Lixin; Kaseke, Kudzai F.; Li, Lin; Seely, Mary K.
2016-01-01
Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is also uncertain to what extent rainfall controls soil moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to nineteen months’ continuous daily records of rainfall and soil moisture (from January 2014 to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in the Namib Desert are reported. A process-based model simulating the stochastic soil moisture dynamics in water-limited systems was used to study the relationships between soil moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation parameters under diverse soil textures was also investigated. Our field observations showed that surface soil moisture dynamics generally follow rainfall patterns at the two gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a significant relationship with rainfall pattern. The modeling results suggested that most of the soil moisture dynamics can be simulated except the daily fluctuations, which may require a modification of the model structure to include non-rainfall components. Sensitivity analyses suggested that soil hygroscopic point (sh) and field capacity (sfc) were two main parameters controlling soil moisture output, though permanent wilting point (sw) was also very sensitive under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall, the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling results as well as sensitivity analyses provide soil moisture baseline information for future monitoring and the prediction of soil moisture patterns in the Namib Desert. PMID:27764203
Irrigation management with remote sensing. [Navajo Indian Irrigation Project
NASA Technical Reports Server (NTRS)
Harlan, C.; Heilman, J. L.; Moore, D.; Myers, V. (Principal Investigator)
1982-01-01
Two visible/near IR hand held radiometers and a hand held thermoradiometer were used along with soil moisture and lysimetric measurements in a study of soil moisture distribution in afalfa fields on the Navajo Indian Irrigation Project near farmington, New Mexico. Radiances from irrigated plots were measured and converted to reflectances. Surface soil water contents (o cm to 4 cm) were determined gravimetrically on samples collected at the same time as the spectral measurements. The relationship between the spectral measurements and the crop coefficient were evaluated to demonstrate potential for using spectral measurement to estimate crop coefficient.
X-ray microtomography analysis of soil structure deformation caused by centrifugation
NASA Astrophysics Data System (ADS)
Schlüter, Steffen; Leuther, Frederic; Vogler, Steffen; Vogel, Hans-Jörg
2016-04-01
Centrifugation provides a fast method to measure soil water retention curves over a wide moisture range. However, deformation of soil structure may occur at high angular velocities in the centrifuge. The objective of this study was to capture these changes in soil structure with X-ray microtomography and to measure local deformations via digital volume correlation. Two samples were investigated that differ in texture and rock content. A detailed analysis of the pore space reveals an interplay between shrinkage due to drying and soil compaction due to compression. Macroporosity increases at moderate angular velocity because of crack formation due to moisture release. At higher angular velocities, corresponding to capillary pressure of <-100kPa, macroporosity decreases again because of structure deformation due to compression. While volume changes due to swelling clay minerals are immanent to any drying process, the compaction of soil is a specific drawback of the centrifugation method. A new protocol for digital volume correlation was developed to analyze the spatial heterogeneity of deformation. In both samples the displacement of soil constituents is highest in the top part of the sample and exhibits high lateral variability explained by the spatial distribution of macropores in the sample. Centrifugation should therefore only be applied after the completion of all other hydraulic or thermal experiments, or any other analysis that depends on the integrity of soil structure.
X-ray microtomography analysis of soil structure deformation caused by centrifugation
NASA Astrophysics Data System (ADS)
Schlüter, S.; Leuther, F.; Vogler, S.; Vogel, H.-J.
2016-01-01
Centrifugation provides a fast method to measure soil water retention curves over a wide moisture range. However, deformation of soil structure may occur at high angular velocities in the centrifuge. The objective of this study was to capture these changes in soil structure with X-ray microtomography and to measure local deformations via digital volume correlation. Two samples were investigated that differ in texture and rock content. A detailed analysis of the pore space reveals an interplay between shrinkage due to drying and soil compaction due to compression. Macroporosity increases at moderate angular velocity because of crack formation due to moisture release. At higher angular velocities, corresponding to capillary pressure of ψ < -100 kPa, macroporosity decreases again because of structure deformation due to compression. While volume changes due to swelling clay minerals are immanent in any drying process, the compaction of soil is a specific drawback of the centrifugation method. A new protocol for digital volume correlation was developed to analyze the spatial heterogeneity of deformation. In both samples the displacement of soil constituents is highest in the top part of the sample and exhibits high lateral variability explained by the spatial distribution of macropores in the sample. Centrifugation should therefore only be applied after the completion of all other hydraulic or thermal experiments, or any other analysis that depends on the integrity of soil structure.
NASA Astrophysics Data System (ADS)
Miller, G. R.; Gou, S.; Ferguson, I. M.; Maxwell, R. M.
2011-12-01
Savanna ecosystems present a well-known modeling challenge; understory grasses and overstory woody vegetation combine to form an open, heterogeneous canopy that creates strong spatial differences in soil moisture and evapotranspiration rates. In this analysis, we used ParFlow.CLM to create a stand-scale model of the Tonzi Ranch oak savanna, based on extensive topography, vegetation, soil, and hydrogeology data collected at the site. Measurements included canopy distribution and ground surface elevation from airborne Lidar, depth to groundwater from deep piezometers, soil and rock hydraulic conductivity, and leaf area index. We then compared the results to the site's long-term data records of radiative flux partitioning, obtained using the eddy-covariance method, and soil moisture, collected via a distributed network of capacitance probes. In order to obtain good agreement between the measured and modeled values, we identified several necessary modifications to the current CLM parameterization. These changes included the addition of a "winter grass" type and the alteration of the root structure and water stress functions to accommodate uptake of groundwater by deep roots. Finally, we compared variograms of site parameters and response variables and performed a scaling analysis relating ET and soil moisture variance to sampling size.
Parsakho, Aidin; Hosseini, Seyed Ataollah; Jalilvand, Hamid; Lotfalian, Majid
2008-06-01
Effects of moisture, porosity and soil bulk density properties, grubbing time and terrain side slopes on pc 220 komatsu hydraulic excavator productivity were investigated in Miana forests road construction project which located in the northern forest of Iran. Soil moisture and porosity determined by samples were taken from undisturbed soil. The elements of daily works were measured with a digital stop watch and video camera in 14 observations (days). The road length and cross section profiles after each 20 m were selected to estimate earthworks volume. Results showed that the mean production rates for the pc 220 komatsu excavators were 60.13 m3 h(-1) and earthwork 14.76 m h(-1) when the mean depth of excavation or cutting was 4.27 m3 m(-1), respectively. There was no significant effects (p = 0.5288) from the slope classes' treatments on productivity, whereas grubbing time, soil moisture, bulk density and porosity had significantly affected on excavator earthworks volume (p < 0.0001). Clear difference was showed between the earthwork length by slope classes (p = 0.0060). Grubbing time (p = 0.2180), soil moisture (p = 0.1622), bulk density (p = 0.2490) and porosity (p = 0.2159) had no significant effect on the excavator earthworks length.
NASA Astrophysics Data System (ADS)
Sure, A.; Dikshit, O.
2017-12-01
Root zone soil moisture (RZSM) is an important element in hydrology and agriculture. The estimation of RZSM provides insight in selecting the appropriate crops for specific soil conditions (soil type, bulk density, etc.). RZSM governs various vadose zone phenomena and subsequently affects the groundwater processes. With various satellite sensors dedicated to estimating surface soil moisture at different spatial and temporal resolutions, estimation of soil moisture at root zone level for Indo - Gangetic basin which inherits complex heterogeneous environment, is quite challenging. This study aims at estimating RZSM and understand its variation at the level of Indo - Gangetic basin with changing land use/land cover, topography, crop cycles, soil properties, temperature and precipitation patterns using two satellite derived soil moisture datasets operating at distinct frequencies with different principles of acquisition. Two surface soil moisture datasets are derived from AMSR-2 (6.9 GHz - `C' Band) and SMOS (1.4 GHz - `L' band) passive microwave sensors with coarse spatial resolution. The Soil Water Index (SWI), accounting for soil moisture from the surface, is derived by considering a theoretical two-layered water balance model and contributes in ascertaining soil moisture at the vadose zone. This index is evaluated against the widely used modelled soil moisture dataset of GLDAS - NOAH, version 2.1. This research enhances the domain of utilising the modelled soil moisture dataset, wherever the ground dataset is unavailable. The coupling between the surface soil moisture and RZSM is analysed for two years (2015-16), by defining a parameter T, the characteristic time length. The study demonstrates that deriving an optimal value of T for estimating SWI at a certain location is a function of various factors such as land, meteorological, and agricultural characteristics.
Global Soil Moisture from the Aquarius/SAC-D Satellite: Description and Initial Assessment
NASA Technical Reports Server (NTRS)
Bindlish, Rajat; Jackson, Thomas; Cosh, Michael; Zhao, Tianjie; O'Neil, Peggy
2015-01-01
Aquarius satellite observations over land offer a new resource for measuring soil moisture from space. Although Aquarius was designed for ocean salinity mapping, our objective in this investigation is to exploit the large amount of land observations that Aquarius acquires and extend the mission scope to include the retrieval of surface soil moisture. The soil moisture retrieval algorithm development focused on using only the radiometer data because of the extensive heritage of passive microwave retrieval of soil moisture. The single channel algorithm (SCA) was implemented using the Aquarius observations to estimate surface soil moisture. Aquarius radiometer observations from three beams (after bias/gain modification) along with the National Centers for Environmental Prediction model forecast surface temperatures were then used to retrieve soil moisture. Ancillary data inputs required for using the SCA are vegetation water content, land surface temperature, and several soil and vegetation parameters based on land cover classes. The resulting global spatial patterns of soil moisture were consistent with the precipitation climatology and with soil moisture from other satellite missions (Advanced Microwave Scanning Radiometer for the Earth Observing System and Soil Moisture Ocean Salinity). Initial assessments were performed using in situ observations from the U.S. Department of Agriculture Little Washita and Little River watershed soil moisture networks. Results showed good performance by the algorithm for these land surface conditions for the period of August 2011-June 2013 (rmse = 0.031 m(exp 3)/m(exp 3), Bias = -0.007 m(exp 3)/m(exp 3), and R = 0.855). This radiometer-only soil moisture product will serve as a baseline for continuing research on both active and combined passive-active soil moisture algorithms. The products are routinely available through the National Aeronautics and Space Administration data archive at the National Snow and Ice Data Center.
NASA Astrophysics Data System (ADS)
Davis, M. L.; Konkel, J.; Welker, J. M.; Schaeffer, S. M.
2017-12-01
Soil moisture and soil temperature are critical to plant community distribution and soil carbon cycle processes in High Arctic tundra. As environmental drivers of soil biochemical processes, the predictability of soil moisture and soil temperature by vegetation zone in High Arctic landscapes has significant implications for the use of satellite imagery and vegetation distribution maps to estimate of soil gas flux rates. During the 2017 growing season, we monitored soil moisture and soil temperature weekly at 48 sites in dry tundra, moist tundra, and wet grassland vegetation zones in a High Arctic lake basin. Soil temperature in all three communities reflected fluctuations in air temperature throughout the season. Mean soil temperature was highest in the dry tundra community at 10.5±0.6ºC, however, did not differ between moist tundra and wet grassland communities (2.7±0.6 and 3.1±0.5ºC, respectively). Mean volumetric soil moisture differed significantly among all three plant communities with the lowest and highest soil moisture measured in the dry tundra and wet grassland (30±1.2 and 65±2.7%), respectively. For all three communities, soil moisture was highest during the early season snow melt. Soil moisture in wet grassland remained high with no significant change throughout the season, while significant drying occurred in dry tundra. The most significant change in soil moisture was measured in moist tundra, ranging from 61 to 35%. Our results show different gradients in soil moisture variability within each plant community where: 1) soil moisture was lowest in dry tundra with little change, 2) highest in wet grassland with negligible change, and 3) variable in moist tundra which slowly dried but remained moist. Consistently high soil moisture in wet grassland restricts this plant community to areas with no significant drying during summer. The moist tundra occupies the intermediary areas between wet grassland and dry tundra and experiences the widest range of soil moisture variability. As climate projections predict wetter summers in the High Arctic, expansion of areas with seasonally inundated soils and increased soil moisture variability could result in an expansion of wet grassland and moist tundra communities with a commensurate decrease in dry tundra area.
Spatial Variation in Anaerobic Microbial Communities in Wetland Margin Soils
NASA Astrophysics Data System (ADS)
Rich, H.; Kannenberg, S.; Ludwig, S.; Nelson, L. C.; Spawn, S.; Porterfield, J.; Schade, J. D.
2012-12-01
Climate change is predicted to increase the severity and frequency of precipitation and drought events, which may result in substantial temporal variation in the size of wetlands. Wetlands are the world's largest natural emitter of methane, a greenhouse gas that is 20 times more effective at trapping heat than carbon dioxide. Changes in the dynamics of wetland size may lead to changes in the extent and timing of inundation of soils in ephemeral margins, which is likely to influence microbes that rely on anoxic conditions. The impact on process rates may depend on the structure of the community of microbes present in the soil, however, the link between microbial structure and patterns in process rates in soils is not well understood. Our goal was to use molecular techniques to compare microorganism communities in two wetlands that differ in the extent and duration of inundation of marginal soils to assess how these communities may change with changes in climate, and the potential consequences for methane production. This will allow us to examine how community composition changes with soil conditions such as moisture content, frequency of drought and abundance of available carbon. The main focus of this project was to determine the presence or absence of acetoclastic (AC) and hydrogenotrophic (HT) methanogens. AC methanogens use acetate as their main substrate, while HT methanogens use Hydrogen and Carbon dioxide. The relative proportion of these pathways depends on soil conditions, such as competition with other anaerobic microbes and the amount of labile carbon, and spatial patterns in the presence of each can give insight into the soil conditions of a wetland site. We sampled soil from three different wetland ponds of varying permanence in the St Olaf Natural Lands in Northfield, Minnesota, and extracted DNA from these soil samples with a MoBio PowerSoil DNA Isolation Kit. With PCR and seven different primer sets, we tested the extracted DNA for the presence of four different methanogen taxa as well as denitrifying, iron reducing and sulfate reducing bacteria. We used the percentage of soil replicates that tested positive for a primer as an indicator of the population size of each microorganism at each site. The results of the presence/absence test suggested a relationship between soil moisture and abundance of methanogens. The sites with over 25% moisture content showed a higher percent presence than the soil sites with under 25% moisture content for all taxa except for sulfate reducing bacteria. The impact of soil moisture is likely due to negative effects of oxygen on methanogens. However, the presence of methanogens in drier soils shows that methanogens can still exist in a dormant state in aerobic environments. Methanogens may be ubiquitous but vary in population size and activity depending on soil conditions. With changes in wetland soil moisture in response to changes in precipitation patterns, the populations of methanogens may change, affecting the amount of methane production and ultimately the amount of heat trapped by the atmosphere.
Response of spectral vegetation indices to soil moisture in grasslands and shrublands
Zhang, Li; Ji, Lei; Wylie, Bruce K.
2011-01-01
The relationships between satellite-derived vegetation indices (VIs) and soil moisture are complicated because of the time lag of the vegetation response to soil moisture. In this study, we used a distributed lag regression model to evaluate the lag responses of VIs to soil moisture for grasslands and shrublands at Soil Climate Analysis Network sites in the central and western United States. We examined the relationships between Moderate Resolution Imaging Spectroradiometer (MODIS)-derived VIs and soil moisture measurements. The Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) showed significant lag responses to soil moisture. The lag length varies from 8 to 56 days for NDVI and from 16 to 56 days for NDWI. However, the lag response of NDVI and NDWI to soil moisture varied among the sites. Our study suggests that the lag effect needs to be taken into consideration when the VIs are used to estimate soil moisture.
Soil Moisture Project Evaluation Workshop
NASA Technical Reports Server (NTRS)
Gilbert, R. H. (Editor)
1980-01-01
Approaches planned or being developed for measuring and modeling soil moisture parameters are discussed. Topics cover analysis of spatial variability of soil moisture as a function of terrain; the value of soil moisture information in developing stream flow data; energy/scene interactions; applications of satellite data; verifying soil water budget models; soil water profile/soil temperature profile models; soil moisture sensitivity analysis; combinations of the thermal model and microwave; determing planetary roughness and field roughness; how crust or a soil layer effects microwave return; truck radar; and truck/aircraft radar comparison.
NASA Astrophysics Data System (ADS)
Chen, M.; Willgoose, G. R.; Saco, P. M.
2009-12-01
This paper investigates the soil moisture dynamics over two subcatchments (Stanley and Krui) in the Goulburn River in NSW during a three year period (2005-2007) using the Hydrus 1-D unsaturated soil water flow model. The model was calibrated to the seven Stanley microcatchment sites (1 sqkm site) using continuous time surface 30cm and full profile soil moisture measurements. Soil type, leaf area index and soil depth were found to be the key parameters changing model fit to the soil moisture time series. They either shifted the time series up or down, changed the steepness of dry-down recessions or determined the lowest point of soil moisture dry-down respectively. Good correlations were obtained between observed and simulated soil water storage (R=0.8-0.9) when calibrated parameters for one site were applied to the other sites. Soil type was also found to be the main determinant (after rainfall) of the mean of modelled soil moisture time series. Simulations of top 30cm were better than those of the whole soil profile. Within the Stanley microcatchment excellent soil moisture matches could be generated simply by adjusting the mean of soil moisture up or down slightly. Only minor modification of soil properties from site to site enable good fits for all of the Stanley sites. We extended the predictions of soil moisture to a larger spatial scale of the Krui catchment (sites up to 30km distant from Stanley) using soil and vegetation parameters from Stanley but the locally recorded rainfall at the soil moisture measurement site. The results were encouraging (R=0.7~0.8). These results show that it is possible to use a calibrated soil moisture model to extrapolate the soil moisture to other sites for a catchment with an area of up to 1000km2. This paper demonstrates the potential usefulness of continuous time, point scale soil moisture (typical of that measured by permanently installed TDR probes) in predicting the soil wetness status over a catchment of significant size.
NASA Astrophysics Data System (ADS)
Cumbrera, Ramiro; Millán, Humberto; Martín-Sotoca, Juan Jose; Pérez Soto, Luis; Sanchez, Maria Elena; Tarquis, Ana Maria
2016-04-01
Soil moisture distribution usually presents extreme variation at multiple spatial scales. Image analysis could be a useful tool for investigating these spatial patterns of apparent soil moisture at multiple resolutions. The objectives of the present work were (i) to describe the local scaling of apparent soil moisture distribution and (ii) to define apparent soil moisture patterns from vertical planes of Vertisol pit images. Two soil pits (0.70 m long × 0.60 m width × 0.30 m depth) were excavated on a bare Mazic Pellic Vertisol. One was excavated in April/2011 and the other pit was established in May/2011 after 3 days of a moderate rainfall event. Digital photographs were taken from each Vertisol pit using a Kodak™ digital camera. The mean image size was 1600 × 945 pixels with one physical pixel ≈373 μm of the photographed soil pit. For more details see Cumbrera et al. (2012). Geochemical exploration have found with increasingly interests and benefits of using fractal (power-law) models to characterize geochemical distribution, using the concentration-area (C-A) model (Cheng et al., 1994; Cheng, 2012). This method is based on the singularity maps of a measure that at each point define areas with self-similar properties that are shown in power-law relationships in Concentration-Area plots (C-A method). The C-A method together with the singularity map ("Singularity-CA" method) define thresholds that can be applied to segment the map. We have applied it to each soil image. The results show that, in spite of some computational and practical limitations, image analysis of apparent soil moisture patterns could be used to study the dynamical change of soil moisture sampling in agreement with previous results (Millán et al., 2016). REFERENCES Cheng, Q., Agterberg, F. P. and Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51, 109-130. Cheng, Q. (2012). Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Cumbrera, R., Ana M. Tarquis, Gabriel Gascó, Humberto Millán (2012) Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images. Journal of Hydrology (452-453), 205-212. Martin Sotoca; J.J. Antonio Saa-Requejo, Juan Grau and Ana M. Tarquis (2016). Segmentation of singularity maps in the context of soil porosity. Geophysical Research Abstracts, 18, EGU2016-11402. Millán, H., Cumbrera, R. and Ana M. Tarquis (2016) Multifractal and Levy-stable statistics of soil surface moisture distribution derived from 2D image analysis. Applied Mathematical Modelling, 40(3), 2384-2395.
NASA Technical Reports Server (NTRS)
Vandegriend, A. A.; Oneill, P. E.
1986-01-01
Using the De Vries models for thermal conductivity and heat capacity, thermal inertia was determined as a function of soil moisture for 12 classes of soil types ranging from sand to clay. A coupled heat and moisture balance model was used to describe the thermal behavior of the top soil, while microwave remote sensing was used to estimate the soil moisture content of the same top soil. Soil hydraulic parameters are found to be very highly correlated with the combination of soil moisture content and thermal inertia at the same moisture content. Therefore, a remotely sensed estimate of the thermal behavior of the soil from diurnal soil temperature observations and an independent remotely sensed estimate of soil moisture content gives the possibility of estimating soil hydraulic properties by remote sensing.
Use of Physio-Hydrological Units for SMOS Validation at the Valencia Anchor Station Study Area
NASA Astrophysics Data System (ADS)
Millán-Scheiding, C.; Antolín, C.; Marco, J.; Soriano, M. P.; Torre, E.; Requena, F.; Carbó, E.; Cano, A.; Lopez-Baeza, E.
2009-04-01
The SMOS space mission will soil moisture over the continents and ocean surface salinity with the sufficient resolution to be used in global climate change studies. With the aim of validating SMOS land data and products at the Valencia Anchor Station site (VAS) in a Mediterranean Ecosystem area of Spain, we have designed a sample methodology using a subdivision of the landscape in environmental units related to the spatial variability of soil moisture (Millán-Scheiding, 2006; Lopez-Baeza, et al. 2008). These physio-hydrological units are heterogeneously structured entities which present a certain degree of internal uniformity of hydrological parameters. The units are delimited by integrating areas with the same physio-morphology, soil type, vegetation, geology and topography (Flugel, et al 2003; Millán-Scheiding et al, 2007). Each of these units presented over the same pedological characteristics, vegetation cover, and landscape position should have a certain degree of internal uniformity in its hydrological parameters and therefore similar soil moisture (SM). The main assumption for each unit is that the dynamical variation of the hydrological parameters within one unit should be minimum compared to the dynamics of another unit. This methodology will hopefully provide an effective sampling design consisting of a reduced number of measuring points, sparsely distributed over the area, or alternatively, using SM validation networks where each sampling point is located where it is representative of the mean soil moisture of a complete unit area. The Experimental Plan for the SMOS Validation Rehearsal Campaign at the VAS area of April-May 2008 used this environmental subdivision in the selection and sampling of over 21.000 soil moisture points in a control area of 10 x 10 km2. The ground measurements were carried out during 4 nights corresponding to a drying out period of the soil. The sampling consisted of 700 plots with 4 volumetric SM cylinders and 7 Delta-T Theta Probe measurements (with 3 repetitions each), covering the whole area. This experimental campaign permits the characterization of the soil moisture distribution within each physio-hydrological unit and results in a soil moisture map of the VAS site. All of it used for the validation of the aircraft observations done throughout the campaign. The ground measurement results obtained indicate that soil properties and vegetation cover are the parameters of the physio-hydrological units that most influence the moisture of the soil. This relationship will permit a more simple delimitation of the physio-hydrological Units and a reduction of the number of sample points for the calibration/validation of SMOS products. References: Lopez-Baeza, E., R. Acosta, M.C. Antolin, F. Belda, A. Cano, E. Carbo, M. Crapeau, A. Fidalgo S. Juglea, Y. Kerr, B. Martinez, C. Millan-Scheiding, D. Rodriguez, K. Saleh, J. Sanchis, J.-P. Wigneron(10), Other Contributors: J.E. Balling, C. Domenech, EOLAB, A.G. Ferreira J. Ferrer, J. Grant, J. Marco C. Narbon, B. Navascues, OCEANSNELL, E. Rodriguez-Camino, N. Skou, S. Søbjærg, P. Soriano, J. Tamayo, S. Tauriainen, E. Torre G. Torregrosa, A. Velazquez Blazquez, S. Vidal (2008): Validation of SMOS Products over Mediterranean Ecosystem Vegetation at the Valencia Anchor Station Reference Area. SMOS Cal/Val AO I.D. no. 3252. Experimental Plan SMOS Validation Rehearsal Campaign. University of Valencia, April 2008 Millan-Scheiding, C. (2006): Aproximación a la Humedad del Suelo en el Altiplano de Requena-Utiel. Preparación para la Campaña de Cal/Val de la Misión Espacial SMOS. Trabajo de Investigación de III Ciclo. Universidad de Valencia. Millán-Scheiding, C., C. Antolín, A. Cano, E. López-Baeza (2007): Uso de Unidades Fisio-Hidrológicas en la Monitorización de la Humedad del Suelo con SMOS. III Simposio Nacional sobre el Control de la Degradación de Suelos y la Desertificación. Costa Calma (Pájara), Fuerteventura, 16 al 20 de Septiembre 2007
NASA Technical Reports Server (NTRS)
Bolten, John; Crow, Wade
2012-01-01
The added value of satellite-based surface soil moisture retrievals for agricultural drought monitoring is assessed by calculating the lagged rank correlation between remotely-sensed vegetation indices (VI) and soil moisture estimates obtained both before and after the assimilation of surface soil moisture retrievals derived from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) into a soil water balance model. Higher soil moisture/VI lag correlations imply an enhanced ability to predict future vegetation conditions using estimates of current soil moisture. Results demonstrate that the assimilation of AMSR-E surface soil moisture retrievals substantially improve the performance of a global drought monitoring system - particularly in sparsely-instrumented areas of the world where high-quality rainfall observations are unavailable.
NASA Astrophysics Data System (ADS)
Yang, Yang; Dou, Yanxing; Liu, Dong; An, Shaoshan
2017-07-01
Spatial pattern and heterogeneity of soil moisture is important for the hydrological process on the Loess Plateau. This study combined the classical and geospatial statistical techniques to examine the spatial pattern and heterogeneity of soil moisture along a transect scale (e.g. land use types and topographical attributes) on the Loess Plateau. The average values of soil moisture were on the order of farmland > orchard > grassland > abandoned land > shrubland > forestland. Vertical distribution characteristics of soil moisture (0-500 cm) were similar among land use types. Highly significant (p < 0.01) negative correlations were found between soil moisture and elevation (h) except for shrubland (p > 0.05), whereas no significant correlations were found between soil moisture and plan curvature (Kh), stream power index (SPI), compound topographic index (CTI) (p > 0.05), indicating that topographical attributes (mainly h) have a negative effect on the soil moisture spatial heterogeneity. Besides, soil moisture spatial heterogeneity decreased from forestland to grassland and farmland, accompanied by a decline from 15° to 1° alongside upper to lower slope position. This study highlights the importance of land use types and topographical attributes on the soil moisture spatial heterogeneity from a combined analysis of the structural equation model (SEM) and generalized additive models (GAMs), and the relative contribution of land use types to the soil moisture spatial heterogeneity was higher than that of topographical attributes, which provides insights for researches focusing on soil moisture varitions on the Loess Plateau.
Use of Radar Vegetation Index (RVI) in Passive Microwave Algorithms for Soil Moisture Estimates
NASA Astrophysics Data System (ADS)
Rowlandson, T. L.; Berg, A. A.
2013-12-01
The Soil Moisture Active Passive (SMAP) satellite will provide a unique opportunity for the estimation of soil moisture by having simultaneous radar and radiometer measurements available. As with the Soil Moisture and Ocean Salinity (SMOS) satellite, the soil moisture algorithms will need to account for the contribution of vegetation to the brightness temperature. Global maps of vegetation volumetric water content (VWC) are difficult to obtain, and the SMOS mission has opted to estimate the optical depth of standing vegetation by using a relationship between the VWC and the leaf area index (LAI). LAI is estimated from optical remote sensing or through soil-vegetation-atmosphere transfer modeling. During the growing season, the VWC of agricultural crops can increase rapidly, and if cloud cover exists during an optical acquisition, the estimation of LAI may be delayed, resulting in an underestimation of the VWC and overestimation of the soil moisture. Alternatively, the radar vegetation index (RVI) has shown strong correlation and linear relationship with VWC for rice and soybeans. Using the SMAP radar to produce RVI values that are coincident to brightness temperature measurements may eliminate the need for LAI estimates. The SMAP Validation Experiment 2012 (SMAPVEX12) was a cal/val campaign for the SMAP mission held in Manitoba, Canada, during a 6-week period in June and July, 2012. During this campaign, soil moisture measurements were obtained for 55 fields with varying soil texture and vegetation cover. Vegetation was sampled from each field weekly to determine the VWC. Soil moisture measurements were taken coincident to overpasses by an aircraft carrying the Passive and Active L-band System (PALS) instrumentation. The aircraft flew flight lines at both high and low altitudes. The low altitude flight lines provided a footprint size approximately equivalent to the size of the SMAPVEX12 field sites. Of the 55 field sites, the low altitude flight lines provided measurements for 15 fields. One field was planted in corn; three were pasture; six were soybeans; three were wheat; and two were winter wheat. The average RVI for each field was determined for each PALS overpass, with sampled radar data confined to the field dimensions. A linear interpolation was conducted between measured values of VWC to estimate a daily VWC value. A linear regression was conducted between the average VWC and the RVI, for each vegetation type. A positive linear relationship was found for all crops, with the exception of pasture. The correlation between the RVI and VWC was strong for corn and pasture, but moderate for soybeans and winter wheat; however, the correlation for corn was not significant. The developed models were utilized to provide a calculated VWC which was inputted into a modified version of the Land Parameter Retrieval Model (LPRM) to determine the error associated with using a calculated VWC from the RVI versus measured VWC data. The LPRM outputs for both scenarios were compared to the PALS radiometer measurements of brightness temperature.
NASA Astrophysics Data System (ADS)
Massari, Christian; Brocca, Luca; Pellarin, Thierry; Kerr, Yann; Crow, Wade; Cascon, Carlos; Ciabatta, Luca
2016-04-01
Recent advancements in the measurement of precipitation from space have provided estimates at scales that are commensurate with the needs of the hydrological and land-surface model communities. However, as demonstrated in a number of studies (Ebert et al. 2007, Tian et al. 2007, Stampoulis et al. 2012) satellite rainfall estimates are characterized by low accuracy in certain conditions and still suffer from a number of issues (e.g., bias) that may limit their utility in over-land applications (Serrat-Capdevila et al. 2014). In recent years many studies have demonstrated that soil moisture observations from ground and satellite sensors can be used for correcting satellite precipitation estimates (e.g. Crow et al., 2011; Pellarin et al., 2013), or directly estimating rainfall (SM2RAIN, Brocca et al., 2014). In this study, we carried out a detailed scientific analysis in which these three different methods are used for: i) estimating rainfall through satellite soil moisture observations (SM2RAIN, Brocca et al., 2014); ii) correcting rainfall through a Land surface Model Assimilation Algorithm (LMAA) (an improvement of a previous work of Crow et al. 2011 and Pellarin et al. 2013) and through the Soil Moisture Analysis Rainfall Tool (SMART, Crow et al. 2011). The analysis is carried within the ESA project "SMOS plus Rainfall" and involves 9 sites in Europe, Australia, Africa and USA containing high-quality hydrometeorological and soil moisture observations. Satellite soil moisture data from Soil Moisture and Ocean Salinity (SMOS) mission are employed for testing their potential in deriving a cumulated rainfall product at different temporal resolutions. The applicability and accuracy of the three algorithms is investigated also as a function of climatic and soil/land use conditions. A particular attention is paid to assess the expected limitations soil moisture based rainfall estimates such as soil saturation, freezing/snow conditions, SMOS RFI, irrigated areas, contribution of surface runoff and evapotranspiration, vegetation coverage, temporal sampling, and the assimilation/modelling approach. The 9 selected sites gather such potential problems which are shown and discussed at the conference. REFERENCES Ebert, E. E.; Janowiak, J. E.; Kidd, C. Comparison of Near-Real-Time Precipitation Estimates from Satellite Observations and Numerical Models. Bull. Am. Meteorol. Soc. 2007, 88, 47-64. Tian, Y.; Peters-Lidard, C. D.; Choudhury, B. J.; Garcia, M. Multitemporal Analysis of TRMM-Based Satellite Precipitation Products for Land Data Assimilation Applications. J. Hydrometeorol. 2007, 8, 1165-1183. Stampoulis, D.; Anagnostou, E. N. Evaluation of Global Satellite Rainfall Products over Continental Europe. J. Hydrometeorol. 2012, 13, 588-603. Serrat-Capdevila, A.; Valdes, J. B.; Stakhiv, E. Z. Water Management Applications for Satellite Precipitation Products: Synthesis and Recommendations. JAWRA J. Am. Water Resour. Assoc. 2014, 50, 509-525. Crow, W. T.; van den Berg, M. J.; Huffman, G. J.; Pellarin, T. Correcting rainfall using satellite-based surface soil moisture retrievals: The Soil Moisture Analysis Rainfall Tool (SMART). Water Resour. Res. 2011, 47, W08521. Pellarin, T.; Louvet, S.; Gruhier, C.; Quantin, G.; Legout, C. A simple and effective method for correcting soil moisture and precipitation estimates using AMSR-E measurements. Remote Sens. Environ. 2013, 136, 28-36. Brocca, L.; Ciabatta, L.; Massari, C.; Moramarco, T.; Hahn, S.; Hasenauer, S.; Kidd, R.; Dorigo, W.; Wagner, W.; Levizzani, V. Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res. Atmos. 2014, 119, 5128-5141.
NASA Astrophysics Data System (ADS)
Hazreek, Z. A. M.; Rosli, S.; Fauziah, A.; Wijeyesekera, D. C.; Ashraf, M. I. M.; Faizal, T. B. M.; Kamarudin, A. F.; Rais, Y.; Dan, M. F. Md; Azhar, A. T. S.; Hafiz, Z. M.
2018-04-01
The efficiency of civil engineering structure require comprehensive geotechnical data obtained from site investigation. In the past, conventional site investigation was heavily related to drilling techniques thus suffer from several limitations such as time consuming, expensive and limited data collection. Consequently, this study presents determination of soil moisture content using laboratory experimental and field electrical resistivity values (ERV). Field and laboratory electrical resistivity (ER) test were performed using ABEM SAS4000 and Nilsson400 soil resistance meter. Soil sample used for resistivity test was tested for characterization test specifically on particle size distribution and moisture content test according to BS1377 (1990). Field ER data was processed using RES2DINV software while laboratory ER data was analyzed using SPSS and Excel software. Correlation of ERV and moisture content shows some medium relationship due to its r = 0.506. Moreover, coefficient of determination, R2 analyzed has demonstrate that the statistical correlation obtain was very good due to its R2 value of 0.9382. In order to determine soil moisture content based on statistical correlation (w = 110.68ρ-0.347), correction factor, C was established through laboratory and field ERV given as 19.27. Finally, this study has shown that soil basic geotechnical properties with particular reference to water content was applicably determined using integration of laboratory and field ERV data analysis thus able to compliment conventional approach due to its economic, fast and wider data coverage.
NASA Astrophysics Data System (ADS)
Usowicz, J. B.; Marczewski, W.; Usowicz, B.; Lukowski, M. I.; Lipiec, J.; Slominski, J.
2012-04-01
Soil moisture, together with soil and vegetation characteristics, plays an important role in exchange of water and energy between the land surface and the atmospheric boundary layer. Accurate knowledge of current and future spatial and temporal variation in soil moisture is not well known, nor easy to measure or predict. Knowledge of soil moisture in surface and root zone soil moisture is critical for achieving sustainable land and water management. The importance of SM is so high that this ECV is recommended by GCOS (Global Climate Observing System) to any attempts of evaluating of effects the climate change, and therefore it is one of the goals for observing the Earth by the ESA SMOS Mission (Soil Moisture and Ocean Salinity), globally. SMOS provides its observations by means of the interferometric radiometry method (1.4 GHz) from the orbit. In parallel, ten ground based stations are kept by IA PAN, in area of the Eastern Wall in Poland, in order to validate SMOS data and for other ground based agrophysical purposes. Soil moisture measurements obtained from ground and satellite measurements from SMOS were compared using Bland-Altman method of agreement, concordance correlation coefficient (CCC) and total deviation index (TDI). Observed similar changes in soil moisture, but the values obtained from satellite measurements were lower. Minor differences between the compared data are at higher moisture contents of soil and they grow with decreasing soil moisture. Soil moisture trends are maintained in the individual stations. Such distributions of soil moisture were mainly related to soil type. * The work was financially supported in part by the ESA Programme for European Cooperating States (PECS), No.98084 "SWEX-R, Soil Water and Energy Exchange/Research", AO3275.
Influence of soil moisture on soil respiration
NASA Astrophysics Data System (ADS)
Fer, Miroslav; Kodesova, Radka; Nikodem, Antonin; Klement, Ales; Jelenova, Klara
2015-04-01
The aim of this work was to describe an impact of soil moisture on soil respiration. Study was performed on soil samples from morphologically diverse study site in loess region of Southern Moravia, Czech Republic. The original soil type is Haplic Chernozem, which was due to erosion changed into Regosol (steep parts) and Colluvial soil (base slope and the tributary valley). Soil samples were collected from topsoils at 5 points of the selected elevation transect and also from the parent material (loess). Grab soil samples, undisturbed soil samples (small - 100 cm3, and large - 713 cm3) and undisturbed soil blocks were taken. Basic soil properties were determined on grab soil samples. Small undisturbed soil samples were used to determine the soil water retention curves and the hydraulic conductivity functions using the multiple outflow tests in Tempe cells and a numerical inversion with HYDRUS 1-D. During experiments performed in greenhouse dry large undisturbed soil samples were wetted from below using a kaolin tank and cumulative water inflow due to capillary rise was measured. Simultaneously net CO2 exchange rate and net H2O exchange rate were measured using LCi-SD portable photosynthesis system with Soil Respiration Chamber. Numerical inversion of the measured cumulative capillary rise data using the HYDRUS-1D program was applied to modify selected soil hydraulic parameters for particular conditions and to simulate actual soil water distribution within each soil column in selected times. Undisturbed soil blocks were used to prepare thin soil sections to study soil-pore structure. Results for all soil samples showed that at the beginning of soil samples wetting the CO2 emission increased because of improving condition for microbes' activity. The maximum values were reached for soil column average soil water content between 0.10 and 0.15 cm3/cm3. Next CO2 emission decreased since the pore system starts filling by water (i.e. aggravated conditions for microbes, closing soil gas pathways etc.). In the case of H2O exchange rate, values increased with increasing soil water contents (up to 0.15-0.20 cm3/cm3) and then remained approximately constant. Acknowledgement: Authors acknowledge the financial support of the Ministry of Agriculture of the Czech Republic No. QJ1230319
USDA-ARS?s Scientific Manuscript database
NASA Soil Moisture Active Passive (SMAP) satellite mission was launched on January 31, 2015 to provide global mapping of high-resolution soil moisture and freeze thaw state every 2-3 days using an L-band (active) radar and an L-band (passive) radiometer. The radiometer-only soil moisture product (L2...
NASA Astrophysics Data System (ADS)
Burgin, M. S.; van Zyl, J. J.
2017-12-01
Traditionally, substantial ancillary data is needed to parametrize complex electromagnetic models to estimate soil moisture from polarimetric radar data. The Soil Moisture Active Passive (SMAP) baseline radar soil moisture retrieval algorithm uses a data cube approach, where a cube of radar backscatter values is calculated using sophisticated models. In this work, we utilize the empirical approach by Kim and van Zyl (2009) which is an optional SMAP radar soil moisture retrieval algorithm; it expresses radar backscatter of a vegetated scene as a linear function of soil moisture, hence eliminating the need for ancillary data. We use 2.5 years of L-band Aquarius radar and radiometer derived soil moisture data to determine two coefficients of a linear model function on a global scale. These coefficients are used to estimate soil moisture with 2.5 months of L-band SMAP and L-band PALSAR-2 data. The estimated soil moisture is compared with the SMAP Level 2 radiometer-only soil moisture product; the global unbiased RMSE of the SMAP derived soil moisture corresponds to 0.06-0.07 cm3/cm3. In this study, we leverage the three diverse L-band radar data sets to investigate the impact of pixel size and pixel heterogeneity on soil moisture estimation performance. Pixel sizes range from 100 km for Aquarius, over 3, 9, 36 km for SMAP, to 10m for PALSAR-2. Furthermore, we observe seasonal variation in the radar sensitivity to soil moisture which allows the identification and quantification of seasonally changing vegetation. Utilizing this information, we further improve the estimation performance. The research described in this paper is supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2017. All rights reserved.
The moisture response of soil heterotrophic respiration: Interaction with soil properties.
USDA-ARS?s Scientific Manuscript database
Soil moisture-respiration functions are used to simulate the various mechanisms determining the relations between soil moisture content and carbon mineralization. Soil models used in the simulation of global carbon fluxes often apply simplified functions assumed to represent an average moisture-resp...
SMAP Radiometer Captures Views of Global Soil Moisture
2015-05-06
These maps of global soil moisture were created using data from the radiometer instrument on NASA Soil Moisture Active Passive SMAP observatory. Evident are regions of increased soil moisture and flooding during April, 2015.
Soil moisture determination study. [Guymon, Oklahoma
NASA Technical Reports Server (NTRS)
Blanchard, B. J.
1979-01-01
Soil moisture data collected in conjunction with aircraft sensor and SEASAT SAR data taken near Guymon, Oklahoma are summarized. In order to minimize the effects of vegetation and roughness three bare and uniformly smooth fields were sampled 6 times at three day intervals on the flight days from August 2 through 17. Two fields remained unirrigated and dry. A similar pair of fields was irrigated at different times during the sample period. In addition, eighteen other fields were sampled on the nonflight days with no field being sampled more than 24 hours from a flight time. The aircraft sensors used included either black and white or color infrared photography, L and C band passive microwave radiometers, the 13.3, 4.75, 1.6 and .4 GHz scatterometers, the 11 channel modular microwave scanner, and the PRT5.
Status of microbial diversity in agroforestry systems in Tamil Nadu, India.
Radhakrishnan, Srinivasan; Varadharajan, Mohan
2016-06-01
Soil is a complex and dynamic biological system. Agroforestry systems are considered to be an alternative land use option to help and prevent soil degradation, improve soil fertility, microbial diversity, and organic matter status. An increasing interest has emerged with respect to the importance of microbial diversity in soil habitats. The present study deals with the status of microbial diversity in agroforestry systems in Tamil Nadu. Eight soil samples were collected from different fields in agroforestry systems in Cuddalore, Villupuram, Tiruvanamalai, and Erode districts, Tamil Nadu. The number of microorganisms and physico-chemical parameters of soils were quantified. Among different microbial population, the bacterial population was recorded maximum (64%), followed by actinomycetes (23%) and fungi (13%) in different samples screened. It is interesting to note that the microbial population was positively correlated with the physico-chemical properties of different soil samples screened. Total bacterial count had positive correlation with soil organic carbon (C), moisture content, pH, nitrogen (N), and micronutrients such as Iron (Fe), copper (Cu), and zinc (Zn). Similarly, the total actinomycete count also showed positive correlations with bulk density, moisture content, pH, C, N, phosphorus (P), potassium (K), calcium (Ca), copper (Cu), magnesium (Mg), manganese (Mn), and zinc (Zn). It was also noticed that the soil organic matter, vegetation, and soil nutrients altered the microbial community under agroforestry systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Investigating local controls on soil moisture temporal stability using an inverse modeling approach
NASA Astrophysics Data System (ADS)
Bogena, Heye; Qu, Wei; Huisman, Sander; Vereecken, Harry
2013-04-01
A better understanding of the temporal stability of soil moisture and its relation to local and nonlocal controls is a major challenge in modern hydrology. Both local controls, such as soil and vegetation properties, and non-local controls, such as topography and climate variability, affect soil moisture dynamics. Wireless sensor networks are becoming more readily available, which opens up opportunities to investigate spatial and temporal variability of soil moisture with unprecedented resolution. In this study, we employed the wireless sensor network SoilNet developed by the Forschungszentrum Jülich to investigate soil moisture variability of a grassland headwater catchment in Western Germany within the framework of the TERENO initiative. In particular, we investigated the effect of soil hydraulic parameters on the temporal stability of soil moisture. For this, the HYDRUS-1D code coupled with a global optimizer (DREAM) was used to inversely estimate Mualem-van Genuchten parameters from soil moisture observations at three depths under natural (transient) boundary conditions for 83 locations in the headwater catchment. On the basis of the optimized parameter sets, we then evaluated to which extent the variability in soil hydraulic conductivity, pore size distribution, air entry suction and soil depth between these 83 locations controlled the temporal stability of soil moisture, which was independently determined from the observed soil moisture data. It was found that the saturated hydraulic conductivity (Ks) was the most significant attribute to explain temporal stability of soil moisture as expressed by the mean relative difference (MRD).
Shakofsky, S.M.
1995-01-01
In order to assess the effect of filled waste disposal trenches on transport-governing soil properties, comparisons were made between profiles of undisturbed soil and disturbed soil in a simulated waste trench. The changes in soil properties induced by the construction of a simulated waste trench were measured near the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL) in the semi-arid southeast region of Idaho. The soil samples were collected, using a hydraulically- driven sampler to minimize sample disruption, from both a simulated waste trench and an undisturbed area nearby. Results show that the undisturbed profile has distinct layers whose properties differ significantly, whereas the soil profile in the simulated waste trench is. by comparison, homogeneous. Porosity was increased in the disturbed cores, and, correspondingly, saturated hydraulic conductivities were on average three times higher. With higher soil-moisture contents (greater than 0.32), unsaturated hydraulic conductivities for the undisturbed cores were typically greater than those for the disturbed cores. With lower moisture contents, most of the disturbed cores had greater hydraulic conductivities. The observed differences in hydraulic conductivities are interpreted and discussed as changes in the soil pore geometry.
Value of Available Global Soil Moisture Products for Agricultural Monitoring
NASA Astrophysics Data System (ADS)
Mladenova, Iliana; Bolten, John; Crow, Wade; de Jeu, Richard
2016-04-01
The first operationally derived and publicly distributed global soil moil moisture product was initiated with the launch of the Advanced Scanning Microwave Mission on the NASA's Earth Observing System Aqua satellite (AMSR-E). AMSR-E failed in late 2011, but its legacy is continued by AMSR2, launched in 2012 on the JAXA Global Change Observation Mission-Water (GCOM-W) mission. AMSR is a multi-frequency dual-polarization instrument, where the lowest two frequencies (C- and X-band) were used for soil moisture retrieval. Theoretical research and small-/field-scale airborne campaigns, however, have demonstrated that soil moisture would be best monitored using L-band-based observations. This consequently led to the development and launch of the first L-band-based mission-the ESA's Soil Moisture Ocean Salinity (SMOS) mission (2009). In early 2015 NASA launched the second L-band-based mission, the Soil Moisture Active Passive (SMAP). These satellite-based soil moisture products have been demonstrated to be invaluable sources of information for mapping water stress areas, crop monitoring and yield forecasting. Thus, a number of agricultural agencies routinely utilize and rely on global soil moisture products for improving their decision making activities, determining global crop production and crop prices, identifying food restricted areas, etc. The basic premise of applying soil moisture observations for vegetation monitoring is that the change in soil moisture conditions will precede the change in vegetation status, suggesting that soil moisture can be used as an early indicator of expected crop condition change. Here this relationship was evaluated across multiple microwave frequencies by examining the lag rank cross-correlation coefficient between the soil moisture observations and the Normalized Difference Vegetation Index (NDVI). A main goal of our analysis is to evaluate and inter-compare the value of the different soil moisture products derived using L-band (SMOS) versus C-/X-band (AMSR2) observations. The soil moisture products analyzed here were derived using the Land Parameter Retrieval Model.
NASA Technical Reports Server (NTRS)
Laymon, Charles A.; Crosson, William L.; Limaye, Ashutosh; Manu, Andrew; Archer, Frank
2005-01-01
We compare soil moisture retrieved with an inverse algorithm with observations of mean moisture in the 0-6 cm soil layer. A significant discrepancy is noted between the retrieved and observed moisture. Using emitting depth functions as weighting functions to convert the observed mean moisture to observed effective moisture removes nearly one-half of the discrepancy noted. This result has important implications in remote sensing validation studies.
NASA Astrophysics Data System (ADS)
Ju, Tingting; Li, Xiaolan; Zhang, Hongsheng; Cai, Xuhui; Song, Yu
2018-06-01
Using the observational data of dust concentrations and meteorological parameters from 2011 to 2015, the effects of soil moisture and air humidity on dust emission were studied at long (monthly) and short (several days or hours) time scales over the Horqin Sandy Land area, Inner Mongolia of China. The results show that the monthly mean dust concentrations and dust fluxes within the near-surface layer had no obvious relationship with the monthly mean soil moisture content but had a slightly negative correlation with monthly mean air relative humidity from 2011 to 2015. The daily mean soil moisture exhibited a significantly negative correlation with the daily mean dust concentrations and dust fluxes, as soil moisture changed obviously. However, such negative correlation between soil moisture and dust emission disappeared on dust blowing days. Additionally, the effect of soil moisture on an important parameter for dust emission, the threshold friction velocity (u∗t), was investigated during several saltation-bombardment and/or aggregation-disintegration dust emission (SADE) events. Under dry soil conditions, the values of u∗t were not influenced by soil moisture content; however, when the soil moisture content was high, the values of u∗t increased with increasing soil moisture content.
Relation Between the Rainfall and Soil Moisture During Different Phases of Indian Monsoon
NASA Astrophysics Data System (ADS)
Varikoden, Hamza; Revadekar, J. V.
2018-03-01
Soil moisture is a key parameter in the prediction of southwest monsoon rainfall, hydrological modelling, and many other environmental studies. The studies on relationship between the soil moisture and rainfall in the Indian subcontinent are very limited; hence, the present study focuses the association between rainfall and soil moisture during different monsoon seasons. The soil moisture data used for this study are the ESA (European Space Agency) merged product derived from four passive and two active microwave sensors spanning over the period 1979-2013. The rainfall data used are India Meteorological Department gridded daily data. Both of these data sets are having a spatial resolution of 0.25° latitude-longitude grid. The study revealed that the soil moisture is higher during the southwest monsoon period similar to rainfall and during the pre-monsoon period, the soil moisture is lower. The annual cycle of both the soil moisture and rainfall has the similitude of monomodal variation with a peak during the month of August. The interannual variability of soil moisture and rainfall shows that they are linearly related with each other, even though they are not matched exactly for individual years. The study of extremes also exhibits the surplus amount of soil moisture during wet monsoon years and also the regions of surplus soil moisture are well coherent with the areas of high rainfall.
Hydrologic downscaling of soil moisture using global data without site-specific calibration
USDA-ARS?s Scientific Manuscript database
Numerous applications require fine-resolution (10-30 m) soil moisture patterns, but most satellite remote sensing and land-surface models provide coarse-resolution (9-60 km) soil moisture estimates. The Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) model downscales soil moistu...
NASA Astrophysics Data System (ADS)
Gonzalez-Garrido, Laura; Delgado, Juan Antonio; Martinez, Teodora
2010-05-01
Soil respiration is one of the largest carbon flux components within terrestrial ecosystems, and small changes in the magnitude of soil respiration could have a large effect on the concentration of CO2 in the atmosphere. The main objective is evaluating the factors controlling soil respiration on the global carbon cycle in riparian areas of Henares River. We evaluated total soil respiration as it was affected by soil temperature, soil moisture, root respiration and organic matter in four areas differing in vegetation cover. We specifically assessed the contribution of soil organic matter and fine root biomass (≤1 mm.) in soil carbon dioxide flux. The study area is located on the riverbanks of Henares River where it passes through the municipal term of Alcala de Henares (Madrid) in Central Spain. Measurements were performed in spring and autumn of 2009. The study was conducted on four different types of riparian vegetation: natural Mediterranean riparian forest, reforestation of 1994, reforestation of 1999 and riparian grassland without trees. In each area of study 3, 25x25 m, plots were delimited and within each plot three sampling units of 50x50 cm were selected at random. The temperature of the ground was taken during the measures from respiration using a Multi-thermometer (-50°C - +300°C) at 5 cm depth. The moisture content of the ground was measured at 5 cm of depth with a HH2 Moisture meter (Delta Devices, Cambridge, UK). The measures of respiration of the ground were realised in field by means of LCI portable (LC pro ADC Bioscientific, Ltd. UK) connected to a ground respiration camera. We introduced the camera 3 cm into the soil just after eliminating the vegetation grass of the surface of measurement cutting carefully the aerial part, without damaging the roots. Soil CO2 flux measurements were registered after stabilization. Immediately after CO2 measurements, we obtained soil samples by means of a drill of 2.18 cm of diameter taking samples to 10 cm and 20 cm depth. Soil samples were dried to the air with the aim of preserving the roots the sample contained. They were extracted manually by means of very fine tweezers. We separate roots by diameter (Fine roots ≤ 1mm; rest of roots > 1mm) and dead from alive using texture and colour as clues. Finally the dry weight of roots was taking with a precision balance +-0.0001. Soil organic matter to 10 and 20 cm of depth were measure in laboratory using the method of Walkley and Black (1934). Differences in Soil CO2 flux, organic matter, fine root biomass, temperature and moisture between areas were analyzed using one-way ANOVAs. Our results suggest that fine root biomass present a larger impact than soil organic matter in soil CO2 flux values. Natural riparian forest presented higher values of soil CO2 flux than the rest of areas even when differences in root biomass and soil organic matter were controlled. Between the grassy area and both reforestations there were no differences in soil CO2 flux. In addition, we found that soil CO2 flux in our study area was more affected by soil temperature than by moisture, which could be relevant in the interpretation of the possible effects of global change. Key words: riparian forest, fine roots, carbon cycle, soil CO2 flux, root respiration. Acknowledgements: Research projects, n°FP08-AG02 IMIDRA and RTA 2006-00101-00-00 INIA and predoctoral scholarship FPI-INIA.
New Physical Algorithms for Downscaling SMAP Soil Moisture
NASA Astrophysics Data System (ADS)
Sadeghi, M.; Ghafari, E.; Babaeian, E.; Davary, K.; Farid, A.; Jones, S. B.; Tuller, M.
2017-12-01
The NASA Soil Moisture Active Passive (SMAP) mission provides new means for estimation of surface soil moisture at the global scale. However, for many hydrological and agricultural applications the spatial SMAP resolution is too low. To address this scale issue we fused SMAP data with MODIS observations to generate soil moisture maps at 1-km spatial resolution. In course of this study we have improved several existing empirical algorithms and introduced a new physical approach for downscaling SMAP data. The universal triangle/trapezoid model was applied to relate soil moisture to optical/thermal observations such as NDVI, land surface temperature and surface reflectance. These algorithms were evaluated with in situ data measured at 5-cm depth. Our results demonstrate that downscaling SMAP soil moisture data based on physical indicators of soil moisture derived from the MODIS satellite leads to higher accuracy than that achievable with empirical downscaling algorithms. Keywords: Soil moisture, microwave data, downscaling, MODIS, triangle/trapezoid model.
NASA Astrophysics Data System (ADS)
Wrona, Elizabeth; Rowlandson, Tracy L.; Nambiar, Manoj; Berg, Aaron A.; Colliander, Andreas; Marsh, Philip
2017-05-01
This study examines the Soil Moisture Active Passive soil moisture product on the Equal Area Scalable Earth-2 (EASE-2) 36 km Global cylindrical and North Polar azimuthal grids relative to two in situ soil moisture monitoring networks that were installed in 2015 and 2016. Results indicate that there is no relationship between the Soil Moisture Active Passive (SMAP) Level-2 passive soil moisture product and the upscaled in situ measurements. Additionally, there is very low correlation between modeled brightness temperature using the Community Microwave Emission Model and the Level-1 C SMAP brightness temperature interpolated to the EASE-2 Global grid; however, there is a much stronger relationship to the brightness temperature measurements interpolated to the North Polar grid, suggesting that the soil moisture product could be improved with interpolation on the North Polar grid.
Methods of measuring soil moisture in the field
Johnson, A.I.
1962-01-01
For centuries, the amount of moisture in the soil has been of interest in agriculture. The subject of soil moisture is also of great importance to the hydrologist, forester, and soils engineer. Much equipment and many methods have been developed to measure soil moisture under field conditions. This report discusses and evaluates the various methods for measurement of soil moisture and describes the equipment needed for each method. The advantages and disadvantages of each method are discussed and an extensive list of references is provided for those desiring to study the subject in more detail. The gravimetric method is concluded to be the most satisfactory method for most problems requiring onetime moisture-content data. The radioactive method is normally best for obtaining repeated measurements of soil moisture in place. It is concluded that all methods have some limitations and that the ideal method for measurement of soil moisture under field conditions has yet to be perfected.
NASA Astrophysics Data System (ADS)
Wu, Mousong; Sholze, Marko
2017-04-01
We investigated the importance of soil moisture data on assimilation of a terrestrial biosphere model (BETHY) for a long time period from 2010 to 2015. Totally, 101 parameters related to carbon turnover, soil respiration, as well as soil texture were selected for optimization within a carbon cycle data assimilation system (CCDAS). Soil moisture data from Soil Moisture and Ocean Salinity (SMOS) product was derived for 10 sites representing different plant function types (PFTs) as well as different climate zones. Uncertainty of SMOS soil moisture data was also estimated using triple collocation analysis (TCA) method by comparing with ASCAT dataset and BETHY forward simulation results. Assimilation of soil moisture to the system improved soil moisture as well as net primary productivity(NPP) and net ecosystem productivity (NEP) when compared with soil moisture derived from in-situ measurements and fluxnet datasets. Parameter uncertainties were largely reduced relatively to prior values. Using SMOS soil moisture data for assimilation of a terrestrial biosphere model proved to be an efficient approach in reducing uncertainty in ecosystem fluxes simulation. It could be further used in regional an global assimilation work to constrain carbon dioxide concentration simulation by combining with other sources of measurements.
Soil Moisture under Different Vegetation cover in response to Precipitation
NASA Astrophysics Data System (ADS)
Liang, Z.; Zhang, J.; Guo, B.; Ma, J.; Wu, Y.
2016-12-01
The response study of soil moisture to different precipitation and landcover is significant in the field of Hydropedology. The influence of precipitation to soil moisture is obvious in addition to individual stable aquifer. With data of Hillsborough County, Florida, USA, the alluvial wetland forest and ungrazed Bahia grass that under wet and dry periods were chosen as the research objects, respectively. HYDRUS-3D numerical simulation method was used to simulate soil moisture dynamics in the root zone (10-50 cm) of those vegetation. The soil moisture response to precipitation was analyzed. The results showed that the simulation results of alluvial wetland forest by HYDRUS-3D were better than that of the Bahia grass, and for the same vegetation, the simulation results of soil moisture under dry period were better. Precipitation was more in June, 2003, the soil moisture change of alluvial wetland forest in 10-30 cm soil layer and Bahia grass in 10 cm soil layer were consistent with the precipitation change conspicuously. The alluvial wetland forest soil moisture declined faster than Bahia grass under dry period, which demonstrated that Bahia grass had strong ability to hold water. Key words: alluvial wetland forest; Bahia grass; soil moisture; HYDRUS-3D; precipitation
USDA-ARS?s Scientific Manuscript database
This paper evaluates the retrieval of soil moisture in the top 5-cm layer at 3-km spatial resolution using L-band dual-copolarized Soil Moisture Active Passive (SMAP) synthetic aperture radar (SAR) data that mapped the globe every three days from mid-April to early July, 2015. Surface soil moisture ...
NASA Astrophysics Data System (ADS)
Dick, Jonathan; Tetzlaff, Doerthe; Bradford, John; Soulsby, Chris
2018-04-01
As the relationship between vegetation and soil moisture is complex and reciprocal, there is a need to understand how spatial patterns in soil moisture influence the distribution of vegetation, and how the structure of vegetation canopies and root networks regulates the partitioning of precipitation. Spatial patterns of soil moisture are often difficult to visualise as usually, soil moisture is measured at point scales, and often difficult to extrapolate. Here, we address the difficulties in collecting large amounts of spatial soil moisture data through a study combining plot- and transect-scale electrical resistivity tomography (ERT) surveys to estimate soil moisture in a 3.2 km2 upland catchment in the Scottish Highlands. The aim was to assess the spatio-temporal variability in soil moisture under Scots pine forest (Pinus sylvestris) and heather moorland shrubs (Calluna vulgaris); the two dominant vegetation types in the Scottish Highlands. The study focussed on one year of fortnightly ERT surveys. The surveyed resistivity data was inverted and Archie's law was used to calculate volumetric soil moisture by estimating parameters and comparing against field measured data. Results showed that spatial soil moisture patterns were more heterogeneous in the forest site, as were patterns of wetting and drying, which can be linked to vegetation distribution and canopy structure. The heather site showed a less heterogeneous response to wetting and drying, reflecting the more uniform vegetation cover of the shrubs. Comparing soil moisture temporal variability during growing and non-growing seasons revealed further contrasts: under the heather there was little change in soil moisture during the growing season. Greatest changes in the forest were in areas where the trees were concentrated reflecting water uptake and canopy partitioning. Such differences have implications for climate and land use changes; increased forest cover can lead to greater spatial variability, greater growing season temporal variability, and reduced levels of soil moisture, whilst projected decreasing summer precipitation may alter the feedbacks between soil moisture and vegetation water use and increase growing season soil moisture deficits.
Drive by Soil Moisture Measurement: A Citizen Science Project
NASA Astrophysics Data System (ADS)
Senanayake, I. P.; Willgoose, G. R.; Yeo, I. Y.; Hancock, G. R.
2017-12-01
Two of the common attributes of soil moisture are that at any given time it varies quite markedly from point to point, and that there is a significant deterministic pattern that underlies this spatial variation and which is typically 50% of the spatial variability. The spatial variation makes it difficult to determine the time varying catchment average soil moisture using field measurements because any individual measurement is unlikely to be equal to the average for the catchment. The traditional solution to this is to make many measurements (e.g. with soil moisture probes) spread over the catchment, which is very costly and manpower intensive, particularly if we need a time series of soil moisture variation across a catchment. An alternative approach, explored in this poster is to use the deterministic spatial pattern of soil moisture to calibrate one site (e.g. a permanent soil moisture probe at a weather station) to the spatial pattern of soil moisture over the study area. The challenge is then to determine the spatial pattern of soil moisture. This poster will present results from a proof of concept project, where data was collected by a number of undergraduate engineering students, to estimate the spatial pattern. The approach was to drive along a series of roads in a catchment and collect soil moisture measurements at the roadside using field portable soil moisture probes. This drive was repeated a number of times over the semester, and the time variation and spatial persistence of the soil moisture pattern were examined. Provided that the students could return to exactly the same location on each collection day there was a strong persistent pattern in the soil moisture, even while the average soil moisture varied temporally as a result of preceding rainfall. The poster will present results and analysis of the student data, and compare these results with several field sites where we have spatially distributed permanently installed soil moisture probes. The poster will also outline an experimental design, based on our experience, that will underpin a proposed citizen science project involving community environment and farming groups, and high school students.
Validation of SMAP data using Cosmic-ray Neutron Probes during the SMAPVEX16-IA Campaign
NASA Astrophysics Data System (ADS)
Russell, M. V.
2016-12-01
Global trends in consumptive water-use indicate a growing and unsustainable reliance on water resources. Each year it is estimated that 60 percent of water used for agriculture is wasted through inadequate water conservation, losses in distribution, and inappropriate times and rates of irrigation. Satellite remote sensing offers a variety of water balance datasets (precipitation, evapotranspiration, soil moisture, groundwater storage) to increase the water use efficiency in agricultural systems. In this work, we aim to validate the Soil Moisture Active Passive (SMAP) soil moisture product using the ground based cosmic-ray neutron probe (CRNP) for estimating field scale soil moisture at intermediate spatial scales as part of SMAPVEX16-IA experiment. Typical SMAP calibration and validation has been done using a combination of direct gravimetric sampling and in-situ soil moisture point observations. Although these measurements provide accurate data, it is time consuming and labor intensive to collect data over a 36 by 36 km SMAP pixel. Through a joint effort with rovers provided by the US Army Corps of Engineers and University of Nebraska-Lincoln, we are able to cover the domain in 7 hours. Data from both rovers was combined in order to produce a 1, 3, 9 and 36 km resolution product on the day of 12 SMAP overpasses in May and August 2016. Here we will describe basic QAQC procedures for estimating soil moisture from the dual rover experiment. This will include discussion about calibration, validation, and accounting for conditions such as variable road type and growing vegetation. Lastly, we will compare the calibrated rover and SMAP products. If the products are highly correlated the ground based rovers offer a strategy for collecting finer resolution products that may be used in future downscaling efforts in support of high resolution Land Surface Modeling.
Inter-Comparison of SMAP, SMOS and GCOM-W Soil Moisture Products
NASA Astrophysics Data System (ADS)
Bindlish, R.; Jackson, T. J.; Chan, S.; Burgin, M. S.; Colliander, A.; Cosh, M. H.
2016-12-01
The Soil Moisture Active Passive (SMAP) mission was launched on Jan 31, 2015. The goal of the SMAP mission is to produce soil moisture with accuracy better than 0.04 m3/m3 with a revisit frequency of 2-3 days. The validated standard SMAP passive soil moisture product (L2SMP) with a spatial resolution of 36 km was released in May 2016. Soil moisture observations from in situ sensors are typically used to validate the satellite estimates. But, in situ observations provide ground truth for limited amount of landcover and climatic conditions. Although each mission will have its own issues, observations by other satellite instruments can be play a role in the calibration and validation of SMAP. SMAP, SMOS and GCOM-W missions share some commonnalities because they are currently providing operational brightness temperature and soil moisture products. SMAP and SMOS operate at L-band but GCOM-W uses X-band observations for soil moisture estimation. All these missions use different ancillary data sources, parameterization and algorithm to retrieve soil moisture. Therefore, it is important to validate and to compare the consistency of these products. Soil moisture products from the different missions will be compared with the in situ observations. SMAP soil moisture products will be inter-compared at global scales with SMOS and GCOM-W soil moisture products. The major contribution of satellite product inter-comparison is that it allows the assessment of the quality of the products over wider geographical and climate domains. Rigorous assessment will lead to a more reliable and accurate soil moisture product from all the missions.
NASA Astrophysics Data System (ADS)
Zhang, Shuwen; Li, Haorui; Zhang, Weidong; Qiu, Chongjian; Li, Xin
2005-11-01
The paper investigates the ability to retrieve the true soil moisture profile by assimilating near-surface soil moisture into a soil moisture model with an ensemble Kaiman filter (EnKF) assimilation scheme, including the effect of ensemble size, update interval and nonlinearities in the profile retrieval, the required time for full retrieval of the soil moisture profiles, and the possible influence of the depth of the soil moisture observation. These questions are addressed by a desktop study using synthetic data. The “true” soil moisture profiles are generated from the soil moisture model under the boundary condition of 0.5 cm d-1 evaporation. To test the assimilation schemes, the model is initialized with a poor initial guess of the soil moisture profile, and different ensemble sizes are tested showing that an ensemble of 40 members is enough to represent the covariance of the model forecasts. Also compared are the results with those from the direct insertion assimilation scheme, showing that the EnKF is superior to the direct insertion assimilation scheme, for hourly observations, with retrieval of the soil moisture profile being achieved in 16 h as compared to 12 days or more. For daily observations, the true soil moisture profile is achieved in about 15 days with the EnKF, but it is impossible to approximate the true moisture within 18 days by using direct insertion. It is also found that observation depth does not have a significant effect on profile retrieval time for the EnKF. The nonlinearities have some negative influence on the optimal estimates of soil moisture profile but not very seriously.
The Impact of Diesel Oil Pollution on the Hydrophobicity and CO2 Efflux of Forest Soils.
Hewelke, Edyta; Szatyłowicz, Jan; Hewelke, Piotr; Gnatowski, Tomasz; Aghalarov, Rufat
2018-01-01
The contamination of soil with petroleum products is a major environmental problem. Petroleum products are common soil contaminants as a result of human activities, and they are causing substantial changes in the biological (particularly microbiological) processes, chemical composition, structure and physical properties of soil. The main objective of this study was to assess the impact of soil moisture on CO 2 efflux from diesel-contaminated albic podzol soils. Two contamination treatments (3000 and 9000 mg of diesel oil per kg of soil) were prepared for four horizons from two forest study sites with different initial levels of soil water repellency. CO 2 emissions were measured using a portable infrared gas analyser (LCpro+, ADC BioScientific, UK) while the soil samples were drying under laboratory conditions (from saturation to air-dry). The assessment of soil water repellency was performed using the water drop penetration time test. An analysis of variance (ANVOA) was conducted for the CO 2 efflux data. The obtained results show that CO 2 efflux from diesel-contaminated soils is higher than efflux from uncontaminated soils. The initially water-repellent soils were found to have a bigger CO 2 efflux. The non-linear relationship between soil moisture content and CO 2 efflux only existed for the upper soil horizons, while for deeper soil horizons, the efflux is practically independent of soil moisture content. The contamination of soil by diesel leads to increased soil water repellency.
NASA Technical Reports Server (NTRS)
Paris, J. F.; Arya, L. M.; Davidson, S. A.; Hildreth, W. W.; Richter, J. C.; Rosenkranz, W. A.
1982-01-01
The NASA/JSC ground scatterometer system was used in a row structure and row direction effects experiment to understand these effects on radar remote sensing of soil moisture. Also, a modification of the scatterometer system was begun and is continuing, to allow cross-polarization experiments to be conducted in fiscal years 1982 and 1983. Preprocessing of the 1978 agricultural soil moisture experiment (ASME) data was completed. Preparations for analysis of the ASME data is fiscal year 1982 were completed. A radar image simulation procedure developed by the University of Kansas is being improved. Profile soil moisture model outputs were compared quantitatively for the same soil and climate conditions. A new model was developed and tested to predict the soil moisture characteristic (water tension versus volumetric soil moisture content) from particle-size distribution and bulk density data. Relationships between surface-zone soil moisture, surface flux, and subsurface moisture conditions are being studied as well as the ways in which measured soil moisture (as obtained from remote sensing) can be used for agricultural applications.
ERT to aid in WSN based early warning system for landslides
NASA Astrophysics Data System (ADS)
T, H.
2017-12-01
Amrita University's landslide monitoring and early warning system using Wireless Sensor Networks (WSN) consists of heterogeneous sensors like rain gauge, moisture sensor, piezometer, geophone, inclinometer, tilt meter etc. The information from the sensors are accurate and limited to that point. In order to monitor a large area, ERT can be used in conjunction with WSN technology. To accomplish the feasibility of ERT in landslide early warning along with WSN technology, we have conducted experiments in Amrita's landslide laboratory setup. The experiment was aimed to simulate landslide, and monitor the changes happening in the soil using moisture sensor and ERT. Simulating moisture values from resistivity measurements to a greater accuracy can help in landslide monitoring for large areas. For accomplishing the same we have adapted two mathematical approaches, 1) Regression analysis between resistivity measurements and actual moisture values from moisture sensor, and 2) Using Waxman Smith model to simulate moisture values from resistivity measurements. The simulated moisture values from Waxman Smith model is compared with the actual moisture values and the Mean Square Error (MSE) is found to be 46.33. Regression curve is drawn for the resistivity vs simulated moisture values from Waxman model, and it is compared with the regression curve of actual model, which is shown in figure-1. From figure-1, it is clear that there the regression curve from actual moisture values and the regression curve from simulated moisture values, follow the similar pattern and there is a small difference between them. Moisture values can be simulated to a greater accuracy using actual regression equation, but the limitation is that, regression curves will differ for different sites and different soils. Regression equation from actual moisture values can be used, if we have conducted experiment in the laboratory for a particular soil sample, otherwise with the knowledge of soil properties, Waxman model can be used to simulate moisture values. The promising results assure that, ERT measurements when used in conjunction with WSN technique, vital paramters triggering landslides like moisture can be simulated for a large area, which will help in providing early warning for large areas.
NASA Astrophysics Data System (ADS)
Martini, Edoardo; Wollschläger, Ute; Kögler, Simon; Behrens, Thorsten; Dietrich, Peter; Reinstorf, Frido; Schmidt, Karsten; Weiler, Markus; Werban, Ulrike; Zacharias, Steffen
2016-04-01
Characterizing the spatial patterns of soil moisture is critical for hydrological and meteorological models, as soil moisture is a key variable that controls matter and energy fluxes and soil-vegetation-atmosphere exchange processes. Deriving detailed process understanding at the hillslope scale is not trivial, because of the temporal variability of local soil moisture dynamics. Nevertheless, it remains a challenge to provide adequate information on the temporal variability of soil moisture and its controlling factors. Recent advances in wireless sensor technology allow monitoring of soil moisture dynamics with high temporal resolution at varying scales. In addition, mobile geophysical methods such as electromagnetic induction (EMI) have been widely used for mapping soil water content at the field scale with high spatial resolution, as being related to soil apparent electrical conductivity (ECa). The objective of this study was to characterize the spatial and temporal pattern of soil moisture at the hillslope scale and to infer the controlling hydrological processes, integrating well established and innovative sensing techniques, as well as new statistical methods. We combined soil hydrological and pedological expertise with geophysical measurements and methods from digital soil mapping for designing a wireless soil moisture monitoring network. For a hillslope site within the Schäfertal catchment (Central Germany), soil water dynamics were observed during 14 months, and soil ECa was mapped on seven occasions whithin this period of time using an EM38-DD device. Using the Spearman rank correlation coefficient, we described the temporal persistence of a dry and a wet characteristic state of soil moisture as well as the switching mechanisms, inferring the local properties that control the observed spatial patterns and the hydrological processes driving the transitions. Based on this, we evaluated the use of EMI for mapping the spatial pattern of soil moisture under different hydrologic conditions and the factors controlling the temporal variability of the ECa-soil moisture relationship. The approach provided valuable insight into the time-varying contribution of local and nonlocal factors to the characteristic spatial patterns of soil moisture and the transition mechanisms. The spatial organization of soil moisture was controlled by different processes in different soil horizons, and the topsoil's moisture did not mirror processes that take place within the soil profile. Results show that, for the Schäfertal hillslope site which is presumed to be representative for non-intensively managed soils with moderate clay content, local soil properties (e.g., soil texture and porosity) are the major control on the spatial pattern of ECa. In contrast, the ECa-soil moisture relationship is small and varies over time indicating that ECa is not a good proxy for soil moisture estimation at the investigated site.Occasionally observed stronger correlations between ECa and soil moisture may be explained by background dependencies of ECa to other state variables such as pore water electrical conductivity. The results will help to improve conceptual understanding for hydrological model studies at similar or smaller scales, and to transfer observation concepts and process understanding to larger or less instrumented sites, as well as to constrain the use of EMI-based ECa data for hydrological applications.
NASA Astrophysics Data System (ADS)
Dong, J.; Steele-Dunne, S. C.; Ochsner, T. E.; Van De Giesen, N.
2015-12-01
Soil moisture, hydraulic and thermal properties are critical for understanding the soil surface energy balance and hydrological processes. Here, we will discuss the potential of using soil temperature observations from Distributed Temperature Sensing (DTS) to investigate the spatial variability of soil moisture and soil properties. With DTS soil temperature can be measured with high resolution (spatial <1m, and temporal < 1min) in cables up to kilometers in length. Soil temperature evolution is primarily controlled by the soil thermal properties, and the energy balance at the soil surface. Hence, soil moisture, which affects both soil thermal properties and the energy that participates the evaporation process, is strongly correlated to the soil temperatures. In addition, the dynamics of the soil moisture is determined by the soil hydraulic properties.Here we will demonstrate that soil moisture, hydraulic and thermal properties can be estimated by assimilating observed soil temperature at shallow depths using the Particle Batch Smoother (PBS). The PBS can be considered as an extension of the particle filter, which allows us to infer soil moisture and soil properties using the dynamics of soil temperature within a batch window. Both synthetic and real field data will be used to demonstrate the robustness of this approach. We will show that the proposed method is shown to be able to handle different sources of uncertainties, which may provide a new view of using DTS observations to estimate sub-meter resolution soil moisture and properties for remote sensing product validation.
NASA Astrophysics Data System (ADS)
Bastola, S.; Dialynas, Y. G.; Arnone, E.; Bras, R. L.
2014-12-01
The spatial variability of soil, vegetation, topography, and precipitation controls hydrological processes, consequently resulting in high spatio-temporal variability of most of the hydrological variables, such as soil moisture. Limitation in existing measuring system to characterize this spatial variability, and its importance in various application have resulted in a need of reconciling spatially distributed soil moisture evolution model and corresponding measurements. Fully distributed ecohydrological model simulates soil moisture at high resolution soil moisture. This is relevant for range of environmental studies e.g., flood forecasting. They can also be used to evaluate the value of space born soil moisture data, by assimilating them into hydrological models. In this study, fine resolution soil moisture data simulated by a physically-based distributed hydrological model, tRIBS-VEGGIE, is compared with soil moisture data collected during the field campaign in Turkey river basin, Iowa. The soil moisture series at the 2 and 4 inch depth exhibited a more rapid response to rainfall as compared to bottom 8 and 20 inch ones. The spatial variability in two distinct land surfaces of Turkey River, IA, reflects the control of vegetation, topography and soil texture in the characterization of spatial variability. The comparison of observed and simulated soil moisture at various depth showed that model was able to capture the dynamics of soil moisture at a number of gauging stations. Discrepancies are large in some of the gauging stations, which are characterized by rugged terrain and represented, in the model, through large computational units.
Sampling Soil for Characterization and Site Description
NASA Technical Reports Server (NTRS)
Levine, Elissa
1999-01-01
The sampling scheme for soil characterization within the GLOBE program is uniquely different from the sampling methods of the other protocols. The strategy is based on an understanding of the 5 soil forming factors (parent material, climate, biota, topography, and time) at each study site, and how each of these interact to produce a soil profile with unique characteristics and unique input and control into the atmospheric, biological, and hydrological systems. Soil profile characteristics, as opposed to soil moisture and temperature, vegetative growth, and atmospheric and hydrologic conditions, change very slowly, depending on the parameter being measured, ranging from seasonally to many thousands of years. Thus, soil information, including profile description and lab analysis, is collected only one time for each profile at a site. These data serve two purposes: 1) to supplement existing spatial information about soil profile characteristics across the landscape at local, regional, and global scales, and 2) to provide specific information within a given area about the basic substrate to which elements within the other protocols are linked. Because of the intimate link between soil properties and these other environmental elements, the static soil properties at a given site are needed to accurately interpret and understand the continually changing dynamics of soil moisture and temperature, vegetation growth and phenology, atmospheric conditions, and chemistry and turbidity in surface waters. Both the spatial and specific soil information can be used for modeling purposes to assess and make predictions about global change.
Examination of Soil Moisture Retrieval Using SIR-C Radar Data and a Distributed Hydrological Model
NASA Technical Reports Server (NTRS)
Hsu, A. Y.; ONeill, P. E.; Wood, E. F.; Zion, M.
1997-01-01
A major objective of soil moisture-related hydrological-research during NASA's SIR-C/X-SAR mission was to determine and compare soil moisture patterns within humid watersheds using SAR data, ground-based measurements, and hydrologic modeling. Currently available soil moisture-inversion methods using active microwave data are only accurate when applied to bare and slightly vegetated surfaces. Moreover, as the surface dries down, the number of pixels that can provide estimated soil moisture by these radar inversion methods decreases, leading to less accuracy and, confidence in the retrieved soil moisture fields at the watershed scale. The impact of these errors in microwave- derived soil moisture on hydrological modeling of vegetated watersheds has yet to be addressed. In this study a coupled water and energy balance model operating within a topographic framework is used to predict surface soil moisture for both bare and vegetated areas. In the first model run, the hydrological model is initialized using a standard baseflow approach, while in the second model run, soil moisture values derived from SIR-C radar data are used for initialization. The results, which compare favorably with ground measurements, demonstrate the utility of combining radar-derived surface soil moisture information with basin-scale hydrological modeling.
NASA Astrophysics Data System (ADS)
Pradhan, N. R.
2015-12-01
Soil moisture conditions have an impact upon hydrological processes, biological and biogeochemical processes, eco-hydrology, floods and droughts due to changing climate, near-surface atmospheric conditions and the partition of incoming solar and long-wave radiation between sensible and latent heat fluxes. Hence, soil moisture conditions virtually effect on all aspects of engineering / military engineering activities such as operational mobility, detection of landmines and unexploded ordinance, natural material penetration/excavation, peaking factor analysis in dam design etc. Like other natural systems, soil moisture pattern can vary from completely disorganized (disordered, random) to highly organized. To understand this varying soil moisture pattern, this research utilized topographic wetness index from digital elevation models (DEM) along with vegetation index from remotely sensed measurements in red and near-infrared bands, as well as land surface temperature (LST) in the thermal infrared bands. This research developed a methodology to relate a combined index from DEM, LST and vegetation index with the physical soil moisture properties of soil types and the degree of saturation. The advantage in using this relationship is twofold: first it retrieves soil moisture content at the scale of soil data resolution even though the derived indexes are in a coarse resolution, and secondly the derived soil moisture distribution represents both organized and disorganized patterns of actual soil moisture. The derived soil moisture is used in driving the hydrological model simulations of runoff, sediment and nutrients.
NASA Astrophysics Data System (ADS)
Gines, G. A.; Bea, J. G.; Palaoag, T. D.
2018-03-01
Soil serves a medium for plants growth. One factor that affects soil moisture is drought. Drought has been a major cause of agricultural disaster. Agricultural drought is said to occur when soil moisture is insufficient to meet crop water requirements, resulting in yield losses. In this research, it aimed to characterize soil moisture level for Rice and Maize Crops using Arduino and applying fuzzy logic. System architecture for soil moisture sensor and water pump were the basis in developing the equipment. The data gathered was characterized by applying fuzzy logic. Based on the results, applying fuzzy logic in validating the characterization of soil moisture level for Rice and Maize crops is accurate as attested by the experts. This will help the farmers in monitoring the soil moisture level of the Rice and Maize crops.
Soil Moisture Memory in Climate Models
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Suarez, Max J.; Zukor, Dorothy J. (Technical Monitor)
2000-01-01
Water balance considerations at the soil surface lead to an equation that relates the autocorrelation of soil moisture in climate models to (1) seasonality in the statistics of the atmospheric forcing, (2) the variation of evaporation with soil moisture, (3) the variation of runoff with soil moisture, and (4) persistence in the atmospheric forcing, as perhaps induced by land atmosphere feedback. Geographical variations in the relative strengths of these factors, which can be established through analysis of model diagnostics and which can be validated to a certain extent against observations, lead to geographical variations in simulated soil moisture memory and thus, in effect, to geographical variations in seasonal precipitation predictability associated with soil moisture. The use of the equation to characterize controls on soil moisture memory is demonstrated with data from the modeling system of the NASA Seasonal-to-Interannual Prediction Project.
Soil moisture and vegetation patterns in northern California forests
James R. Griffin
1967-01-01
Twenty-nine soil-vegetation plots were studied in a broad transect across the southern Cascade Range. Variations in soil moisture patterns during the growing season and in soil moisture tension values are discussed. Plot soil moisture values for 40- and 80-cm. depths in August and September are integrated into a soil drought index. Vegetation patterns are described in...
A comparison of soil-moisture loss from forested and clearcut areas in West Virginia
Charles A. Troendle
1970-01-01
Soil-moisture losses from forested and clearcut areas were compared on the Fernow Experimental Forest. As expected, hardwood forest soils lost most moisture while revegetated clearcuttings, clearcuttings, and barren areas lost less, in that order. Soil-moisture losses from forested soils also correlated well with evapotranspiration and streamflow.
James Reardon; Roger Hungerford; Kevin Ryan
2007-01-01
The smouldering combustion of peat and muck soil plays an important role in the creation and maintenance of wetland communities. This experimental study was conducted to improve our understanding of how moisture and mineral content constrain smouldering in organic soil. Laboratory burning was conducted with root mat and muck soil samples from pocosin and pond pine...
Five-Year-Old Cottonwood Plantation on a Clay Site: Growth, Yield, and Soil Properties
R. M. Krinard; H. E. Kennedy
1980-01-01
A random sample of Stoneville select cottonwood (Populus deltoides Bartr.) clones planted on recent old-field clay soils at 12- by 12- foot spacing averaged 75-percent survival after five years. The growth and yield was about half that expected from planted cottonwood on medium-textured soils. Soil moisture analysis showed more height growth in years...
Doubková, Marcela; Van Dijk, Albert I.J.M.; Sabel, Daniel; Wagner, Wolfgang; Blöschl, Günter
2012-01-01
The Sentinel-1 will carry onboard a C-band radar instrument that will map the European continent once every four days and the global land surface at least once every twelve days with finest 5 × 20 m spatial resolution. The high temporal sampling rate and operational configuration make Sentinel-1 of interest for operational soil moisture monitoring. Currently, updated soil moisture data are made available at 1 km spatial resolution as a demonstration service using Global Mode (GM) measurements from the Advanced Synthetic Aperture Radar (ASAR) onboard ENVISAT. The service demonstrates the potential of the C-band observations to monitor variations in soil moisture. Importantly, a retrieval error estimate is also available; these are needed to assimilate observations into models. The retrieval error is estimated by propagating sensor errors through the retrieval model. In this work, the existing ASAR GM retrieval error product is evaluated using independent top soil moisture estimates produced by the grid-based landscape hydrological model (AWRA-L) developed within the Australian Water Resources Assessment system (AWRA). The ASAR GM retrieval error estimate, an assumed prior AWRA-L error estimate and the variance in the respective datasets were used to spatially predict the root mean square error (RMSE) and the Pearson's correlation coefficient R between the two datasets. These were compared with the RMSE calculated directly from the two datasets. The predicted and computed RMSE showed a very high level of agreement in spatial patterns as well as good quantitative agreement; the RMSE was predicted within accuracy of 4% of saturated soil moisture over 89% of the Australian land mass. Predicted and calculated R maps corresponded within accuracy of 10% over 61% of the continent. The strong correspondence between the predicted and calculated RMSE and R builds confidence in the retrieval error model and derived ASAR GM error estimates. The ASAR GM and Sentinel-1 have the same basic physical measurement characteristics, and therefore very similar retrieval error estimation method can be applied. Because of the expected improvements in radiometric resolution of the Sentinel-1 backscatter measurements, soil moisture estimation errors can be expected to be an order of magnitude less than those for ASAR GM. This opens the possibility for operationally available medium resolution soil moisture estimates with very well-specified errors that can be assimilated into hydrological or crop yield models, with potentially large benefits for land-atmosphere fluxes, crop growth, and water balance monitoring and modelling. PMID:23483015
NASA Astrophysics Data System (ADS)
Stern, C.; Pavao-Zuckerman, M.
2014-12-01
Rain basins have been an increasingly popular Green Infrastructure (GI) solution to the redistribution of water flow caused by urbanization. This study was conducted to examine how different approaches to basin design, specifically mulching (gravel vs. compost and gravel), influence the water availability of rain basins and the effects this has on the soil microbial activity of the basins. Soil microbes are a driving force of biogeochemical process and may impact the carbon and nitrogen dynamics of rain basin GI. In this study we sampled 12 different residential-scale rain basins, differing in design established at Biosphere 2, Arizona in 2013. Soil samples and measurements were collected before and after the onset of the monsoon season in 2014 to determine how the design of basins mediates the transition from dry to wet conditions. Soil abiotic factors were measured, such as moisture content, soil organic matter (SOM) content, texture and pH, and were related to the microbial biomass size within the basins. Field and lab potential N-mineralization and soil respiration were measured to determine how basin design influences microbial activity and N dynamics. We found that pre-monsoon basins with compost had higher moisture contents and that there was a positive correlation between the moisture content and the soil microbial biomass size of the basins. Pre-monsoon data also suggests that N-mineralization rates for basins with compost were higher than those with only gravel. These design influences on basin-scale biogeochemical dynamics and nitrogen retention may have important implications for urban biogeochemistry at neighborhood and watershed scales.
Vertical distribution of three namatode species in relation to certain soil properties.
Brodie, B B
1976-07-01
Population densities of Belonolaimus longicaudatus, Pratylenchus brachyurus, and Trichodorus christiei were determined from soil samples taken weekly in Tifton, Georgia during a 14-month period (except for April and May) at 15-cm increments to a depth of 105 cm. Belonolaimus longicaudatus predominately inhabited the top 30 cm of soil that was 87-88% sand, 6-7% silt, and 5-7% clay. No specimens were found below 60 cm where the soil was 76-79% sand, 5-6% silt, and 15-19% clay. Highest population densities occurred during June through September when temperature in the top 30 cm of soil was 22-25 C and soil moisture was from 9 to 20% by volume. Pratylenchus brachyurus was found at all depths, but population densities were greatest 45-75 cm deep where the soil was 78-79% sand, 6% silt, and 15-16% clay. In the months monitored, highest population densities occurred during March, June, and December when the soil temperature 45-75 cm deep was 14-17 C and soil moisture was 22-42%. Trichodorus christiei was found at all depths, but population densities were highest 30 cm deep where the soil was 83% sand, 5% silt, and 12% clay. Highest population densities occurred during December through March when the soil temperature 30 cm deep was 11-17 C and soil moisture was 18-23%.
Examining diel patterns of soil and xylem moisture using electrical resistivity imaging
NASA Astrophysics Data System (ADS)
Mares, Rachel; Barnard, Holly R.; Mao, Deqiang; Revil, André; Singha, Kamini
2016-05-01
The feedbacks among forest transpiration, soil moisture, and subsurface flowpaths are poorly understood. We investigate how soil moisture is affected by daily transpiration using time-lapse electrical resistivity imaging (ERI) on a highly instrumented ponderosa pine and the surrounding soil throughout the growing season. By comparing sap flow measurements to the ERI data, we find that periods of high sap flow within the diel cycle are aligned with decreases in ground electrical conductivity and soil moisture due to drying of the soil during moisture uptake. As sap flow decreases during the night, the ground conductivity increases as the soil moisture is replenished. The mean and variance of the ground conductivity decreases into the summer dry season, indicating drier soil and smaller diel fluctuations in soil moisture as the summer progresses. Sap flow did not significantly decrease through the summer suggesting use of a water source deeper than 60 cm to maintain transpiration during times of shallow soil moisture depletion. ERI captured spatiotemporal variability of soil moisture on daily and seasonal timescales. ERI data on the tree showed a diel cycle of conductivity, interpreted as changes in water content due to transpiration, but changes in sap flow throughout the season could not be interpreted from ERI inversions alone due to daily temperature changes.
Application of Terrestrial Microwave Remote Sensing to Agricultural Drought Monitoring
NASA Astrophysics Data System (ADS)
Crow, W. T.; Bolten, J. D.
2014-12-01
Root-zone soil moisture information is a valuable diagnostic for detecting the onset and severity of agricultural drought. Current attempts to globally monitor root-zone soil moisture are generally based on the application of soil water balance models driven by observed meteorological variables. Such systems, however, are prone to random error associated with: incorrect process model physics, poor parameter choices and noisy meteorological inputs. The presentation will describe attempts to remediate these sources of error via the assimilation of remotely-sensed surface soil moisture retrievals from satellite-based passive microwave sensors into a global soil water balance model. Results demonstrate the ability of satellite-based soil moisture retrieval products to significantly improve the global characterization of root-zone soil moisture - particularly in data-poor regions lacking adequate ground-based rain gage instrumentation. This success has lead to an on-going effort to implement an operational land data assimilation system at the United States Department of Agriculture's Foreign Agricultural Service (USDA FAS) to globally monitor variations in root-zone soil moisture availability via the integration of satellite-based precipitation and soil moisture information. Prospects for improving the performance of the USDA FAS system via the simultaneous assimilation of both passive and active-based soil moisture retrievals derived from the upcoming NASA Soil Moisture Active/Passive mission will also be discussed.
The Contribution of Soil Moisture Information to Forecast Skill: Two Studies
NASA Technical Reports Server (NTRS)
Koster, Randal
2010-01-01
This talk briefly describes two recent studies on the impact of soil moisture information on hydrological and meteorological prediction. While the studies utilize soil moisture derived from the integration of large-scale land surface models with observations-based meteorological data, the results directly illustrate the potential usefulness of satellite-derived soil moisture information (e.g., from SMOS and SMAP) for applications in prediction. The first study, the GEWEX- and ClIVAR-sponsored GLACE-2 project, quantifies the contribution of realistic soil moisture initialization to skill in subseasonal forecasts of precipitation and air temperature (out to two months). The multi-model study shows that soil moisture information does indeed contribute skill to the forecasts, particularly for air temperature, and particularly when the initial local soil moisture anomaly is large. Furthermore, the skill contributions tend to be larger where the soil moisture initialization is more accurate, as measured by the density of the observational network contributing to the initialization. The second study focuses on streamflow prediction. The relative contributions of snow and soil moisture initialization to skill in streamflow prediction at seasonal lead, in the absence of knowledge of meteorological anomalies during the forecast period, were quantified with several land surface models using uniquely designed numerical experiments and naturalized streamflow data covering mUltiple decades over the western United States. In several basins, accurate soil moisture initialization is found to contribute significant levels of predictive skill. Depending on the date of forecast issue, the contributions can be significant out to leads of six months. Both studies suggest that improvements in soil moisture initialization would lead to increases in predictive skill. The relevance of SMOS and SMAP satellite-based soil moisture information to prediction are discussed in the context of these studies.
NASA Astrophysics Data System (ADS)
Hüsami Afşar, M.; Bulut, B.; Yilmaz, M. T.
2017-12-01
Soil moisture is one of the fundamental parameters of the environment that plays a major role in carbon, energy, and water cycles. Spatial distribution and temporal changes of soil moisture is one of the important components in climatic, ecological and natural hazards at global, regional and local levels scales. Therefore retrieval of soil moisture datasets has a great importance in these studies. Given soil moisture can be retrieved through different platforms (i.e., in-situ measurements, numerical modeling, and remote sensing) for the same location and time period, it is often desirable to evaluate these different datasets to assign the most accurate estimates for different purposes. During last decades, efforts have been given to provide evaluations about different soil moisture products based on various statistical analysis of the soil moisture time series (i.e., comparison of correlation, bias, and their error standard deviation). On the other hand, there is still need for the comparisons of the soil moisture products in drought analysis context. In this study, LPRM and NOAH Land Surface Model soil moisture datasets are investigated in drought analysis context using station-based watershed average datasets obtained over four USDA ARS watersheds as ground truth. Here, the drought analysis are performed using the standardized soil moisture datasets (i.e., zero mean and one standard deviation) while the droughts are defined as consecutive negative anomalies less than -1 for longer than 3 months duration. Accordingly, the drought characteristics (duration and severity) and false alarm and hit/miss ratios of LPRM and NOAH datasets are validated using station-based datasets as ground truth. Results showed that although the NOAH soil moisture products have better correlations, LPRM based soil moisture retrievals show better consistency in drought analysis. This project is supported by TUBITAK Project number 114Y676.
Is the Pearl River basin, China, drying or wetting? Seasonal variations, causes and implications
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Li, Jianfeng; Gu, Xihui; Shi, Peijun
2018-07-01
Soil moisture plays crucial roles in the hydrological cycle and is also a critical link between land surface and atmosphere. The Pearl River basin (PRb) is climatically subtropical and tropical and is highly sensitive to climate changes. In this study, seasonal soil moisture changes across the PRb were analyzed using the Variable Infiltration Capacity (VIC) model forced by the gridded 0.5° × 0.5° climatic observations. Seasonal changes of soil moisture in both space and time were investigated using the Mann-Kendall trend test method. Potential influencing factors behind seasonal soil moisture changes such as precipitation and temperature were identified using the Maximum Covariance Analysis (MCA) technique. The results indicated that: (1) VIC model performs well in describing changing properties of soil moisture across the PRb; (2) Distinctly different seasonal features of soil moisture can be observed. Soil moisture in spring decreased from east to west parts of the PRb. In summer however, soil moisture was higher in east and west parts but was lower in central parts of the PRb; (3) A significant drying trend was identified over the PRb in autumn, while no significant drying trends can be detected in other seasons; (4) The increase/decrease in precipitation can generally explain the wetting/drying tendency of soil moisture. However, warming temperature contributed significantly to the drying trends and these drying trends were particularly evident during autumn and winter; (5) Significant decreasing precipitation and increasing temperature combined to trigger substantially decreasing soil moisture in autumn. In winter, warming temperature is the major reason behind decreased soil moisture although precipitation is in slightly decreasing tendency. Season variations of soil moisture and related implications for hydro-meteorological processes in the subtropical and tropical river basins over the globe should arouse considerable human concerns.
NASA Astrophysics Data System (ADS)
Arumugam, S.; Mazrooei, A.; Lakshmi, V.; Wood, A.
2017-12-01
Subseasonal-to-seasonal (S2S) forecasts of soil moisture and streamflow provides critical information for water and agricultural systems to support short-term planning and mangement. This study evaluates the role of observed streamflow and remotely-sensed soil moisture from SMAP (Soil Moisture Active Passive) mission in improving S2S streamflow and soil moisture forecasting using data assimilation (DA). We first show the ability to forecast soil moisture at monthly-to-seaasonal time scale by forcing climate forecasts with NASA's Land Information System and then compares the developed soil moisture forecast with the SMAP data over the Southeast US. Our analyses show significant skill in forecasting real-time soil moisture over 1-3 months using climate information. We also show that the developed soil moisture forecasts capture the observed severe drought conditions (2007-2008) over the Southeast US. Following that, we consider both SMAP data and observed streamflow for improving S2S streamflow and soil moisture forecasts for a pilot study area, Tar River basin, in NC. Towards this, we consider variational assimilation (VAR) of gauge-measured daily streamflow data in improving initial hydrologic conditions of Variable Infiltration Capacity (VIC) model. The utility of data assimilation is then assessed in improving S2S forecasts of streamflow and soil moisture through a retrospective analyses. Furthermore, the optimal frequency of data assimilation and optimal analysis window (number of past observations to use) are also assessed in order to achieve the maximum improvement in S2S forecasts of streamflow and soil moisture. Potential utility of updating initial conditions using DA and providing skillful forcings are also discussed.
NASA Astrophysics Data System (ADS)
Akbar, Ruzbeh; Short Gianotti, Daniel; McColl, Kaighin A.; Haghighi, Erfan; Salvucci, Guido D.; Entekhabi, Dara
2018-03-01
The soil water content profile is often well correlated with the soil moisture state near the surface. They share mutual information such that analysis of surface-only soil moisture is, at times and in conjunction with precipitation information, reflective of deeper soil fluxes and dynamics. This study examines the characteristic length scale, or effective depth Δz, of a simple active hydrological control volume. The volume is described only by precipitation inputs and soil water dynamics evident in surface-only soil moisture observations. To proceed, first an observation-based technique is presented to estimate the soil moisture loss function based on analysis of soil moisture dry-downs and its successive negative increments. Then, the length scale Δz is obtained via an optimization process wherein the root-mean-squared (RMS) differences between surface soil moisture observations and its predictions based on water balance are minimized. The process is entirely observation-driven. The surface soil moisture estimates are obtained from the NASA Soil Moisture Active Passive (SMAP) mission and precipitation from the gauge-corrected Climate Prediction Center daily global precipitation product. The length scale Δz exhibits a clear east-west gradient across the contiguous United States (CONUS), such that large Δz depths (>200 mm) are estimated in wetter regions with larger mean precipitation. The median Δz across CONUS is 135 mm. The spatial variance of Δz is predominantly explained and influenced by precipitation characteristics. Soil properties, especially texture in the form of sand fraction, as well as the mean soil moisture state have a lesser influence on the length scale.
Variation in microbial activity in histosols and its relationship to soil moisture.
Tate, R L; Terry, R E
1980-08-01
Microbial biomass, dehydrogenase activity, carbon metabolism, and aerobic bacterial populations were examined in cropped and fallow Pahokee muck (a lithic medisaprist) of the Florida Everglades. Dehydrogenase activity was two- to sevenfold greater in soil cropped to St. Augustinegrass (Stenotaphrum secundatum (Walt) Kuntz) compared with uncropped soil, whereas biomass ranged from equivalence in the two soils to a threefold stimulation in the cropped soil. Biomass in soil cropped to sugarcane (Saccharum spp. L) approximated that from the grass field, whereas dehydrogenase activities of the cane soil were nearly equivalent to those of the fallow soil. Microbial biomass, dehydrogenase activity, aerobic bacterial populations, and salicylate oxidation rates all correlated with soil moisture levels. These data indicate that within the moisture ranges detected in the surface soils, increased moisture stimulated microbial activity, whereas within the soil profile where moisture ranges reached saturation, increased moisture inhibited aerobic activities and stimulated anaerobic processes.
Variation in Microbial Activity in Histosols and Its Relationship to Soil Moisture †
Tate, Robert L.; Terry, Richard E.
1980-01-01
Microbial biomass, dehydrogenase activity, carbon metabolism, and aerobic bacterial populations were examined in cropped and fallow Pahokee muck (a lithic medisaprist) of the Florida Everglades. Dehydrogenase activity was two- to sevenfold greater in soil cropped to St. Augustinegrass (Stenotaphrum secundatum (Walt) Kuntz) compared with uncropped soil, whereas biomass ranged from equivalence in the two soils to a threefold stimulation in the cropped soil. Biomass in soil cropped to sugarcane (Saccharum spp. L) approximated that from the grass field, whereas dehydrogenase activities of the cane soil were nearly equivalent to those of the fallow soil. Microbial biomass, dehydrogenase activity, aerobic bacterial populations, and salicylate oxidation rates all correlated with soil moisture levels. These data indicate that within the moisture ranges detected in the surface soils, increased moisture stimulated microbial activity, whereas within the soil profile where moisture ranges reached saturation, increased moisture inhibited aerobic activities and stimulated anaerobic processes. PMID:16345610
NASA Astrophysics Data System (ADS)
Sanchez-Mejia, Z. M.; Papuga, S. A.
2013-12-01
In semiarid regions, where water resources are limited and precipitation dynamics are changing, understanding land surface-atmosphere interactions that regulate the coupled soil moisture-precipitation system is key for resource management and planning. We present a modeling approach to study soil moisture and albedo controls on planetary boundary layer height (PBLh). We used data from the Santa Rita Creosote Ameriflux site and Tucson Airport atmospheric sounding to generate empirical relationships between soil moisture, albedo and PBLh. We developed empirical relationships and show that at least 50% of the variation in PBLh can be explained by soil moisture and albedo. Then, we used a stochastically driven two-layer bucket model of soil moisture dynamics and our empirical relationships to model PBLh. We explored soil moisture dynamics under three different mean annual precipitation regimes: current, increase, and decrease, to evaluate at the influence on soil moisture on land surface-atmospheric processes. While our precipitation regimes are simple, they represent future precipitation regimes that can influence the two soil layers in our conceptual framework. For instance, an increase in annual precipitation, could impact on deep soil moisture and atmospheric processes if precipitation events remain intense. We observed that the response of soil moisture, albedo, and the PBLh will depend not only on changes in annual precipitation, but also on the frequency and intensity of this change. We argue that because albedo and soil moisture data are readily available at multiple temporal and spatial scales, developing empirical relationships that can be used in land surface - atmosphere applications are of great value.
Climate Prediction Center - United States Drought Information
Crop Moisture Indices  Soil Moisture Percentiles (based on NLDAS)  Standardized Runoff Index (based /Minimum  Mean Surface Hydrology (based on NLDAS)  Total Soil Moisture  Total SM Change  MOSAIC Soil Moisture Profile  NOAH Soil Moisture Profile  NOAH Soil T Profile  Evaporation  E-P Â
NASA Astrophysics Data System (ADS)
Wu, Qiusheng; Liu, Hongxing; Wang, Lei; Deng, Chengbin
2016-03-01
High quality soil moisture datasets are required for various environmental applications. The launch of the Advanced Microwave Scanning Radiometer 2 (AMSR2) on board the Global Change Observation Mission 1-Water (GCOM-W1) in May 2012 has provided global near-surface soil moisture data, with an average revisit frequency of two days. Since AMSR2 is a new passive microwave system in operation, it is very important to evaluate the quality of AMSR2 products before widespread utilization of the data for scientific research. In this paper, we provide a comprehensive evaluation of the AMSR2 soil moisture products retrieved by the Japan Aerospace Exploration Agency (JAXA) algorithm. The evaluation was performed for a three-year period (July 2012-June 2015) over the contiguous United States. The AMSR2 soil moisture products were evaluated by comparing ascending and descending overpass products to each other as well as comparing them to in situ soil moisture observations of 598 monitoring stations obtained from the International Soil Moisture Network (ISMN). The accuracy of AMSR2 soil moisture product was evaluated against several types of monitoring networks, and for different land cover types and ecoregions. Three performance metrics, including mean difference (MD), root mean squared difference (RMSD), and correlation coefficient (R), were used in our accuracy assessment. Our evaluation results revealed that AMSR2 soil moisture retrievals are generally lower than in situ measurements. The AMSR2 soil moisture retrievals showed the best agreement with in situ measurements over the Great Plains and the worst agreement over forested areas. This study offers insights into the suitability and reliability of AMSR2 soil moisture products for different ecoregions. Although AMSR2 soil moisture retrievals represent useful and effective measurements for some regions, further studies are required to improve the data accuracy.
NASA Astrophysics Data System (ADS)
Cui, Y.; Long, D.; Hong, Y.; Zeng, C.; Han, Z.
2016-12-01
Reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau Yaokui Cui, Di Long, Yang Hong, Chao Zeng, and Zhongying Han State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China Abstract: Soil moisture is a key variable in the exchange of water and energy between the land surface and the atmosphere, especially over the Tibetan Plateau (TP) which is climatically and hydrologically sensitive as the world's third pole. Large-scale consistent and continuous soil moisture datasets are of importance to meteorological and hydrological applications, such as weather forecasting and drought monitoring. The Fengyun-3B Microwave Radiation Imager (FY-3B/MWRI) soil moisture product is one of relatively new passive microwave products. The FY-3B/MWRI soil moisture product is reconstructed using the back-propagation neural network (BP-NN) based on reconstructed MODIS products, i.e., LST, NDVI, and albedo using different gap-filling methods. The reconstruction method of generating the soil moisture product not only considers the relationship between the soil moisture and the NDVI, LST, and albedo, but also the relationship between the soil moisture and the four-dimensional variation using the longitude, latitude, DEM and day of year (DOY). Results show that the soil moisture could be well reconstructed with R2 larger than 0.63, and RMSE less than 0.1 cm3 cm-3 and bias less than 0.07 cm3 cm-3 for both frozen and unfrozen periods, compared with in-situ measurements in the central TP. The reconstruction method is subsequently applied to generate spatially consistent and temporally continuous surface soil moisture over the TP. The reconstructed FY-3B/MWRI soil moisture product could be valuable in studying meteorology, hydrology, and agriculture over the TP. Keywords: FY-3B/MWRI; Soil moisture; Reconstruction; Tibetan Plateau
An inversion method for retrieving soil moisture information from satellite altimetry observations
NASA Astrophysics Data System (ADS)
Uebbing, Bernd; Forootan, Ehsan; Kusche, Jürgen; Braakmann-Folgmann, Anne
2016-04-01
Soil moisture represents an important component of the terrestrial water cycle that controls., evapotranspiration and vegetation growth. Consequently, knowledge on soil moisture variability is essential to understand the interactions between land and atmosphere. Yet, terrestrial measurements are sparse and their information content is limited due to the large spatial variability of soil moisture. Therefore, over the last two decades, several active and passive radar and satellite missions such as ERS/SCAT, AMSR, SMOS or SMAP have been providing backscatter information that can be used to estimate surface conditions including soil moisture which is proportional to the dielectric constant of the upper (few cm) soil layers . Another source of soil moisture information are satellite radar altimeters, originally designed to measure sea surface height over the oceans. Measurements of Jason-1/2 (Ku- and C-Band) or Envisat (Ku- and S-Band) nadir radar backscatter provide high-resolution along-track information (~ 300m along-track resolution) on backscatter every ~10 days (Jason-1/2) or ~35 days (Envisat). Recent studies found good correlation between backscatter and soil moisture in upper layers, especially in arid and semi-arid regions, indicating the potential of satellite altimetry both to reconstruct and to monitor soil moisture variability. However, measuring soil moisture using altimetry has some drawbacks that include: (1) the noisy behavior of the altimetry-derived backscatter (due to e.g., existence of surface water in the radar foot-print), (2) the strong assumptions for converting altimetry backscatters to the soil moisture storage changes, and (3) the need for interpolating between the tracks. In this study, we suggest a new inversion framework that allows to retrieve soil moisture information from along-track Jason-2 and Envisat satellite altimetry data, and we test this scheme over the Australian arid and semi-arid regions. Our method consists of: (i) deriving time-invariant spatial patterns (base-functions) by applying principal component analysis (PCA) to simulated soil moisture from a large-scale land surface model. (ii) Estimating time-variable soil moisture evolution by fitting these base functions of (i) to the along-track retracked backscatter coefficients in a least squares sense. (iii) Combining the estimated time-variable amplitudes and the pre-computed base-functions, which results in reconstructed (spatio-temporal) soil moisture information. We will show preliminary results that are compared to available high-resolution soil moisture model data over the region (the Australian Water Resource Assessment, AWRA model). We discuss the possibility of using altimetry-derived soil moisture estimations to improve the simulation skill of soil moisture in the Global Land Data Assimilation System (GLDAS) over Australia.
Downscaled soil moisture from SMAP evaluated using high density observations
USDA-ARS?s Scientific Manuscript database
Recently, a soil moisture downscaling algorithm based on a regression relationship between daily temperature changes and daily average soil moisture was developed to produce an enhanced spatial resolution on soil moisture product for the Advanced Microwave Scanning Radiometer–EOS (AMSR-E) satellite ...
Data assimilation to extract soil moisture information from SMAP observations
USDA-ARS?s Scientific Manuscript database
This study compares different methods to extract soil moisture information through the assimilation of Soil Moisture Active Passive (SMAP) observations. Neural Network(NN) and physically-based SMAP soil moisture retrievals were assimilated into the NASA Catchment model over the contiguous United Sta...
NASA Astrophysics Data System (ADS)
Xu, Lina; Niu, Ruiqing; Li, Jiong; Dong, Yanfang
2011-12-01
Soil moisture is the important indicator of climate, hydrology, ecology, agriculture and other parameters of the land surface and atmospheric interface. Soil moisture plays an important role on the water and energy exchange at the land surface/atmosphere interface. Remote sensing can provide information on large area quickly and easily, so it is significant to do research on how to monitor soil moisture by remote sensing. This paper presents a method to assess soil moisture status using Landsat TM data over Three Gorges area in China based on TVDI. The potential of Temperature- Vegetation Dryness Index (TVDI) from Landsat TM data in assessing soil moisture was investigated in this region. After retrieving land surface temperature and vegetation index a TVDI model based on the features of Ts-NDVI space is established. And finally, soil moisture status is estimated according to TVDI. It shows that TVDI has the advantages of stability and high accuracy to estimating the soil moisture status.
Evaluating Land-Atmosphere Interactions with the North American Soil Moisture Database
NASA Astrophysics Data System (ADS)
Giles, S. M.; Quiring, S. M.; Ford, T.; Chavez, N.; Galvan, J.
2015-12-01
The North American Soil Moisture Database (NASMD) is a high-quality observational soil moisture database that was developed to study land-atmosphere interactions. It includes over 1,800 monitoring stations the United States, Canada and Mexico. Soil moisture data are collected from multiple sources, quality controlled and integrated into an online database (soilmoisture.tamu.edu). The period of record varies substantially and only a few of these stations have an observation record extending back into the 1990s. Daily soil moisture observations have been quality controlled using the North American Soil Moisture Database QAQC algorithm. The database is designed to facilitate observationally-driven investigations of land-atmosphere interactions, validation of the accuracy of soil moisture simulations in global land surface models, satellite calibration/validation for SMOS and SMAP, and an improved understanding of how soil moisture influences climate on seasonal to interannual timescales. This paper provides some examples of how the NASMD has been utilized to enhance understanding of land-atmosphere interactions in the U.S. Great Plains.
NASA Giovanni: A Tool for Visualizing, Analyzing, and Inter-Comparing Soil Moisture Data
NASA Technical Reports Server (NTRS)
Teng, William; Rui, Hualan; Vollmer, Bruce; deJeu, Richard; Fang, Fan; Lei, Guang-Dih
2012-01-01
There are many existing satellite soil moisture algorithms and their derived data products, but there is no simple way for a user to inter-compare the products or analyze them together with other related data (e.g., precipitation). An environment that facilitates such inter-comparison and analysis would be useful for validation of satellite soil moisture retrievals against in situ data and for determining the relationships between different soil moisture products. The latter relationships are particularly important for applications users, for whom the continuity of soil moisture data, from whatever source, is critical. A recent example was provided by the sudden demise of EOS Aqua AMSR-E and the end of its soil moisture data production, as well as the end of other soil moisture products that had used the AMSR-E brightness temperature data. The purpose of the current effort is to create an environment, as part of the NASA Giovanni family of portals, that facilitates inter-comparisons of soil moisture algorithms and their derived data products.
Microwave remote sensing and its application to soil moisture detection
NASA Technical Reports Server (NTRS)
Newton, R. W. (Principal Investigator)
1977-01-01
The author has identified the following significant results. Experimental measurements were utilized to demonstrate a procedure for estimating soil moisture, using a passive microwave sensor. The investigation showed that 1.4 GHz and 10.6 GHz can be used to estimate the average soil moisture within two depths; however, it appeared that a frequency less than 10.6 GHz would be preferable for the surface measurement. Average soil moisture within two depths would provide information on the slope of the soil moisture gradient near the surface. Measurements showed that a uniform surface roughness similar to flat tilled fields reduced the sensitivity of the microwave emission to soil moisture changes. Assuming that the surface roughness was known, the approximate soil moisture estimation accuracy at 1.4 GHz calculated for a 25% average soil moisture and an 80% degree of confidence, was +3% and -6% for a smooth bare surface, +4% and -5% for a medium rough surface, and +5.5% and -6% for a rough surface.
Estimating Surface Soil Moisture in Simulated AVIRIS Spectra
NASA Technical Reports Server (NTRS)
Whiting, Michael L.; Li, Lin; Ustin, Susan L.
2004-01-01
Soil albedo is influenced by many physical and chemical constituents, with moisture being the most influential on the spectra general shape and albedo (Stoner and Baumgardner, 1981). Without moisture, the intrinsic or matrix reflectance of dissimilar soils varies widely due to differences in surface roughness, particle and aggregate sizes, mineral types, including salts, and organic matter contents. The influence of moisture on soil reflectance can be isolated by comparing similar soils in a study of the effects that small differences in moisture content have on reflectance. However, without prior knowledge of the soil physical and chemical constituents within every pixel, it is nearly impossible to accurately attribute the reflectance variability in an image to moisture or to differences in the physical and chemical constituents in the soil. The effect of moisture on the spectra must be eliminated to use hyperspectral imagery for determining minerals and organic matter abundances of bare agricultural soils. Accurate soil mineral and organic matter abundance maps from air- and space-borne imagery can improve GIS models for precision farming prescription, and managing irrigation and salinity. Better models of soil moisture and reflectance will also improve the selection of soil endmembers for spectral mixture analysis.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Zavodsky, Bradley T.; White, Kristopher D.; Bell, Jesse E.
2015-01-01
This paper provided a brief background on the work being done at NASA SPoRT and the CDC to create a soil moisture climatology over the CONUS at high spatial resolution, and to provide a valuable source of soil moisture information to the CDC for monitoring conditions that could favor the development of Valley Fever. The soil moisture climatology has multi-faceted applications for both the NOAA/NWS situational awareness in the areas of drought and flooding, and for the Public Health community. SPoRT plans to increase its interaction with the drought monitoring and Public Health communities by enhancing this testbed soil moisture anomaly product. This soil moisture climatology run will also serve as a foundation for upgrading the real-time (currently southeastern CONUS) SPoRT-LIS to a full CONUS domain based on LIS version 7 and incorporating real-time GVF data from the Suomi-NPP Visible Infrared Imaging Radiometer Suite (Vargas et al. 2013) into LIS-Noah. The upgraded SPoRT-LIS run will serve as a testbed proof-of-concept of a higher-resolution NLDAS-2 modeling member. The climatology run will be extended to near real-time using the NLDAS-2 meteorological forcing from 2011 to present. The fixed 1981-2010 climatology shall provide the soil moisture "normals" for the production of real-time soil moisture anomalies. SPoRT also envisions a web-mapping type of service in which an end-user could put in a request for either an historical or real-time soil moisture anomaly graph for a specified county (as exemplified by Figure 2) and/or for local and regional maps of soil moisture proxy percentiles. Finally, SPoRT seeks to assimilate satellite soil moisture data from the current Soil Moisture Ocean Salinity (SMOS; Blankenship et al. 2014) and the recently-launched NASA Soil Moisture Active Passive (SMAP; Entekhabi et al. 2010) missions, using the EnKF capability within LIS. The 9-km combined active radar and passive microwave retrieval product from SMAP (Das et al. 2011) has the potential to provide valuable information about the near-surface soil moisture state for improving land surface modeling output.
Long-Term Evaluation of the AMSR-E Soil Moisture Product Over the Walnut Gulch Watershed, AZ
NASA Astrophysics Data System (ADS)
Bolten, J. D.; Jackson, T. J.; Lakshmi, V.; Cosh, M. H.; Drusch, M.
2005-12-01
The Advanced Microwave Scanning Radiometer -Earth Observing System (AMSR-E) was launched aboard NASA's Aqua satellite on May 4th, 2002. Quantitative estimates of soil moisture using the AMSR-E provided data have required routine radiometric data calibration and validation using comparisons of satellite observations, extended targets and field campaigns. The currently applied NASA EOS Aqua ASMR-E soil moisture algorithm is based on a change detection approach using polarization ratios (PR) of the calibrated AMSR-E channel brightness temperatures. To date, the accuracy of the soil moisture algorithm has been investigated on short time scales during field campaigns such as the Soil Moisture Experiments in 2004 (SMEX04). Results have indicated self-consistency and calibration stability of the observed brightness temperatures; however the performance of the moisture retrieval algorithm has been poor. The primary objective of this study is to evaluate the quality of the current version of the AMSR-E soil moisture product for a three year period over the Walnut Gulch Experimental Watershed (150 km2) near Tombstone, AZ; the northern study area of SMEX04. This watershed is equipped with hourly and daily recording of precipitation, soil moisture and temperature via a network of raingages and a USDA-NRCS Soil Climate Analysis Network (SCAN) site. Surface wetting and drying are easily distinguished in this area due to the moderately-vegetated terrain and seasonally intense precipitation events. Validation of AMSR-E derived soil moisture is performed from June 2002 to June 2005 using watershed averages of precipitation, and soil moisture and temperature data from the SCAN site supported by a surface soil moisture network. Long-term assessment of soil moisture algorithm performance is investigated by comparing temporal variations of moisture estimates with seasonal changes and precipitation events. Further comparisons are made with a standard soil dataset from the European Centre for Medium-Range Weather Forecasts. The results of this research will contribute to a better characterization of the low biases and discrepancies currently observed in the AMSR-E soil moisture product.
Data documentation for the bare soil experiment at the University of Arkansas
NASA Technical Reports Server (NTRS)
Waite, W. P.; Scott, H. D. (Principal Investigator); Hancock, G. D.
1980-01-01
The reflectivities of several controlled moisture test plots were investigated. These test plots were of a similar soil texture which was clay loam and were prepared to give a desired initial soil moisture and density profile. Measurements were conducted on the plots as the soil water redistributed for both long term and diurnal cycles. These measurements included reflectivity, gravimetric and volumetric soil moisture, soil moisture potential, and soil temperature.
Visual soil evaluation - future research requirements
NASA Astrophysics Data System (ADS)
Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Ball, Bruce; Holden, Nick
2017-04-01
A review of Visual Soil Evaluation (VSE) techniques (Emmet-Booth et al., 2016) highlighted their established utility for soil quality assessment, though some limitations were identified; (1) The examination of aggregate size, visible intra-porosity and shape forms a key assessment criterion in almost all methods, thus limiting evaluation to structural form. The addition of criteria that holistically examine structure may be desirable. For example, structural stability can be indicated using dispersion tests or examining soil surface crusting, while the assessment of soil colour may indirectly indicate soil organic matter content, a contributor to stability. Organic matter assessment may also indicate structural resilience, along with rooting, earthworm numbers or shrinkage cracking. (2) Soil texture may influence results or impeded method deployment. Modification of procedures to account for extreme texture variation is desirable. For example, evidence of compaction in sandy or single grain soils greatly differs to that in clayey soils. Some procedures incorporate separate classification systems or adjust deployment based on texture. (3) Research into impacts of soil moisture content on VSE evaluation criteria is required. Criteria such as rupture resistance and shape may be affected by moisture content. It is generally recommended that methods are deployed on moist soils and quantification of influences of moisture variation on results is necessary. (4) Robust sampling strategies for method deployment are required. Dealing with spatial variation differs between methods, but where methods can be deployed over large areas, clear instruction on sampling is required. Additionally, as emphasis has been placed on the agricultural production of soil, so the ability of VSE for exploring structural quality in terms of carbon storage, water purification and biodiversity support also requires research. References Emmet-Booth, J.P., Forristal. P.D., Fenton, O., Ball, B.C. & Holden, N.M. 2016. A review of visual soil evaluation techniques for soil structure. Soil Use and Management, 32, 623-634.
NASA Astrophysics Data System (ADS)
Tulina, A. S.; Semenov, V. M.
2015-08-01
The sensitivity of the potentially mineralizable pool of soil organic matter (Cpm) to changes in temperature and moisture has been assessed from the temperature coefficient ( Q10) and the moisture coefficient ( W 10), which indicate how much the Cpm size changes, when the temperature changes by 10°C and the soil water content changes by 10 wt %, respectively. Samples of gray forest soil, podzolized chernozem, and dark chestnut soil taken from arable plots have been incubated at 8, 18, and 28°C and humidity of 10, 25, and 40 wt %. From the data on the production of C-CO2 by soil samples during incubation for 150 days, the content of Cpm has been calculated. It has been shown that, on average for the three soils, an increase in temperature accounts for 63% of the rise in the pool of potentially mineralizable organic matter, whereas an increase in moisture accounts for 8% of that rise. The temperature coefficients of the potentially mineralizable pool are 2.71 ± 0.64, 1.27 ± 0.20, and 1.85 ± 0.30 in ranges of 8-18, 18-28, and 8-28°C, respectively; the moisture coefficients are 1.19 ± 0.11, 1.09 ± 0.05, and 1.14 ± 0.06 in ranges of 10-25, 25-40, and 10-40 wt %, respectively. The easily mineralizable fraction (C1, k 1 > 0.1 days-1) of the active pool of soil organic matter is less sensitive to temperature than the hardly mineralizable fraction (C3, 0.01 > k 3 > 0.001 days-1); their Q 10 values are 0.91 ± 0.15 and 2.40 ± 0.31, respectively. On the contrary, the easily mineralizable fraction is more sensitive to moistening than the hardly mineralizable fraction: their W 10 values are 1.22 ± 0.06 and 1.03 ± 0.08, respectively. The intensification of mineralization with rising temperature and water content during a long-term incubation results in the exhausting of the active pool, which reduces the production of CO2 by the soils during the repeated incubation under similar conditions nonlimiting mineralization.
Soil moisture dynamics and smoldering combustion limits of pocosin soils in North Carolina, USA
James Reardon; Gary Curcio; Roberta Bartlette
2009-01-01
Smoldering combustion of wetland organic soils in the south-eastern USA is a serious management concern. Previous studies have reported smoldering was sensitive to a wide range of moisture contents, but studies of soil moisture dynamics and changing smoldering combustion potential in wetland communities are limited. Linking soil moisture measurements with estimates of...
USDA-ARS?s Scientific Manuscript database
NASA’s Soil Moisture Active Passive (SMAP) mission, scheduled for launch in 2014, will carry the first combined L-band radar and radiometer system with the objective of mapping near surface soil moisture and freeze/thaw state globally at near-daily time step (2-3 days). SMAP will provide three soil ...
NASA Astrophysics Data System (ADS)
Dong, Jingnuo; Ochsner, Tyson E.
2018-03-01
Soil moisture patterns are commonly thought to be dominated by land surface characteristics, such as soil texture, at small scales and by atmospheric processes, such as precipitation, at larger scales. However, a growing body of evidence challenges this conceptual model. We investigated the structural similarity and spatial correlations between mesoscale (˜1-100 km) soil moisture patterns and land surface and atmospheric factors along a 150 km transect using 4 km multisensor precipitation data and a cosmic-ray neutron rover, with a 400 m diameter footprint. The rover was used to measure soil moisture along the transect 18 times over 13 months. Spatial structures of soil moisture, soil texture (sand content), and antecedent precipitation index (API) were characterized using autocorrelation functions and fitted with exponential models. Relative importance of land surface characteristics and atmospheric processes were compared using correlation coefficients (r) between soil moisture and sand content or API. The correlation lengths of soil moisture, sand content, and API ranged from 12-32 km, 13-20 km, and 14-45 km, respectively. Soil moisture was more strongly correlated with sand content (r = -0.536 to -0.704) than with API for all but one date. Thus, land surface characteristics exhibit coherent spatial patterns at scales up to 20 km, and those patterns often exert a stronger influence than do precipitation patterns on mesoscale spatial patterns of soil moisture.
Sensitivity of Polygonum aviculare Seeds to Light as Affected by Soil Moisture Conditions
Batlla, Diego; Nicoletta, Marcelo; Benech-Arnold, Roberto
2007-01-01
Background and Aims It has been hypothesized that soil moisture conditions could affect the dormancy status of buried weed seeds, and, consequently, their sensitivity to light stimuli. In this study, an investigation is made of the effect of different soil moisture conditions during cold-induced dormancy loss on changes in the sensitivity of Polygonum aviculare seeds to light. Methods Seeds buried in pots were stored under different constant and fluctuating soil moisture environments at dormancy-releasing temperatures. Seeds were exhumed at regular intervals during storage and were exposed to different light treatments. Changes in the germination response of seeds to light treatments during storage under the different moisture environments were compared in order to determine the effect of soil moisture on the sensitivity to light of P. aviculare seeds. Key Results Seed acquisition of low-fluence responses during dormancy release was not affected by either soil moisture fluctuations or different constant soil moisture contents. On the contrary, different soil moisture environments affected seed acquisition of very low fluence responses and the capacity of seeds to germinate in the dark. Conclusions The results indicate that under field conditions, the sensitivity to light of buried weed seeds could be affected by the soil moisture environment experienced during the dormancy release season, and this could affect their emergence pattern. PMID:17430979
Inferring Soil Moisture Memory from Streamflow Observations Using a Simple Water Balance Model
NASA Technical Reports Server (NTRS)
Orth, Rene; Koster, Randal Dean; Seneviratne, Sonia I.
2013-01-01
Soil moisture is known for its integrative behavior and resulting memory characteristics. Soil moisture anomalies can persist for weeks or even months into the future, making initial soil moisture a potentially important contributor to skill in weather forecasting. A major difficulty when investigating soil moisture and its memory using observations is the sparse availability of long-term measurements and their limited spatial representativeness. In contrast, there is an abundance of long-term streamflow measurements for catchments of various sizes across the world. We investigate in this study whether such streamflow measurements can be used to infer and characterize soil moisture memory in respective catchments. Our approach uses a simple water balance model in which evapotranspiration and runoff ratios are expressed as simple functions of soil moisture; optimized functions for the model are determined using streamflow observations, and the optimized model in turn provides information on soil moisture memory on the catchment scale. The validity of the approach is demonstrated with data from three heavily monitored catchments. The approach is then applied to streamflow data in several small catchments across Switzerland to obtain a spatially distributed description of soil moisture memory and to show how memory varies, for example, with altitude and topography.
Multifrequency remote sensing of soil moisture. [Guymon, Oklahoma and Dalhart, Texas
NASA Technical Reports Server (NTRS)
Theis, S. W.; Mcfarland, M. J.; Rosenthal, W. D.; Jones, C. L. (Principal Investigator)
1982-01-01
Multifrequency sensor data collected at Guymon, Oklahoma and Dalhart, Texas using NASA's C-130 aircraft were used to determine which of the all-weather microwave sensors demonstrated the highest correlation to surface soil moisture over optimal bare soil conditions, and to develop and test techniques which use visible/infrared sensors to compensate for the vegetation effect in this sensor's response to soil moisture. The L-band passive microwave radiometer was found to be the most suitable single sensor system to estimate soil moisture over bare fields. In comparison to other active and passive microwave sensors the L-band radiometer (1) was influenced least by ranges in surface roughness; (2) demonstrated the most sensitivity to soil moisture differences in terms of the range of return from the full range of soil moisture; and (3) was less sensitive to errors in measurement in relation to the range of sensor response. L-band emissivity related more strongly to soil moisture when moisture was expressed as percent of field capacity. The perpendicular vegetation index as determined from the visible/infrared sensors was useful as a measure of the vegetation effect on the L-band radiometer response to soil moisture.
Evaluation of soil pH and moisture content on in-situ ozonation of pyrene in soils.
Luster-Teasley, S; Ubaka-Blackmoore, N; Masten, S J
2009-08-15
In this study, pyrene spiked soil (300 ppm) was ozonated at pH levels of 2, 6, and 8 and three moisture contents. It was found that soil pH and moisture content impacted the effectiveness of PAH oxidation in unsaturated soils. In air-dried soils, as pH increased, removal increased, such that pyrene removal efficiencies at pH 6 and pH 8 reached 95-97% at a dose of 2.22 mg O(3)/mg pyrene. Ozonation at 16.2+/-0.45 mg O(3)/ppm pyrene in soil resulted in 81-98% removal of pyrene at all pH levels tested. Saturated soils were tested at dry, 5% or 10% moisture conditions. The removal of pyrene was slower in moisturized soils, with the efficiency decreasing as the moisture content increased. Increasing the pH of the soil having a moisture content of 5% resulted in improved pyrene removals. On the contrary, in the soil having a moisture content of 10%, as the pH increased, pyrene removal decreased. Contaminated PAH soils were stored for 6 months to compare the efficiency of PAH removal in freshly contaminated soil and aged soils. PAH adsorption to soil was found to increase with longer exposure times; thus requiring much higher doses of ozone to effectively oxidize pyrene.
Liu, Ya; Pan, Xianzhang; Wang, Changkun; Li, Yanli; Shi, Rongjie
2015-01-01
Robust models for predicting soil salinity that use visible and near-infrared (vis–NIR) reflectance spectroscopy are needed to better quantify soil salinity in agricultural fields. Currently available models are not sufficiently robust for variable soil moisture contents. Thus, we used external parameter orthogonalization (EPO), which effectively projects spectra onto the subspace orthogonal to unwanted variation, to remove the variations caused by an external factor, e.g., the influences of soil moisture on spectral reflectance. In this study, 570 spectra between 380 and 2400 nm were obtained from soils with various soil moisture contents and salt concentrations in the laboratory; 3 soil types × 10 salt concentrations × 19 soil moisture levels were used. To examine the effectiveness of EPO, we compared the partial least squares regression (PLSR) results established from spectra with and without EPO correction. The EPO method effectively removed the effects of moisture, and the accuracy and robustness of the soil salt contents (SSCs) prediction model, which was built using the EPO-corrected spectra under various soil moisture conditions, were significantly improved relative to the spectra without EPO correction. This study contributes to the removal of soil moisture effects from soil salinity estimations when using vis–NIR reflectance spectroscopy and can assist others in quantifying soil salinity in the future. PMID:26468645
NASA Astrophysics Data System (ADS)
Cao, W.; Sheng, Y.
2017-12-01
The soil moisture movement is an important carrier of material cycle and energy flow among the various geo-spheres in the cold regions. It is very critical to protect the alpine ecology and hydrologic cycle in Qinghai-Tibet Plateau. Especially, it becomes one of the key problems to reveal the spatial-temporal variability of soil moisture movement and its main influence factors in earth system science. Thus, this research takes the north slope of Bayan Har Mountains in Qinghai-Tibet Plateau as a case study. The present study firstly investigates the change of permafrost moisture in different slope positions and depths. Based on this investigation, this article attempts to investigate the spatial variability of permafrost moisture and identifies the key influence factors in different terrain conditions. The method of classification and regression tree (CART) is adopted to identify the main controlling factors influencing the soil moisture movement. And the relationships between soil moisture and environmental factors are revealed by the use of the method of canonical correspondence analysis (CCA). The results show that: 1) the change of the soil moisture on the permafrost slope is divided into 4 stages, including the freezing stability phase, the rapid thawing phase, the thawing stability phase and the fast freezing phase; 2) this greatly enhances the horizontal flow in the freezing period due to the terrain slope and the freezing-thawing process. Vertical migration is the mainly form of the soil moisture movement. It leads to that the soil-moisture content in the up-slope is higher than that in the down-slope. On the contrary, the soil-moisture content in the up-slope is lower than that in the down-slope during the melting period; 3) the main environmental factors which affect the slope-permafrost soil-moisture are elevation, soil texture, soil temperature and vegetation coverage. But there are differences in the impact factors of the soil moisture in different freezing-thawing stages; 4) the main factors that affect the slope-permafrost soil-moisture at the shallow depth of 0-20cm are slope, elevation and vegetation coverage. And the main factors influencing the soil moisture at the middle and lower depth are complex.
Soil moisture observations using L-, C-, and X-band microwave radiometers
NASA Astrophysics Data System (ADS)
Bolten, John Dennis
The purpose of this thesis is to further the current understanding of soil moisture remote sensing under varying conditions using L-, C-, and X-band. Aircraft and satellite instruments are used to investigate the effects of frequency and spatial resolution on soil moisture sensitivity. The specific objectives of the research are to examine multi-scale observed and modeled microwave radiobrightness, evaluate new EOS Aqua Advanced Microwave Scanning Radiometer (AMSR-E) brightness temperature and soil moisture retrievals, and examine future satellite-based technologies for soil moisture sensing. The cycling of Earth's water, energy and carbon is vital to understanding global climate. Over land, these processes are largely dependent on the amount of moisture within the top few centimeters of the soil. However, there are currently no methods available that can accurately characterize Earth's soil moisture layer at the spatial scales or temporal resolutions appropriate for climate modeling. The current work uses ground truth, satellite and aircraft remote sensing data from three large-scale field experiments having different land surface, topographic and climate conditions. A physically-based radiative transfer model is used to simulate the observed aircraft and satellite measurements using spatially and temporally co-located surface parameters. A robust analysis of surface heterogeneity and scaling is possible due to the combination of multiple datasets from a range of microwave frequencies and field conditions. Accurate characterization of spatial and temporal variability of soil moisture during the three field experiments is achieved through sensor calibration and algorithm validation. Comparisons of satellite observations and resampled aircraft observations are made using soil moisture from a Numerical Weather Prediction (NWP) model in order to further demonstrate a soil moisture correlation where point data was unavailable. The influence of vegetation, spatial scaling, and surface heterogeneity on multi-scale soil moisture prediction is presented. This work demonstrates that derived soil moisture using remote sensing provides a better coverage of soil moisture spatial variability than traditional in-situ sensors. Effects of spatial scale were shown to be less significant than frequency on soil moisture sensitivity. Retrievals of soil moisture using the current methods proved inadequate under some conditions; however, this study demonstrates the need for concurrent spaceborne frequencies including L-, C, and X-band.
L-band HIgh Spatial Resolution Soil Moisture Mapping using SMALL UnManned Aerial Systems
NASA Astrophysics Data System (ADS)
Dai, E.; Venkitasubramony, A.; Gasiewski, A. J.; Stachura, M.; Elston, J. S.; Walter, B.; Lankford, D.; Corey, C.
2017-12-01
Soil moisture is of fundamental importance to many hydrological, biological and biogeochemical processes, plays an important role in the development and evolution of convective weather and precipitation, water resource management, agriculture, and flood runoff prediction. The launch of NASA's Soil Moisture Active/Passive (SMAP) mission in 2015 provided new passive global measurements of soil moisture and surface freeze/thaw state at fixed crossing times and spatial resolutions of 36 km. However, there exists a need for measurements of soil moisture on much smaller spatial scales and arbitrary diurnal times for SMAP validation, precision agriculture and evaporation and transpiration studies of boundary layer heat transport. The Lobe Differencing Correlation Radiometer (LDCR) provides a means of mapping soil moisture on spatial scales as small as several meters. Compared with other methods of validation based on either in-situ measurements [1,2] or existing airborne sensors suitable for manned aircraft deployment [3], the integrated design of the LDCR on a lightweight small UAS (sUAS) is capable of providing sub-watershed ( km scale) coverage at very high spatial resolution ( 15 m) suitable for scaling studies, and at comparatively low operator cost. To demonstrate the LDCR several flights had been performed during field experiments at the Canton Oklahoma Soilscape site and Yuma Colorado Irrigation Research Foundation (IRF) site in 2015 and 2016, respectively, using LDCR Revision A and Tempest sUAS. The scientific intercomparisons of LDCR retrieved soil moisture and in-situ measurements will be presented. LDCR Revision B has been built and integrated into SuperSwift sUAS and additional field experiments will be performed at IRF in 2017. In Revision B the IF signal is sampled at 80 MS/s to enable digital correlation and RFI mitigation capabilities, in addition to analog correlation. [1] McIntyre, E.M., A.J. Gasiewski, and D. Manda D, "Near Real-Time Passive C-Band Microwave Soil Moisture Retrieval During CLASIC 2007," Proc. IGARSS, 2008. [2] Robock, A., S. Steele-Dunne, J. Basara, W. Crow, and M. Moghaddam M, "In Situ Network and Scaling," SMAP Algorithm and Cal/Val Workshop, 2009. [3] Walker, A., "Airborne Microwave Radiometer Measurements During CanEx-SM10," Second SMAP Cal/Val Workshop, 2011.
Inversion of Farmland Soil Moisture in Large Region Based on Modified Vegetation Index
NASA Astrophysics Data System (ADS)
Wang, J. X.; Yu, B. S.; Zhang, G. Z.; Zhao, G. C.; He, S. D.; Luo, W. R.; Zhang, C. C.
2018-04-01
Soil moisture is an important parameter for agricultural production. Efficient and accurate monitoring of soil moisture is an important link to ensure the safety of agricultural production. Remote sensing technology has been widely used in agricultural moisture monitoring because of its timeliness, cyclicality, dynamic tracking of changes in things, easy access to data, and extensive monitoring. Vegetation index and surface temperature are important parameters for moisture monitoring. Based on NDVI, this paper introduces land surface temperature and average temperature for optimization. This article takes the soil moisture in winter wheat growing area in Henan Province as the research object, dividing Henan Province into three main regions producing winter wheat and dividing the growth period of winter wheat into the early, middle and late stages on the basis of phenological characteristics and regional characteristics. Introducing appropriate correction factor during the corresponding growth period of winter wheat, correcting the vegetation index in the corresponding area, this paper establishes regression models of soil moisture on NDVI and soil moisture on modified NDVI based on correlation analysis and compare models. It shows that modified NDVI is more suitable as a indicator of soil moisture because of the better correlation between soil moisture and modified NDVI and the higher prediction accuracy of the regression model of soil moisture on modified NDVI. The research in this paper has certain reference value for winter wheat farmland management and decision-making.
L-band radar sensing of soil moisture. [Kern County, California
NASA Technical Reports Server (NTRS)
Chang, A. T. C.; Atwater, S.; Salomonson, V. V.; Estes, J. E.; Simonett, D. S.; Bryan, M. L.
1980-01-01
The performance of an L-band, 25 cm wavelength imaging synthetic aperture radar was assessed for soil moisture determination, and the temporal variability of radar returns from a number of agricultural fields was studied. A series of three overflights was accomplished over an agricultural test site in Kern County, California. Soil moisture samples were collected from bare fields at nine sites at depths of 0-2, 2-5, 5-15, and 15-30 cm. These gravimetric measurements were converted to percent of field capacity for correlation to the radar return signal. The initial signal film was optically correlated and scanned to produce image data numbers. These numbers were then converted to relative return power by linear interpolation of the noise power wedge which was introduced in 5 dB steps into the original signal film before and after each data run. Results of correlations between the relative return power and percent of field capacity (FC) demonstrate that the relative return power from this imaging radar system is responsive to the amount of soil moisture in bare fields. The signal returned from dry (15% FC) and wet (130% FC) fields where furrowing is parallel to the radar beam differs by about 10 dB.
NASA Technical Reports Server (NTRS)
Colliander, Andreas; Chan, Steven; Yueh, Simon; Cosh, Michael; Bindlish, Rajat; Jackson, Tom; Njoku, Eni
2010-01-01
Field experiment data sets that include coincident remote sensing measurements and in situ sampling will be valuable in the development and validation of the soil moisture algorithms of the NASA's future SMAP (Soil Moisture Active and Passive) mission. This paper presents an overview of the field experiment data collected from SGP99, SMEX02, CLASIC and SMAPVEX08 campaigns. Common in these campaigns were observations of the airborne PALS (Passive and Active L- and S-band) instrument, which was developed to acquire radar and radiometer measurements at low frequencies. The combined set of the PALS measurements and ground truth obtained from all these campaigns was under study. The investigation shows that the data set contains a range of soil moisture values collected under a limited number of conditions. The quality of both PALS and ground truth data meets the needs of the SMAP algorithm development and validation. The data set has already made significant impact on the science behind SMAP mission. The areas where complementing of the data would be most beneficial are also discussed.
NASA Astrophysics Data System (ADS)
López-Sánchez, M.; Mansilla-Plaza, L.; Sánchez-de-laOrden, M.
2017-10-01
Prior to field scale research, soil samples are analysed on a laboratory scale for electrical resistivity calibrations. Currently, there are a variety of field instruments to estimate the water content in soils using different physical phenomena. These instruments can be used to develop moisture-resistivity relationships on the same soil samples. This assures that measurements are performed on the same material and under the same conditions (e.g., humidity and temperature). A geometric factor is applied to the location of electrodes, in order to calculate the apparent electrical resistivity of the laboratory test cells. This geometric factor can be determined in three different ways: by means of the use of an analytical approximation, laboratory trials (experimental approximation), or by the analysis of a numerical model. The first case, the analytical approximation, is not appropriate for complex cells or arrays. And both, the experimental and numerical approximation can lead to inaccurate results. Therefore, we propose a novel approach to obtain a compromise solution between both techniques, providing a more precise determination of the geometrical factor.
NASA Astrophysics Data System (ADS)
Korres, W.; Reichenau, T. G.; Schneider, K.
2012-12-01
Soil moisture is one of the fundamental variables in hydrology, meteorology and agriculture, influencing the partitioning of solar energy into latent and sensible heat flux as well as the partitioning of precipitation into runoff and percolation. Numerous studies have shown that in addition to natural factors (rainfall, soil, topography etc.) agricultural management is one of the key drivers for spatio-temporal patterns of soil moisture in agricultural landscapes. Interactions between plant growth, soil hydrology and soil nitrogen transformation processes are modeled by using a dynamically coupled modeling approach. The process-based ecohydrological model components of the integrated decision support system DANUBIA are used to identify the important processes and feedbacks determining soil moisture patterns in agroecosystems. Integrative validation of plant growth and surface soil moisture dynamics serves as a basis for a spatially distributed modeling analysis of surface soil moisture patterns in the northern part of the Rur catchment (1100 sq km), Western Germany. An extensive three year dataset (2007-2009) of surface soil moisture-, plant- (LAI, organ specific biomass and N) and soil- (texture, N, C) measurements was collected. Plant measurements were carried out biweekly for winter wheat, maize, and sugar beet during the growing season. Soil moisture was measured with three FDR soil moisture stations. Meteorological data was measured with an eddy flux station. The results of the model validation showed a very good agreement between the modeled plant parameters (biomass, green LAI) and the measured parameters with values between 0.84 and 0.98 (Willmotts index of agreement). The modeled surface soil moisture (0 - 20 cm) showed also a very favorable agreement with the measurements for winter wheat and sugar beet with an RMSE between 1.68 and 3.45 Vol.-%. For maize, the RMSE was less favorable particularly in the 1.5 months prior to harvest. The modeled soil moisture remained in contrast to the measurements very responsive to precipitation with high soil moisture after precipitation events. This behavior indicates that the soil properties might have changed due to the formation of a surface crust or seal towards the end of the growing season. Spatial soil moisture patterns were investigated using a grid resolution of 150 meter. Spatial autocorrelation was computed on a daily basis using patterns of soil texture as well as transpiration and precipitation indices as co-variables. Spatial patterns of surface soil moisture are mostly determined by the structure of the soil properties (soil type) during winter, early growing season and after harvest of all crops. Later in the growing season, after establishment of a closed canopy the dependence of the soil moisture patterns on soil texture patterns becomes smaller and diminishes quickly after precipitation events, due to differences of the transpiration rate of the different crops. When changing the spatial scale of the analysis, the highest autocorrelation values can be found on a grid cell size between 450 and 1200 meters. Thus, small scale variability of transpiration induced by the land use pattern almost averages out, leaving the larger scale structure of soil properties to explain the soil moisture patterns.
NASA Astrophysics Data System (ADS)
Mishra, V.; Cruise, J. F.; Mecikalski, J. R.
2015-12-01
Developing accurate vertical soil moisture profiles with minimum input requirements is important to agricultural as well as land surface modeling. Earlier studies show that the principle of maximum entropy (POME) can be utilized to develop vertical soil moisture profiles with accuracy (MAE of about 1% for a monotonically dry profile; nearly 2% for monotonically wet profiles and 3.8% for mixed profiles) with minimum constraints (surface, mean and bottom soil moisture contents). In this study, the constraints for the vertical soil moisture profiles were obtained from remotely sensed data. Low resolution (25 km) MW soil moisture estimates (AMSR-E) were downscaled to 4 km using a soil evaporation efficiency index based disaggregation approach. The downscaled MW soil moisture estimates served as a surface boundary condition, while 4 km resolution TIR based Atmospheric Land Exchange Inverse (ALEXI) estimates provided the required mean root-zone soil moisture content. Bottom soil moisture content is assumed to be a soil dependent constant. Mulit-year (2002-2011) gridded profiles were developed for the southeastern United States using the POME method. The soil moisture profiles were compared to those generated in land surface models (Land Information System (LIS) and an agricultural model DSSAT) along with available NRCS SCAN sites in the study region. The end product, spatial soil moisture profiles, can be assimilated into agricultural and hydrologic models in lieu of precipitation for data scarce regions.Developing accurate vertical soil moisture profiles with minimum input requirements is important to agricultural as well as land surface modeling. Previous studies have shown that the principle of maximum entropy (POME) can be utilized with minimal constraints to develop vertical soil moisture profiles with accuracy (MAE = 1% for monotonically dry profiles; MAE = 2% for monotonically wet profiles and MAE = 3.8% for mixed profiles) when compared to laboratory and field data. In this study, vertical soil moisture profiles were developed using the POME model to evaluate an irrigation schedule over a maze field in north central Alabama (USA). The model was validated using both field data and a physically based mathematical model. The results demonstrate that a simple two-constraint entropy model under the assumption of a uniform initial soil moisture distribution can simulate most soil moisture profiles within the field area for 6 different soil types. The results of the irrigation simulation demonstrated that the POME model produced a very efficient irrigation strategy with loss of about 1.9% of the total applied irrigation water. However, areas of fine-textured soil (i.e. silty clay) resulted in plant stress of nearly 30% of the available moisture content due to insufficient water supply on the last day of the drying phase of the irrigation cycle. Overall, the POME approach showed promise as a general strategy to guide irrigation in humid environments, with minimum input requirements.
Drought monitoring with soil moisture active passive (SMAP) measurements
NASA Astrophysics Data System (ADS)
Mishra, Ashok; Vu, Tue; Veettil, Anoop Valiya; Entekhabi, Dara
2017-09-01
Recent launch of space-borne systems to estimate surface soil moisture may expand the capability to map soil moisture deficit and drought with global coverage. In this study, we use Soil Moisture Active Passive (SMAP) soil moisture geophysical retrieval products from passive L-band radiometer to evaluate its applicability to forming agricultural drought indices. Agricultural drought is quantified using the Soil Water Deficit Index (SWDI) based on SMAP and soil properties (field capacity and available water content) information. The soil properties are computed using pedo-transfer function with soil characteristics derived from Harmonized World Soil Database. The SMAP soil moisture product needs to be rescaled to be compatible with the soil parameters derived from the in situ stations. In most locations, the rescaled SMAP information captured the dynamics of in situ soil moisture well and shows the expected lag between accumulations of precipitation and delayed increased in surface soil moisture. However, the SMAP soil moisture itself does not reveal the drought information. Therefore, the SMAP based SWDI (SMAP_SWDI) was computed to improve agriculture drought monitoring by using the latest soil moisture retrieval satellite technology. The formulation of SWDI does not depend on longer data and it will overcome the limited (short) length of SMAP data for agricultural drought studies. The SMAP_SWDI is further compared with in situ Atmospheric Water Deficit (AWD) Index. The comparison shows close agreement between SMAP_SWDI and AWD in drought monitoring over Contiguous United States (CONUS), especially in terms of drought characteristics. The SMAP_SWDI was used to construct drought maps for CONUS and compared with well-known drought indices, such as, AWD, Palmer Z-Index, sc-PDSI and SPEI. Overall the SMAP_SWDI is an effective agricultural drought indicator and it provides continuity and introduces new spatial mapping capability for drought monitoring. As an agricultural drought index, SMAP_SWDI has potential to capture short term moisture information similar to AWD and related drought indices.
National Centers for Environmental Prediction
) soilm1 0-10cm soil moisture soilm2 10-40cm soil moisture soilm3 40-100cm soil moisture soilm4 100-200cm soil moisture soilt1 0-10cm soil temperature soilt2 10-40cm soil temperature soilt3 40-100cm soil temperature soilt4 100-200cm soil temperature thick700.ptype 850-700mb thickness precipitation type thick850
Remote sensing of agricultural crops and soils
NASA Technical Reports Server (NTRS)
Bauer, M. E. (Principal Investigator)
1982-01-01
Research results and accomplishments of sixteen tasks in the following areas are described: (1) corn and soybean scene radiation research; (2) soil moisture research; (3) sampling and aggregation research; (4) pattern recognition and image registration research; and (5) computer and data base services.
Resilient modulus for New Hampshire subgrade soils for use in mechanistic AASHTO design
DOT National Transportation Integrated Search
1999-09-01
Resilient modulus tests were conducted on five subgrade soils commonly found in the state of New Hampshire. Tests were conducted on samples prepared at optimum density and moisture content. To determine the effective resilient modulus of the various ...
NASA Astrophysics Data System (ADS)
Baldwin, D.; Manfreda, S.; Keller, K.; Smithwick, E. A. H.
2017-03-01
Satellite-based near-surface (0-2 cm) soil moisture estimates have global coverage, but do not capture variations of soil moisture in the root zone (up to 100 cm depth) and may be biased with respect to ground-based soil moisture measurements. Here, we present an ensemble Kalman filter (EnKF) hydrologic data assimilation system that predicts bias in satellite soil moisture data to support the physically based Soil Moisture Analytical Relationship (SMAR) infiltration model, which estimates root zone soil moisture with satellite soil moisture data. The SMAR-EnKF model estimates a regional-scale bias parameter using available in situ data. The regional bias parameter is added to satellite soil moisture retrievals before their use in the SMAR model, and the bias parameter is updated continuously over time with the EnKF algorithm. In this study, the SMAR-EnKF assimilates in situ soil moisture at 43 Soil Climate Analysis Network (SCAN) monitoring locations across the conterminous U.S. Multivariate regression models are developed to estimate SMAR parameters using soil physical properties and the moderate resolution imaging spectroradiometer (MODIS) evapotranspiration data product as covariates. SMAR-EnKF root zone soil moisture predictions are in relatively close agreement with in situ observations when using optimal model parameters, with root mean square errors averaging 0.051 [cm3 cm-3] (standard error, s.e. = 0.005). The average root mean square error associated with a 20-fold cross-validation analysis with permuted SMAR parameter regression models increases moderately (0.082 [cm3 cm-3], s.e. = 0.004). The expected regional-scale satellite correction bias is negative in four out of six ecoregions studied (mean = -0.12 [-], s.e. = 0.002), excluding the Great Plains and Eastern Temperate Forests (0.053 [-], s.e. = 0.001). With its capability of estimating regional-scale satellite bias, the SMAR-EnKF system can predict root zone soil moisture over broad extents and has applications in drought predictions and other operational hydrologic modeling purposes.
Toward improving the representation of the water cycle at High Northern Latitudes
NASA Astrophysics Data System (ADS)
Lahoz, William; Svendby, Tove; Hamer, Paul; Blyverket, Jostein; Kristiansen, Jørn; Luijting, Hanneke
2016-04-01
The rapid warming at northern latitude regions in recent decades has resulted in a lengthening of the growing season, greater photosynthetic activity and enhanced carbon sequestration by the ecosystem. These changes are likely to intensify summer droughts, tree mortality and wildfires. A potential major climate change feedback is the release of carbon-bearing compounds from soil thawing. These changes make it important to have information on the land surface (soil moisture and temperature) at high northern latitude regions. The availability of soil moisture measurements from several satellite platforms provides an opportunity to address issues associated with the effects of climate change, e.g., assessing multi-decadal links between increasing temperatures, snow cover, soil moisture variability and vegetation dynamics. The relatively poor information on water cycle parameters for biomes at northern high latitudes make it important that efforts are expended on improving the representation of the water cycle at these latitudes. In a collaboration between NILU and Met Norway, we evaluate the soil moisture observations over Norway from the ESA satellite SMOS (Soil Moisture and Ocean Salinity) using in situ ground based soil moisture measurements, with reference to drought and flood episodes. We will use data assimilation of the quality-controlled SMOS soil moisture observations into a land surface model and a numerical weather prediction model to assess the added value from satellite observations of soil moisture for improving the representation of the water cycle at high northern latitudes. This presentation provides first results from this work. We discuss the evaluation of SMOS soil moisture data (and from other satellites) against ground-based in situ data over Norway; the performance of the SMOS soil moisture data for selected drought and flood conditions over Norway; and the first results from data assimilation experiments with land surface models and numerical weather prediction models. Analyses include information on root zone soil moisture. We provide evidence of the value of satellite soil measurements over Norway, including their fidelity, and their impact at improving the representation of the hydrological cycle over northern high latitudes. We indicate benefits from these results for multi-decadal soil moisture datasets such as that from the ESA CCI for soil moisture.
Downscaling SMAP Soil Moisture Using Geoinformation Data and Geostatistics
NASA Astrophysics Data System (ADS)
Xu, Y.; Wang, L.
2017-12-01
Soil moisture is important for agricultural and hydrological studies. However, ground truth soil moisture data for wide area is difficult to achieve. Microwave remote sensing such as Soil Moisture Active Passive (SMAP) can offer a solution for wide coverage. However, existing global soil moisture products only provide observations at coarse spatial resolutions, which often limit their applications in regional agricultural and hydrological studies. This paper therefore aims to generate fine scale soil moisture information and extend soil moisture spatial availability. A statistical downscaling scheme is presented that incorporates multiple fine scale geoinformation data into the downscaling of coarse scale SMAP data in the absence of ground measurement data. Geoinformation data related to soil moisture patterns including digital elevation model (DEM), land surface temperature (LST), land use and normalized difference vegetation index (NDVI) at a fine scale are used as auxiliary environmental variables for downscaling SMAP data. Generalized additive model (GAM) and regression tree are first conducted to derive statistical relationships between SMAP data and auxiliary geoinformation data at an original coarse scale, and residuals are then downscaled to a finer scale via area-to-point kriging (ATPK) by accounting for the spatial correlation information of the input residuals. The results from standard validation scores as well as the triple collocation (TC) method against soil moisture in-situ measurements show that the downscaling method can significantly improve the spatial details of SMAP soil moisture while maintain the accuracy.
SMERGE: A multi-decadal root-zone soil moisture product for CONUS
NASA Astrophysics Data System (ADS)
Crow, W. T.; Dong, J.; Tobin, K. J.; Torres, R.
2017-12-01
Multi-decadal root-zone soil moisture products are of value for a range of water resource and climate applications. The NASA-funded root-zone soil moisture merging project (SMERGE) seeks to develop such products through the optimal merging of land surface model predictions with surface soil moisture retrievals acquired from multi-sensor remote sensing products. This presentation will describe the creation and validation of a daily, multi-decadal (1979-2015), vertically-integrated (both surface to 40 cm and surface to 100 cm), 0.125-degree root-zone product over the contiguous United States (CONUS). The modeling backbone of the system is based on hourly root-zone soil moisture simulations generated by the Noah model (v3.2) operating within the North American Land Data Assimilation System (NLDAS-2). Remotely-sensed surface soil moisture retrievals are taken from the multi-sensor European Space Agency Climate Change Initiative soil moisture data set (ESA CCI SM). In particular, the talk will detail: 1) the exponential smoothing approach used to convert surface ESA CCI SM retrievals into root-zone soil moisture estimates, 2) the averaging technique applied to merge (temporally-sporadic) remotely-sensed with (continuous) NLDAS-2 land surface model estimates of root-zone soil moisture into the unified SMERGE product, and 3) the validation of the SMERGE product using long-term, ground-based soil moisture datasets available within CONUS.
Global response of the growing season to soil moisture and topography
NASA Astrophysics Data System (ADS)
Guevara, M.; Arroyo, C.; Warner, D. L.; Equihua, J.; Lule, A. V.; Schwartz, A.; Taufer, M.; Vargas, R.
2017-12-01
Soil moisture has a direct influence in plant productivity. Plant productivity and its greenness can be inferred by remote sensing with higher spatial detail than soil moisture. The objective was to improve the coarse scale of currently available satellite soil moisture estimates and identify areas of strong coupling between the interannual variability soil moisture and the maximum greenness vegetation fraction (MGVF) at the global scale. We modeled, cross-validated and downscaled remotely sensed soil moisture using machine learning and digital terrain analysis across 23 years (1991-2013) of available data. Improving the accuracy (0.69-0.87 % of cross-validated explained variance) and the spatial detail (from 27 to 15km) of satellite soil moisture, we filled temporal gaps of information across vegetated areas where satellite soil moisture does not work properly. We found that 7.57% of global vegetated area shows strong correlation with our downscaled product (R2>0.5, Fig. 1). We found a dominant positive response of vegetation greenness to topography-based soil moisture across water limited environments, however, the tropics and temperate environments of higher latitudes showed a sparse negative response. We conclude that topography can be used to effectively improve the spatial detail of globally available remotely sensed soil moisture, which is convenient to generate unbiased comparisons with global vegetation dynamics, and better inform land and crop modeling efforts.
Soil Moisture and the Persistence of North American Drought.
NASA Astrophysics Data System (ADS)
Oglesby, Robert J.; Erickson, David J., III
1989-11-01
We describe numerical sensitivity experiments exploring the effects of soil moisture on North American summertime climate using the NCAR CCMI, a 12-layer global atmospheric general circulation model. In particular. the hypothesis that reduced soil moisture may help induce and amplify warm, dry summers over midlatitude continental interiors is examined. Equilibrium climate statistics are computed for the perpetual July model response to imposed soil moisture anomalies over North America between 36° and 49°N. In addition, the persistence of imposed soil moisture anomalies is examined through use of the seasonal cycle mode of operation with use of various initial atmospheric states both equilibrated and nonequilibrated to the initial soil moisture anomaly.The climate statistics generated by thew model simulations resemble in a general way those of the summer of 1988, when extensive heat and drought occurred over much of North America. A reduction in soil moisture in the model leads to an increase in surface temperature, lower surface pressure, increased ridging aloft, and a northward shift of the jet stream. Low-level moisture advection from the Gulf of Mexico is important in determining where persistent soil moisture deficits can be maintained. In seasonal cycle simulations, it lock longer for an initially unequilibrated atmosphere to respond to the imposed soil moisture anomaly, via moisture transport from the Gulf of Mexico, than when initially the atmosphere was in equilibrium with the imposed anomaly., i.e., the initial state was obtained from the appropriate perpetual July simulation. The results demonstrate the important role of soil moisture in prolonging and/or amplifying North American summertime drought.
NASA Technical Reports Server (NTRS)
Crosson, William L.; Laymon, Charles A.; Inguva, Ramarao; Schamschula, Marius; Caulfield, John
1998-01-01
Knowledge of the amount of water in the soil is of great importance to many earth science disciplines. Soil moisture is a key variable in controlling the exchange of water and energy between the land surface and the atmosphere. Thus, soil moisture information is valuable in a wide range of applications including weather and climate, runoff potential and flood control, early warning of droughts, irrigation, crop yield forecasting, soil erosion, reservoir management, geotechnical engineering, and water quality. Despite the importance of soil moisture information, widespread and continuous measurements of soil moisture are not possible today. Although many earth surface conditions can be measured from satellites, we still cannot adequately measure soil moisture from space. Research in soil moisture remote sensing began in the mid 1970s shortly after the surge in satellite development. Recent advances in remote sensing have shown that soil moisture can be measured, at least qualitatively, by several methods. Quantitative measurements of moisture in the soil surface layer have been most successful using both passive and active microwave remote sensing, although complications arise from surface roughness and vegetation type and density. Early attempts to measure soil moisture from space-borne microwave instruments were hindered by what is now considered sub-optimal wavelengths (shorter than 5 cm) and the coarse spatial resolution of the measurements. L-band frequencies between 1 and 3 GHz (10-30 cm) have been deemed optimal for detection of soil moisture in the upper few centimeters of soil. The Electronically Steered Thinned Array Radiometer (ESTAR), an aircraft-based instrument operating a 1,4 GHz, has shown great promise for soil moisture determination. Initiatives are underway to develop a similar instrument for space. Existing space-borne synthetic aperture radars (SARS) operating at C- and L-band have also shown some potential to detect surface wetness. The advantage of radar is its much higher resolution than passive microwave systems, but it is currently hampered by surface roughness effects and the lack of a good algorithm based on a single frequency and single polarization. In addition, its repeat frequency is generally low (about 40 days). In the meantime, two new radiometers offer some hope for remote sensing of soil moisture from space. The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), launched in November 1997, possesses a 10.65 GHz channel and the Advanced Microwave Scanning Radiometer (AMSR) on both the ADEOS-11 and Earth Observing System AM-1 platforms to be launched in 1999 possesses a 6.9 GHz channel. Aside from issues about interference from vegetation, the coarse resolution of these data will provide considerable challenges pertaining to their application. The resolution of TMI is about 45 km and that of AMSR is about 70 km. These resolutions are grossly inconsistent with the scale of soil moisture processes and the spatial variability of factors that control soil moisture. Scale disparities such as these are forcing us to rethink how we assimilate data of various scales in hydrologic models. Of particular interest is how to assimilate soil moisture data by reconciling the scale disparity between what we can expect from present and future remote sensing measurements of soil moisture and modeling soil moisture processes. It is because of this disparity between the resolution of space-based sensors and the scale of data needed for capturing the spatial variability of soil moisture and related properties that remote sensing of soil moisture has not met with more widespread success. Within a single footprint of current sensors at the wavelengths optimal for this application, in most cases there is enormous heterogeneity in soil moisture created by differences in landcover, soils and topography, as well as variability in antecedent precipitation. It is difficult to interpret the meaning of 'mean' soil moisture under such conditions and even more difficult to apply such a value. Because of the non-linear relationships between near-surface soil moisture and other variables of interest, such as surface energy fluxes and runoff, mean soil moisture has little applicability at such large scales. It is for these reasons that the use of remote sensing in conjunction with a hydrologic model appears to be of benefit in capturing the complete spatial and temporal structure of soil moisture. This paper is Part I of a four-part series describing a method for intermittently assimilating remotely-sensed soil moisture information to improve performance of a distributed land surface hydrology model. The method, summarized in section II, involves the following components, each of which is detailed in the indicated section of the paper or subsequent papers in this series: Forward radiative transfer model methods (section II and Part IV); Use of a Kalman filter to assimilate remotely-sensed soil moisture estimates with the model profile (section II and Part IV); Application of a soil hydrology model to capture the continuous evolution of the soil moisture profile within and below the root zone (section III); Statistical aggregation techniques (section IV and Part II); Disaggregation techniques using a neural network approach (section IV and Part III); and Maximum likelihood and Bayesian algorithms for inversely solving for the soil moisture profile in the upper few cm (Part IV).
NASA Astrophysics Data System (ADS)
Dorigo, W. A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; Robock, A.; Jackson, T.
2011-02-01
In situ measurements of soil moisture are invaluable for calibrating and validating land surface models and satellite-based soil moisture retrievals. In addition, long-term time series of in situ soil moisture measurements themselves can reveal trends in the water cycle related to climate or land cover change. Nevertheless, on a worldwide basis the number of meteorological networks and stations measuring soil moisture, in particular on a continuous basis, is still limited and the data they provide lack standardization of technique and protocol. To overcome many of these limitations, the International Soil Moisture Network (ISMN; http://www.ipf.tuwien.ac.at/insitu) was initiated to serve as a centralized data hosting facility where globally available in situ soil moisture measurements from operational networks and validation campaigns are collected, harmonized, and made available to users. Data collecting networks share their soil moisture datasets with the ISMN on a voluntary and no-cost basis. Incoming soil moisture data are automatically transformed into common volumetric soil moisture units and checked for outliers and implausible values. Apart from soil water measurements from different depths, important metadata and meteorological variables (e.g., precipitation and soil temperature) are stored in the database. These will assist the user in correctly interpreting the soil moisture data. The database is queried through a graphical user interface while output of data selected for download is provided according to common standards for data and metadata. Currently (status January 2011), the ISMN contains data of 16 networks and more than 500 stations located in the North America, Europe, Asia, and Australia. The time period spanned by the entire database runs from 1952 until the present, although most datasets have originated during the last decade. The database is rapidly expanding, which means that both the number of stations and the time period covered by the existing stations are still growing. Hence, it will become an increasingly important resource for validating and improving satellite-derived soil moisture products and studying climate related trends. As the ISMN is animated by the scientific community itself, we invite potential networks to enrich the collection by sharing their in situ soil moisture data.
NASA Astrophysics Data System (ADS)
Dorigo, W. A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Gruber, A.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; Robock, A.; Jackson, T.
2011-05-01
In situ measurements of soil moisture are invaluable for calibrating and validating land surface models and satellite-based soil moisture retrievals. In addition, long-term time series of in situ soil moisture measurements themselves can reveal trends in the water cycle related to climate or land cover change. Nevertheless, on a worldwide basis the number of meteorological networks and stations measuring soil moisture, in particular on a continuous basis, is still limited and the data they provide lack standardization of technique and protocol. To overcome many of these limitations, the International Soil Moisture Network (ISMN; http://www.ipf.tuwien.ac.at/insitu) was initiated to serve as a centralized data hosting facility where globally available in situ soil moisture measurements from operational networks and validation campaigns are collected, harmonized, and made available to users. Data collecting networks share their soil moisture datasets with the ISMN on a voluntary and no-cost basis. Incoming soil moisture data are automatically transformed into common volumetric soil moisture units and checked for outliers and implausible values. Apart from soil water measurements from different depths, important metadata and meteorological variables (e.g., precipitation and soil temperature) are stored in the database. These will assist the user in correctly interpreting the soil moisture data. The database is queried through a graphical user interface while output of data selected for download is provided according to common standards for data and metadata. Currently (status May 2011), the ISMN contains data of 19 networks and more than 500 stations located in North America, Europe, Asia, and Australia. The time period spanned by the entire database runs from 1952 until the present, although most datasets have originated during the last decade. The database is rapidly expanding, which means that both the number of stations and the time period covered by the existing stations are still growing. Hence, it will become an increasingly important resource for validating and improving satellite-derived soil moisture products and studying climate related trends. As the ISMN is animated by the scientific community itself, we invite potential networks to enrich the collection by sharing their in situ soil moisture data.
USDA-ARS?s Scientific Manuscript database
The contrast between the point-scale nature of current ground-based soil moisture instrumentation and the footprint resolution (typically >100 square kilometers) of satellites used to retrieve soil moisture poses a significant challenge for the validation of data products from satellite missions suc...
Remote sensing of an agricultural soil moisture network in Walnut Creek, Iowa
USDA-ARS?s Scientific Manuscript database
The calibration and validation of soil moisture remote sensing products is complicated by the logistics of installing a soil moisture network for a long term period in an active landscape. Usually soil moisture sensors are added to existing precipitation networks which have as a singular requiremen...
Evaluation of SMOS soil moisture products over the CanEx-SM10 area
USDA-ARS?s Scientific Manuscript database
The Soil Moisture and Ocean Salinity (SMOS) Earth observation satellite was launched in November 2009 to provide global soil moisture and ocean salinity measurements based on L-Band passive microwave measurements. Since its launch, different versions of SMOS soil moisture products processors have be...
SMOS soil moisture validation with U.S. in situ newworks
USDA-ARS?s Scientific Manuscript database
Estimation of soil moisture at large scale has been performed using several satellite-based passive microwave sensors using a variety of retrieval methods. The most recent source of soil moisture is the European Space Agency Soil Moisture and Ocean Salinity (SMOS) mission. Since it is a new sensor u...
Potential of bias correction for downscaling passive microwave and soil moisture data
USDA-ARS?s Scientific Manuscript database
Passive microwave satellites such as SMOS (Soil Moisture and Ocean Salinity) or SMAP (Soil Moisture Active Passive) observe brightness temperature (TB) and retrieve soil moisture at a spatial resolution greater than most hydrological processes. Bias correction is proposed as a simple method to disag...
Validation of SMAP surface soil moisture products with core validation sites
USDA-ARS?s Scientific Manuscript database
The NASA Soil Moisture Active Passive (SMAP) mission has utilized a set of core validation sites as the primary methodology in assessing the soil moisture retrieval algorithm performance. Those sites provide well-calibrated in situ soil moisture measurements within SMAP product grid pixels for diver...
Evaluating soil moisture retrievals from ESA's SMOS and NASA's SMAP brightness temperature datasets
USDA-ARS?s Scientific Manuscript database
Two satellites are currently monitoring surface soil moisture (SM) from L-band observations: SMOS (Soil Moisture and Ocean Salinity), a European Space Agency (ESA) satellite that was launched on November 2, 2009 and SMAP (Soil Moisture Active Passive), a National Aeronautics and Space Administration...
Estimating error cross-correlations in soil moisture data sets using extended collocation analysis
USDA-ARS?s Scientific Manuscript database
Consistent global soil moisture records are essential for studying the role of hydrologic processes within the larger earth system. Various studies have shown the benefit of assimilating satellite-based soil moisture data into water balance models or merging multi-source soil moisture retrievals int...
Precipitation estimation using L-Band and C-Band soil moisture retrievals
USDA-ARS?s Scientific Manuscript database
An established methodology for estimating precipitation amounts from satellite-based soil moisture retrievals is applied to L-band products from the Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) satellite missions and to a C-band product from the Advanced Scatterome...
USDA-ARS?s Scientific Manuscript database
Soil moisture is an intrinsic state variable that varies considerably in space and time. From a hydrologic viewpoint, soil moisture controls runoff, infiltration, storage and drainage. Soil moisture determines the partitioning of the incoming radiation between latent and sensible heat fluxes. Althou...
NASA Astrophysics Data System (ADS)
Azorin-Molina, Cesar; Vicente-Serrano, Sergio M.; Cerdà, Artemi
2013-04-01
Within the Soil Erosion and Degradation Research Group Experimental Stations, soil moisture is being researched as a key factor of the soil hydrology and soil erosion (Cerdà, 1995; Cerda, 1997; Cerdà 1998). This because under semiarid conditions soil moisture content plays a crucial role for agriculture, forest, groundwater recharge and soil chemistry and scientific improvement is of great interest in agriculture, hydrology and soil sciences. Soil moisture has been seeing as the key factor for plant photosynthesis, respiration and transpiration in orchards (Schneider and Childers, 1941) and plant growth (Veihmeyer and Hendrickson, 1950). Moreover, soil moisture determine the root growth and distribution (Levin et al., 1979) and the soil respiration ( Velerie and Orchard, 1983). Water content is expressed as a ratio, ranging from 0 (dry) to the value of soil porosity at saturation (wet). In this study we present 1-year of soil moisture measurements at two experimental sites in the Valencia region, Eastern Spain: one representing rainfed orchard typical from the Mediterranean mountains (El Teularet-Sierra de Enguera), and a second site corresponding to an irrigated orange crop (Alcoleja). The EC-5 soil moisture smart sensor S-SMC-M005 integrated with the field-proven ECH2O™ Sensor and a 12-bit A/D has been choosen for measuring soil water content providing ±3% accuracy in typical soil conditions. Soil moisture measurements were carried out at 5-minute intervals from January till December 2012. In addition, soil moisture was measured at two depths in each landscape: 2 and 20 cm depth - in order to retrieve a representative vertical cross-section of soil moisture. Readings are provided directly from 0 (dry) to 0.450 m3/m3 (wet) volumetric water content. The soil moisture smart sensor is conected to a HOBO U30 Station - GSM-TCP which also stored 5-minute temperature, relative humidity, dew point, global solar radiation, precipitation, wind speed and wind direction data. These complementary atmospheric measurements will serve to explain the intraannual and vertical variations observed in the soil moisture content in both experimental landscapes. This kind of study is aimed to understand the soil moisture content in two different environments such as irrigated rainfed orchards in a semi-arid region. For instance, these measurements have a direct impact on water availability for crops, plant transpiration and could have practical applications to schedule irrigation. Additionally, soil water content has also implications for erosion processes. Key Words: Water, Agriculture, Irrigation, Eastern Spain, Citrus. Acknowledgements The research projects GL2008-02879/BTE and LEDDRA 243857 supported this research. References Cerdà, A. 1995. Soil moisture regime under simulated rainfall in a three years abandoned field in Southeast Spain. Physics and Chemistry of The Earth, 20 (3-4), 271-279. Cerdà, A. 1997. Seasonal Changes of the Infiltration Rates in a Typical Mediterranean Scrubland on Limestone in Southeast Spain. Journal of Hydrology, 198 (1-4) 198-209 Cerdà, A. 1998. Effect of climate on surface flow along a climatological gradient in Israel. A field rainfall simulation approach. Journal of Arid Environments, 38, 145-159. Levin, I., Assaf, R., and Bravdo, B. 1979. Soil moisture and root distribution in an apple orchard irrigated by tricklers. Plant and Soil, 52, 31-40. Schneider, G. W. And Childers, N.F. 1941. Influence of soil moisture on photosynthesis, respiration and transpiration of apples leaves. Plant Physiol., 16, 565-583. Valerie, A. and Orchard, F.J. Cook. 1983. Relationship between soil respiration and soil moisture. Soil Biology and Biochemistry, 15, 447-453. Veihmeyer, F. J. and Hendrickson, A. H. 1950. Soil Moisture in Relation to Plant Growth. Annual Review of Plant Physiology, 1, 285-304.
Inventory of File gfs.t06z.sfluxgrbf00.grib2
Volumetric Soil Moisture Content [Fraction] 007 0.1-0.4 m below ground SOILW analysis Volumetric Soil Volumetric Soil Moisture Content [Fraction] 068 1-2 m below ground SOILW analysis Volumetric Soil Moisture analysis Temperature [K] 071 0-0.1 m below ground SOILL analysis Liquid Volumetric Soil Moisture (non
Towards soil property retrieval from space: Proof of concept using in situ observations
NASA Astrophysics Data System (ADS)
Bandara, Ranmalee; Walker, Jeffrey P.; Rüdiger, Christoph
2014-05-01
Soil moisture is a key variable that controls the exchange of water and energy fluxes between the land surface and the atmosphere. However, the temporal evolution of soil moisture is neither easy to measure nor monitor at large scales because of its high spatial variability. This is mainly a result of the local variation in soil properties and vegetation cover. Thus, land surface models are normally used to predict the evolution of soil moisture and yet, despite their importance, these models are based on low-resolution soil property information or typical values. Therefore, the availability of more accurate and detailed soil parameter data than are currently available is vital, if regional or global soil moisture predictions are to be made with the accuracy required for environmental applications. The proposed solution is to estimate the soil hydraulic properties via model calibration to remotely sensed soil moisture observation, with in situ observations used as a proxy in this proof of concept study. Consequently, the feasibility is assessed, and the level of accuracy that can be expected determined, for soil hydraulic property estimation of duplex soil profiles in a semi-arid environment using near-surface soil moisture observations under naturally occurring conditions. The retrieved soil hydraulic parameters were then assessed by their reliability to predict the root zone soil moisture using the Joint UK Land Environment Simulator model. When using parameters that were retrieved using soil moisture observations, the root zone soil moisture was predicted to within an accuracy of 0.04 m3/m3, which is an improvement of ∼0.025 m3/m3 on predictions that used published values or pedo-transfer functions.
Soil water dynamics during precipitation in genetic horizons of Retisol
NASA Astrophysics Data System (ADS)
Zaleski, Tomasz; Klimek, Mariusz; Kajdas, Bartłomiej
2017-04-01
Retisols derived from silty deposits dominate in the soil cover of the Carpathian Foothills. The hydrophysical properties of these are determined by the grain-size distribution of the parent material and the soil's "primary" properties shaped in the deposition process. The other contributing factors are the soil-forming processes, such as lessivage (leaching of clay particles), and the morphogenetic processes that presently shape the relief. These factors are responsible for the "secondary" differentiation of hydrophysical properties across the soil profile. Both the primary and secondary hydrophysical properties of soils (the rates of water retention, filtration and infiltration, and the moisture distribution over the soil profile) determine their ability to take in rainfall, the amount of rainwater taken in, and the ways of its redistribution. The aims of the study, carried out during 2015, were to investigate the dynamics of soil moisture in genetic horizons of Retisol derived from silty deposits and to recognize how fast and how deep water from precipitation gets into soil horizons. Data of soil moisture were measured using 5TM moisture and temperature sensor and collected by logger Em50 (Decagon Devices USA). Data were captured every 10 minutes from 6 sensors at depths: - 10 cm, 20 cm, 40 cm, 60 cm and 80 cm. Precipitation data come from meteorological station situated 50 m away from the soil profile. Two zones differing in the type of water regime were distinguished in Retisol: an upper zone comprising humic and eluvial horizons, and a lower zone consisting of illuvial and parent material horizons. The upper zone shows smaller retention of water available for plants, and relatively wide fluctuations in moisture content, compared to the lower zone. The lower zone has stable moisture content during the vegetation season, with values around the water field capacity. Large changes in soil moisture were observed while rainfall. These changes depend on the volume of the precipitation and soil moisture before the precipitation. The following changes of moisture in the soil profile during precipitation were distinguished: if soil moisture in upper zone horizons oscillates around field capacity (higher than 0.30 m3ṡm-3) there is an evident increase in soil moisture also in the lower zone horizons. If soil moisture in the upper zone horizons is much lower than the field capacity (less than 0.20 m3ṡm-3), the soil moisture in the lower zone has very little fluctuations. The range of wetting front in the soil profile depends on the volume of the precipitation and soil moisture. The heavier precipitation, the wetting front in soil profile reaches deeper horizons. The wetter the soil is, the faster soil moisture in the deeper genetic horizons increase. This Research was financed by the Ministry of Science and Higher Education of the Republic of Poland, DS No. 3138/KGiOG/2016.
NASA Astrophysics Data System (ADS)
Jones, R. T.; McGlynn, B. L.; McDermott, T.; Dore, J. E.
2015-12-01
Gas concentrations (CH4, CO2, N2O, and O2), soil properties (soil water content and pH), and microbial community composition were measured from soils at 32 sites across the Stringer Creek Watershed in the Tenderfoot Creek Experimental Forest 7 times between June 3, 2013 and September 20, 2013. Soils were fully saturated during the initial sampling period and dried down over the course of the summer. Soils and gas were sampled from 5cm and 20cm at each site and also at 50cm at eight riparian sites. In total, 496 individual soil samples were collected. Soil moisture ranged from 3.7% to fully saturated; soil pH ranged from 3.60 to 6.68. Methane concentrations in soils ranged from 0.426 ppm to 218 ppm; Carbon dioxide concentrations ranged from 550 ppm to 42,990 ppm; Nitrous oxide concentrations ranged from 0.220 ppm to 2.111 ppm; Oxygen concentrations ranged from 10.2% to 21.5%. Soil microbial communities were characterized by DNA sequences covering the V4 region of the 16S rRNA gene. DNA sequences were generated (~30,000,000 sequences) from the 496 soil samples using the Illumina MiSeq platform. Operational Taxonomic Units were generated using USEARCH, and representative sequences were taxonomically classified according the Ribosomal Database Project's taxonomy scheme. Analysis of similarity revealed that microbial communities found within a landscape type (high upland forest, low upland forest, riparian) were more similar than among landscape types (R = 0.600; p<0.001). Similarly, communities from unique site x depths were similar across the 7 collection periods (R = 0.646; p<0.001) despite changes in soil moisture. Euclidean distances of soil properties and gas concentrations were compared to Bray-Curtis community dissimilarity matrices using Mantel tests to determine how community structure co-varies with the soil environment and gas concentrations. All variables measured significantly co-varied with microbial community membership (pH: R = 0.712, p < 0.001; CO2: R = 0.578, p < 0.001; O2: R = 0.517, p < 0.001; Soil moisture: R = 0.408, p < 0.001; N2O: R = 0.218, p = 0.003; CH4: R = 0.195, p = 0.008). Despite the rather low co-variation between methane concentrations and microbial community composition, relative abundances of methanotrophic and methanogenic lineages did co-vary strongly with methane concentrations.
Arvela, H.; Holmgren, O.; Hänninen, P.
2016-01-01
The effect of soil moisture on seasonal variation in soil air and indoor radon is studied. A brief review of the theory of the effect of soil moisture on soil air radon has been presented. The theoretical estimates, together with soil moisture measurements over a period of 10 y, indicate that variation in soil moisture evidently is an important factor affecting the seasonal variation in soil air radon concentration. Partitioning of radon gas between the water and air fractions of soil pores is the main factor increasing soil air radon concentration. On two example test sites, the relative standard deviation of the calculated monthly average soil air radon concentration was 17 and 26 %. Increased soil moisture in autumn and spring, after the snowmelt, increases soil gas radon concentrations by 10–20 %. In February and March, the soil gas radon concentration is in its minimum. Soil temperature is also an important factor. High soil temperature in summer increased the calculated soil gas radon concentration by 14 %, compared with winter values. The monthly indoor radon measurements over period of 1 y in 326 Finnish houses are presented and compared with the modelling results. The model takes into account radon entry, climate and air exchange. The measured radon concentrations in autumn and spring were higher than expected and it can be explained by the seasonal variation in the soil moisture. The variation in soil moisture is a potential factor affecting markedly to the high year-to-year variation in the annual or seasonal average radon concentrations, observed in many radon studies. PMID:25899611
Water content determination of soil surface in an intensive apple orchard
NASA Astrophysics Data System (ADS)
Riczu, Péter; Nagy, Gábor; Tamás, János
2015-04-01
Currently in Hungary, less than 100,000 hectares of orchards can be found, from which cultivation of apple is one of the most dominant ones. Production of marketable horticulture products can be difficult without employing advanced and high quality horticulture practices, which, in turn, depends on appropriate management and irrigation systems, basically. The got out water amount depend on climatic, edafic factors and the water demand of plants as well. The soil water content can be determined by traditional and modern methods. In order to define soil moisture content, gravimetry measurement is one of the most accurate methods, but it is time consuming and sometimes soil sampling and given results are in different times. Today, IT provides the farmers such tools, like global positioning system (GPS), geographic information system (GIS) and remote sensing (RS). These tools develop in a great integration rapidly. RS methods are ideal to survey larger area quick and accurate. Laser scanning is a novel technique which analyses a real-world or object environment to collect structural and spectral data. In order to obtain soil moisture information, the Leica ScanStation C10 terrestrial 3D laser scanner was used on an intensive apple orchard on the Study and Regional Research Farm of the University of Debrecen, near Pallag. Previously, soil samples from the study area with different moisture content were used as reference points. Based on the return intensity values of the laser scanner can be distinguished the different moisture content areas of soil surface. Nevertheless, the error of laser distance echo were examined and statistically evaluated. This research was realized in the frames of TÁMOP 4.2.4. A/2-11-1-2012-0001 "National Excellence Program - Elaborating and operating an inland student and researcher personal support system". The project was subsidized by the European Union and co-financed by the European Social Fund.
Fest, Benedikt; Wardlaw, Tim; Livesley, Stephen J; Duff, Thomas J; Arndt, Stefan K
2015-11-01
Disturbance associated with severe wildfires (WF) and WF simulating harvest operations can potentially alter soil methane (CH4 ) oxidation in well-aerated forest soils due to the effect on soil properties linked to diffusivity, methanotrophic activity or changes in methanotrophic bacterial community structure. However, changes in soil CH4 flux related to such disturbances are still rarely studied even though WF frequency is predicted to increase as a consequence of global climate change. We measured in-situ soil-atmosphere CH4 exchange along a wet sclerophyll eucalypt forest regeneration chronosequence in Tasmania, Australia, where the time since the last severe fire or harvesting disturbance ranged from 9 to >200 years. On all sampling occasions, mean CH4 uptake increased from most recently disturbed sites (9 year) to sites at stand 'maturity' (44 and 76 years). In stands >76 years since disturbance, we observed a decrease in soil CH4 uptake. A similar age dependency of potential CH4 oxidation for three soil layers (0.0-0.05, 0.05-0.10, 0.10-0.15 m) could be observed on incubated soils under controlled laboratory conditions. The differences in soil CH4 uptake between forest stands of different age were predominantly driven by differences in soil moisture status, which affected the diffusion of atmospheric CH4 into the soil. The observed soil moisture pattern was likely driven by changes in interception or evapotranspiration with forest age, which have been well described for similar eucalypt forest systems in south-eastern Australia. Our results imply that there is a large amount of variability in CH4 uptake at a landscape scale that can be attributed to stand age and soil moisture differences. An increase in severe WF frequency in response to climate change could potentially increase overall forest soil CH4 sinks. © 2015 John Wiley & Sons Ltd.
The Impact of Microwave-Derived Surface Soil Moisture on Watershed Hydrological Modeling
NASA Technical Reports Server (NTRS)
ONeill, P. E.; Hsu, A. Y.; Jackson, T. J.; Wood, E. F.; Zion, M.
1997-01-01
The usefulness of incorporating microwave-derived soil moisture information in a semi-distributed hydrological model was demonstrated for the Washita '92 experiment in the Little Washita River watershed in Oklahoma. Initializing the hydrological model with surface soil moisture fields from the ESTAR airborne L-band microwave radiometer on a single wet day at the start of the study period produced more accurate model predictions of soil moisture than a standard hydrological initialization with streamflow data over an eight-day soil moisture drydown.
Retrieving pace in vegetation growth using precipitation and soil moisture
NASA Astrophysics Data System (ADS)
Sohoulande Djebou, D. C.; Singh, V. P.
2013-12-01
The complexity of interactions between the biophysical components of the watershed increases the challenge of understanding water budget. Hence, the perspicacity of the continuum soil-vegetation-atmosphere's functionality still remains crucial for science. This study targeted the Texas Gulf watershed and evaluated the behavior of vegetation covers by coupling precipitation and soil moisture patterns. Growing season's Normalized Differential Vegetation Index NDVI for deciduous forest and grassland were used over a 23 year period as well as precipitation and soil moisture data. The role of time scales on vegetation dynamics analysis was appraised using both entropy rescaling and correlation analysis. This resulted in that soil moisture at 5 cm and 25cm are potentially more efficient to use for vegetation dynamics monitoring at finer time scale compared to precipitation. Albeit soil moisture at 5 cm and 25 cm series are highly correlated (R2>0.64), it appeared that 5 cm soil moisture series can better explain the variability of vegetation growth. A logarithmic transformation of soil moisture and precipitation data increased correlation with NDVI for the different time scales considered. Based on a monthly time scale we came out with a relationship between vegetation index and the couple soil moisture and precipitation [NDVI=a*Log(% soil moisture)+b*Log(Precipitation)+c] with R2>0.25 for each vegetation type. Further, we proposed to assess vegetation green-up using logistic regression model and transinformation entropy using the couple soil moisture and precipitation as independent variables and vegetation growth metrics (NDVI, NDVI ratio, NDVI slope) as the dependent variable. The study is still ongoing and the results will surely contribute to the knowledge in large scale vegetation monitoring. Keywords: Precipitation, soil moisture, vegetation growth, entropy Time scale, Logarithmic transformation and correlation between soil moisture and NDVI, precipitation and NDVI. The analysis is performed by combining both scenes 7 and 8 data. Schematic illustration of the two dimension transinformation entropy approach. T(P,SM;VI) stand for the transinformation contained in the couple soil moisture (SM)/precipitation (P) and explaining vegetation growth (VI).
QA/QC requirements for physical properties sampling and analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Innis, B.E.
1993-07-21
This report presents results of an assessment of the available information concerning US Environmental Protection Agency (EPA) quality assurance/quality control (QA/QC) requirements and guidance applicable to sampling, handling, and analyzing physical parameter samples at Comprehensive Environmental Restoration, Compensation, and Liability Act (CERCLA) investigation sites. Geotechnical testing laboratories measure the following physical properties of soil and sediment samples collected during CERCLA remedial investigations (RI) at the Hanford Site: moisture content, grain size by sieve, grain size by hydrometer, specific gravity, bulk density/porosity, saturated hydraulic conductivity, moisture retention, unsaturated hydraulic conductivity, and permeability of rocks by flowing air. Geotechnical testing laboratories alsomore » measure the following chemical parameters of soil and sediment samples collected during Hanford Site CERCLA RI: calcium carbonate and saturated column leach testing. Physical parameter data are used for (1) characterization of vadose and saturated zone geology and hydrogeology, (2) selection of monitoring well screen sizes, (3) to support modeling and analysis of the vadose and saturated zones, and (4) for engineering design. The objectives of this report are to determine the QA/QC levels accepted in the EPA Region 10 for the sampling, handling, and analysis of soil samples for physical parameters during CERCLA RI.« less
Thomé, Antônio; Cecchin, Iziquiel; Reginatto, Cleomar; Colla, Luciane M; Reddy, Krishna R
2017-04-01
This study investigates the retention of biodiesel in residual clayey soil during biostimulation by nutrients (nitrogen, phosphorus, and potassium) under conditions of rainfall infiltration. Several column tests were conducted in a laboratory under different void ratios (1.14, 1.24, and 1.34), varying moisture contents (15, 25, and 35%), and in both the presence and absence of biostimulation. The volume of biodiesel (which was equivalent to the volume of voids in the soil) was placed atop the soil and allowed to percolate for a period of 15 days. The soil was subjected to different rainfall infiltration conditions (0.30 or 60 mm). The greatest reductions in residual contaminants occurred after 60 mm of rain simulation, at values of up to 74% less than in samples with the same conditions but no precipitation. However, the residual contamination decay rate was greater with 0-30 mm (0.29 g/mm) of precipitation than with 30-60 mm (0.075 g/mm). Statistical assessment revealed that increased moisture and the presence of nutrients were the factors with the most powerful effect on contaminant retention in the soil. The residual contaminant level was 21 g/kg at a moisture content of 15% and no precipitation, decreasing to 12 g/kg at 35% moisture and no precipitation. Accordingly, it is possible to conclude that biostimulation and rainfall infiltration conditions can decrease the retention of contaminants in soil and allow a greater leaching or spreading of the contamination. All of these phenomena are worthy of careful examination for the in situ bioremediation of organic contamination. • The higher moisture in the soil, due to a high initial moisture content and/or infiltration of rainfall, can reduce contaminant retention, • The use of biostimulation through the addition of nutrients to accelerate the biodegradation of toxic organic contaminants may induce inadvertent undesirable interactions between the soil and the contaminant. • When adopting biostimulation for bioremediation, the effects of rainfall should be addressed; ideally, it should be prevented from entering the affected site, in order to avoid increased contaminant leaching and potential spreading.
Water content measurement in forest soils and decayed wood using time domain reflectometry
Andrew Gray; Thomas Spies
1995-01-01
The use of time domain reflectometry to measure moisture content in forest soils and woody debris was evaluated. Calibrations were developed on undisturbed soil cores from four forest stands and on point samples from decayed logs. An algorithm for interpreting irregularly shaped traces generated by the reflectometer was also developed. Two different calibration...
The impact of non-isothermal soil moisture transport on evaporation fluxes in a maize cropland
NASA Astrophysics Data System (ADS)
Shao, Wei; Coenders-Gerrits, Miriam; Judge, Jasmeet; Zeng, Yijian; Su, Ye
2018-06-01
The process of evaporation interacts with the soil, which has various comprehensive mechanisms. Multiphase flow models solve air, vapour, water, and heat transport equations to simulate non-isothermal soil moisture transport of both liquid water and vapor flow, but are only applied in non-vegetated soils. For (sparsely) vegetated soils often energy balance models are used, however these lack the detailed information on non-isothermal soil moisture transport. In this study we coupled a multiphase flow model with a two-layer energy balance model to study the impact of non-isothermal soil moisture transport on evaporation fluxes (i.e., interception, transpiration, and soil evaporation) for vegetated soils. The proposed model was implemented at an experimental agricultural site in Florida, US, covering an entire maize-growing season (67 days). As the crops grew, transpiration and interception became gradually dominated, while the fraction of soil evaporation dropped from 100% to less than 20%. The mechanisms of soil evaporation vary depending on the soil moisture content. After precipitation the soil moisture content increased, exfiltration of the liquid water flow could transport sufficient water to sustain evaporation from soil, and the soil vapor transport was not significant. However, after a sufficient dry-down period, the soil moisture content significantly reduced, and the soil vapour flow significantly contributed to the upward moisture transport in topmost soil. A sensitivity analysis found that the simulations of moisture content and temperature at the soil surface varied substantially when including the advective (i.e., advection and mechanical dispersion) vapour transport in simulation, including the mechanism of advective vapour transport decreased soil evaporation rate under wet condition, while vice versa under dry condition. The results showed that the formulation of advective soil vapor transport in a soil-vegetation-atmosphere transfer continuum can affect the simulated evaporation fluxes, especially under dry condition.
NASA Astrophysics Data System (ADS)
Usowicz, B.; Marczewski, W.; Lipiec, J.; Usowicz, J. B.; Sokolowska, Z.; Dabkowska-Naskret, H.; Hajnos, M.; Lukowski, M. I.
2009-04-01
The purpose is obtaining trustful ground based measurement data of SM (Soil Moisture) for validating SMOS, respectively to spatial and temporal distribution and variations. A use of Time Domain Reflectometric (TDR) method is fast, simple and less destructive, to the soil matter, than a usual standard gravimetric method. TDR tools operate efficiently, enable nearly instant measurements, and allow on collecting many measurements from numerous sites, even when operated manually in short time intervals. The method enables also very frequent sampling of SM at few selected fixed sites, when long terms of temporal variations are needed. In effect one obtains reasonably large data base for determining spatial and temporal distributions of SM. The study is devoted to determining a plan on collecting TDR data, in the scales of small and large field areas, and checking their relevance to those available from gravimetric methods. Finally, the ground based SM distributions are needed for validating other SM distributions, available remotely in larger scales, from the satellite data of ENVISAT-ASAR, and from SMOS (Soil Moisture and Ocean Salinity Mission) when it becomes operational. The ground based evaluations are served mainly by geo-statistical analysis. The space borne estimations are retrieved by image processing and physical models, proper to relevant Remote Sensing (RS) instruments on the orbit. Finally, validation must engage again the geo-statistical evaluations, to assess the agreement between direct and remote sensing means, and provide a measure of trust for extending the limited scales of the ground based data, on concluding the agreement in scales proper to the satellite data. The study is focused mainly on trustful evaluating data from the ground, provided independently on satellite data sources. SM ground based data are collected permanently at 2 selected tests sites, and temporary in areas around the tests sites, in one day sessions, repeated several times per vegetation season. Permanent measurements are provided in profiles, down to 50 cm below surface. Temporary SM measurements are collected by hand held TDR (FOM/mts type, Easy Test Ltd., Lublin, Poland) from the top surface layer (1-6 cm), in a grid covering small and large areas, containing few hundred sites. The same places are served by collecting soil samples for the gravimetric analysis of SM, bulk density, other physical and textural characteristics. Sessions on measurement in large areas on the scale of community are repeated for separate days. The two methods used were compared with correlation coefficient, regression equation and differences of values. The spatial variability of soil moisture from gravimetric and TDR measurements were analyzed using geostatistical methods. The semivariogram parameters were determined and mathematical functions were fitted to empirically derived semivariograms. These functions were used for estimation of spatial distribution of soil moisture in cultivated fields by the kriging method. The results showed that spatial distribution patterns of topsoil soil moisture in the investigated areas obtained from TDR and gravimetric methods were in general similar to each other. The TDR soil moisture contents were dependent on bulk density and texture of soil. In areas with fine-textured soils of lower soil bulk densities (approximately below 1.35 Mg m^-3) we observed that TDR soil moisture and spatial differentiation were greater compared to those with gravimetric method. However at higher bulk densities the inverse was true. The spatial patterns were further modified in areas with domination of coarse-textured soils. Decrease of measurement points results in smoothing soil moisture pattern and at the same time in a greater estimation error. The TDR method can be useful tool for ground moisture measurements and validation of satellite data. The use of specific calibration or correction for soil bulk density and texture with respect to the reflectometric method is recommended. The study is a contribution to the project SWEX (AO-3275) and funded by the Polish Ministry of Science and Higher Education (in part by Grant No. N305 046 31/1707 and in part by Grant No. N305 107 32/3865).
Spatial and temporal variability of soil moisture on the field with and without plants*
NASA Astrophysics Data System (ADS)
Usowicz, B.; Marczewski, W.; Usowicz, J. B.
2012-04-01
Spatial and temporal variability of the natural environment is its inherent and unavoidable feature. Every element of the environment is characterized by its own variability. One of the kinds of variability in the natural environment is the variability of the soil environment. To acquire better and deeper knowledge and understanding of the temporal and spatial variability of the physical, chemical and biological features of the soil environment, we should determine the causes that induce a given variability. Relatively stable features of soil include its texture and mineral composition; examples of those variables in time are the soil pH or organic matter content; an example of a feature with strong dynamics is the soil temperature and moisture content. The aim of this study was to identify the variability of soil moisture on the field with and without plants using geostatistical methods. The soil moisture measurements were taken on the object with plant canopy and without plants (as reference). The measurements of soil moisture and meteorological components were taken within the period of April-July. The TDR moisture sensors covered 5 cm soil layers and were installed in the plots in the soil layers of 0-0.05, 0.05-0.1, 0.1-0.15, 0.2-0.25, 0.3-0.35, 0.4-0.45, 0.5-0.55, 0.8-0.85 m. Measurements of soil moisture were taken once a day, in the afternoon hours. For the determination of reciprocal correlation, precipitation data and data from soil moisture measurements with the TDR meter were used. Calculations of reciprocal correlation of precipitation and soil moisture at various depths were made for three objects - spring barley, rye, and bare soil, at the level of significance of p<0.05. No significant reciprocal correlation was found between the precipitation and soil moisture in the soil profile for any of the objects studied. Although the correlation analysis indicates a lack of correlation between the variables under consideration, observation of the soil moisture runs in particular objects and of precipitation distribution shows clearly that rainfall has an effect on the soil moisture. The amount of precipitation water that increased the soil moisture depended on the strength of the rainfall, on the hydrological properties of the soil (primarily the soil density), the status of the plant cover, and surface runoff. Basing on the precipitation distribution and on the soil moisture runs, an attempt was made at finding a temporal and spatial relationship between those variables, employing for the purpose the geostatistical methods which permit time and space to be included in the analysis. The geostatistical parameters determined showed the temporal dependence of moisture distribution in the soil profile, with the autocorrelation radius increasing with increasing depth in the profile. The highest values of the radius were observed in the plots with plant cover below the arable horizon, and the lowest in the arable horizon on the barley and fallow plots. The fractal dimensions showed a clear decrease in values with increasing depth in the plots with plant cover, while in the bare plots they were relatively constant within the soil profile under study. Therefore, they indicated that the temporal distribution of soil moisture within the soil profile in the bare field was more random in character than in the plots with plants. The results obtained and the analyses indicate that the moisture in the soil profile, its variability and determination, are significantly affected by the type and condition of plant canopy. The differentiation in moisture content between the plots studied resulted from different precipitation interception and different intensity of water uptake by the roots. * The work was financially supported in part by the ESA Programme for European Cooperating States (PECS), No.98084 "SWEX-R, Soil Water and Energy Exchange/Research", AO-3275.
Ultrasound Algorithm Derivation for Soil Moisture Content Estimation
NASA Technical Reports Server (NTRS)
Belisle, W.R.; Metzl, R.; Choi, J.; Aggarwal, M. D.; Coleman, T.
1997-01-01
Soil moisture content can be estimated by evaluating the velocity at which sound waves travel through a known volume of solid material. This research involved the development of three soil algorithms relating the moisture content to the velocity at which sound waves moved through dry and moist media. Pressure and shear wave propagation equations were used in conjunction with soil property descriptions to derive algorithms appropriate for describing the effects of moisture content variation on the velocity of sound waves in soils with and without complete soil pore water volumes, An elementary algorithm was used to estimate soil moisture contents ranging from 0.08 g/g to 0.5 g/g from sound wave velocities ranging from 526 m/s to 664 m/s. Secondary algorithms were also used to estimate soil moisture content from sound wave velocities through soils with pores that were filled predominantly with air or water.
Huang, Gang; Zhao, Xue-yong; Huang, Ying-xin; Su, Yan-gui
2009-03-01
Based on the investigation data of vegetation and soil moisture regime of Caragana microphylla shrubs widely distributed in Horqin sandy land, the spatiotemporal variations of soil moisture regime and soil water storage of artificial sand-fixing C. microphylla shrubs at different topographical sites in the sandy land were studied, and the evapotranspiration was measured by water balance method. The results showed that the soil moisture content of the shrubs was the highest in the lowland of dunes, followed by in the middle, and in the crest of the dunes, and increased with increasing depth. No water stress occurred during the growth season of the shrubs. Soil moisture content of the shrubs was highly related to precipitation event, and the relationship of soil moisture content with precipitation was higher in deep soil layer (50-180 cm) than in shallow soil layer (0-50 cm). The variation coefficient of soil moisture content was also higher in deep layer than in shallow layer. Soil water storage was increasing in the whole growth season of the shrubs, which meant that the accumulation of soil water occurred in this area. The evapotranspiriation of the shrubs occupied above 64% of the precipitation.
Spatial prediction of near surface soil water retention functions using hydrogeophysics
NASA Astrophysics Data System (ADS)
Gibson, J. P.; Franz, T. E.
2017-12-01
The hydrological community often turns to widely available spatial datasets such as SSURGO to characterize the spatial variability of soil across a landscape of interest. This has served as a reasonable first approximation when lacking localized soil data. However, previous work has shown that information loss within land surface models primarily stems from parameterization. Localized soil sampling is both expensive and time intense, and thus a need exists in connecting spatial datasets with ground observations. Given that hydrogeophysics is data-dense, rapid, and relatively easy to adopt, it is a promising technique to help dovetail localized soil sampling with larger spatial datasets. In this work, we utilize 2 geophysical techniques; cosmic ray neutron probe and electromagnetic induction, to identify temporally stable soil moisture patterns. This is achieved by measuring numerous times over a range of wet to dry field conditions in order to apply an empirical orthogonal function. We then present measured water retention functions of shallow cores extracted within each temporally stable zone. Lastly, we use soil moisture patterns as a covariate to predict soil hydraulic properties in areas without measurement and validate using a leave-one-out cross validation analysis. Using these approaches to better constrain soil hydraulic property variability, we speculate that further research can better estimate hydrologic fluxes in areas of interest.
O'Brien, S. L.; Jastrow, J.D.; Grimley, D.A.; Gonzalez-Meler, M. A.
2010-01-01
Revitalization of degraded landscapes may provide sinks for rising atmospheric CO2, especially in reconstructed prairies where substantial belowground productivity is coupled with large soil organic carbon (SOC) deficits after many decades of cultivation. The restoration process also provides opportunities to study the often-elusive factors that regulate soil processes. Although the precise mechanisms that govern the rate of SOC accrual are unclear, factors such as soil moisture or vegetation type may influence the net accrual rate by affecting the balance between organic matter inputs and decomposition. A resampling approach was used to assess the control that soil moisture and plant community type each exert on SOC and total nitrogen (TN) accumulation in restored grasslands. Five plots that varied in drainage were sampled at least four times over two decades to assess SOC, TN, and C4- and C3-derived C. We found that higher long-term soil moisture, characterized by low soil magnetic susceptibility, promoted SOC and TN accrual, with twice the SOC and three times the TN gain in seasonally saturated prairies compared with mesic prairies. Vegetation also influenced SOC and TN recovery, as accrual was faster in the prairies compared with C3-only grassland, and C4-derived C accrual correlated strongly to total SOC accrual but C3-C did not. High SOC accumulation at the surface (0-10 cm) combined with losses at depth (10-20 cm) suggested these soils are recovering the highly stratified profiles typical of remnant prairies. Our results suggest that local hydrology and plant community are critical drivers of SOC and TN recovery in restored grasslands. Because these factors and the way they affect SOC are susceptible to modification by climate change, we contend that predictions of the C-sequestration performance of restored grasslands must account for projected climatic changes on both soil moisture and the seasonal productivity of C4 and C3 plants. ?? 2009 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Gao, Shengguo; Zhu, Zhongli; Liu, Shaomin; Jin, Rui; Yang, Guangchao; Tan, Lei
2014-10-01
Soil moisture (SM) plays a fundamental role in the land-atmosphere exchange process. Spatial estimation based on multi in situ (network) data is a critical way to understand the spatial structure and variation of land surface soil moisture. Theoretically, integrating densely sampled auxiliary data spatially correlated with soil moisture into the procedure of spatial estimation can improve its accuracy. In this study, we present a novel approach to estimate the spatial pattern of soil moisture by using the BME method based on wireless sensor network data and auxiliary information from ASTER (Terra) land surface temperature measurements. For comparison, three traditional geostatistic methods were also applied: ordinary kriging (OK), which used the wireless sensor network data only, regression kriging (RK) and ordinary co-kriging (Co-OK) which both integrated the ASTER land surface temperature as a covariate. In Co-OK, LST was linearly contained in the estimator, in RK, estimator is expressed as the sum of the regression estimate and the kriged estimate of the spatially correlated residual, but in BME, the ASTER land surface temperature was first retrieved as soil moisture based on the linear regression, then, the t-distributed prediction interval (PI) of soil moisture was estimated and used as soft data in probability form. The results indicate that all three methods provide reasonable estimations. Co-OK, RK and BME can provide a more accurate spatial estimation by integrating the auxiliary information Compared to OK. RK and BME shows more obvious improvement compared to Co-OK, and even BME can perform slightly better than RK. The inherent issue of spatial estimation (overestimation in the range of low values and underestimation in the range of high values) can also be further improved in both RK and BME. We can conclude that integrating auxiliary data into spatial estimation can indeed improve the accuracy, BME and RK take better advantage of the auxiliary information compared to Co-OK, and BME outperforms RK by integrating the auxiliary data in a probability form.
NASA Technical Reports Server (NTRS)
Bolten, John D.; Lakshmi, Venkat
2009-01-01
The Soil Moisture Experiments conducted in Iowa in the summer of 2002 (SMEX02) had many remote sensing instruments that were used to study the spatial and temporal variability of soil moisture. The sensors used in this paper (a subset of the suite of sensors) are the AQUA satellite-based AMSR-E (Advanced Microwave Scanning Radiometer- Earth Observing System) and the aircraft-based PSR (Polarimetric Scanning Radiometer). The SMEX02 design focused on the collection of near simultaneous brightness temperature observations from each of these instruments and in situ soil moisture measurements at field- and domain- scale. This methodology provided a basis for a quantitative analysis of the soil moisture remote sensing potential of each instrument using in situ comparisons and retrieved soil moisture estimates through the application of a radiative transfer model. To this end, the two sensors are compared with respect to their estimation of soil moisture.
USDA-ARS?s Scientific Manuscript database
Remote sensing of soil moisture has reached a level of maturity and accuracy for which the retrieved products can be used to improve hydrological and meteorological applications. In this study, the soil moisture product from the European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) is used...
USDA-ARS?s Scientific Manuscript database
The validation of the soil moisture retrievals from the recently-launched NASA Soil Moisture Active/Passive (SMAP) satellite is important prior to their full public release. Uncertainty in attempts to characterize footprint-scale surface-layer soil moisture using point-scale ground observations has ...
Soil-moisture constants and their variation
Walter M. Broadfoot; Hubert D. Burke
1958-01-01
"Constants" like field capacity, liquid limit, moisture equivalent, and wilting point are used by most students and workers in soil moisture. These constants may be equilibrium points or other values that describe soil moisture. Their values under specific soil and cover conditions have been discussed at length in the literature, but few general analyses and...
USDA-ARS?s Scientific Manuscript database
Soil moisture is an intrinsic state variable that varies considerably in space and time. Although soil moisture is highly variable, repeated measurements of soil moisture at the field or small watershed scale can often reveal certain locations as being temporally stable and representative of the are...
Soil moisture depletion patterns around scattered trees
Robert R. Ziemer
1968-01-01
Soil moisture was measured around an isolated mature sugar pine tree (Pinus lambertiana Dougl.) in the mixed conifer forest type of the north central Sierra Nevada, California, from November 1965 to October 1966. From a sequence of measurements, horizontal and vertical soil moisture profiles were developed. Estimated soil moisture depletion from the 61-foot radius plot...
USDA-ARS?s Scientific Manuscript database
A very promising technique for spatial disaggregation of soil moisture is on the combination of radiometer and radar observations. Despite their demonstrated potential for long term large scale monitoring of soil moisture, passive and active have their disadvantages in terms of temporal and spatial ...
Calibration and validation of the COSMOS rover for surface soil moisture
USDA-ARS?s Scientific Manuscript database
The mobile COsmic-ray Soil Moisture Observing System (COSMOS) rover may be useful for validating satellite-based estimates of near surface soil moisture, but the accuracy with which the rover can measure 0-5 cm soil moisture has not been previously determined. Our objectives were to calibrate and va...
NASA Technical Reports Server (NTRS)
Soman, Vishwas V.; Crosson, William L.; Laymon, Charles; Tsegaye, Teferi
1998-01-01
Soil moisture is an important component of analysis in many Earth science disciplines. Soil moisture information can be obtained either by using microwave remote sensing or by using a hydrologic model. In this study, we combined these two approaches to increase the accuracy of profile soil moisture estimation. A hydrologic model was used to analyze the errors in the estimation of soil moisture using the data collected during Huntsville '96 microwave remote sensing experiment in Huntsville, Alabama. Root mean square errors (RMSE) in soil moisture estimation increase by 22% with increase in the model input interval from 6 hr to 12 hr for the grass-covered plot. RMSEs were reduced for given model time step by 20-50% when model soil moisture estimates were updated using remotely-sensed data. This methodology has a potential to be employed in soil moisture estimation using rainfall data collected by a space-borne sensor, such as the Tropical Rainfall Measuring Mission (TRMM) satellite, if remotely-sensed data are available to update the model estimates.
NASA Astrophysics Data System (ADS)
Christiansen, Jesper; Elberling, Bo; Ribbons, Relena; Hedo, Javier; José Fernández Alonso, Maria; Krych, Lukasz; Sandris Nielsen, Dennis; Kitzler, Barbara
2016-04-01
Reactive nitrogen (N) in the environment has doubled relative to the natural global N cycle with consequences for biogeochemical cycling of soil N. Also, climate change is expected to alter precipitation patterns and increase soil temperatures which in Arctic environments may accelerate permafrost thawing. The combination of changes in the soil N cycle and hydrological regimes may alter microbial transformations of soil N with unknown impacts on N2O and N2 emissions from temperate and Arctic soils. We present the first results of soil N2O and N2 emissions, chemistry and microbial communities over soil hydrological gradients (upslope, intermediate and wet) across a global N deposition gradient. The global gradient covered an N-limited high Arctic tundra (Zackenberg-ZA), a pacific temperate rain forest (Vancouver Island-VI) and an N saturated forest in Austria (Klausenleopoldsdorf-KL). The N2O and N2 emissions were measured from intact cores at field moisture in a He-atmosphere system. Extractable NH4+ and NO3-, organic and microbial C and N and potential enzyme-activities were determined on soil samples. Soil genomic DNA was subjected to MiSeq-based tag-encoded 16S rRNA and ITS gene amplicon sequencing for the bacterial and fungal community structure. Similar soil moisture levels were observed for the upslope, intermediate and wet locations at ZA, VI and KL, respectively. Extractable NO3- was highest at the N rich KL and lowest at ZA and showed no trend with soil moisture similar to NH4+. At ZA and VI soil NH4+ was higher than NO3- indicating a tighter N cycling. N2O emissions increased with soil moisture at all sites. The N2O emissions for the wet locations ranked similarly to NO3- with the largest response to soil moisture at KL. N2 emissions were remarkably similar across the sites and increased with soil wetness. Microbial C and N also increased with soil moisture and were overall lowest at the N rich KL site. The potential activity of protease enzyme was site dependent indicating different capacities for N turnover of the microbial community. These findings indicate a positive feedback between increased soil N and wetter soils that promotes N2O relative to N2. These interactions may be site specific due to differential functional diversity of the soil microbial community. Future characterization of the community structure will shed light on the link between the role of microbial groups related to soil N cycling pathways and the resultant partitioning of N2O and N2 emissions in these contrasting environments.
Simelane, David O
2007-06-01
Laboratory studies were conducted to determine the influence of soil texture, moisture and surface cracks on adult preference and survival of the root-feeding flea beetle, Longitarsus bethae Savini and Escalona (Coleoptera: Chrysomelidae), a natural enemy of the weed, Lantana camara L. (Verbenaceae). Adult feeding, oviposition preference, and survival of the immature stages of L. bethae were examined at four soil textures (clayey, silty loam, sandy loam, and sandy soil), three soil moisture levels (low, moderate, and high), and two soil surface conditions (with or without surface cracks). Both soil texture and moisture had no influence on leaf feeding and colonization by adult L. bethae. Soil texture had a significant influence on oviposition, with adults preferring to lay on clayey and sandy soils to silty or sandy loam soils. However, survival to adulthood was significantly higher in clayey soils than in other soil textures. There was a tendency for females to deposit more eggs at greater depth in both clayey and sandy soils than in other soil textures. Although oviposition preference and depth of oviposition were not influenced by soil moisture, survival in moderately moist soils was significantly higher than in other moisture levels. Development of immature stages in high soil moisture levels was significantly slower than in other soil moisture levels. There were no variations in the body size of beetles that emerged from different soil textures and moisture levels. Females laid almost three times more eggs on cracked than on noncracked soils. It is predicted that clayey and moderately moist soils will favor the survival of L. bethae, and under these conditions, damage to the roots is likely to be high. This information will aid in the selection of suitable release sites where L. bethae would be most likely to become established.
Investigations on soil organic carbon stocks and active layer thickness in West Greenland
NASA Astrophysics Data System (ADS)
Gries, Philipp; Wagner, Julia; Kandolf, Lorenz; Henkner, Jessica; Kühn, Peter; Scholten, Thomas; Schmidt, Karsten
2017-04-01
The soil organic carbon (SOC) pool in the first 300 cm of arctic soils includes about 50 % of the estimated global terrestrial belowground organic carbon, which makes about 1024 Pg C and up to 496 Pg within the upper permafrost one meter. Being a sensible ecosystem, the Arctic is sensitive to climate change. Hence, thawing of permafrost-affected soils to greater depth and for longer periods increases the release of CO2 and CH4 to the atmosphere, which queries soils as an important carbon pool. Especially in arctic environments, sparse soil data and limited knowledge of soil processes cause underestimation of SOC stocks. Due to different regional climatic conditions, changing soil-environmental conditions result in varying soil organic carbon contents in Greenland. In West Greenland, coastal oceanic conditions turn into continental climate at the ice margin showing less precipitation, higher insolation and increasing permafrost thickness. The objectives of this study are (i) to determine SOC stocks and active layer thickness (ALT), (ii) to identify main environmental factors influencing SOC stocks and ALT, and (iii) to specify differences of SOC stocks, ALT and influencing factors induced by a climatic trend in West Greenland. Respecting different climatic conditions, one study area is situated next to the ice margin in the Kangerlussuaq area and the second one is located near Sisimiut at the coast. Both study areas (2 km2) are representative for each region and have similar environmental settings. Soil samples were taken from depth increments (0-25, 25-50, 50-100, and 100-200 cm) at 80 sampling locations in each study area. Additionally, we addressed soil moisture content (TDR-measurements), ALT, and soil horizons, vegetation (types, coverage), and terrain characteristics (aspect, geomorphology) at each sampling point. As a preliminary result, at the coast the average SOC stock is 13.1 kg/m2 in the upper 25 cm and about 35.9 kg/m2 in the first 200 cm. The amount of SOC stocks is slightly connected to terrain with higher values at depressions and decreasing values upslope. We assume for the Sisimiut area that south (SE, S, SW) facing areas have high SOC stocks due to higher biomass production because of higher insolation. In both study areas, plant growth, aspect, and soil moisture affect the amount of ALT, which is low beneath dense and tall dwarf shrub vegetation on flat plains and depressions having high soil moisture contents. At north facing slopes, absence of direct insolation results in low ALT less than 14 cm at the Kangerlussuaq study area. Soil moisture content, ALT and occurrence of permafrost as well as vegetation type and coverage reflect the climatic trend from the coast to the ice margin in West Greenland.
Assessment of Version 4 of the SMAP Passive Soil Moisture Standard Product
NASA Technical Reports Server (NTRS)
O'neill, P. O.; Chan, S.; Bindlish, R.; Jackson, T.; Colliander, A.; Dunbar, R.; Chen, F.; Piepmeier, Jeffrey R.; Yueh, S.; Entekhabi, D.;
2017-01-01
NASAs Soil Moisture Active Passive (SMAP) mission launched on January 31, 2015 into a sun-synchronous 6 am6 pm orbit with an objective to produce global mapping of high-resolution soil moisture and freeze-thaw state every 2-3 days. The SMAP radiometer began acquiring routine science data on March 31, 2015 and continues to operate nominally. SMAPs radiometer-derived standard soil moisture product (L2SMP) provides soil moisture estimates posted on a 36-km fixed Earth grid using brightness temperature observations and ancillary data. A beta quality version of L2SMP was released to the public in October, 2015, Version 3 validated L2SMP soil moisture data were released in May, 2016, and Version 4 L2SMP data were released in December, 2016. Version 4 data are processed using the same soil moisture retrieval algorithms as previous versions, but now include retrieved soil moisture from both the 6 am descending orbits and the 6 pm ascending orbits. Validation of 19 months of the standard L2SMP product was done for both AM and PM retrievals using in situ measurements from global core calval sites. Accuracy of the soil moisture retrievals averaged over the core sites showed that SMAP accuracy requirements are being met.
The global distribution and dynamics of surface soil moisture
NASA Astrophysics Data System (ADS)
McColl, Kaighin A.; Alemohammad, Seyed Hamed; Akbar, Ruzbeh; Konings, Alexandra G.; Yueh, Simon; Entekhabi, Dara
2017-01-01
Surface soil moisture has a direct impact on food security, human health and ecosystem function. It also plays a key role in the climate system, and the development and persistence of extreme weather events such as droughts, floods and heatwaves. However, sparse and uneven observations have made it difficult to quantify the global distribution and dynamics of surface soil moisture. Here we introduce a metric of soil moisture memory and use a full year of global observations from NASA's Soil Moisture Active Passive mission to show that surface soil moisture--a storage believed to make up less than 0.001% of the global freshwater budget by volume, and equivalent to an, on average, 8-mm thin layer of water covering all land surfaces--plays a significant role in the water cycle. Specifically, we find that surface soil moisture retains a median 14% of precipitation falling on land after three days. Furthermore, the retained fraction of the surface soil moisture storage after three days is highest over arid regions, and in regions where drainage to groundwater storage is lowest. We conclude that lower groundwater storage in these regions is due not only to lower precipitation, but also to the complex partitioning of the water cycle by the surface soil moisture storage layer at the land surface.
The significance of visitors' pressure for soil status in an urban park in Tel-Aviv
NASA Astrophysics Data System (ADS)
Zhevelev, Helena; Sarah, Pariente; Oz, Atar
2010-05-01
A park is one of the most important elements of sustainable development and optimization of the urban environment. The equilibrium within the complex of natural and anthropogenic factors defines the status of a park's ecosystem. The seasonal dynamics and spatial variations of soil properties in areas under differing levels of visitors' pressure were studied in a park in Tel-Aviv. Soil was sampled twice a year, in wet (March) and dry (July) seasons, from three types of areas, subjected to differing levels of visitors' pressure: high, low and none (control). In each type of area samples were taken from two depths (0-2 cm and 5-10 cm), at 14-39 points. In total, 268 soil samples were taken. Before the soil sampling, penetration depth was determined at each point. In addition, the numbers of barbecue fires in each of the three areas were counted. Gravimetric soil moisture, organic matter, pH, electrical conductivity, and soluble ions were measured in 1:1 water extraction. Penetration depth and electrical conductivity, and organic matter, sodium, potassium and chlorite contents differed under differing levels of visitors' pressure, whereas soil moisture, pH and calcium content exhibited only minor differences. Soil moisture, electrical conductivity, and magnesium and chlorite contents exhibited strong seasonal changes, whereas the organic matter, potassium and pH levels were unaffected by seasonal dynamics. Calcium, organic matter, magnesium and chlorite contents, and electrical conductivity were significantly affected by the depth of soil sampling, whereas pH was not so affected. The seasonal changes in soil properties in the area subjected to high visitors' pressure were higher than in the one under low visitors' pressure. In most cases, visitors' pressure led to increases in variance and coefficient of variation. Different soil properties were differently affected by visitors' pressure, seasonal dynamics and soil depth. The surface of the soil was more sensitive to both seasonal dynamics and visitors' pressure, than the deeper layer. Visitors' pressure increased seasonal changes in the studied soil properties, and also increased the spatial heterogeneity of the soil. The differences in organic matter, electrical conductivity and soluble ions among the areas under differing visitors' pressure are attributed to anthropogenic additions, which accompanied the recreational activities in the urban parks: remnants of barbecue fires and meals, and excreta of urban animals. Addition of urban dust, enriched in CaCO3, minimized the effect of visitors' pressure on soil calcium content. All the above anthropogenic additions enhance the differentiation in soil layers. The notable effect of visitors' pressure on variations in soil properties highlighted its high significance for urban parks.
NASA Astrophysics Data System (ADS)
Sanchez-Mejia, Zulia Mayari; Papuga, Shirley A.
2014-01-01
We present an observational analysis examining soil moisture control on surface energy dynamics and planetary boundary layer characteristics. Understanding soil moisture control on land-atmosphere interactions will become increasingly important as climate change continues to alter water availability. In this study, we analyzed 4 years of data from the Santa Rita Creosote Ameriflux site. We categorized our data independently in two ways: (1) wet or dry seasons and (2) one of the four cases within a two-layer soil moisture framework for the root zone based on the presence or absence of moisture in shallow (0-20 cm) and deep (20-60 cm) soil layers. Using these categorizations, we quantified the soil moisture control on surface energy dynamics and planetary boundary layer characteristics using both average responses and linear regression. Our results highlight the importance of deep soil moisture in land-atmosphere interactions. The presence of deep soil moisture decreased albedo by about 10%, and significant differences were observed in evaporative fraction even in the absence of shallow moisture. The planetary boundary layer height (PBLh) was largest when the whole soil profile was dry, decreasing by about 1 km when the whole profile was wet. Even when shallow moisture was absent but deep moisture was present the PBLh was significantly lower than when the entire profile was dry. The importance of deep moisture is likely site-specific and modulated through vegetation. Therefore, understanding these relationships also provides important insights into feedbacks between vegetation and the hydrologic cycle and their consequent influence on the climate system.
NASA Astrophysics Data System (ADS)
Bircher, Simone; Richaume, Philippe; Mahmoodi, Ali; Mialon, Arnaud; Fernandez-Moran, Roberto; Wigneron, Jean-Pierre; Demontoux, François; Jonard, François; Weihermüller, Lutz; Andreasen, Mie; Rautiainen, Kimmo; Ikonen, Jaakko; Schwank, Mike; Drusch, Mattias; Kerr, Yann H.
2017-04-01
From the passive L-band microwave radiometer onboard the Soil Moisture and Ocean Salinity (SMOS) space mission global surface soil moisture data is retrieved every 2 - 3 days. Thus far, the empirical L-band Microwave Emission of the Biosphere (L-MEB) radiative transfer model applied in the SMOS soil moisture retrieval algorithm is exclusively calibrated over test sites in dry and temperate climate zones. Furthermore, the included dielectric mixing model relating soil moisture to relative permittivity accounts only for mineral soils. However, soil moisture monitoring over the higher Northern latitudes is crucial since these regions are especially sensitive to climate change. A considerable positive feedback is expected if thawing of these extremely organic soils supports carbon decomposition and release to the atmosphere. Due to differing structural characteristics and thus varying bound water fractions, the relative permittivity of organic material is lower than that of the most mineral soils at a given water content. This assumption was verified by means of L-band relative permittivity laboratory measurements of organic and mineral substrates from various sites in Denmark, Finland, Scotland and Siberia using a resonant cavity. Based on these data, a simple empirical dielectric model for organic soils was derived and implemented in the SMOS Soil Moisture Level 2 Prototype Processor (SML2PP). Unfortunately, the current SMOS retrieved soil moisture product seems to show unrealistically low values compared to in situ soil moisture data collected from organic surface layers in North America, Europe and the Tibetan Plateau so that the impact of the dielectric model for organic soils cannot really be tested. A simplified SMOS processing scheme yielding higher soil moisture levels has recently been proposed and is presently under investigation. Furthermore, recalibration of the model parameters accounting for vegetation and roughness effects that were thus far only evaluated using the default dielectric model for mineral soils is ongoing for the "organic" L-MEB version. Additionally, in order to decide where a soil moisture retrieval using the "organic" dielectric model should be triggered, information on soil organic matter content in the soil surface layer has to be considered in the retrieval algorithm. For this purpose, SoilGrids (www.soilgrids.org) providing soil organic carbon content (SOCC) in g/kg is under study. A SOCC threshold based on the relation between the SoilGrids' SOCC and the presence of organic soil surface layers (relevant to alter the microwave L-band emissions from the land surface) in the SoilGrids' source soil profile information has to be established. In this communication, we present the current status of the above outlined studies with the objective to advance towards an improved soil moisture retrieval for organic-rich soils from SMOS passive microwave L-band observations.
Where did my wifi go? Measuring soil moisture using wifi signal strength
NASA Astrophysics Data System (ADS)
Hut, Rolf; de Jeu, Richard
2015-04-01
Soil moisture is tricky to measure. Currently soil moisture is measured at small footprints using probes and other field devices, or at large footprints using satellites. Promising developments in measuring soil moisture are using fiber optic cables for measurements along a line, or using cosmos rays for field scale measurements. In this demonstration we present a low cost alternative to measure soil moisture at footprints of a few square meters. We use a wifi hotspot and a wifi dongle, both mounted in a cantenna for beam forming. We aim the hotspot on a piece of soil and put the dongle in the path of the reflection. By logging the signal strength of the wifi netwerk, we have a proxy for soil moisture. A first proof of concept is presented.
Modelling of Space-Time Soil Moisture in Savannas and its Relation to Vegetation Patterns
NASA Astrophysics Data System (ADS)
Rodriguez-Iturbe, I.; Mohanty, B.; Chen, Z.
2017-12-01
A physically derived space-time representation of the soil moisture field is presented. It includes the incorporation of a "jitter" process acting over the space-time soil moisture field and accounting for the short distance heterogeneities in topography, soil, and vegetation characteristics. The modelling scheme allows for the representation of spatial random fluctuations of soil moisture at small spatial scales and reproduces quite well the space-time correlation structure of soil moisture from a field study in Oklahoma. It is shown that the islands of soil moisture above different thresholds have sizes which follow power distributions over an extended range of scales. A discussion is provided about the possible links of this feature with the observed power law distributions of the clusters of trees in savannas.
NASA Astrophysics Data System (ADS)
Singh, G.; Das, N. N.; Panda, R. K.; Mohanty, B.; Entekhabi, D.; Bhattacharya, B. K.
2016-12-01
Soil moisture status at high resolution (1-10 km) is vital for hydrological, agricultural and hydro-metrological applications. The NASA Soil Moisture Active Passive (SMAP) mission had potential to provide reliable soil moisture estimate at finer spatial resolutions (3 km and 9 km) at the global extent, but suffered a malfunction of its radar, consequently making the SMAP mission observations only from radiometer that are of coarse spatial resolution. At present, the availability of high-resolution soil moisture product is limited, especially in developing countries like India, which greatly depends on agriculture for sustaining a huge population. Therefore, an attempt has been made in the reported study to combine the C-band synthetic aperture radar (SAR) data from Radar Imaging Satellite (RISAT) of the Indian Space Research Organization (ISRO) with the SMAP mission L-band radiometer data to obtain high-resolution (1 km and 3 km) soil moisture estimates. In this study, a downscaling approach (Active-Passive Algorithm) implemented for the SMAP mission was used to disaggregate the SMAP radiometer brightness temperature (Tb) using the fine resolution SAR backscatter (σ0) from RISAT. The downscaled high-resolution Tb was then subjected to tau-omega model in conjunction with high-resolution ancillary data to retrieve soil moisture at 1 and 3 km scale. The retrieved high-resolution soil moisture estimates were then validated with ground based soil moisture measurement under different hydro-climatic regions of India. Initial results show tremendous potential and reasonable accuracy for the retrieved soil moisture at 1 km and 3 km. It is expected that ISRO will implement this approach to produce high-resolution soil moisture estimates for the Indian subcontinent.
Large-area Soil Moisture Surveys Using a Cosmic-ray Rover: Approaches and Results from Australia
NASA Astrophysics Data System (ADS)
Hawdon, A. A.; McJannet, D. L.; Renzullo, L. J.; Baker, B.; Searle, R.
2017-12-01
Recent improvements in satellite instrumentation has increased the resolution and frequency of soil moisture observations, and this in turn has supported the development of higher resolution land surface process models. Calibration and validation of these products is restricted by the mismatch of scales between remotely sensed and contemporary ground based observations. Although the cosmic ray neutron soil moisture probe can provide estimates soil moisture at a scale useful for the calibration and validation purposes, it is spatially limited to a single, fixed location. This scaling issue has been addressed with the development of mobile soil moisture monitoring systems that utilizes the cosmic ray neutron method, typically referred to as a `rover'. This manuscript describes a project designed to develop approaches for undertaking rover surveys to produce soil moisture estimates at scales comparable to satellite observations and land surface process models. A custom designed, trailer-mounted rover was used to conduct repeat surveys at two scales in the Mallee region of Victoria, Australia. A broad scale survey was conducted at 36 x 36 km covering an area of a standard SMAP pixel and an intensive scale survey was conducted over a 10 x 10 km portion of the broad scale survey, which is at a scale equivalent to that used for national water balance modelling. We will describe the design of the rover, the methods used for converting neutron counts into soil moisture and discuss factors controlling soil moisture variability. We found that the intensive scale rover surveys produced reliable soil moisture estimates at 1 km resolution and the broad scale at 9 km resolution. We conclude that these products are well suited for future analysis of satellite soil moisture retrievals and finer scale soil moisture models.
NASA Astrophysics Data System (ADS)
Wanders, N.; Bierkens, M. F. P.; de Jong, S. M.; de Roo, A.; Karssenberg, D.
2014-08-01
Large-scale hydrological models are nowadays mostly calibrated using observed discharge. As a result, a large part of the hydrological system, in particular the unsaturated zone, remains uncalibrated. Soil moisture observations from satellites have the potential to fill this gap. Here we evaluate the added value of remotely sensed soil moisture in calibration of large-scale hydrological models by addressing two research questions: (1) Which parameters of hydrological models can be identified by calibration with remotely sensed soil moisture? (2) Does calibration with remotely sensed soil moisture lead to an improved calibration of hydrological models compared to calibration based only on discharge observations, such that this leads to improved simulations of soil moisture content and discharge? A dual state and parameter Ensemble Kalman Filter is used to calibrate the hydrological model LISFLOOD for the Upper Danube. Calibration is done using discharge and remotely sensed soil moisture acquired by AMSR-E, SMOS, and ASCAT. Calibration with discharge data improves the estimation of groundwater and routing parameters. Calibration with only remotely sensed soil moisture results in an accurate identification of parameters related to land-surface processes. For the Upper Danube upstream area up to 40,000 km2, calibration on both discharge and soil moisture results in a reduction by 10-30% in the RMSE for discharge simulations, compared to calibration on discharge alone. The conclusion is that remotely sensed soil moisture holds potential for calibration of hydrological models, leading to a better simulation of soil moisture content throughout the catchment and a better simulation of discharge in upstream areas. This article was corrected on 15 SEP 2014. See the end of the full text for details.
NASA Astrophysics Data System (ADS)
Fahim, A. M.; Shen, R.; Yue, Z.; Di, W.; Mushtaq Shah, S.
2015-12-01
Moisture in the upper most layer of soil column from 14 different models under Coupled Model Intercomparison Project Phase-5 (CMIP5) project were analyzed for four seasons of the year. Aim of this study was to explore variability in soil moisture over south Asia using multi model ensemble and relationship between summer rainfall and soil moisture for spring and summer season. GLDAS (Global Land Data Assimilation System) dataset set was used for comparing CMIP5 ensemble mean soil moisture in different season. Ensemble mean represents soil moisture well in accordance with the geographical features; prominent arid regions are indicated profoundly. Empirical Orthogonal Function (EOF) analysis was applied to study the variability. First component of EOF explains 17%, 16%, 11% and 11% variability for spring, summer, autumn and winter season respectively. Analysis reveal increasing trend in soil moisture over most parts of Afghanistan, Central and north western parts of Pakistan, northern India and eastern to south eastern parts of China, in spring season. During summer, south western part of India exhibits highest negative trend while rest of the study area show minute trend (increasing or decreasing). In autumn, south west of India is under highest negative loadings. During winter season, north western parts of study area show decreasing trend. Summer rainfall has very week (negative or positive) spatial correlation, with spring soil moisture, while possess higher correlation with summer soil moisture. Our studies have significant contribution to understand complex nature of land - atmosphere interactions, as soil moisture prediction plays an important role in the cycle of sink and source of many air pollutants. Next level of research should be on filling the gaps between accurately measuring the soil moisture using satellite remote sensing and land surface modelling. Impact of soil moisture in tracking down different types of pollutant will also be studied.
Use of visible, near-infrared, and thermal infrared remote sensing to study soil moisture
NASA Technical Reports Server (NTRS)
Blanchard, M. B.; Greeley, R.; Goettelman, R.
1974-01-01
Two methods are described which are used to estimate soil moisture remotely using the 0.4- to 14.0 micron wavelength region: (1) measurement of spectral reflectance, and (2) measurement of soil temperature. The reflectance method is based on observations which show that directional reflectance decreases as soil moisture increases for a given material. The soil temperature method is based on observations which show that differences between daytime and nighttime soil temperatures decrease as moisture content increases for a given material. In some circumstances, separate reflectance or temperature measurements yield ambiguous data, in which case these two methods may be combined to obtain a valid soil moisture determination. In this combined approach, reflectance is used to estimate low moisture levels; and thermal inertia (or thermal diffusivity) is used to estimate higher levels. The reflectance method appears promising for surface estimates of soil moisture, whereas the temperature method appears promising for estimates of near-subsurface (0 to 10 cm).
Use of visible, near-infrared, and thermal infrared remote sensing to study soil moisture
NASA Technical Reports Server (NTRS)
Blanchard, M. B.; Greeley, R.; Goettelman, R.
1974-01-01
Two methods are used to estimate soil moisture remotely using the 0.4- to 14.0-micron wavelength region: (1) measurement of spectral reflectance, and (2) measurement of soil temperature. The reflectance method is based on observations which show that directional reflectance decreases as soil moisture increases for a given material. The soil temperature method is based on observations which show that differences between daytime and nighttime soil temperatures decrease as moisture content increases for a given material. In some circumstances, separate reflectance or temperature measurements yield ambiguous data, in which case these two methods may be combined to obtain a valid soil moisture determination. In this combined approach, reflectance is used to estimate low moisture levels; and thermal inertia (or thermal diffusivity) is used to estimate higher levels. The reflectance method appears promising for surface estimates of soil moisture, whereas the temperature method appears promising for estimates of near-subsurface (0 to 10 cm).
Using lagged dependence to identify (de)coupled surface and subsurface soil moisture values
NASA Astrophysics Data System (ADS)
Carranza, Coleen D. U.; van der Ploeg, Martine J.; Torfs, Paul J. J. F.
2018-04-01
Recent advances in radar remote sensing popularized the mapping of surface soil moisture at different spatial scales. Surface soil moisture measurements are used in combination with hydrological models to determine subsurface soil moisture values. However, variability of soil moisture across the soil column is important for estimating depth-integrated values, as decoupling between surface and subsurface can occur. In this study, we employ new methods to investigate the occurrence of (de)coupling between surface and subsurface soil moisture. Using time series datasets, lagged dependence was incorporated in assessing (de)coupling with the idea that surface soil moisture conditions will be reflected at the subsurface after a certain delay. The main approach involves the application of a distributed-lag nonlinear model (DLNM) to simultaneously represent both the functional relation and the lag structure in the time series. The results of an exploratory analysis using residuals from a fitted loess function serve as a posteriori information to determine (de)coupled values. Both methods allow for a range of (de)coupled soil moisture values to be quantified. Results provide new insights into the decoupled range as its occurrence among the sites investigated is not limited to dry conditions.
Bautista, Gabriela; Mátyás, Bence; Carpio, Isabel; Vilches, Richard; Pazmino, Karina
2017-01-01
The number of studies investigating the effect of bio-fertilizers is increasing because of their importance in sustainable agriculture and environmental quality. In our experiments, we measured the effect of different fertilizers on soil respiration. In the present study, we were looking for the cause of unexpected changes in CO2 values while examining Chernozem soil samples. We concluded that CO2 oxidizing microbes or methanotrophs may be present in the soil that periodically consume CO2 . This is unusual for a sample taken from the upper layer of well-ventilated Chernozem soil with optimal moisture content.
Bautista, Gabriela; Mátyás, Bence; Carpio, Isabel; Vilches, Richard; Pazmino, Karina
2017-01-01
The number of studies investigating the effect of bio-fertilizers is increasing because of their importance in sustainable agriculture and environmental quality. In our experiments, we measured the effect of different fertilizers on soil respiration. In the present study, we were looking for the cause of unexpected changes in CO2 values while examining Chernozem soil samples. We concluded that CO2 oxidizing microbes or methanotrophs may be present in the soil that periodically consume CO2 . This is unusual for a sample taken from the upper layer of well-ventilated Chernozem soil with optimal moisture content. PMID:29333243
A model of the CO2 exchanges between biosphere and atmosphere in the tundra
NASA Technical Reports Server (NTRS)
Labgaa, Rachid R.; Gautier, Catherine
1992-01-01
A physical model of the soil thermal regime in a permafrost terrain has been developed and validated with soil temperature measurements at Barrow, Alaska. The model calculates daily soil temperatures as a function of depth and average moisture contents of the organic and mineral layers using a set of five climatic variables, i.e., air temperature, precipitation, cloudiness, wind speed, and relative humidity. The model is not only designed to study the impact of climate change on the soil temperature and moisture regime, but also to provide the input to a decomposition and net primary production model. In this context, it is well known that CO2 exchanges between the terrestrial biosphere and the atmosphere are driven by soil temperature through decomposition of soil organic matter and root respiration. However, in tundra ecosystems, net CO2 exchange is extremely sensitive to soil moisture content; therefore it is necessary to predict variations in soil moisture in order to assess the impact of climate change on carbon fluxes. To this end, the present model includes the representation of the soil moisture response to changes in climatic conditions. The results presented in the foregoing demonstrate that large errors in soil temperature and permafrost depth estimates arise from neglecting the dependence of the soil thermal regime on soil moisture contents. Permafrost terrain is an example of a situation where soil moisture and temperature are particularly interrelated: drainage conditions improve when the depth of the permafrost increases; a decrease in soil moisture content leads to a decrease in the latent heat required for the phase transition so that the heat penetrates faster and deeper, and the maximum depth of thaw increases; and as excepted, soil thermal coefficients increase with moisture.
What is the philosophy of modelling soil moisture movement?
NASA Astrophysics Data System (ADS)
Chen, J.; Wu, Y.
2009-12-01
In laboratory, the soil moisture movement in the different soil textures has been analysed. From field investigation, at a spot, the soil moisture movement in the root zone, vadose zone and shallow aquifer has been explored. In addition, on ground slopes, the interflow in the near surface soil layers has been studied. Along the regions near river reaches, the expansion and shrink of the saturated area due to rainfall occurrences have been observed. From those previous explorations regarding soil moisture movement, numerical models to represent this hydrologic process have been developed. However, generally, due to high heterogeneity and stratification of soil in a basin, modelling soil moisture movement is rather challenging. Normally, some empirical equations or artificial manipulation are employed to adjust the soil moisture movement in various numerical models. In this study, we inspect the soil moisture movement equations used in a watershed model, SWAT (Soil and Water Assessment Tool) (Neitsch et al., 2005), to examine the limitations of our knowledge in such a hydrologic process. Then, we adopt the features of a topographic-information based on a hydrologic model, TOPMODEL (Beven and Kirkby, 1979), to enhance the representation of soil moisture movement in SWAT. Basically, the results of the study reveal, to some extent, the philosophy of modelling soil moisture movement in numerical models, which will be presented in the conference. Beven, K.J. and Kirkby, M.J., 1979. A physically based variable contributing area model of basin hydrology. Hydrol. Science Bulletin, 24: 43-69. Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J.R. and King, K.W., 2005. Soil and Water Assessment Tool Theoretical Documentation, Grassland, soil and research service, Temple, TX.
Wagner, Wolfgang; Pathe, Carsten; Doubkova, Marcela; Sabel, Daniel; Bartsch, Annett; Hasenauer, Stefan; Blöschl, Günter; Scipal, Klaus; Martínez-Fernández, José; Löw, Alexander
2008-01-01
The high spatio-temporal variability of soil moisture is the result of atmospheric forcing and redistribution processes related to terrain, soil, and vegetation characteristics. Despite this high variability, many field studies have shown that in the temporal domain soil moisture measured at specific locations is correlated to the mean soil moisture content over an area. Since the measurements taken by Synthetic Aperture Radar (SAR) instruments are very sensitive to soil moisture it is hypothesized that the temporally stable soil moisture patterns are reflected in the radar backscatter measurements. To verify this hypothesis 73 Wide Swath (WS) images have been acquired by the ENVISAT Advanced Synthetic Aperture Radar (ASAR) over the REMEDHUS soil moisture network located in the Duero basin, Spain. It is found that a time-invariant linear relationship is well suited for relating local scale (pixel) and regional scale (50 km) backscatter. The observed linear model coefficients can be estimated by considering the scattering properties of the terrain and vegetation and the soil moisture scaling properties. For both linear model coefficients, the relative error between observed and modelled values is less than 5 % and the coefficient of determination (R2) is 86 %. The results are of relevance for interpreting and downscaling coarse resolution soil moisture data retrieved from active (METOP ASCAT) and passive (SMOS, AMSR-E) instruments. PMID:27879759
Hydrologic responses to restored wildfire regimes revealed by soil moisture-vegetation relationships
NASA Astrophysics Data System (ADS)
Boisramé, Gabrielle; Thompson, Sally; Stephens, Scott
2018-02-01
Many forested mountain watersheds worldwide evolved with frequent fire, which Twentieth Century fire suppression activities eliminated, resulting in unnaturally dense forests with high water demand. Restoration of pre-suppression forest composition and structure through a variety of management activities could improve forest resilience and water yields. This study explores the potential for "managed wildfire", whereby naturally ignited fires are allowed to burn, to alter the water balance. Interest in this type of managed wildfire is increasing, yet its long-term effects on water balance are uncertain. We use soil moisture as a spatially-distributed hydrologic indicator to assess the influence of vegetation, fire history and landscape position on water availability in the Illilouette Creek Basin in Yosemite National Park. Over 6000 manual surface soil moisture measurements were made over a period of three years, and supplemented with continuous soil moisture measurements over the top 1m of soil in three sites. Random forest and linear mixed effects models showed a dominant effect of vegetation type and history of vegetation change on measured soil moisture. Contemporary and historical vegetation maps were used to upscale the soil moisture observations to the basin and infer soil moisture under fire-suppressed conditions. Little change in basin-averaged soil moisture was inferred due to managed wildfire, but the results indicated that large localized increases in soil moisture had occurred, which could have important impacts on local ecology or downstream flows.
Quantifying the influence of deep soil moisture on ecosystem albedo: The role of vegetation
NASA Astrophysics Data System (ADS)
Sanchez-Mejia, Zulia Mayari; Papuga, Shirley Anne; Swetish, Jessica Blaine; van Leeuwen, Willem Jan Dirk; Szutu, Daphne; Hartfield, Kyle
2014-05-01
As changes in precipitation dynamics continue to alter the water availability in dryland ecosystems, understanding the feedbacks between the vegetation and the hydrologic cycle and their influence on the climate system is critically important. We designed a field campaign to examine the influence of two-layer soil moisture control on bare and canopy albedo dynamics in a semiarid shrubland ecosystem. We conducted this campaign during 2011 and 2012 within the tower footprint of the Santa Rita Creosote Ameriflux site. Albedo field measurements fell into one of four Cases within a two-layer soil moisture framework based on permutations of whether the shallow and deep soil layers were wet or dry. Using these Cases, we identified differences in how shallow and deep soil moisture influence canopy and bare albedo. Then, by varying the number of canopy and bare patches within a gridded framework, we explore the influence of vegetation and soil moisture on ecosystem albedo. Our results highlight the importance of deep soil moisture in land surface-atmosphere interactions through its influence on aboveground vegetation characteristics. For instance, we show how green-up of the vegetation is triggered by deep soil moisture, and link deep soil moisture to a decrease in canopy albedo. Understanding relationships between vegetation and deep soil moisture will provide important insights into feedbacks between the hydrologic cycle and the climate system.
Tamburini, Elena; Vincenzi, Fabio; Costa, Stefania; Mantovi, Paolo; Pedrini, Paola; Castaldelli, Giuseppe
2017-10-17
Near-Infrared Spectroscopy is a cost-effective and environmentally friendly technique that could represent an alternative to conventional soil analysis methods, including total organic carbon (TOC). Soil fertility and quality are usually measured by traditional methods that involve the use of hazardous and strong chemicals. The effects of physical soil characteristics, such as moisture content and particle size, on spectral signals could be of great interest in order to understand and optimize prediction capability and set up a robust and reliable calibration model, with the future perspective of being applied in the field. Spectra of 46 soil samples were collected. Soil samples were divided into three data sets: unprocessed, only dried and dried, ground and sieved, in order to evaluate the effects of moisture and particle size on spectral signals. Both separate and combined normalization methods including standard normal variate (SNV), multiplicative scatter correction (MSC) and normalization by closure (NCL), as well as smoothing using first and second derivatives (DV1 and DV2), were applied to a total of seven cases. Pretreatments for model optimization were designed and compared for each data set. The best combination of pretreatments was achieved by applying SNV and DV2 on partial least squares (PLS) modelling. There were no significant differences between the predictions using the three different data sets ( p < 0.05). Finally, a unique database including all three data sets was built to include all the sources of sample variability that were tested and used for final prediction. External validation of TOC was carried out on 16 unknown soil samples to evaluate the predictive ability of the final combined calibration model. Hence, we demonstrate that sample preprocessing has minor influence on the quality of near infrared spectroscopy (NIR) predictions, laying the ground for a direct and fast in situ application of the method. Data can be acquired outside the laboratory since the method is simple and does not need more than a simple band ratio of the spectra.
NASA Astrophysics Data System (ADS)
Cui, Yaokui; Long, Di; Hong, Yang; Zeng, Chao; Zhou, Jie; Han, Zhongying; Liu, Ronghua; Wan, Wei
2016-12-01
Soil moisture is a key variable in the exchange of water and energy between the land surface and the atmosphere, especially over the Tibetan Plateau (TP) which is climatically and hydrologically sensitive as the Earth's 'third pole'. Large-scale spatially consistent and temporally continuous soil moisture datasets are of great importance to meteorological and hydrological applications, such as weather forecasting and drought monitoring. The Fengyun-3B Microwave Radiation Imager (FY-3B/MWRI) soil moisture product is a relatively new passive microwave product, with the satellite being launched on November 5, 2010. This study validates and reconstructs FY-3B/MWRI soil moisture across the TP. First, the validation is performed using in situ measurements within two in situ soil moisture measurement networks (1° × 1° and 0.25° × 0.25°), and also compared with the Essential Climate Variable (ECV) soil moisture product from multiple active and passive satellite soil moisture products using new merging procedures. Results show that the ascending FY-3B/MWRI product outperforms the descending product. The ascending FY-3B/MWRI product has almost the same correlation as the ECV product with the in situ measurements. The ascending FY-3B/MWRI product has better performance than the ECV product in the frozen season and under the lower NDVI condition. When the NDVI is higher in the unfrozen season, uncertainty in the ascending FY-3B/MWRI product increases with increasing NDVI, but it could still capture the variability in soil moisture. Second, the FY-3B/MWRI soil moisture product is subsequently reconstructed using the back-propagation neural network (BP-NN) based on reconstructed MODIS products, i.e., LST, NDVI, and albedo. The reconstruction method of generating the soil moisture product not only considers the relationship between the soil moisture and NDVI, LST, and albedo, but also the relationship between the soil moisture and four-dimensional variations using the longitude, latitude, DEM and day of year (DOY). Results show that the soil moisture could be well reconstructed with R2 higher than 0.56, RMSE less than 0.1 cm3 cm-3, and Bias less than 0.07 cm3 cm-3 for both frozen and unfrozen seasons, compared with the in situ measurements at the two networks. Third, the reconstruction method is applied to generate surface soil moisture over the TP. Both original and reconstructed FY-3B/MWRI soil moisture products could be valuable in studying meteorology, hydrology, and ecosystems over the TP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grossiord, Charlotte; Sevanto, Sanna Annika; Limousin, Jean -Marc
Tree transpiration depends on biotic and abiotic factors that might change in the future, including precipitation and soil moisture status. Although short-term sap flux responses to soil moisture and evaporative demand have been the subject of attention before, the relative sensitivity of sap flux to these two factors under long-term changes in soil moisture conditions has rarely been determined experimentally. We tested how long-term artificial change in soil moisture affects the sensitivity of tree-level sap flux to daily atmospheric vapor pressure deficit ( VPD) and soil moisture variations, and the generality of these effects across forest types and environments usingmore » four manipulative sites in mature forests. Exposure to relatively long-term (two to six years) soil moisture reduction decreases tree sap flux sensitivity to daily VPD and relative extractable water ( REW) variations, leading to lower sap flux even under high soil moisture and optimal VPD. Inversely, trees subjected to long-term irrigation showed a significant increase in their sensitivity to daily VPD and REW, but only at the most water-limited site. The ratio between the relative change in soil moisture manipulation and the relative change in sap flux sensitivity to VPD and REW variations was similar across sites suggesting common adjustment mechanisms to long-term soil moisture status across environments for evergreen tree species. Altogether, our results show that long-term changes in soil water availability, and subsequent adjustments to these novel conditions, could play a critical and increasingly important role in controlling forest water use in the future.« less
Grossiord, Charlotte; Sevanto, Sanna Annika; Limousin, Jean -Marc; ...
2017-12-14
Tree transpiration depends on biotic and abiotic factors that might change in the future, including precipitation and soil moisture status. Although short-term sap flux responses to soil moisture and evaporative demand have been the subject of attention before, the relative sensitivity of sap flux to these two factors under long-term changes in soil moisture conditions has rarely been determined experimentally. We tested how long-term artificial change in soil moisture affects the sensitivity of tree-level sap flux to daily atmospheric vapor pressure deficit ( VPD) and soil moisture variations, and the generality of these effects across forest types and environments usingmore » four manipulative sites in mature forests. Exposure to relatively long-term (two to six years) soil moisture reduction decreases tree sap flux sensitivity to daily VPD and relative extractable water ( REW) variations, leading to lower sap flux even under high soil moisture and optimal VPD. Inversely, trees subjected to long-term irrigation showed a significant increase in their sensitivity to daily VPD and REW, but only at the most water-limited site. The ratio between the relative change in soil moisture manipulation and the relative change in sap flux sensitivity to VPD and REW variations was similar across sites suggesting common adjustment mechanisms to long-term soil moisture status across environments for evergreen tree species. Altogether, our results show that long-term changes in soil water availability, and subsequent adjustments to these novel conditions, could play a critical and increasingly important role in controlling forest water use in the future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grossiord, Charlotte; Sevanto, Sanna; Limousin, Jean-Marc
Tree transpiration depends on biotic and abiotic factors that might change in the future, including precipitation and soil moisture status. Although short-term sap flux responses to soil moisture and evaporative demand have been the subject of attention before, the relative sensitivity of sap flux to these two factors under long-term changes in soil moisture conditions has rarely been determined experimentally. We tested how long-term artificial change in soil moisture affects the sensitivity of tree-level sap flux to daily atmospheric vapor pressure deficit (VPD) and soil moisture variations, and the generality of these effects across forest types and environments using fourmore » manipulative sites in mature forests. Exposure to relatively long-term (two to six years) soil moisture reduction decreases tree sap flux sensitivity to daily VPD and relative extractable water (REW) variations, leading to lower sap flux even under high soil moisture and optimal VPD. Inversely, trees subjected to long-term irrigation showed a significant increase in their sensitivity to daily VPD and REW, but only at the most water-limited site. The ratio between the relative change in soil moisture manipulation and the relative change in sap flux sensitivity to VPD and REW variations was similar across sites suggesting common adjustment mechanisms to long-term soil moisture status across environments for evergreen tree species. Overall, our results show that long-term changes in soil water availability, and subsequent adjustments to these novel conditions, could play a critical and increasingly important role in controlling forest water use in the future.« less
NASA Astrophysics Data System (ADS)
Wallen, B.; Trautz, A.; Smits, K. M.
2014-12-01
The estimation of evaporation has important implications in modeling climate at the regional and global scale, the hydrological cycle and estimating environmental stress on agricultural systems. In field and laboratory studies, remote sensing and in-situ techniques are used to collect thermal and soil moisture data of the soil surface and subsurface which is then used to estimate evaporative fluxes, oftentimes using the sensible heat balance method. Nonetheless, few studies exist that compare the methods due to limited data availability and the complexity of many of the techniques, making it difficult to understand flux estimates. This work compares different methods used to quantify evaporative flux based on remotely sensed and in-situ temperature and soil moisture data. A series of four laboratory experiments were performed under ambient and elevated air temperature conditions with homogeneous and heterogeneous soil configurations in a small two-dimensional soil tank interfaced with a small wind tunnel apparatus. The soil tank and wind tunnel were outfitted with a suite of sensors that measured soil temperature (surface and subsurface), air temperature, soil moisture, and tank weight. Air and soil temperature measurements were obtained using infrared thermography, heat pulse sensors and thermistors. Spatial and temporal thermal data were numerically inverted to obtain the evaporative flux. These values were then compared with rates of mass loss from direct weighing of the samples. Results demonstrate the applicability of different methods under different surface boundary conditions; no one method was deemed most applicable under every condition. Infrared thermography combined with the sensible heat balance method was best able to determine evaporative fluxes under stage 1 conditions while distributed temperature sensing combined with the sensible heat balance method best determined stage 2 evaporation. The approaches that appear most promising for determining the surface energy balance incorporates soil moisture rate of change over time and atmospheric conditions immediately above the soil surface. An understanding of the fidelity regarding predicted evaporation rates based upon stages of evaporation enables a more deliberate selection of the suite of sensors required for data collection.
NASA Technical Reports Server (NTRS)
Dobson, M. C.; Ulaby, F. T.; Moezzi, S.; Roth, E.
1983-01-01
Simulated C-band radar imagery for a 124-km by 108-km test site in eastern Kansas is used to classify soil moisture. Simulated radar resolutions are 100 m by 100 m, 1 km by 1 km, and 3 km by 3 km, and each is processed using more than 23 independent samples. Moisture classification errors are examined as a function of land-cover distribution, field-size distribution, and local topographic relief for the full test site and also for subregions of cropland, urban areas, woodland, and pasture/rangeland. Results show that a radar resolution of 100 m by 100 m yields the most robust classification accuracies.
Misrepresentation of hydro-erosional processes in rainfall simulations using disturbed soil samples
NASA Astrophysics Data System (ADS)
Thomaz, Edivaldo L.; Pereira, Adalberto A.
2017-06-01
Interrill erosion is a primary soil erosion process which consists of soil detachment by raindrop impact and particle transport by shallow flow. Interill erosion affects other soil erosion sub-processes, e.g., water infiltration, sealing, crusting, and rill initiation. Interrill erosion has been widely studied in laboratories, and the use of a sieved soil, i.e., disturbed soil, has become a standard method in laboratory experiments. The aims of our study are to evaluate the hydro-erosional response of undisturbed and disturbed soils in a laboratory experiment, and to quantify the extent to which hydraulic variables change during a rainstorm. We used a splash pan of 0.3 m width, 0.45 m length, and 0.1 m depth. A rainfall simulation of 58 mm h- 1 lasting for 30 min was conducted on seven replicates of undisturbed and disturbed soils. During the experiment, several hydro-physical parameters were measured, including splashed sediment, mean particle size, runoff, water infiltration, and soil moisture. We conclude that use of disturbed soil samples results in overestimation of interrill processes. Of the nine assessed parameters, four displayed greater responses in the undisturbed soil: infiltration, topsoil shear strength, mean particle size of eroded particles, and soil moisture. In the disturbed soil, five assessed parameters displayed greater responses: wash sediment, final runoff coefficient, runoff, splash, and sediment yield. Therefore, contextual soil properties are most suitable for understanding soil erosion, as well as for defining soil erodibility.
Observing and modeling links between soil moisture, microbes and CH4 fluxes from forest soils
NASA Astrophysics Data System (ADS)
Christiansen, Jesper; Levy-Booth, David; Barker, Jason; Prescott, Cindy; Grayston, Sue
2017-04-01
Soil moisture is a key driver of methane (CH4) fluxes in forest soils, both of the net uptake of atmospheric CH4 and emission from the soil. Climate and land use change will alter spatial patterns of soil moisture as well as temporal variability impacting the net CH4 exchange. The impact on the resultant net CH4 exchange however is linked to the underlying spatial and temporal distribution of the soil microbial communities involved in CH4 cycling as well as the response of the soil microbial community to environmental changes. Significant progress has been made to target specific CH4 consuming and producing soil organisms, which is invaluable in order to understand the microbial regulation of the CH4 cycle in forest soils. However, it is not clear as to which extent soil moisture shapes the structure, function and abundance of CH4 specific microorganisms and how this is linked to observed net CH4 exchange under contrasting soil moisture regimes. Here we report on the results from a research project aiming to understand how the CH4 net exchange is shaped by the interactive effects soil moisture and the spatial distribution CH4 consuming (methanotrophs) and producing (methanogens). We studied the growing season variations of in situ CH4 fluxes, microbial gene abundances of methanotrophs and methanogens, soil hydrology, and nutrient availability in three typical forest types across a soil moisture gradient in a temperate rainforest on the Canadian Pacific coast. Furthermore, we conducted laboratory experiments to determine whether the net CH4 exchange from hydrologically contrasting forest soils responded differently to changes in soil moisture. Lastly, we modelled the microbial mediation of net CH4 exchange along the soil moisture gradient using structural equation modeling. Our study shows that it is possible to link spatial patterns of in situ net exchange of CH4 to microbial abundance of CH4 consuming and producing organisms. We also show that the microbial community responds different to environmental change dependent on the soil moisture regime. These results are important to include in future modeling efforts to predict changes in soil-atmosphere exchange of CH4 under global change.
NASA Astrophysics Data System (ADS)
Iwema, J.; Rosolem, R.; Baatz, R.; Wagener, T.; Bogena, H. R.
2015-07-01
The Cosmic-Ray Neutron Sensor (CRNS) can provide soil moisture information at scales relevant to hydrometeorological modelling applications. Site-specific calibration is needed to translate CRNS neutron intensities into sensor footprint average soil moisture contents. We investigated temporal sampling strategies for calibration of three CRNS parameterisations (modified N0, HMF, and COSMIC) by assessing the effects of the number of sampling days and soil wetness conditions on the performance of the calibration results while investigating actual neutron intensity measurements, for three sites with distinct climate and land use: a semi-arid site, a temperate grassland, and a temperate forest. When calibrated with 1 year of data, both COSMIC and the modified N0 method performed better than HMF. The performance of COSMIC was remarkably good at the semi-arid site in the USA, while the N0mod performed best at the two temperate sites in Germany. The successful performance of COSMIC at all three sites can be attributed to the benefits of explicitly resolving individual soil layers (which is not accounted for in the other two parameterisations). To better calibrate these parameterisations, we recommend in situ soil sampled to be collected on more than a single day. However, little improvement is observed for sampling on more than 6 days. At the semi-arid site, the N0mod method was calibrated better under site-specific average wetness conditions, whereas HMF and COSMIC were calibrated better under drier conditions. Average soil wetness condition gave better calibration results at the two humid sites. The calibration results for the HMF method were better when calibrated with combinations of days with similar soil wetness conditions, opposed to N0mod and COSMIC, which profited from using days with distinct wetness conditions. Errors in actual neutron intensities were translated to average errors specifically to each site. At the semi-arid site, these errors were below the typical measurement uncertainties from in situ point-scale sensors and satellite remote sensing products. Nevertheless, at the two humid sites, reduction in uncertainty with increasing sampling days only reached typical errors associated with satellite remote sensing products. The outcomes of this study can be used by researchers as a CRNS calibration strategy guideline.
NASA Astrophysics Data System (ADS)
Ťupek, Boris; Launiainen, Samuli; Peltoniemi, Mikko; Heikkinen, Jukka; Lehtonen, Aleksi
2016-04-01
Litter decomposition rates of the most process based soil carbon models affected by environmental conditions are linked with soil heterotrophic CO2 emissions and serve for estimating soil carbon sequestration; thus due to the mass balance equation the variation in measured litter inputs and measured heterotrophic soil CO2 effluxes should indicate soil carbon stock changes, needed by soil carbon management for mitigation of anthropogenic CO2 emissions, if sensitivity functions of the applied model suit to the environmental conditions e.g. soil temperature and moisture. We evaluated the response forms of autotrophic and heterotrophic forest floor respiration to soil temperature and moisture in four boreal forest sites of the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) by a soil trenching experiment during year 2015 in southern Finland. As expected both autotrophic and heterotrophic forest floor respiration components were primarily controlled by soil temperature and exponential regression models generally explained more than 90% of the variance. Soil moisture regression models on average explained less than 10% of the variance and the response forms varied between Gaussian for the autotrophic forest floor respiration component and linear for the heterotrophic forest floor respiration component. Although the percentage of explained variance of soil heterotrophic respiration by the soil moisture was small, the observed reduction of CO2 emissions with higher moisture levels suggested that soil moisture response of soil carbon models not accounting for the reduction due to excessive moisture should be re-evaluated in order to estimate right levels of soil carbon stock changes. Our further study will include evaluation of process based soil carbon models by the annual heterotrophic respiration and soil carbon stocks.
The use of remotely sensed soil moisture data in large-scale models of the hydrological cycle
NASA Technical Reports Server (NTRS)
Salomonson, V. V.; Gurney, R. J.; Schmugge, T. J.
1985-01-01
Manabe (1982) has reviewed numerical simulations of the atmosphere which provided a framework within which an examination of the dynamics of the hydrological cycle could be conducted. It was found that the climate is sensitive to soil moisture variability in space and time. The challenge arises now to improve the observations of soil moisture so as to provide up-dated boundary condition inputs to large scale models including the hydrological cycle. Attention is given to details regarding the significance of understanding soil moisture variations, soil moisture estimation using remote sensing, and energy and moisture balance modeling.
Evaluation of HCMM data for assessing soil moisture and water table depth. [South Dakota
NASA Technical Reports Server (NTRS)
Moore, D. G.; Heilman, J. L.; Tunheim, J. A.; Westin, F. C.; Heilman, W. E.; Beutler, G. A.; Ness, S. D. (Principal Investigator)
1981-01-01
Soil moisture in the 0-cm to 4-cm layer could be estimated with 1-mm soil temperatures throughout the growing season of a rainfed barley crop in eastern South Dakota. Empirical equations were developed to reduce the effect of canopy cover when radiometrically estimating the soil temperature. Corrective equations were applied to an aircraft simulation of HCMM data for a diversity of crop types and land cover conditions to estimate the soil moisture. The average difference between observed and measured soil moisture was 1.6% of field capacity. Shallow alluvial aquifers were located with HCMM predawn data. After correcting the data for vegetation differences, equations were developed for predicting water table depths within the aquifer. A finite difference code simulating soil moisture and soil temperature shows that soils with different moisture profiles differed in soil temperatures in a well defined functional manner. A significant surface thermal anomaly was found to be associated with shallow water tables.
NASA Astrophysics Data System (ADS)
Gutenberg, L. W.; Krauss, K.; Qu, J. J.; Hogan, D. M.; Zhu, Z.; Xu, C.
2017-12-01
The Great Dismal Swamp in Virginia and North Carolina, USA, has been greatly impacted by human use and management for the last few hundred years through logging, ditching, and draining. Today, the once dominant cedar, cypress and pocosin forest types are fragmented due to logging and environmental change. Maple-gum forest has taken over more than half the remaining area of the swamp ecosystem, which is now a National Wildlife Refuge and State Park. The peat soils and biomass store a vast quantity of carbon compared with the size of the refuge, but this store is threatened by fire and drying. This study looks at three of the main forest types in the GDS— maple-sweet gum, tall pine pocosin, and Atlantic white cedar— in terms of their carbon dioxide and methane soil flux. Using static chambers to sample soil gas flux in locally representative sites, we found that cedar sites showed a higher carbon dioxide flux rate as the soil temperature increased than maple sites, and the rate of carbon dioxide flux decreased as soil moisture increased faster in cedar sites than in maple sites. Methane flux increased as temperature increased for pocosin, but decreased with temperature for cedar and maple. All of the methane fluxes increased as soil moisture increased. Cedar average carbon dioxide flux was statistically significantly different from both maple and pocosin. These results show that soil carbon gas flux depends on soil moisture and temperature, which are factors that are changing due to human actions, as well as on forest type, which is also the result of human activity. Some of these variables may be adjustable by the managers of the land. Variables other than forest type, temperature and soil moisture/inundation may also play a role in influencing soil flux, such as stand age, tree height, composition of the peat and nutrient availability, and source of moisture as some sites are more influenced by groundwater from ditches and some more by rainfall depending on the direction of groundwater lateral flow. Increasing temperatures and changes in precipitation and soil moisture may impact the carbon storage and health of this ecosystem, although it is already strongly influenced by anthropogenic activities such as past logging and water level management.
SMOS/SMAP Synergy for SMAP Level 2 Soil Moisture Algorithm Evaluation
NASA Technical Reports Server (NTRS)
Bindlish, Rajat; Jackson, Thomas J.; Zhao, Tianjie; Cosh, Michael; Chan, Steven; O'Neill, Peggy; Njoku, Eni; Colliander, Andreas; Kerr, Yann
2011-01-01
Soil Moisture Active Passive (SMAP) satellite has been proposed to provide global measurements of soil moisture and land freeze/thaw state at 10 km and 3 km resolutions, respectively. SMAP would also provide a radiometer-only soil moisture product at 40-km spatial resolution. This product and the supporting brightness temperature observations are common to both SMAP and European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission. As a result, there are opportunities for synergies between the two missions. These include exploiting the data for calibration and validation and establishing longer term L-band brightness temperature and derived soil moisture products. In this investigation we will be using SMOS brightness temperature, ancillary data, and soil moisture products to develop and evaluate a candidate SMAP L2 passive soil moisture retrieval algorithm. This work will begin with evaluations based on the SMOS product grids and ancillary data sets and transition to those that will be used by SMAP. An important step in this analysis is reprocessing the multiple incidence angle observations provided by SMOS to a global brightness temperature product that simulates the constant 40 degree incidence angle observations that SMAP will provide. The reprocessed brightness temperature data provide a basis for evaluating different SMAP algorithm alternatives. Several algorithms are being considered for the SMAP radiometer-only soil moisture retrieval. In this first phase, we utilized only the Single Channel Algorithm (SCA), which is based on the radiative transfer equation and uses the channel that is most sensitive to soil moisture (H-pol). Brightness temperature is corrected sequentially for the effects of temperature, vegetation, roughness (dynamic ancillary data sets) and soil texture (static ancillary data set). European Centre for Medium-Range Weather Forecasts (ECMWF) estimates of soil temperature for the top layer (as provided as part of the SMOS ancillary data) were used to correct for surface temperature effects and to derive microwave emissivity. ECMWF data were also used for precipitation forecasts, presence of snow, and frozen ground. Vegetation options are described below. One year of soil moisture observations from a set of four watersheds in the U.S. were used to evaluate four different retrieval methodologies: (1) SMOS soil moisture estimates (version 400), (2) SeA soil moisture estimates using the SMOS/SMAP data with SMOS estimated vegetation optical depth, which is part of the SMOS level 2 product, (3) SeA soil moisture estimates using the SMOS/SMAP data and the MODIS-based vegetation climatology data, and (4) SeA soil moisture estimates using the SMOS/SMAP data and actual MODIS observations. The use of SMOS real-world global microwave observations and the analyses described here will help in the development and selection of different land surface parameters and ancillary observations needed for the SMAP soil moisture algorithms. These investigations will greatly improve the quality and reliability of this SMAP product at launch.
Disaggregation Of Passive Microwave Soil Moisture For Use In Watershed Hydrology Applications
NASA Astrophysics Data System (ADS)
Fang, Bin
In recent years the passive microwave remote sensing has been providing soil moisture products using instruments on board satellite/airborne platforms. Spatial resolution has been restricted by the diameter of antenna which is inversely proportional to resolution. As a result, typical products have a spatial resolution of tens of kilometers, which is not compatible for some hydrological research applications. For this reason, the dissertation explores three disaggregation algorithms that estimate L-band passive microwave soil moisture at the subpixel level by using high spatial resolution remote sensing products from other optical and radar instruments were proposed and implemented in this investigation. The first technique utilized a thermal inertia theory to establish a relationship between daily temperature change and average soil moisture modulated by the vegetation condition was developed by using NLDAS, AVHRR, SPOT and MODIS data were applied to disaggregate the 25 km AMSR-E soil moisture to 1 km in Oklahoma. The second algorithm was built on semi empirical physical models (NP89 and LP92) derived from numerical experiments between soil evaporation efficiency and soil moisture over the surface skin sensing depth (a few millimeters) by using simulated soil temperature derived from MODIS and NLDAS as well as AMSR-E soil moisture at 25 km to disaggregate the coarse resolution soil moisture to 1 km in Oklahoma. The third algorithm modeled the relationship between the change in co-polarized radar backscatter and the remotely sensed microwave change in soil moisture retrievals and assumed that change in soil moisture was a function of only the canopy opacity. The change detection algorithm was implemented using aircraft based the remote sensing data from PALS and UAVSAR that were collected in SMPAVEX12 in southern Manitoba, Canada. The PALS L-band h-polarization radiometer soil moisture retrievals were disaggregated by combining them with the PALS and UAVSAR L-band hh-polarization radar spatial resolutions of 1500 m and 5 m/800 m, respectively. All three algorithms were validated using ground measurements from network in situ stations or handheld hydra probes. The validation results demonstrate the practicability on coarse resolution passive microwave soil moisture products.
NASA Astrophysics Data System (ADS)
Fois, Laura; Montaldo, Nicola
2017-04-01
Soil moisture plays a key role in water and energy exchanges between soil, vegetation and atmosphere. For water resources planning and managementthesoil moistureneeds to be accurately and spatially monitored, specially where the risk of desertification is high, such as Mediterranean basins. In this sense active remote sensors are very attractive for soil moisture monitoring. But Mediterranean basinsaretypicallycharacterized by strong topography and high spatial variability of physiographic properties, and only high spatial resolution sensorsare potentially able to monitor the strong soil moisture spatial variability.In this regard the Envisat ASAR (Advanced Synthetic Aperture Radar) sensor offers the attractive opportunity ofsoil moisture mapping at fine spatial and temporal resolutions(up to 30 m, every 30 days). We test the ASAR sensor for soil moisture estimate in an interesting Sardinian case study, the Mulargia basin withan area of about 70 sq.km. The position of the Sardinia island in the center of the western Mediterranean Sea basin, its low urbanization and human activity make Sardinia a perfect reference laboratory for Mediterranean hydrologic studies. The Mulargia basin is a typical Mediterranean basinin water-limited conditions, and is an experimental basin from 2003. For soil moisture mapping23 satellite ASAR imagery at single and dual polarization were acquired for the 2003-2004period.Satellite observationsmay bevalidated through spatially distributed soil moisture ground-truth data, collected over the whole basin using the TDR technique and the gravimetric method, in days with available radar images. The results show that ASAR sensor observations can be successfully used for soil moisture mapping at different seasons, both wet and dry, but an accurate calibration with field data is necessary. We detect a strong relationship between the soil moisture spatial variability and the physiographic properties of the basin, such as soil water storage capacity, deep and texture of soils, type and density of vegetation, and topographic parameters. Finally we demonstrate that the high resolution ASAR imagery are an attractive tool for estimating surface soil moisture at basin scale, offering a unique opportunity for monitoring the soil moisture spatial variability in typical Mediterranean basins.
Mapping of bare soil surface parameters from TerraSAR-X radar images over a semi-arid region
NASA Astrophysics Data System (ADS)
Gorrab, A.; Zribi, M.; Baghdadi, N.; Lili Chabaane, Z.
2015-10-01
The goal of this paper is to analyze the sensitivity of X-band SAR (TerraSAR-X) signals as a function of different physical bare soil parameters (soil moisture, soil roughness), and to demonstrate that it is possible to estimate of both soil moisture and texture from the same experimental campaign, using a single radar signal configuration (one incidence angle, one polarization). Firstly, we analyzed statistically the relationships between X-band SAR (TerraSAR-X) backscattering signals function of soil moisture and different roughness parameters (the root mean square height Hrms, the Zs parameter and the Zg parameter) at HH polarization and for an incidence angle about 36°, over a semi-arid site in Tunisia (North Africa). Results have shown a high sensitivity of real radar data to the two soil parameters: roughness and moisture. A linear relationship is obtained between volumetric soil moisture and radar signal. A logarithmic correlation is observed between backscattering coefficient and all roughness parameters. The highest dynamic sensitivity is obtained with Zg parameter. Then, we proposed to retrieve of both soil moisture and texture using these multi-temporal X-band SAR images. Our approach is based on the change detection method and combines the seven radar images with different continuous thetaprobe measurements. To estimate soil moisture from X-band SAR data, we analyzed statistically the sensitivity between radar measurements and ground soil moisture derived from permanent thetaprobe stations. Our approaches are applied over bare soil class identified from an optical image SPOT / HRV acquired in the same period of measurements. Results have shown linear relationship for the radar signals as a function of volumetric soil moisture with high sensitivity about 0.21 dB/vol%. For estimation of change in soil moisture, we considered two options: (1) roughness variations during the three-month radar acquisition campaigns were not accounted for; (2) a simple correction for temporal variations in roughness was included. The results reveal a small improvement in the estimation of soil moisture when a correction for temporal variations in roughness is introduced. Finally, by considering the estimated temporal dynamics of soil moisture, a methodology is proposed for the retrieval of clay and sand content (expressed as percentages) in soil. Two empirical relationships were established between the mean moisture values retrieved from the seven acquired radar images and the two soil texture components over 36 test fields. Validation of the proposed approach was carried out over a second set of 34 fields, showing that highly accurate clay estimations can be achieved.
Canadian Experiment for Soil Moisture in 2010 (CanEX-SM10): Overview and Preliminary Results
NASA Technical Reports Server (NTRS)
Magagi, Ramata; Berg, Aaron; Goita, Kalifa; Belair, Stephane; Jackson, Tom; Toth, B.; Walker, A.; McNairn, H.; O'Neill, P.; Moghdam. M;
2011-01-01
The Canadian Experiment for Soil Moisture in 2010 (CanEx-SM10) was carried out in Saskatchewan, Canada from 31 May to 16 June, 2010. Its main objective was to contribute to Soil Moisture and Ocean salinity (SMOS) mission validation and the pre-launch assessment of Soil Moisture and Active and Passive (SMAP) mission. During CanEx-SM10, SMOS data as well as other passive and active microwave measurements were collected by both airborne and satellite platforms. Ground-based measurements of soil (moisture, temperature, roughness, bulk density) and vegetation characteristics (Leaf Area Index, biomass, vegetation height) were conducted close in time to the airborne and satellite acquisitions. Besides, two ground-based in situ networks provided continuous measurements of meteorological conditions and soil moisture and soil temperature profiles. Two sites, each covering 33 km x 71 km (about two SMOS pixels) were selected in agricultural and boreal forested areas in order to provide contrasting soil and vegetation conditions. This paper describes the measurement strategy, provides an overview of the data sets and presents preliminary results. Over the agricultural area, the airborne L-band brightness temperatures matched up well with the SMOS data. The Radio frequency interference (RFI) observed in both SMOS and the airborne L-band radiometer data exhibited spatial and temporal variability and polarization dependency. The temporal evolution of SMOS soil moisture product matched that observed with the ground data, but the absolute soil moisture estimates did not meet the accuracy requirements (0.04 m3/m3) of the SMOS mission. AMSR-E soil moisture estimates are more closely correlated with measured soil moisture.
USDA-ARS?s Scientific Manuscript database
The diversity of in situ soil moisture network protocols and instrumentation led to the development of a testbed for comparing in situ soil moisture sensors. Located in Marena, Oklahoma on the Oklahoma State University Range Research Station, the testbed consists of four base stations. Each station ...
USDA-ARS?s Scientific Manuscript database
Using multiple historical satellite surface soil moisture products, the Kalman Filtering-based Soil Moisture Analysis Rainfall Tool (SMART) is applied to improve the accuracy of a multi-decadal global daily rainfall product that has been bias-corrected to match the monthly totals of available rain g...
USDA-ARS?s Scientific Manuscript database
The high spatio-temporal variability of soil moisture complicates the validation of remotely sensed soil moisture products using in-situ monitoring stations. Therefore, a standard methodology for selecting the most repre- sentative stations for the purpose of validating satellites and land surface ...
Validation of SMAP soil moisture for the SMAPVEX15 field campaign using a hyper-resolution model
USDA-ARS?s Scientific Manuscript database
Accurate global mapping of soil moisture is the goal of the Soil Moisture Active Passive (SMAP) mission, which is expected to improve the estimation of water, energy, and carbon exchanges between the land and the atmosphere. Like other satellite products, the SMAP soil moisture retrievals need to be...
2008-11-01
consisted of eight fundamental tasks. Boeing (1) pro - vided software allowing the selection of OLS locations using satellite im- agery, (2) provided a...IOP1 to determine the stratigraphy of the soil horizons, collect samples to determine the soil texture, and collect pro - file measurements of the soil...However, using the wet density value from the gauge with an oven-dry moisture con - tent from a sample collected at the same location where the density
USDA-ARS?s Scientific Manuscript database
Understanding soil moisture is critical for landscape irrigation management. This landscaep irrigation seminar will compare volumetric and matric potential soil-moisture sensors, discuss the relationship between their readings and demonstrate how to use these data. Soil water sensors attempt to sens...
NASA Astrophysics Data System (ADS)
Percy, M.; Singha, K.; Benninger, L. K.; Riveros-Iregui, D. A.; Mirus, B. B.
2015-12-01
The spatial and temporal distribution of soil moisture in tropical critical zones depends upon a number of variables including topographic position, soil texture, overlying vegetation, and local microclimates. We investigate the influences on soil moisture on a tropical basaltic island (San Cristóbal, Galápagos) across a variety of microclimates during the transition from the wetter to the drier season. We used multiple approaches to characterize spatial and temporal patterns in soil moisture at four sites across microclimates ranging from arid to very humid. The microclimates on San Cristóbal vary with elevation, so our monitoring includes two sites in the transitional zone at lower elevations, one in the humid zone at moderate elevations, and one in the very humid zone in higher elevations. We made over 250 near-surface point measurements per site using a Hydrosense II probe, and estimated the lateral variability in soil moisture across each site with an EM-31 electrical conductivity meter. We also monitored continuous time-series of in-situ soil moisture dynamics using three nested TDR probes collocated with meteorological stations at each of the sites. Preliminary analysis indicates that soils in the very humid zone have lower electrical conductivities across all the hillslopes as compared to the humid and transitional zones, which suggests that additional factors beyond climate and slope position are important. While soil texture across the very humid site is fairly uniform, variations in vegetation have a strong control on soil moisture patterns. At the remaining sites the vegetation patterns also have a very strong local influence on soil moisture, but correlation between the depth to clay layers and soil moisture patterns suggests that mineralogy is also important. Our findings suggest that the microclimatic setting is a crucial consideration for understanding relations between vegetation, soil texture, and soil-moisture dynamics in tropical critical zones.
NASA Astrophysics Data System (ADS)
Moghadas, Davood; Jadoon, Khan Zaib; McCabe, Matthew F.
2017-12-01
Monitoring spatiotemporal variations of soil water content (θ) is important across a range of research fields, including agricultural engineering, hydrology, meteorology and climatology. Low frequency electromagnetic induction (EMI) systems have proven to be useful tools in mapping soil apparent electrical conductivity (σa) and soil moisture. However, obtaining depth profile water content is an area that has not been fully explored using EMI. To examine this, we performed time-lapse EMI measurements using a CMD mini-Explorer sensor along a 10 m transect of a maize field over a 6 day period. Reference data were measured at the end of the profile via an excavated pit using 5TE capacitance sensors. In order to derive a time-lapse, depth-specific subsurface image of electrical conductivity (σ), we applied a probabilistic sampling approach, DREAM(ZS) , on the measured EMI data. The inversely estimated σ values were subsequently converted to θ using the Rhoades et al. (1976) petrophysical relationship. The uncertainties in measured σa, as well as inaccuracies in the inverted data, introduced some discrepancies between estimated σ and reference values in time and space. Moreover, the disparity between the measurement footprints of the 5TE and CMD Mini-Explorer sensors also led to differences. The obtained θ permitted an accurate monitoring of the spatiotemporal distribution and variation of soil water content due to root water uptake and evaporation. The proposed EMI measurement and modeling technique also allowed for detecting temporal root zone soil moisture variations. The time-lapse θ monitoring approach developed using DREAM(ZS) thus appears to be a useful technique to understand spatiotemporal patterns of soil water content and provide insights into linked soil moisture vegetation processes and the dynamics of soil moisture/infiltration processes.
Effect of soil moisture on the temperature sensitivity of Northern soils
NASA Astrophysics Data System (ADS)
Minions, C.; Natali, S.; Ludwig, S.; Risk, D.; Macintyre, C. M.
2017-12-01
Arctic and boreal ecosystems are vast reservoirs of carbon and are particularly sensitive to climate warming. Changes in the temperature and precipitation regimes of these regions could significantly alter soil respiration rates, impacting atmospheric concentrations and affecting climate change feedbacks. Many incubation studies have shown that both temperature and soil moisture are important environmental drivers of soil respiration; this relationship, however, has rarely been demonstrated with in situ data. Here we present the results of a study at six field sites in Alaska from 2016 to 2017. Low-power automated soil gas systems were used to measure soil surface CO2 flux from three forced diffusion chambers and soil profile concentrations from three soil depth chambers at hourly intervals at each site. HOBO Onset dataloggers were used to monitor soil moisture and temperature profiles. Temperature sensitivity (Q10) was determined at each site using inversion analysis applied over different time periods. With highly resolved data sets, we were able to observe the changes in soil respiration in response to changes in temperature and soil moisture. Through regression analysis we confirmed that temperature is the primary driver in soil respiration, but soil moisture becomes dominant beyond a certain threshold, suppressing CO2 flux in soils with high moisture content. This field study supports the conclusions made from previous soil incubation studies and provides valuable insights into the impact of both temperature and soil moisture changes on soil respiration.
NASA Astrophysics Data System (ADS)
Ek, M. B.; Xia, Y.; Ford, T.; Wu, Y.; Quiring, S. M.
2015-12-01
The North American Soil Moisture Database (NASMD) was initiated in 2011 to provide support for developing climate forecasting tools, calibrating land surface models and validating satellite-derived soil moisture algorithms. The NASMD has collected data from over 30 soil moisture observation networks providing millions of in situ soil moisture observations in all 50 states as well as Canada and Mexico. It is recognized that the quality of measured soil moisture in NASMD is highly variable due to the diversity of climatological conditions, land cover, soil texture, and topographies of the stations and differences in measurement devices (e.g., sensors) and installation. It is also recognized that error, inaccuracy and imprecision in the data set can have significant impacts on practical operations and scientific studies. Therefore, developing an appropriate quality control procedure is essential to ensure the data is of the best quality. In this study, an automated quality control approach is developed using the North American Land Data Assimilation System phase 2 (NLDAS-2) Noah soil porosity, soil temperature, and fraction of liquid and total soil moisture to flag erroneous and/or spurious measurements. Overall results show that this approach is able to flag unreasonable values when the soil is partially frozen. A validation example using NLDAS-2 multiple model soil moisture products at the 20 cm soil layer showed that the quality control procedure had a significant positive impact in Alabama, North Carolina, and West Texas. It had a greater impact in colder regions, particularly during spring and autumn. Over 433 NASMD stations have been quality controlled using the methodology proposed in this study, and the algorithm will be implemented to control data quality from the other ~1,200 NASMD stations in the near future.
Soil moisture: Some fundamentals. [agriculture - soil mechanics
NASA Technical Reports Server (NTRS)
Milstead, B. W.
1975-01-01
A brief tutorial on soil moisture, as it applies to agriculture, is presented. Information was taken from books and papers considered freshman college level material, and is an attempt to briefly present the basic concept of soil moisture and a minimal understanding of how water interacts with soil.
NASA Astrophysics Data System (ADS)
Bonfante, A.; Basile, A.; de Mascellis, R.; Manna, P.; Terribile, F.
2009-04-01
Soil classification according to Soil Taxonomy include, as fundamental feature, the estimation of soil moisture regime. The term soil moisture regime refers to the "presence or absence either of ground water or of water held at a tension of less than 1500 kPa in the soil or in specific horizons during periods of the year". In the classification procedure, defining of the soil moisture control section is the primary step in order to obtain the soil moisture regimes classification. Currently, the estimation of soil moisture regimes is carried out through simple calculation schemes, such as Newhall and Billaux models, and only in few cases some authors suggest the use of different more complex models (i.e., EPIC) In fact, in the Soil Taxonomy, the definition of the soil moisture control section is based on the wetting front position in two different conditions: the upper boundary is the depth to which a dry soil will be moistened by 2.5 cm of water within 24 hours and the lower boundary is the depth to which a dry soil will be moistened by 7.5 cm of water within 48 hours. Newhall, Billaux and EPIC models don't use physical laws to describe soil water flows, but they use a simple bucket-like scheme where the soil is divided into several compartments and water moves, instantly, only downward when the field capacity is achieved. On the other side, a large number of one-dimensional hydrological simulation models (SWAP, Cropsyst, Hydrus, MACRO, etc..) are available, tested and successfully used. The flow is simulated according to pressure head gradients through the numerical solution of the Richard's equation. These simulation models can be fruitful used to improve the study of soil moisture regimes. The aims of this work are: (i) analysis of the soil moisture control section concept by a physically based model (SWAP); (ii) comparison of the classification obtained in five different Italian pedoclimatic conditions (Mantova and Lodi in northern Italy; Salerno, Benevento and Caserta in southern Italy) applying the classical models (Newhall e Billaux) and the physically-based models (CropSyst e SWAP), The results have shown that the Soil Taxonomy scheme for the definition of the soil moisture regime is unrealistic for the considered Mediterranean soil hydrological conditions. In fact, the same classifications arise irrespective of the soil type. In this respect some suggestions on how modified the section control boundaries were formulated. Keywords: Soil moisture regimes, Newhall, Swap, Soil Taxonomy
Spatiotemporal Variability of Hillslope Soil Moisture Across Steep, Highly Dissected Topography
NASA Astrophysics Data System (ADS)
Jarecke, K. M.; Wondzell, S. M.; Bladon, K. D.
2016-12-01
Hillslope ecohydrological processes, including subsurface water flow and plant water uptake, are strongly influenced by soil moisture. However, the factors controlling spatial and temporal variability of soil moisture in steep, mountainous terrain are poorly understood. We asked: How do topography and soils interact to control the spatial and temporal variability of soil moisture in steep, Douglas-fir dominated hillslopes in the western Cascades? We will present a preliminary analysis of bimonthly soil moisture variability from July-November 2016 at 0-30 and 0-60 cm depth across spatially extensive convergent and divergent topographic positions in Watershed 1 of the H.J. Andrews Experimental Forest in central Oregon. Soil moisture monitoring locations were selected following a 5 m LIDAR analysis of topographic position, aspect, and slope. Topographic position index (TPI) was calculated as the difference in elevation to the mean elevation within a 30 m radius. Convergent (negative TPI values) and divergent (positive TPI values) monitoring locations were established along northwest to northeast-facing aspects and within 25-55 degree slopes. We hypothesized that topographic position (convergent vs. divergent), as well as soil physical properties (e.g., texture, bulk density), control variation in hillslope soil moisture at the sub-watershed scale. In addition, we expected the relative importance of hillslope topography to the spatial variability in soil moisture to differ seasonally. By comparing the spatiotemporal variability of hillslope soil moisture across topographic positions, our research provides a foundation for additional understanding of subsurface flow processes and plant-available soil-water in forests with steep, highly dissected terrain.
Assimilating soil moisture into an Earth System Model
NASA Astrophysics Data System (ADS)
Stacke, Tobias; Hagemann, Stefan
2017-04-01
Several modelling studies reported potential impacts of soil moisture anomalies on regional climate. In particular for short prediction periods, perturbations of the soil moisture state may result in significant alteration of surface temperature in the following season. However, it is not clear yet whether or not soil moisture anomalies affect climate also on larger temporal and spatial scales. In an earlier study, we showed that soil moisture anomalies can persist for several seasons in the deeper soil layers of a land surface model. Additionally, those anomalies can influence root zone moisture, in particular during explicitly dry or wet periods. Thus, one prerequisite for predictability, namely the existence of long term memory, is evident for simulated soil moisture and might be exploited to improve climate predictions. The second prerequisite is the sensitivity of the climate system to soil moisture. In order to investigate this sensitivity for decadal simulations, we implemented a soil moisture assimilation scheme into the Max-Planck Institute for Meteorology's Earth System Model (MPI-ESM). The assimilation scheme is based on a simple nudging algorithm and updates the surface soil moisture state once per day. In our experiments, the MPI-ESM is used which includes model components for the interactive simulation of atmosphere, land and ocean. Artificial assimilation data is created from a control simulation to nudge the MPI-ESM towards predominantly dry and wet states. First analyses are focused on the impact of the assimilation on land surface variables and reveal distinct differences in the long-term mean values between wet and dry state simulations. Precipitation, evapotranspiration and runoff are larger in the wet state compared to the dry state, resulting in an increased moisture transport from the land to atmosphere and ocean. Consequently, surface temperatures are lower in the wet state simulations by more than one Kelvin. In terms of spatial pattern, the largest differences between both simulations are seen for continental areas, while regions with a maritime climate are least sensitive to soil moisture assimilation.
NASA Astrophysics Data System (ADS)
Flores, Alejandro N.; Bras, Rafael L.; Entekhabi, Dara
2012-08-01
Soil moisture information is critical for applications like landslide susceptibility analysis and military trafficability assessment. Existing technologies cannot observe soil moisture at spatial scales of hillslopes (e.g., 100 to 102 m) and over large areas (e.g., 102 to 105 km2) with sufficiently high temporal coverage (e.g., days). Physics-based hydrologic models can simulate soil moisture at the necessary spatial and temporal scales, albeit with error. We develop and test a data assimilation framework based on the ensemble Kalman filter for constraining uncertain simulated high-resolution soil moisture fields to anticipated remote sensing products, specifically NASA's Soil Moisture Active-Passive (SMAP) mission, which will provide global L band microwave observation approximately every 2-3 days. The framework directly assimilates SMAP synthetic 3 km radar backscatter observations to update hillslope-scale bare soil moisture estimates from a physics-based model. Downscaling from 3 km observations to hillslope scales is achieved through the data assimilation algorithm. Assimilation reduces bias in near-surface soil moisture (e.g., top 10 cm) by approximately 0.05 m3/m3and expected root-mean-square errors by at least 60% in much of the watershed, relative to an open loop simulation. However, near-surface moisture estimates in channel and valley bottoms do not improve, and estimates of profile-integrated moisture throughout the watershed do not substantially improve. We discuss the implications of this work, focusing on ongoing efforts to improve soil moisture estimation in the entire soil profile through joint assimilation of other satellite (e.g., vegetation) and in situ soil moisture measurements.
NASA Astrophysics Data System (ADS)
Nasta, Paolo; Penna, Daniele; Brocca, Luca; Zuecco, Giulia; Romano, Nunzio
2018-02-01
Indirect measurements of field-scale (hectometer grid-size) spatial-average near-surface soil moisture are becoming increasingly available by exploiting new-generation ground-based and satellite sensors. Nonetheless, modeling applications for water resources management require knowledge of plot-scale (1-5 m grid-size) soil moisture by using measurements through spatially-distributed sensor network systems. Since efforts to fulfill such requirements are not always possible due to time and budget constraints, alternative approaches are desirable. In this study, we explore the feasibility of determining spatial-average soil moisture and soil moisture patterns given the knowledge of long-term records of climate forcing data and topographic attributes. A downscaling approach is proposed that couples two different models: the Eco-Hydrological Bucket and Equilibrium Moisture from Topography. This approach helps identify the relative importance of two compound topographic indexes in explaining the spatial variation of soil moisture patterns, indicating valley- and hillslope-dependence controlled by lateral flow and radiative processes, respectively. The integrated model also detects temporal instability if the dominant type of topographic dependence changes with spatial-average soil moisture. Model application was carried out at three sites in different parts of Italy, each characterized by different environmental conditions. Prior calibration was performed by using sparse and sporadic soil moisture values measured by portable time domain reflectometry devices. Cross-site comparisons offer different interpretations in the explained spatial variation of soil moisture patterns, with time-invariant valley-dependence (site in northern Italy) and hillslope-dependence (site in southern Italy). The sources of soil moisture spatial variation at the site in central Italy are time-variant within the year and the seasonal change of topographic dependence can be conveniently correlated to a climate indicator such as the aridity index.
Application of time-lapse ERT to characterize soil-water-disease interactions of young citrus trees
NASA Astrophysics Data System (ADS)
Peddinti, S. R.; Kbvn, D. P.; Ranjan, S.; R M, P. G.
2016-12-01
Vidarbha region in Maharashtra, India is witnessing a continuous decrease in orange crop due to the propagation of `Phytopthora root rot', a water mold disease. Under favorable conditions, the disease causing bacteria can attack the plant root system and propagates to the surface (where first visual impression is made), making difficult to regain the plant health. This research aims at co-relating eco-hydrological fluxes with disease sensing parameters of orange trees. Two experimental plots around a healthy-young and declined-young orange trees were selected for our analysis. A 3-dimentional electrical resistivity tomography (ERT) (Figure) was carried at each plot to quantify the soil moisture distribution at a vadose zone. Pedo-electric relations were obtained considering modified Archie's law parameters. ERT derived moisture data was validated with time domain reflectometry (TDR) point observations. Soil moisture profiles derived from ERT were observed to be differ marginally between the two plots. Disease quantification was done by estimating the density of Phytopthora spp. inoculum in soils sampled along the root zone. Identification of Phytopthora spp. was done in the laboratory using taxonomic and morphologic criteria of the colonies. Spatio-temporal profiles of soil moisture and inoculum density were then co-related to comment on the eco-hydrological fluxes contributing to the health propagation of root rot in orange tree for implementing effective water management practices.
Baghdadi, Nicolas; Aubert, Maelle; Cerdan, Olivier; Franchistéguy, Laurent; Viel, Christian; Martin, Eric; Zribi, Mehrez; Desprats, Jean François
2007-01-01
Soil moisture is a key parameter in different environmental applications, such as hydrology and natural risk assessment. In this paper, surface soil moisture mapping was carried out over a basin in France using satellite synthetic aperture radar (SAR) images acquired in 2006 and 2007 by C-band (5.3 GHz) sensors. The comparison between soil moisture estimated from SAR data and in situ measurements shows good agreement, with a mapping accuracy better than 3%. This result shows that the monitoring of soil moisture from SAR images is possible in operational phase. Moreover, moistures simulated by the operational Météo-France ISBA soil-vegetation-atmosphere transfer model in the SIM-Safran-ISBA-Modcou chain were compared to radar moisture estimates to validate its pertinence. The difference between ISBA simulations and radar estimates fluctuates between 0.4 and 10% (RMSE). The comparison between ISBA and gravimetric measurements of the 12 March 2007 shows a RMSE of about 6%. Generally, these results are very encouraging. Results show also that the soil moisture estimated from SAR images is not correlated with the textural units defined in the European Soil Geographical Database (SGDBE) at 1:1000000 scale. However, dependence was observed between texture maps and ISBA moisture. This dependence is induced by the use of the texture map as an input parameter in the ISBA model. Even if this parameter is very important for soil moisture estimations, radar results shown that the textural map scale at 1:1000000 is not appropriate to differentiate moistures zones. PMID:28903238
NASA Astrophysics Data System (ADS)
Avery, William Alexander; Wahbi, Ammar; Dercon, Gerd; Heng, Lee; Franz, Trenton; Strauss, Peter
2017-04-01
Meeting the demands of a growing global population is one of the principal challenges of the 21st century. Meeting this challenge will require an increase in food production around the world. Currently, approximately two thirds of freshwater use by humans is devoted to agricultural production. As such, an expansion of agricultural activity will place additional pressure on freshwater resources. The incorporation of novel soil moisture sensing technologies into agricultural practices carries the potential to make agriculture more precise thus increasing water use efficiency. One such technology is known as the Cosmic Ray Neutron Sensor (CRNS). The CRNS technique is capable of quantifying soil moisture on a large spatial scale ( 30 ha) compared with traditional point based in-situ soil moisture sensing technology. Recent years have seen the CRNS to perform well when deployed in agricultural environments at low to mid elevations. However, the performance of the CRNS technique in higher elevations, particularly alpine environments, has yet to be demonstrated or understood. Mountainous environments are more vulnerable to changing climates and land use practices, yet are often responsible for the headwaters of major river systems sustaining cultivated lands or support important agricultural activity on their own. As such, the applicability of a mobile version of the CRNS technology in high alpine environments needs to be explored. This research details the preliminary efforts to determine if established calibration and validation techniques associated with the use of the CRNS can be applied at higher elevations. Field work was conducted during the summer of 2016 in the mountains of western Austria. Initial results indicate that the relationship between in-situ soil moisture data determined via traditional soil sampling and soil moisture data determined via the mobile CRNS is not clear. It is possible that the increasing intensity of incoming cosmic rays at higher altitudes may have an effect on the signal of the CRNS, however, more work is required to fully understand this phenomenon and is scheduled to resume in the summer of 2017.
Tucker, Colin; Reed, Sasha C.
2016-01-01
Arid and semiarid ecosystems (drylands) may dominate the trajectory of biosphere-to-atmosphere carbon (C) flux over the coming century. Accordingly, understanding dryland CO2 efflux controls is important for understanding C cycling at the global-scale: key unknowns regarding how temperature and moisture interact to regulate dryland C cycling remain. Further, the patchiness of dryland vegetation can create ‘islands of fertility’, with spatially heterogeneous rates of soil respiration (Rs). At our study site in southeastern Utah, USA we added or removed litter (0 to 650% of control) in paired plots that were either associated with a shrub or with interspaces between vascular plants. We measured Rs, soil temperature, and water content (θ) on eight sampling dates between October 2013 and November 2014. Rs was highest following monsoon rains in late summer when soil temperature was ~30°C. During mid-summer, Rs was low, associated with high soil temperatures (>40°C), resulting in an apparent negative temperature sensitivity of Rs at high temperatures, and positive temperature sensitivity at low-moderate temperatures. We used Bayesian statistical methods to compare multiple competing models capturing a wide range of hypothesized relationships between temperature, moisture, and Rs. The best fit model indicates apparent negative temperature sensitivity of soil respiration at high temperatures reflects the control of soil moisture – not high temperatures – in limiting Rs. The modeled Q10 ranged from 2.7 at 5°C to 1.4 at 45°C. Litter addition had no effect on temperature sensitivity or reference respiration (Rref = Rs at 20°C and optimum moisture) beneath shrubs, and little effect on Rref in interspaces, yet Rref was 1.5 times higher beneath shrubs than in interspaces. Together, these results suggest reduced Rs often observed at high temperatures in drylands is dominated by the control of moisture, and that variable litter inputs – at least over the short-term – exert minimal control over Rs.
NASA Astrophysics Data System (ADS)
Girona García, Antonio; María Armas-Herrera, Cecilia; Martí-Dalmau, Clara; Badía-Villas, David; Ortiz-Perpiñán, Oriol
2016-04-01
The decrease of livestock grazing during the last decades in the Central Pyrenees has led to a regression of grasslands in favour of shrublands, mainly composed by Echinospartum horridum. Prescribed burning might be a suitable tool for the control of this species that limits pastures development and therefore, the reclamation of grasslands; although, its effects on soil properties are still uncertain [1]. Controlled burnings are usually performed in spring or autumn, when soil moisture is high and temperature low, being easier to control and also reducing its effects on soil properties. However, burning during the wet seasons can increase the risk of soil erosion as the vegetation cover is partially destroyed. In this sense, soil water repellency (SWR) plays an important role reducing the infiltration rates and, thus, increasing runoff and soil erosion [2]. Then, it is of special interest to study parameters that influence SWR such as soil moisture, soil organic carbon (SOC) content and soil biological activity [3]. The aim of this work is, to analyse the effects of controlled burning on SWR as well as some of the influencing factors on this parameter. To achieve this, soil sampling was carried out in two prescribed fire events that took place in the Central Pyrenees: Tella (April, 2015) and Buisán (November, 2015). Temperature was simultaneously recorded during the fire via thermocouples placed at the surface level and at 1 cm, 2 cm and 3 cm depth. In each event, topsoil was scrapped and sampled from 0-1 cm, 1-2 cm and 2-3 cm depth in each sampling point (3 for Tella and 4 for Buisán) just before and immediately after burning. We analysed SWR persistence (Water Drop Penetration Time, WDPT) and intensity (Ethanol Percentage Test, EPT) as well as total C and N, microbial C, β-glucosidase activity, soil moisture and pH. Temperature measurements indicated a higher fire intensity in Tella than in Buisán burning. Surface unburned samples presented extreme SWR values for Tella (2726 s) and strong values for Buisán (191 s) according to the WDPT test, significantly decreasing with depth. Preliminary results showed that burning affected SWR, significantly reducing WDPT down to 3 cm in Tella (from extreme to strong) and 2 cm depth in Buisán (from strong to slight). EPT results indicated a significant decrease in SWR intensity down to 2 cm in Tella and 1 cm in Buisán with burning. On the other hand, no differences were observed regarding soil moisture between burned and unburned samples, although a trend to decreasing was observed with fire. Further analyses will allow us to explain and support in detail the variations observed in SWR with prescribed burning. [1] Shakesby, R.A. et al. (2015). Impacts of prescribed fire on soil loss and soil quality: An assessment based on an experimentally-burned catchment in central Portugal. Catena 128: 278-293. [2] Bodí, M.B. et al. (2013). Spatial and temporal variations of water repellency and probability of its occurrence in calcareous Mediterranean rangeland soils affected by fire. Catena 108: 14-25. [3] Jordán, A. et al. (2013). Soil water repellency: Origin, assessment and geomorphological consequences. Catena 108: 1-5.
O'Donnell, J. A.; Romanovsky, V.E.; Harden, J.W.; McGuire, A.D.
2009-01-01
Organic soil horizons function as important controls on the thermal state of near-surface soil and permafrost in high-latitude ecosystems. The thermal conductivity of organic horizons is typically lower than mineral soils and is closely linked to moisture content, bulk density, and water phase. In this study, we examined the relationship between thermal conductivity and soil moisture for different moss and organic horizon types in black spruce ecosystems of interior Alaska. We sampled organic horizons from feather moss-dominated and Sphagnum-dominated stands and divided horizons into live moss and fibrous and amorphous organic matter. Thermal conductivity measurements were made across a range of moisture contents using the transient line heat source method. Our findings indicate a strong positive and linear relationship between thawed thermal conductivity (Kt) and volumetric water content. We observed similar regression parameters (?? or slope) across moss types and organic horizons types and small differences in ??0 (y intercept) across organic horizon types. Live Sphagnum spp. had a higher range of Kt than did live feather moss because of the field capacity (laboratory based) of live Sphagnum spp. In northern regions, the thermal properties of organic soil horizons play a critical role in mediating the effects of climate warming on permafrost conditions. Findings from this study could improve model parameterization of thermal properties in organic horizons and enhance our understanding of future permafrost and ecosystem dynamics. ?? 2009 by Lippincott Williams & Wilkins, Inc.
Antecedent moisture content and soil texture effects on infiltration and erosion
NASA Astrophysics Data System (ADS)
Mamedov, A. I.; Huang, C.; Levy, G. J.
2006-12-01
Water infiltration, seal formation, runoff and erosion depend on the soil's inherent properties and surface conditions. Most erosion models consider only soil inherent properties (mainly texture) in assessing infiltration and erosion without consideration of spatial and temporary variation in the surface condition, particularly the antecedent moisture content. We studied the interaction of two different surface conditions, i.e. antecedent moisture content (AMC) and aging (timing after wetting) on infiltration (IR), seal formation (runoff generation) and erosion in four soils varying from loam to clay. Soil samples were packed in erosion box and wetted with different amounts of water (0, 1, 2, 3, 4, 6, 8, or 16 mm) to obtain a wide moisture range (i.e., pF 0-6.2, or from air dry to full saturation). The boxes were put in plastic bags and allowed to age for 0.01, 1, 3, or 7 days. Then the soil in the erosion box exposed to 60 mm of rain. At no aging final IR of soils did not change significantly, but runoff volume (a measure for seal development) and soil loss increased with an increase in AMC mainly because of aggregate breakdown. For any given aging, the highest IR and smallest runoff volume and soil loss were obtained at the intermediate AMC levels (pF 2.4-4.2, between wilting point and field capacity). For instance, in the clay soil to which 3 mm of water (pF~2.7) was added, as aging increased from one to seven days, final IR increased from 5.3 to 7.9 mm h-1, while runoff and soil loss decreased from 34 mm to 22 mm, and from 630 to 360 g m2 respectively. At this AMC range, increasing aging time resulted in up to 40% increase in IR and decrease in runoff or soil loss. This tendency significantly more pronounced for clay soils because water-filled pores in the clay fabric were considered active in the stabilization process and the development of cohesive bonds between and within particles during the aging period. The results of this study are important for soil erosion modeling. In order to improve the prediction capabilities of erosion models, temporal and spatial variation of soil moisture content (AMC, wetting and aging) prior to erosive rainstorms should be considered and or incorporated. In addition, management practices could be adapted to diminish the severe soil moisture variation, where ever possible, (minimum till or no-till with known residue) to maintain the soil surface at a desired AMC level prior to expected rainstorms in order to decrease soil susceptibility to seal formation, runoff and soil loss.
Concerning the relationship between evapotranspiration and soil moisture
NASA Technical Reports Server (NTRS)
Wetzel, Peter J.; Chang, Jy-Tai
1987-01-01
The relationship between the evapotranspiration and soil moisture during the drying, supply-limited phase is studied. A second scaling parameter, based on the evapotranspirational supply and demand concept of Federer (1982), is defined; the parameter, referred to as the threshold evapotranspiration, occurs in vegetation-covered surfaces just before leaf stomata close and when surface tension restricts moisture release from bare soil pores. A simple model for evapotranspiration is proposed. The effects of natural soil heterogeneities on evapotranspiration computed from the model are investigated. It is observed that the natural variability in soil moisture, caused by the heterogeneities, alters the relationship between regional evapotranspiration and the area average soil moisture.
A simulation study of scene confusion factors in sensing soil moisture from orbital radar
NASA Technical Reports Server (NTRS)
Ulaby, F. T. (Principal Investigator); Dobson, M. C.; Moezzi, S.; Roth, F. T.
1983-01-01
Simulated C-band radar imagery for a 124-km by 108-km test site in eastern Kansas is used to classify soil moisture. Simulated radar resolutions are 100 m by 100 m, 1 km by 1km, and 3 km by 3 km. Distributions of actual near-surface soil moisture are established daily for a 23-day accounting period using a water budget model. Within the 23-day period, three orbital radar overpasses are simulated roughly corresponding to generally moist, wet, and dry soil moisture conditions. The radar simulations are performed by a target/sensor interaction model dependent upon a terrain model, land-use classification, and near-surface soil moisture distribution. The accuracy of soil-moisture classification is evaluated for each single-date radar observation and also for multi-date detection of relative soil moisture change. In general, the results for single-date moisture detection show that 70% to 90% of cropland can be correctly classified to within +/- 20% of the true percent of field capacity. For a given radar resolution, the expected classification accuracy is shown to be dependent upon both the general soil moisture condition and also the geographical distribution of land-use and topographic relief. An analysis of cropland, urban, pasture/rangeland, and woodland subregions within the test site indicates that multi-temporal detection of relative soil moisture change is least sensitive to classification error resulting from scene complexity and topographic effects.
Soil moisture mapping at Bubnow Wetland using L-band radiometer (ELBARA III)
NASA Astrophysics Data System (ADS)
Łukowski, Mateusz; Schwank, Mike; Szlązak, Radosław; Wiesmann, Andreas; Marczewski, Wojciech; Usowicz, Bogusław; Usowicz, Jerzy; Rojek, Edyta; Werner, Charles
2016-04-01
The study of soil moisture is a scientific challenge. Not only because of large diversity of soils and differences in their water content, but also due to the difficulty of measuring, especially in large scale. On this field of interest several methods to determine the content of water in soil exists. The basic and referential is gravimetric method, which is accurate, but suitable only for small spatial scales and time-consuming. Indirect methods are faster, but need to be validated, for example those based on dielectric properties of materials (e.g. time domain reflectometry - TDR) or made from distance (remote), like brightness temperature measurements. Remote sensing of soil moisture can be performed locally (from towers, drones, planes etc.) or globally (satellites). These techniques can complement and help to verify different models and assumptions. In our studies, we applied spatial statistics to local soil moisture mapping using ELBARA III (ESA L-band radiometer, 1.4 GHz) mounted on tower (6.5 meter height). Our measurements were carried out in natural Bubnow Wetland, near Polesie National Park (Eastern Poland), during spring time. This test-site had been selected because it is representative for one of the biggest wetlands in Europe (1400 km2), called "Western Polesie", localized in Ukraine, Poland and Belarus. We have investigated Bubnow for almost decade, using meteorological and soil moisture stations, conducting campaigns of hand-held measurements and collecting soil samples. Now, due to the possibility of rotation at different incidence angles (as in previous ELBARA systems) and the new azimuth tracking capabilities, we obtained brightness temperature data not only at different distances from the tower, but also around it, in footprints containing different vegetation and soil types. During experiment we collected data at area about 450 m2 by rotating ELBARA's antenna 5-175° in horizontal and 30-70° in vertical plane. This type of approach allows combining multiple independent measurements (performed nearly simultaneously) to one consistent soil moisture map. Spatial statistics helps with correcting blind spots or distortions causes by assembly elements, especially on corners of ELBARA's tower. Moreover, using this technique we can observe distribution of soil moisture with time dependency. In order to validate our data, the results were compared with measurements obtained by means of the TDR method. The presented approach enables better understanding the soil moisture spatial distribution over a particular local area of interests, before extending soil water assessments on larger areas. The work was partially funded under two ESA projects: 1) "ELBARA_PD (Penetration Depth)" No. 4000107897/13/NL/KML, funded by the Government of Poland through an ESA-PECS contract (Plan for European Cooperating States) 2) "Technical Support for the fabrication and deployment of the radiometer ELBARA-III in Bubnow, Poland" No. 4000113360/15/NL/FF/gp
Kivlin, Stephanie N; Hawkes, Christine V
2016-12-01
Tropical ecosystems remain poorly understood and this is particularly true for belowground soil fungi. Soil fungi may respond to plant identity when, for example, plants differentially allocate resources belowground. However, spatial and temporal heterogeneity in factors such as plant inputs, moisture, or nutrients can also affect fungal communities and obscure our ability to detect plant effects in single time point studies or within diverse forests. To address this, we sampled replicated monocultures of four tree species and secondary forest controls sampled in the drier and wetter seasons over 2 years. Fungal community composition was primarily related to vegetation type and spatial heterogeneity in the effects of vegetation type, with increasing divergence partly reflecting greater differences in soil pH and soil moisture. Across wetter versus drier dates, fungi were 7% less diverse, but up to four-fold more abundant. The combined effects of tree species and seasonality suggest that predicted losses of tropical tree diversity and intensification of drought have the potential to cascade belowground to affect both diversity and abundance of tropical soil fungi. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
A Mulitivariate Statistical Model Describing the Compound Nature of Soil Moisture Drought
NASA Astrophysics Data System (ADS)
Manning, Colin; Widmann, Martin; Bevacqua, Emanuele; Maraun, Douglas; Van Loon, Anne; Vrac, Mathieu
2017-04-01
Soil moisture in Europe acts to partition incoming energy into sensible and latent heat fluxes, thereby exerting a large influence on temperature variability. Soil moisture is predominantly controlled by precipitation and evapotranspiration. When these meteorological variables are accumulated over different timescales, their joint multivariate distribution and dependence structure can be used to provide information of soil moisture. We therefore consider soil moisture drought as a compound event of meteorological drought (deficits of precipitation) and heat waves, or more specifically, periods of high Potential Evapotraspiration (PET). We present here a statistical model of soil moisture based on Pair Copula Constructions (PCC) that can describe the dependence amongst soil moisture and its contributing meteorological variables. The model is designed in such a way that it can account for concurrences of meteorological drought and heat waves and describe the dependence between these conditions at a local level. The model is composed of four variables; daily soil moisture (h); a short term and a long term accumulated precipitation variable (Y1 and Y_2) that account for the propagation of meteorological drought to soil moisture drought; and accumulated PET (Y_3), calculated using the Penman Monteith equation, which can represent the effect of a heat wave on soil conditions. Copula are multivariate distribution functions that allow one to model the dependence structure of given variables separately from their marginal behaviour. PCCs then allow in theory for the formulation of a multivariate distribution of any dimension where the multivariate distribution is decomposed into a product of marginal probability density functions and two-dimensional copula, of which some are conditional. We apply PCC here in such a way that allows us to provide estimates of h and their uncertainty through conditioning on the Y in the form h=h|y_1,y_2,y_3 (1) Applying the model to various Fluxnet sites across Europe, we find the model has good skill and can particularly capture periods of low soil moisture well. We illustrate the relevance of the dependence structure of these Y variables to soil moisture and show how it may be generalised to offer information of soil moisture on a widespread scale where few observations of soil moisture exist. We then present results from a validation study of a selection of EURO CORDEX climate models where we demonstrate the skill of these models in representing these dependencies and so offer insight into the skill seen in the representation of soil moisture in these models.
High-resolution soil moisture mapping in Afghanistan
NASA Astrophysics Data System (ADS)
Hendrickx, Jan M. H.; Harrison, J. Bruce J.; Borchers, Brian; Kelley, Julie R.; Howington, Stacy; Ballard, Jerry
2011-06-01
Soil moisture conditions have an impact upon virtually all aspects of Army activities and are increasingly affecting its systems and operations. Soil moisture conditions affect operational mobility, detection of landmines and unexploded ordinance, natural material penetration/excavation, military engineering activities, blowing dust and sand, watershed responses, and flooding. This study further explores a method for high-resolution (2.7 m) soil moisture mapping using remote satellite optical imagery that is readily available from Landsat and QuickBird. The soil moisture estimations are needed for the evaluation of IED sensors using the Countermine Simulation Testbed in regions where access is difficult or impossible. The method has been tested in Helmand Province, Afghanistan, using a Landsat7 image and a QuickBird image of April 23 and 24, 2009, respectively. In previous work it was found that Landsat soil moisture can be predicted from the visual and near infra-red Landsat bands1-4. Since QuickBird bands 1-4 are almost identical to Landsat bands 1- 4, a Landsat soil moisture map can be downscaled using QuickBird bands 1-4. However, using this global approach for downscaling from Landsat to QuickBird scale yielded a small number of pixels with erroneous soil moisture values. Therefore, the objective of this study is to examine how the quality of the downscaled soil moisture maps can be improved by using a data stratification approach for the development of downscaling regression equations for each landscape class. It was found that stratification results in a reliable downscaled soil moisture map with a spatial resolution of 2.7 m.
NASA Technical Reports Server (NTRS)
Bolten, John D.; Crow, Wade T.; Zhan, Xiwu; Jackson, Thomas J.; Reynolds,Curt
2010-01-01
Soil moisture is a fundamental data source used by the United States Department of Agriculture (USDA) International Production Assessment Division (IPAD) to monitor crop growth stage and condition and subsequently, globally forecast agricultural yields. Currently, the USDA IPAD estimates surface and root-zone soil moisture using a two-layer modified Palmer soil moisture model forced by global precipitation and temperature measurements. However, this approach suffers from well-known errors arising from uncertainty in model forcing data and highly simplified model physics. Here we attempt to correct for these errors by designing and applying an Ensemble Kalman filter (EnKF) data assimilation system to integrate surface soil moisture retrievals from the NASA Advanced Microwave Scanning Radiometer (AMSR-E) into the USDA modified Palmer soil moisture model. An assessment of soil moisture analysis products produced from this assimilation has been completed for a five-year (2002 to 2007) period over the North American continent between 23degN - 50degN and 128degW - 65degW. In particular, a data denial experimental approach is utilized to isolate the added utility of integrating remotely-sensed soil moisture by comparing EnKF soil moisture results obtained using (relatively) low-quality precipitation products obtained from real-time satellite imagery to baseline Palmer model runs forced with higher quality rainfall. An analysis of root-zone anomalies for each model simulation suggests that the assimilation of AMSR-E surface soil moisture retrievals can add significant value to USDA root-zone predictions derived from real-time satellite precipitation products.
Barwick, R S; Mohammed, H O; White, M E; Bryant, R B
2003-03-01
A study was conducted to identify factors associated with the likelihood of detecting Giardia spp. and Cryptosporidium spp. in the soil of dairy farms in a watershed area. A total of 37 farms were visited, and 782 soil samples were collected from targeted areas on these farms. The samples were analyzed for the presence of Cryptosporidium spp. oocysts, Giardia spp. cysts, percent moisture content, and pH. Logistic regression analysis was used to identify risk factors associated with the likelihood of the presence of these organisms. The use of the land at the sampling site was associated with the likelihood of environmental contamination with Cryptosporidium spp. Barn cleaner equipment area and agricultural fields were associated with increased likelihood of environmental contamination with Cryptosporidium spp. The risk of environmental contamination decreased with the pH of the soil and with the score of the potential likelihood of Cryptosporidium spp. The size of the sampling site, as determined by the sampling design, in square feet, was associated nonlinearly with the risk of detecting Cryptosporidium spp. The likelihood of the Giardia cyst in the soil increased with the prevalence of Giardia spp. in animals (i.e., 18 to 39%). As the size of the farm increased, there was decreased risk of Giardia spp. in the soil, and sampling sites which were covered with brush or bare soil showed a decrease in likelihood of detecting Giardia spp. when compared to land which had managed grass. The number of cattle on the farm less than 6 mo of age was negatively associated with the risk of detecting Giardia spp. in the soil, and the percent moisture content was positively associated with the risk of detecting Giardia spp. Our study showed that these two protozoan exist in dairy farm soil at different rates, and this risk could be modified by manipulating the pH of the soil.
Development and Validation of The SMAP Enhanced Passive Soil Moisture Product
NASA Technical Reports Server (NTRS)
Chan, S.; Bindlish, R.; O'Neill, P.; Jackson, T.; Chaubell, J.; Piepmeier, J.; Dunbar, S.; Colliander, A.; Chen, F.; Entekhabi, D.;
2017-01-01
Since the beginning of its routine science operation in March 2015, the NASA SMAP observatory has been returning interference-mitigated brightness temperature observations at L-band (1.41 GHz) frequency from space. The resulting data enable frequent global mapping of soil moisture with a retrieval uncertainty below 0.040 cu m/cu m at a 36 km spatial scale. This paper describes the development and validation of an enhanced version of the current standard soil moisture product. Compared with the standard product that is posted on a 36 km grid, the new enhanced product is posted on a 9 km grid. Derived from the same time-ordered brightness temperature observations that feed the current standard passive soil moisture product, the enhanced passive soil moisture product leverages on the Backus-Gilbert optimal interpolation technique that more fully utilizes the additional information from the original radiometer observations to achieve global mapping of soil moisture with enhanced clarity. The resulting enhanced soil moisture product was assessed using long-term in situ soil moisture observations from core validation sites located in diverse biomes and was found to exhibit an average retrieval uncertainty below 0.040 cu m/cu m. As of December 2016, the enhanced soil moisture product has been made available to the public from the NASA Distributed Active Archive Center at the National Snow and Ice Data Center.
Soil moisture retrival from Sentinel-1 and Modis synergy
NASA Astrophysics Data System (ADS)
Gao, Qi; Zribi, Mehrez; Escorihuela, Maria Jose; Baghdadi, Nicolas
2017-04-01
This study presents two methodologies retrieving soil moisture from SAR remote sensing data. The study is based on Sentinel-1 data in the VV polarization, over a site in Urgell, Catalunya (Spain). In the two methodologies using change detection techniques, preprocessed radar data are combined with normalized difference vegetation index (NDVI) auxiliary data to estimate the mean soil moisture with a resolution of 1km. By modeling the relationship between the backscatter difference and NDVI, the soil moisture at a specific NDVI value is retrieved. The first algorithm is already developed on West Africa(Zribi et al., 2014) from ERS scatterometer data to estimate soil water status. In this study, it is adapted to Sentinel-1 data and take into account the high repetitiveness of data in optimizing the inversion approach. Another new method is developed based on the backscatter difference between two adjacent days of Sentinel-1 data w.r.t. NDVI, with smaller vegetation change, the backscatter difference is more sensitive to soil moisture. The proposed methodologies have been validated with the ground measurement in two demonstrative fields with RMS error about 0.05 (in volumetric moisture), and the coherence between soil moisture variations and rainfall events is observed. Soil moisture maps at 1km resolution are generated for the study area. The results demonstrate the potential of Sentinel-1 data for the retrieval of soil moisture at 1km or even better resolution.
Evaluating ESA CCI soil moisture in East Africa.
McNally, Amy; Shukla, Shraddhanand; Arsenault, Kristi R; Wang, Shugong; Peters-Lidard, Christa D; Verdin, James P
2016-06-01
To assess growing season conditions where ground based observations are limited or unavailable, food security and agricultural drought monitoring analysts rely on publicly available remotely sensed rainfall and vegetation greenness. There are also remotely sensed soil moisture observations from missions like the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) and NASA's Soil Moisture Active Passive (SMAP), however these time series are still too short to conduct studies that demonstrate the utility of these data for operational applications, or to provide historical context for extreme wet or dry events. To promote the use of remotely sensed soil moisture in agricultural drought and food security monitoring, we use East Africa as a case study to evaluate the quality of a 30+ year time series of merged active-passive microwave soil moisture from the ESA Climate Change Initiative (CCI-SM). Compared to the Normalized Difference Vegetation index (NDVI) and modeled soil moisture products, we found substantial spatial and temporal gaps in the early part of the CCI-SM record, with adequate data coverage beginning in 1992. From this point forward, growing season CCI-SM anomalies were well correlated (R>0.5) with modeled, seasonal soil moisture, and in some regions, NDVI. We use correlation analysis and qualitative comparisons at seasonal time scales to show that remotely sensed soil moisture can add information to a convergence of evidence framework that traditionally relies on rainfall and NDVI in moderately vegetated regions.
Irrigation scheduling using soil moisture sensors
USDA-ARS?s Scientific Manuscript database
Soil moisture sensors were evaluated and used for irrigation scheduling in humid region. Soil moisture sensors were installed in soil at depths of 15cm, 30cm, and 61cm belowground. Soil volumetric water content was automatically measured by the sensors in a time interval of an hour during the crop g...
NASA Astrophysics Data System (ADS)
Zhang, Hongjuan; Kurtz, Wolfgang; Kollet, Stefan; Vereecken, Harry; Franssen, Harrie-Jan Hendricks
2018-01-01
The linkage between root zone soil moisture and groundwater is either neglected or simplified in most land surface models. The fully-coupled subsurface-land surface model TerrSysMP including variably saturated groundwater dynamics is used in this work. We test and compare five data assimilation methodologies for assimilating groundwater level data via the ensemble Kalman filter (EnKF) to improve root zone soil moisture estimation with TerrSysMP. Groundwater level data are assimilated in the form of pressure head or soil moisture (set equal to porosity in the saturated zone) to update state vectors. In the five assimilation methodologies, the state vector contains either (i) pressure head, or (ii) log-transformed pressure head, or (iii) soil moisture, or (iv) pressure head for the saturated zone only, or (v) a combination of pressure head and soil moisture, pressure head for the saturated zone and soil moisture for the unsaturated zone. These methodologies are evaluated in synthetic experiments which are performed for different climate conditions, soil types and plant functional types to simulate various root zone soil moisture distributions and groundwater levels. The results demonstrate that EnKF cannot properly handle strongly skewed pressure distributions which are caused by extreme negative pressure heads in the unsaturated zone during dry periods. This problem can only be alleviated by methodology (iii), (iv) and (v). The last approach gives the best results and avoids unphysical updates related to strongly skewed pressure heads in the unsaturated zone. If groundwater level data are assimilated by methodology (iii), EnKF fails to update the state vector containing the soil moisture values if for (almost) all the realizations the observation does not bring significant new information. Synthetic experiments for the joint assimilation of groundwater levels and surface soil moisture support methodology (v) and show great potential for improving the representation of root zone soil moisture.
Soil moisture inferences from thermal infrared measurements of vegetation temperatures
NASA Technical Reports Server (NTRS)
Jackson, R. D. (Principal Investigator)
1981-01-01
Thermal infrared measurements of wheat (Triticum durum) canopy temperatures were used in a crop water stress index to infer root zone soil moisture. Results indicated that one time plant temperature measurement cannot produce precise estimates of root zone soil moisture due to complicating plant factors. Plant temperature measurements do yield useful qualitative information concerning soil moisture and plant condition.
NASA Technical Reports Server (NTRS)
Hildreth, W. W.
1978-01-01
A determination of the state of the art in soil moisture transport modeling based on physical or physiological principles was made. It was found that soil moisture models based on physical principles have been under development for more than 10 years. However, these models were shown to represent infiltration and redistribution of soil moisture quite well. Evapotranspiration has not been as adequately incorporated into the models.
Soil moisture monitoring for crop management
NASA Astrophysics Data System (ADS)
Boyd, Dale
2015-07-01
The 'Risk management through soil moisture monitoring' project has demonstrated the capability of current technology to remotely monitor and communicate real time soil moisture data. The project investigated whether capacitance probes would assist making informed pre- and in-crop decisions. Crop potential and cropping inputs are increasingly being subject to greater instability and uncertainty due to seasonal variability. In a targeted survey of those who received regular correspondence from the Department of Primary Industries it was found that i) 50% of the audience found the information generated relevant for them and less than 10% indicted with was not relevant; ii) 85% have improved their knowledge/ability to assess soil moisture compared to prior to the project, with the most used indicator of soil moisture still being rain fall records; and iii) 100% have indicated they will continue to use some form of the technology to monitor soil moisture levels in the future. It is hoped that continued access to this information will assist informed input decisions. This will minimise inputs in low decile years with a low soil moisture base and maximise yield potential in more favourable conditions based on soil moisture and positive seasonal forecasts
A Comparison of Methods for a Priori Bias Correction in Soil Moisture Data Assimilation
NASA Technical Reports Server (NTRS)
Kumar, Sujay V.; Reichle, Rolf H.; Harrison, Kenneth W.; Peters-Lidard, Christa D.; Yatheendradas, Soni; Santanello, Joseph A.
2011-01-01
Data assimilation is being increasingly used to merge remotely sensed land surface variables such as soil moisture, snow and skin temperature with estimates from land models. Its success, however, depends on unbiased model predictions and unbiased observations. Here, a suite of continental-scale, synthetic soil moisture assimilation experiments is used to compare two approaches that address typical biases in soil moisture prior to data assimilation: (i) parameter estimation to calibrate the land model to the climatology of the soil moisture observations, and (ii) scaling of the observations to the model s soil moisture climatology. To enable this research, an optimization infrastructure was added to the NASA Land Information System (LIS) that includes gradient-based optimization methods and global, heuristic search algorithms. The land model calibration eliminates the bias but does not necessarily result in more realistic model parameters. Nevertheless, the experiments confirm that model calibration yields assimilation estimates of surface and root zone soil moisture that are as skillful as those obtained through scaling of the observations to the model s climatology. Analysis of innovation diagnostics underlines the importance of addressing bias in soil moisture assimilation and confirms that both approaches adequately address the issue.
Gu, Yingxin; Hunt, E.; Wardlow, B.; Basara, J.B.; Brown, Jesslyn F.; Verdin, J.P.
2008-01-01
The evaluation of the relationship between satellite-derived vegetation indices (normalized difference vegetation index and normalized difference water index) and soil moisture improves our understanding of how these indices respond to soil moisture fluctuations. Soil moisture deficits are ultimately tied to drought stress on plants. The diverse terrain and climate of Oklahoma, the extensive soil moisture network of the Oklahoma Mesonet, and satellite-derived indices from the Moderate Resolution Imaging Spectroradiometer (MODIS) provided an opportunity to study correlations between soil moisture and vegetation indices over the 2002-2006 growing seasons. Results showed that the correlation between both indices and the fractional water index (FWI) was highly dependent on land cover heterogeneity and soil type. Sites surrounded by relatively homogeneous vegetation cover with silt loam soils had the highest correlation between the FWI and both vegetation-related indices (r???0.73), while sites with heterogeneous vegetation cover and loam soils had the lowest correlation (r???0.22). Copyright 2008 by the American Geophysical Union.
Estimation of improved resolution soil moisture in vegetated areas using passive AMSR-E data
NASA Astrophysics Data System (ADS)
Moradizadeh, Mina; Saradjian, Mohammad R.
2018-03-01
Microwave remote sensing provides a unique capability for soil parameter retrievals. Therefore, various soil parameters estimation models have been developed using brightness temperature (BT) measured by passive microwave sensors. Due to the low resolution of satellite microwave radiometer data, the main goal of this study is to develop a downscaling approach to improve the spatial resolution of soil moisture estimates with the use of higher resolution visible/infrared sensor data. Accordingly, after the soil parameters have been obtained using Simultaneous Land Parameters Retrieval Model algorithm, the downscaling method has been applied to the soil moisture estimations that have been validated against in situ soil moisture data. Advance Microwave Scanning Radiometer-EOS BT data in Soil Moisture Experiment 2003 region in the south and north of Oklahoma have been used to this end. Results illustrated that the soil moisture variability is effectively captured at 5 km spatial scales without a significant degradation of the accuracy.
Verhoest, Niko E.C; Lievens, Hans; Wagner, Wolfgang; Álvarez-Mozos, Jesús; Moran, M. Susan; Mattia, Francesco
2008-01-01
Synthetic Aperture Radar has shown its large potential for retrieving soil moisture maps at regional scales. However, since the backscattered signal is determined by several surface characteristics, the retrieval of soil moisture is an ill-posed problem when using single configuration imagery. Unless accurate surface roughness parameter values are available, retrieving soil moisture from radar backscatter usually provides inaccurate estimates. The characterization of soil roughness is not fully understood, and a large range of roughness parameter values can be obtained for the same surface when different measurement methodologies are used. In this paper, a literature review is made that summarizes the problems encountered when parameterizing soil roughness as well as the reported impact of the errors made on the retrieved soil moisture. A number of suggestions were made for resolving issues in roughness parameterization and studying the impact of these roughness problems on the soil moisture retrieval accuracy and scale. PMID:27879932
NASA Technical Reports Server (NTRS)
Wang, L.; Shin, R. T.; Kong, J. A.; Yueh, S. H.
1993-01-01
This paper investigates the potential application of neural network to inversion of soil moisture using polarimetric remote sensing data. The neural network used for the inversion of soil parameters is multi-layer perceptron trained with the back-propagation algorithm. The training data include the polarimetric backscattering coefficients obtained from theoretical surface scattering models together with an assumed nominal range of soil parameters which are comprised of the soil permittivity and surface roughness parameters. Soil permittivity is calculated from the soil moisture and the assumed soil texture based on an empirical formula at C-, L-, and P-bands. The rough surface parameters for the soil surface, which is described by the Gaussian random process, are the root-mean-square (rms) height and correlation length. For the rough surface scattering, small perturbation method is used for the L-band frequency, and Kirchhoff approximation is used for the C-band frequency to obtain the corresponding backscattering coefficients. During the training, the backscattering coefficients are the inputs to the neural net and the output from the net are compared with the desired soil parameters to adjust the interconnecting weights. The process is repeated for each input-output data entry and then for the entire training data until convergence is reached. After training, the backscattering coefficients are applied to the trained neural net to retrieve the soil parameters which are compared with the desired soil parameters to verify the effectiveness of this technique. Several cases are examined. First, for simplicity, the correlation length and rms height of the soil surface are fixed while soil moisture is varied. Soil moisture obtained using the neural networks with either L-band or C-band backscattering coefficients for the HH and VV polarizations as inputs is in good agreement with the desired soil moisture. The neural net output matches the desired output for the soil moisture range of 16 to 60 percent for the C-band case. The next case investigated is to vary both soil moisture and rms height while keeping the correlation length fixed. For this case, C-band backscattering coefficients are not sufficient for retrieving two parameters because the Kirchhoff approximation gives the same HH and VV backscattering coefficients. Therefore, the backscattering coefficients at two different frequency bands are necessary to find both the soil moisture and rms height. Finally, the neural nets are also applied to simultaneously invert soil moisture, rms height, and correlation length. Overall, the soil moisture retrieved from the neural network agrees very well with the desired soil moisture. This suggests that the neural network shows potential for retrieval of soil parameters from remote sensing data.
The impact of fog on soil moisture dynamics in the Namib Desert
NASA Astrophysics Data System (ADS)
Li, Bonan; Wang, Lixin; Kaseke, Kudzai F.; Vogt, Roland; Li, Lin; Seely, Mary K.
2018-03-01
Soil moisture is a crucial component supporting vegetation dynamics in drylands. Despite increasing attention on fog in dryland ecosystems, the statistical characterization of fog distribution and how fog affects soil moisture dynamics have not been seen in literature. To this end, daily fog records over two years (Dec 1, 2014-Nov 1, 2016) from three sites within the Namib Desert were used to characterize fog distribution. Two sites were located within the Gobabeb Research and Training Center vicinity, the gravel plains and the sand dunes. The third site was located at the gravel plains, Kleinberg. A subset of the fog data during rainless period was used to investigate the effect of fog on soil moisture. A stochastic modeling framework was used to simulate the effect of fog on soil moisture dynamics. Our results showed that fog distribution can be characterized by a Poisson process with two parameters (arrival rate λ and average depth α (mm)). Fog and soil moisture observations from eighty (Aug 19, 2015-Nov 6, 2015) rainless days indicated a moderate positive relationship between soil moisture and fog in the Gobabeb gravel plains, a weaker relationship in the Gobabeb sand dunes while no relationship was observed at the Kleinberg site. The modeling results suggested that mean and major peaks of soil moisture dynamics can be captured by the fog modeling. Our field observations demonstrated the effects of fog on soil moisture dynamics during rainless periods at some locations, which has important implications on soil biogeochemical processes. The statistical characterization and modeling of fog distribution are of great value to predict fog distribution and investigate the effects of potential changes in fog distribution on soil moisture dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Chunmei; Leung, Lai R.; Gochis, David
2009-11-29
The influence of antecedent soil moisture on North American monsoon system (NAMS) precipitation variability was explored using the MM5 mesoscale model coupled with the Variable Infiltration Capacity (VIC) land surface model. Sensitivity experiments were performed with extreme wet and dry initial soil moisture conditions for both the 1984 wet monsoon year and the 1989 dry year. The MM5-VIC model reproduced the key features of NAMS in 1984 and 1989 especially over northwestern Mexico. Our modeling results indicate that the land surface has memory of the initial soil wetness prescribed at the onset of the monsoon that persists over most ofmore » the region well into the monsoon season (e.g. until August). However, in contrast to the classical thermal contrast concept, where wetter soils lead to cooler surface temperatures, less land-sea thermal contrast, weaker monsoon circulations and less precipitation, the coupled model consistently demonstrated a positive soil moisture – precipitation feedback. Specifically, anomalously wet premonsoon soil moisture always lead to enhanced monsoon precipitation, and the reverse was also true. The surface temperature changes induced by differences in surface energy flux partitioning associated with pre-monsoon soil moisture anomalies changed the surface pressure and consequently the flow field in the coupled model, which in turn changed moisture convergence and, accordingly, precipitation patterns. Both the largescale circulation change and local land-atmospheric interactions in response to premonsoon soil moisture anomalies play important roles in the coupled model’s positive soil moisture monsoon precipitation feedback. However, the former may be sensitive to the strength and location of the thermal anomalies, thus leaving open the possibility of both positive and negative soil moisture precipitation feedbacks.« less
Assimilation of SMOS Retrieved Soil Moisture into the Land Information System
NASA Technical Reports Server (NTRS)
Blankenship, Clay; Case, Jonathan; Zavodsky, Bradley; Jedlovec, Gary
2014-01-01
Soil moisture retrievals from the Soil Moisture and Ocean Salinity (SMOS) instrument are assimilated into the Noah land surface model (LSM) within the NASA Land Information System (LIS). Before assimilation, SMOS retrievals are bias-corrected to match the model climatological distribution using a Cumulative Distribution Function (CDF) matching approach. Data assimilation is done via the Ensemble Kalman Filter. The goal is to improve the representation of soil moisture within the LSM, and ultimately to improve numerical weather forecasts through better land surface initialization. We present a case study showing a large area of irrigation in the lower Mississippi River Valley, in an area with extensive rice agriculture. High soil moisture value in this region are observed by SMOS, but not captured in the forcing data. After assimilation, the model fields reflect the observed geographic patterns of soil moisture. Plans for a modeling experiment and operational use of the data are given. This work helps prepare for the assimilation of Soil Moisture Active/Passive (SMAP) retrievals in the near future.
A study of the influence of soil moisture on future precipitation
NASA Technical Reports Server (NTRS)
Fennessy, M. J.; Sud, Y. C.
1983-01-01
Forty years of precipitation and surface temperature data observed over 261 Local Climatic Data (LCD) stations in the Continental United States was utilized in a ground hydrology model to yield soil moisture time series at each station. A month-by-month soil moisture dataset was constructed for each year. The monthly precipitation was correlated with antecedent monthly precipitation, soil moisture and vapotranspiration separately. The maximum positive correlation is found to be in the drought prone western Great Plains region during the latter part of summer. There is also some negative correlation in coastal regions. The correlations between soil moisture and precipitation particularly in the latter part of summer, suggest that large scale droughts over extended periods may be partially maintained by the feedback influence of soil moisture on rainfall. In many other regions the lack of positive correlation shows that there is no simple answer such as higher land-surface evapotranspiration leads to more precipitation, and points out the complexity of the influence of soil moisture on the ensuring precipitation.
Misrepresentation and amendment of soil moisture in conceptual hydrological modelling
NASA Astrophysics Data System (ADS)
Zhuo, Lu; Han, Dawei
2016-04-01
Although many conceptual models are very effective in simulating river runoff, their soil moisture schemes are generally not realistic in comparison with the reality (i.e., getting the right answers for the wrong reasons). This study reveals two significant misrepresentations in those models through a case study using the Xinanjiang model which is representative of many well-known conceptual hydrological models. The first is the setting of the upper limit of its soil moisture at the field capacity, due to the 'holding excess runoff' concept (i.e., runoff begins on repletion of its storage to the field capacity). The second is neglect of capillary rise of water movement. A new scheme is therefore proposed to overcome those two issues. The amended model is as effective as its original form in flow modelling, but represents more logically realistic soil water processes. The purpose of the study is to enable the hydrological model to get the right answers for the right reasons. Therefore, the new model structure has a better capability in potentially assimilating soil moisture observations to enhance its real-time flood forecasting accuracy. The new scheme is evaluated in the Pontiac catchment of the USA through a comparison with satellite observed soil moisture. The correlation between the XAJ and the observed soil moisture is enhanced significantly from 0.64 to 0.70. In addition, a new soil moisture term called SMDS (Soil Moisture Deficit to Saturation) is proposed to complement the conventional SMD (Soil Moisture Deficit).
An integrated GIS application system for soil moisture data assimilation
NASA Astrophysics Data System (ADS)
Wang, Di; Shen, Runping; Huang, Xiaolong; Shi, Chunxiang
2014-11-01
The gaps in knowledge and existing challenges in precisely describing the land surface process make it critical to represent the massive soil moisture data visually and mine the data for further research.This article introduces a comprehensive soil moisture assimilation data analysis system, which is instructed by tools of C#, IDL, ArcSDE, Visual Studio 2008 and SQL Server 2005. The system provides integrated service, management of efficient graphics visualization and analysis of land surface data assimilation. The system is not only able to improve the efficiency of data assimilation management, but also comprehensively integrate the data processing and analysis tools into GIS development environment. So analyzing the soil moisture assimilation data and accomplishing GIS spatial analysis can be realized in the same system. This system provides basic GIS map functions, massive data process and soil moisture products analysis etc. Besides,it takes full advantage of a spatial data engine called ArcSDE to effeciently manage, retrieve and store all kinds of data. In the system, characteristics of temporal and spatial pattern of soil moiture will be plotted. By analyzing the soil moisture impact factors, it is possible to acquire the correlation coefficients between soil moisture value and its every single impact factor. Daily and monthly comparative analysis of soil moisture products among observations, simulation results and assimilations can be made in this system to display the different trends of these products. Furthermore, soil moisture map production function is realized for business application.
On-irrigator pasture soil moisture sensor
NASA Astrophysics Data System (ADS)
Eng-Choon Tan, Adrian; Richards, Sean; Platt, Ian; Woodhead, Ian
2017-02-01
In this paper, we presented the development of a proximal soil moisture sensor that measured the soil moisture content of dairy pasture directly from the boom of an irrigator. The proposed sensor was capable of soil moisture measurements at an accuracy of ±5% volumetric moisture content, and at meter scale ground area resolutions. The sensor adopted techniques from the ultra-wideband radar to enable measurements of ground reflection at resolutions that are smaller than the antenna beamwidth of the sensor. An experimental prototype was developed for field measurements. Extensive field measurements using the developed prototype were conducted on grass pasture at different ground conditions to validate the accuracy of the sensor in performing soil moisture measurements.
Soil moisture and the persistence of North American drought
NASA Technical Reports Server (NTRS)
Oglesby, Robert J.; Erickson, David J., III
1989-01-01
Numerical sensitivity experiments on the effects of soil moisture on North American summertime climate are performed using a 12-layer global atmospheric general circulation model. Consideration is given to the hypothesis that reduced soil moisture may induce and amplify warm, dry summers of midlatitude continental interiors. The simulations resemble the conditions of the summer of 1988, including an extensive drought over much of North America. It is found that a reduction in soil moisture leads to an increase in surface temperature, lower surface pressure, increased ridging aloft, and a northward shift of the jet stream. It is shown that low-level moisture advection from the Gulf of Mexico is important in the maintenance of persistent soil moisture deficits.
Soil-moisture sensors and irrigation management
USDA-ARS?s Scientific Manuscript database
This agricultural irrigation seminar will cover the major classes of soil-moisture sensors; their advantages and disadvantages; installing and reading soil-moisture sensors; and using their data for irrigation management. The soil water sensor classes include the resistance sensors (gypsum blocks, g...
Measuring Soil Moisture using the Signal Strength of Buried Bluetooth Devices.
NASA Astrophysics Data System (ADS)
Hut, R.; Campbell, C. S.
2015-12-01
A low power bluetooth Low Energy (BLE) device is burried 20cm into the soil and a smartphone is placed on top of the soil to test if bluetooth signal strength can be related to soil moisture. The smartphone continuesly records and stores bluetooth signal strength of the device. The soil is artifcially wetted and drained. Results show a relation between BLE signal strength and soil moisture that could be used to measure soil moisture using these off-the-shelf consumer electronics. This opens the possibily to develop sensors that can be buried into the soil, possibly below the plow-line. These sensors can measure local parameters such as electric conductivity, ph, pressure, etc. Readings would be uploaded to a device on the surface using BLE. The signal strength of this BLE would be an (additional) measurement of soil moisture.
An empirical model for the complex dielectric permittivity of soils as a function of water content
NASA Technical Reports Server (NTRS)
Wang, J. R.; Chmugge, T. J.
1978-01-01
The recent measurements on the dielectric properties of soils shows that the variation of dielectric constant with moisture content depends on soil types. The observed dielectric constant increases only slowly with moisture content up to a transition point. Beyond the transition it increases rapidly with moisture content. The moisture value of transition region was found to be higher for high clay content soils than for sandy soils. Many mixing formulas were compared with, and were found incompatible with, the measured dielectric variations of soil-water mixtures. A simple empirical model was proposed to describe the dielectric behavior of ths soil-water mixtures. The relationship between transition moisture and wilting point provides a means of estimating soil dielectric properties on the basis of texture information.
Determination of the water retention of peat soils in the range of the permanent wilting point.
NASA Astrophysics Data System (ADS)
Nünning, Lena; Bechtold, Michel; Dettmann, Ullrich; Piayda, Arndt; Tiemeyer, Bärbel; Durner, Wolfgang
2017-04-01
Global coverage of peatlands decreases due to the use of peat for horticulture and to the drainage of peatlands for agriculture and forestry. While alternatives for peat in horticulture exist, profitable agriculture on peatlands and climate protection are far more difficult to combine. A controlled water management that is optimized to stabilize yields while reducing peat degradation provides a promising path in this direction. For this goal, profound knowledge of hydraulic properties of organic soil is essential, for which, however, literature is scarce. This study aimed to compare different methods to determine the water retention of organic soils in the dry range (pF 3 to 4.5). Three common methods were compared: two pressure based apparatus (ceramic plate vs. membrane, Eijkelkamp) and a dew point potentiameter (WP4C, Decagon Devices), which is based on the equilibrium of soil water potential and air humidity. Two different types of organic soil samples were analyzed: i) samples wet from the field and ii) samples that were rewetted after oven-drying. Additional WP4C measurements were performed at samples from standard evaporation experiments directly after they have been finished. Results were: 1) no systematic differences between pressure apparatus and WP4C measurements, 2) however, high moisture variability of the samples from the pressure apparatus as well as high variability of the WP4C measurements at these samples when they were removed from these devices which indicated that applied pressure did not establish well in all samples, 3) rewetted oven-dried samples resulted in up to three times lower soil moistures even after long equilibrium times, i.e. there was a strong and long-lasting hysteresis effect that was highest for less degraded peat samples, 4) and highly consistent WP4C measurements at samples from the end of the evaporation experiment. Results provide useful information for deriving reliable water retention characteristics for organic soils.
High-resolution moisture profiles from full-waveform probabilistic inversion of TDR signals
NASA Astrophysics Data System (ADS)
Laloy, Eric; Huisman, Johan Alexander; Jacques, Diederik
2014-11-01
This study presents an novel Bayesian inversion scheme for high-dimensional undetermined TDR waveform inversion. The methodology quantifies uncertainty in the moisture content distribution, using a Gaussian Markov random field (GMRF) prior as regularization operator. A spatial resolution of 1 cm along a 70-cm long TDR probe is considered for the inferred moisture content. Numerical testing shows that the proposed inversion approach works very well in case of a perfect model and Gaussian measurement errors. Real-world application results are generally satisfying. For a series of TDR measurements made during imbibition and evaporation from a laboratory soil column, the average root-mean-square error (RMSE) between maximum a posteriori (MAP) moisture distribution and reference TDR measurements is 0.04 cm3 cm-3. This RMSE value reduces to less than 0.02 cm3 cm-3 for a field application in a podzol soil. The observed model-data discrepancies are primarily due to model inadequacy, such as our simplified modeling of the bulk soil electrical conductivity profile. Among the important issues that should be addressed in future work are the explicit inference of the soil electrical conductivity profile along with the other sampled variables, the modeling of the temperature-dependence of the coaxial cable properties and the definition of an appropriate statistical model of the residual errors.
NASA Astrophysics Data System (ADS)
Cosh, M. H.; Jackson, T. J.; Colliander, A.; Bindlish, R.; McKee, L.; Goodrich, D. C.; Prueger, J. H.; Hornbuckle, B. K.; Coopersmith, E. J.; Holifield Collins, C.; Smith, J.
2016-12-01
With the launch of the Soil Moisture Active Passive Mission (SMAP) in 2015, a new era of soil moisture monitoring was begun. Soil moisture is available on a near daily basis at a 36 km resolution for the globe. But this dataset is only as valuable if its products are accurate and reliable. Therefore, in order to demonstrate the accuracy of the soil moisture product, NASA enacted an extensive calibration and validation program with many in situ soil moisture networks contributing data across a variety of landscape regimes. However, not all questions can be answered by these networks. As a result, two intensive field experiments were executed to provide more detailed reference points for calibration and validation. Multi-week field campaigns were conducted in Arizona and Iowa at the USDA Agricultural Research Service Walnut Gulch and South Fork Experimental Watersheds, respectively. Aircraft observations were made to provide a high resolution data product. Soil moisture, soil roughness and vegetation data were collected at high resolution to provide a downscaled dataset to compare against aircraft and satellite estimates.
The sensitivity of numerically simulated climates to land-surface boundary conditions
NASA Technical Reports Server (NTRS)
Mintz, Y.
1982-01-01
Eleven sensitivity experiments that were made with general circulation models to see how land-surface boundary conditions can influence the rainfall, temperature, and motion fields of the atmosphere are discussed. In one group of experiments, different soil moistures or albedos are prescribed as time-invariant boundary conditions. In a second group, different soil moistures or different albedos are initially prescribed, and the soil moisture (but not the albedo) is allowed to change with time according to the governing equations for soil moisture. In a third group, the results of constant versus time-dependent soil moistures are compared.
Application of IEM model on soil moisture and surface roughness estimation
NASA Technical Reports Server (NTRS)
Shi, Jiancheng; Wang, J. R.; Oneill, P. E.; Hsu, A. Y.; Engman, E. T.
1995-01-01
Monitoring spatial and temporal changes of soil moisture are of importance to hydrology, meteorology, and agriculture. This paper reports a result on study of using L-band SAR imagery to estimate soil moisture and surface roughness for bare fields. Due to limitations of the Small Perturbation Model, it is difficult to apply this model on estimation of soil moisture and surface roughness directly. In this study, we show a simplified model derived from the Integral Equation Model for estimation of soil moisture and surface roughness. We show a test of this model using JPL L-band AIRSAR data.
Remotely sensed soil moisture input to a hydrologic model
NASA Technical Reports Server (NTRS)
Engman, E. T.; Kustas, W. P.; Wang, J. R.
1989-01-01
The possibility of using detailed spatial soil moisture maps as input to a runoff model was investigated. The water balance of a small drainage basin was simulated using a simple storage model. Aircraft microwave measurements of soil moisture were used to construct two-dimensional maps of the spatial distribution of the soil moisture. Data from overflights on different dates provided the temporal changes resulting from soil drainage and evapotranspiration. The study site and data collection are described, and the soil measurement data are given. The model selection is discussed, and the simulation results are summarized. It is concluded that a time series of soil moisture is a valuable new type of data for verifying model performance and for updating and correcting simulated streamflow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Lianhong; Meyers, T. P.; Pallardy, Stephen G.
2006-01-01
The purpose of this paper is to examine the mechanism that controls the variation of surface energy partitioning between latent and sensible heat fluxes at a temperate deciduous forest site in central Missouri, USA. Taking advantage of multiple micrometeorological and ecophysiological measurements and a prolonged drought in the middle of the 2005 growing season at this site, we studied how soil moisture, atmospheric vapor pressure deficit (VPD), and net radiation affected surface energy partitioning. We stratified these factors to minimize potential confounding effects of correlation among them. We found that all three factors had direct effects on surface energy partitioning,more » but more important, all three factors also had crucial indirect effects. The direct effect of soil moisture was characterized by a rapid decrease in Bowen ratio with increasing soil moisture when the soil was dry and by insensitivity of Bowen ratio to variations in soil moisture when the soil was wet. However, the rate of decrease in Bowen ratio when the soil was dry and the level of soil moisture above which Bowen ratio became insensitive to changes in soil moisture depended on atmospheric conditions. The direct effect of increased net radiation was to increase Bowen ratio. The direct effect of VPD was very nonlinear: Increased VPD decreased Bowen ratio at low VPD but increased Bowen ratio at high VPD. The indirect effects were much more complicated. Reduced soil moisture weakened the influence of VPD but enhanced the influence of net adiation on surface energy partitioning. Soil moisture also controlled how net radiation influenced the relationship between surface energy partitioning and VPD and how VPD affected the relationship between surface energy partitioning and net radiation. Furthermore, both increased VPD and increased net radiation enhanced the sensitivity of Bowen ratio to changes in soil moisture and the effect of drought on surface energy partitioning. The direct and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning identified in this paper provide a target for testing atmospheric general circulation models in their representation of land-atmosphere coupling.« less
[Simulation of cropland soil moisture based on an ensemble Kalman filter].
Liu, Zhao; Zhou, Yan-Lian; Ju, Wei-Min; Gao, Ping
2011-11-01
By using an ensemble Kalman filter (EnKF) to assimilate the observed soil moisture data, the modified boreal ecosystem productivity simulator (BEPS) model was adopted to simulate the dynamics of soil moisture in winter wheat root zones at Xuzhou Agro-meteorological Station, Jiangsu Province of China during the growth seasons in 2000-2004. After the assimilation of observed data, the determination coefficient, root mean square error, and average absolute error of simulated soil moisture were in the ranges of 0.626-0.943, 0.018-0.042, and 0.021-0.041, respectively, with the simulation precision improved significantly, as compared with that before assimilation, indicating the applicability of data assimilation in improving the simulation of soil moisture. The experimental results at single point showed that the errors in the forcing data and observations and the frequency and soil depth of the assimilation of observed data all had obvious effects on the simulated soil moisture.
NASA Astrophysics Data System (ADS)
Crow, W. T.; Chen, F.; Reichle, R. H.; Xia, Y.; Liu, Q.
2018-05-01
Accurate partitioning of precipitation into infiltration and runoff is a fundamental objective of land surface models tasked with characterizing the surface water and energy balance. Temporal variability in this partitioning is due, in part, to changes in prestorm soil moisture, which determine soil infiltration capacity and unsaturated storage. Utilizing the National Aeronautics and Space Administration Soil Moisture Active Passive Level-4 soil moisture product in combination with streamflow and precipitation observations, we demonstrate that land surface models (LSMs) generally underestimate the strength of the positive rank correlation between prestorm soil moisture and event runoff coefficients (i.e., the fraction of rainfall accumulation volume converted into stormflow runoff during a storm event). Underestimation is largest for LSMs employing an infiltration-excess approach for stormflow runoff generation. More accurate coupling strength is found in LSMs that explicitly represent subsurface stormflow or saturation-excess runoff generation processes.
Land-atmosphere coupling and soil moisture memory contribute to long-term agricultural drought
NASA Astrophysics Data System (ADS)
Kumar, S.; Newman, M.; Lawrence, D. M.; Livneh, B.; Lombardozzi, D. L.
2017-12-01
We assessed the contribution of land-atmosphere coupling and soil moisture memory on long-term agricultural droughts in the US. We performed an ensemble of climate model simulations to study soil moisture dynamics under two atmospheric forcing scenarios: active and muted land-atmosphere coupling. Land-atmosphere coupling contributes to a 12% increase and 36% decrease in the decorrelation time scale of soil moisture anomalies in the US Great Plains and the Southwest, respectively. These differences in soil moisture memory affect the length and severity of modeled drought. Consequently, long-term droughts are 10% longer and 3% more severe in the Great Plains, and 15% shorter and 21% less severe in the Southwest. An analysis of Coupled Model Intercomparsion Project phase 5 data shows four fold uncertainty in soil moisture memory across models that strongly affects simulated long-term droughts and is potentially attributable to the differences in soil water storage capacity across models.
Divergent surface and total soil moisture projections under global warming
Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.
2017-01-01
Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.
NASA Astrophysics Data System (ADS)
Legates, David R.; Junghenn, Katherine T.
2018-04-01
Many local weather station networks that measure a number of meteorological variables (i.e. , mesonetworks) have recently been established, with soil moisture occasionally being part of the suite of measured variables. These mesonetworks provide data from which detailed estimates of various hydrological parameters, such as precipitation and reference evapotranspiration, can be made which, when coupled with simple surface characteristics available from soil surveys, can be used to obtain estimates of soil moisture. The question is Can meteorological data be used with a simple hydrologic model to estimate accurately daily soil moisture at a mesonetwork site? Using a state-of-the-art mesonetwork that also includes soil moisture measurements across the US State of Delaware, the efficacy of a simple, modified Thornthwaite/Mather-based daily water balance model based on these mesonetwork observations to estimate site-specific soil moisture is determined. Results suggest that the model works reasonably well for most well-drained sites and provides good qualitative estimates of measured soil moisture, often near the accuracy of the soil moisture instrumentation. The model exhibits particular trouble in that it cannot properly simulate the slow drainage that occurs in poorly drained soils after heavy rains and interception loss, resulting from grass not being short cropped as expected also adversely affects the simulation. However, the model could be tuned to accommodate some non-standard siting characteristics.
NASA Astrophysics Data System (ADS)
Zhao, L.; Hu, G.; Wu, X.; Tian, L.
2017-12-01
Research on the hydrothermal properties of active layer during the thawing and freezing processes was considered as a key question to revealing the heat and moisture exchanges between permafrost and atmosphere. The characteristics of freezing and thawing processes at Tanggula (TGL) site in permafrost regions on the Tibetan Plateau, the results revealed that the depth of daily soil temperature transmission was about 40 cm shallower during thawing period than that during the freezing period. Soil warming process at the depth above 140 cm was slower than the cooling process, whereas they were close below 140 cm depth. Moreover, the hydro-thermal properties differed significantly among different stages. Precipitation caused an obviously increase in soil moisture at 0-20 cm depth. The vertical distribution of soil moisture could be divided into two main zones: less than 12% in the freeze state and greater than 12% in the thaw state. In addition, coupling of moisture and heat during the freezing and thawing processes also showed that soil temperature decreased faster than soil moisture during the freezing process. At the freezing stage, soil moisture exhibited an exponential relationship with the absolute soil temperature. Energy consumed for water-ice conversion during the freezing process was 149.83 MJ/m2 and 141.22 MJ/m2 in 2011 and 2012, respectively, which was estimated by the soil moisture variation.
NASA Astrophysics Data System (ADS)
Bassiouni, Maoya; Higgins, Chad W.; Still, Christopher J.; Good, Stephen P.
2018-06-01
Vegetation controls on soil moisture dynamics are challenging to measure and translate into scale- and site-specific ecohydrological parameters for simple soil water balance models. We hypothesize that empirical probability density functions (pdfs) of relative soil moisture or soil saturation encode sufficient information to determine these ecohydrological parameters. Further, these parameters can be estimated through inverse modeling of the analytical equation for soil saturation pdfs, derived from the commonly used stochastic soil water balance framework. We developed a generalizable Bayesian inference framework to estimate ecohydrological parameters consistent with empirical soil saturation pdfs derived from observations at point, footprint, and satellite scales. We applied the inference method to four sites with different land cover and climate assuming (i) an annual rainfall pattern and (ii) a wet season rainfall pattern with a dry season of negligible rainfall. The Nash-Sutcliffe efficiencies of the analytical model's fit to soil observations ranged from 0.89 to 0.99. The coefficient of variation of posterior parameter distributions ranged from < 1 to 15 %. The parameter identifiability was not significantly improved in the more complex seasonal model; however, small differences in parameter values indicate that the annual model may have absorbed dry season dynamics. Parameter estimates were most constrained for scales and locations at which soil water dynamics are more sensitive to the fitted ecohydrological parameters of interest. In these cases, model inversion converged more slowly but ultimately provided better goodness of fit and lower uncertainty. Results were robust using as few as 100 daily observations randomly sampled from the full records, demonstrating the advantage of analyzing soil saturation pdfs instead of time series to estimate ecohydrological parameters from sparse records. Our work combines modeling and empirical approaches in ecohydrology and provides a simple framework to obtain scale- and site-specific analytical descriptions of soil moisture dynamics consistent with soil moisture observations.
Xu, Yang; Niu, Lili; Qiu, Jiguo; Zhou, Yuting; Lu, Huijie; Liu, Weiping
2018-05-02
The wide usage of hexachlorocyclohexanes (HCHs) as pesticides has caused soil pollution and adverse health effects through direct contact or bioaccumulation in the food chain. This study quantified major HCH isomers in farmland topsoils across China, and evaluated their correlations with microbial community structure, function, and abiotic variables (e.g., moisture, pH, and temperature). Recalcitrant β-HCH was more abundant than α-, γ-, and δ-HCHs, and α-HCH enantiomeric fractions (EF) were larger than 0.5, indicating preferential degradation of (-)-α-HCH. Sphingomonas was not only a predominant population (especially in samples collected in the south), but also a promising biomarker indicating total- and β-HCH residuals, and EF values of α-HCH. Soil moisture and temperature were among the most influential factors that structured the diversity and function of soil microbial communities. The results suggested that increasing soil moisture (in the range of 5-45%) would benefit the growth of HCH-degrading populations and the enrichment of HCH-degradation related pathways. Revealing the site-specific relationships between topsoil physical, chemical, and microbial properties will benefit the in situ bioremediation of farmlands with relatively low HCH residuals across the world. Copyright © 2018 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
NASA’s SMAP satellite, launched in November of 2014, produces estimates of average volumetric soil moisture at 3, 9, and 36-kilometer scales. The calibration and validation process of these estimates requires the generation of an identically-scaled soil moisture product from existing in-situ networ...
Inventory of File gdas1.t06z.sfluxgrbf00.grib2
analysis Volumetric Soil Moisture Content [Fraction] 007 0.1-0.4 m below ground SOILW analysis Volumetric Soil Moisture Content [Fraction] 008 0-0.1 m below ground TMP analysis Temperature [K] 009 0.1-0.4 m Volumetric Soil Moisture Content [Fraction] 068 1-2 m below ground SOILW analysis Volumetric Soil Moisture