Sample records for soil profiles

  1. Worldwide Organic Soil Carbon and Nitrogen Data (1986) (NDP-018)

    DOE Data Explorer

    Zinke, P. J. [Univ. of California, Berkeley, CA (United States); Stangenberger, A. G. [Univ. of California, Berkeley, CA (United States); Post, W. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Emanuel, W. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Olson, J. S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Millemann, R. E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, T. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    1986-01-01

    This data base was begun with the collection and analysis of soil samples from California. Additional data came from soil surveys of Italy, Greece, Iran, Thailand, Vietnam, various tropical Amazonian areas, and U.S. forests and from the soil-survey literature. The analyzed samples were collected at uniform soil-depth increments and included bulk-density determinations. The data on each sample are soil profile number; soil profile carbon content; soil profile nitrogen content; sampling site latitude and longitude; site elevation; profile literature reference source; and soil profile codes for Holdridge life zone, Olson ecosystem type, and parent material. These data may be used to estimate the size of the soil organic carbon and nitrogen pools at equilibrium with natural soil-forming factors.

  2. Developing Soil Moisture Profiles Utilizing Remotely Sensed MW and TIR Based SM Estimates Through Principle of Maximum Entropy

    NASA Astrophysics Data System (ADS)

    Mishra, V.; Cruise, J. F.; Mecikalski, J. R.

    2015-12-01

    Developing accurate vertical soil moisture profiles with minimum input requirements is important to agricultural as well as land surface modeling. Earlier studies show that the principle of maximum entropy (POME) can be utilized to develop vertical soil moisture profiles with accuracy (MAE of about 1% for a monotonically dry profile; nearly 2% for monotonically wet profiles and 3.8% for mixed profiles) with minimum constraints (surface, mean and bottom soil moisture contents). In this study, the constraints for the vertical soil moisture profiles were obtained from remotely sensed data. Low resolution (25 km) MW soil moisture estimates (AMSR-E) were downscaled to 4 km using a soil evaporation efficiency index based disaggregation approach. The downscaled MW soil moisture estimates served as a surface boundary condition, while 4 km resolution TIR based Atmospheric Land Exchange Inverse (ALEXI) estimates provided the required mean root-zone soil moisture content. Bottom soil moisture content is assumed to be a soil dependent constant. Mulit-year (2002-2011) gridded profiles were developed for the southeastern United States using the POME method. The soil moisture profiles were compared to those generated in land surface models (Land Information System (LIS) and an agricultural model DSSAT) along with available NRCS SCAN sites in the study region. The end product, spatial soil moisture profiles, can be assimilated into agricultural and hydrologic models in lieu of precipitation for data scarce regions.Developing accurate vertical soil moisture profiles with minimum input requirements is important to agricultural as well as land surface modeling. Previous studies have shown that the principle of maximum entropy (POME) can be utilized with minimal constraints to develop vertical soil moisture profiles with accuracy (MAE = 1% for monotonically dry profiles; MAE = 2% for monotonically wet profiles and MAE = 3.8% for mixed profiles) when compared to laboratory and field data. In this study, vertical soil moisture profiles were developed using the POME model to evaluate an irrigation schedule over a maze field in north central Alabama (USA). The model was validated using both field data and a physically based mathematical model. The results demonstrate that a simple two-constraint entropy model under the assumption of a uniform initial soil moisture distribution can simulate most soil moisture profiles within the field area for 6 different soil types. The results of the irrigation simulation demonstrated that the POME model produced a very efficient irrigation strategy with loss of about 1.9% of the total applied irrigation water. However, areas of fine-textured soil (i.e. silty clay) resulted in plant stress of nearly 30% of the available moisture content due to insufficient water supply on the last day of the drying phase of the irrigation cycle. Overall, the POME approach showed promise as a general strategy to guide irrigation in humid environments, with minimum input requirements.

  3. [Spatial distribution and ecological significance of heavy metals in soils from Chatian mercury mining deposit, western Hunan province].

    PubMed

    Sun, Hong-Fei; Li, Yong-Hu; Ji, Yan-Fang; Yang, Lin-Sheng; Wang, Wu-Yi

    2009-04-15

    Ores, waste tailings and slag, together with three typical soil profiles (natural soil profiles far from mine entrance and near mine entrance, soil profile under slag) in Chatian mercury mining deposit (CMD), western Hunan province were sampled and their concentrations of mercury (Hg), arsenic (As), lead (Pb), cadmium (Cd), zinc (Zn) were determined by HG-ICP-AES and ICP-MS. Enrichment factor and correlation analysis were taken to investigate the origins, distribution and migration of Hg, as well as other heavy metals in the CMD. The results show that Hg is enriched in the bottom of the soil profile far from mine entrance but accumulated in the surface of soil profiles near mine entrance and under slag. The soil profiles near mine entrance and under slag are both contaminated by Hg, while the latter is contaminated more heavily. In the soil profile under slag, Hg concentration in the surface soil, Hg average concentration in the total profile, and the leaching depth of soil Hg are 640 microg x g(-1), (76.74 +/- 171.71) microg x g(-1), and more than 100 cm, respectively; while 6.5 microg x g(-1), (2.74 +/- 1.90) microg x g(-1), and 40 cm, respectively, are found in the soil profile near mine entrance. Soil in the mercury mine area is also polluted by Cd, As, Pb, Zn besides metallogenic element Hg, among which Cd pollution is relatively heavier than others. The mobility of the studied heavy metals in soil follows the order as Hg > Cd > As > Zn approximately equal to Pb. The leaching depth of the heavy metals is influenced by total concentration in the surface soil and soil physico-chemical parameters. The origins, distribution and migration of heavy metals in soil profile in the mining area are related to primary geological environment, and strongly influenced by human mining activities.

  4. Soil Temperature and Moisture Profile (STAMP) System Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, David R.

    The soil temperature and moisture profile system (STAMP) provides vertical profiles of soil temperature, soil water content (soil-type specific and loam type), plant water availability, soil conductivity, and real dielectric permittivity as a function of depth below the ground surface at half-hourly intervals, and precipitation at one-minute intervals. The profiles are measured directly by in situ probes at all extended facilities of the SGP climate research site. The profiles are derived from measurements of soil energy conductivity. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are alsomore » useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil. The STAMP system replaced the SWATS system in early 2016.« less

  5. Estimating the soil moisture profile by assimilating near-surface observations with the ensemble Kalman filter (EnKF)

    NASA Astrophysics Data System (ADS)

    Zhang, Shuwen; Li, Haorui; Zhang, Weidong; Qiu, Chongjian; Li, Xin

    2005-11-01

    The paper investigates the ability to retrieve the true soil moisture profile by assimilating near-surface soil moisture into a soil moisture model with an ensemble Kaiman filter (EnKF) assimilation scheme, including the effect of ensemble size, update interval and nonlinearities in the profile retrieval, the required time for full retrieval of the soil moisture profiles, and the possible influence of the depth of the soil moisture observation. These questions are addressed by a desktop study using synthetic data. The “true” soil moisture profiles are generated from the soil moisture model under the boundary condition of 0.5 cm d-1 evaporation. To test the assimilation schemes, the model is initialized with a poor initial guess of the soil moisture profile, and different ensemble sizes are tested showing that an ensemble of 40 members is enough to represent the covariance of the model forecasts. Also compared are the results with those from the direct insertion assimilation scheme, showing that the EnKF is superior to the direct insertion assimilation scheme, for hourly observations, with retrieval of the soil moisture profile being achieved in 16 h as compared to 12 days or more. For daily observations, the true soil moisture profile is achieved in about 15 days with the EnKF, but it is impossible to approximate the true moisture within 18 days by using direct insertion. It is also found that observation depth does not have a significant effect on profile retrieval time for the EnKF. The nonlinearities have some negative influence on the optimal estimates of soil moisture profile but not very seriously.

  6. Aggregating available soil water holding capacity data for crop yield models

    NASA Technical Reports Server (NTRS)

    Seubert, C. E.; Daughtry, C. S. T.; Holt, D. A.; Baumgardner, M. F.

    1984-01-01

    The total amount of water available to plants that is held against gravity in a soil is usually estimated as the amount present at -0.03 MPa average water potential minus the amount present at -1.5 MPa water potential. This value, designated available water-holding capacity (AWHC), is a very important soil characteristic that is strongly and positively correlated to the inherent productivity of soils. In various applications, including assessing soil moisture status over large areas, it is necessary to group soil types or series as to their productivity. Current methods to classify AWHC of soils consider only total capacity of soil profiles and thus may group together soils which differ greatly in AWHC as a function of depth in the profile. A general approach for evaluating quantitatively the multidimensional nature of AWHC in soils is described. Data for 902 soil profiles, representing 184 soil series, in Indiana were obtained from the Soil Characterization Laboratory at Purdue University. The AWHC for each of ten 150-mm layers in each soil was established, based on soil texture and parent material. A multivariate clustering procedure was used to classify each soil profile into one of 4, 8, or 12 classes based upon ten-dimensional AWHC values. The optimum number of classes depends on the range of AWHC in the population of oil profiles analyzed and on the sensitivity of a crop to differences in distribution of water within the soil profile.

  7. [Vertical distribution of soil active carbon and soil organic carbon storage under different forest types in the Qinling Mountains].

    PubMed

    Wang, Di; Geng, Zeng-Chao; She, Diao; He, Wen-Xiang; Hou, Lin

    2014-06-01

    Adopting field investigation and indoor analysis methods, the distribution patterns of soil active carbon and soil carbon storage in the soil profiles of Quercus aliena var. acuteserrata (Matoutan Forest, I), Pinus tabuliformis (II), Pinus armandii (III), pine-oak mixed forest (IV), Picea asperata (V), and Quercus aliena var. acuteserrata (Xinjiashan Forest, VI) of Qinling Mountains were studied in August 2013. The results showed that soil organic carbon (SOC), microbial biomass carbon (MBC), dissolved organic carbon (DOC), and easily oxidizable carbon (EOC) decreased with the increase of soil depth along the different forest soil profiles. The SOC and DOC contents of different depths along the soil profiles of P. asperata and pine-oak mixed forest were higher than in the other studied forest soils, and the order of the mean SOC and DOC along the different soil profiles was V > IV > I > II > III > VI. The contents of soil MBC of the different forest soil profiles were 71.25-710.05 mg x kg(-1), with a content sequence of I > V > N > III > II > VI. The content of EOC along the whole soil profile of pine-oak mixed forest had a largest decline, and the order of the mean EOC was IV > V> I > II > III > VI. The sequence of soil organic carbon storage of the 0-60 cm soil layer was V > I >IV > III > VI > II. The MBC, DOC and EOC contents of the different forest soils were significanty correlated to each other. There was significant positive correlation among soil active carbon and TOC, TN. Meanwhile, there was no significant correlation between soil active carbon and other soil basic physicochemical properties.

  8. Investigation of remote sensing techniques of measuring soil moisture

    NASA Technical Reports Server (NTRS)

    Newton, R. W. (Principal Investigator); Blanchard, A. J.; Nieber, J. L.; Lascano, R.; Tsang, L.; Vanbavel, C. H. M.

    1981-01-01

    Major activities described include development and evaluation of theoretical models that describe both active and passive microwave sensing of soil moisture, the evaluation of these models for their applicability, the execution of a controlled field experiment during which passive microwave measurements were acquired to validate these models, and evaluation of previously acquired aircraft microwave measurements. The development of a root zone soil water and soil temperature profile model and the calibration and evaluation of gamma ray attenuation probes for measuring soil moisture profiles are considered. The analysis of spatial variability of soil information as related to remote sensing is discussed as well as the implementation of an instrumented field site for acquisition of soil moisture and meteorologic information for use in validating the soil water profile and soil temperature profile models.

  9. Application of UV-visible absorption spectroscopy combined with two-dimensional correlation for insight into DOM fractions from native halophyte soils in a larger estuarine delta.

    PubMed

    Wei, Huaibin; Yu, Huibin; Pan, Hongwei; Gao, Hongjie

    2018-05-01

    UV-visible absorption spectroscopy combined with principal component analysis (PCA) and two-dimensional correlation (2D correlation) is used to trace components of dissolved organic matter (DOM) extracted from soils in a larger estuarine delta and to investigate spatial variations of DOM fractions. Soil samples of different depths were collected from native halophyte soils along a saline gradient, i.e., Suaeda salsa Comm. (SSC), Chenopodium album Comm. (CAC), Phragmites australis Comm. (PAC), and Artemisia selengensis Comm. (ASC). Molecular weights of DOM within the SSC soil profile were the lowest, followed by the CAC, PAC, and ASC soil profiles. Humification degree of DOM within the ASC soil profile was the highest, followed by the PAC, SSC, and CAC soil profiles. DOM within the soil profiles mainly contained phenolic, carboxylic, microbial products, and aromatic and alkyl groups through the PCA, which presented the significant differentiation among the four native halophyte soil profiles. The 2D UV correlation spectra of DOM within the SSC soil profile indicated that the variations of the phenolic groups were the largest, followed by the carboxylic groups, microbial products, and humified organic materials according to the band changing order of 285 → 365 → 425 → 520 nm. The 2D UV correlation spectra of DOM within the CAC soil profiles determined that the decreasing order of the variations was phenolic groups > carboxylic groups > microbial products according the band changing order of 285 → 365 → 425 nm. The 2D UV correlation spectra of DOM within the PAC soil profile proved that the variations of the phenolic groups were larger than those of the carboxylic groups according to the band changing order of 285 → 365 nm. The 2D UV correlation spectra of DOM within the ASC soil profile demonstrated that the variations of the phenolic groups were larger than those of the other DOM fractions according to the broad cross-peak at 285/365-700 nm.

  10. Subsurface Assessment at McMurdo Station, Antarctica

    DTIC Science & Technology

    2017-02-01

    showing profile descriptions , soil indices, and ice properties...23 11 Cross section of Site 2 showing profile descriptions , soil indices, and ice properties...of Site 3 showing profile descriptions , soil indices, and ice properties

  11. Quantifying soil profile change caused by land use in central Missouri loess hillslopes

    Treesearch

    Samuel J. Indorante; John M. Kabrick; Brad D. Lee; Jon M. Maatta

    2014-01-01

    Three major challenges are present when studying anthropogenic impacts on soil profile properties: (i) site selection; (ii) sampling and modeling native and cultivated soil-landscape relationships; and (iii) graphically and statistically comparing native and cultivated sites to model soil profile changes. This study addressed those challenges by measuring and modeling...

  12. Linking of Microorganisms to Phenanthrene Metabolism in Soil by Analysis of 13C-Labeled Cell Lipids

    PubMed Central

    Johnsen, Anders R.; Winding, Anne; Karlson, Ulrich; Roslev, Peter

    2002-01-01

    Phenanthrene-metabolizing soil microbial communities were characterized by examining mineralization of [14C]phenanthrene, by most-probable-number (MPN) counting, by 16S-23S spacer DNA analysis of the numerically dominant, culturable phenanthrene-degrading isolates, and by examining incorporation of [13C]phenanthrene-derived carbon into sterols and polar lipid fatty acids (PLFAs). An unpolluted agricultural soil, a roadside soil diffusely polluted with polycyclic aromatic hydrocarbons (PAHs), and two highly PAH-polluted soils from industrial sites were analyzed. Microbial phenanthrene degraders were not detected by MPN counting in the agricultural soil and the roadside soil. In the industrial soils, phenanthrene degraders constituted 0.04 and 3.6% of the total number of CFU. 16S-23S spacer DNA analysis followed by partial 16S DNA sequencing of representative isolates from one of the industrial soils showed that one-half of the isolates belonged to the genus Sphingomonas and the other half were closely related to an unclassified beta-proteobacterium. The 13C-PLFA profiles of the two industrial soils were relatively similar and resembled the profiles of phenanthrene-degrading Sphingomonas reference strains and unclassified beta-proteobacterium isolates but did not match the profiles of Pseudomonas, Mycobacterium, or Nocardia reference strains. The 13C-PLFA profiles of phenanthrene degraders in the agricultural soil and the roadside soil were different from each other and different from the profiles of the highly polluted industrial soils. Only in the roadside soil were 10me/12me18:0 PLFAs enriched in 13C, suggesting that actinomycetes metabolized phenanthrene in this soil. The 13C-PLFA profiles of the unpolluted agricultural soil did not resemble the profiles of any of the reference strains. In all of the soils investigated, no excess 13C was recovered in the 18:2ω6,9 PLFA, suggesting that fungi did not contribute significantly to assimilation of [13C]phenanthrene. PMID:12450834

  13. Decomposition Odour Profiling in the Air and Soil Surrounding Vertebrate Carrion

    PubMed Central

    2014-01-01

    Chemical profiling of decomposition odour is conducted in the environmental sciences to detect malodourous target sources in air, water or soil. More recently decomposition odour profiling has been employed in the forensic sciences to generate a profile of the volatile organic compounds (VOCs) produced by decomposed remains. The chemical profile of decomposition odour is still being debated with variations in the VOC profile attributed to the sample collection technique, method of chemical analysis, and environment in which decomposition occurred. To date, little consideration has been given to the partitioning of odour between different matrices and the impact this has on developing an accurate VOC profile. The purpose of this research was to investigate the decomposition odour profile surrounding vertebrate carrion to determine how VOCs partition between soil and air. Four pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their odour profile monitored over a period of two months. Corresponding control sites were also monitored to determine the VOC profile of the surrounding environment. Samples were collected from the soil below and the air (headspace) above the decomposed remains using sorbent tubes and analysed using gas chromatography-mass spectrometry. A total of 249 compounds were identified but only 58 compounds were common to both air and soil samples. This study has demonstrated that soil and air samples produce distinct subsets of VOCs that contribute to the overall decomposition odour. Sample collection from only one matrix will reduce the likelihood of detecting the complete spectrum of VOCs, which further confounds the issue of determining a complete and accurate decomposition odour profile. Confirmation of this profile will enhance the performance of cadaver-detection dogs that are tasked with detecting decomposition odour in both soil and air to locate victim remains. PMID:24740412

  14. Decomposition odour profiling in the air and soil surrounding vertebrate carrion.

    PubMed

    Forbes, Shari L; Perrault, Katelynn A

    2014-01-01

    Chemical profiling of decomposition odour is conducted in the environmental sciences to detect malodourous target sources in air, water or soil. More recently decomposition odour profiling has been employed in the forensic sciences to generate a profile of the volatile organic compounds (VOCs) produced by decomposed remains. The chemical profile of decomposition odour is still being debated with variations in the VOC profile attributed to the sample collection technique, method of chemical analysis, and environment in which decomposition occurred. To date, little consideration has been given to the partitioning of odour between different matrices and the impact this has on developing an accurate VOC profile. The purpose of this research was to investigate the decomposition odour profile surrounding vertebrate carrion to determine how VOCs partition between soil and air. Four pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their odour profile monitored over a period of two months. Corresponding control sites were also monitored to determine the VOC profile of the surrounding environment. Samples were collected from the soil below and the air (headspace) above the decomposed remains using sorbent tubes and analysed using gas chromatography-mass spectrometry. A total of 249 compounds were identified but only 58 compounds were common to both air and soil samples. This study has demonstrated that soil and air samples produce distinct subsets of VOCs that contribute to the overall decomposition odour. Sample collection from only one matrix will reduce the likelihood of detecting the complete spectrum of VOCs, which further confounds the issue of determining a complete and accurate decomposition odour profile. Confirmation of this profile will enhance the performance of cadaver-detection dogs that are tasked with detecting decomposition odour in both soil and air to locate victim remains.

  15. Resampling soil profiles can constrain large-scale changes in the C cycle: obtaining robust information from radiocarbon measurements

    NASA Astrophysics Data System (ADS)

    Baisden, W. T.; Prior, C.; Lambie, S.; Tate, K.; Bruhn, F.; Parfitt, R.; Schipper, L.; Wilde, R. H.; Ross, C.

    2006-12-01

    Soil organic matter contains more C than terrestrial biomass and atmospheric CO2 combined, and reacts to climate and land-use change on timescales requiring long-term experiments or monitoring. The direction and uncertainty of soil C stock changes has been difficult to predict and incorporate in decision support tools for climate change policies. Moreover, standardization of approaches has been difficult because historic methods of soil sampling have varied regionally, nationally and temporally. The most common and uniform type of historic sampling is soil profiles, which have commonly been collected, described and archived in the course of both soil survey studies and research. Resampling soil profiles has considerable utility in carbon monitoring and in parameterizing models to understand the ecosystem responses to global change. Recent work spanning seven soil orders in New Zealand's grazed pastures has shown that, averaged over approximately 20 years, 31 soil profiles lost 106 g C m-2 y-1 (p=0.01) and 9.1 g N m{^-2} y-1 (p=0.002). These losses are unexpected and appear to extend well below the upper 30 cm of soil. Following on these recent results, additional advantages of resampling soil profiles can be emphasized. One of the most powerful applications afforded by resampling archived soils is the use of the pulse label of radiocarbon injected into the atmosphere by thermonuclear weapons testing circa 1963 as a tracer of soil carbon dynamics. This approach allows estimation of the proportion of soil C that is `passive' or `inert' and therefore unlikely to respond to global change. Evaluation of resampled soil horizons in a New Zealand soil chronosequence confirms that the approach yields consistent values for the proportion of `passive' soil C, reaching 25% of surface horizon soil C over 12,000 years. Across whole profiles, radiocarbon data suggest that the proportion of `passive' C in New Zealand grassland soil can be less than 40% of total soil C. Below 30 cm, 1 kg C m-2 or more may be reactive on decadal timescales, supporting evidence of soil C losses from throughout the soil profiles. Information from resampled soil profiles can be combined with additional contemporary measurements to test hypotheses about mechanisms for soil C changes. For example, Δ14C in excess of 200‰ in water extractable dissolved organic C (DOC) from surface soil horizons supports the hypothesis that decadal movement of DOC represents an important translocation of soil C. These preliminary results demonstrate that resampling whole soil profiles can support substantial progress in C cycle science, ranging from updating operational C accounting systems to the frontiers of research. Resampling can be complementary or superior to fixed-depth interval sampling of surface soil layers. Resampling must however be undertaken with relative urgency to maximize the potential interpretive power of bomb-derived radiocarbon.

  16. Climate Prediction Center - United States Drought Information

    Science.gov Websites

    • Crop Moisture Indices • Soil Moisture Percentiles (based on NLDAS) • Standardized Runoff Index (based /Minimum • Mean Surface Hydrology (based on NLDAS) • Total Soil Moisture • Total SM Change • MOSAIC Soil Moisture Profile • NOAH Soil Moisture Profile • NOAH Soil T Profile • Evaporation • E-P Â

  17. Community-level physiological profiles of microorganisms inhabiting soil contaminated with heavy metals

    NASA Astrophysics Data System (ADS)

    Kuźniar, Agnieszka; Banach, Artur; Stępniewska, Zofia; Frąc, Magdalena; Oszust, Karolina; Gryta, Agata; Kłos, Marta; Wolińska, Agnieszka

    2018-01-01

    The aim of the study was to assess the differences in the bacterial community physiological profiles in soils contaminated with heavy metals versus soils without metal contaminations. The study's contaminated soil originated from the surrounding area of the Szopienice non-ferrous metal smelter (Silesia Region, Poland). The control was soil unexposed to heavy metals. Metal concentration was appraised by flame atomic absorption spectrometry, whereas the the community-level physiological profile was determined with the Biolog EcoPlatesTM system. The soil microbiological activity in both sites was also assessed via dehydrogenase activity. The mean concentrations of metals (Cd and Zn) in contaminated soil samples were in a range from 147.27 to 12265.42 mg kg-1, and the heavy metal contamination brought about a situation where dehydrogenase activity inhibition was observed mostly in the soil surface layers. Our results demonstrated that there is diversity in the physiological profiles of microorganisms inhabiting contaminated and colntrol soils; therefore, for assessment purposes, these were treated as two clusters. Cluster I included colntrol soil samples in which microbial communities utilised most of the available substrates. Cluster II incorporated contaminated soil samples in which a smaller number of the tested substrates was utilised by the contained microorganisms. The physiological profiles of micro-organisms inhabiting the contaminated and the colntrol soils are distinctly different.

  18. Meteoric 10Be in soil profiles - A global meta-analysis

    USGS Publications Warehouse

    Graly, Joseph A.; Bierman, Paul R.; Reusser, Lucas J.; Pavich, Milan J.

    2010-01-01

    In order to assess current understanding of meteoric 10Be dynamics and distribution in terrestrial soils, we assembled a database of all published meteoric 10Be soil depth profiles, including 104 profiles from 27 studies in globally diverse locations, collectively containing 679 individual measurements. This allows for the systematic comparison of meteoric 10Be concentration to other soil characteristics and the comparison of profile depth distributions between geologic settings. Percent clay, 9Be, and dithionite-citrate extracted Al positively correlate to meteoric 10Be in more than half of the soils where they were measured, but the lack of significant correlation in other soils suggests that no one soil factor controls meteoric 10Be distribution with depth. Dithionite-citrate extracted Fe and cation exchange capacity are only weakly correlated to meteoric 10Be. Percent organic carbon and pH are not significantly related to meteoric 10Be concentration when all data are complied.The compilation shows that meteoric 10Be concentration is seldom uniform with depth in a soil profile. In young or rapidly eroding soils, maximum meteoric 10Be concentrations are typically found in the uppermost 20 cm. In older, more slowly eroding soils, the highest meteoric 10Be concentrations are found at depth, usually between 50 and 200 cm. We find that the highest measured meteoric 10Be concentration in a soil profile is an important metric, as both the value and the depth of the maximum meteoric 10Be concentration correlate with the total measured meteoric 10Be inventory of the soil profile.In order to refine the use of meteoric 10Be as an estimator of soil erosion rate, we compare near-surface meteoric 10Be concentrations to total meteoric 10Be soil inventories. These trends are used to calibrate models of meteoric 10Be loss by soil erosion. Erosion rates calculated using this method vary based on the assumed depth and timing of erosional events and on the reference data selected.

  19. Vertical Soil Profiling Using a Galvanic Contact Resistivity Scanning Approach

    PubMed Central

    Pan, Luan; Adamchuk, Viacheslav I.; Prasher, Shiv; Gebbers, Robin; Taylor, Richard S.; Dabas, Michel

    2014-01-01

    Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep) soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument. PMID:25057135

  20. Impact of land management on soil structure and soil hydraulic properties

    NASA Astrophysics Data System (ADS)

    Kodesova, Radka; Jirku, Veronika; Nikodem, Antonin; Muhlhanselova, Marcela; Zigova, Anna

    2010-05-01

    Study is focused on a comparison of a soil structure and soil hydraulic properties within soil profiles of a same soil type under different land management. Study was performed in Haplic Luvisol in Hnevceves the Czech Republic. Two soil profiles, which were in close distance from each other, were chosen: 1. under the conventional tillage, 2. under the permanent (30 years) grass cover. Soil sampling and field experiments were carried out immediately after the harvest of winter barley in 2008. The micromorphological images were used to evaluate the soil structure of all Ap, Bt1, Bt2 and C diagnostic horizons. The hydraulic properties of the diagnostic horizons were studied in the laboratory using multistep outflow experiments performed on the undisturbed 100-cm3 soil samples. A tension disc infiltrometer (with a disc radius of 10 cm) and minidisc tension infiltrometers (with a disc radius of 2.2 cm) were used to measure cumulative water infiltration under unsaturated conditions created using a pressure head of -2 cm. Measurements were performed at a depths of 5, 45, 75 and 110 cm, which corresponded to the Ap, Bt1, Bt2 and C horizons of studied Haplic Luvisol at both locations. The Guelph permeameter was used to measure cumulative water flux under surface ponding conditions. The depth of the drilled well was 10, 50, 80 and 115 cm, the well radius was 3 cm, and the well ponding depth was 5 cm. Both tests were used to evaluate hydraulic conductivity (K for h=-2cm, and Ks) values. Results showed, that while properties in the Bt2 and C horizons of both soil profiles were relatively similar, properties in the Ap and Bt1 horizons were different. The fraction of gravitational pores (which may cause preferential flow) in the Ap and Bt1 horizons of the soil profile under the convectional tillage was large than those in the Ap and Bt1 horizons of the soil profile under the permanent grass. This influenced for instance the Ks values measured using the Guelph permeametr. The Ks values were higher and more variable in the soil profile under the convectional tillage than those in the soil profile under the permanent grass. On the other hand, due to the periodical tillage and consequent soil structure breakdown, the fraction of the large capillary pores were smaller in the Ap horizon of the soil profile under the convectional tillage than that in the Ap horizon of the soil profile under the permanent grass. As result the K (h=-2cm) values measured using the tension infiltrometer in the soil profile under the permanent grass was higher than those in the soil profile under the convectional tillage. However, the fraction of the large capillary pores and K (h=-2cm) values were similar in the Bt1 horizons of both soil profiles. Thus the land management impacted both macropores and matrix pores in the Ap horizon and macropores (prismatic structure and biopores) in the Bt1 horizon. Acknowledgement: Authors acknowledge the financial support of the Grant Agency of the Czech Republic (grant No. GA CR 526/08/0434) and the Ministry of Education, Youth and Sports of the Czech Republic (grant No. MSM 6046070901).

  1. Error in Radar-Derived Soil Moisture due to Roughness Parameterization: An Analysis Based on Synthetical Surface Profiles

    PubMed Central

    Lievens, Hans; Vernieuwe, Hilde; Álvarez-Mozos, Jesús; De Baets, Bernard; Verhoest, Niko E.C.

    2009-01-01

    In the past decades, many studies on soil moisture retrieval from SAR demonstrated a poor correlation between the top layer soil moisture content and observed backscatter coefficients, which mainly has been attributed to difficulties involved in the parameterization of surface roughness. The present paper describes a theoretical study, performed on synthetical surface profiles, which investigates how errors on roughness parameters are introduced by standard measurement techniques, and how they will propagate through the commonly used Integral Equation Model (IEM) into a corresponding soil moisture retrieval error for some of the currently most used SAR configurations. Key aspects influencing the error on the roughness parameterization and consequently on soil moisture retrieval are: the length of the surface profile, the number of profile measurements, the horizontal and vertical accuracy of profile measurements and the removal of trends along profiles. Moreover, it is found that soil moisture retrieval with C-band configuration generally is less sensitive to inaccuracies in roughness parameterization than retrieval with L-band configuration. PMID:22399956

  2. Storage/Turnover Rate of Inorganic Carbon and Its Dissolvable Part in the Profile of Saline/Alkaline Soils

    PubMed Central

    Wang, Yugang; Wang, Zhongyuan; Li, Yan

    2013-01-01

    Soil inorganic carbon is the most common form of carbon in arid and semiarid regions, and has a very long turnover time. However, little is known about dissolved inorganic carbon storage and its turnover time in these soils. With 81 soil samples taken from 6 profiles in the southern Gurbantongute Desert, China, we investigated the soil inorganic carbon (SIC) and the soil dissolved inorganic carbon (SDIC) in whole profiles of saline and alkaline soils by analyzing their contents and ages with radiocarbon dating. The results showed that there is considerable SDIC content in SIC, and the variations of SDIC and SIC contents in the saline soil profile were much larger than that in the alkaline profile. SDIC storage accounted for more than 20% of SIC storage, indicating that more than 1/5 of the inorganic carbon in both saline and alkaline soil is not in non-leachable forms. Deep layer soil contains considerable inorganic carbon, with more than 80% of the soil carbon stored below 1 m, whether for SDIC or SIC. More importantly, SDIC ages were much younger than SIC in both saline soil and alkaline soil. The input rate of SDIC and SIC ranged from 7.58 to 29.54 g C m-2 yr-1 and 1.34 to 5.33 g C m-2 yr-1 respectively for saline soil, and from 1.43 to 4.9 g C m-2 yr-1 and 0.79 to 1.27 g C m-2 yr-1respectively for alkaline soil. The comparison of SDIC and SIC residence time showed that using soil inorganic carbon to estimate soil carbon turnover would obscure an important fraction that contributes to the modern carbon cycle: namely the shorter residence and higher input rate of SDIC. This is especially true for SDIC in deep layers of the soil profile. PMID:24312399

  3. Distribution and significance of dissolved organic carbon under three land-use systems, NSW, Australia

    NASA Astrophysics Data System (ADS)

    Fancy, Rubeca; Wilson, Brian R.; Daniel, Heiko; Osanai, Yui

    2017-04-01

    Carbon accumulation in surface soils is well documented but very little is known about the mechanisms and processes that result in carbon accumulation and long-term storage in the deeper soil profile. Understanding soil carbon storage and distribution mechanisms is critical to evaluate the sequestration potential of the soils of different land uses. Recent investigations have demonstrated that the movement of dissolved organic carbon (DOC) in the soil profile could contribute significantly to the carbon balance of terrestrial ecosystems. However, very little is known regarding the importance of DOC to vertical distribution of soil organic carbon (SOC) pool through the soil profile in different land-use systems, management practices and conditions prevalent in Australia. We investigated the quantity and distribution of SOC and DOC through the profile under three different land-use systems in northern NSW, Australia. A series of site clusters containing a representative range of land-uses (cultivated, improved pasture and woodland) were selected across the region. Within each land use, we determined SOC and DOC concentration and quantity down the soil profile to a depth of 0-100 cm using six soil depth increments. Here we discuss the distribution and relative importance of DOC down the soil profile to the storage and distribution of carbon. We compare and contrast the patterns associated with the different land use systems and explore potential mechanisms of carbon cycling in these soils. Near to the soil surface, SOC had larger concentrations in the order woodland>improved pasture>cropping at all sites studied. However, DOC was found in significantly larger concentrations in the woodland soils at all soil depths. The larger DOC:TOC ratio in woodland and improved pasture soils suggests a direct relationship between TOC and DOC but increased DOC:TOC ratio in deeper soil layers suggests an increasing importance of DOC in soil carbon cycling in these deeper soils under Australian conditions.

  4. Analysis of the NASA AirMOSS Root Zone Soil Water and Soil Temperature from Three North American Ecosystems

    NASA Astrophysics Data System (ADS)

    Hagimoto, Y.; Cuenca, R. H.

    2015-12-01

    Root zone soil water and temperature are controlling factors for soil organic matter accumulation and decomposition which contribute significantly to the CO2 flux of different ecosystems. An in-situ soil observation protocol developed at Oregon State University has been deployed to observe soil water and temperature dynamics in seven ecological research sites in North America as part of the NASA AirMOSS project. Three instrumented profiles defining a transect of less than 200 m are installed at each site. All three profiles collect data for in-situ water and temperature dynamics employing seven soil water and temperature sensors installed at seven depth levels and one infrared surface temperature sensor monitoring the top of the profile. In addition, two soil heat flux plates and associated thermocouples are installed at one of three profiles at each site. At each profile, a small 80 cm deep access hole is typically made, and all below ground sensors are installed into undisturbed soil on the side of the hole. The hole is carefully refilled and compacted so that root zone soil water and temperature dynamics can be observed with minimum site disturbance. This study focuses on the data collected from three sites: a) Tonzi Ranch, CA; b) Metolius, OR and c) BERMS Old Jack Pine Site, Saskatchewan, Canada. The study describes the significantly different seasonal root zone water and temperature dynamics under the various physical and biological conditions at each site. In addition, this study compares the soil heat flux values estimated by the standard installation using the heat flux plates and thermocouples installed near the surface with those estimated by resolving the soil heat storage based on the soil water and temperature data collected over the total soil profile.

  5. Fluxes of CO2, CH4 and N2O at two European beech forests: linking soil gas production profiles with soil and stem fluxes

    NASA Astrophysics Data System (ADS)

    Maier, Martin; Machacova, Katerina; Halaburt, Ellen; Haddad, Sally; Urban, Otmar; Lang, Friederike

    2016-04-01

    Soil and plant surfaces are known to exchange greenhouse gases with the atmosphere. Some gases like nitrous oxide (N2O) and methane (CH4) can be produced and re-consumed in different soil depths and soil compartments, so that elevated concentrations of CH4 or N2O in the soil do not necessarily mean a net efflux from the soil into the atmosphere. Soil aeration, and thus the oxygen status can underlay a large spatial variability within the soil on the plot and profile scale, but also within soil aggregates. Thus, conditions suitable for production and consumption of CH4 and N2O can vary on different scales in the soil. Plant surfaces can also emit or take up CH4 and N2O, and these fluxes can significantly contribute to the net ecosystem exchange. Since roots usually have large intercellular spaces or aerenchyma they may represent preferential transport ways for soil gases, linking possibly elevated soil gas concentrations in the subsoil in a "shortcut" to the atmosphere. We tested the hypothesis that the spatial variability of the soil-atmosphere fluxes of CO2, CH4 and N2O is caused by the heterogeneity in soil properties. Therefore, we measured soil-atmosphere gas fluxes, soil gas concentrations and soil diffusivity profiles and did a small scale field assessment of soil profiles on the measurments plots. We further tried to link vertical profiles of soil gas concentrations and diffusivity to derive the production and consumption profiles, and to link these profiles to the stem-atmosphere flux rates of individual trees. Measurements were conducted in two mountain beech forests with different geographical and climatic conditions (White Carpathians, Czech Republic; Black Forest, Germany). Gas fluxes at stem and soil levels were measured simultaneously using static chamber systems and chromatographic and continuous laser analyses. Monitoring simultaneously vertical soil gas profiles allowed to assess the within-soil gas fluxes, and thus to localize the production and consumption sites of soil gases in the adjacent soil. Soils at both sites took up CH4 and N2O and emitted CO2. Soil gas profiles at the Black Forest showed only CH4 and N2O consumption. CH4 uptake was much larger by the well aerated Black Forest soil than by the loamy-clay soil in the White Carpathians. Here, it was possible to stratify the apparently homogenous site into two plots, one having redoximorphic features in the soil profiles, the other plot without. It seemed that CH4 and N2O were mainly produced in the deeper soil at the plot with temporarily reducing conditions. Beech stems mostly took up N2O from the atmosphere at both sites, whereas CH4 was emitted. The stem CH4 flux was higher for the White Carpathians than for the Black Forest site. Thus, the tree and soil flux of CH4 seems to be affected by soil structure, soil water content and the redox potential in the rooting space. We conclude from our results that trees might provide preferential pathways for greenhouse gases produced in the subsoil thereby enhancing the release of greenhouse gases. Acknowledgement This research was financially supported by the Czech Academy of Sciences and the German Academic Exchange Service within the project "Methane (CH4) and nitrous oxide (N2O) emissions from Fagus sylvatica trees" (DAAD-15-03), National Programme for Sustainability I (LO1415) and project DFG (MA 5826/2-1). We would like to thank Marek Jakubik for technical support and Sinikka Paulus for help by field measurements.

  6. Microbial community dynamics in soil aggregates shape biogeochemical gas fluxes from soil profiles - upscaling an aggregate biophysical model.

    PubMed

    Ebrahimi, Ali; Or, Dani

    2016-09-01

    Microbial communities inhabiting soil aggregates dynamically adjust their activity and composition in response to variations in hydration and other external conditions. These rapid dynamics shape signatures of biogeochemical activity and gas fluxes emitted from soil profiles. Recent mechanistic models of microbial processes in unsaturated aggregate-like pore networks revealed a highly dynamic interplay between oxic and anoxic microsites jointly shaped by hydration conditions and by aerobic and anaerobic microbial community abundance and self-organization. The spatial extent of anoxic niches (hotspots) flicker in time (hot moments) and support substantial anaerobic microbial activity even in aerated soil profiles. We employed an individual-based model for microbial community life in soil aggregate assemblies represented by 3D angular pore networks. Model aggregates of different sizes were subjected to variable water, carbon and oxygen contents that varied with soil depth as boundary conditions. The study integrates microbial activity within aggregates of different sizes and soil depth to obtain estimates of biogeochemical fluxes from the soil profile. The results quantify impacts of dynamic shifts in microbial community composition on CO2 and N2 O production rates in soil profiles in good agreement with experimental data. Aggregate size distribution and the shape of resource profiles in a soil determine how hydration dynamics shape denitrification and carbon utilization rates. Results from the mechanistic model for microbial activity in aggregates of different sizes were used to derive parameters for analytical representation of soil biogeochemical processes across large scales of practical interest for hydrological and climate models. © 2016 John Wiley & Sons Ltd.

  7. Dry heat effects on survival of indigenous soil particle microflora and particle viability studies of Kennedy Space Center soil

    NASA Technical Reports Server (NTRS)

    Ruschmeyer, O. R.; Pflug, I. J.; Gove, R.; Heisserer, Y.

    1975-01-01

    Research efforts were concentrated on attempts to obtain data concerning the dry heat resistance of particle microflora in Kennedy Space Center soil samples. The in situ dry heat resistance profiles at selected temperatures for the aggregate microflora on soil particles of certain size ranges were determined. Viability profiles of older soil samples were compared with more recently stored soil samples. The effect of increased particle numbers on viability profiles after dry heat treatment was investigated. These soil particle viability data for various temperatures and times provide information on the soil microflora response to heat treatment and are useful in making selections for spacecraft sterilization cycles.

  8. Average pollutant concentration in soil profile simulated with Convective-Dispersive Equation. Model and Manual

    USDA-ARS?s Scientific Manuscript database

    Different parts of soil solution move with different velocities, and therefore chemicals are leached gradually from soil with infiltrating water. Solute dispersivity is the soil parameter characterizing this phenomenon. To characterize the dispersivity of soil profile at field scale, it is desirable...

  9. Estimating the Soil Temperature Profile from a Single Depth Observation: A Simple Empirical Heatflow Solution

    NASA Technical Reports Server (NTRS)

    Holmes, Thomas; Owe, Manfred; deJeu, Richard

    2007-01-01

    Two data sets of experimental field observations with a range of meteorological conditions are used to investigate the possibility of modeling near-surface soil temperature profiles in a bare soil. It is shown that commonly used heat flow methods that assume a constant ground heat flux can not be used to model the extreme variations in temperature that occur near the surface. This paper proposes a simple approach for modeling the surface soil temperature profiles from a single depth observation. This approach consists of two parts: 1) modeling an instantaneous ground flux profile based on net radiation and the ground heat flux at 5cm depth; 2) using this ground heat flux profile to extrapolate a single temperature observation to a continuous near surface temperature profile. The new model is validated with an independent data set from a different soil and under a range of meteorological conditions.

  10. Leaching potential of chlorpyrifos in an Andisol and Entisol: adsorption-desorption and degradation studies

    NASA Astrophysics Data System (ADS)

    Mosquera-Vivas, Carmen; Walther Hansen, Eddy; Garcia-Santos, Glenda; Obregón-Neira, Nelson; Celis-Ossa, Raul Ernesto; González-Murillo, Carlos Alberto; Juraske, Ronnie; Hellweg, Stefanie; Guerrero-Dallos, Jairo Arturo

    2017-04-01

    Ecological status of tropical soils like high OC content and microbial activity plays a key role to reduce the leaching of insecticide chlorpyrifos through the soil profile and therefore into groundwater. We found that chlorpyrifos has "transitional" leaching potential (GUS values varied between 1.8 and 2.5) throughout the soil depth, which differs from the "nonleacher" classification for temperate soils as based on surface level t1/2 and Koc values from international databases. These findings provide strong evidence of the importance of estimating the transport parameters and insecticide concentrations in different soil layers, especially when the amount and type of OC content vary throughout the soil profile. We got to such conclusions after studying the soil profile structural composition of soil organic matter and the adsorption/desorption characteristics of the insecticide in two different soil profiles (Andisol and Entisol) under agriculture production using Fourier transform infrared spectroscopy, nuclear magnetic resonance, and batch analysis methods.

  11. Distribution and possible immobilization of lead in a forest soil (Luvisol) profile.

    PubMed

    Sipos, Péter; Németh, Tibor; Mohai, Ilona

    2005-02-01

    Geochemical analyses using a sequential extraction method and lead adsorption studies were carried out in order to characterize the distribution and adsorption of lead on each genetic horizon of a Luvisol profile developed on a pelagic clayey aleurolite. Clay illuviation is the most important pedogenic process in the profile studied. Its clay mineralogy is characterized by chlorite/vermiculite species with increasing chlorite component downward. The amount of carbonate minerals strongly increases in the lower part of the profile resulting in an abrupt rise in soil pH within a small distance. The Pb content of the soil profile exceeds the natural geochemical background only in the Ao horizon, and its amount decreases with depth in the profile without correcting for differences in bulk density, suggesting the binding of Pb to soil organic matter. According to the sequential extraction analysis the organic matter and carbonate content of the soil have the most significant effect on lead distribution. This effect varies in the different soil horizons. Lead adsorption experiments were carried out on whole soil samples, soil clay fractions, as well as on their carbonate and organic matter free variant. The different soil horizons adsorb lead to different extents depending on their organic matter, clay mineral and carbonate content; and the mineralogical features of soil clays significantly affect their lead adsorption capacity. The clay fraction adsorbs 25% more lead than the whole soil, while in the calcareous subsoil a significant proportion of lead is precipitated due to the alkaline conditions. 10 and 5% of adsorbed Pb can be leached with distilled water in the organic matter and clay mineral dominated soil horizons, respectively. These results suggest that soil organic matter plays a decisive role in the adsorption of Pb, but the fixation by clay minerals is stronger.

  12. [Simulation of effects of soil properties and plants on soil water-salt movement with reclaimed water irrigation by ENVIRO-GRO model].

    PubMed

    Lü, Si-Dan; Chen, Wei-Ping; Wang, Mei-E

    2012-12-01

    In order to promote safe irrigation with reclaimed water and prevent soil salinisation, the dynamic transport of salts in urban soils of Beijing under irrigation of reclaimed water was simulated by ENVIRO-GRO model in this study. The accumulation trends and profile distribution of soil salinity were predicted. Simultaneously, the effects of different soil properties and plants on soil water-salt movement and salt accumulation were investigated. Results indicated that soil salinity in the profiles reached uniform equilibrium conditions by repeated simulation, with different initial soil salinity. Under the conditions of loam and clay loam soil, salinity in the profiles increased over time until reaching equilibrium conditions, while under the condition of sandy loam soil, salinity in the profiles decreased over time until reaching equilibrium conditions. The saturated soil salinity (EC(e)) under equilibrium conditions followed an order of sandy loam < loam < clay loam. Salt accumulations in Japan euonymus and Chinese pine were less than that in Blue grass. The temporal and spatial distributions of soil salinity were also different in these three types of plants. In addition, the growth of the plants was not influenced by soil salinity (except clay loam), but mild soil salinization occurred under all conditions (except sandy loam).

  13. Soil moisture profile variability in land-vegetation- atmosphere continuum

    NASA Astrophysics Data System (ADS)

    Wu, Wanru

    Soil moisture is of critical importance to the physical processes governing energy and water exchanges at the land-air boundary. With respect to the exchange of water mass, soil moisture controls the response of the land surface to atmospheric forcing and determines the partitioning of precipitation into infiltration and runoff. Meanwhile, the soil acts as a reservoir for the storage of liquid water and slow release of water vapor into the atmosphere. The major motivation of the study is that the soil moisture profile is thought to make a substantial contribution to the climate variability through two-way interactions between the land-surface and the atmosphere in the coupled ocean-atmosphere-land climate system. The characteristics of soil moisture variability with soil depth may be important in affecting the atmosphere. The natural variability of soil moisture profile is demonstrated using observations. The 16-year field observational data of soil moisture with 11-layer (top 2.0 meters) measured soil depths over Illinois are analyzed and used to identify and quantify the soil moisture profile variability, where the atmospheric forcing (precipitation) anomaly propagates down through the land-branch of the hydrological cycle with amplitude damping, phase shift, and increasing persistence. Detailed statistical data analyses, which include application of the periodogram method, the wavelet method and the band-pass filter, are made of the variations of soil moisture profile and concurrently measured precipitation for comparison. Cross-spectral analysis is performed to obtain the coherence pattern and phase correlation of two time series for phase shift and amplitude damping calculation. A composite of the drought events during this time period is analyzed and compared with the normal (non-drought) case. A multi-layer land surface model is applied for modeling the soil moisture profile variability characteristics and investigating the underlying mechanisms. Numerical experiments are conducted to examine the impacts of some potential controlling factors, which include atmospheric forcing (periodic and pulse) at the upper boundary, the initial soil moisture profile, the relative root abundance and the soil texture, on the variability of soil moisture profile and the corresponding evapotranspiration. Similar statistical data analyses are performed for the experimental data. Observations from the First International Satellite Land Surface Climatological Project (ISLSCP) Field Experiment (FIFE) are analyzed and used for the testing of model. The integration of the observational and modeling approaches makes it possible to better understand the mechanisms by which the soil moisture profile variability is generated with phase shift, fluctuation amplitude damping and low-pass frequency filtering with soil depth, to improve the strategies of parameterizations in land surface schemes, and furthermore, to assess its contribution to climate variability.

  14. Field Guide to Soils. Earth Science Curriculum Project Pamphlet Series PS-2.

    ERIC Educational Resources Information Center

    Foth, Henry; Jacobs, Hyde S.

    Discussed are the importance of soil to plant and animal life, the evolution of a soil profile, and the major kinds of soil in the United States. On a suggested field trip, students examine different kinds of soil profiles; they also measure soil acidity and water-holding capacity. Suggestions for further study are provided along with references…

  15. [Effect of irregular bedrock topography on the soil profile pattern of water content in a Karst hillslope.

    PubMed

    Jia, Jin Tian; Fu, Zhi Yong; Chen, Hong Song; Wang, Ke Lin; Zhou, Wei Jun

    2016-06-01

    Based on three manually excavated trenches (projection length of 21 m, width of 1 m) along a typical Karst hillslope, the changing trends for soil-bedrock structure, average water content of soil profile and soil-bedrock interface water content along each individual trench were studied. The effect of irregular bedrock topography on soil moisture distribution was discussed. The results showed that the surface topography was inconsistent with the bedrock topography in the Karst hill-slopes. The bedrock topography was highly irregular with a maximum variation coefficient of 82%. The distribution pattern of soil profile of moisture was significantly affected by the underlying undulant bedrock. The soil water content was related to slope position when the fluctuation was gentle, and displayed a linear increase from upslope to downslope. When the bedrock fluctuation increased, the downslope linear increasing trend for soil water content became unapparent, and the spatial continuity of soil moisture was weakened. The soil moisture was converged in rock dents and cracks. The average water content of soil profile was significantly positively correlated with the soil-bedrock interface water content, while the latter responded more sensitively to the bedrock fluctuation.

  16. Responses of plant available water and forest productivity to variably layered coarse textured soils

    NASA Astrophysics Data System (ADS)

    Huang, Mingbin; Barbour, Lee; Elshorbagy, Amin; Si, Bing; Zettl, Julie

    2010-05-01

    Reforestation is a primary end use for reconstructed soils following oil sands mining in northern Alberta, Canada. Limited soil water conditions strongly restrict plant growth. Previous research has shown that layering of sandy soils can produce enhanced water availability for plant growth; however, the effect of gradation on these enhancements is not well defined. The objective of this study was to evaluate the effect of soil texture (gradation and layering) on plant available water and consequently on forest productivity for reclaimed coarse textured soils. A previously validated system dynamics (SD) model of soil moisture dynamics was coupled with ecophysiological and biogeochemical processes model, Biome-BGC-SD, to simulate forest dynamics for different soil profiles. These profiles included contrasting 50 cm textural layers of finer sand overlying coarser sand in which the sand layers had either a well graded or uniform soil texture. These profiles were compared to uniform profiles of the same sands. Three tree species of jack pine (Pinus banksiana Lamb.), white spruce (Picea glauce Voss.), and trembling aspen (Populus tremuloides Michx.) were simulated using a 50 year climatic data base from northern Alberta. Available water holding capacity (AWHC) was used to identify soil moisture regime, and leaf area index (LAI) and net primary production (NPP) were used as indices of forest productivity. Published physiological parameters were used in the Biome-BGC-SD model. Relative productivity was assessed by comparing model predictions to the measured above-ground biomass dynamics for the three tree species, and was then used to study the responses of forest leaf area index and potential productivity to AWHC on different soil profiles. Simulated results indicated soil layering could significantly increase AWHC in the 1-m profile for coarse textured soils. This enhanced AWHC could result in an increase in forest LAI and NPP. The increased extent varied with soil textures and vegetative types. The simulated results showed that the presence of 50 cm of coarser graded sand overlying 50 cm of finer graded sand is the most effective reclaimed prescription to increase AWHC and forest productivity among the studied soil profiles.

  17. Hyperspectral imaging to investigate the distribution of organic matter and iron down the soil profile

    NASA Astrophysics Data System (ADS)

    Hobley, Eleanor; Kriegs, Stefanie; Steffens, Markus

    2017-04-01

    Obtaining reliable and accurate data regarding the spatial distribution of different soil components is difficult due to issues related with sampling scale and resolution on the one hand and laboratory analysis on the other. When investigating the chemical composition of soil, studies frequently limit themselves to two dimensional characterisations, e.g. spatial variability near the surface or depth distribution down the profile, but rarely combine both approaches due to limitations to sampling and analytical capacities. Furthermore, when assessing depth distributions, samples are taken according to horizon or depth increments, resulting in a mixed sample across the sampling depth. Whilst this facilitates mean content estimation per depth increment and therefore reduces analytical costs, the sample information content with regards to heterogeneity within the profile is lost. Hyperspectral imaging can overcome these sampling limitations, yielding high resolution spectral data of down the soil profile, greatly enhancing the information content of the samples. This can then be used to augment horizontal spatial characterisation of a site, yielding three dimensional information into the distribution of spectral characteristics across a site and down the profile. Soil spectral characteristics are associated with specific chemical components of soil, such as soil organic matter or iron contents. By correlating the content of these soil components with their spectral behaviour, high resolution multi-dimensional analysis of soil chemical composition can be obtained. Here we present a hyperspectral approach to the characterisation of soil organic matter and iron down different soil profiles, outlining advantages and issues associated with the methodology.

  18. Microbiomes structure and diversity in different horizons of full soil profiles

    NASA Astrophysics Data System (ADS)

    Chernov, Timofey; Tkhakakhova, Azida; Zhelezova, Alena; Semenov, Mikhail; Kutovaya, Olga

    2017-04-01

    Topsoil is a most common object for soil metagenomic studies; sometimes soil profile is being formally split in layers by depth. However, Russian Soil Science School formulated the idea of soil profile as a complex of soil horizons, which can differ in their properties and genesis. In this research we analyzed 57 genetic soil horizons of 8 different soils from European part of Russia: Albeluvisol, Greyzemic Phaeozem, three Chermozems (different land use - till, fallow, wind-protecting tree line), Rhodic Cambisol, Haplic Kastanozem and Salic Solonetz (WRB classification). Sampling was performed from all genetic horizons in each soil profile starting from topsoil until subsoil. Total DNA was extracted and 16S rRNA sequencing was provided together with chemical analysis of soil (pH measurement, C and N contents, etc.). Structure and diversity of prokaryotic community are significantly different in those soil horizons, which chemical properties and processes of origin are contrasting with nearest horizons: Na-enriched horizon of Solonetz, eluvial horizon of Albeluvisol, plough pan of Agrochernozem. Actinobacteria were abundant in top horizons of soils in warm and dry climate, while Acidobacteria had the highest frequency in soils of moist and cold regions. Concerning Archaea, Thaumarchaeota prevailed in all studied soils. Their rate was higher in microbiomes of upper horizons of steppe soils and it was reducing with depth down the profile. Prokaryotic communities in Chernozems were clustered by soil horizons types: microbiomes of A (organic topsoil) and B (mineral) horizons formed non-overlapping clusters by principal component analysis, cluster formed by prokaryotic communities of transitional soil horizons (AB) take place between clusters of A and B horizons. Moreover, prokaryotic communities of A horizons differ from each other strongly, while microbiomes of B horizons formed a narrow small cluster. It must be explaned by more diverse conditions in upper A horizons. Thus, ecological differences between soil horizons are important factor of differentiation of prokaryotic communities in soil profile; their structure can be specific for horizon type. This study was supported by Russian Science Foundation, project no. 14-26-00079

  19. Soil Water and Temperature System (SWATS) Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, David R.

    2016-04-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models tomore » determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.« less

  20. Local and profile soil water content monitoring: A comparison of methods in terms of apparent and actual spatial variation

    USDA-ARS?s Scientific Manuscript database

    Although many soil water sensors are now available, questions about their accuracy, precision, and representativeness still abound. This study examined down-hole (access tube profiling type) and insertion or burial (local) type sensors for their ability to assess soil profile water content (depth of...

  1. Ch'ol nomenclature for soil classification in the ejido Oxolotán, Tacotalpa, Tabasco, México.

    PubMed

    Sánchez-Hernández, Rufo; Méndez-De la Cruz, Lucero; Palma-López, David J; Bautista-Zuñiga, Francisco

    2018-05-30

    The traditional ecological knowledge of land of the Ch'ol originary people from southeast Mexico forms part of their cultural identity; it is local and holistic and implies an integrated physical and spiritual worldview that contributes to improve their living conditions. We analyzed the nomenclature for soil classification used in the Mexican state of Tabasco by the Ch'ol farmers with the objective of contributing to the knowledge of the Maya soil classification. A map of the study area was generated from the digital database of parcels in the ejido Oxolotán in the municipality of Tacotalpa, to which a geopedological map was overlaid in order to obtain modeled topographic profiles (Zavala-Cruz et al., Ecosistemas y Recursos Agropecuarios 3:161-171, 2016). In each modeled profile, a soil profile was made and classified according to IUSS Working Group WRB (181, 2014) in order to generate a map of soil groups, which was used to survey the study area with the participation of 245 local Ch'ol farmers for establishing an ethnopedological soil classification (Ortiz et al.: 62, 1990). In addition, we organized a participatory workshop with 35 people to know details of the names of the soils and their indicators of fertility and workability, from which we selected 15 participants for field trips and description of soil profiles. The color, texture, and stoniness are attributes important in the Ch'ol nomenclature, although the names do not completely reflect the visible characteristic of the soil surface. On the other hand, the mere presence of stones is sufficient to name a land class, while according to IUSS Working Group WRB (181, 2014), a certain amount and distribution of stones in the soil profiles is necessary to be taken into consideration in the name. Perception of soil quality by local farmers considers the compaction or hardness of the cultivable soil layer, because of which black or sandy soils are perceived as better for cultivation of banana, or as secondary vegetation in fallow. Red, yellow, or brown soils are seen as of less quality and are only used for establishing grasslands, while maize is cultivated in all soil classes. Farmers provided the Ch'ol nomenclature, perceived problems, and uses of each class of soil. Translation of Ch'ol soil names and comparison with descriptions of soil profiles revealed that the Ch'ol soil nomenclature takes into account the soil profile, given it is based on characteristics of both surface and subsurface horizons including color of soil matrix and mottles, stoniness, texture, and vegetation.

  2. Mapping Soil Organic Matter with Hyperspectral Imaging

    NASA Astrophysics Data System (ADS)

    Moni, Christophe; Burud, Ingunn; Flø, Andreas; Rasse, Daniel

    2014-05-01

    Soil organic matter (SOM) plays a central role for both food security and the global environment. Soil organic matter is the 'glue' that binds soil particles together, leading to positive effects on soil water and nutrient availability for plant growth and helping to counteract the effects of erosion, runoff, compaction and crusting. Hyperspectral measurements of samples of soil profiles have been conducted with the aim of mapping soil organic matter on a macroscopic scale (millimeters and centimeters). Two soil profiles have been selected from the same experimental site, one from a plot amended with biochar and another one from a control plot, with the specific objective to quantify and map the distribution of biochar in the amended profile. The soil profiles were of size (30 x 10 x 10) cm3 and were scanned with two pushbroomtype hyperspectral cameras, one which is sensitive in the visible wavelength region (400 - 1000 nm) and one in the near infrared region (1000 - 2500 nm). The images from the two detectors were merged together into one full dataset covering the whole wavelength region. Layers of 15 mm were removed from the 10 cm high sample such that a total of 7 hyperspectral images were obtained from the samples. Each layer was analyzed with multivariate statistical techniques in order to map the different components in the soil profile. Moreover, a 3-dimensional visalization of the components through the depth of the sample was also obtained by combining the hyperspectral images from all the layers. Mid-infrared spectroscopy of selected samples of the measured soil profiles was conducted in order to correlate the chemical constituents with the hyperspectral results. The results show that hyperspectral imaging is a fast, non-destructive technique, well suited to characterize soil profiles on a macroscopic scale and hence to map elements and different organic matter quality present in a complete pedon. As such, we were able to map and quantify biochar in our profile. Smaller interesting regions can also easily be selected from the hyperspectral images for more detailed study at microscopic scale.

  3. Sampling Soil for Characterization and Site Description

    NASA Technical Reports Server (NTRS)

    Levine, Elissa

    1999-01-01

    The sampling scheme for soil characterization within the GLOBE program is uniquely different from the sampling methods of the other protocols. The strategy is based on an understanding of the 5 soil forming factors (parent material, climate, biota, topography, and time) at each study site, and how each of these interact to produce a soil profile with unique characteristics and unique input and control into the atmospheric, biological, and hydrological systems. Soil profile characteristics, as opposed to soil moisture and temperature, vegetative growth, and atmospheric and hydrologic conditions, change very slowly, depending on the parameter being measured, ranging from seasonally to many thousands of years. Thus, soil information, including profile description and lab analysis, is collected only one time for each profile at a site. These data serve two purposes: 1) to supplement existing spatial information about soil profile characteristics across the landscape at local, regional, and global scales, and 2) to provide specific information within a given area about the basic substrate to which elements within the other protocols are linked. Because of the intimate link between soil properties and these other environmental elements, the static soil properties at a given site are needed to accurately interpret and understand the continually changing dynamics of soil moisture and temperature, vegetation growth and phenology, atmospheric conditions, and chemistry and turbidity in surface waters. Both the spatial and specific soil information can be used for modeling purposes to assess and make predictions about global change.

  4. Predicting the spatial distribution of soil profile in Adapazari/Turkey by artificial neural networks using CPT data

    NASA Astrophysics Data System (ADS)

    Arel, Ersin

    2012-06-01

    The infamous soils of Adapazari, Turkey, that failed extensively during the 46-s long magnitude 7.4 earthquake in 1999 have since been the subject of a research program. Boreholes, piezocone soundings and voluminous laboratory testing have enabled researchers to apply sophisticated methods to determine the soil profiles in the city using the existing database. This paper describes the use of the artificial neural network (ANN) model to predict the complex soil profiles of Adapazari, based on cone penetration test (CPT) results. More than 3236 field CPT readings have been collected from 117 soundings spread over an area of 26 km2. An attempt has been made to develop the ANN model using multilayer perceptrons trained with a feed-forward back-propagation algorithm. The results show that the ANN model is fairly accurate in predicting complex soil profiles. Soil identification using CPT test results has principally been based on the Robertson charts. Applying neural network systems using the chart offers a powerful and rapid route to reliable prediction of the soil profiles.

  5. Determination of Fluxes and their Source Partitioning from high-resolution Profile Measurements of Wind Speed and Scalars within and above short Canopies

    NASA Astrophysics Data System (ADS)

    Graf, A.; Ney, P.

    2017-12-01

    A continuously moving elevator-based system is described to measure vertical profiles of wind speed, temperature, CO2 and H2O within and above short plant canopies with a vertical resolution in the centimeter range. On sample days in 2015 to 2017, we measured profiles from the soil surface to 2 m a.g.l. in a crop rotation including wheat, barley, bare soil, winter catch crops and sugarbeet, with canopy heights of up to 1 m. Profiles over bare soil or very short canopies could be described well by fitting Monin-Obukhov-like profiles, and the derived fluxes of momentum and all three scalars matched well those of a nearby eddy-covariance station. In green canopies during the day, CO2 profiles clearly indicated the plant sink and soil source by a local minimum in the canopy and a maximum at the soil surface. H2O profiles, indicating sources both in the canopy and at the soil surface, did or did not show a local minimum between both, depending on canopy structure and turbulence. Temperature profiles showed various shapes including solar incident angle effects, and often the expected opposing signs of thermal stability between the subcanopy and the roughness sublayer. Finally, we test different existing parametrizations to estimate the vertical source / sink distribution from the measured profiles, compare the resulting vertically integrated fluxes to eddy-covariance based net fluxes, and discuss limitations and needed improvements to quantify subcanopy soil respiration and evaporation from such approaches.

  6. Digital soil classification and elemental mapping using imaging Vis-NIR spectroscopy: How to explicitly quantify stagnic properties of a Luvisol under Norway spruce

    NASA Astrophysics Data System (ADS)

    Kriegs, Stefanie; Buddenbaum, Henning; Rogge, Derek; Steffens, Markus

    2015-04-01

    Laboratory imaging Vis-NIR spectroscopy of soil profiles is a novel technique in soil science that can determine quantity and quality of various chemical soil properties with a hitherto unreached spatial resolution in undisturbed soil profiles. We have applied this technique to soil cores in order to get quantitative proof of redoximorphic processes under two different tree species and to proof tree-soil interactions at microscale. Due to the imaging capabilities of Vis-NIR spectroscopy a spatially explicit understanding of soil processes and properties can be achieved. Spatial heterogeneity of the soil profile can be taken into account. We took six 30 cm long rectangular soil columns of adjacent Luvisols derived from quaternary aeolian sediments (Loess) in a forest soil near Freising/Bavaria using stainless steel boxes (100×100×300 mm). Three profiles were sampled under Norway spruce and three under European beech. A hyperspectral camera (VNIR, 400-1000 nm in 160 spectral bands) with spatial resolution of 63×63 µm² per pixel was used for data acquisition. Reference samples were taken at representative spots and analysed for organic carbon (OC) quantity and quality with a CN elemental analyser and for iron oxides (Fe) content using dithionite extraction followed by ICP-OES measurement. We compared two supervised classification algorithms, Spectral Angle Mapper and Maximum Likelihood, using different sets of training areas and spectral libraries. As established in chemometrics we used multivariate analysis such as partial least-squares regression (PLSR) in addition to multivariate adaptive regression splines (MARS) to correlate chemical data with Vis-NIR spectra. As a result elemental mapping of Fe and OC within the soil core at high spatial resolution has been achieved. The regression model was validated by a new set of reference samples for chemical analysis. Digital soil classification easily visualizes soil properties within the soil profiles. By combining both techniques, detailed soil maps, elemental balances and a deeper understanding of soil forming processes at the microscale become feasible for complete soil profiles.

  7. Soil microbial community profiles and functional diversity in limestone cedar glades

    USGS Publications Warehouse

    Cartwright, Jennifer M.; Dzantor, E. Kudjo; Momen, Bahram

    2016-01-01

    Rock outcrop ecosystems, such as limestone cedar glades (LCGs), are known for their rare and endemic plant species adapted to high levels of abiotic stress. Soils in LCGs are thin (< 25 cm), soil-moisture conditions fluctuate seasonally between xeric and saturated, and summer soil temperatures commonly exceed 48 °C. The effects of these stressors on soil microbial communities (SMC) remain largely unstudied, despite the importance of SMC-plant interactions in regulating the structure and function of terrestrial ecosystems. SMC profiles and functional diversity were characterized in LCGs using community level physiological profiling (CLPP) and plate-dilution frequency assays (PDFA). Most-probable number (MPN) estimates and microbial substrate-utilization diversity (H) were positively related to soil thickness, soil organic matter (OM), soil water content, and vegetation density, and were diminished in alkaline soil relative to circumneutral soil. Soil nitrate showed no relationship to SMCs, suggesting lack of N-limitation. Canonical correlation analysis indicated strong correlations between microbial CLPP patterns and several physical and chemical properties of soil, primarily temperature at the ground surface and at 4-cm depth, and secondarily soil-water content, enabling differentiation by season. Thus, it was demonstrated that several well-described abiotic determinants of plant community structure in this ecosystem are also reflected in SMC profiles.

  8. Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers

    PubMed Central

    Bai, Ren; Wang, Jun-Tao; Deng, Ye; He, Ji-Zheng; Feng, Kai; Zhang, Li-Mei

    2017-01-01

    Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria, Chloroflexi, and Firmicutes increased whereas Cyanobacteria, β-proteobacteria, and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils. PMID:28611747

  9. Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers.

    PubMed

    Bai, Ren; Wang, Jun-Tao; Deng, Ye; He, Ji-Zheng; Feng, Kai; Zhang, Li-Mei

    2017-01-01

    Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria , Chloroflexi , and Firmicutes increased whereas Cyanobacteria , β -proteobacteria , and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota , Thaumarchaeota , and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils.

  10. Numerical analysis of groundwater recharge through stony soils using limited data

    NASA Astrophysics Data System (ADS)

    Hendrickx, J. M. H.; Khan, A. S.; Bannink, M. H.; Birch, D.; Kidd, C.

    1991-10-01

    This study evaluates groundwater recharge on an alluvial fan in Quetta Valley (Baluchistan, Pakistan), through deep stony soils with limited data of soil texture, soil profile descriptions, water-table depths and meteorological variables. From the soil profile descriptions, a representative profile was constructed with typical soil layers. Next, the texture of each layer was compared with textures of soils with known soil physical characteristics; it is assumed that soils from the same textural class have similar water retention and hydraulic conductivity curves. Finally, the water retention and hydraulic conductivity curves were transformed to account for the volume of stones in each layer; this varied between 0 and 60 vol. %. These data were used in a transient finite difference model and in a steady-state analytical solution to evaluate the travel time of the recharge water and the maximum annual recharge volume. Travel times proved to be less sensitive to differences in soil physical characteristics than to differences in annual infiltration rates. Therefore, estimation of soil physical characteristics from soil texture data alone appears justified for this study. Estimated travel times on the alluvial fan in the Quetta Valley vary between 1.6 years, through a soil profile of 25 m with an infiltration rate of 120 cm year -1, to 18.3 years through a soil profile of 100 m with an infiltration rate of 40 cm year -1. When the infiltration rate of the soil exceeds 40 cm day -1, the infiltration process proceeds so fast that evaporation losses are small. If the depth of ponding at the start of infiltration is more than 1 m, at least 90% of the applied recharge water will reach the water table, providing that the ponding area is bare of vegetation.

  11. Radar Cuts Subsoil Survey Costs

    NASA Technical Reports Server (NTRS)

    Johnson, R.; Glaccum, R.

    1984-01-01

    Soil features located with minimum time and labor. Ground-penetrating radar (GPR) system supplements manual and mechanical methods in performing subsurface soil survey. Mobile system obtains graphic profile of soil discontinuities and interfaces as function of depth. One or two test borings necessary to substantiate soil profile. GPR proves useful as reconnaissance tool.

  12. Soil-profile distribution of inorganic N during 6 years of integrated crop-livestock management

    USDA-ARS?s Scientific Manuscript database

    Excessive accumulation of soil nitrate-N can threaten water and air quality. How integrated crop-livestock systems might influence soil-profile nitrate-N accumulation has not been investigated. Therefore, we determined soil nitrate-N accumulation during 6 years of evaluation of diverse cropping sy...

  13. Soil Moisture Project Evaluation Workshop

    NASA Technical Reports Server (NTRS)

    Gilbert, R. H. (Editor)

    1980-01-01

    Approaches planned or being developed for measuring and modeling soil moisture parameters are discussed. Topics cover analysis of spatial variability of soil moisture as a function of terrain; the value of soil moisture information in developing stream flow data; energy/scene interactions; applications of satellite data; verifying soil water budget models; soil water profile/soil temperature profile models; soil moisture sensitivity analysis; combinations of the thermal model and microwave; determing planetary roughness and field roughness; how crust or a soil layer effects microwave return; truck radar; and truck/aircraft radar comparison.

  14. Descriptive and sensitivity analyses of WATBALI: A dynamic soil water model

    NASA Technical Reports Server (NTRS)

    Hildreth, W. W. (Principal Investigator)

    1981-01-01

    A soil water computer model that uses the IBM Continuous System Modeling Program III to solve the dynamic equations representing the soil, plant, and atmospheric physical or physiological processes considered is presented and discussed. Using values describing the soil-plant-atmosphere characteristics, the model predicts evaporation, transpiration, drainage, and soil water profile changes from an initial soil water profile and daily meteorological data. The model characteristics and simulations that were performed to determine the nature of the response to controlled variations in the input are described the results of the simulations are included and a change that makes the response of the model more closely represent the observed characteristics of evapotranspiration and profile changes for dry soil conditions is examined.

  15. Variations of soil profile characteristics due to varying time spans since ice retreat in the inner Nordfjord, western Norway

    NASA Astrophysics Data System (ADS)

    Navas, Ana; Laute, Katja; Beylich, Achim A.; Gaspar, Leticia

    2013-04-01

    In the Erdalen and Bødalen drainage basins located in the inner Nordfjord in western Norway the soils have been formed after deglaciation. The climate in the upper valley part is sub-arctic oceanic with an annual areal precipitation of ca 1500 mm. The lithology in Erdalen and Bødalen consists of Precambrian granitic orthogneisses on which Leptosols and Regosols are the most common soils. Parts of the valleys were affected by the Little Ice Age glacier advance with the maximum glacier extent around 1750 BP. In this study five sites on moraine and colluvium materials were selected to examine the main soil properties of the most representative soils found in the region. The objective was to assess if soil profile characteristics and pattern of fallout radionuclides (FRN's) and environmental radionuclides (ERN's) are affected by different stages of ice retreat. Soil profiles were sampled at 5 cm depth interval increments until 20 cm depth. The Leptosols on the moraines are shallow, poorly developed and vegetated with moss and small birches. The two selected profiles show different radionuclide activities and grain size distribution. At P2 profile where ice retreated earlier (ca., 1767) depth profile activities of FRŃs are more homogenous than in P1 that became ice-free since ca. 1930. The sampled soils on the colluviums outside the LIA glacier limit became ice free during the Preboral. The Regosols present better developed profiles, thicker organic horizons and are fully covered by grasses. Activity of 137Cs and 210Pbex concentrate at the topsoil and decrease sharply with depth. The grain size distribution of these soils also reflects the difference in geomorphic processes that have affected the colluvium sites. Lower activities of FRŃs in soils on the moraines are related to the predominant sand material that has less capacity to fix the radionuclides. Lower 40K activities in Erdalen as compared to Bødalen are likely related to soil mineralogical composition. All profiles show disequilibrium in the uranium and thorium series. These results indicate differences in soil development that are consistent with the age of ice retreat. In addition, the pattern distribution of 137Cs and 210Pbexactivities differs in the soils related to the LIA glacier limits in the drainage basins.

  16. [Profile distribution and pollution assessment of heavy metals in soils under livestock feces composts].

    PubMed

    Chao, Lei; Zhou, Qi-xing; Cui, Shuang; Chen, Su; Ren, Li-ping

    2007-06-01

    This paper studied the profile distribution of heavy metals in soils under different kind livestock feces composts. The results showed that in the process of livestock feces composting, the pH value and organic matter content of soil under feces compost increased significantly, and had a decreased distribution with soil depth. The contents of soil Zn and Cd also had an obvious increase, and decreased with increasing soil depth. Under the composts of chicken and pig feces, soil Cu content decreased with soil depth, while under cattle feces compost, it had little change. Soil Cd and Zn had a stronger mobility than soil Cu, and the Zn, Cd and Cu contents in some soil layers exceeded the first level of the environmental quality standard for soils in China. The geo-accumulation indices showed that only the 0-10 cm soil layer under chicken feces compost and the 0-40 cm soil layer under egg chicken feces compost were lightly polluted by Zn, while the soil profiles under other kinds of livestock feces compost were not polluted by Pb, Cu, Zn and Cd.

  17. Spatial and temporal variation of moisture content in the soil profiles of two different agricultural fields of semi-arid region.

    PubMed

    Baskan, Oguz; Kosker, Yakup; Erpul, Gunay

    2013-12-01

    Modeling spatio-temporal variation of soil moisture with depth in the soil profile plays an important role for semi-arid crop production from an agro-hydrological perspective. This study was performed in Guvenc Catchment. Two soil series that were called Tabyabayir (TaS) and Kervanpinari (KeS) and classified as Leptosol and Vertisol Soil Groups were used in this research. The TeS has a much shallower (0-34 cm) than the KeS (0-134 cm). At every sampling time, a total of geo-referenced 100 soil moisture samples were taken based on horizon depths. The results indicated that soil moisture content changed spatially and temporally with soil texture and profile depth significantly. In addition, land use was to be important factor when soil was shallow. When the soil conditions were towards to dry, higher values for the coefficient of variation (CV) were observed for TaS (58 and 43% for A and C horizons, respectively); however, the profile CV values were rather stable at the KeS. Spatial variability range of TaS was always higher at both dry and wet soil conditions when compared to that of KeS. Excessive drying of soil prevented to describe any spatial model for surface horizon, additionally resulting in a high nugget variance in the subsurface horizon for the TaS. On the contrary to TaS, distribution maps were formed all horizons for the KeS at any measurement times. These maps, depicting both dry and wet soil conditions through the profile depth, are highly expected to reduce the uncertainty associated with spatially and temporally determining the hydraulic responses of the catchment soils.

  18. Sorption Equilibria of Vapor Phase Organic Pollutants on Unsaturated Soils and Soil Minerals

    DTIC Science & Technology

    1990-04-01

    Sorbent Characterization .. ........ .......... 6 a. Description of Inorganic Solids and Soils. .... ........ 6 b. Moisture Content...compounds (TCE and toluene) is compared for a cored depth profile obtained from an unsaturated soil and for simulated profiles using inorganic solids. The...Sorbent Characterization a. Description of Inorganic Solids and Soils Inorganic solids were used for initial sorption studies to develop experimental

  19. Spatial distribution of Eucalyptus roots in a deep sandy soil in the Congo: relationships with the ability of the stand to take up water and nutrients.

    PubMed

    Laclau, J P; Arnaud, M; Bouillet, J P; Ranger, J

    2001-02-01

    Spatial statistical analyses were performed to describe root distribution and changes in soil strength in a mature clonal plantation of Eucalyptus spp. in the Congo. The objective was to analyze spatial variability in root distribution. Relationships between root distribution, soil strength and the water and nutrient uptake by the stand were also investigated. We studied three, 2.35-m-wide, vertical soil profiles perpendicular to the planting row and at various distances from a representative tree. The soil profiles were divided into 25-cm2 grid cells and the number of roots in each of three diameter classes counted in each grid cell. Two profiles were 2-m deep and the third profile was 5-m deep. There was both vertical and horizontal anisotropy in the distribution of fine roots in the three profiles, with root density decreasing sharply with depth and increasing with distance from the stump. Roots were present in areas with high soil strength values (> 6,000 kPa). There was a close relationship between soil water content and soil strength in this sandy soil. Soil strength increased during the dry season mainly because of water uptake by fine roots. There were large areas with low root density, even in the topsoil. Below a depth of 3 m, fine roots were spatially concentrated and most of the soil volume was not explored by roots. This suggests the presence of drainage channels, resulting from the severe hydrophobicity of the upper soil.

  20. Main features of anthropogenic inner-urban soils in Szeged, Hungary

    NASA Astrophysics Data System (ADS)

    Puskás, Irén.; Farsang, Andrea

    2010-05-01

    At the beginning of the 21st century, due to the intensive urbanization it is necessary to gather more and more information on altered physical, chemical and biological parameters of urban soils in order to ensure their suitable management and protection for appropriate living conditions. Nowadays, these measures are very relevant since negative environmental effects can modify the soil forming factors in cities. Szeged, the 4th largest city of Hungary, proved to be an ideal sampling area for the research of urban soils since its original surface has been altered by intensive anthropogenic activities. The main objectives of my research are the investigation, description and evaluation of the altered soils in Szeged. For the physical and chemical analysis (humus, nitrogen, carbonate content, heavy metals, pH, artefacts etc.) of soils 124 samples were taken from the horizons of 25 profiles in Szeged and its peripherals (as control samples). The profiles were sampled at sites affected by different extent of artificial infill according to infill maps (1. profiles fully made up of infill; 2. so-called mixed profiles consisting of considerable amount of infill material and buried soil horizons; 3. natural profiles located in the peripherals of the city). With the help of the above-mentioned parameters, the studied soils of Szeged were assigned into the classification system of WRB(2006), which classifies the soils of urban and industrial areas as an individual soil group (under the term Technosols) for the first time. In accordance with the WRB(2006) nomenclature three main soil types can be identified in Szeged with respect to the degree of human influence: profiles slightly influenced, strongly modified, completely altered by human activities. During this poster, we present the peculiarities of typical urban profiles strongly and completely altered by human influence. Most profiles were placed into the group of Technosols due to the considerable transformation of their diagnostic properties (e.g. coverage by artificial objects, intensive compaction, horizontal and vertical variability, abrupt colour and textural changes usually high amount of artefacts, irregular fluctuation of diagnostic properties along the profiles, anthropogenic parent material, high pH and carbonate content, poor humus quality, mainly sand, sandy loam texture etc.). Transformations were best reflected by suffixes such as Ekranic, Urbic, Linic. Among the suffix qualifiers Calcaric, Ruptic, Densic and Arenic were used the most frequently. Furthermore, we found that some of the studied profiles were not situated in the city centre. Consequently, the location of these profiles in the city centre is not necessary since local influences can overwhelm the effect of artificial infill. Considering all the profiles, two of them in city centre can be consider to be the most anthropogenic: profile No. 11 [Ekranic Technosol (Ruptic, Toxic, Endoclayic)] and profile No. 22 [Urbic Technosol (Calcaric, Ruptic, Densic, Arenic)]. It can be claimed that profile No. 11 with "technic hard rock" has the least chance to experience pedogenetic processes since the horizons are covered by thick, surface artificial object, and isolated from the outside world. However, in case of profile No. 22 with dense vegetation and without surface artificial object, the high amount of artefact inhibits pedogenesis.

  1. Pedoturbation by tree uprooting: the key pattern-forming factor in the forest soil

    NASA Astrophysics Data System (ADS)

    Bobrovsky, Maxim; Loyko, Sergey

    2017-04-01

    Treefalls with uprooting are the most powerful and ubiquitous biotic factor changing the structure of forest soil under free forest development. Practically every soil profile in a forest has a number of soil horizons anomalies which are located within the limits of the potential depth of treefall-related pedoturbations and these anomalies are indeed a result of treefalls in most cases. It is important to recognize signs of treefalls with uprooting in a soil profile even when signs of treefalls on the ground surface (pit-and-mound topography) are erased. Numerous field studies of forest soil in the European part of Russia and in the Western Siberia allowed us to generalize signs of treefalls in a soil profile, which can be used to distinguish the patterns of old treefall-related pedoturbations. We distinguish two main types of uprooting of a fallen tree: hinge and rotational tree uprooting (treefall). The signs of treefalls with uprooting in a soil profile are as follows: (1) treefall pits (cauldrons); (2) spotty or streaky structures of different degrees of contrast; (3) blocks of "buried material" from the upper soil layers; (4) washed (bleached) material depositing at the bottom of pits and filling soil pores and channels of various origins; (5) signs of hydrogenous changes of soil material resulting from water stagnation in the pits; (6) root channels at the bottom of the pit and (7) inclusions of litter and charcoal. We cleared that treefall-related pedoturbations affect soil profiles at a depth larger than the depth usually described by the soil horizons A, E, Bhs, etc. Therefore in most forest soils, the middle and lower parts of the profiles have patterns originating from the transfer of soil material upon treefalls. Age since the tree uprooting can be determined by dating of organic matter or charcoal located in old pits. We dated several tens of old tree uprooting pits by charcoal in sandy soil in the center and the east of the Russian Plain: they showed from a few hundreds to 4500 cal years BP. We also dated tens of old tree uprooting pits by mull humus in Luvic Phaeozems on loams in the center of the Russian Plain: they showed from 2500 to more than 8000 cal years BP. Discerning of old treefall-related patterns in soil profile significantly improves our understanding of the forest soil formation and leads to the necessity of serious corrections of pedogenesys concepts. This study was partly supported by the Russian Science Foundation (Grant 16-17-10045).

  2. Soil profiles' development and differentiation as revealed by their magnetic signal

    NASA Astrophysics Data System (ADS)

    Jordanova, Neli; Jordanova, Diana

    2017-04-01

    Soil profiles' development is a major theme in soil science research, as far as it gives basic information on soil genesis and classification. The use of soil magnetic properties as indicators for physical and geochemical conditions during pedogenesis received great attention during the last decade mainly in relation to paleoclimate reconstructions. However, tracking the observed general relationships with respect to degree of soil differentiation would lead to capitalization of this knowledge and its further utilization as pedogenic indicator. Here we present an overview of the observed relationships and depth variations of magnetic characteristics along ten soil profiles of Chernozems, Luvisols and Planosols from Bulgaria. Depending on the general soil group considered, different relationships between depth distribution of the relative amount of superparamagnetic (SP), single domain (SD) and larger pseudo single domain (PSD) to multi domain (MD) ferrimagnetic fractions are revealed. The profiles of the soil group with pronounced accumulation of organic matter in the mineral topsoil (Chernozems and Phaeozems) a systematic shift in the relative maxima of SP- and SD- like concentration proxies is observed with the increase of profile differentiation. In contrast, the group of soils with clay-enriched subsoil horizon (e.g. Luvisols) shows different evolution of the depth distribution of the grain-size proxy parameters. The increase of profile's degradation leads to a decrease in the amount of the SP fraction and a split in its maxima into two depth intervals related to the eluvial and illuvial horizons respectively. Along with this tendency, the maximum of the SD fraction moves to progressively deeper levels of the illuvial horizon. The third soil group of the Planosols is characterized by specific re-distribution of the iron oxides, caused by the oscillating oxidation - reduction fluctuations within the profile. The diagnostic eluvial and illuvial soil horizons are enriched with stable SD magnetite-like fraction, likely originating from ferrihydrite transformations under repeating oxidative - reductive conditions. The major magnetic phase in illuvial horizons is hematite, while in eluvial and C-horizons magnetite dominates. These different trends in the evolution of mineralogy and magnetic grain size fractions along the depth of the various soil groups are useful indicators of the soil chemistry, as well as the dynamics of the main soil forming processes.

  3. Nonlinear Acoustic Landmine Detection: Profiling Soil Surface Vibrations and Modeling Mesoscopic Elastic Behavior

    DTIC Science & Technology

    2007-05-04

    TITLE AND SUBTITLE Nonlinear Acoustic Landmine Detection: Profiling Soil Surface Vibrations and Modeling Mesoscopic Elastic Behavior 6. AUTHOR(S...project report; no. 352 (2007) NONLINEAR ACOUSTIC LANDMINE DETECTION: PROFILING SOIL SURFACE VIBRATIONS AND MODELING MESOSCOPIC ELASTIC... model (Caughey 1966). Nonlinear acoustic landmine detection experiments are performed in the anechoic chamber facility using both a buried acrylic

  4. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status.

    PubMed

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0-20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20-30 cm layer. Soil moisture in the 20-50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20-50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants' ability to access nutrients and water. An optimal combination of deeper deployment of roots and resource (water and N) availability was realized where the soil was prone to leaching. The correlation between the depletion of resources and distribution of patchy roots endorsed the SS tillage practice. It resulted in significantly greater post-silking biomass and grain yield compared to the RT and NT treatments, for summer maize on the Huang-Huai-Hai plain.

  5. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status

    PubMed Central

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0–20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20–30 cm layer. Soil moisture in the 20–50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20–50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants’ ability to access nutrients and water. An optimal combination of deeper deployment of roots and resource (water and N) availability was realized where the soil was prone to leaching. The correlation between the depletion of resources and distribution of patchy roots endorsed the SS tillage practice. It resulted in significantly greater post-silking biomass and grain yield compared to the RT and NT treatments, for summer maize on the Huang-Huai-Hai plain. PMID:26098548

  6. Measurement and inference of profile soil-water dynamics at different hillslope positions in a semiarid agricultural watershed

    NASA Astrophysics Data System (ADS)

    Green, Timothy R.; Erskine, Robert H.

    2011-12-01

    Dynamics of profile soil water vary with terrain, soil, and plant characteristics. The objectives addressed here are to quantify dynamic soil water content over a range of slope positions, infer soil profile water fluxes, and identify locations most likely influenced by multidimensional flow. The instrumented 56 ha watershed lies mostly within a dryland (rainfed) wheat field in semiarid eastern Colorado. Dielectric capacitance sensors were used to infer hourly soil water content for approximately 8 years (minus missing data) at 18 hillslope positions and four or more depths. Based on previous research and a new algorithm, sensor measurements (resonant frequency) were rescaled to estimate soil permittivity, then corrected for temperature effects on bulk electrical conductivity before inferring soil water content. Using a mass-conservation method, we analyzed multitemporal changes in soil water content at each sensor to infer the dynamics of water flux at different depths and landscape positions. At summit positions vertical processes appear to control profile soil water dynamics. At downslope positions infrequent overland flow and unsaturated subsurface lateral flow appear to influence soil water dynamics. Crop water use accounts for much of the variability in soil water between transects that are either cropped or fallow in alternating years, while soil hydraulic properties and near-surface hydrology affect soil water variability across landscape positions within each management zone. The observed spatiotemporal patterns exhibit the joint effects of short-term hydrology and long-term soil development. Quantitative methods of analyzing soil water patterns in space and time improve our understanding of dominant soil hydrological processes and provide alternative measures of model performance.

  7. S-World: A high resolution global soil database for simulation modelling (Invited)

    NASA Astrophysics Data System (ADS)

    Stoorvogel, J. J.

    2013-12-01

    There is an increasing call for high resolution soil information at the global level. A good example for such a call is the Global Gridded Crop Model Intercomparison carried out within AgMIP. While local studies can make use of surveying techniques to collect additional techniques this is practically impossible at the global level. It is therefore important to rely on legacy data like the Harmonized World Soil Database. Several efforts do exist that aim at the development of global gridded soil property databases. These estimates of the variation of soil properties can be used to assess e.g., global soil carbon stocks. However, they do not allow for simulation runs with e.g., crop growth simulation models as these models require a description of the entire pedon rather than a few soil properties. This study provides the required quantitative description of pedons at a 1 km resolution for simulation modelling. It uses the Harmonized World Soil Database (HWSD) for the spatial distribution of soil types, the ISRIC-WISE soil profile database to derive information on soil properties per soil type, and a range of co-variables on topography, climate, and land cover to further disaggregate the available data. The methodology aims to take stock of these available data. The soil database is developed in five main steps. Step 1: All 148 soil types are ordered on the basis of their expected topographic position using e.g., drainage, salinization, and pedogenesis. Using the topographic ordering and combining the HWSD with a digital elevation model allows for the spatial disaggregation of the composite soil units. This results in a new soil map with homogeneous soil units. Step 2: The ranges of major soil properties for the topsoil and subsoil of each of the 148 soil types are derived from the ISRIC-WISE soil profile database. Step 3: A model of soil formation is developed that focuses on the basic conceptual question where we are within the range of a particular soil property at a particular location given a specific soil type. The soil properties are predicted for each grid cell based on the soil type, the corresponding ranges of soil properties, and the co-variables. Step 4: Standard depth profiles are developed for each of the soil types using the diagnostic criteria of the soil types and soil profile information from the ISRIC-WISE database. The standard soil profiles are combined with the the predicted values for the topsoil and subsoil yielding unique soil profiles at each location. Step 5: In a final step, additional soil properties are added to the database using averages for the soil types and pedo-transfer functions. The methodology, denominated S-World (Soils of the World), results in readily available global maps with quantitative pedon data for modelling purposes. It forms the basis for the Global Gridded Crop Model Intercomparison carried out within AgMIP.

  8. Does Timing Matter? Temporal Stability of Soil-Magnetic Climate Proxies

    NASA Astrophysics Data System (ADS)

    Geiss, C. E.

    2013-12-01

    Numerous studies have shown that the rock-magnetic properties of soils can serve as valuable proxies of continental climates. Many studies average the magnetic properties of several closely spaced sites to reconstruct regional climate signals, but little is known about the temporal variability of soil-magnetic properties. We analyzed the magnetic properties of five, closely spaced (within 20 m from each other) soil profiles that were sampled over a period of five years between 2002 and 2006. The soil profiles are well-developed and display strong magnetic enhancement. According to land records, agricultural influence was minimal as the site had never been plowed and solely been used as pasture. Detailed soil descriptions and measurements of magnetic susceptibility (χ), anhysteretic and isothermal remanent magnetization (ARM, IRM), as well as coercivity parameters show that all studied profiles have very similar horizination and magnetic properties are virtually unchanged from year to year. The only differences between the soil profiles are the position and strength of redoximorphic features. These nanocrystalline iron-oxide deposits have little influence on the magnetic properties of the soils and the timing of soil sampling for magnetic analyses is not a critical factor when sampling for climatic reconstructions.

  9. Microbial activity in the profiles of gray forest soil and chernozems

    NASA Astrophysics Data System (ADS)

    Susyan, E. A.; Rybyanets, D. S.; Ananyeva, N. D.

    2006-08-01

    Soil samples were taken from the profiles of a gray forest soil (under a forest) and southern chernozems of different textures under meadow vegetation. The microbial biomass (MB) was determined by the method of substrate-induced respiration; the basal respiration (BR) and the population density of microorganisms on nutrient media of different composition were also determined in the samples. The microbial metabolic quotient ( qCO2 = BR/MB) and the portion of microbial carbon (C mic) in C org were calculated. The MB and BR values were shown to decrease down the soil profiles. About 57% of the total MB in the entire soil profile was concentrated in the layer of 0-24 cm of the gray forest soil. The MB in the C horizon of chernozems was approximately two times lower than the MB in the A horizon of these soils. The correlation was found between the MB and the C org ( r = 0.99) and between the MB and the clay content ( r = 0.89) in the profile of the gray forest soil. The C mic/C org ratio in the gray forest soil and in the chernozems comprised 2.3-6.6 and 1.2-9.6%, respectively. The qCO2 value increased with the depth. The microbial community in the lower layers of the gray forest soil was dominated (88-96%) by oligotrophic microorganisms (grown on soil agar); in the upper 5 cm, these microorganisms comprised only 50% of the total amount of microorganisms grown on three media.

  10. The Role of Priming in the Development of Stable and Radioactive Carbon Isotope Profiles of Soil Organic Matter

    NASA Astrophysics Data System (ADS)

    Serach, L.; Breecker, D.

    2017-12-01

    The stability of soil carbon (C) is one of the largest sources of uncertainty in global C cycle models and is central to identifying potential feedbacks to a warming climate. The role that more stable soil organic matter (SOM) pools could have in these feedbacks is highly uncertain. Stable C isotope (δ13C) and radiocarbon (14C) SOM profiles are used to understand the processes involved in soil C stabilization. In this study, we use a 1-dimensional, 3 pool soil C model to simulate the development of SOM δ13C and 14C profiles in a well-drained forest soil. Under the simplest model scenario where decomposition rate constants for each SOM pool remain fixed, model runs exhibit a buildup of slowly degrading C in the shallow subsurface (0-5cm) where fresh, labile C typically dominates in natural soils. Additionally, magnitudes of trends in SOM δ13C and 14C profiles were inconsistent with those observed in natural profiles, suggesting a deficiency in this version of the model. We hypothesize that the observed disparity between modeled and natural profiles is due to the absence of priming in the model. Priming effects presume a change in decomposition rate constants for recalcitrant C pools upon the addition of labile C to the soil. As such, priming effects were simulated in the model by making decomposition rate constants a function of labile C input (e.g., root C and leaf litter). The incorporation of priming into the model yields larger, more realistic shifts in SOM δ13C profiles and trends in 14C profiles that vary based on the sensitivity of recalcitrant pools to labile C addition. So far, the results from this study support the hypothesis that SOM δ13C and 14C profiles cannot be explained without priming. These results highlight the importance of priming to our understanding of the persistence of stable C in the soil and our ability to use SOM δ13C and 14C trends as a means to quantify C stability.

  11. Bulk soil and rhizosphere bacterial community PCR-DGGE profiles and beta-galactosidase activity as indicators of biological quality in soils contaminated by heavy metals and cultivated with Silene vulgaris (Moench) Garcke.

    PubMed

    Martínez-Iñigo, M J; Pérez-Sanz, A; Ortiz, I; Alonso, J; Alarcón, R; García, P; Lobo, M C

    2009-06-01

    The biological quality of two heavy metal contaminated soils (soil C: Typic Calcixerept, pH 8.3 and soil H: Typic Haploxeraf, pH 7.3) was investigated after growing the metal-tolerant plant Silene vulgaris (Moench) Garcke for two vegetative periods. The activity of the enzyme beta-galactosidase, which is sensitive to the presence of contaminants in soil, and the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles of 16S rRNA gene fragments of culturable bacteria from bulk soil and rhizosphere were determined. The microbial enzymatic activity was higher in planted soils than in bare soils at the contamination level of 600 mg of total heavy metals kg(-1) soil. After growing S. vulgaris, beta-galactosidase activity was almost recovered in the calcareous soil. In this soil new bands appeared in the PCR-DGGE profiles of the rhizosphere bacterial community as a response to the exposure to heavy metals.

  12. Mapping patterns of soil properties and soil moisture using electromagnetic induction to investigate the impact of land use changes on soil processes

    NASA Astrophysics Data System (ADS)

    Robinet, Jérémy; von Hebel, Christian; van der Kruk, Jan; Govers, Gerard; Vanderborght, Jan

    2016-04-01

    As highlighted by many authors, classical or geophysical techniques for measuring soil moisture such as destructive soil sampling, neutron probes or Time Domain Reflectometry (TDR) have some major drawbacks. Among other things, they provide point scale information, are often intrusive and time-consuming. ElectroMagnetic Induction (EMI) instruments are often cited as a promising alternative hydrogeophysical methods providing more efficiently soil moisture measurements ranging from hillslope to catchment scale. The overall objective of our research project is to investigate whether a combination of geophysical techniques at various scales can be used to study the impact of land use change on temporal and spatial variations of soil moisture and soil properties. In our work, apparent electrical conductivity (ECa) patterns are obtained with an EM multiconfiguration system. Depth profiles of ECa were subsequently inferred through a calibration-inversion procedure based on TDR data. The obtained spatial patterns of these profiles were linked to soil profile and soil water content distributions. Two catchments with contrasting land use (agriculture vs. natural forest) were selected in a subtropical region in the south of Brazil. On selected slopes within the catchments, combined EMI and TDR measurements were carried out simultaneously, under different atmospheric and soil moisture conditions. Ground-truth data for soil properties were obtained through soil sampling and auger profiles. The comparison of these data provided information about the potential of the EMI technique to deliver qualitative and quantitative information about the variability of soil moisture and soil properties.

  13. [Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].

    PubMed

    Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong

    2014-07-01

    The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study.

  14. Using Nd and Sr isotopes to trace dust and volcanic inputs to soils on French Guadeloupe Island

    NASA Astrophysics Data System (ADS)

    Guo, J.; Pereyra, Y.; Ma, L.; Gaillardet, J.; Sak, P. B.; Bouchez, J.

    2017-12-01

    Soil is at the central part of the Critical Zone for its important roles in sustaining ecosystems and agriculture. At French Guadeloupe, a tropical humid volcanic island, previous studies have shown that the mineral nutrient elements such as K, Na, Ca, and Mg are highly depleted in the surface soil. And mineral nutrients introduced by dusts are an important mineral nutrient source for vegetation growth in this area. It is important to understand and quantify the sources of the mineral dust added to surface soils. Nd isotope ratios, due to their distinct signatures between two unique end-members in soils for this area: the young volcanic areas like Guadeloupe and the dust source region from the old continental shields like Sahara Desert, can be a robust tracer to understand this critical process. Nevertheless, Sr isotope ratios can trace the inputs of marine aerosols. Here we present a new Nd isotope study on Guadeloupe soil depth profiles, combined with previous Sr isotope data, to fingerprint the sources of dust and volcanic inputs into soils. Soil samples from three surface profiles (0 - 1000cm deep) at different locations of the Guadeloupe Island were systematically analyzed. The results show distinct depth variations for Nd isotope signature along profiles. For all profiles, deep soils are relatively consisted with bedrock value (ɛNd: 5.05). But in surface soils (0-600cm), unlike Sr isotope ratios that are significantly modified by marine aerosol input, Nd isotope ratios show similar decrease (to ɛNd:-10) and frequent fluctuations toward the surface, suggesting dust is the dominant source of Nd in these soils. This conclusion is further supported by REE and other trace element data. Thus, with a simplified two end-member model, Sahara dust contributes the Nd percentages in soils varying from 10.7% at the deepest profiles to 69.5% on surface, showing a significant amount of Nd on the surface soil came from dust source. The deep soil profiles are also characterized by the presence of Nd isotope spikes with negative values, suggesting dust signatures at depth. Such a feature could be related to the presence of a paleo-soil surface at the spike depth that was buried by later volcanic eruption. Both Nd and Sr isotopes hence show dust and volcanic inputs are important factors for soil developments on French Guadeloupe Island.

  15. Use of a flux-based field capacity criterion to identify effective hydraulic parameters of layered soil profiles subjected to synthetic drainage experiments

    NASA Astrophysics Data System (ADS)

    Nasta, Paolo; Romano, Nunzio

    2016-01-01

    This study explores the feasibility of identifying the effective soil hydraulic parameterization of a layered soil profile by using a conventional unsteady drainage experiment leading to field capacity. The flux-based field capacity criterion is attained by subjecting the soil profile to a synthetic drainage process implemented numerically in the Soil-Water-Atmosphere-Plant (SWAP) model. The effective hydraulic parameterization is associated to either aggregated or equivalent parameters, the former being determined by the geometrical scaling theory while the latter is obtained through the inverse modeling approach. Outcomes from both these methods depend on information that is sometimes difficult to retrieve at local scale and rather challenging or virtually impossible at larger scales. The only knowledge of topsoil hydraulic properties, for example, as retrieved by a near-surface field campaign or a data assimilation technique, is often exploited as a proxy to determine effective soil hydraulic parameterization at the largest spatial scales. Comparisons of the effective soil hydraulic characterization provided by these three methods are conducted by discussing the implications for their use and accounting for the trade-offs between required input information and model output reliability. To better highlight the epistemic errors associated to the different effective soil hydraulic properties and to provide some more practical guidance, the layered soil profiles are then grouped by using the FAO textural classes. For the moderately heterogeneous soil profiles available, all three approaches guarantee a general good predictability of the actual field capacity values and provide adequate identification of the effective hydraulic parameters. Conversely, worse performances are encountered for the highly variable vertical heterogeneity, especially when resorting to the "topsoil-only" information. In general, the best performances are guaranteed by the equivalent parameters, which might be considered a reference for comparisons with other techniques. As might be expected, the information content of the soil hydraulic properties pertaining only to the uppermost soil horizon is rather inefficient and also not capable to map out the hydrologic behavior of the real vertical soil heterogeneity since the drainage process is significantly affected by profile layering in almost all cases.

  16. Soil organic components distribution in a podzol and the possible relations with the biological soil activities

    NASA Astrophysics Data System (ADS)

    Alvarez-Romero, Marta; Papa, Stefania; Verstraeten, Arne; Curcio, Elena; Cools, Nathalie; Lozano-Garcia, Beatriz; Parras-Alcántara, Luis; Coppola, Elio

    2016-04-01

    This research reports the preliminary results of a study based on the SOC (Soil Organic Carbon) fractionation in a pine forest soil (Pinus nigra). Hyperskeletic Albic Podzol soil (P113005, World Reference Base, 2014), described by the following sequence O-Ah-E-Bh-Bs-Cg, was investigated at Zoniën, Belgium. Total (TOC) and extractable (TEC) soil contents were determined by Italian official method of soil analysis. Different soil C fractions were also determined: Humic Acid Carbon (HAC) and Fulvic Acid Carbon (FAC). Not Humic Carbon (NHC) and Humin Carbon (Huc) fractions were obtained by difference. Along the mineral soil profile, therefore, were also tested some enzymatic activities, such as cellulase, xylanase, laccase and peroxidase, involved in the degradation of the main organic substance components, and dehydrogenase activity, like soil microbial biomass index. The results shows a differential TEC fractions distribution in the soil profile along three fronts of progress: (i) An E leaching horizon of TEC; Bh horizon (humic) of humic acids preferential accumulation, morphologically and analytically recognizable, in which humic are more insoluble that fulvic acids, and predominate over the latter; (ii) horizon Bs (spodic) in which fulvic acids are more soluble that humic acid, and predominate in their turn. All enzyme activities appear to be highest in the most superficial part of the mineral profile and decrease towards the deeper layers with different patterns. It is known that the enzymes production in a soil profile reflects the organic substrates availability, which in turn influences the density and the composition of the microbial population. The deeper soil horizons contain microbial communities adapted and specialized to their environment and, therefore, different from those present on the surface The results suggest that the fractionation technique of TEC is appropriate to interpret the podsolisation phenomenon that is the preferential distribution of the different fractions of the SOC. It can form the base study for evaluation of changes in some biological activity along soil profile.

  17. Depth-Related Changes in Community Structure of Culturable Mineral Weathering Bacteria and in Weathering Patterns Caused by Them along Two Contrasting Soil Profiles

    PubMed Central

    Huang, Jing; Xi, Jun; Huang, Zhi; Wang, Qi; Zhang, Zhen-Dong

    2014-01-01

    Bacteria play important roles in mineral weathering and soil formation. However, few reports of mineral weathering bacteria inhabiting subsurfaces of soil profiles have been published, raising the question of whether the subsurface weathering bacteria are fundamentally distinct from those in surface communities. To address this question, we isolated and characterized mineral weathering bacteria from two contrasting soil profiles with respect to their role in the weathering pattern evolution, their place in the community structure, and their depth-related changes in these two soil profiles. The effectiveness and pattern of bacterial mineral weathering were different in the two profiles and among the horizons within the respective profiles. The abundance of highly effective mineral weathering bacteria in the Changshu profile was significantly greater in the deepest horizon than in the upper horizons, whereas in the Yanting profile it was significantly greater in the upper horizons than in the deeper horizons. Most of the mineral weathering bacteria from the upper horizons of the Changshu profile and from the deeper horizons of the Yanting profile significantly acidified the culture media in the mineral weathering process. The proportion of siderophore-producing bacteria in the Changshu profile was similar in all horizons except in the Bg2 horizon, whereas the proportion of siderophore-producing bacteria in the Yanting profile was higher in the upper horizons than in the deeper horizons. Both profiles existed in different highly depth-specific culturable mineral weathering community structures. The depth-related changes in culturable weathering communities were primarily attributable to minor bacterial groups rather than to a change in the major population structure. PMID:24077700

  18. Estimating Soil Organic Carbon Stocks and Spatial Patterns with Statistical and GIS-Based Methods

    PubMed Central

    Zhi, Junjun; Jing, Changwei; Lin, Shengpan; Zhang, Cao; Liu, Qiankun; DeGloria, Stephen D.; Wu, Jiaping

    2014-01-01

    Accurately quantifying soil organic carbon (SOC) is considered fundamental to studying soil quality, modeling the global carbon cycle, and assessing global climate change. This study evaluated the uncertainties caused by up-scaling of soil properties from the county scale to the provincial scale and from lower-level classification of Soil Species to Soil Group, using four methods: the mean, median, Soil Profile Statistics (SPS), and pedological professional knowledge based (PKB) methods. For the SPS method, SOC stock is calculated at the county scale by multiplying the mean SOC density value of each soil type in a county by its corresponding area. For the mean or median method, SOC density value of each soil type is calculated using provincial arithmetic mean or median. For the PKB method, SOC density value of each soil type is calculated at the county scale considering soil parent materials and spatial locations of all soil profiles. A newly constructed 1∶50,000 soil survey geographic database of Zhejiang Province, China, was used for evaluation. Results indicated that with soil classification levels up-scaling from Soil Species to Soil Group, the variation of estimated SOC stocks among different soil classification levels was obviously lower than that among different methods. The difference in the estimated SOC stocks among the four methods was lowest at the Soil Species level. The differences in SOC stocks among the mean, median, and PKB methods for different Soil Groups resulted from the differences in the procedure of aggregating soil profile properties to represent the attributes of one soil type. Compared with the other three estimation methods (i.e., the SPS, mean and median methods), the PKB method holds significant promise for characterizing spatial differences in SOC distribution because spatial locations of all soil profiles are considered during the aggregation procedure. PMID:24840890

  19. Global distribution of plant-extractable water capacity of soil

    USGS Publications Warehouse

    Dunne, K.A.; Willmott, C.J.

    1996-01-01

    Plant-extractable water capacity of soil is the amount of water that can be extracted from the soil to fulfill evapotranspiration demands. It is often assumed to be spatially invariant in large-scale computations of the soil-water balance. Empirical evidence, however, suggests that this assumption is incorrect. In this paper, we estimate the global distribution of the plant-extractable water capacity of soil. A representative soil profile, characterized by horizon (layer) particle size data and thickness, was created for each soil unit mapped by FAO (Food and Agriculture Organization of the United Nations)/Unesco. Soil organic matter was estimated empirically from climate data. Plant rooting depths and ground coverages were obtained from a vegetation characteristic data set. At each 0.5?? ?? 0.5?? grid cell where vegetation is present, unit available water capacity (cm water per cm soil) was estimated from the sand, clay, and organic content of each profile horizon, and integrated over horizon thickness. Summation of the integrated values over the lesser of profile depth and root depth produced an estimate of the plant-extractable water capacity of soil. The global average of the estimated plant-extractable water capacities of soil is 8??6 cm (Greenland, Antarctica and bare soil areas excluded). Estimates are less than 5, 10 and 15 cm - over approximately 30, 60, and 89 per cent of the area, respectively. Estimates reflect the combined effects of soil texture, soil organic content, and plant root depth or profile depth. The most influential and uncertain parameter is the depth over which the plant-extractable water capacity of soil is computed, which is usually limited by root depth. Soil texture exerts a lesser, but still substantial, influence. Organic content, except where concentrations are very high, has relatively little effect.

  20. Evaluating abiotic influences on soil salinity of inland managed wetlands and agricultural croplands in a semi-arid environment

    USGS Publications Warehouse

    Fowler, D.; King, Sammy L.; Weindorf, David C.

    2014-01-01

    Agriculture and moist-soil management are important management techniques used on wildlife refuges to provide adequate energy for migrant waterbirds. In semi-arid systems, the accumulation of soluble salts throughout the soil profile can limit total production of wetland plants and agronomic crops and thus jeopardize meeting waterbird energy needs. This study evaluates the effect of distinct hydrologic regimes associated with moist-soil management and agricultural production on salt accumulation in a semi-arid floodplain. We hypothesized that the frequency of flooding and quantity of floodwater in a moist-soil management hydroperiod results in a less saline soil profile compared to profiles under traditional agricultural management. Findings showed that agricultural croplands differed (p-value < 0.001, df = 9) in quantities of total soluble salts (TSS) compared to moist-soil impoundments and contained greater concentrations (TSS range = 1,160-1,750 (mg kg-1)) at depth greater than 55 cm below the surface of the profile, while moist-soil impoundments contained lower concentrations (TSS range = 307-531 (mg kg-1)) at the same depths. Increased salts in agricultural may be attributed to the lack of leaching afforded by smaller summer irrigations while larger periodic flooding events in winter and summer flood irrigations in moist-soil impoundments may serve as leaching events.

  1. Groundwater control of mangrove surface elevation: shrink and swell varies with soil depth

    USGS Publications Warehouse

    Whelan, K.R.T.; Smith, T. J.; Cahoon, D.R.; Lynch, J.C.; Anderson, G.H.

    2005-01-01

    We measured monthly soil surface elevation change and determined its relationship to groundwater changes at a mangrove forest site along Shark River, Everglades National Park, Florida. We combined the use of an original design, surface elevation table with new rod-surface elevation tables to separately track changes in the mid zone (0?4 m), the shallow root zone (0?0.35 m), and the full sediment profile (0?6 m) in response to site hydrology (daily river stage and groundwater piezometric pressure). We calculated expansion and contraction for each of the four constituent soil zones (surface [accretion and erosion; above 0 m], shallow zone [0?0.35 m], middle zone [0.35?4 m], and bottom zone [4?6 m]) that comprise the entire soil column. Changes in groundwater pressure correlated strongly with changes in soil elevation for the entire profile (Adjusted R2 5 0.90); this relationship was not proportional to the depth of the soil profile sampled. The change in thickness of the bottom soil zone accounted for the majority (R2 5 0.63) of the entire soil profile expansion and contraction. The influence of hydrology on specific soil zones and absolute elevation change must be considered when evaluating the effect of disturbances, sea level rise, and water management decisions on coastal wetland systems.

  2. Specific Features of Profile Distribution and Crystallochemistry of Phyllosilicates in Soils of the Cisbaikal Forest-Steppe

    NASA Astrophysics Data System (ADS)

    Chizhikova, N. P.; Gamzikov, G. P.; Chechetko, E. S.

    2018-01-01

    The mineralogical composition of agrogray, dark gray, and agro-dark gray soils (Luvic Greyzemic Retic Phaeozems); agro-dark gray residual-calcareous soils (Calcaric Cambic Phaeozems); clay-illuvial agrochernozems (Luvic Chernic Phaeozems); and agrochernozems with migrational-mycelial carbonates (Haplic Chernozems) developed in the forest-steppe of Central Siberia within the Irkutsk Depression has been studied. The clay (<1 μm) fraction separated from these soils consists of mixed-layer minerals with alternating layers of hydromica, smectite, vermiculite, and chlorite; the proportions between them change within the soil profiles. The clay fraction also contains hydromicas, kaolinite, chlorite, and some admixture of the fine-dispersed quartz. Each type of the soils is characterized by its own distribution pattern of clay material with specific alternation of layers in the mixed-layer formations. Mixed-layer minerals of the chlorite-vermiculite type predominate in the upper horizons of texture-differentiated soils. Down the soil profile, the content of mixed-layer mica-smectitic minerals increases. In the clay fraction of arable dark gray-humus soils with residual carbonates, the distribution of the clay fraction and major mineral phases in the soil profile is relatively even. An increased content of well-crystallized kaolinite is typical of these soils. The parent material of agrochernozems has a layered character: the upper horizons are generally depleted of clay, and the middle-profile and lower horizons are characterized by the considerable kaolinite content. In general, the clay material of soils of the Tulun-Irkutsk forest-steppe differs considerably from the clay material of foreststeppe soils developed from loesslike and mantle loams in the European part of Russia. In particular, this difference is seen in the proportions between major mineral phases and between biotitic and muscovitic components, as well as in the degree of crystallinity and behavior of kaolinite and chlorite.

  3. Horizon Partitioning of Soil CO2 Sources and their Isotopic Composition (13C) in a Pinus Sylvestris Stand

    NASA Astrophysics Data System (ADS)

    Goffin, S.; Parent, F.; Plain, C.; Maier, M.; Schack-Kirchner, H.; Aubinet, M.; Longdoz, B.

    2012-12-01

    The overall aim of this study is to contribute to a better understanding of mechanisms behind soil CO2 efflux using carbon stable isotopes. The approach combines a soil multilayer analysis and the isotopic tool in an in situ study. The specific goal of this work is to quantify the origin and the determinism of 13CO2 and 12CO2 production processes in the different soil layers using the gradient-efflux approach. To meet this, the work includes an experimental setup and a modeling approach. The experimental set up (see also communication of Parent et al., session B008) comprised a combination of different systems, which were installed in a Scot Pine temperate forest at the Hartheim site (Southwestern Germany). Measurements include (i) half hourly vertical profiles of soil CO2 concentration (using soil CO2 probes), soil water content and temperature; (ii) half hourly soil surface CO2 effluxes (automatic chambers); (iii) half hourly isotopic composition of surface CO2 efflux and soil CO2 concentration profile and (iv) estimation of soil diffusivity through laboratory measurements conducted on soil samples taken at several depths. Using the data collected in the experimental part, we developed and used a diffusive transport model to simulate CO2 (13CO2 and 12CO2) flows inside and out of the soil based on Fick's first law. Given the horizontal homogeneity of soil physical parameters in Hartheim, we treated the soil as a structure consisting of distinctive layers of 5 cm thick and expressed the Fick's first law in a discrete formalism. The diffusion coefficient used in each layer was derived from (i) horizon specific relationships, obtained from laboratory measurements, between soil relative diffusivity and its water content and (ii) the soil water content values measured in situ. The concentration profile was obtained from in situ measurements. So, the main model inputs are the profiles of (i) CO2 (13CO2 and 12CO2) concentration, (ii) soil diffusion coefficient and (iii) soil water content. Once the diffusive fluxes deduced at each layer interface, the CO2 (13CO2 and 12CO2) production profile was calculated using the (discretized) mass balance equation in each layer. The results of the Hartheim measurement campaign will be presented. The CO2 source vertical profile and its link with the root and the Carbon organic content distribution will be showed. The dynamic of CO2 sources and their isotopic signature will be linked to climatic variables such soil temperature and soil water content. For example, we will show that the dynamics of CO2 sources was mainly related to temperature while changing of isotopic signature was more correlated to soil moisture.

  4. Lignin characteristics in soil profiles of different plant communities in a subtropical mixed forest in Central China

    NASA Astrophysics Data System (ADS)

    Liu, F.; Wang, X.

    2016-12-01

    Lignin is widely considered as a major source of stable soil carbon, its content and degradation states are important indicators of soil carbon quality and stability. Few studies have explored the effects of plant communities on lignin characteristics in soils, and studies on lignin characteristics across soil depths resulted in contradictory findings. In this study, we investigated the lignin contents, their degradation states in the soil aggregates across three soil depths for four major plant communities in a subtropical mixed forest in central China. We found that lignin content in the litter of two deciduous species (Carpinus fargesii CF and Fagus Lucida FL) are higher than that in the two evergreen species ( Cyclobalanopsis multinervis CM and Schima parviflora SP). These differences maintained in the soil with a diminished scale. Lignin content showed a decreased trend in soil profiles of all plant communities, but no significant differences of degradation states were observed. The distribution of aggregation fractions was significantly different among plant communities, the SP community have higher percent of >2000 μm fraction (50.46%) and lower percent of <0.25 μm fraction (12.87%) than the CF community (40.05%, 21.90% respectively). The lignin content increased with decreasing aggregations size, however, no significant differences of lignin degradation states was observed among the four size aggregations. These results collectively reveal the influence of plant communities on lignin characteristics in soil, probably through litter input. Similar degradation states of lignin across soil profile and different size aggregates emphasized the importance of lignin movements association with soil water. This knowledge of lignin characteristics across soil profile can improve our understanding of soil carbon stability at different depths and how it may respond to changes in soil conditions.

  5. Fatty acid methyl ester analysis to identify sources of soil in surface water.

    PubMed

    Banowetz, Gary M; Whittaker, Gerald W; Dierksen, Karen P; Azevedo, Mark D; Kennedy, Ann C; Griffith, Stephen M; Steiner, Jeffrey J

    2006-01-01

    Efforts to improve land-use practices to prevent contamination of surface waters with soil are limited by an inability to identify the primary sources of soil present in these waters. We evaluated the utility of fatty acid methyl ester (FAME) profiles of dry reference soils for multivariate statistical classification of soils collected from surface waters adjacent to agricultural production fields and a wooded riparian zone. Trials that compared approaches to concentrate soil from surface water showed that aluminum sulfate precipitation provided comparable yields to that obtained by vacuum filtration and was more suitable for handling large numbers of samples. Fatty acid methyl ester profiles were developed from reference soils collected from contrasting land uses in different seasons to determine whether specific fatty acids would consistently serve as variables in multivariate statistical analyses to permit reliable classification of soils. We used a Bayesian method and an independent iterative process to select appropriate fatty acids and found that variable selection was strongly impacted by the season during which soil was collected. The apparent seasonal variation in the occurrence of marker fatty acids in FAME profiles from reference soils prevented preparation of a standardized set of variables. Nevertheless, accurate classification of soil in surface water was achieved utilizing fatty acid variables identified in seasonally matched reference soils. Correlation analysis of entire chromatograms and subsequent discriminant analyses utilizing a restricted number of fatty acid variables showed that FAME profiles of soils exposed to the aquatic environment still had utility for classification at least 1 wk after submersion.

  6. Sorption of VX to Clay Minerals and Soils: Thermodynamic and Kinetic Studies

    DTIC Science & Technology

    2012-12-01

    Suspengel 200, humus , and soil substrates for use in this study. In addition, the authors gratefully acknowledge the support of the ECBC Technical...sorption profiles for VX with clay substrates ..................................55 30. Initial kinetic sorption profiles for VX with humus ...naturally derived garden soil amendment, identified as humus , was purchased from Frey Brothers (Quarryville, PA). Two natural soils, identified as MCL lot

  7. A simplified 137Cs transport model for estimating erosion rates in undisturbed soil.

    PubMed

    Zhang, Xinbao; Long, Yi; He, Xiubin; Fu, Jiexiong; Zhang, Yunqi

    2008-08-01

    (137)Cs is an artificial radionuclide with a half-life of 30.12 years which released into the environment as a result of atmospheric testing of thermo-nuclear weapons primarily during the period of 1950s-1970s with the maximum rate of (137)Cs fallout from atmosphere in 1963. (137)Cs fallout is strongly and rapidly adsorbed by fine particles in the surface horizons of the soil, when it falls down on the ground mostly with precipitation. Its subsequent redistribution is associated with movements of the soil or sediment particles. The (137)Cs nuclide tracing technique has been used for assessment of soil losses for both undisturbed and cultivated soils. For undisturbed soils, a simple profile-shape model was developed in 1990 to describe the (137)Cs depth distribution in profile, where the maximum (137)Cs occurs in the surface horizon and it exponentially decreases with depth. The model implied that the total (137)Cs fallout amount deposited on the earth surface in 1963 and the (137)Cs profile shape has not changed with time. The model has been widely used for assessment of soil losses on undisturbed land. However, temporal variations of (137)Cs depth distribution in undisturbed soils after its deposition on the ground due to downward transport processes are not considered in the previous simple profile-shape model. Thus, the soil losses are overestimated by the model. On the base of the erosion assessment model developed by Walling, D.E., He, Q. [1999. Improved models for estimating soil erosion rates from cesium-137 measurements. Journal of Environmental Quality 28, 611-622], we discuss the (137)Cs transport process in the eroded soil profile and make some simplification to the model, develop a method to estimate the soil erosion rate more expediently. To compare the soil erosion rates calculated by the simple profile-shape model and the simple transport model, the soil losses related to different (137)Cs loss proportions of the reference inventory at the Kaixian site of the Three Gorge Region, China are estimated by the two models. The over-estimation of the soil loss by using the previous simple profile-shape model obviously increases with the time period from the sampling year to the year of 1963 and (137)Cs loss proportion of the reference inventory. As to 20-80% of (137)Cs loss proportions of the reference inventory at the Kaixian site in 2004, the annual soil loss depths estimated by the new simplified transport process model are only 57.90-56.24% of the values estimated by the previous model.

  8. Electrical methods of determining soil moisture content

    NASA Technical Reports Server (NTRS)

    Silva, L. F.; Schultz, F. V.; Zalusky, J. T.

    1975-01-01

    The electrical permittivity of soils is a useful indicator of soil moisture content. Two methods of determining the permittivity profile in soils are examined. A method due to Becher is found to be inapplicable to this situation. A method of Slichter, however, appears to be feasible. The results of Slichter's method are extended to the proposal of an instrument design that could measure available soil moisture profile (percent available soil moisture as a function of depth) from a surface measurement to an expected resolution of 10 to 20 cm.

  9. Metabolite profiling of non-sterile rhizosphere soil.

    PubMed

    Pétriacq, Pierre; Williams, Alex; Cotton, Anne; McFarlane, Alexander E; Rolfe, Stephen A; Ton, Jurriaan

    2017-10-01

    Rhizosphere chemistry is the sum of root exudation chemicals, their breakdown products and the microbial products of soil-derived chemicals. To date, most studies about root exudation chemistry are based on sterile cultivation systems, which limits the discovery of microbial breakdown products that act as semiochemicals and shape microbial rhizosphere communities. Here, we present a method for untargeted metabolic profiling of non-sterile rhizosphere soil. We have developed an experimental growth system that enables the collection and analysis of rhizosphere chemicals from different plant species. High-throughput sequencing of 16SrRNA genes demonstrated that plants in the growth system support a microbial rhizosphere effect. To collect a range of (a)polar chemicals from the system, we developed extraction methods that do not cause detectable damage to root cells or soil-inhabiting microbes, thus preventing contamination with cellular metabolites. Untargeted metabolite profiling by UPLC-Q-TOF mass spectrometry, followed by uni- and multivariate statistical analyses, identified a wide range of secondary metabolites that are enriched in plant-containing soil, compared with control soil without roots. We show that the method is suitable for profiling the rhizosphere chemistry of Zea mays (maize) in agricultural soil, thereby demonstrating the applicability to different plant-soil combinations. Our study provides a robust method for the comprehensive metabolite profiling of non-sterile rhizosphere soil, which represents a technical advance towards the establishment of causal relationships between the chemistry and microbial composition of the rhizosphere. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  10. [Profile distribution of soil aggregates organic carbon in primary forests in Karst cluster-peak depression region].

    PubMed

    Lu, Ling-Xiao; Song, Tong-Qing; Peng, Wan-Xia; Zeng, Fu-Ping; Wang, Ke-Lin; Xu, Yun-Lei; Yu, Zi; Liu, Yan

    2012-05-01

    Soil profiles were collected from three primary forests (Itoa orientalis, Platycladus orientalis, and Radermachera sinica) in Karst cluster-peak depression region to study the composition of soil aggregates, their organic carbon contents, and the profile distribution of the organic carbon. In the three forests, >2 mm soil aggregates were dominant, occupying about 76% of the total. The content of soil total organic carbon ranged from 12.73 to 68.66 g x kg(-1), with a significant difference among the forests. The organic carbon content in <1 mm soil aggregates was slightly higher than that in >2 mm soil aggregates, but most of soil organic carbon was stored in the soil aggregates with greater particle sizes. About 70% of soil organic carbon came from >2 mm soil aggregates. There was a significant positive relationship between the contents of 2-5 and 5-8 mm soil aggregates and the content of soil organic carbon. To increase the contents of 2-8 mm soil aggregates could effectively improve the soil carbon sequestration in Karst region. In Itoa orientalis forest, 2-8 mm soil aggregates accounted for 46% of the total, and the content of soil total organic carbon reached to 37.62 g x kg(-1), which implied that Itoa orientalis could be the suitable tree species for the ecological restoration in Karst region.

  11. Comparison of whole-cell fatty acid (MIDI) or phospholipid fatty acid (PLFA) extractants as biomarkers to profile soil microbial communities.

    PubMed

    Fernandes, Marcelo F; Saxena, Jyotisna; Dick, Richard P

    2013-07-01

    The whole-cell lipid extraction to profile microbial communities on soils using fatty acid (FA) biomarkers is commonly done with the two extractants associated with the phospholipid fatty acid (PLFA) or Microbial IDentification Inc. (MIDI) methods. These extractants have very different chemistry and lipid separation procedures, but often shown a similar ability to discriminate soils from various management and vegetation systems. However, the mechanism and the chemistry of the exact suite of FAs extracted by these two methods are poorly understood. Therefore, the objective was to qualitatively and quantitatively compare the MIDI and PLFA microbial profiling methods for detecting microbial community shifts due to soil type or management. Twenty-nine soil samples were collected from a wide range of soil types across Oregon and extracted FAs by each method were analyzed by gas chromatography (GC) and GC-mass spectrometry. Unlike PLFA profiles, which were highly related to microbial FAs, the overall MIDI-FA profiles were highly related to the plant-derived FAs. Plant-associated compounds were quantitatively related to particulate organic matter (POM) and qualitatively related to the standing vegetation at sampling. These FAs were negatively correlated to respiration rate normalized to POM (RespPOM), which increased in systems under more intensive management. A strong negative correlation was found between MIDI-FA to PLFA ratios and total organic carbon (TOC). When the reagents used in MIDI procedure were tested for the limited recovery of MIDI-FAs from soil with high organic matter, the recovery of MIDI-FA microbial signatures sharply decreased with increasing ratios of soil to extractant. Hence, the MIDI method should be used with great caution for interpreting changes in FA profiles due to shifts in microbial communities.

  12. An objective and reproducible landform and topography description approach based on digital terrain analysis used for soil profile site characteristics

    NASA Astrophysics Data System (ADS)

    Gruber, Fabian E.; Baruck, Jasmin; Hastik, Richard; Geitner, Clemens

    2015-04-01

    All major soil description and classification systems, including the World Reference Base (WRB) and the German Soil description guidelines (KA5), require the characterization of landform and topography for soil profile sites. This is commonly done at more than one scale, for instance at macro-, meso- and micro scale. However, inherent when humans perform such a task, different surveyors will reach different conclusions due to their subjective perception of landscape structure, based on their individual mind-model of soil-landscape structure, emphasizing different aspects and scales of the landscape. In this study we apply a work-flow using the GRASS GIS extension module r.geomorphon to make use of high resolution digital elevation models (DEMs) to characterize the landform elements and topography of soil profile sites at different scales, and compare the results with a large number of soil profile site descriptions performed during the course of forestry surveys in South and North Tyrol (Italy and Austria, respectively). The r.geomorphon extension module for the open source geographic information system GRASS GIS applies a pattern recognition algorithm to delineate landform elements based on an input DEM. For each raster cell it computes and characterizes the visible neighborhood using line-of-sight calculations and then applies a lookup-table to classify the raster cell into one of ten landform elements (flat, peak, ridge, shoulder, slope, spur, hollow, footslope, valley and pit). The input parameter search radius (L) represents the maximum number of pixels for line-of-sight calculation, resulting in landforms larger than L to be split into landform components. The use of these visibility calculations makes this landform delineation approach suitable for comparison with the landform descriptions of soil surveyors, as their spatial perception of the landscape surrounding a soil profile site certainly influences their classification of the landform on which the profile is situated (aided by additional information such as topographic maps and aerial images). Variation of the L-value furthermore presents the opportunity to mimic the different scales at which surveyors describe soil profile locations. We first illustrate the use of r.geomorphon for site descriptions using exemplary artificial elevation profiles resembling typic catenas at different scales (L-values). We then compare the results of a landform element map computed with r.geomorphon to the relief descriptions in the test dataset. We link the surveyors' landform classification to the computed landform elements. Using a multi-scale approach we characterize raster cell locations in a way similar to the micro-, meso- and macroscale definitions used in soil survey, resulting in so-called geomorphon-signatures, such as "pit (meso-scale) located on a ridge (macro-scale)". We investigate which ranges of L-values best represent the different observation-scales as noted by soil surveyors and discuss the impacts of using a large dataset of profile location descriptions performed by different surveyors. Issues that arise are possible individual differences in landscape structure perception, but also questions regarding the accuracy of position and resulting topographic measurements in soil profile site description.

  13. Vegetation change alters soil profile δ15N values at the landscape scale in a subtropical savanna

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Mushinski, R. M.; Hyodo, A.; Wu, X. B.; Boutton, T. W.

    2017-12-01

    The assessment of spatial variation in soil δ15N could provide integrative insights on soil N cycling processes across multiple spatial scales. However, little is known about spatial patterns of δ15N within soil profiles in arid and semiarid ecosystems, especially those undergoing vegetation change with a distinct shift in dominance and/or functional type. We quantified how changes from grass to woody plant dominance altered spatial patterns of δ15N throughout a 1.2 m soil profile by collecting 320 spatially-specific soil cores in a 160 m × 100 m subtropical savanna landscape that has undergone encroachment by Prosopis glandulosa (an N2-fixer) during the past century. Leaf δ15N was comparable among different plant life-forms, while fine roots from woody species had significantly lower δ15N than herbaceous species across this landscape. Woody encroachment significantly decreased soil δ15N throughout the entire soil profile, and created horizontal spatial patterns of soil δ15N that strongly resembled the spatial distribution of woody patches and were evident within each depth increment. The lower soil δ15N values that characterized areas beneath woody canopies were mostly due to the encroaching woody species, especially the N2-fixer P. glandulosa, which delivered 15N-depleted organic matter via root turnover to soils along the profile. Soil δ15N increased with depth, reached maximum values at an intermediate depth, and decreased at greater depths. Higher δ15N values at intermediate soil depths were correlated with the presence of a subsurface clay-rich argillic horizon across this landscape which may favor more rapid rates of N-cycling processes that can cause N losses and 15N enrichment of the residual soil N. These results indicate that succession from grassland to woodland has altered spatial variation in soil δ15N across the landscape and to considerable depth, suggesting significant changes in the relative rates of N-inputs vs. N-losses in this subtropical system after vegetation change.

  14. Soil-covered strategy for ecological restoration alters the bacterial community structure and predictive energy metabolic functions in mine tailings profiles.

    PubMed

    Li, Yang; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2017-03-01

    Native soil amendment has been widely used to stabilize mine tailings and speed up the development of soil biogeochemical functions before revegetation; however, it remains poorly understood about the response of microbial communities to ecological restoration of mine tailings with soil-covered strategy. In this study, microbial communities along a 60-cm profile were investigated in mine tailings during ecological restoration of two revegetation strategies (directly revegetation and native soil covered) with different plant species. The mine tailings were covered by native soils as thick as 40 cm for more than 10 years, and the total nitrogen, total organic carbon, water content, and heavy metal (Fe, Cu, and Zn) contents in the 0-40 cm intervals of profiles were changed. In addition, increased microbial diversity and changed microbial community structure were also found in the 10-40 cm intervals of profiles in soil-covered area. Soil-covered strategy rather than plant species and soil depth was the main factor influencing the bacterial community, which explained the largest portion (29.96%) of the observed variation. Compared directly to revegetation, soil-covered strategy exhibited the higher relative abundance of Acidobacteria and Deltaproteobacteria and the lower relative abundance of Bacteroidetes, Gemmatimonadetes, Betaproteobacteria, and Gammaproteobacteria. PICRUSt analysis further demonstrated that soil-covered caused energy metabolic functional changes in carbon, nitrogen, and sulfur metabolism. Given all these, the soil-covered strategy may be used to fast-track the establishment of native microbial communities and is conducive to the rehabilitation of biogeochemical processes for establishing native plant species.

  15. Sub-soil microbial activity under rotational cotton crops in Australia

    NASA Astrophysics Data System (ADS)

    Polain, Katherine; Knox, Oliver; Wilson, Brian; Pereg, Lily

    2016-04-01

    Soil microbial communities contribute significantly to soil organic matter formation, stabilisation and destabilisation, through nutrient cycling and biodegradation. The majority of soil microbial research examines the processes occurring in the top 0 cm to 30 cm of the soil, where organic nutrients are easily accessible. In soils such as Vertosols, the high clay content causes swelling and cracking. When soil cracking is coupled with rain or an irrigation event, a flush of organic nutrients can move down the soil profile, becoming available for subsoil microbial community use and potentially making a significant contribution to nutrient cycling and biodegradation in soils. At present, the mechanisms and rates of soil nutrient turnover (such as carbon and nitrogen) at depth under cotton rotations are mostly speculative and the process-response relationships remain unclear, although they are undoubtedly underpinned by microbial activity. Our research aims to determine the contribution and role of soil microbiota to the accumulation, cycling and mineralisation of carbon and nitrogen through the whole root profile under continuous cotton (Gossypium hirsutum) and cotton-maize rotations in regional New South Wales, Australia. Through seasonal work, we have established both baseline and potential microbial activity rates from 0 cm to 100 cm down the Vertosol profile, using respiration and colourimetric methods. Further whole soil profile analyses will include determination of microbial biomass and isotopic carbon signatures using phospholipid fatty acid (PLFA) methodology, identification of microbial communities (sequencing) and novel experiments to investigate potential rates of nitrogen mineralisation and quantification of associated genes. Our preliminary observations and the hypotheses tested in this three-year study will be presented.

  16. Soil water dynamics during precipitation in genetic horizons of Retisol

    NASA Astrophysics Data System (ADS)

    Zaleski, Tomasz; Klimek, Mariusz; Kajdas, Bartłomiej

    2017-04-01

    Retisols derived from silty deposits dominate in the soil cover of the Carpathian Foothills. The hydrophysical properties of these are determined by the grain-size distribution of the parent material and the soil's "primary" properties shaped in the deposition process. The other contributing factors are the soil-forming processes, such as lessivage (leaching of clay particles), and the morphogenetic processes that presently shape the relief. These factors are responsible for the "secondary" differentiation of hydrophysical properties across the soil profile. Both the primary and secondary hydrophysical properties of soils (the rates of water retention, filtration and infiltration, and the moisture distribution over the soil profile) determine their ability to take in rainfall, the amount of rainwater taken in, and the ways of its redistribution. The aims of the study, carried out during 2015, were to investigate the dynamics of soil moisture in genetic horizons of Retisol derived from silty deposits and to recognize how fast and how deep water from precipitation gets into soil horizons. Data of soil moisture were measured using 5TM moisture and temperature sensor and collected by logger Em50 (Decagon Devices USA). Data were captured every 10 minutes from 6 sensors at depths: - 10 cm, 20 cm, 40 cm, 60 cm and 80 cm. Precipitation data come from meteorological station situated 50 m away from the soil profile. Two zones differing in the type of water regime were distinguished in Retisol: an upper zone comprising humic and eluvial horizons, and a lower zone consisting of illuvial and parent material horizons. The upper zone shows smaller retention of water available for plants, and relatively wide fluctuations in moisture content, compared to the lower zone. The lower zone has stable moisture content during the vegetation season, with values around the water field capacity. Large changes in soil moisture were observed while rainfall. These changes depend on the volume of the precipitation and soil moisture before the precipitation. The following changes of moisture in the soil profile during precipitation were distinguished: if soil moisture in upper zone horizons oscillates around field capacity (higher than 0.30 m3ṡm-3) there is an evident increase in soil moisture also in the lower zone horizons. If soil moisture in the upper zone horizons is much lower than the field capacity (less than 0.20 m3ṡm-3), the soil moisture in the lower zone has very little fluctuations. The range of wetting front in the soil profile depends on the volume of the precipitation and soil moisture. The heavier precipitation, the wetting front in soil profile reaches deeper horizons. The wetter the soil is, the faster soil moisture in the deeper genetic horizons increase. This Research was financed by the Ministry of Science and Higher Education of the Republic of Poland, DS No. 3138/KGiOG/2016.

  17. Coupling Landform Evolution and Soil Pedogenesis - Initial Results From the SSSPAM5D Model

    NASA Astrophysics Data System (ADS)

    Willgoose, G. R.; Welivitiya, W. D. D. P.; Hancock, G. R.; Cohen, S.

    2015-12-01

    Evolution of soil on a dynamic landform is a crucial next step in landscape evolution modelling. Some attempts have been taken such as MILESD by Vanwalleghem et al. to develop a first model which is capable of simultaneously evolving both the soil profile and the landform. In previous work we have presented physically based models for soil pedogenesis, mARM and SSSPAM. In this study we present the results of coupling a landform evolution model with our SSSPAM5D soil pedogenesis model. In previous work the SSSPAM5D soil evolution model was used to identify trends of the soil profile evolution on a static landform. Two pedogenetic processes, namely (1) armouring due to erosion, and (2) physical and chemical weathering were used in those simulations to evolve the soil profile. By incorporating elevation changes (due to erosion and deposition) we have advanced the SSSPAM5D modelling framework into the realm of landscape evolution. Simulations have been run using elevation and soil grading data of the engineered landform (spoil heap) at the Ranger Uranium Mine, Northern Territory, Australia. The results obtained for the coupled landform-soil evolution simulations predict the erosion of high slope areas, development of rudimentary channel networks in the landform and deposition of sediments in lowland areas, and qualitatively consistent with landform evolution models on their own. Examination of the soil profile characteristics revealed that hill crests are weathering dominated and tend to develop a thick soil layer. The steeper hillslopes at the edge of the landform are erosion dominated with shallow soils while the foot slopes are deposition dominated with thick soil layers. The simulation results of our coupled landform and soil evolution model provide qualitatively correct and timely characterization of the soil evolution on a dynamic landscape. Finally we will compare the characteristics of erosion and deposition predicted by the coupled landform-soil SSSPAM landscape simulator, with landform evolution simulations using a static soil.

  18. Soil erosion at agricultural land in Moravia loess region estimated by using magnetic properties

    NASA Astrophysics Data System (ADS)

    Kapicka, Ales; Dlouha, Sarka; Petrovsky, Eduard; Jaksik, Ondrej; Grison, Hana; Kodesova, Radka

    2014-05-01

    A detailed field study on a small test site of agricultural land situated in loess region in Southern Moravia (Czech Republic) and subsequent laboratory analyses have been carried out in order to test the applicability of magnetic methods for the estimation of soil erosion. Chernozem, the original dominant soil unit in the wider area, is nowadays progressively transformed into different soil units along with intensive soil erosion. As a result, an extremely diversified soil cover structure has resulted from the erosion. The site was characterized by a flat upper part while the middle part, formed by a substantive side valley, is steeper (up to 15°). We carried out field measurements of magnetic susceptibility on a regular grid, resulting in 101 data points. The bulk soil material for laboratory investigation was gathered from all the grid points. We found a strong correlation between the volume magnetic susceptibility (field measurement) and mass specific magnetic susceptibility measured in the laboratory (R2 = 0.80). Values of the magnetic susceptibility are spatially distributed depending on the terrain. Higher values were measured in the flat upper part (where the original top horizon remained). The lowest values of magnetic susceptibility were obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). The soil profile that was unaffected by erosion was investigated in detail. The vertical distribution of magnetic susceptibility along this "virgin" profile was measured in laboratory on the samples from layers along the whole profile with 2-cm spacing. The undisturbed profile shows several soil horizons. Horizons Ac and A show a slight increase in magnetic susceptibility up to a depth of about 70 cm. Horizon A/Ck is characterized by a decrease in susceptibility, and the underlying C horizon (h > 103 cm) has a very low value of magnetic susceptibility. The differences between the values of susceptibility in the undisturbed soil profile and the magnetic signal after uniform mixing the soil material as a result of tillage and erosion are fundamental for the estimation of soil loss in the studied test field. Using the uneroded profile from the studied locality as a basis for examining the changes in cultivated soils, tillage homogenization model can be applied to predict changes in the surface soil magnetism with progressive soil erosion. The model is very well applicable at the studied site. Acknowledgement: This study was supported by NAZV Agency of the Ministry of Agriculture of the Czech Republic through grant No QJ1230319

  19. Variations in Soil Properties and Herbicide Sorption Coefficients with Depth in Relation to PRZM (Pesticide Root Zone Model) Calculations

    USDA-ARS?s Scientific Manuscript database

    There are few experimental data available on how herbicide sorption coefficients change across small increments within soil profiles. Soil profiles were obtained from three landform elements (eroded upper slope, deposition zone, and eroded waterway) in a strongly eroded agricultural field and segmen...

  20. Stover removal effects on seasonal soil water availability under full and deficit irrigation

    USDA-ARS?s Scientific Manuscript database

    Removing corn (Zea mays L.) stover for livestock feed or bioenergy feedstock may impact water availability in the soil profile to support crop growth. The role of stover in affecting soil profile water availability will depend on annual rainfall inputs as well as irrigation level. To assess how res...

  1. Inversion algorithms for the microwave remote sensing of soil moisture. Experiments with swept frequency microwaves

    NASA Technical Reports Server (NTRS)

    Hancock, G. D.; Waite, W. P.

    1984-01-01

    Two experiments were performed employing swept frequency microwaves for the purpose of investigating the reflectivity from soil volumes containing both discontinuous and continuous changes in subsurface soil moisture content. Discontinuous moisture profiles were artificially created in the laboratory while continuous moisture profiles were induced into the soil of test plots by the environment of an agricultural field. The reflectivity for both the laboratory and field experiments was measured using bi-static reflectometers operated over the frequency ranges of 1.0 to 2.0 GHz and 4.0 to 8.0 GHz. Reflectivity models that considered the discontinuous and continuous moisture profiles within the soil volume were developed and compared with the results of the experiments. This comparison shows good agreement between the smooth surface models and the measurements. In particular the comparison of the smooth surface multi-layer model for continuous moisture profiles and the yield experiment measurements points out the sensitivity of the specular component of the scattered electromagnetic energy to the movement of moisture in the soil.

  2. Coupling data from U-series and 10Be CRN to evaluate soil steady-state in the Betic Cordillera

    NASA Astrophysics Data System (ADS)

    Schoonejans, Jerome; Vanacker, Veerle; Opfergelt, Sophie; Granet, Mathieu; Chabaux, François

    2015-04-01

    The regolith mantel is produced by weathering of bedrock through physical and biochemical processes. At the same time, the upper part of the regolith is eroded by gravity mass movements, water and wind erosion. Feedback's between production and erosion of soil material are important for soil development, and are essential to reach long-term steady-state in soil chemical and physical properties. Nowadays, long-term denudation rates of regolith can be quantified by using in-situ cosmogenic nuclides (CRN). If the soil thickness remains constant over sufficiently long time, soil production rates can be determined. However, the a priori assumption of long-term steady-state can be questionable in highly dynamic environments. In this study, we present analytical data from two independent isotopic techniques, in-situ cosmogenic nuclides and Uranium series disequilibrium. The disequilibrium of Uranium isotopes (238U, 234U, 230Th, 226Ra) is an alternative method that allows assessing soil formation rates through isotopic analysis of weathering products. Nine soil profiles were sampled in three different mountain ranges of the Betic Cordillera (SE Spain): Sierra Estancias, Filabres, Cabrera. All soils overly fractured mica schist and are very thin (< 60cm). In each soil profile, we sampled 4 to 6 depth slices in the soil profile, the soil-bedrock interface and (weathered) bedrock. Three of the nine soil profiles were sampled for U-series isotope measurements at EOST (University of Strasbourg). The surface denudation rates (CRN) are about the same in the Sierra Estancias and Filabres (26 ± 10 mm/ky) and increase up to 103 ± 47 mm/ky in the Sierra Cabrera. The spatial variation in soil denudation rates is in agreement with the variation in catchment-wide denudation rates presented by Bellin et al. (2014) which present the highest rates in the Sierra Cabrera (104-246mm/kyr). Moreover it roughly coincides with the pattern of long-term exhumation of the Betic Cordillera. Results from first simulations of the U-series disequilibrium model rather suggest that soil production rates are of the same order of magnitude in the Sierra Estancias and Cabrera. In the Sierra Filabres, the U-series disequilibrium in the depth profile do not respect the hypotheses of the model therefore no rates of soil production could be constrain for this profile. Thanks to the coupling of the two isotopic datasets the long term soil development will be explored in two profiles. This study highlights that comparison and combination of analytical techniques is useful to further unravel the mechanisms of chemical and physical weathering in such dynamic environments. Bellin, N., Vanacker, V., and Kubik, P. W., 2014, Denudation rates and tectonic geomorphology of the Spanish Betic Cordillera: Earth and Planetary Science Letters, v. 390, p. 19-30.

  3. Decoupling the deep: crop rotations, fertilization and soil physico-chemical properties down the profile

    NASA Astrophysics Data System (ADS)

    Hobley, Eleanor; Honermeier, Bernd; Don, Axel; Amelung, Wulf; Kögel-Knabner, Ingrid

    2017-04-01

    Crop fertilization provides vital plant nutrients (e.g. NPK) to ensure yield security but is also associated with negative environmental impacts. In particular, inorganic, mineral nitrogen (Nmin) fertilization leads to emissions during its energy intensive production as well as Nmin leaching to receiving waters. Incorporating legumes into crop rotations can provide organic N to the soil and subsequent crops, reducing the need for mineral N fertilizer and its negative environmental impacts. An added bonus is the potential to enhance soil organic carbon stocks, thereby reducing atmospheric CO2 concentrations. In this study we assessed the effects of legumes in rotation and fertilization regimes on the depth distribution - down to 1 m - of total soil nitrogen (Ntot), soil organic carbon (SOC) as well as isotopic composition (δ13C, δ15N), electrical conductivity and bulk density as well as agricultural yields at a long-term field experiment in Gießen, Germany. Fertilization had significant but small impacts on the soil chemical environment, most particularly the salt content of the soil, with PK fertilization increasing electrical conductivity throughout the soil profile. Similarly, fertilization resulted in a small reduction of soil pH throughout the soil profile. N fertilization, in particular, significantly increased yields, whereas PK fertilizer had only marginal yield effects, indicating that these systems are N limited. This N limitation was confirmed by significant yield benefits with leguminous crops in rotation, even in combination with mineral N fertilizer. The soil was physically and chemically influenced by the choice of crop rotation. Adding clover as a green mulch crop once every 4 years resulted in an enrichment of total N and SOC at the surface compared with fava beans and maize, but only in combination with PK fertilization. In contrast, fava beans and to a lesser extent maize in rotation lowered bulk densities in the subsoil compared with clover. This resulted in a reduction of N density at depth, which was not mirrored in C densities, indicating that fava beans decouple C and N cycles in the deep soil profile. We then tested whether these effects are a result of plant (i.e. enhanced rooting depth associated with lowered subsoil bulk density) or microbial (i.e. N-cycling and denitrification processes) activities, by investigating the isotopic signatures of C and N down the profile. Our results indicate that the selection of crop rotation influences soil C and N cycling and depth distribution. Although mineral N fertilizer has significant benefits for yield, the choice of crop rotation has a greater influence on soil C and N cycling and specifically the addition of leguminous plants into rotation can provide additional yield benefits and stability. Incorporating legumes into crop rotations affects soil physical and chemical properties and decouples C and N cycles in the deep soil profile, indicating different nutrient and water cycling processes in the deep soil profile.

  4. Savanna Vegetation Dynamics and their Influence on Landscape-Scale C, N, and P Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Boutton, T. W.; Zhou, Y.; Wu, X. B.; Hyodo, A.

    2017-12-01

    Soil carbon (C), nitrogen (N) and phosphorus (P) cycles are strongly interlinked and controlled through biological processes, and the P cycle is further controlled through geochemical processes. In grasslands, savannas, and other dryland ecosystems throughout the world, woody plant encroachment often modifies soil C, N, and P stores, although it remains unknown if these three elements change proportionally in response to this vegetation change. We evaluated proportional changes and spatial patterns of soil organic C (SOC), total N (TN), and total P (TP) following woody encroachment by taking spatially-explicit soil cores to a depth of 1.2 m across a subtropical savanna landscape which has undergone encroachment by trees and shrubs during the past century in the Rio Grande Plains, USA. SOC and TN were coupled with respect to increasing magnitudes and spatial patterns along the soil profile following woody encroachment. In contrast, TP increased slower than SOC and TN in surface soils, but faster in subsurface soils. Spatial patterns of TP strongly resembled those of vegetation cover throughout the soil profile, but differed from those of SOC and TN, especially in deeper portions of the profile. The encroachment of woody plants into this P-limited ecosystem resulted in the accumulation of proportionally less soil P compared to C and N in surface soils; however, proportionally more P accrued in deeper portions of the profile beneath woody patches where alkaline soil pH and high carbonate concentrations would favor precipitation of P as relatively insoluble calcium phosphates. Structural equation models (SEM) showed that fine root density explained the greatest proportion of variation in SOC, TN, and TP in the surface soil. In deeper portions of the profile, SEM showed that silt and clay explained much of the variation in SOC and TN, while soil pH strongly controlled TP. This imbalanced relationship highlights that the relative importance of biotic vs. abiotic mechanisms controlling C and N vs. P accumulation following vegetation change may vary with depth in the profile. Our findings suggest that efforts to incorporate the effects of land cover changes into coupled climate-biogeochemical models should attempt to represent C-N-P imbalances that may arise following vegetation change.

  5. Magnetic evidence for heavy metal pollution of topsoil in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Wang, Guan; Liu, Yuan; Chen, Jiao; Ren, Feifan; Chen, Yuying; Ye, Fangzhou; Zhang, Weiguo

    2018-03-01

    This study presents the results obtained from magnetic susceptibility and heavy metal (Cu, Zn, Pb, and Cr) concentration measurements of soil profiles collected from arable land and urban parks in Baoshan District, an industrial district of Shanghai, China. The study focuses on the investigation of vertical variations in magnetic susceptibilities and heavy metal concentrations and on correlations between magnetic susceptibilities and heavy metal concentrations in soil profiles. The results demonstrate that magnetic enhancement in the surface layer of the soil profile is associated with increased heavy metal pollution. The enrichment factors (EF) and the Tomlinson Pollution Load Index (PLI-EF) are calculated for estimating the level of heavy metal pollution of soil profiles in the study. The significant positive correlations between heavy metal contents, enrichment factors (EF), Tomlinson pollution load index (PLI-CF), modified Tomlinson pollution load index (PLI-EF), and magnetic susceptibility (c) indicate that much of the heavy metal contamination in the study area is linked to combustion derived particulate emissions. The results confirm that the combined magnetic measurement and heavy metal concentration analysis could provide useful information for soil monitoring in urban environments. However, the use of magnetic technique to locate the heavy metal pollution boundary in the soil profile of this studied area should be confirmed by further geochemical analysis.

  6. In-situ evaluation of internal drainage in layered soils (Tukulu, Sepane and Swartland)

    NASA Astrophysics Data System (ADS)

    Mavimbela, S. S. W.; van Rensburg, L. D.

    2011-11-01

    The soil water release (SWC) and permeability properties of layered soils following deep infiltration depends on the structural and layering composition of the profiles diagnostic horizons. Three layered soils, the Tukulu, Sepane and Swartland soil forms, from the Free State province of South Africa, were selected for internal drainage evaluation. The soil water release curves as a function of suction (h) and unsaturated hydraulic conductivity (K-coefficient) as a function of soil water content, SWC (θ), were characterised alongside the pedological properties of the profiles. The water hanging column in collaboration with the in-situ instantaneous profile method (IPM) was appropriate for this work. Independently, the saturated hydraulic conductivity (Ks) was measured using double ring infiltrometers. The three soils had a generic orthic A horizon but differed remarkable with depth. A clay rich layer was found in the Tukulu and Sepane at depths of 600 to 850 mm and 300 to 900 mm, respectively. The Swartland was weakly developed with a saprolite rock found at depth of 400-700 mm. During the 1200 h drainage period, soil water loss amounted to 21, 20 and 51 mm from the respective Tukulu, Sepane and Swartland profiles. An abrupt drop in Ks in conjunction with a steep K-coefficient gradient with depth was observed from the Tukulu and Sepane. Hydromorphic colours found on the clay-rich horizons suggested a wet soil water regime that implied restriction of internal drainage. It was therefore concluded that the clay rich horizons gave the Tukulu and Sepane soil types restricted internal drainage properties required for soil water storage under infield rainwater harvesting production technique. The coarseness of the Swartland promoted high drainage losses that proliferated a dry soil water regime.

  7. Predicting and mapping soil available water capacity in Korea.

    PubMed

    Hong, Suk Young; Minasny, Budiman; Han, Kyung Hwa; Kim, Yihyun; Lee, Kyungdo

    2013-01-01

    The knowledge on the spatial distribution of soil available water capacity at a regional or national extent is essential, as soil water capacity is a component of the water and energy balances in the terrestrial ecosystem. It controls the evapotranspiration rate, and has a major impact on climate. This paper demonstrates a protocol for mapping soil available water capacity in South Korea at a fine scale using data available from surveys. The procedures combined digital soil mapping technology with the available soil map of 1:25,000. We used the modal profile data from the Taxonomical Classification of Korean Soils. The data consist of profile description along with physical and chemical analysis for the modal profiles of the 380 soil series. However not all soil samples have measured bulk density and water content at -10 and -1500 kPa. Thus they need to be predicted using pedotransfer functions. Furthermore, water content at -10 kPa was measured using ground samples. Thus a correction factor is derived to take into account the effect of bulk density. Results showed that Andisols has the highest mean water storage capacity, followed by Entisols and Inceptisols which have loamy texture. The lowest water retention is Entisols which are dominated by sandy materials. Profile available water capacity to a depth of 1 m was calculated and mapped for Korea. The western part of the country shows higher available water capacity than the eastern part which is mountainous and has shallower soils. The highest water storage capacity soils are the Ultisols and Alfisols (mean of 206 and 205 mm, respectively). Validation of the maps showed promising results. The map produced can be used as an indication of soil physical quality of Korean soils.

  8. The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent.

    PubMed

    Pawlett, Mark; Ritz, Karl; Dorey, Robert A; Rocks, Sophie; Ramsden, Jeremy; Harris, Jim A

    2013-02-01

    Nanosized zero-valent iron (nZVI) is an effective land remediation tool, but there remains little information regarding its impact upon and interactions with the soil microbial community. nZVI stabilised with sodium carboxymethyl cellulose was applied to soils of three contrasting textures and organic matter contents to determine impacts on soil microbial biomass, phenotypic (phospholipid fatty acid (PLFA)), and functional (multiple substrate-induced respiration (MSIR)) profiles. The nZVI significantly reduced microbial biomass by 29 % but only where soil was amended with 5 % straw. Effects of nZVI on MSIR profiles were only evident in the clay soils and were independent of organic matter content. PLFA profiling indicated that the soil microbial community structure in sandy soils were apparently the most, and clay soils the least, vulnerable to nZVI suggesting a protective effect imparted by clays. Evidence of nZVI bactericidal effects on Gram-negative bacteria and a potential reduction of arbuscular mycorrhizal fungi are presented. Data imply that the impact of nZVI on soil microbial communities is dependent on organic matter content and soil mineral type. Thereby, evaluations of nZVI toxicity on soil microbial communities should consider context. The reduction of AM fungi following nZVI application may have implications for land remediation.

  9. Hillslope run-off thresholds with shrink–swell clay soils

    USGS Publications Warehouse

    Stewart, Ryan D.; Abou Najm, Majdi R.; Rupp, David E.; Lane, John W.; Uribe, Hamil C.; Arumí, José Luis; Selker, John S.

    2015-01-01

    Irrigation experiments on 12 instrumented field plots were used to assess the impact of dynamic soil crack networks on infiltration and run-off. During applications of intensity similar to a heavy rainstorm, water was seen being preferentially delivered within the soil profile. However, run-off was not observed until soil water content of the profile reached field capacity, and the apertures of surface-connected cracks had closed >60%. Electrical resistivity measurements suggested that subsurface cracks persisted and enhanced lateral transport, even in wet conditions. Likewise, single-ring infiltration measurements taken before and after irrigation indicated that infiltration remained an important component of the water budget at high soil water content values, despite apparent surface sealing. Overall, although the wetting and sealing of the soil profile showed considerable complexity, an emergent property at the hillslope scale was observed: all of the plots demonstrated a strikingly similar threshold run-off response to the cumulative precipitation amount. 

  10. Measurement of hydraulic conductivity of unsaturated soils with thermocouple psychometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, D.E.

    1982-11-01

    A method of measuring the hydraulic conductivity of unsaturated soil using the instantaneous profile method with psychometric probes to measure water potential is developed and described. Soil is compacted into cylindrical tubes, and the tubes are sealed and instrumented with thermocouple psychrometers. The soil is moistened or dried from one end of the tube. Psychrometers are read periodically. Hydraulic conductivity is computed from the psychrometer readings and the appropriate moisture characteristic curve for the soil and then plotted as a function of water potential, water content, or degree of saturation. Hydraulic conductivities of six soils were measured at water potentialsmore » as low as -80 bar. The measured hydraulic conductivities and moisture characteristic curves were used along with the known boundary flux in a computer program to calculate the final water content profiles. Computed and measured final water content profiles agreed tolerably well.« less

  11. Radial metal concentration profiles in trees growing on highly contaminated soils.

    PubMed

    Superville, Pierre-Jean; de Winter, Niels; Phung, Anh Tuan; Proix, Nicolas; Baeyens, Willy; Gao, Yue

    2017-04-01

    The soil around Metaleurop, a big smelter, is heavily contaminated by Zn, Pb, Cd and Cu. In order to compare the impact of different soil amendments on the metal availability to trees, the polluted soil section was divided in a reference parcel and two others with either sulfo-calcic or silico-aluminous ash amendments. Five different tree species were planted on the parcels and the uptake of heavy metals in these trees was studied. Total and labile metal fractions were assessed in each of the 3 parcels. The mobility and assimilation of the metals was highest in the non-amended, reference soil parcel which had the lowest pH, organic matter and carbonate content. In all soils, pH decreased while organic matter content and mobility of the metals increased over time. Highest bulk concentrations of trace metals were found in white willow trees (Salix alba L.). Laser ablation-ICPMS was used to study changes in metal accumulation over a period of 10 years after planting the trees. The radial metal profiles in the trunk core samples varied between elements and tree species, however, in all willow trees the radial Cd and Zn profiles were significantly correlated. Radial pollutant concentration patterns are discussed in terms of seasonal effects, health status, tree species and metal mobility in the soil. For Cd and Zn, the profiles were influenced by their mobility in the soils. In general, periodical patterns were observed for Pb. Cu concentration profiles were decreasing over time, with the strongest decrease in the initial growth period. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Soils characterisation along ecological forest zones in the Eastern Himalayas

    NASA Astrophysics Data System (ADS)

    Simon, Alois; Dhendup, Kuenzang; Bahadur Rai, Prem; Gratzer, Georg

    2017-04-01

    Elevational gradients are commonly used to characterise vegetation patterns and, to a lesser extent, also to describe soil development. Furthermore, interactions between vegetation cover and soil characteristics are repeatedly observed. Combining information on soil development and easily to distinguish forest zones along elevational gradients, creates an added value for forest management decisions especially in less studied mountain regions. For this purpose, soil profiles along elevational gradients in the temperate conifer forests of Western and Central Bhutan, ranging from 2600-4000m asl were investigated. Thereby, 82 soil profiles were recorded and classified according to the World Reference Base for Soil Resources. Based on 19 representative profiles, genetic horizons were sampled and analysed. We aim to provide fundamental information on forest soil characteristics along these elevational transects. The results are presented with regard to ecological forest zones. The elevational distribution of the reference soil groups showed distinct distribution ranges for most of the soils. Cambisols were the most frequently recorded reference soil group with 58% of the sampled profiles, followed by Podzols in higher elevations, and Stagnosols, at intermediate elevations. Fluvisols occurred only at the lower end of the elevational transects and Phaeozems only at drier site conditions in the cool conifer dry forest zone. The humus layer thickness differs between forest zones and show a shift towards increased organic layer (O-layer) with increasing elevation. The reduced biomass productivity with increasing elevation and subsequently lower litter input compensates for the slow decomposition rates. The increasing O-layer thickness is an indicator of restrained intermixing of organic and mineral components by soil organisms at higher elevation. Overall, the soil types and soil characteristics along the elevational gradient showed a continuous and consistent change, instead of abrupt changes. We interpret these as manifestations of changes of temperature and precipitation with elevation which also drives forest zonation in these least anthropogenically influenced forest ecosystems. The elevational distribution of forest zones is correlated with the distribution of soil types and thus also reflects soil characteristics.

  13. Long-term N fertilization and conservation tillage practices conserve surface but not profile SOC stocks under semi-arid irrigated corn

    USDA-ARS?s Scientific Manuscript database

    No tillage (NT) and N fertilization can increase surface soil organic C (SOC) stocks, but the effects deeper in the soil profile are uncertain. Subsequent tillage could counter SOC stabilized through NT practices by disrupting soil aggregation and promoting decomposition. We followed a long-term ti...

  14. [Effects of soil data and map scale on assessment of total phosphorus storage in upland soils.

    PubMed

    Li, Heng Rong; Zhang, Li Ming; Li, Xiao di; Yu, Dong Sheng; Shi, Xue Zheng; Xing, Shi He; Chen, Han Yue

    2016-06-01

    Accurate assessment of total phosphorus storage in farmland soils is of great significance to sustainable agricultural and non-point source pollution control. However, previous studies haven't considered the estimation errors from mapping scales and various databases with different sources of soil profile data. In this study, a total of 393×10 4 hm 2 of upland in the 29 counties (or cities) of North Jiangsu was cited as a case for study. Analysis was performed of how the four sources of soil profile data, namely, "Soils of County", "Soils of Prefecture", "Soils of Province" and "Soils of China", and the six scales, i.e. 1:50000, 1:250000, 1:500000, 1:1000000, 1:4000000 and1:10000000, used in the 24 soil databases established for the four soil journals, affected assessment of soil total phosphorus. Compared with the most detailed 1:50000 soil database established with 983 upland soil profiles, relative deviation of the estimates of soil total phosphorus density (STPD) and soil total phosphorus storage (STPS) from the other soil databases varied from 4.8% to 48.9% and from 1.6% to 48.4%, respectively. The estimated STPD and STPS based on the 1:50000 database of "Soils of County" and most of the estimates based on the databases of each scale in "Soils of County" and "Soils of Prefecture" were different, with the significance levels of P<0.001 or P<0.05. Extremely significant differences (P<0.001) existed between the estimates based on the 1:50000 database of "Soils of County" and the estimates based on the databases of each scale in "Soils of Province" and "Soils of China". This study demonstrated the significance of appropriate soil data sources and appropriate mapping scales in estimating STPS.

  15. Use of Magnetic Parameters to Asses Soil Erosion Rates on Agricultural Site

    NASA Astrophysics Data System (ADS)

    Petrovsky, E.; Kapicka, A.; Dlouha, S.; Jaksik, O.; Grison, H.; Kodesova, R.

    2014-12-01

    A detailed field study on a small test site of agricultural land situated in loess region in Southern Moravia (Czech Republic) and laboratory analyses were carried out in order to test the applicability of magnetic methods in assessing soil erosion. Haplic Chernozem, the original dominant soil unit in the area, is nowadays progressively transformed into different soil units along with intense soil erosion. As a result, an extremely diversified soil cover structure has developed due to the erosion. The site was characterized by a flat upper part while the middle part, formed by a substantive side valley, is steeper. We carried out field measurements of magnetic susceptibility on a regular grid, resulting in 101 data points. The bulk soil material for laboratory investigation was gathered from all the grid points. Values of the magnetic susceptibility are spatially distributed depending on the terrain. Higher values were measured in the flat upper part (where the original top horizon remained). The lowest values of were obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). A soil profile unaffected by erosion was investigated in detail. The vertical distribution of magnetic susceptibility along this "virgin" profile was measured in laboratory on the samples collected with 2-cm spacing. The undisturbed profile shows several soil horizons. Horizons Ac and A show a slight increase in magnetic susceptibility up to a depth of about 70 cm. Horizon A/Ck is characterized by a decrease in susceptibility, and the underlying C horizon (h > 103 cm) has a very low value of magnetic susceptibility. The differences between the values of susceptibility in the undisturbed soil profile and the magnetic signal after uniform mixing the soil material as a result of tillage and erosion are fundamental for the estimation of soil loss in the studied test field. Using the uneroded profile from the studied locality as a basis for examining the changes in cultivated soils, tillage homogenization model can be applied to predict changes in the surface soil magnetism with progressive soil erosion. The model is very well applicable at the studied site. Acknowledgement: This study was supported by NAZV Agency of the Ministry of Agriculture of the Czech Republic through grant No QJ1230319.

  16. Using Uranium-series isotopes to understand processes of rapid soil formation in tropical volcanic settings: an example from Basse-Terre, French Guadeloupe

    NASA Astrophysics Data System (ADS)

    Ma, Lin

    2015-04-01

    Lin Ma1, Yvette Pereyra1, Peter B Sak2, Jerome Gaillardet3, Heather L Buss4 and Susan L Brantley5, (1) University of Texas at El Paso, El Paso, TX, United States, (2) Dickinson College, Carlisle, PA, United States, (3) Institute de Physique d Globe Paris, Paris, France, (4) University of Bristol, Bristol, United Kingdom, (5) Pennsylvania State University Main Campus, University Park, PA, United States Uranium-series isotopes fractionate during chemical weathering and their activity ratios can be used to determine timescales and rates of soil formation. Such soil formation rates provide important information to understand processes related to rapid soil formation in tropical volcanic settings, especially with respect to their fertility and erosion. Recent studies also highlighted the use of U-series isotopes to trace and quantify atmospheric inputs to surface soils. Such a process is particularly important in providing mineral nutrients to ecosystems in highly depleted soil systems such as the tropical soils. Here, we report U-series isotope compositions in thick soil profiles (>10 m) developed on andesitic pyroclastic flows in Basse-Terre Island of French Guadeloupe. Field observations have shown heterogeneity in color and texture in these thick profiles. However, major element chemistry and mineralogy show some general depth trends. The main minerals present throughout the soil profile are halloysite and gibbsite. Chemically immobile elements such as Al, Fe, and Ti show a depletion profile relative to Th while elements such as K, Mn, and Si show a partial depletion profile at depth. Mobile elements such as Ca, Mg, and Sr have undergone intensive weathering at depths, and an addition profile near the surface, most likely related to atmospheric inputs. (238U/232Th) activity ratios in one soil profile from the Brad David watershed in this study ranged from 0.374 to 1.696, while the (230Th/232Th) ratios ranged from 0.367 to 1.701. A decrease of (238U/232Th) in the deep soil profile depth is observed, and then an increase to the surface. The (230Th /232Th) ratios showed a similar trend as (238U/232Th). Marine aerosols and atmospheric dust from the Sahara region are most likely responsible for the addition of U in shallow soils. Intensive chemical weathering is responsible for the loss of U at depth, consistent with these observations of major element chemistry and mineralogy. Furthermore, U-series chemical weathering model suggests that the weathering duration from 12m to 4m depth in this profile is about 250kyr, with a weathering advancing rate of ~30 m/Ma. The rate is also about one order of magnitude lower than the weathering rate (~300 m/Ma) determined by river chemistry for this watershed. In this profile, the augered core didn't reach the unweathered bedrock. Hence, the derived slow weathering rate most likely represents the intensive weathering of clay minerals, while the transformation of fresh bedrock to regolith occurs at much great depth beneath the thick regolith. The marine aerosols and atmospheric dust are important sources of mineral nutrients for highly depleted surface soils.

  17. Novel approach for quantitatively estimating element retention and material balances in soil profiles of recharge basins used for wastewater reclamation.

    PubMed

    Eshel, Gil; Lin, Chunye; Banin, Amos

    2015-01-01

    We investigated changes in element content and distribution in soil profiles in a study designed to monitor the geochemical changes accruing in soil due to long-term secondary effluent recharge, and its impact on the sustainability of the Soil Aquifer Treatment (SAT) system. Since the initial elemental contents of the soils at the studied site were not available, we reconstructed them using scandium (Sc) as a conservative tracer. By using this approach, we were able to produce a mass-balance for 18 elements and evaluate the geochemical changes resulting from 19 years of effluent recharge. This approach also provides a better understanding of the role of soils as an adsorption filter for the heavy metals contained in the effluent. The soil mass balance suggests 19 years of effluent recharge cause for a significant enrichment in Cu, Cr, Ni, Zn, Mg, K, Na, S and P contents in the upper 4m of the soil profile. Combining the elements lode record during the 19 years suggest that Cr, Ni, and P inputs may not reach the groundwater (20 m deep), whereas the other elements may. Conversely, we found that 58, 60, and 30% of the initial content of Mn, Ca and Co respectively leached from the upper 2-m of the soil profile. These high percentages of Mn and Ca depletion from the basin soils may reduce the soil's ability to buffer decreases in redox potential pe and pH, respectively, which could initiate a reduction in the soil's holding capacity for heavy metals. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Variations of soil profile characteristics due to varying time spans since ice retreat in the inner Nordfjord, western Norway

    NASA Astrophysics Data System (ADS)

    Navas, A.; Laute, K.; Beylich, A. A.; Gaspar, L.

    2014-06-01

    In the Erdalen and Bødalen drainage basins located in the inner Nordfjord in western Norway the soils were formed after deglaciation. The climate in the uppermost valley areas is sub-arctic oceanic, and the lithology consists of Precambrian granitic orthogneisses on which Leptosols and Regosols are the most common soils. The Little Ice Age glacier advance affected parts of the valleys with the maximum glacier extent around AD 1750. In this study five sites on moraine and colluvium materials were selected to examine main soil properties, grain size distribution, soil organic carbon and pH to assess if soil profile characteristics and patterns of fallout radionuclides (FRNs) and environmental radionuclides (ERNs) are affected by different stages of ice retreat. The Leptosols on the moraines are shallow, poorly developed and vegetated with moss and small birches. The two selected profiles show different radionuclide activities and grain size distribution. The sampled soils on the colluviums outside the LIA glacier limit became ice-free during the Preboral. The Regosols present better-developed profiles, thicker organic horizons and are fully covered by grasses. Activity of 137Cs and 210Pbex concentrate at the topsoil and decrease sharply with depth. The grain size distribution of these soils also reflects the difference in geomorphic processes that have affected the colluvium sites. Significantly lower mass activities of FRNs were found in soils on the moraines than on colluviums. Variations of ERN activities in the valleys were related to characteristics of soil mineralogical composition. These results indicate differences in soil development that are consistent with the age of ice retreat. In addition, the pattern distribution of 137Cs and 210Pbex activities differs in the soils related to the LIA glacier limits in the drainage basins.

  19. Mobility and leachability of zinc in two soils treated with six organic zinc complexes.

    PubMed

    Alvarez, J M; Novillo, J; Obrador, A; López-Valdivia, L M

    2001-08-01

    A study of soil columns was conducted to evaluate Zn movement potential in two reconstructed soil profiles. Zn-phenolate, Zn-EDDHA, Zn-EDTA, Zn-lignosulfonate, Zn-polyflavonoid, and Zn-heptagluconate were applied in the upper zone of the column. The different physicochemical properties of the two soils and the micronutrient source may influence Zn leaching, the distribution of Zn among soil fractions, and the Zn available to the plant in the depth of the layers. In Aquic Haploxeralf soil, the application of six fertilizers produced little migration and very small leaching of Zn in the soil profiles. In Calcic Haploxeralf soil, Zn-EDTA migrated and was distributed throughout the soil columns. This Zn chelate produces a loss of Zn by leaching, which was 36% of the added Zn. In the latter soil, Zn leached very little with the other five fertilizer treatments. The same as for these organic Zn complexes, the retention of added Zn indicated the potential of metal accumulation in the A(p) horizons of the two soil profiles. A large portion of applied Zn was available to plants [diethylenetriaminepentaacetic acid (DTPA) and Mehlich-3 extractable Zn] in the depths reached by the different commercial formulations. The relationship between the two methods was highly significant (Mehlich-3-Zn = 1.25 + 1.13 DTPA-Zn, R(2) = 99.19%). When Zn was added as Zn-EDTA, the amounts of the most labile fractions (water-soluble plus exchangeable and organically complexed Zn) increased throughout the entire profile column in comparison with the control columns, although in the B(t) horizon of the Aquic Haploxeralf soil they increased only slightly.

  20. Fate of Potential Contaminants Due to Disposal of Olive Mill Wastewaters in Unprotected Evaporation Ponds.

    PubMed

    Kavvadias, V; Elaiopoulos, K; Theocharopoulos, Sid; Soupios, P

    2017-03-01

    The disposal of olive mill wastewaters (OMW) in shallow and unprotected evaporation ponds is a common, low-cost management practice, followed in Mediterranean countries. So far, the fate of potential soil pollutants in areas located near evaporation ponds is not adequately documented. This study investigates the extent in which the long-term disposal of OMW in evaporation ponds can affect the soil properties of the area located outside the evaporation pond and assesses the fate of the pollution loads of OMW. Four soil profiles situated outside and around the down slope side of the disposal area were excavated. The results showed considerable changes in concentration of soil phenols at the down-site soil profiles, due to the subsurface transport of the OMW. In addition, excessive concentrations of NH 4 + , PO 4 3- and phenols were recorded in liquid samples taken from inside at the bottom of the soil profiles. It is concluded that unprotected evaporation ponds located in light texture soils pose a serious threat to favour soil and water pollution.

  1. Implementing a conceptual model of physical and chemical soil profile evolution

    NASA Astrophysics Data System (ADS)

    Kirkby, Mike

    2017-04-01

    When soil profile composition is generalised in terms of the proportion, p, of bedrock remaining (= 1 - depletion ratio), then other soil processes can also be expressed in terms of p, and 'soil depth' described by the integral of (1-p) down to bedrock. Soil profile evolution is expressed as the advance of a sigmoidal weathering front into the critical zone under the action of upward ionic diffusion of weathering products; downward advection of solutes in percolating waters, with loss of (cleanish) water as evapotranspiration and (solute-laden) water as a lateral sub-surface flow increment; and mechanical denudation increment at the surface. Each component responds to the degree of weathering. Percolation is limited by precipitation, evapotranspiration demand and the degree of weathering at each level in the profile which diverts subsurface flow. Mechanical removal rates are considered to broadly increase as weathering proceeds, as grain size and dilation angle decreases. The implication of these assumptions can be examined for steady state profiles, for which observed relationships between mechanical and chemical denudation rates; and between chemical denudation and critical zone depth are reproduced. For non-steady state evolution, these relationships break down, but provide a basis for linking critical zone with hillslope/ landform evolution.

  2. The stable isotope composition of halite and sulfate of hyperarid soils and its relation to aqueous transport

    NASA Astrophysics Data System (ADS)

    Amundson, Ronald; Barnes, Jaime D.; Ewing, Stephanie; Heimsath, Arjun; Chong, Guillermo

    2012-12-01

    Halite (NaCl) and gypsum or anhydrite (CaSO4) are water-soluble minerals found in soils of the driest regions of Earth, and only modest attention has been given to the hydrological processes that distribute these salts vertically in soil profiles. The two most notable chloride and sulfate-rich deserts on earth are the Dry Valleys of Antarctica and the Atacama Desert of Chile. While each is hyperarid, they possess very different hydrological regimes. We first show, using previously published S and O isotope data for sulfate minerals, that downward migration of water and sulfate is the primary mechanism responsible for depth profiles of sulfate concentration, and S and O isotopes, in both deserts. In contrast, we found quite different soluble Cl concentration and Cl isotope profiles between the two deserts. For Antarctic soils with an ice layer near the soil surface, the Cl concentrations increase with decreasing soil depth, whereas the ratio of 37Cl/35Cl increases. Based on previous field observations by others, we found that thermally driven upward movement of brine during the winter, described by an advection/diffusion model, qualitatively mimics the observed profiles. In contrast, in the Atacama Desert where rare but relatively large rains drive Cl downward through the profiles, Cl concentrations and 37Cl/35Cl ratios increased with depth. The depth trends in Cl isotopes are more closely explained by a Rayleigh-like model of downward fluid flow. The isotope profiles, and our modeling, reveal the similarities and differences between these two very arid regions on Earth, and are relevant for constraining models of fluid flow in arid zone soil and vadose zone hydrology.

  3. Weathering behavior of REE-Y in a granitic soil profile (Case of Strengbach watershed)

    NASA Astrophysics Data System (ADS)

    Gangloff, Sophie; Stille, Peter; Chabaux, François

    2017-04-01

    Rare earth elements and yttrium (REE-Y) can be used as tracers of bedrock weathering and soil formation. One of the aims of this study is to better understand the different phenomena which impact the REE-Y mobilization and modify the REE-Y pattern along a soil profile. Our study has been performed on a granitic soil profile and soil solutions corresponding, sampled in a forest parcel covered with spruces from the Strengbach catchment. The behavior of the REE-Y pattern are compared with previously published results. The samples were collected from 2009 to 2013 and ultra-filtered to determine the spatial and temporal influence as well as that of the colloidal and dissolved fractions on the evolution of the REE-Y patterns. The EFTi of the soil indicates that during alteration process, phosphate minerals and zircon might be dissolved and induce the formation of secondary mineral phase like xenotime in the deeper soil horizons. The ultra-filtered soil solutions from humic horizon show that the REE-Y are principally enriched in the colloidal fraction controlling the REE-Y dynamic while in the deeper soil solutions colloidal and dissolved fractions influence the REE-Y. The mobility of REE-Y is controlled by the dissolution of the zircon and phosphate minerals, the precipitation of the REE-Y(PO4) and the evolution of OC with depth. The comparative study of the soil profile, soil water extracts and soil solutions show that (Eu*/Eu)DS anomaly reflects weathering of plagioclase in the micropores and the migration of the released Eu to the macropores, the (Ce*/Ce) anomaly, is stabilized by the electron shuttling of the humic acid (aromaticity) and provides information on the redox conditions only in the deeper soil horizons depleted in humic acid and finally the HREE enrichment in the deeper soil solutions results from the partial dissolution of secondary minerals in the upper soil horizons (above 30 cm depth).

  4. TDR water content inverse profiling in layered soils during infiltration and evaporation

    NASA Astrophysics Data System (ADS)

    Greco, R.; Guida, A.

    2009-04-01

    During the last three decades, time domain reflectometry (TDR) has become one of the most commonly used tools for soil water content measurements either in laboratory or in the field. Indeed, TDR provides easy and cheap water content estimations with relatively small disturbance to the investigated soil. TDR measurements of soil water content are based on the strong correlation between relative dielectric permittivity of wet soil and its volumetric water content. Several expressions of the relationship between relative dielectric permittivity and volumetric water content have been proposed, empirically stated (Topp et al., 1980) as well as based on semi-analytical approach to dielectric mixing models (Roth et al., 1990; Whalley, 1993). So far, TDR field applications suffered the limitation due to the capability of the technique of estimating only the mean water content in the volume investigated by the probe. Whereas the knowledge of non homogeneous vertical water content profiles was needed, it was necessary to install either several vertical probes of different length or several horizontal probes placed in the soil at different depths, in both cases strongly increasing soil disturbance as well as the complexity of the measurements. Several studies have been recently dedicated to the development of inversion methods aimed to extract more information from TDR waveforms, in order to estimate non homogeneous moisture profiles along the axis of the metallic probe used for TDR measurements. A common feature of all these methods is that electromagnetic transient through the wet soil along the probe is mathematically modelled, assuming that the unknown soil water content distribution corresponds to the best agreement between simulated and measured waveforms. In some cases the soil is modelled as a series of small layers with different dielectric properties, and the waveform is obtained as the result of the superposition of multiple reflections arising from impedance discontinuities between the layers (Nguyen et al., 1997; Todoroff et al., 1998; Heimovaara, 2001; Moret et al., 2006). Other methods consider the dielectric properties of the soil as smoothly variable along probe axis (Greco, 1999; Oswald et al., 2003; Greco, 2006). Aim of the study is testing the applicability to layered soils of the inverse method for the estimation of water content profiles along vertical TDR waveguides, originally applied in laboratory to homogeneous soil samples with monotonic moisture distributions (Greco, 2006), and recently extended to field measurements with more general water content profiles (Greco and Guida, 2008). Influence of soil electrical conductivity, uniqueness of solution, choices of parametrization, parameters identifiabilty, sensitivity of the method to chosen parameters variations are discussed. Finally, the results of the application of the inverse method to a series of infiltration and evaporation experiments carried out in a flume filled with three soil layers of different physical characteristics are presented. ACKNOWLEDGEMENTS The research was co-financed by the Italian Ministry of University, by means of the PRIN 2006 PRIN program, within the research project entitled ‘Definition of critical rainfall thresholds for destructive landslides for civil protection purposes'. REFERENCES Greco, R., 1999. Measurement of water content profiles by single TDR experiments. In: Feyen, J., Wiyo, K. (Eds.), Modelling of Transport Processes in Soils. Wageningen Pers, Wageningen, the Netherlands, pp. 276-283. Greco, R., 2006. Soil water content inverse profiling from single TDR waveforms. J. Hydrol. 317, 325-339. Greco R., Guida A., 2008. Field measurements of topsoil moisture profiles by vertical TDR probes. J. Hydrol. 348, 442- 451. Heimovaara, T.J., 2001. Frequency domain modelling of TDR waveforms in order to obtain frequency dependent dielectric properties of soil samples: a theoretical approach. In: TDR 2001 - Second International Symposium on Time Domain Reflectometry for Innovative Geotechnical Applications. Northwestern University, Evanston, Illinois, pp. 19-21. Moret, D., Arrue, J.L., Lopez, M.V., Gracia, R., 2006. A new TDR waveform analysis approach for soil moisture profiling using a single probe. J. Hydrol. 321, 163-172. Nguyen, B.L., Bruining, J., Slob, E.C., 1997. Saturation profiles from dielectric (frequency domain reflectometry) measurements in porous media. In: Proceedings of International Workshop on characterization and Measurements of the Hydraulic Properties of Unsaturated Porous Media, Riverside, California, pp. 363-375. Oswald, B., Benedickter, H.R., Ba¨chtold, W., Flu¨hler, H., 2003. Spatially resolved water content profiles from inverted time domain reflectometry signals. Water Resour. Res. 39 (12), 1357. Todoroff, P., Lorion, R., Lan Sun Luk, J.-D., 1998. L'utilisation des génétiques pour l'identification de profils hydriques de sol a` partir de courbes réflectométriques. CR Acad. Sci. Paris, Sciences de la terre et des plane`tes 327, 607-610. Topp, G.C., Davis, J.L., Annan, A.P., 1980. Electromagnetic determination of soil water content: measurement in coaxial transmission lines. Water Resour. Res. 16, 574-582. Roth, K., Schulin, R., Fluhler, H., Attinger, W., 1990. Calibration of time domain reflectometry for water content measurement using a composite dielectric approach. Water Resour. Res. 26, 2267-2273. Whalley, W.R., 1993. Considerations on the use of time domain reflectometry (TDR) for measuring soil water content. J. Soil Sci. 44, 1-9.

  5. Contributions of root and shoot derived-C to soil organic matter throughout an agricultural soil profile assessed by compound-specific 13C analysis

    NASA Astrophysics Data System (ADS)

    Mendez-Millan, Mercedes; Dignac, Marie-France; Rumpel, Cornelia; Rasse, Daniel P.; Derenne, Sylvie

    2010-05-01

    The turnover of soil organic matter (SOM) is generally studied in the topsoil horizons, where the highest concentrations of organic carbon (OC) are found. Subsoils, although containing lower amounts of organic carbon compared to topsoils, greatly contribute to the total carbon stocks within a soil profile. An increase in SOM aliphaticity was observed during SOM degradation, and also down the soil profile, suggesting that the stable pool of SOM is enriched in aliphatic structures. These alkyl-C structures might mainly derive from cutins and suberins, two biomacromolecules, which contain biomarkers specific for shoot and root plant biomass. The aim of this study was to use cutin and suberin structural units to follow the incorporation of plant biomass originating from roots and shoots throughout an agricultural soil profile. We measured the 13C natural abundance of root and shoot biomarkers in samples taken from 15 to 105 cm depth in a C3/C4 chronosequence. After 9 years of maize (C4) cropping, the distribution of root biomarkers (diacids) significantly changed and their concentration increased compared to the wheat (CC3) soil. The largest increase was observed at 60-75 cm where diacids reached up to 134 ?g/gOC compared to 23 ?g/gOC in the wheat soil. Higher inputs from maize root biomass are also suggested by an average 13C enrichment of the root markers in the maize compared to the wheat soil.

  6. Land use and hydromechanical heterogeneities in marshland soils.

    NASA Astrophysics Data System (ADS)

    Tojo Radimy, Raymond; Dupont, Jean-Paul; Dudoignon, Patrick

    2017-04-01

    In the interpretation of soil moisture profiles, mechanical properties were most often considered homogeneous. The structural heterogeneities of the soil are knows to be at the origin of the distribution and the availability of water in the vadose zone. The soils study is located in the French Atlantic coastal marshlands, characterized by the succession polderization/desiccation/consolidation and maturation. The work is carried out within the framework of the farming of old salt marshes with two concerns in the farmers: the salinity of the soil and the distribution of the available water capacity of the soils according to the crop growth. The present work shows the knowledge of the soil storage transfers during seasonal cycles on drained corn field and undrained grassland. We analyze the vertical water profiles observed to reveal the hydromechanical heterogeneities in the soils depending the porosity and gravity water parameter. This approach is based on mechanical tests between the compaction pathways carried out in the laboratory using materials taken in situ. Comparing to grasslands profiles, we highlight the influence of agricultural practices and the establishment of drainage in the marshland. However, the vertical homogenization of hydromechanical structures, desalination has been taken into account for the estimation of water in crop. The concept of a homogeneous structure is not adapted to real vertical profile. Finally, the authors conclude by discussing the notion of the mechanical availability of water in terms of porosity and gravity water. These parameters are good tools to the sustainable management of marshland soils. Keywords: hydromechanics, vadose zone, soil structure, land use, available water capacity

  7. Changes in soil hydraulic properties caused by construction of a simulated waste trench at the Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Shakofsky, S.M.

    1995-01-01

    In order to assess the effect of filled waste disposal trenches on transport-governing soil properties, comparisons were made between profiles of undisturbed soil and disturbed soil in a simulated waste trench. The changes in soil properties induced by the construction of a simulated waste trench were measured near the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL) in the semi-arid southeast region of Idaho. The soil samples were collected, using a hydraulically- driven sampler to minimize sample disruption, from both a simulated waste trench and an undisturbed area nearby. Results show that the undisturbed profile has distinct layers whose properties differ significantly, whereas the soil profile in the simulated waste trench is. by comparison, homogeneous. Porosity was increased in the disturbed cores, and, correspondingly, saturated hydraulic conductivities were on average three times higher. With higher soil-moisture contents (greater than 0.32), unsaturated hydraulic conductivities for the undisturbed cores were typically greater than those for the disturbed cores. With lower moisture contents, most of the disturbed cores had greater hydraulic conductivities. The observed differences in hydraulic conductivities are interpreted and discussed as changes in the soil pore geometry.

  8. Denitrification potential of riparian soils in relation to multiscale spatial environmental factors: a case study of a typical watershed, China.

    PubMed

    Wei, Jianbing; Feng, Hao; Cheng, Quanguo; Gao, Shiqian; Liu, Haiyan

    2017-02-01

    The objective of this study was to test the hypothesis that environmental regulators of riparian zone soil denitrification potential differ according to spatial scale within a watershed; consequently, a second objective was to provide spatial strategies for conserving and restoring the purification function of runoff in riparian ecosystems. The results show that soil denitrification in riparian zones was more heterogeneous at the profile scale than at the cross-section and landscape scales. At the profile scale, biogeochemical factors (including soil total organic carbon, total nitrogen, and nitrate-nitrogen) were the major direct regulators of the spatial distribution of soil denitrification enzyme activity (DEA). At the cross-section scale, factors included distance from river bank and vegetation density, while landscape-scale factors, including topographic index, elevation, and land use types, indirectly regulated the spatial distribution of DEA. At the profile scale, soil DEA was greatest in the upper soil layers. At the cross-section scale, maximum soil DEA occurred in the mid-part of the riparian zone. At the landscape scale, soil DEA showed an increasing trend towards downstream sites, except for those in urbanized areas.

  9. Distribution of some organic components in two forest soils profiles with evidence of soil organic matter leaching.

    NASA Astrophysics Data System (ADS)

    Álvarez-Romero, Marta; Papa, Stefania; Lozano-García, Beatriz; Parras-Alcántara, Luis; Coppola, Elio

    2015-04-01

    Soil stores organic carbon more often than we can find in living vegetation and atmosphere together. This reservoir is not inert, but it is constantly in a dynamic phase of inputs and losses. Soil organic carbon mainly depends on land cover, environment conditions and soil properties. After soil deposition, the organic residues of different origin and nature, the Soil Organic Matter (SOM) can be seen involved in two different processes during the pedogenesis: mineralization and humification. The transport process along profile happens under certain conditions such as deposition of high organic residues amount on the top soil, high porosity of the soil caused by sand or skeleton particles, that determine a water strong infiltrating capacity, also, extreme temperatures can slow or stop the mineralization and/or humification process in one intermediate step of the degradation process releasing organic metabolites with high or medium solubility and high loads of water percolating in relation to intense rainfall. The transport process along soil profile can take many forms that can end in the formation of Bh horizons (h means accumulation of SOM in depth). The forest cover nature influence to the quantity and quality of the organic materials deposited with marked differences between coniferous and deciduous especially in relation to resistance to degradation. Two soils in the Campania region, located in Lago Laceno (Avellino - Italy) with different forest cover (Pinus sp. and Fagus sp.) and that meets the requirements of the place and pedological formation suitable for the formation and accumulation of SOM in depth (Bh horizon) were studied. The different soil C fractions were determinated and were assessed (Ciavatta C. et al. 1990; Dell'Abate M.T. et al. 2002) for each soil profile the Total Extractable Lipids (TEL). Furthermore, the lignin were considered as a major component of soil organic matter (SOM), influencing its pool-size and its turnover, due to the high soil input and the abundance of aromatic structures suggesting chemical recalcitrance, also, cellulose that lignin contents were also assayed. References -Ciavatta C., Govi M., Vittori Antisari L., Sequi P. (1990). Characterization of humified compounds by extraction and fractionation on solid polyvinylpyrrolidone. Journal of Chromatography, 509:141-146. -Dell'Abate M.T., Benedetti A., Trinchera A., Dazzi C. (2002). Humic substances along the profile of two Typic Haploxerert. Geoderma, 107:281-296.

  10. A first attempt to reproduce basaltic soil chronosequences using a process-based soil profile model: implications for our understanding of soil evolution

    NASA Astrophysics Data System (ADS)

    Johnson, M.; Gloor, M.; Lloyd, J.

    2012-04-01

    Soils are complex systems which hold a wealth of information on both current and past conditions and many biogeochemical processes. The ability to model soil forming processes and predict soil properties will enable us to quantify such conditions and contribute to our understanding of long-term biogeochemical cycles, particularly the carbon cycle and plant nutrient cycles. However, attempts to confront such soil model predictions with data are rare, although increasingly more data from chronosquence studies is becoming available for such a purpose. Here we present initial results of an attempt to reproduce soil properties with a process-based soil evolution model similar to the model of Kirkby (1985, J. Soil Science). We specifically focus on the basaltic soils in both Hawaii and north Queensland, Australia. These soils are formed on a series of volcanic lava flows which provide sequences of different aged soils all with a relatively uniform parent material. These soil chronosequences provide a snapshot of a soil profile during different stages of development. Steep rainfall gradients in these regions also provide a system which allows us to test the model's ability to reproduce soil properties under differing climates. The mechanistic, soil evolution model presented here includes the major processes of soil formation such as i) mineral weathering, ii) percolation of rainfall through the soil, iii) leaching of solutes out of the soil profile iv) surface erosion and v) vegetation and biotic interactions. The model consists of a vertical profile and assumes simple geometry with a constantly sloping surface. The timescales of interest are on the order of tens to hundreds of thousand years. The specific properties the model predicts are, soil depth, the proportion of original elemental oxides remaining in each soil layer, pH of the soil solution, organic carbon distribution and CO2 production and concentration. The presentation will focus on a brief introduction of the model, followed by a description of novel methods using tracers such as optically stimulated luminescence (OSL) dates and meteoric 10Be to evaluate the modelled processes of bioturbation and surface erosion. We will also discuss comparisons of modelled properties with observations and conclude with implications on our understanding of soil evolution.

  11. The soil water regime of stony soils in a mountain catchment

    NASA Astrophysics Data System (ADS)

    Hlaváčiková, Hana; Danko, Michal; Holko, Ladislav; Hlavčo, Jozef; Novák, Viliam

    2016-04-01

    Investigation of processes related to runoff generation is an important topic in catchment hydrology. Observations are usually carried out in small catchments or on hillslopes. Many of such catchments are located in mountain or forested areas. From many studies it is evident that soil conditions and soil characteristics are one of the crucial factors in runoff generation. Mountainous or forest soils have usually high rock fragments content. Nevertheless, the influence of soil stoniness on water flow was not sufficiently studied up to now at catchment and hillslope scales due to flow formation complexity or problems with stony soil properties measurement (installing measuring devices, interpretation of measured data). Results of this work can be divided in two groups: (1) hydrophysical properties of stony soils measurements, and (2) water flow dynamic modelling in stony soils. Properties of stony soils were measured in the Jalovecky creek catchment, the Western Tatra Mts., Slovakia. Altitude of particular study sites varies from 780 to1500 m a.s.l. We measured and analyzed the stoniness of reference soil profiles, as well as retention properties of stony soils (fine soil fraction and rock fragments separately) and hydraulic conductivities of surface and subsurface soil layers. The methodology for determination of the effective hydrophysical properties of a stony soil (later used in modelling) was proposed using results from measurements, calculation, and numerical Darcy experiments. Modelling results show that the presence of rock fragments with low water retention in a stony soil with moderate or high stoniness can cause the soil water storage decrease by 16-31% in compared to the soil without rock fragments. In addition, decreased stony soil retention capacity resulted in faster outflow increase at the bottom of the soil profile during non-ponding infiltration. Furthermore, the presence of rock fragments can increase maximum outflow value. It is not possible to simply extrapolate the results from a soil profile to larger catchment scale because spatial variability of soil properties and unknown bedrock properties. Moreover, water outflow from the soil profile is a complex problem in which several factors co-operate. However, this points out that the presence of rock fragments in moderate or highly stony soils can play a significant role in catchment runoff generation under certain circumstances.

  12. Weathering processes and dating of soil profiles from São Paulo State, Brazil, by U-isotopes disequilibria.

    PubMed

    Bonotto, Daniel Marcos; Jiménez-Rueda, Jairo Roberto; Fagundes, Isabella Cruz; Filho, Carlos Roberto Alves Fonseca

    2017-01-01

    This study reports the use of the U-series radionuclides 238 U and 234 U for dating two soil profiles. The soil horizons developed over sandstones from Tatuí and Pirambóia formations at the Paraná sedimentary basin, São Paulo State, Brazil. Chemical data in conjunction with the 234 U/ 238 U activity ratios (AR's) of the soil horizons allowed investigating the U-isotopes mobility in the shallow oxidizing environment. Kaolinization and laterization processes are taking place in the profiles sampled, as they are especially common in regions characterized by a wet and dry tropical climate and a water table that is close to the surface. These processes are implied by inverse significant correlations between silica and iron in both soil profiles. Iron oxides were also very important to retain uranium in the two sites investigated, helping on the understanding of the weathering processes acting there. 238 U and its progeny 234 U permitted evaluating the processes of physical and chemical alteration, allowing the suggestion of a possible timescale corresponding to the Middle Pleistocene for the development of the more superficial soil horizons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Random whole metagenomic sequencing for forensic discrimination of soils.

    PubMed

    Khodakova, Anastasia S; Smith, Renee J; Burgoyne, Leigh; Abarno, Damien; Linacre, Adrian

    2014-01-01

    Here we assess the ability of random whole metagenomic sequencing approaches to discriminate between similar soils from two geographically distinct urban sites for application in forensic science. Repeat samples from two parklands in residential areas separated by approximately 3 km were collected and the DNA was extracted. Shotgun, whole genome amplification (WGA) and single arbitrarily primed DNA amplification (AP-PCR) based sequencing techniques were then used to generate soil metagenomic profiles. Full and subsampled metagenomic datasets were then annotated against M5NR/M5RNA (taxonomic classification) and SEED Subsystems (metabolic classification) databases. Further comparative analyses were performed using a number of statistical tools including: hierarchical agglomerative clustering (CLUSTER); similarity profile analysis (SIMPROF); non-metric multidimensional scaling (NMDS); and canonical analysis of principal coordinates (CAP) at all major levels of taxonomic and metabolic classification. Our data showed that shotgun and WGA-based approaches generated highly similar metagenomic profiles for the soil samples such that the soil samples could not be distinguished accurately. An AP-PCR based approach was shown to be successful at obtaining reproducible site-specific metagenomic DNA profiles, which in turn were employed for successful discrimination of visually similar soil samples collected from two different locations.

  14. Changes of the soil environment affected by fly ash dumping site of the electric power plant

    NASA Astrophysics Data System (ADS)

    Weber, Jerzy; Gwizdz, Marta; Jamroz, Elzbieta; Debicka, Magdalena; Kocowicz, Andrzej

    2014-05-01

    In this study the effect of fly ash dumping site of the electric power plant on the surrounding soil environment was investigated. The fly ash dumping site collect wastes form brown coal combustion of Belchatow electric power station, central Poland. The dumping site is surrounding by forest, where pine trees overgrow Podzols derived from loose quartz sands. The soil profiles under study were located at a distance of 50, 100, 400 and 500 m from the dumping site, while control profiles were located 8 km away from the landfill. In all horizons of soil profiles the mpain hysico-chemical and chemical properties were determined. The humic substances were extracted from ectohumus horizons by Shnitzer's method, purified using XAD resin and freeze-dried. The fulvic acids were passed through a cation exchange column and freeze-dried. Optical density, elemental composition and atomic ratios were determined in the humic and fulvic acids. Organic carbon by KMnO4 oxidation was also determined in the organic soil horizons. The fly ash from the landfill characterized by high salinity and strong alkaline reaction (pH=10), which contributed significantly to the changes of the pH values in soils horizons. The alkalization of soils adjacent to the landfill was found, which manifested in increasing of pH values in the upper soil horizons. The impact of the landfill was also noted in the changes of the soil morphology of Podzols analysed. As a result of the alkalization, Bhs horizons have been converted into a Bs horizons. Leaching of low molecular humus fraction - typical for podzolization - has been minimized as a result of pH changes caused by the impact of the landfill, and originally occurring humic substances in the Bhs horizon (present in the control profiles) have been probably transported out of the soil profile and then into the groundwater.

  15. Soil pollution indices conditioned by medieval metallurgical activity - A case study from Krakow (Poland).

    PubMed

    Kowalska, Joanna; Mazurek, Ryszard; Gąsiorek, Michał; Setlak, Marcin; Zaleski, Tomasz; Waroszewski, Jaroslaw

    2016-11-01

    The studied soil profile under the Main Market Square (MMS) in Krakow was characterised by the influence of medieval metallurgical activity. In the presented soil section lithological discontinuity (LD) was found, which manifests itself in the form of cultural layers (CLs). Moreover, in this paper LD detection methods based on soil texture are presented. For the first time, three different ways to identify the presence of LD in the urban soils are suggested. The presence of LD had an influence on the content and distribution of heavy metals within the soil profile. The content of heavy metals in the CLs under the MMS in Krakow was significantly higher than the content in natural horizons. In addition, there were distinct differences in the content of heavy metals within CLs. Profile variability and differences in the content of heavy metals and phosphorus within the CLs under the MMS were activity indicators of Krakow inhabitants in the past. This paper presents alternative methods for the assessment of the degree of heavy metal contamination in urban soils using selected pollution indices. On the basis of the studied total concentration of heavy metals (Zn, Pb, Cu, Mn, Cr, Cd, Ni, Sn, Ag) and total phosphorus content, the Geoaccumulation Index (I geo ), Enrichment Factor (EF), Sum of Pollution Index (PI sum ), Single Pollution Index (PI), Nemerow Pollution Index (PI Nemerow ) and Potential Ecological Risk (RI) were calculated using different local and reference geochemical backgrounds. The use of various geochemical backgrounds is helpful to evaluate the assessment of soil pollution. The individual CLs differed from each other according to the degree of pollution. The different values of pollution indices within the studied soil profile showed that LDS should not be evaluated in terms of contamination as one, homogeneous soil profile but each separate CL should be treated individually. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Oxygen Isotope Compositions of Meteoric Water Across an Elevation Gradient in Southern Peru

    NASA Astrophysics Data System (ADS)

    Xu, D. R.; White, E.; Cassel, E. J.; Lynch, B.; Yanites, B.; Breecker, D.

    2017-12-01

    The Central Andes is a prime example of elevated topography generated by oceanic plate subduction. Whereas previous stable isotope studies have investigated the paleoelevation of the Andean Eastern Cordillera, little is known about the paleoelevation of the Western Cordillera, where arc volcanism now occurs. As a first step towards studying the paleoelevation of this region, we investigated the change in δ18O values of modern soil waters across an elevation gradient from sea level to about 4725 meters in southern Peru. We sampled soil profiles from 5 to 80 cm in 15-20cm increments, and we sampled water from flowing natural streams at various elevations. We used cryogenic vacuum extraction to quantitatively remove non-structural water from soil samples. The δ18O values of water extracted from soil samples varies with the depth in the soil due to the diminishing effect of seasonality and evaporation. Every high elevation (>3500m) soil profile we measured had nearly constant δ18O values below 5cm and a total range of δ18O values between -12.8‰ and -17.1‰, apart from the Cusco profile. In the Cusco profile, the δ18O values ranged from -7.2 ‰ at 5 cm to -21.8 ‰ at 60 cm, defining a strong monotonic decrease not seen in other soil profiles. The δ18O trend in the Cusco profile may be different due to the impact of evaporation, soil hydrology, and/or seasonality in the δ18O values of precipitation. Further spatial analysis must be conducted to pinpoint a specific cause. Considering only the samples collected below 40cm, which are likely the best estimate of mean annual precipitation, the δ18O values decrease with increasing elevation at a rate higher than the global mean, suggesting that oxygen isotope paleoaltimetry can work in this study region.

  17. Microbial Activity in Organic Soils as Affected by Soil Depth and Crop †

    PubMed Central

    Tate, Robert L.

    1979-01-01

    The microbial activity of Pahokee muck, a lithic medisaprist, and the effect of various environmental factors, such as position in the profile and type of plant cover, were examined. Catabolic activity for [7-14C]salicylic acid, [1,4-14C]succinate, and [1,2-14C]acetate remained reasonably constant in surface (0 to 10 cm) soil samples from a fallow (bare) field from late in the wet season (May to September) through January. Late in January, the microbial activity toward all three compounds decreased approximately 50%. The microbial activity of the soil decreased with increasing depth of soil. Salicylate catabolism was the most sensitive to increasing moisture deep in the soil profile. At the end of the wet season, a 90% decrease in activity between the surface and the 60- to 70-cm depth occurred. Catabolism of acetate and succinate decreased approximately 75% in the same samples. Little effect of crop was observed. Variation in the microbial activity, as measured by the catabolism of labeled acetate, salicylate, or succinate, was not significant between a sugarcane (Saccharum officinarum L.) field and a fallow field. The activity with acetate was insignificantly different in a St. Augustine grass [Stenotaphrum secundatum (Walt) Kuntz] field, whereas the catabolism of the remaining substrates was elevated in the grass field. These results indicate that the total carbon evolved from the different levels of the soil profile by the microbial community oxidizing the soil organic matter decreased as the depth of the soil column increased. However, correction of the amount of carbon yielded at each level for the bulk density of that level reveals that the microbial contribution to the soil subsidence is approximately equivalent throughout the soil profile above the water table. PMID:16345393

  18. Microbial activity in organic soils as affected by soil depth and crop.

    PubMed

    Tate, R L

    1979-06-01

    The microbial activity of Pahokee muck, a lithic medisaprist, and the effect of various environmental factors, such as position in the profile and type of plant cover, were examined. Catabolic activity for [7-C]salicylic acid, [1,4-C]succinate, and [1,2-C]acetate remained reasonably constant in surface (0 to 10 cm) soil samples from a fallow (bare) field from late in the wet season (May to September) through January. Late in January, the microbial activity toward all three compounds decreased approximately 50%. The microbial activity of the soil decreased with increasing depth of soil. Salicylate catabolism was the most sensitive to increasing moisture deep in the soil profile. At the end of the wet season, a 90% decrease in activity between the surface and the 60- to 70-cm depth occurred. Catabolism of acetate and succinate decreased approximately 75% in the same samples. Little effect of crop was observed. Variation in the microbial activity, as measured by the catabolism of labeled acetate, salicylate, or succinate, was not significant between a sugarcane (Saccharum officinarum L.) field and a fallow field. The activity with acetate was insignificantly different in a St. Augustine grass [Stenotaphrum secundatum (Walt) Kuntz] field, whereas the catabolism of the remaining substrates was elevated in the grass field. These results indicate that the total carbon evolved from the different levels of the soil profile by the microbial community oxidizing the soil organic matter decreased as the depth of the soil column increased. However, correction of the amount of carbon yielded at each level for the bulk density of that level reveals that the microbial contribution to the soil subsidence is approximately equivalent throughout the soil profile above the water table.

  19. Variations of soil profile characteristics due to varying time spans since ice retreat in the inner Nordfjord, western Norway

    NASA Astrophysics Data System (ADS)

    Navas, A.; Laute, K.; Beylich, A. A.; Gaspar, L.

    2014-01-01

    In the Erdalen and Bødalen drainage basins located in the inner Nordfjord in western Norway the soils have been formed after deglaciation. The climate in the uppermost valley areas is sub-arctic oceanic and the lithology consists of Precambrian granitic orthogneisses on which Leptosols and Regosols are the most common soils. The Little Ice Age glacier advance affected parts of the valleys with the maximum glacier extent around AD 1750. In this study five sites on moraine and colluvium materials were selected to examine the main soil properties to assess if soil profile characteristics and pattern of fallout radionuclides (FRNs) and environmental radionuclides (ERNs) are affected by different stages of ice retreat. The Leptosols on the moraines are shallow, poorly developed and vegetated with moss and small birches. The two selected profiles show different radionuclide activities and grain size distribution. The sampled soils on the colluviums outside the LIA glacier limit became ice-free during the Preboral. The Regosols present better-developed profiles, thicker organic horizons and are fully covered by grasses. Activity of 137Cs and 210Pbex concentrate at the topsoil and decrease sharply with depth. The grain size distribution of these soils also reflects the difference in geomorphic processes that have affected the colluvium sites. Significant lower mass activities of FRNs are found in soils on the moraines than on colluviums. Variations of ERNs activities in the valleys are related to characteristics soil mineralogical composition. These results indicate differences in soil development that are consistent with the age of ice retreat. In addition, the pattern distribution of 137Cs and 210Pbex activities differs in the soils related to the LIA glacier limits in the drainage basins.

  20. Chemical features of soils in a natural forest of West Hungary

    NASA Astrophysics Data System (ADS)

    Hofmann, Eszter; Bidló, András

    2015-04-01

    The present research focuses on the chemical results of soils formed on miocene carbonate rocks in a natural forest of West Hungary. Soil profiles derived from the Szárhalom Forest, located near the Lake Fertő, next to the city of Sopron. Six soil profiles were opened and analysed in this area. In the field the following physical parameters were evaluated from the soil profiles: transition, structure, compactness, roots, skeletal percent, colour, physical assortment, concretion and soil defect. Laboratory analysis involved the measurement of acidity, particle distribution, carbonated lime content, humus content, ammonium lactate-acetic acid soluble phosphorus- and potassium content, potassium chloride soluble calcium- and magnesium content, ethylene-diamine-tetraacetic-acid (EDTA) and diethylene-triamine-pentaacetic-acid (DTPA) soluble copper-, iron-, manganese- and zinc contents. These soils formed under a hornbeam-oak forest climate mainly and under a beech forest climate diffusely. The location and climate of the sites forms a basis of the comparison of the soils with similar base rock. The formation of the acidic and humus-rich upper layer of the soil profiles is influenced by the mineral composition and the weathering of the rocks. X-ray diffraction (Philips P W3710/PW1050 type X-ray diffractometer), thermoanalytical measurements (Mettler Toledo TGA/DSC 1 type thermogravimeter) and ICP-OES (Thermo Scientific iCAP 7000 Series) were also carried out to determine the mineral composition of the soils and the content of heavy metals. The soil samples were collected with both traditional and undisturbed (using the Kubiena box) sampling methods to enable further micromorphological investigations as well. The research is supported by the "Agroclimate-2" (VKSZ_12-1-2013-0034) joint EU-national research project. Key words: Natural forest, Miocene limestone, Mineral composition, Thermal analysis, Micromorphology

  1. Multi-Seasonal Nitrogen Recoveries from Crop Residue in Soil and Crop in a Temperate Agro-Ecosystem

    PubMed Central

    Hu, Guoqing; Liu, Xiao; He, Hongbo; Zhang, Wei; Xie, Hongtu; Wu, Yeye; Cui, Jiehua; Sun, Ci; Zhang, Xudong

    2015-01-01

    In conservation tillage systems, at least 30% of the soil surface was covered by crop residues which generally contain significant amounts of nitrogen (N). However, little is known about the multi-seasonal recoveries of the N derived from these crop residues in soil-crop systems, notably in northeastern China. In a temperate agro-ecosystem, 15N-labeled maize residue was applied to field surfaces in the 1st year (2009). From the 2nd to 4th year (2010-2012), one treatment halted the application of maize residue, whereas the soil in the second treatment was re-applied with unlabeled maize residue. Crop and soil samples were collected after each harvest, and their 15N enrichments were determined on an isotope ratio mass spectrometer to trace the allocation of N derived from the initially applied maize residue in the soil-crop systems. On average, 8.4% of the maize residue N was recovered in the soil-crop in the 1st year, and the vast majority (61.9%-91.9%) was recovered during subsequent years. Throughout the experiment, the cumulative recovery of the residue N in the crop increased gradually (18.2%-20.9%), but most of the residue N was retained in the soil, notably in the 0-10 cm soil layer. Compared to the single application, the sequential residue application significantly increased the recovery of the residue N in the soil profile (73.8% vs. 40.9%) and remarkably decreased the total and the initially applied residue derived mineral N along the soil profile. Our results suggested that the residue N was actively involved in N cycling, and its release and recovery in crop and soil profile were controlled by the decomposition process. Sequential residue application significantly enhanced the retention and stabilization of the initially applied residue N in the soil and retarded its translocation along the soil profile. PMID:26192436

  2. [Application of ICP-MS in evaluating element contamination in soils].

    PubMed

    Wu, Ying-juan; Chen, Yong-heng; Yang, Chun-xia; Chang, Xiang-yang

    2008-12-01

    The Yunfu pyrite was the second biggest pyrite bed in the world. Plants using industrial ore of the Yunfu pyrite are distributed in many sections across the country. In the present paper, elements V, Cr, Co, Cu, Zn, Mo, Cd, Sb, Rb and Cs in soil profiles in slag disposing area of a sulfuric acid plant using industrial ore of theYunfu pyrite were studied. A method for simultaneously determination of metals and some reference elements in soils by ICP-MS was developed. The correlations between the metals and their reference elements were fast found. Enrichment factors were applied for evaluating the degree of soil contamination, and the problem about choosing contamination elements background values was pointed out. The results indicated that element V showed apparent and serious pollution, The Co showed middle degree pollution, and there has been a trend of apparent pollution. The Cr, Mo and Cd showed pollution between light degree and middle degree. The Zn and Sb showed light degree pollution, and there was a latent trend of middle degree pollution. The Cu showed light degree pollution. The high enrichment points of the V and the Cr were observed in the upper part (4.0-10.5 cm) and deep part of soil profiles (44.0-75.5 cm). Those of Co and Mo were found in the surface of soil profiles (0-5.0 cm), middle-upper part (9.5-10.5 cm) and middle part (29.5-46.0 cm), while those of Cd and Cu occurred just in the middle of soil profiles (29.5-46.0 cm). The formation of highly enrichment points of contamination elements in the soil profiles was the result of leaching and accumulating effect of the metals released from slag and the residual metals of highly weathered red soils. Most of pollution of V in the soil was contributed by the V in soil bed. Part of the V pollution in the soil was supplied by leaching and accumulating effect of the V which came from catalyst with lost activity in sulfuric acid production volatilizing into slag.

  3. Soils of northern spurs of the Cherskii Ridge in the area of the northern pole of cold: Morphology, properties, and classification

    NASA Astrophysics Data System (ADS)

    Okoneshnikova, M. V.; Desyatkin, R. V.

    2017-08-01

    The soils in the area of the northern pole of cold located on the interfluve between the Yana and Adycha rivers within the spurs of Kisilyakh Ridge included in the mountain system of Cherskii Ridge have been studied for the first time. The profile-genetic approach has been applied to describe the soils and determine their classification position. It is found that the major soil types in this region are the soils of the postlithogenic trunk belonging to the orders of lithozems (Cryic Leptosols), gley soils (Gleyic Skeletic Cryosols), and Al-Fe-humus soils (Spodic Skeletic Cryosols). The ecological ranges of altitudinal zones— the taiga zone with various types of lithozems below 630-700 m a.s.l. and the tundra zone with combinations of gley and nongley cryogenic soils above these heights—have been established. The development of gley or nongley soils is specified by the local orogenic and lithological conditions and slope aspect, which, in turn, control the degree of drainage and the presence and character of permafrost. In the profile of mountainous gley soils (gleyzems) with shallow ice-rich permafrost, cryogenic processes and features typical of the analogues of these soils on plains—cryogenic cracking, cryoturbation, solifluction, thixotropy, oxiaquic features above permafrost, saturation of the soil profile with mobile humus, etc.—are typical.

  4. Regolith properties under trees and the biomechanical effects caused by tree root systems as recognized by electrical resistivity tomography (ERT)

    NASA Astrophysics Data System (ADS)

    Pawlik, Łukasz; Kasprzak, Marek

    2018-01-01

    Following previous findings regarding the influence of vascular plants (mainly trees) on weathering, soil production and hillslope stability, in this study, we attempted to test a hypothesis regarding significant impacts of tree root systems on soil and regolith properties. Different types of impacts from tree root system (direct and indirect) are commonly gathered under the key term of "biomechanical effects". To add to the discussion of the biomechanical effects of trees, we used a non-invasive geophysical method, electrical resistivity tomography (ERT), to investigate the profiles of four different configurations at three study sites within the Polish section of the Outer Western Carpathians. At each site, one long profile (up to 189 m) of a large section of a hillslope and three short profiles (up to 19.5 m), that is, microsites occupied by trees or their remnants, were made. Short profiles included the tree root zone of a healthy large tree, the tree stump of a decaying tree and the pit-and-mound topography formed after a tree uprooting. The resistivity of regolith and bedrock presented on the long profiles and in comparison with the short profiles through the microsites it can be seen how tree roots impact soil and regolith properties and add to the complexity of the whole soil/regolith profile. Trees change soil and regolith properties directly through root channels and moisture migration and indirectly through the uprooting of trees and the formation of pit-and-mound topography. Within tree stump microsites, the impact of tree root systems, evaluated by a resistivity model, was smaller compared to microsites with living trees or those with pit-and-mound topography but was still visible even several decades after the trees were windbroken or cut down. The ERT method is highly useful for quick evaluation of the impact of tree root systems on soils and regolith. This method, in contrast to traditional soil analyses, offers a continuous dataset for the entire microsite and at depths not normally reached by standard soil excavations. The non-invasive nature of ERT studies is especially important for protected areas as it was shown in the present study.

  5. Twenty-year follow-up study of radiocesium migration in soil.

    PubMed

    Clouvas, A; Xanthos, S; Takoudis, G; Antonopoulos-Domis, M; Zinoviadis, G; Vidmar, T; Likar, A

    2007-01-01

    The profile of (137)Cs present in undisturbed soil due to the Chernobyl accident was measured repeatedly for approximately 20 y. The vertical migration of (137)Cs in soil is a very slow process. The mean vertical migration velocity is estimated at approximately 0.1-0.2 cm y(-1). A method based on in situ gamma spectrometry measurements and Monte Carlo computations, aimed at estimating the profile of (137)Cs without performing any soil sampling, is investigated.

  6. Deep soil carbon dynamics are driven more by soil type than by climate: a worldwide meta-analysis of radiocarbon profiles.

    PubMed

    Mathieu, Jordane A; Hatté, Christine; Balesdent, Jérôme; Parent, Éric

    2015-11-01

    The response of soil carbon dynamics to climate and land-use change will affect both the future climate and the quality of ecosystems. Deep soil carbon (>20 cm) is the primary component of the soil carbon pool, but the dynamics of deep soil carbon remain poorly understood. Therefore, radiocarbon activity (Δ14C), which is a function of the age of carbon, may help to understand the rates of soil carbon biodegradation and stabilization. We analyzed the published 14C contents in 122 profiles of mineral soil that were well distributed in most of the large world biomes, except for the boreal zone. With a multivariate extension of a linear mixed-effects model whose inference was based on the parallel combination of two algorithms, the expectation-maximization (EM) and the Metropolis-Hasting algorithms, we expressed soil Δ14C profiles as a four-parameter function of depth. The four-parameter model produced insightful predictions of soil Δ14C as dependent on depth, soil type, climate, vegetation, land-use and date of sampling (R2=0.68). Further analysis with the model showed that the age of topsoil carbon was primarily affected by climate and cultivation. By contrast, the age of deep soil carbon was affected more by soil taxa than by climate and thus illustrated the strong dependence of soil carbon dynamics on other pedologic traits such as clay content and mineralogy. © 2015 John Wiley & Sons Ltd.

  7. Soil morphology of canopy and intercanopy sites in a pinon-Juniper woodland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davenport, D.W.; Wilcox, B.P.; Breshear, D.D.

    1996-11-01

    Pinon-juniper woodlands in the semiarid western USA have expanded as much as fivefold during the last 150 yr, often accompanied by losses of understory vegetation and increasing soil erosion. We conducted this study to determine the differences in soil morphology between canopy and intercanopy locations within a pinon (Pinus edulis Engelm.)-juniper [Juniperus monosperma (Engelm.) Sarg.] woodland with uniform parent material, topography, and climate. The woodland studied, located near Los Alamos, NM, has a mean tree age of 135 yr. We examined soil morphology by augering 135 profiles in a square grid pattern and comparing soils under pinon and juniper canopiesmore » with intercanopy soils. Only two of the 17 morphological properties compared showed significant differences. The B horizons make up a slightly greater proportion of total profile thickness in intercanopy soils, and there are higher percentages of coarse fragments in the lower portions of canopy soil profiles. Canopy soils have lower mean pH and higher mean organic C than intercanopy soils. Regression analysis showed that most soil properties did not closely correspond with tree size, but total soil thickness and B horizon thickness are significantly greater under the largest pinon trees, and soil reaction is lower under the largest juniper trees. Our findings suggest that during the period in which pinon-juniper woodlands have been expanding, the trees have had only minor effects on soil morphology. 36 refs., 4 figs., 4 tabs.« less

  8. Vertical Distribution of Soil Denitrifying Communities in a Wet Sclerophyll Forest under Long-Term Repeated Burning.

    PubMed

    Liu, Xian; Chen, Chengrong; Wang, Weijin; Hughes, Jane M; Lewis, Tom; Hou, Enqing; Shen, Jupei

    2015-11-01

    Soil biogeochemical cycles are largely mediated by microorganisms, while fire significantly modifies biogeochemical cycles mainly via altering microbial community and substrate availability. Majority of studies on fire effects have focused on the surface soil; therefore, our understanding of the vertical distribution of microbial communities and the impacts of fire on nitrogen (N) dynamics in the soil profile is limited. Here, we examined the changes of soil denitrification capacity (DNC) and denitrifying communities with depth under different burning regimes, and their interaction with environmental gradients along the soil profile. Results showed that soil depth had a more pronounced impact than the burning treatment on the bacterial community size. The abundance of 16S rRNA and denitrification genes (narG, nirK, and nirS) declined exponentially with soil depth. Surprisingly, the nosZ-harboring denitrifiers were enriched in the deeper soil layers, which was likely to indicate that the nosZ-harboring denitrifiers could better adapt to the stress conditions (i.e., oxygen deficiency, nutrient limitation, etc.) than other denitrifiers. Soil nutrients, including dissolved organic carbon (DOC), total soluble N (TSN), ammonium (NH(4)(+)), and nitrate (NO(3)(-)), declined significantly with soil depth, which probably contributed to the vertical distribution of denitrifying communities. Soil DNC decreased significantly with soil depth, which was negligible in the depths below 20 cm. These findings have provided new insights into niche separation of the N-cycling functional guilds along the soil profile, under a varied fire disturbance regime.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erel, Y.

    The isotopic composition of Pb measured in soil samples was used to determine rates and mechanisms of anthropogenic Pb migration in the soil. Petrol-Pb found in soluble halogenated aerosols migrates into the soil and is retained in the soil by the stationary soil particles. Lead infiltration velocity is approximately 5 {times} 10{sup {minus}1} cm/year, and its retardation factor is estimated to be on the order of 1 {times} 10{sup 3}. The infiltration of Pb into the soil is best described by the advection-dispersion equation under the assumption that the time scale of the longitudinal dispersion is much longer than themore » time scale of advection. Therefore, the contribution of dispersion to the solution of the advection-dispersion equation is negligible. As a result, the soil profile of petrol-Pb resembles the time-dependent input function of petrol-Pb. The estimated petrol-Pb penetration velocity and the isotopic composition profile of Pb in off-road soil are used for the computation of the fraction of anthropogenic Pb in this soil. It is calculated that the fraction of anthropogenic Pb in the acid-leached soil samples and in the soil residue of this soil profile drops from 60 and 22% near the surface to 6 and 0% at a depth of 33 cm, respectively. The downward migration velocity of Pb in soils of the studied area, which are typically 50 to 100 cm deep, implies a residence time of Pb in the soil of 100 to 200 years.« less

  10. Classification of andisol soil on robusta coffee plantation in Silima Pungga - Pungga District

    NASA Astrophysics Data System (ADS)

    Marbun, P.; Nasution, Z.; Hanum, H.; Karim, A.

    2018-02-01

    The survey study aims to classify the Inceptisol soil on Robusta coffee plantation in Silima Pugga-Pungga District, from Order level to Sub Group level. The study was conducted on location of sample soil profiles which were determined based on Soil Map Unit (SMU) with the main Andisol Order, i.e. SMU 12, SMU 15 and SMU 17 of 18 existing SMU. The soil profiles were described to determine the morphological characteristics of the soil, while the physical and chemical properties were done by laboratory analysis. The soil samples were taken from each horizon in each profile and analyzed in the laboratory in the form of soil texture, bulk density, pH H2O, pH KCl, pH NaF, C-organic, exchangeable bases (Ca2+, Mg2+, K+, Na+), ZPC (zero point charge), base saturation, cation exchange capasity (CEC), P-retention, Al-Oxalate (Al-O) and Si-Oxalate (Si-O). The results showed that the classification of Andisol soil based on Soil Taxonomy only has one Sub Group namely Typic Hapludand. It is expected that the results of this study can provide information for more appropriate land management in order to increase the production of Robusta coffee plant in Silima Pungga-Pungga Sub district.

  11. [Effects of land use change on soil active organic carbon in deep soils in Hilly Loess Plateau region of Northwest China].

    PubMed

    Zhang, Shuai; Xu, Ming-Xiang; Zhang, Ya-Feng; Wang, Chao-Hua; Chen, Gai

    2015-02-01

    Response of soil active organic carbon to land-use change has become a hot topic in current soil carbon and nutrient cycling study. Soil active organic carbon distribution characteristics in soil profile under four land-use types were investigated in Ziwuling forest zone of the Hilly Loess Plateau region. The four types of land-use changes included natural woodland converted into artificial woodland, natural woodland converted into cropland, natural shrubland converted into cropland and natural shrubland converted into revegetated grassland. Effects of land-use changes on soil active organic carbon in deep soil layers (60-200 cm) were explored by comparison with the shallow soil layers (0-60 cm). The results showed that: (1) The labile organic carbon ( LOC) and microbial carbon (MBC) content were mainly concentrated in the shallow 0-60 cm soil, which accounted for 49%-66% and 71%-84% of soil active organic carbon in the profile (0-200 cm) under different land-use types. Soil active organic carbon content in shallow soil was significantly varied for the land-use changes types, while no obvious difference was observed in soil active organic carbon in deep soil layer. (2) Land-use changes exerted significant influence on soil active organic carbon, the active organic carbon in shallow soil was more sensitive than that in deep soil. The four types of land-use changes, including natural woodland to planted woodland, natural woodland to cropland, natural shrubland to revegetated grassland and natural shrubland to cropland, LOC in shallow soil was reduced by 10%, 60%, 29%, 40% and LOC in the deep layer was decreased by 9%, 21%, 12%, 1%, respectively. MBC in the shallow soil was reduced by 24% 73%, 23%, 56%, and that in the deep layer was decreased by 25%, 18%, 8% and 11%, respectively. (Land-use changes altered the distribution ratio of active organic carbon in soil profile. The ratio between LOC and SOC in shallow soil increased when natural woodland and shrubland were converted into farmland, but no obvious difference was observed in deep soil. The ratio of MBC/SOC in shallow soil decreased when natural shrubland was converted into farmland, also, no significant difference was detected in the ratio of MBC/SOC for other land-use change types. The results suggested that land-use change exerted significant influence on soil active organic carbon content and distribution proportion in soil profile. Soil organic carbon in deep soil was more stable than that in shallow soil.

  12. [Characteristics of soil pH and exchangeable acidity in red soil profile under different vegetation types].

    PubMed

    Ji, Gang; Xu, Ming-gang; Wen, Shi-lin; Wang, Bo-ren; Zhang, Lu; Liu, Li-sheng

    2015-09-01

    The characteristics of soil pH and exchangeable acidity in soil profile under different vegetation types were studied in hilly red soil regions of southern Hunan Province, China. The soil samples from red soil profiles within 0-100 cm depth at fertilized plots and unfertilized plots were collected and analyzed to understand the profile distribution of soil pH and exchangeable acidity. The results showed that, pH in 0-60 cm soil from the fertilized plots decreased as the following sequence: citrus orchard > Arachis hypogaea field > tea garden. As for exchangeable acidity content, the sequence was A. hypogaea field ≤ citrus orchard < tea garden. After tea tree and A. hypogaea were planted for long time, acidification occurred in surface soil (0-40 cm), compared with the deep soil (60-100 cm), and soil pH decreased by 0.55 and 0.17 respectively, but such changes did not occur in citrus orchard. Soil pH in 0-40 cm soil from the natural recovery vegetation unfertilized plots decreased as the following sequence: Imperata cylindrica land > Castanea mollissima garden > Pinus elliottii forest ≥ Loropetalum chinensis forest. As for exchangeable acidity content, the sequence was L cylindrica land < C. mollissima garden < L. chinensis forest ≤ P. elliottii forest. Soil pH in surface soil (0-20 cm) from natural forest plots, secondary forest and Camellia oleifera forest were significantly lower than that from P. massoniana forest, decreased by 0.34 and 0.20 respectively. For exchangeable acidity content in 0-20 cm soil from natural forest plot, P. massoniana forest and secondary forest were significantly lower than C. oleifera forest. Compared with bare land, surface soil acidification in unfertilized plots except I. cylindrica land had been accelerated, and the natural secondary forest was the most serious among them, with surface soil pH decreasing by 0.52. However, the pH increased in deep soils from unfertilized plots except natural secondary forest, and I. cylindrica land was the most obvious among them, with soil pH increasing by 0.43. The effects of fertilization and vegetation type on pH and exchangeable acidity decreased with the increasing soil depth from all plots.

  13. Microbial Community Dynamics in Soil Depth Profiles Over 120,000 Years of Ecosystem Development

    PubMed Central

    Turner, Stephanie; Mikutta, Robert; Meyer-Stüve, Sandra; Guggenberger, Georg; Schaarschmidt, Frank; Lazar, Cassandre S.; Dohrmann, Reiner; Schippers, Axel

    2017-01-01

    Along a long-term ecosystem development gradient, soil nutrient contents and mineralogical properties change, therefore probably altering soil microbial communities. However, knowledge about the dynamics of soil microbial communities during long-term ecosystem development including progressive and retrogressive stages is limited, especially in mineral soils. Therefore, microbial abundances (quantitative PCR) and community composition (pyrosequencing) as well as their controlling soil properties were investigated in soil depth profiles along the 120,000 years old Franz Josef chronosequence (New Zealand). Additionally, in a microcosm incubation experiment the effects of particular soil properties, i.e., soil age, soil organic matter fraction (mineral-associated vs. particulate), O2 status, and carbon and phosphorus additions, on microbial abundances (quantitative PCR) and community patterns (T-RFLP) were analyzed. The archaeal to bacterial abundance ratio not only increased with soil depth but also with soil age along the chronosequence, coinciding with mineralogical changes and increasing phosphorus limitation. Results of the incubation experiment indicated that archaeal abundances were less impacted by the tested soil parameters compared to Bacteria suggesting that Archaea may better cope with mineral-induced substrate restrictions in subsoils and older soils. Instead, archaeal communities showed a soil age-related compositional shift with the Bathyarchaeota, that were frequently detected in nutrient-poor, low-energy environments, being dominant at the oldest site. However, bacterial communities remained stable with ongoing soil development. In contrast to the abundances, the archaeal compositional shift was associated with the mineralogical gradient. Our study revealed, that archaeal and bacterial communities in whole soil profiles are differently affected by long-term soil development with archaeal communities probably being better adapted to subsoil conditions, especially in nutrient-depleted old soils. PMID:28579976

  14. Geophysical techniques for reconnaissance investigations of soils and surficial deposits in mountainous terrain

    USGS Publications Warehouse

    Olson, C.G.; Doolittle, J.A.

    1985-01-01

    Two techniques were assessed for their capabilities in reconnaissance studies of soil characteristics: depth to the water table and depth to bedrock beneath surficial deposits in mountainous terrain. Ground-penetrating radar had the best near-surface resolution in the upper 2 m of the profile and provided continuous interpretable imagery of soil profiles and bedrock surfaces. Where thick colluvium blankets side slopes, the GPR could not consistently define the bedrock interface. In areas with clayey or shaley sediments, the GPR is also more limited in defining depth and is less reliable. Seismic refraction proved useful in determining the elevation of the water table and depth to bedrock, regardless of thickness of overlying material, but could not distinguish soil-profile characteristics.-from Authors

  15. Estimation of soil hydraulic properties with microwave techniques

    NASA Technical Reports Server (NTRS)

    Oneill, P. E.; Gurney, R. J.; Camillo, P. J.

    1985-01-01

    Useful quantitative information about soil properties may be obtained by calibrating energy and moisture balance models with remotely sensed data. A soil physics model solves heat and moisture flux equations in the soil profile and is driven by the surface energy balance. Model generated surface temperature and soil moisture and temperature profiles are then used in a microwave emission model to predict the soil brightness temperature. The model hydraulic parameters are varied until the predicted temperatures agree with the remotely sensed values. This method is used to estimate values for saturated hydraulic conductivity, saturated matrix potential, and a soil texture parameter. The conductivity agreed well with a value measured with an infiltration ring and the other parameters agreed with values in the literature.

  16. Using Short-Lived Fallout Radionuclides to Study Soil Mixing on Hillslopes in Different Climatic and Tectonic Settings

    NASA Astrophysics Data System (ADS)

    Kaste, J. M.; Heimsath, A. M.

    2002-12-01

    Hillslope soil processes can be difficult to quantify, but an understanding of soil and sediment dynamics is required for an accurate prediction of topographic evolution. Our data indicate that soil mixing processes and rates on hillslopes vary widely across different climatic and geologic settings. We use the depth-profiles of short-lived fallout radionuclides 210Pb, 137Cs, and 241Am measured in soils sampled from the Hubbard Brook Experimental Forest in NH (HBEF), USA, from Point Rays National Seashore (PRNS), CA, USA, and from the Nunnock River Valley (NR) in Southeastern Australia to study short-term (<100 y) soil mixing resulting from bioturbation. Results from the radionuclide analysis suggest that some fraction of the soil at NR is mixed from the surface to a depth of up to 0.5m on timescales of a few decades. These results support previous studies at NR quantifying soil mixing at millennial timescales using optically stimulated luminescence (OSL). Field evidence at NR corroborates these data, showing a clear lack of soil profile development and differentiation. However, in well-developed spodosols at the HBEF, radionuclide data suggests that mixing is confined to the forest floor (upper 12 cm of organic matter) and surface grains do not penetrate to significant depth in the profile on short timescales. Tree-throw seems to be the primary process mixing soil at the HBEF, which mixes soil on timescales of several centuries. At NR and PRNS however, bioturbation by insects and burrowing mammals mixes surface soil particles deep into the profile on timescales of decades. These differences in bioturbation rates result from different climatic and geologic settings, and we will discuss the implications for sediment transport mechanisms on hillslopes, as well as for soil carbon storage and the fate of atmospherically-delivered conaminants.

  17. Features of abandoned cemetery soils on sandy substrates in Northern Poland

    NASA Astrophysics Data System (ADS)

    Majgier, L.; Rahmonov, O.; Bednarek, R.

    2014-06-01

    Morphological and chemical features of cemetery soils (Necrosols and undisturbed cemetery soils) have been studied with Northern Poland as an example. Special attention has been given to the contents of the total phosphorus (as an indicator of the anthropogenic impact); the organic carbon; the total nitrogen; the calcium carbonate; and the changes in the acidity and total Ca, Na, K, Al, Fe, Mg, Zn, Cd, and Pb. The soil profiles have been compared to the control soil (a Brunic Arenosol according to the WRB classification) occurring beyond the cemetery area. The changes in the studied burial soils are mainly manifested in their morphology: the disturbance of the primary genetic horizons and the presence of mixed soil horizons and artifacts (bones, coffin remains, limestone-concrete debris of the cemetery infrastructure). Such changes in the chemical properties as an increase in the contents of the organic carbon and total nitrogen and the soil reaction were observed. Our studies have shown that the highest Ptotal concentration is observed in the A horizons of the anthropogenic burial horizons and undisturbed cemetery soils. The content of phosphorus in the Necrosols is significantly higher than that in the control soil profile, as is observed for the Cgrb layers of burial Necrosols. The morphology and chemistry of the undisturbed cemetery soils are very similar to those of the control profile.

  18. [Effects of land cover change on soil organic carbon and light fraction organic carbon at river banks of Fuzhou urban area].

    PubMed

    Zeng, Hong-Da; Du, Zi-Xian; Yang, Yu-Sheng; Li, Xi-Bo; Zhang, Ya-Chun; Yang, Zhi-Feng

    2010-03-01

    By using Vario EL III element analyzer, the vertical distribution characteristics of soil organic carbon (SOC) and light-fraction organic carbon (LFOC) in the lawn, patch plantation, and reed wetland at river banks of Fuzhou urban area were studied in July 2007. For all the three land cover types, the SOC and LFOC contents were the highest in surface soil layer, and declined gradually with soil depth. Compared with reed wetland, the lawn and patch plantation had higher SOC and LFOC contents in each layer of the soil profile (0-60 cm), and the lawn had significantly higher contents of SOC and LFOC in 0-20 cm soil layer, compared with the patch plantation. After the reed wetland was converted into lawn and patch plantation, the SOC stock in the soil profile was increased by 94.8% and 72.0%, and the LFOC stock was increased by 225% and 93%, respectively. Due to the changes of plant species, plant density, and management measure, the conversion from natural wetland into human-manipulated green spaces increased the SOC and LFOC stocks in the soil profile, and improved the soil quality. Compared with the SOC, soil LFOC was more sensitive to land use/cover change, especially for those in 0-20 cm soil layer.

  19. Impact of sedimentation on wetland carbon sequestration in an agricultural watershed.

    PubMed

    McCarty, Gregory; Pachepsky, Yakov; Ritchie, Jerry

    2009-01-01

    Landscape redistribution of soil C is common within agricultural ecosystems. Little is known about the effects of upland sediment deposition on C dynamics within riparian wetlands. To assess sedimentation impact, we obtained profile samples of wetland soil and used the combination of (137)Cs, (210)Pb, and (14)C chronological markers to determine rates of C sequestration and mineral deposition over the history of a wetland within a first-order catchment under agricultural management in the coastal plains of the United States. Substantial post settlement deposition in the wetland soil was evidenced in places by a 20- to 40-cm layer of mineral soil that buried the original histosol. Soil profiles contained a minimum in C content within the top 35 cm of the profile which originated from a rapid deposition from low C upland soils. Radiocarbon and radioisotope dating showed that increases in C above this minimum were the result of C sequestered in the past approximately 50 yr. Modeling the kinetics of modern C dynamics using the (137)Cs and (210)Pb markers within these surface profiles provides strong evidence for accelerated C sequestration associated with mineral sediment deposition in the ecosystem. These findings indicate that at the landscape scale, dilution of ecosystem C by import of low C upland sediment into wetlands stimulates C sequestration by pulling soil C content below some pedogenic equilibrium value for the ecosystem. They also indicate that over the history of the wetland, rates of C accretion may be linked to mineral soil deposition.

  20. High Voltage Discharge Profile on Soil Breakdown Using Impulse Discharge

    NASA Astrophysics Data System (ADS)

    Fajingbesi, F. E.; Midi, N. S.; Elsheikh, E. M. A.; Yusoff, S. H.

    2017-06-01

    Grounding terminals are mandatory in electrical appliance design as they provide safety route during overvoltage faults. The soil (earth) been the universal ground is assumed to be at zero electric potential. However, due to properties like moisture, pH and available nutrients; the electric potential may fluctuate between positive and negative values that could be harmful for internally connected circuits on the grounding terminal. Fluctuations in soil properties may also lead to current crowding effect similar to those seen at the emitters of semiconductor transistors. In this work, soil samples are subjected to high impulse voltage discharge and the breakdown characteristics was profiled. The results from profiling discharge characteristics of soil in this work will contribute to the optimization of grounding protection system design in terms of electrode placement. This would also contribute to avoiding grounding electrode current crowding, ground potential rise fault and electromagnetic coupling faults.

  1. BOREAS TGB-1 Soil CH4 and CO2 Profile Data from NSA Tower Sites

    NASA Technical Reports Server (NTRS)

    Crill, Patrick; Varner, Ruth K.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOREAS TGB-1 team made numerous measurements of trace gas concentrations and fluxes at various NSA sites. This data set contains methane (CH4) and carbon dioxide (CO2) concentrations in soil profiles from the NSA-OJP, NSA-OBS, NSA-YJP, and NSA-BP sites during the period of 23-May to 20-Sep-1994. The soil gas sampling profiles of CH 4 and CO 2 were completed to quantify controls on CO2 and CH4 fluxes in the boreal forest. The data are provided in tabular ASCII files.

  2. HCMM energy budget data as a model input for assessing regions of high potential groundwater pollution

    NASA Technical Reports Server (NTRS)

    Moore, D. G. (Principal Investigator); Heilman, J.; Tunheim, J. A.; Baumberger, V.

    1978-01-01

    The author has identified the following significant results. To investigate the general relationship between surface temperature and soil moisture profiles, a series of model calculations were carried out. Soil temperature profiles were calculated during a complete diurnal cycle for a variety of moisture profiles. Preliminary results indicate the surface temperature difference between two sites measured at about 1400 hours is related to the difference in soil moisture within the diurnal damping depth (about 50 cm). The model shows this temperature difference to vary considerably throughout the diurnal cycle.

  3. Reducing variation in decomposition odour profiling using comprehensive two-dimensional gas chromatography.

    PubMed

    Perrault, Katelynn A; Stefanuto, Pierre-Hugues; Stuart, Barbara H; Rai, Tapan; Focant, Jean-François; Forbes, Shari L

    2015-01-01

    Challenges in decomposition odour profiling have led to variation in the documented odour profile by different research groups worldwide. Background subtraction and use of controls are important considerations given the variation introduced by decomposition studies conducted in different geographical environments. The collection of volatile organic compounds (VOCs) from soil beneath decomposing remains is challenging due to the high levels of inherent soil VOCs, further confounded by the use of highly sensitive instrumentation. This study presents a method that provides suitable chromatographic resolution for profiling decomposition odour in soil by comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry using appropriate controls and field blanks. Logarithmic transformation and t-testing of compounds permitted the generation of a compound list of decomposition VOCs in soil. Principal component analysis demonstrated the improved discrimination between experimental and control soil, verifying the value of the data handling method. Data handling procedures have not been well documented in this field and standardisation would thereby reduce misidentification of VOCs present in the surrounding environment as decomposition byproducts. Uniformity of data handling and instrumental procedures will reduce analytical variation, increasing confidence in the future when investigating the effect of taphonomic variables on the decomposition VOC profile. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Impacts of Dust on Tropical Volcanic Soil Formation: Insights from Strontium and Uranium-Series Isotopes in Soils from Basse-Terre Island, French Guadeloupe

    NASA Astrophysics Data System (ADS)

    Pereyra, Y.; Ma, L.; Sak, P. B.; Gaillardet, J.; Buss, H. L.; Brantley, S. L.

    2015-12-01

    Dust inputs play an important role in soil formation, especially for thick soils developed on tropical volcanic islands. In these regions, soils are highly depleted due to intensive chemical weathering, and mineral nutrients from dusts have been known to be important in sustaining soil fertility and productivity. Tropical volcanic soils are an ideal system to study the impacts of dust inputs on the ecosystem. Sr and U-series isotopes are excellent tracers to identify sources of materials in an open system if the end-members have distinctive isotope signatures. These two isotope systems are particularly useful to trace the origin of atmospheric inputs into soils and to determine rates and timescales of soil formation. This study analyzes major elemental concentrations, Sr and U-series isotope ratios in highly depleted soils in the tropical volcanic island of Basse-Terre in French Guadeloupe to determine atmospheric input sources and identify key soil formation processes. We focus on three soil profiles (8 to 12 m thick) from the Bras-David, Moustique Petit-Bourg, and Deshaies watersheds; and on the adjacent rivers to these sites. Results have shown a significant depletion of U, Sr, and major elements in the deep profile (12 to 4 m) attributed to rapid chemical weathering. The top soil profiles (4 m to the surface) all show addition of elements such as Ca, Mg, U, and Sr due to atmospheric dust. More importantly, the topsoil profiles have distinct Sr and U-series isotope compositions from the deep soils. Sr and U-series isotope ratios of the top soils and sequential extraction fractions confirm that the sources of the dust are from the Saharan dessert, through long distance transport from Africa to the Caribbean region across the Atlantic Ocean. During the transport, some dust isotope signatures may also have been modified by local volcanic ashes and marine aerosols. Our study highlights that dusts and marine aerosols play important roles in element cycles and nutrient sources in the highly depleted surface soils of tropical oceanic islands.

  5. Variations in bacterial and fungal community composition along the soil depth profiles determined by pyrosequencing

    NASA Astrophysics Data System (ADS)

    Ko, D.; Yoo, G.; Jun, S. C.; Yun, S. T.; Chung, H.

    2015-12-01

    Soil microorganisms play key roles in nutrient cycling, and are distributed throughout the soil profile. Currently, there is little information about the characteristics of the microbial communities along the soil depth because most studies focus on microorganisms inhabiting the soil surface. To better understand the functions and composition of microbial communities and the biogeochemical factors that shape them at different soil depth, we analyzed soil microbial activities and bacterial and fungal community composition in a soil profile of a fallow field located in central Korea. Soil samples were taken using 120-cm soil cores. To analyze the composition of bacterial and fungal communities, barcoded pyrosequnecing analysis of 16S rRNA genes (bacteria) and ITS region (fungi) was conducted. Among the bacterial groups, the abundance of Proteobacteria (38.5, 23.2, 23.3, 26.1 and 17.5%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively) and Firmicutes (12.8, 11.3, 8.6, 4.3 and 0.4%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively) decreased with soil depth. On the other hand, the abundance of Ascomycota (51.2, 48.6, 65.7, 46.1, and 45.7%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively), a dominant fungal group at this site, showed no significant difference along the soil profile. To examine the vertical difference of microbial activities, activity of five extracellular enzymes that take part in cycling of C, N, and P in soil ecosystems, beta-1,4-glucosidase, cellobiohydrolase, beta-1,4-xylosidase, beta-1,4-N-acetylglucosaminidase, and acid phosphatase were analyzed. The soil enzyme activity declined with soil depth. For example, acid phosphatase activity was 88.5 (± 14.6 (± 1 SE)), 30.0 (± 5.9), 18.0 (± 3.5), 14.1 (± 3.7), and 10.7 (± 3.8) nmol g-1 hr-1, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively. These metagenomics studies, along with other studies on microbial functions, are expected to enhance our understanding on the complexity of soil microbial communities and their relationship with biogeochemical factors.

  6. Soil Organic Carbon (SOC) distribution in two differents soil types (Podzol and Andosol) under natural forest cover.

    NASA Astrophysics Data System (ADS)

    Álvarez-Romero, Marta; Papa, Stefania; Verstraeten, Arne; Cools, Nathalie; Lozano-García, Beatriz; Parras-Alcántara, Luis; Coppola, Elio

    2017-04-01

    Andosols are young soils that shall know a successive evolution towards pedological types where the dominant pedogenetic processes are more evident. Vegetation and climate influence Andosols evolution to other order of soils. In cold and wet climates or on acid vulcanite under heavy leaching young Andosols could change into Podzols (Van Breemn and Buurman, 1998). Were investigated a Podzol soil (World References Base, 2014) at Zoniën (Belgium), were and an Andosol soil (World References Base, 2014) at Lago Laceno (Avellino, Italy). This study shows the data on the SOC (Soil Organic Carbon) fractionation in two profiles from two natural pine forest soils. Together with the conventional activities of sampling and analysis of soil profile were examined surveys meant to fractionation and characterization of SOC, in particular: Total Organic Carbon (TOC) and Total Extractable Carbon (TEC) soil contents were determined by Italian official method of soil analysis (Mi.P.A.F. (2000)). Different soil C fractions were also determined: Humic Acid Carbon (HAC), Fulvic Acid Carbon (FAC), Not Humic Carbon (NHC) and Humin Carbon (Huc) fractions were obtained by difference. In the whole profile, therefore, were also assayed cellulose and lignin contents. The aim of this work was to compare the distribution of different soil organic components in a podzol and a soil with andic properties. The data show great similarity, among the selected profiles, in the organic components distribution estudied. References: - Mi.P.A.F. - Ministero per le Politiche Agricole e Forestali - Osservatorio Nazionale Pedologico e per la Qualità del Suolo (2000): Metodi Ufficiali di Analisi Chimica del Suolo. In: Franco Angeli (Editor), Collana di metodi analitici per l'agricoltura diretta da Paolo Sequi, n. 1124.2, Milano, Italy. - Van Breemn N. and Buurman P. (1998) Chapter 12 Formation of Andisols. In: Soil formation. Kluwer Ed., Wageningen, The Netherlands, 271-289. -Ussiri D.A.N., Johnson C.E.J. (2003). Characterization of organic matter in a northern hardwood forest soil by 13C NMR spectroscopy and chemical methods. Geoderma, 111:123-149. -Van Soest, P.J., Wine, R.H., (1968). Determination of lignin and cellulose in acid-detergent fibre with permanganate. Journal of the Association of Official Agricultural Chemists 51, 780-785. - Ciavatta C., Govi M., Vittori Antisari L., Sequi P. (1990). Characterization of humified compounds by extraction and fractionation on solid polyvinylpyrrolidone. Journal of Chromatography, 509:141-146. -Dell'Abate M.T., Benedetti A., Trinchera A., Dazzi C. (2002). Humic substances along the profile of two Typic Haploxerert. Geoderma, 107:281-296

  7. Assimilation of Remotely Sensed Soil Moisture Profiles into a Crop Modeling Framework for Reliable Yield Estimations

    NASA Astrophysics Data System (ADS)

    Mishra, V.; Cruise, J.; Mecikalski, J. R.

    2017-12-01

    Much effort has been expended recently on the assimilation of remotely sensed soil moisture into operational land surface models (LSM). These efforts have normally been focused on the use of data derived from the microwave bands and results have often shown that improvements to model simulations have been limited due to the fact that microwave signals only penetrate the top 2-5 cm of the soil surface. It is possible that model simulations could be further improved through the introduction of geostationary satellite thermal infrared (TIR) based root zone soil moisture in addition to the microwave deduced surface estimates. In this study, root zone soil moisture estimates from the TIR based Atmospheric Land Exchange Inverse (ALEXI) model were merged with NASA Soil Moisture Active Passive (SMAP) based surface estimates through the application of informational entropy. Entropy can be used to characterize the movement of moisture within the vadose zone and accounts for both advection and diffusion processes. The Principle of Maximum Entropy (POME) can be used to derive complete soil moisture profiles and, fortuitously, only requires a surface boundary condition as well as the overall mean moisture content of the soil column. A lower boundary can be considered a soil parameter or obtained from the LSM itself. In this study, SMAP provided the surface boundary while ALEXI supplied the mean and the entropy integral was used to tie the two together and produce the vertical profile. However, prior to the merging, the coarse resolution (9 km) SMAP data were downscaled to the finer resolution (4.7 km) ALEXI grid. The disaggregation scheme followed the Soil Evaporative Efficiency approach and again, all necessary inputs were available from the TIR model. The profiles were then assimilated into a standard agricultural crop model (Decision Support System for Agrotechnology, DSSAT) via the ensemble Kalman Filter. The study was conducted over the Southeastern United States for the growing seasons from 2015-2017. Soil moisture profiles compared favorably to in situ data and simulated crop yields compared well with observed yields.

  8. Methane, Carbon Dioxide and Nitrous Oxide Fluxes in Soil Profile under a Winter Wheat-Summer Maize Rotation in the North China Plain

    PubMed Central

    Wang, Yuying; Hu, Chunsheng; Ming, Hua; Oenema, Oene; Schaefer, Douglas A.; Dong, Wenxu; Zhang, Yuming; Li, Xiaoxin

    2014-01-01

    The production and consumption of the greenhouse gases (GHGs) methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) in soil profile are poorly understood. This work sought to quantify the GHG production and consumption at seven depths (0–30, 30–60, 60–90, 90–150, 150–200, 200–250 and 250–300 cm) in a long-term field experiment with a winter wheat-summer maize rotation system, and four N application rates (0; 200; 400 and 600 kg N ha−1 year−1) in the North China Plain. The gas samples were taken twice a week and analyzed by gas chromatography. GHG production and consumption in soil layers were inferred using Fick’s law. Results showed nitrogen application significantly increased N2O fluxes in soil down to 90 cm but did not affect CH4 and CO2 fluxes. Soil moisture played an important role in soil profile GHG fluxes; both CH4 consumption and CO2 fluxes in and from soil tended to decrease with increasing soil water filled pore space (WFPS). The top 0–60 cm of soil was a sink of atmospheric CH4, and a source of both CO2 and N2O, more than 90% of the annual cumulative GHG fluxes originated at depths shallower than 90 cm; the subsoil (>90 cm) was not a major source or sink of GHG, rather it acted as a ‘reservoir’. This study provides quantitative evidence for the production and consumption of CH4, CO2 and N2O in the soil profile. PMID:24892931

  9. Integrating depth functions and hyper-scale terrain analysis for 3D soil organic carbon modeling in agricultural fields at regional scale

    NASA Astrophysics Data System (ADS)

    Ramirez-Lopez, L.; van Wesemael, B.; Stevens, A.; Doetterl, S.; Van Oost, K.; Behrens, T.; Schmidt, K.

    2012-04-01

    Soil Organic Carbon (SOC) represents a key component in the global C cycle and has an important influence on the global CO2 fluxes between terrestrial biosphere and atmosphere. In the context of agricultural landscapes, SOC inventories are important since soil management practices have a strong influence on CO2 fluxes and SOC stocks. However, there is lack of accurate and cost-effective methods for producing high spatial resolution of SOC information. In this respect, our work is focused on the development of a three dimensional modeling approach for SOC monitoring in agricultural fields. The study area comprises ~420 km2 and includes 4 of the 5 agro-geological regions of the Grand-Duchy of Luxembourg. The soil dataset consist of 172 profiles (1033 samples) which were not sampled specifically for this study. This dataset is a combination of profile samples collected in previous soil surveys and soil profiles sampled for other research purposes. The proposed strategy comprises two main steps. In the first step the SOC distribution within each profile (vertical distribution) is modeled. Depth functions for are fitted in order to summarize the information content in the profile. By using these functions the SOC can be interpolated at any depth within the profiles. The second step involves the use of contextual terrain (ConMap) features (Behrens et al., 2010). These features are based on the differences in elevation between a given point location in the landscape and its circular neighbourhoods at a given set of different radius. One of the main advantages of this approach is that it allows the integration of several spatial scales (eg. local and regional) for soil spatial analysis. In this work the ConMap features are derived from a digital elevation model of the area and are used as predictors for spatial modeling of the parameters of the depth functions fitted in the previous step. In this poster we present some preliminary results in which we analyze: i. The use of different depth functions, ii. The use of different machine learning approaches for modeling the parameters of the fitted depth functions using the ConMap features and iii. The influence of different spatial scales on the SOC profile distribution variability. Keywords: 3D modeling, Digital soil mapping, Depth functions, Terrain analysis. Reference Behrens, T., K. Schmidt, K., Zhu, A.X. Scholten, T. 2010. The ConMap approach for terrain-based digital soil mapping. European Journal of Soil Science, v. 61, p.133-143.

  10. Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland.

    PubMed

    Eggemeyer, Kathleen D; Awada, Tala; Harvey, F Edwin; Wedin, David A; Zhou, Xinhua; Zanner, C William

    2009-02-01

    We used the natural abundance of stable isotopic ratios of hydrogen and oxygen in soil (0.05-3 m depth), plant xylem and precipitation to determine the seasonal changes in sources of soil water uptake by two native encroaching woody species (Pinus ponderosa P. & C. Lawson, Juniperus virginiana L.), and two C(4) grasses (Schizachyrium scoparium (Michx.) Nash, Panicum virgatum L.), in the semiarid Sandhills grasslands of Nebraska. Grass species extracted most of their water from the upper soil profile (0.05-0.5 m). Soil water uptake from below 0.5 m depth increased under drought, but appeared to be minimal in relation to the total water use of these species. The grasses senesced in late August in response to drought conditions. In contrast to grasses, P. ponderosa and J. virginiana trees exhibited significant plasticity in sources of water uptake. In winter, tree species extracted a large fraction of their soil water from below 0.9 m depth. In spring when shallow soil water was available, tree species used water from the upper soil profile (0.05-0.5 m) and relied little on water from below 0.5 m depth. During the growing season (May-August) significant differences between the patterns of tree species water uptake emerged. Pinus ponderosa acquired a large fraction of its water from the 0.05-0.5 and 0.5-0.9 m soil profiles. Compared with P. ponderosa, J. virginiana acquired water from the 0.05-0.5 m profile during the early growing season but the amount extracted from this profile progressively declined between May and August and was mirrored by a progressive increase in the fraction taken up from 0.5-0.9 m depth, showing plasticity in tracking the general increase in soil water content within the 0.5-0.9 m profile, and being less responsive to growing season precipitation events. In September, soil water content declined to its minimum, and both tree species shifted soil water uptake to below 0.9 m. Tree transpiration rates (E) and water potentials (Psi) indicated that deep water sources did not maintain E which sharply declined in September, but played an important role in the recovery of tree Psi. Differences in sources of water uptake among these species and their ecological implications on tree-grass dynamics and soil water in semiarid environments are discussed.

  11. Community-level physiological profiles of bacteria and fungi: Plate type and incubation temperature influences on contrasting soils

    Treesearch

    Aimee T. Classen; Sarah I. Boyle; Kristin E. Haskins; Steven T. Overby; Stephen C. Hart

    2003-01-01

    Temperature sensitivity of community-level physiological profiles (CLPPs) was examined for two semiarid soils from the southwestern United States using five different C-substrate profile microtiter plates (Biolog GN2, GP2, ECO, SFN2, and SFP2) incubated at five different temperature regimes.The CLPPs produced from all plate types were relatively unaffected by these...

  12. Soil pH on mobility of imazaquin in oxisols with positive balance of charges.

    PubMed

    Regitano, Jussara B; da Rocha, Wadson S D; Alleoni, Luís R F

    2005-05-18

    The influence of soil pH on the leaching potential of the ionizable herbicide imazaquin was assessed on the profile of two highly weathered soils having a net positive charge in the B horizon, in contrast to a soil having a net negative charge in the whole profile, using packed soil column experiments. Imazaquin leached to a large extent and faster at Kd values lower than 1.0 L kg(-1), a much more lenient limit than usually proposed for pesticides in the literature (Kd < 5.0 L kg(-1)). The amount of imazaquin leached increased with soil pH. As the soil pH increased, the percentage of imazaquin in the anionic forms, the negative surface potential of the soils, as well as imazaquin water solubility also increased, thus reducing sorption because of repulsive electrostatic forces (hydrophilic interactions). For all surface samples (0-0.2 m), imazaquin did not leach at soil pH values lower than pKa (3.8) and more than 80% of the applied amount was leached at pH values higher than 5.5. For subsurface samples from the acric soils, imazaquin only began to leach at soil pH values > zero point of salt effects (ZPSE > 5.7). In conclusion, the use of surface K(oc) values to predict the amount of imazaquin leached within soil profiles having a positive balance of charges may greatly overestimate its actual leaching potential.

  13. Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils.

    PubMed

    Jansa, Jan; Erb, Angela; Oberholzer, Hans-Rudolf; Smilauer, Petr; Egli, Simon

    2014-04-01

    Arbuscular mycorrhizal fungi (AMF) are ubiquitous soil fungi, forming mutualistic symbiosis with a majority of terrestrial plant species. They are abundant in nearly all soils, less diverse than soil prokaryotes and other intensively studied soil organisms and thus are promising candidates for universal indicators of land management legacies and soil quality degradation. However, insufficient data on how the composition of indigenous AMF varies along soil and landscape gradients have hampered the definition of baselines and effect thresholds to date. Here, indigenous AMF communities in 154 agricultural soils collected across Switzerland were profiled by quantitative real-time PCR with taxon-specific markers for six widespread AMF species. To identify the key determinants of AMF community composition, the profiles were related to soil properties, land management and site geography. Our results indicate a number of well-supported dependencies between abundances of certain AMF taxa and soil properties such as pH, soil fertility and texture, and a surprising lack of effect of available soil phosphorus on the AMF community profiles. Site geography, especially the altitude and large geographical distance, strongly affected AMF communities. Unexpected was the apparent lack of a strong land management effect on the AMF communities as compared to the other predictors, which could be due to the rarity of highly intensive and unsustainable land management in Swiss agriculture. In spite of the extensive coverage of large geographical and soil gradients, we did not identify any taxon suitable as an indicator of land use among the six taxa we studied. © 2014 John Wiley & Sons Ltd.

  14. Stratification and Storage of Soil Organic Carbon and Nitrogen as Affected by Tillage Practices in the North China Plain

    PubMed Central

    Zhang, Xiang-Qian; Kong, Fan-Lei; Chen, Fu; Lal, Rattan; Zhang, Hai-Lin

    2015-01-01

    Tillage practices can redistribute the soil profiles, and thus affects soil organic carbon (SOC), and its storage. The stratification ratio (SR) can be an indicator of soil quality. This study was conducted to determine tillage effects on the profile distribution of certain soil properties in winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) systems in the North China Plain (NCP). Three tillage treatments, including no till (NT), rotary tillage (RT), and plow tillage (PT), were established in 2001 in Luancheng County, Hebei Province. The concentration, storage, and SR of SOC and soil total nitrogen (TN) were assessed in both the wheat and maize seasons. Compared with RT and PT, the mean SRs for all depth ratios of SOC under NT increased by 7.85% and 30.61% during the maize season, and by 14.67% and 30.91% during the wheat season, respectively. The SR of TN for 0–5:30–50 cm increased by 140%, 161%, and 161% in the maize season, and 266%, 154%, and 122% in the wheat season compared to the SR for 0–5:5–10 cm under NT, RT and PT, respectively. The data indicated that SOC and TN were both concentrated in the surface-soil layers (0–10 cm) under NT but were distributed relatively evenly through the soil profile under PT. Meanwhile, the storage of SOC and TN was higher under NT for the surface soil (0–10 cm) but was higher under PT for the deeper soil (30–50 cm). Furthermore, the storage of SOC and TN was significantly related to SR of SOC and TN along the whole soil profile (P<0.0001). Therefore, SR could be used to explain and indicate the changes in the storage of SOC and TN. Further, NT stratifies SOC and TN, enhances the topsoil SOC storage, and helps to improve SOC sequestration and soil quality. PMID:26075391

  15. Spatial and temporal variability of soil moisture on the field with and without plants*

    NASA Astrophysics Data System (ADS)

    Usowicz, B.; Marczewski, W.; Usowicz, J. B.

    2012-04-01

    Spatial and temporal variability of the natural environment is its inherent and unavoidable feature. Every element of the environment is characterized by its own variability. One of the kinds of variability in the natural environment is the variability of the soil environment. To acquire better and deeper knowledge and understanding of the temporal and spatial variability of the physical, chemical and biological features of the soil environment, we should determine the causes that induce a given variability. Relatively stable features of soil include its texture and mineral composition; examples of those variables in time are the soil pH or organic matter content; an example of a feature with strong dynamics is the soil temperature and moisture content. The aim of this study was to identify the variability of soil moisture on the field with and without plants using geostatistical methods. The soil moisture measurements were taken on the object with plant canopy and without plants (as reference). The measurements of soil moisture and meteorological components were taken within the period of April-July. The TDR moisture sensors covered 5 cm soil layers and were installed in the plots in the soil layers of 0-0.05, 0.05-0.1, 0.1-0.15, 0.2-0.25, 0.3-0.35, 0.4-0.45, 0.5-0.55, 0.8-0.85 m. Measurements of soil moisture were taken once a day, in the afternoon hours. For the determination of reciprocal correlation, precipitation data and data from soil moisture measurements with the TDR meter were used. Calculations of reciprocal correlation of precipitation and soil moisture at various depths were made for three objects - spring barley, rye, and bare soil, at the level of significance of p<0.05. No significant reciprocal correlation was found between the precipitation and soil moisture in the soil profile for any of the objects studied. Although the correlation analysis indicates a lack of correlation between the variables under consideration, observation of the soil moisture runs in particular objects and of precipitation distribution shows clearly that rainfall has an effect on the soil moisture. The amount of precipitation water that increased the soil moisture depended on the strength of the rainfall, on the hydrological properties of the soil (primarily the soil density), the status of the plant cover, and surface runoff. Basing on the precipitation distribution and on the soil moisture runs, an attempt was made at finding a temporal and spatial relationship between those variables, employing for the purpose the geostatistical methods which permit time and space to be included in the analysis. The geostatistical parameters determined showed the temporal dependence of moisture distribution in the soil profile, with the autocorrelation radius increasing with increasing depth in the profile. The highest values of the radius were observed in the plots with plant cover below the arable horizon, and the lowest in the arable horizon on the barley and fallow plots. The fractal dimensions showed a clear decrease in values with increasing depth in the plots with plant cover, while in the bare plots they were relatively constant within the soil profile under study. Therefore, they indicated that the temporal distribution of soil moisture within the soil profile in the bare field was more random in character than in the plots with plants. The results obtained and the analyses indicate that the moisture in the soil profile, its variability and determination, are significantly affected by the type and condition of plant canopy. The differentiation in moisture content between the plots studied resulted from different precipitation interception and different intensity of water uptake by the roots. * The work was financially supported in part by the ESA Programme for European Cooperating States (PECS), No.98084 "SWEX-R, Soil Water and Energy Exchange/Research", AO-3275.

  16. Imidacloprid movement in soils and impacts on soil microarthropods in southern Appalachian eastern hemlock stands.

    PubMed

    Knoepp, Jennifer D; Vose, James M; Michael, Jerry L; Reynolds, Barbara C

    2012-01-01

    Imidacloprid is a systemic insecticide effective in controlling the exotic pest (hemlock woolly adelgid) in eastern hemlock () trees. Concerns over imidacloprid impacts on nontarget species have limited its application in southern Appalachian ecosystems. We quantified the movement and adsorption of imidacloprid in forest soils after soil injection in two sites at Coweeta Hydrologic Laboratory in western North Carolina. Soils differed in profile depth, total carbon and nitrogen content, and effective cation exchange capacity. We injected imidacloprid 5 cm into mineral soil, 1.5 m from infested trees, using a Kioritz soil injector. We tracked the horizontal and vertical movement of imidacloprid by collecting soil solution and soil samples at 1 m, 2 m, and at the drip line from each tree periodically for 1 yr. Soil solution was collected 20 cm below the surface and just above the saprolite, and acetonitrile-extractable imidacloprid was determined through the profile. Soil solution and extractable imidacloprid concentrations were determined by high-performance liquid chromatography. Soil solution and extractable imidacloprid concentrations were greater in the site with greater soil organic matter. Imidacloprid moved vertically and horizontally in both sites; concentrations generally declined downward in the soil profile, but preferential flow paths allowed rapid vertical movement. Horizontal movement was limited, and imidacloprid did not move to the tree drip line. We found a negative relationship between adsorbed imidacloprid concentrations and soil microarthropod populations largely in the low-organic-matter site; however, population counts were similar to other studies at Coweeta. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. An in situ method for real-time monitoring of soil gas diffusivity

    NASA Astrophysics Data System (ADS)

    Laemmel, Thomas; Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike

    2016-04-01

    Soil aeration is an important factor for the biogeochemistry of soils. Generally, gas exchange between soil and atmosphere is assumed to be governed by molecular diffusion and by this way fluxes can be calculated using by Fick's Law. The soil gas diffusion coefficient DS represents the proportional factor between the gas flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gas through the soil. One common way to determine DS is taking core samples in the field and measuring DS in the lab. Unfortunately this method is destructive and laborious and it can only reflect a small fraction of the whole soil. As a consequence, uncertainty about the resulting effective diffusivity on the profile scale, i.e. the real aeration status remains. We developed a method to measure and monitor DS in situ. The set-up consists of a custom made gas sampling device, the continuous injection of an inert tracer gas and inverse gas transport modelling in the soil. The gas sampling device has seven sampling depths (from 0 to -43 cm of depth) and can be easily installed into vertical holes drilled by an auger, which allows for fast installation of the system. Helium (He) as inert tracer gas was injected continuously at the lower end of the device. The resulting steady state distribution of He was used to deduce the DS depth distribution of the soil. For Finite Element Modeling of the gas-sampling-device/soil system the program COMSOL was used. We tested our new method both in the lab and in a field study and compared the results with a reference lab method using soil cores. DS profiles obtained by our in-situ method were consistent with DS profiles determined based on soil core analyses. Soil gas profiles could be measured with a temporal resolution of 30 minutes. During the field study, there was an important rain event and we could monitor the decrease in soil gas diffusivity in the top soil due to water infiltration. The effect of soil water infiltration deeper into the soil on soil gas diffusivity could be observed during the following hours. Our new DS determination device can be quickly and easily installed and allows for monitoring continuously soil gas transport over a long time. It allows following modifications of soil gas diffusivity due to rain events. In addition it enables the analysis of non-diffusive soil gas transport processes.

  18. New characterization aspects of carbonate accumulation horizons in Chalky Champagne (NE of the Paris Basin, France)

    NASA Astrophysics Data System (ADS)

    Linoir, Damien; Thomachot-Schneider, Céline; Gommeaux, Maxime; Fronteau, Gilles; Barbin, Vincent

    2016-05-01

    The soil profiles of the Champagne area (NE of Paris Basin, France) occasionally show carbonate accumulation horizons (CAHs). From the top to the bottom, these soil profiles include a rendic leptosol horizon, a Quaternary cryoturbated paleosol (QCP), and a chalky substratum. The CAHs are located in the top part of the QCP. This study is aimed at highlighting the specific characteristics of CAHs compared to other soil profile horizons using geophysics, geochemistry, micromorphology, and mercury injection porosimetry. It is the first essential step for understanding the impact of CAHs on water transfers into the Champagne soil profiles. Our analyses show that Champagne CAHs are not systematically characterized by a typical induration unlike generally put forward in the regional literature. They are more porous and heterogeneous than their parent material (QCP). Carbonate accumulation horizons are also characterized by singular colorimetric parameters that are linked to their geochemical specific content, even if they bear a signature of the initial QCP before the pedogenic modification.

  19. National-Scale Changes in Soil Profile C and N in New Zealand Pastures are Determined by Land Use

    NASA Astrophysics Data System (ADS)

    Schipper, L. A.; Parfitt, R.; Ross, C.; Baisden, W. T.; Claydon, J.; Fraser, S.

    2010-12-01

    Grazed pasture is New Zealand’s predominant agricultural land-use and has been relatively recently developed from forest and native grasslands/shrub communities. From the 1850s onwards, land was cleared and exotic pastures established. Phosphorus fertilizer was increasingly used after 1950 which accelerated N fixation by clover. In the last two decades N fertilizers have been used, and grazing intensity has increased, thus affecting soil C and N. Re-sampling of 31 New Zealand soil profiles under grazed pasture measured surprisingly large losses of C and N over the last 2-3 decades (Schipper et al., 2007 Global Change Biology 13:1138-1144). These profiles were predominantly on the most intensively grazed flat land. We extended this re-sampling to 83 profiles (to 90 cm depth), to investigate whether changes in soil C and N stocks also occurred in less intensively managed pasture. Archived soils samples were analysed for total soil C and N alongside the newly collected samples. Intact cores were collected to determine bulk density through the profile. Over an average of 27 years, soils (0-30 cm) in flat dairy pastures significantly lost 0.73±0.16 Mg C ha-1y-1 and 57±16 kg N ha-1y-1 while we observed no change in soil C or N in flat pasture grazed by “dry stock” (e.g., sheep, beef), or in grazed tussock grasslands. Grazed hill country soils (0-30 cm) gained 0.52±0.18 Mg C ha-1y-1 and 66±18 kg N ha-1y-1. The losses of C and N were strongly correlated and C:N ratio has generally declined suggesting soils are becoming N saturated. Losses and gains also occurred in soil layers below 30 cm demonstrating that organic matter throughout the profile was responding to land use. The losses under dairying may be due to greater grazing pressure, fertilizer inputs and exports of C and N. There is evidence that grazing pressure reduces inputs of C below ground, reduces soil microbial C, and that dairy cow urine can mobilise C and N. Gains in hill country pastures may be due to long-term recovery from erosion and disturbance following land clearance. When changes were extrapolated across New Zealand taking into account the different areas of pastures, gains and losses cancelled one another (Table 1) but none-the-less demonstrate considerable alteration of basic soil properties at national scales, and show the usefulness of resampling sites providing that older samples have been archived.Table 1. Change in total C and total N of grazed land for top 30 cm extrapolated across New Zealand. SEM - standard error of the mean

  20. Soils of the Sylvania Wilderness-Recreation Area, western Upper Peninsula, Michigan.

    Treesearch

    James G. Bockheim; J.K. Jordan

    2004-01-01

    Characterizes 22 soil profiles in teh Sylvania Wilderness-Recreation Area on the Ottawa National Forest, including soil descriptions and laboratory data. A soil map at a scale of 1:24,000 is provided. The genesis of the soils is discussed.

  1. Carbon nitrogen ratio, δ13C, δ15N distribution in eroded and buried soil profiles along a small catena

    NASA Astrophysics Data System (ADS)

    Jakab, Gergely; Hegyi, István; Fullen, Michael; Szalai, Zoltán

    2017-04-01

    In addition to the serious environmental hazard soil erosion forms and reforms the soil surface. The intensity of these degrading and burial processes is highly variable, it fluctuates in time. One can only get a single view of the current status by the spatial analysis of soil depth and properties. Present study aims to estimate the dynamics of the former driving processes in detail those resulted the recent form of the landscape. Soil samples were taken along two intensively cultivated catenas from the surface to the parent material in vertical and from the ridge to the toe in horizontal direction. A non disturbed soil profile under continuous forest was also sampled as the initial, control status. Soil organic carbon (SOC), total nitrogen (TN), carbon nitrogen ratio (C/N), 13C and 15N stable isotope ratios were measured. Soil redistribution was supposed to be started right after the forest clearance 300 years before. Results indicated that the whole amount of solum (1 m) was taken by erosion in some local spots. Most of the soil loss was deposited at the toe, while vertical SOC and δ13C distributions (peaks) in the deposited profiles indicated the original soil surface at various depth. SOC peak in the profile indicated deeper in situ solum compared to the vertical peaks of the C/N and δ13C values. Presumably the layer of the highest SOC values in the sedimentation profiles is also formed by the deposition of initial soil loss from the upper parts of the catena. At this initial phase the selectivity of erosion was supposed to be quite effective for SOC that resulted the highest value. Therefore C/N and δ13C peaks fingerprint the original, in situ soil surface more adequately. The most effective erosion and deposition period was immediately after forest clearance. This emphasized that continuous tillage erosion had subordinate role compared to that of relief. Moreover, SOC erosion and burial in the present case was a sink in terms of mitigation of the atmospheric carbon content. G. Jakab was supported by the János Bolyai scholarship of the HAS, which is kindly acknowledged.

  2. Metal distribution and mobility in lateritic soils affected by Cu-Co smelting in the Copperbelt district, Zambia

    NASA Astrophysics Data System (ADS)

    Ettler, Vojtech; Mihaljevic, Martin; Majer, Vladimir; Kribek, Bohdan; Sebek, Ondrej

    2010-05-01

    The copper smelting activities in the Copperbelt mining district (Zambia) left a huge pollution related to the disposal sites of smelting waste (slags) and to the continuous deposition of the smelter stack particulates in the soil systems. We sampled 196 surface and subsurface soils in the vicinity of the Nkana copper smelter at Kitwe and a 110 cm deep lateritic soil profile in order to assess the regional distribution of metallic contaminants and their vertical mobility. The content of contaminants in soil samples were measured by ICP techniques and the lead isotopic compositions (206Pb/207Pb and 208Pb/206Pb ratios) were determined by ICP-MS. The spatial distribution of the major contaminants (Cu, Co, Pb, Zn) indicated the highest contamination NW of the smelter stack corresponding to the direction of prevailing winds in the area. The highest metal concentrations in soils were: 27410 ppm Cu, 606 ppm Co, 480 ppm Pb, 450 ppm Zn. Lead isotopes helped to discriminate the extent of metallic pollution related to the smelter emissions having similar 206Pb/207Pb ratio of 1.17-1.20 in contrast to the regional background value of 1.32. The investigation of the lateritic soil profile sampled in the near vicinity of the Nkana smelter indicated that contamination is mostly located in the uppermost soil horizons enriched in organic matter (< 10 cm). The sequential extraction procedure indicated that up to 33% of Cu and <10% of Co, Pb and Zn was mobile in the profile, being bound in the exchangeable fraction. However, in the deeper parts of the soil profile, metals were mostly bound in reducible fraction, presumably to hydrous ferric oxides. The combination of sequential extraction and lead isotopic determination indicated that the "mobile" fractions of Pb in the soil profile corresponded to the signatures of smelter particulate emissions (206Pb/207Pb = 1.17-1.20), which means that the anthropogenic emissions are the important source of mobile (and potentially bioavailable) metals.

  3. Soil abandonment in artificial soil terraces in marginal areas. Preliminary results of a case of water shortage effect in soils from Sultanate of Oman.

    NASA Astrophysics Data System (ADS)

    Saadi, Sara Kalifah Al; Kindi, Samaya Salim Al; Pracejus, Bernhard; Moraetis, Daniel

    2016-04-01

    Soil abandonment is taking place in marginal land areas in Sultanate of Oman. Artificial soil terraces in high elevation rocky mountainous areas left without agricultural activities due to water shortage. Soil terraces have been established approximately 700 years ago and constitute a significant part of the Oman cultural and natural heritage. The present study investigates the soil state in those areas and seeks the possible reasons for the land abandonment. Questionnaires were prepared to interview the opinion of the local people. In addition, meteorological data were gathered to analyze the rain patterns in the area and most importantly, six soil profiles in two different areas in marginal rocky areas of Oman were sampled. The soils are in artificial terraces in Wijma and Hadash villages with elevation of 1247 and 1469 m respectively at mountainous slopes of 20 to 45 degrees. Most of the land was abandoned the last 20 years, while one terrace had agriculture activity 3 years ago. The questioners and interviews showed that water shortage was the reason of land abandonment. The rain patterns show a reduction of annual precipitation at least the last 10 years of available metrological data in the area. The total soil depth in the six soil profiles was between 33 to 70 cm. The main horizons include AC and C and there was a characteristic hard soil horizon in most of the soil profiles with accumulation of carbonate minerals (caliche). The soil pH was mainly alkaline between 7.5 to 8.1 and the electrical conductivity range between 42 to 859 μS/cm. A horizonization in electrical conductivity showed more dissolved solids in lower horizons compare to the upper 10 cm of the soil and this was coinciding with the hard layers in lower soil profiles. It appeared that several hundred years (or maximum 1000 years) old soils showed the development of hard soil layers which are characteristic in arid areas. The upper soil layers showed low conductivity probably due to surface deflation and desert pavement development after the terraces abandonment. The water shortage has probably affected severely the soil characteristics (pavement development and strong wind erosion) and it has enforced the locals to search for alternative domestic income towards lower land areas. Hard soil horizons on those areas showed to have developed in relatively short time after soil terraces construction.

  4. Impact of soil characteristics and land use on pipe erosion in a temperate humid climate: Field studies in Belgium

    NASA Astrophysics Data System (ADS)

    Verachtert, E.; Van Den Eeckhaut, M.; Martínez-Murillo, J. F.; Nadal-Romero, E.; Poesen, J.; Devoldere, S.; Wijnants, N.; Deckers, J.

    2013-06-01

    This study investigates the role of soil characteristics and land use in the development of soil pipes in the loess belt of Belgium. First, we tested the hypothesis that discontinuities in the soil profile enhance lateral flow and piping by impeding vertical infiltration. We focus on discontinuities in soil characteristics that can vary with soil depth, including texture, saturated hydraulic conductivity, penetration resistance, and bulk density. These characteristics as well as soil biological activity were studied in detail on 12 representative soil profiles for different land use types. Twelve sites were selected in the Flemish Ardennes (Belgium): four pastures with collapsed pipes (CP), four pastures without CP, two sites under arable land without CP and two sites under forest without CP. Secondly, this study aimed at evaluating the interaction of groundwater table positions (through soil augerings) and CP in a larger area, with a focus on pastures. Pasture is the land use where almost all CP in the study area are observed. Therefore, the position of the groundwater table was compared for 15 pastures with CP and 14 pastures without CP, having comparable topographical characteristics in terms of slope gradient and contributing area. Finally, the effect of land use history on the occurrence of pipe collapse was evaluated for a database of 84 parcels with CP and 84 parcels without CP, currently under pasture. As to the first hypothesis, no clear discontinuities for abiotic soil characteristics in soil profiles were observed at the depth where pipes occur, but pastures with CP had significantly more earthworm channels and mole burrows at larger depths (> 120 cm: mean of > 200 earthworm channels per m2) than pastures without CP, arable land or forest (> 120 cm depth, a few or no earthworm channels left). The land use history appeared to be similar for the pastures with and without CP. Combining all results from soil profiles and soil augering indicates that intense biological activity (especially by earthworms and moles), in combination with a sufficiently high groundwater table, favours the development of soil pipes in the study area.

  5. Design and Test of a Soil Profile Moisture Sensor Based on Sensitive Soil Layers

    PubMed Central

    Liu, Cheng; Qian, Hongzhou; Cao, Weixing; Ni, Jun

    2018-01-01

    To meet the demand of intelligent irrigation for accurate moisture sensing in the soil vertical profile, a soil profile moisture sensor was designed based on the principle of high-frequency capacitance. The sensor consists of five groups of sensing probes, a data processor, and some accessory components. Low-resistivity copper rings were used as components of the sensing probes. Composable simulation of the sensor’s sensing probes was carried out using a high-frequency structure simulator. According to the effective radiation range of electric field intensity, width and spacing of copper ring were set to 30 mm and 40 mm, respectively. A parallel resonance circuit of voltage-controlled oscillator and high-frequency inductance-capacitance (LC) was designed for signal frequency division and conditioning. A data processor was used to process moisture-related frequency signals for soil profile moisture sensing. The sensor was able to detect real-time soil moisture at the depths of 20, 30, and 50 cm and conduct online inversion of moisture in the soil layer between 0–100 cm. According to the calibration results, the degree of fitting (R2) between the sensor’s measuring frequency and the volumetric moisture content of soil sample was 0.99 and the relative error of the sensor consistency test was 0–1.17%. Field tests in different loam soils showed that measured soil moisture from our sensor reproduced the observed soil moisture dynamic well, with an R2 of 0.96 and a root mean square error of 0.04. In a sensor accuracy test, the R2 between the measured value of the proposed sensor and that of the Diviner2000 portable soil moisture monitoring system was higher than 0.85, with a relative error smaller than 5%. The R2 between measured values and inversed soil moisture values for other soil layers were consistently higher than 0.8. According to calibration test and field test, this sensor, which features low cost, good operability, and high integration, is qualified for precise agricultural irrigation with stable performance and high accuracy. PMID:29883420

  6. Design and Test of a Soil Profile Moisture Sensor Based on Sensitive Soil Layers.

    PubMed

    Gao, Zhenran; Zhu, Yan; Liu, Cheng; Qian, Hongzhou; Cao, Weixing; Ni, Jun

    2018-05-21

    To meet the demand of intelligent irrigation for accurate moisture sensing in the soil vertical profile, a soil profile moisture sensor was designed based on the principle of high-frequency capacitance. The sensor consists of five groups of sensing probes, a data processor, and some accessory components. Low-resistivity copper rings were used as components of the sensing probes. Composable simulation of the sensor’s sensing probes was carried out using a high-frequency structure simulator. According to the effective radiation range of electric field intensity, width and spacing of copper ring were set to 30 mm and 40 mm, respectively. A parallel resonance circuit of voltage-controlled oscillator and high-frequency inductance-capacitance (LC) was designed for signal frequency division and conditioning. A data processor was used to process moisture-related frequency signals for soil profile moisture sensing. The sensor was able to detect real-time soil moisture at the depths of 20, 30, and 50 cm and conduct online inversion of moisture in the soil layer between 0⁻100 cm. According to the calibration results, the degree of fitting ( R ²) between the sensor’s measuring frequency and the volumetric moisture content of soil sample was 0.99 and the relative error of the sensor consistency test was 0⁻1.17%. Field tests in different loam soils showed that measured soil moisture from our sensor reproduced the observed soil moisture dynamic well, with an R ² of 0.96 and a root mean square error of 0.04. In a sensor accuracy test, the R ² between the measured value of the proposed sensor and that of the Diviner2000 portable soil moisture monitoring system was higher than 0.85, with a relative error smaller than 5%. The R ² between measured values and inversed soil moisture values for other soil layers were consistently higher than 0.8. According to calibration test and field test, this sensor, which features low cost, good operability, and high integration, is qualified for precise agricultural irrigation with stable performance and high accuracy.

  7. Tropical forest response to a drier future: Measurement and modeling of soil organic matter stocks and turnover

    NASA Astrophysics Data System (ADS)

    Finstad, K. M.; Campbell, A.; Pett-Ridge, J.; Zhang, N.; McFarlane, K. J.

    2017-12-01

    Tropical forests account for over 50% of the global terrestrial carbon sink and 29% of global soil carbon, but the stability of carbon in these ecosystems under a changing climate is unknown. Recent work suggests moisture may be more important than temperature in driving soil carbon storage and emissions in the tropics. However, data on belowground carbon cycling in the tropics is sparse, and the role of moisture on soil carbon dynamics is underrepresented in current land surface models limiting our ability to extrapolate from field experiments to the entire region. We measured radiocarbon (14C) and calculated turnover rates of organic matter from 37 soil profiles from the Neotropics including sites in Mexico, Brazil, Costa Rica, Puerto Rico, and Peru. Our sites represent a large range of moisture, spanning 710 to 4200 mm of mean annual precipitation, and include Andisols, Oxisols, Inceptisols, and Ultisols. We found a large range in soil 14C profiles between sites, and in some locations, we also found a large spatial variation within a site. We compared measured soil C stocks and 14C profiles to data generated from the Community Land Model (CLM) v.4.5 and have begun to generate data from the ACME Land Model (ALM) v.1. We found that the CLM consistently overestimated carbon stocks and the mean age of soil carbon at the surface (upper 50 cm), and underestimated the mean age of deep soil carbon. Additionally, the CLM did not capture the variation in 14C and C stock profiles that exists between and within the sites across the Neotropics. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-736060.

  8. Long Term Effects of Poultry Litter on Soil Physical and Chemical Properties in Cotton Plots

    NASA Technical Reports Server (NTRS)

    Surrency, J.; Tsegaye, T.; Coleman, T.; Fahsi, A.; Reddy, C.

    1998-01-01

    Poultry litter and compost can alter the moisture holding capacity of a soil. These organic materials can also increase the nutrient status of a soil during the decomposition process by microbial actions. The objective of this study was to evaluate the effect of poultry litter and compost on the dielectric constant and moisture holding capacity of soil. The Delta-T theta-probe was used to measure volumetric soil water content and the apparent dielectric constant of the upper 6-cm of the soil profile. Soil texture, pH, and organic matter were also determined for each plot. Results of these analyses indicated that the pH of the soil ranged from 6.4 to 7.7 and the volumetric soil moisture content ranged from 0.06 to 0.18 cu m/cu m for the upper 6-cm of the soil profile. The effect of poultry litter and compost on soil properties resulted in an increase in the volumetric moisture content and dielectric constant of the soil due to the improvement of the soil structure.

  9. [Effect of long-term fertilizing regime on soil microbial diversity and soil property].

    PubMed

    Li, Chenhua; Zhang, Caixia; Tang, Lisong; Xiong, Zhengqin; Wang, Baozhan; Jia, Zhongjun; Li, Yan

    2014-03-04

    To evaluate the effect of long-term fertilization on soil microbial community and soil chemical and physical properties. Using a high-throughput pyrosequencing technique, we studied microbial community in the 0-300 cm soil samples covering a 20-year field-experiment with different fertilization applications including inorganic fertilizer alone (N 300 kg/hm2, P2O5 150 kg/hm2 and K2O 60 kg/hm2) and inorganic fertilizer combined with straw (same application rate of N and P fertilizer combined with 5.4 t straw). Actinobacteria and alpha-proteobacteria were the predominant groups in the topsoil (0-20 cm). As the soil depth increased, the relative abundance of actinobacteria decreased whereas that of proteobacteria, especially gamma-proteobacteria and beta-proteobacteria increased and gradually became the dominant groups in the subsoil (20-300 cm). Long-term fertilizing applications significantly affected soil microbial communities throughout the soil profile, and increased the relative abundance of ammonia-oxidizing archaea at 0-40 cm depth. In addition, agriculture management, e. g. irrigation may be an important driving factor for the distribution of ammonia-oxidizing bacteria in soil profile. Total nitrogen and organic carbon contents were the most influential factors on microbial community in the topsoil and in the subsoil, respectively. Long-term fertilizer applications altered soil nutrient availability within the soil profile, which was likely to result in the different microbial community structure between the fertilizer treatments, especially for the subsoil.

  10. Short-term nitrous oxide profile dynamics and emissions response to water, nitrogen and carbon additions in two tropical soils

    Treesearch

    A. D. Nobre; M. Keller; P. M. Crill; R. C. Harriss

    2001-01-01

    Tropical soils are potentially the highest and least studied nitrous oxide (N2O) production areas in the world. The effect of water, nitrate and glucose additions on profile concentrations and episodic emissions of N2O for two volcanic soils in Costa Rica was examined. Magnitudes of episodic N2O pulses, as well as overall N2O emissions, varied considerably and...

  11. Automated Microbial Metabolism Laboratory

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Development of the automated microbial metabolism laboratory (AMML) concept is reported. The focus of effort of AMML was on the advanced labeled release experiment. Labeled substrates, inhibitors, and temperatures were investigated to establish a comparative biochemical profile. Profiles at three time intervals on soil and pure cultures of bacteria isolated from soil were prepared to establish a complete library. The development of a strategy for the return of a soil sample from Mars is also reported.

  12. SoilGrids1km — Global Soil Information Based on Automated Mapping

    PubMed Central

    Hengl, Tomislav; de Jesus, Jorge Mendes; MacMillan, Robert A.; Batjes, Niels H.; Heuvelink, Gerard B. M.; Ribeiro, Eloi; Samuel-Rosa, Alessandro; Kempen, Bas; Leenaars, Johan G. B.; Walsh, Markus G.; Gonzalez, Maria Ruiperez

    2014-01-01

    Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. Methodology/Principal Findings We present SoilGrids1km — a global 3D soil information system at 1 km resolution — containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg−1), soil pH, sand, silt and clay fractions (%), bulk density (kg m−3), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha−1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies assessed using 5–fold cross-validation were between 23–51%. Conclusions/Significance SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids system is highly automated and flexible, increasingly accurate predictions can be generated as new input data become available. SoilGrids1km are available for download via http://soilgrids.org under a Creative Commons Non Commercial license. PMID:25171179

  13. Environmental forcing does not induce diel or synoptic variation in the carbon isotope content of forest soil respiration

    DOE PAGES

    Bowling, D. R.; Egan, J. E.; Hall, S. J.; ...

    2015-08-31

    Recent studies have examined temporal fluctuations in the amount and carbon isotope content (δ 13C) of CO 2 produced by the respiration of roots and soil organisms. These changes have been correlated with diel cycles of environmental forcing (e.g., sunlight and soil temperature) and with synoptic-scale atmospheric motion (e.g., rain events and pressure-induced ventilation). We used an extensive suite of measurements to examine soil respiration over 2 months in a subalpine forest in Colorado, USA (the Niwot Ridge AmeriFlux forest). Observations included automated measurements of CO 2 and δ 13C of CO 2 in the soil efflux, the soil gasmore » profile, and forest air. There was strong diel variability in soil efflux but no diel change in the δ 13C of the soil efflux (δ R) or the CO 2 produced by biological activity in the soil (δ J). Following rain, soil efflux increased significantly, but δ R and δ J did not change. Temporal variation in the δ 13C of the soil efflux was unrelated to measured environmental variables, and we failed to find an explanation for this unexpected result. Measurements of the δ 13C of the soil efflux with chambers agreed closely with independent observations of the isotopic composition of soil CO 2 production derived from soil gas well measurements. Deeper in the soil profile and at the soil surface, results confirmed established theory regarding diffusive soil gas transport and isotopic fractionation. Deviation from best-fit diffusion model results at the shallower depths illuminated a pump-induced ventilation artifact that should be anticipated and avoided in future studies. There was no evidence of natural pressure-induced ventilation of the deep soil. However, higher variability in δ 13C of the soil efflux relative to δ 13C of production derived from soil profile measurements was likely caused by transient pressure-induced transport with small horizontal length scales.« less

  14. Distribution of rare-earth (Y, La, Ce) and other heavy metals in the profiles of the podzolic soil group

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.; Goryachkin, S. V.; Savichev, A. T.

    2011-05-01

    Along with Fe and Al, many heavy metals (Mn, Cr, Zn, Cu, and Ni) show a markedly pronounced eluvial-illuvial redistribution in the profiles of soils of the podzolic group. The intensity of the redistribution of the bulk forms of these metals is comparable with that of Fe and exceeds that of Al. Although the podzolic soils are depleted of rare-earth metals, the latter respond readily to soil podzolization. The inactive participation of Al is explained by an insignificant portion of the active reaction-capable fraction. Podzolization does not influence the profile distribution of Sr and Ba. The leaching degree of heavy metals such as Mn, Cr, Zn, Ni, and Zr is noticeably higher in the sandy podzols than in the loamy podzolic soils. Leaching of heavy metals from the podzolic horizons is of geochemical importance, whereas the depletion of metals participating in plant nutrition and biota development is of ecological importance. The leaching of heavy metals is related to the destruction of clay particles in the heavy-textured podzolic soils; the effect of the soil acidity on the leaching of heavy metals is less significant.

  15. Three-dimensional spatial patterns of soil carbon storage are altered by woody encroachment into grasslands

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Boutton, T. W.; Wu, X. B.

    2016-12-01

    Recent global trends of increasing woody plant abundance in grass-dominated ecosystems may substantially enhance soil organic carbon (SOC) storage and could represent an important carbon (C) sink in the terrestrial environment. However, most studies assessing SOC response to woody encroachment only consider surface soils, and have not explicitly assessed the extent to which deeper portions of the profile may be affected by this phenomenon. Consequently, little is known about the direction, magnitude, and spatial heterogeneity of SOC throughout the soil profile following woody encroachment. These factors were quantified via spatially-specific intensive soil sampling to a depth 1.2 m across a subtropical savanna landscape that has undergone woody proliferation during the past century in southern Texas, USA. Increased SOC sequestration following woody encroachment was observed throughout the profile, albeit at reduced magnitudes at deeper depths. Overall, soils beneath small woody clusters and larger groves accumulated 12.87 and 18.67 Mg C ha-1 more SOC, respectively, to a depth of 1. 2 m compared to grasslands. Recent woody encroachment during the past 100 y significantly altered the spatial pattern and amplified the spatial heterogeneity of SOC at the 0-5 cm depth, with marginal effects at 5-15 cm and no distinct impact on soils below 15 cm. Fine root density explained much of the variation in SOC in the upper 15 cm, while a combination of fine root density and soil clay content accounted for more of the variation in SOC in soils below 15 cm. These findings emphasize the existence of substantial SOC sequestration in deeper portions of the soil profile following woody encroachment. Given the geographical extent of woody encroachment on a global scale, this largely undocumented deep soil C sequestration suggests woody encroachment may play a more significant role in regional and global C sequestration than previously thought.

  16. Design and field tests of an access-tube soil water sensor

    USDA-ARS?s Scientific Manuscript database

    Accurate soil profile water content monitoring at multiple depths until now, has been possible only using the neutron probe (NP), but with great effort and at infrequent time intervals. Despite the existence of several electromagnetic sensor systems for profile water content measurements, accuracy ...

  17. Soils developed from marine and moraine deposits on the Billefjord coast, West Spitsbergen

    NASA Astrophysics Data System (ADS)

    Pereverzev, V. N.

    2012-11-01

    Morphogenetic features of soils developed from noncalcareous and calcareous deposits of the marine and glacial origins on the coasts of Billefjord and Petunia Bay in West Spitsbergen are studied. Grayhumus (soddy) soils develop from noncalcareous deposits; they consist of the AO-AY-C horizons and differ from analogous soils in other locations in a higher bulk content of calcium, a close to neutral reaction, and a relatively high degree of base saturation. Gray-humus residually calcareous soils (AO-AYca-Cca) developed from calcareous deposits have a neutral or slightly alkaline reaction; their exchange complex is almost completely saturated with bases. The soils that developed from both marine and moraine deposits are generally similar in their major genetic features. The profiles of all the soils are not differentiated with respect to the contents of major elements, including oxalate-soluble forms of aluminum and iron. Gley features are also absent in the profiles of these soils.

  18. Estimating the effect of shallow groundwater on diurnal heat transport in a vadose zone

    NASA Astrophysics Data System (ADS)

    Jiang, Jianmei; Zhao, Lin; Zhai, Zhe

    2016-09-01

    The influence of shallow groundwater on the diurnal heat transport of the soil profile was analyzed using a soil sensor automatic monitoring system that continuously measures temperature and water content of soil profiles to simulate heat transport based on the Philip and de Vries (PDV) model. Three experiments were conducted to measure soil properties at depths of 5 cm, 10 cm, 20 cm, and 30 cm when groundwater tables reached 10 cm, 30 cm, and 60 cm (Experiments I, II, and III). Results show that both the soil temperature near shallow groundwater and the soil water content were effectively simulated by the PDV model. The root mean square errors of the temperature at depths of 5 cm, 10 cm, and 20 cm were 1.018°C, 0.909°C, and 0.255°C, respectively. The total heat flux generated the convergent and divergent planes in space-time fields with valley values of-161.5W•m-2 at 7:30 and-234.6W•m-2 at 11:10 in Experiments II and III, respectively. The diurnal heat transport of the saturated soil occurred in five stages, while that of saturated-unsaturated and unsaturated soil profiles occurred in four stages because high moisture content led to high thermal conductivity, which hastened the heat transport.

  19. Soil water content spatial pattern estimated by thermal inertia from air-borne sensors

    NASA Astrophysics Data System (ADS)

    Coppola, Antonio; Basile, Angelo; Esposito, Marco; Menenti, Massimo; Buonanno, Maurizio

    2010-05-01

    Remote sensing of soil water content from air- or space-borne platforms offer the possibility to provide large spatial coverage and temporal continuity. The water content can be actually monitored in a thin soil layer, usually up to a depth of 0.05m below the soil surface. To the contrary, difficulties arise in the estimation of the water content storage along the soil profile and its spatial (horizontal) distribution, which are closely connected to soil hydraulic properties and their spatial distribution. A promising approach for estimating soil water contents profiles is the integration of remote sensing of surface water content and hydrological modeling. A major goal of the scientific group is to develop a practical and robust procedure for estimating water contents throughout the soil profile from surface water content. As a first step, in this work, we will show some preliminary results from aircraft images analysis and their validation by field campaigns data. The data extracted from the airborne sensors provided the opportunity of retrieving land surface temperatures with a very high spatial resolution. The surface water content pattern, as deduced by the thermal inertia estimations, was compared to the surface water contents maps measured in situ by time domain reflectometry-based probes.

  20. Ecological restoration alters microbial communities in mine tailings profiles

    NASA Astrophysics Data System (ADS)

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-04-01

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0-30 cm soils and altered the bacterial communities at 0-20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30-60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0-20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings.

  1. Ecological restoration alters microbial communities in mine tailings profiles.

    PubMed

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-04-29

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0-30 cm soils and altered the bacterial communities at 0-20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30-60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0-20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings.

  2. Semiquantitative color profiling of soils over a land degradation gradient in Sakaerat, Thailand.

    PubMed

    Doi, Ryoichi; Wachrinrat, Chongrak; Teejuntuk, Sakhan; Sakurai, Katsutoshi; Sahunalu, Pongsak

    2010-11-01

    In this study, we attempted multivariate color profiling of soils over a land degradation gradient represented by dry evergreen forest (original vegetation), dry deciduous forest (moderately disturbed by fire), and bare ground (severely degraded) in Sakaerat, Thailand. The soils were sampled in a dry-to-wet seasonal transition. Values of the red-green-blue (RGB), cyan-magenta-yellow-key black (CMYK), L*a*b*, and hue-intensity-saturation (HIS) color models were determined using the digital software Adobe Photoshop. Land degradation produced significant variations (p<0.05) in R, C, Y, L*, a*, b*, S, and I values (p<0.05). The seasonal transition produced significant variations (p<0.05) in R, G, B, C, M, K, L*, b*, and I values. In discriminating the soils, the color models did not differ in discriminatory power, while discriminatory power was affected by seasonal changes. Most color variation patterns had nonlinear relationships with the intensity of the land degradation gradient, due to effects of fire that darkened the deciduous forest soil, masking the nature of the soil as the intermediate between the evergreen forest and the bare ground soils. Taking these findings into account, the utilization of color profiling of soils in land conservation and rehabilitation is discussed.

  3. Ecological restoration alters microbial communities in mine tailings profiles

    PubMed Central

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-01-01

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0–30 cm soils and altered the bacterial communities at 0–20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30–60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0–20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings. PMID:27126064

  4. The effect of break of runoff connectivity on SOC concentration in loess catchment of the Lublin Upland (Poland)

    NASA Astrophysics Data System (ADS)

    Rejman, Jerzy; Rafalska-Przysucha, Anna; Paluszek, Jan

    2014-05-01

    Soil erosion processes lead to redistribution of soils and soil organic carbon (SOC) in the landscape. In this study, we aimed to evaluate the effect of runoff connectivity on horizontal and vertical SOC concentration in the catchment. SOC concentration was examined in a small agricultural catchment located in deep loess area of the Lublin Upland, Poland (51019'55"N, 22023'16"E). The catchment area of 5.6 ha is divided into 11 parcels. Conventional tillage is performed on each of the parcel and plow includes of 1-2 moldboard and 1 cultivator operations per year. Tillage is performed along the longest side of parcels. Crop rotation includes wheat, barley, sugar beets, potatoes and maize. Connectivity of temporal overland flow in the catchment is disturbed by grassed borders of the parcels. SOC concentration was studied in 151 sampling points in a grid 20 by 20 m. Structure of soil profile was studied in each of the sampling points, and soil cores were taken from two soil layers of 0-25 and 25-50 cm, and from 7 profiles located within the closed depression and the areas where line of temporary overland flow cross the grassed parcel borders. SOC concentration in soil samples was determined by wet combustion with dichromate solution. Depositional soils represented 57 profiles in the catchment. The thickness of accumulated soil layer varied from 20 to 151 cm with a mean of 55 cm. SOC concentration ranged from 8.4 to 15.0 g kg-1 (with a mean of 11.0 g kg-1) in the upper and from 2.9 to 14.5 g kg-1 (7.5) in the deeper soil layer. Coefficient of variation was 12.9% in the layer 0-25 cm, and 44.5% in the layer 25-50 cm. To find the reasons of high variability of SOC concentration in deeper soil layer, the location of depositional soils in the catchment was analyzed. The analysis enabled to distinguish two groups of depositional soils of different SOC concentration at the depth of 25-50 cm. Depositional soils located in the zones of temporal stagnation of overland flow (i.e. closed depressions and the areas where the lines of concentrated flow cross the parcel borders) characterized higher SOC concentration with a mean of 10.10 g kg-1, and depositional soils located on slopes - lower (4.10 g kg-1). The first group represented 33 profiles, the second 24. Coefficient of variation in each group of soil was 19%. Vertical SOC concentration showed a large variation in profiles of depositional soils, with layers of higher and smaller SOC concentration at different depth. Soils located in the zones where lines of concentrated temporary flow cross the field borders showed a high SOC enrichment in buried Ab horizons (at the depth >80 cm) in comparison to soils located in closed depressions. The difference could be a result of larger area that contributes to overland flow in the case of sites located at lines of flow in comparison to the contribution area of closed depressions. The exception is a profile SP6, where the SOC concentration in Ab is similar to the Ab horizon in depressions. The SP6 profile is located in the lower part of the catchment at the end of a parcel of the length of 110 m. The other profiles (SP2, and SP5) are in the areas were distance between the parcel borders is 40-60 m, and SP7 is at the catchment outlet. It seems that the difference in SOC concentration in Ab between SP6 and SP2-SP5 is a result of more effective decrease of velocity of overland flow by closely located grassed borders of the parcels. The studies showed that grassed parcel borders fill an effective role in an increase of soil carbon stock in the areas where lines of temporary overland flow cross the parcel border. The effectiveness of SOC accumulation was larger in the past, as it is proved by high SOC concentration in buried Ab horizon, and was dependent on the distance between the grassed borders.

  5. Life's Impact on the Soil Production Function

    NASA Astrophysics Data System (ADS)

    Harrison, Emma; Willenbring, Jane; Brocard, Gilles

    2016-04-01

    Soil melds life and lithology, but the top-down production of soil by the incorporation of organic matter has typically been viewed through a lens of soil biogeochemistry and the bottom-up weathering of bedrock viewed from a geomorphologic perspective. We merge these perspectives by developing a variation on the classic geomorphological soil production function [1] that accounts for the influence of top-down soil production by additions of organic material. In the classic view [1], production rate of soil from bedrock weathering is a function of the thickness of the soil horizon. Under steady state conditions, this thickness is controlled by a constant coefficient of diffusion and by the hillslope curvature. Across the globe, equilibrium landscapes can be hard to find. We explore the many ways that biota influence the upper soil horizons and move the soil-hillslope system out of steady state using measurements of in situ 10Be at depth in soil profiles. Our empirical case study is in the Luquillo Critical Zone Observatory of northeastern Puerto Rico, where long term ecological monitoring suggests an average of 375 m My-1 of litter fall [2] and as much as 17.5 m My-1 of dust [3] is contributed to the forest floor. This substantial volume of material forms an active surficial layer, functionally increasing the residence time of grains deeper in the soil profile. Litter recycling influences the cosmogenic dose rate to be higher by increasing the residence time of grains and to be lower by increasing environmental shielding. In unconstrained systems, probabilistic modeling can determine a range of solutions for the ages of grains determined with 10Be depth profiles[4]. We compare the probabilistic outcomes to actual measurements of the in situ 10Be at depth in soil profiles from the Luquillo Mountains. Life living in the soil, rather than on it, is of equal importance in the Luquillo Mountains. On average, the soil is occupied by 200 individual earthworms per m2 [5]. The depth of soil mixing in the soil profiles we collect is shown by the homogenization of 10Be concentrations in grains. Mixing changes the residence time of grains in soil. The length of this residence time is a critical component in the rate of weathering reactions, the mechanism by which material is lost to chemical dissolution and leaching. Additionally, mixing may drive the value of the diffusion coefficient, which determines the flux of sediment out of the soil mantle in the geomorphic soil production function. Life actively impacts the soil-hillslope system, and quantifying these effects is an essential modification of a fundamental paradigm in the geomorphology of soil-mantled landscapes. [1] Heimsath et al. 1997. Nature 388:358-361 [2] Zou et al., 1995. Forest Ecol. and Management 78:147-157 [3] Pett-Ridge et al., 2009. Geochim. Cosmochim. Acta 73:25-43 [4] Hidy et al. 2010. Geochem. Geophys., Geosys. 11 [5] González et al. 2007. Eur. J. Soil Biol. 43:S24-S32

  6. Soil characteristics and fallout and environmental radionuclides on different geomorphological features in Elephant Island for assessing environmental changes in maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Navas, Ana; Serrano, Enrique; López-Martínez, Jerónimo; Gaspar, Leticia; Mink, Sandra

    2013-04-01

    Soils in ice-free areas of Elephant Island (South Shetland Islands, Antarctic Peninsula region) have been forming since the last deglaciation in an Antarctic maritime climate that is warmer and more humid than in interior Antarctica. The studied ice-free areas correspond mostly to coastal promontories and the underlain materials are composed of metamorphic rocks. A soil survey was carried out in the largest ice-free areas at the western coast of the island at Stinker Point and Lindsey Cape, as a part of a broader study on soils and geomorphology in maritime Antarctica. A soil sampling campaign was undertaken with the aim of characterizing soils developed on different geomorphic features and to investigate the processes involved in their development following the glacial retreat, that started in the area probably later than 4000 yr BP. Study sites have glacial deposits and raised marine surfaces and they include areas with different mosses and lichens coverage. Profiles were located at altitudes ranging from 30 to 90 m a.s.l. at Stinker Point and at 140 m a.s.l. at Lindsey Cape. A total of 8 soil profiles of variable depths were sampled at depth increment intervals of 5 cm until rock outcrop (15-30 cm). Distinctive geomorphic features have been described at the study sites to assess the extent of the relationship between soil characteristics and geomorphology. The main soil properties analysed were: pH, electrical conductivity, carbonate content, bulk density, soil texture and soil fertility indicators (organic matter and soil organic carbon content, nitrogen, available phosphorous and potassium). Analyses of stable elements and activities of fallout (FRN's) and environmental radionuclides (ERN's) were also performed in the interval samples. The studied Cryosols are stony with no clear horizon differentiation and the soil texture is mostly silty loam. The soils have in general low contents of organic matter (0.3-2.7 %), carbon (0.16 - 1.6 %) and nitrogen (< 0.33 %). Available K and P contents and N vary largely among the profiles in relation to ornithogenic activity. Carbonate contents are very low (< 1.0 %) and average electrical conductivity is 0.14 dS m-1. The pH ranges between 3.9 and 8.6 and variation from acid to alkaline profiles is related to the profile position. The major elements Al, Fe, Ca and Na, were the most abundant in that order, followed by Mg, K, Mn and then Pb, Ba and Sr whereas Cr, Zn, Li, Co, Ni and Cd are present as trace elements. In two profiles on intermediate marine platforms, the FRN's concentrate at the topsoil, where 137Cs and 210Pbex activities are 11 and 20 Bq/kg, respectively. The depth distribution of ERN's is quite homogeneous, especially for 226Ra and 232Th activities, whereas larger variations are observed for 40K and to less extent for 238U. The absence of 137Cs and depleted levels of 210Pbexin soils on till materials of moraines is likely related to the age of ice retreat but soil disturbance can not be disregarded. Cryogenic processes triggering the mechanical disintegration of bedrock by freezing-thaw cycles within the soil active layer and wetting-drying are main processes involved in soil development in Elephant Island. This research provides information on past environmental changes of interest to understand the soil response to actual changes.

  7. Inversely Estimating the Vertical Profile of the Soil CO2 Production Rate in a Deciduous Broadleaf Forest Using a Particle Filtering Method

    PubMed Central

    Sakurai, Gen; Yonemura, Seiichiro; Kishimoto-Mo, Ayaka W.; Murayama, Shohei; Ohtsuka, Toshiyuki; Yokozawa, Masayuki

    2015-01-01

    Carbon dioxide (CO2) efflux from the soil surface, which is a major source of CO2 from terrestrial ecosystems, represents the total CO2 production at all soil depths. Although many studies have estimated the vertical profile of the CO2 production rate, one of the difficulties in estimating the vertical profile is measuring diffusion coefficients of CO2 at all soil depths in a nondestructive manner. In this study, we estimated the temporal variation in the vertical profile of the CO2 production rate using a data assimilation method, the particle filtering method, in which the diffusion coefficients of CO2 were simultaneously estimated. The CO2 concentrations at several soil depths and CO2 efflux from the soil surface (only during the snow-free period) were measured at two points in a broadleaf forest in Japan, and the data were assimilated into a simple model including a diffusion equation. We found that there were large variations in the pattern of the vertical profile of the CO2 production rate between experiment sites: the peak CO2 production rate was at soil depths around 10 cm during the snow-free period at one site, but the peak was at the soil surface at the other site. Using this method to estimate the CO2 production rate during snow-cover periods allowed us to estimate CO2 efflux during that period as well. We estimated that the CO2 efflux during the snow-cover period (about half the year) accounted for around 13% of the annual CO2 efflux at this site. Although the method proposed in this study does not ensure the validity of the estimated diffusion coefficients and CO2 production rates, the method enables us to more closely approach the “actual” values by decreasing the variance of the posterior distribution of the values. PMID:25793387

  8. The distribution of organic carbon fractions in a typical loess-paleosol profile and its paleoenvironmental significance

    PubMed Central

    Hu, Feinan; Huo, Na; Shang, Yingni; Chang, Wenqian

    2018-01-01

    Background The loess-paleosol sequence on the Loess Plateau has been considered an important paleoclimatic archive to study global climatic and environmental changes in the Quaternary. So far, little attention has been paid to the characteristics of soil organic carbon fractions in loess-paleosol sequences, which may provide valuable information for exploring the evolution of climate and environment in the Quaternary on the Loess Plateau. Methods In order to explore the significance of mineral-associated organic carbon to total organic carbon (MOC/TOC) ratios in the loess-paleosol sequence for reconstructing paleoenvironmental and paleoclimatic evolution in the Quaternary on the Loess Plateau, we selected a typical loess-paleosol profile in Chunhua county, Xianyang city, Shaanxi province, as the research object. The content of total organic carbon (TOC) and MOC/TOC ratio in each loess and paleosol layers of the Chunhua loess-paleosol profile were analyzed, together with the paleoclimatic proxies, such as soil grain size, CaCO3 content and their correlations with organic carbon parameters. Results The main results were as follows: (1) the total content of soil organic carbon and MOC/TOC ratios were generally higher in paleosol layers than in the underlying loess layers of the Chunhua loess-paleosol profile. Compared to total organic carbon content, MOC/TOC ratios changed more obviously in soil layers below a paleosol layer S8; (2) soil clay content and median grain size (Md (ϕ)) were higher in paleosol than in the underlying loess, while CaCO3 content showed an opposite tendency. In the Chunhua profile, the distribution characteristics of the three paleoclimatic proxies showed good indications of paleoclimate changes in the Quaternary; (3) in the Chunhua loess-paleosol profile, MOC/TOC ratios were positively correlated with clay content and median grain size (ϕ), while negatively correlated with CaCO3 content, and the correlations were more significant in soil layers below S8. Discussion Our results indicated that MOC/TOC ratios in the Chunhua loess-paleosol profile correlated with the cold dry-warm wet paleoclimatic cycle in the Quaternary. The high MOC/TOC ratios in the loess-paleosol profile might reflect warm and humid climate, while lower ratios indicated relatively cold and dry climate. That is because when the climate changed from warm-humid to cold-dry, the vegetation coverage and pedogenesis intensity decreased, which increased soil CaCO3 content and decreased soil clay content and Md (ϕ), leading to decreased MOC/TOC ratios. Compared to TOC, MOC/TOC ratios had greater significance in indicating paleoenvironmental evolution in the Quaternary on the Loess Plateau. Therefore, investigating MOC/TOC ratios in loess-paleosol profile can offer new evidence to reconstructing paleoenvironmental changes, and also provide a basis for predicting responses of soil organic carbon pools to vegetation and climate changes in the future. PMID:29666763

  9. Root Water Uptake and Soil Moisture Pattern Dynamics - Capturing Connections, Controls and Causalities

    NASA Astrophysics Data System (ADS)

    Blume, T.; Heidbuechel, I.; Hassler, S. K.; Simard, S.; Guntner, A.; Stewart, R. D.; Weiler, M.

    2015-12-01

    We hypothesize that there is a shift in controls on landscape scale soil moisture patterns when plants become active during the growing season. Especially during the summer soil moisture patterns are not only controlled by soils, topography and related abiotic site characteristics but also by root water uptake. Root water uptake influences soil moisture patterns both in the lateral and vertical direction. Plant water uptake from different soil depths is estimated based on diurnal fluctuations in soil moisture content and was investigated with a unique setup of 46 field sites in Luxemburg and 15 field sites in Germany. These sites cover a range of geologies, soils, topographic positions and types of vegetation. Vegetation types include pasture, pine forest (young and old) and different deciduous forest stands. Available data at all sites includes information at high temporal resolution from 3-5 soil moisture and soil temperature profiles, matrix potential, piezometers and sapflow sensors as well as standard climate data. At sites with access to a stream, discharge or water level is also recorded. The analysis of soil moisture patterns over time indicates a shift in regime depending on season. Depth profiles of root water uptake show strong differences between different forest stands, with maximum depths ranging between 50 and 200 cm. Temporal dynamics of signal strength within the profile furthermore suggest a locally shifting spatial distribution of root water uptake depending on water availability. We will investigate temporal thresholds (under which conditions spatial patterns of root water uptake become most distinct) as well as landscape controls on soil moisture and root water uptake dynamics.

  10. Deep soil layer is fundamental for evaluating carbon accumulation in agroecosystems

    NASA Astrophysics Data System (ADS)

    Dal Ferro, Nicola; Morari, Francesco; Simonetti, Gianluca; Polese, Riccardo; Berti, Antonio

    2015-04-01

    Soil organic carbon (SOC) is essential to secure key ecosystem services such as the provision of food and other biomass production, the filtering, buffering and transformation capacity and the climate regulation. It has been estimated that approximately 57% of the globally emitted C (8.7 Gt y-1) to the atmosphere is adsorbed by biospheric C pools, ascertaining the potential soil C sink capacity of managed ecosystems at 55 to 78 Gt, of which only 50 to 66% attainable. Therefore it is essential the full knowledge of soil management practices that can affect SOC dynamics and, in turn, climate change. Several studies focussed on the evaluation of the best cropping management practices to accumulate C in the soil profile. Nevertheless, in most cases soil analyses were made in the topsoil (generally in the 0-30 cm layer), ignoring the effect of C translocation in the deeper soil profile as a result of tillage practices, crop root deepening etc. In this context, in a long-term experiment established in the early 1960s, we quantified the SOC accumulation within the soil profile (0-90 cm) and evaluate the effects of different cropping system on SOC dynamics. The experiment is located at the experimental farm of the University of Padova, in northeastern Italy. The trial compares four rotations with three levels of mineral fertilisation and with or without organic fertilisation. The rotations considered are: continuous crops (grain maize, forage maize, winter wheat and permanent meadow); two-year (maize-wheat); four-year (sugarbeet, soybean, wheat, maize) and six-year (maize, sugarbeet, maize, wheat, alfalfa, alfalfa) with different levels of mineral, organic and mixed fertilisations. Crops with superficially developed rooting systems (e.g. permanent meadow) highly increased SOC only in the topsoil. This effect was enhanced by the contribution of organic amendment-C. Root-derived carbon played a pivotal role also in the deepest soil profile (60-90 cm) by increasing the SOC translocation. Considering the whole profile, the highest C accumulation was observed in cropping systems with high biomass production and deep rooting systems. Results indicated that for estimating the effects of cropping systems and agricultural practices on C accumulation, analyses in the topsoil can be misleading and it is necessary to consider the whole profile.

  11. Effects of nitrogen and biochar amendment on soil methane concentration profiles and diffusion in a rice-wheat annual rotation system

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Wu, Zhen; Dong, Yubing; Zhou, Ziqiang; Xiong, Zhengqin

    2016-12-01

    The CH4 emissions from soil were influenced by the changeable CH4 concentrations and diffusions in soil profiles, but that have been subjected to nitrogen (N) and biochar amendment over seasonal and annual time frames. Accordingly, a two-year field experiment was conducted in southeastern China to determine the amendment effects on CH4 concentrations and diffusive effluxes as measured by a multilevel sampling probe in paddy soil during two cycles of rice-wheat rotations. The results showed that the top 7-cm soil layers were the primary CH4 production sites during the rice-growing seasons. This layer acted as the source of CH4 generation and diffusion, and the deeper soil layers and the wheat season soil acted as the sink. N fertilization significantly increased the CH4 concentration and diffusive effluxes in the top 7-cm layers during the 2013 and 2014 rice seasons. Following biochar amendment, the soil CH4 concentrations significantly decreased during the rice season in 2014, relative to the single N treatment. Moreover, 40 t ha-1 biochar significantly decreased the diffusive effluxes during the rice seasons in both years. Therefore, our results showed that biochar amendment is a good strategy for reducing the soil profile CH4 concentrations and diffusive effluxes induced by N in paddy fields.

  12. Community level physiological profiles (CLPP), characterization and microbial activity of soil amended with dairy sewage sludge.

    PubMed

    Frąc, Magdalena; Oszust, Karolina; Lipiec, Jerzy

    2012-01-01

    The aim of the present work was to assess the influence of organic amendment applications compared to mineral fertilization on soil microbial activity and functional diversity. The field experiment was set up on a soil classified as an Eutric Cambisol developed from loess (South-East Poland). Two doses of both dairy sewage sludge (20 Mg·ha(-1) and 26 Mg·ha(-1)) and of mineral fertilizers containing the same amount of nutrients were applied. The same soil without any amendment was used as a control. The soil under undisturbed native vegetation was also included in the study as a representative background sample. The functional diversity (catabolic potential) was assessed using such indices as Average Well Color Development (AWCD), Richness (R) and Shannon-Weaver index (H). These indices were calculated, following the community level physiological profiling (CLPP) using Biolog Eco Plates. Soil dehydrogenase and respiratory activity were also evaluated. The indices were sensitive enough to reveal changes in community level physiological profiles due to treatment effects. It was shown that dairy sewage amended soil was characterized by greater AWCD, R, H and dehydrogenase and respiratory activity as compared to control or mineral fertilized soil. Analysis of variance (ANOVA) and principal component analysis (PCA) were used to depict the differences of the soil bacterial functional diversity between the treatments.

  13. Effects of nitrogen and biochar amendment on soil methane concentration profiles and diffusion in a rice-wheat annual rotation system.

    PubMed

    Xu, Xin; Wu, Zhen; Dong, Yubing; Zhou, Ziqiang; Xiong, Zhengqin

    2016-12-08

    The CH 4 emissions from soil were influenced by the changeable CH 4 concentrations and diffusions in soil profiles, but that have been subjected to nitrogen (N) and biochar amendment over seasonal and annual time frames. Accordingly, a two-year field experiment was conducted in southeastern China to determine the amendment effects on CH 4 concentrations and diffusive effluxes as measured by a multilevel sampling probe in paddy soil during two cycles of rice-wheat rotations. The results showed that the top 7-cm soil layers were the primary CH 4 production sites during the rice-growing seasons. This layer acted as the source of CH 4 generation and diffusion, and the deeper soil layers and the wheat season soil acted as the sink. N fertilization significantly increased the CH 4 concentration and diffusive effluxes in the top 7-cm layers during the 2013 and 2014 rice seasons. Following biochar amendment, the soil CH 4 concentrations significantly decreased during the rice season in 2014, relative to the single N treatment. Moreover, 40 t ha -1 biochar significantly decreased the diffusive effluxes during the rice seasons in both years. Therefore, our results showed that biochar amendment is a good strategy for reducing the soil profile CH 4 concentrations and diffusive effluxes induced by N in paddy fields.

  14. Community Level Physiological Profiles (CLPP), Characterization and Microbial Activity of Soil Amended with Dairy Sewage Sludge

    PubMed Central

    Frąc, Magdalena; Oszust, Karolina; Lipiec, Jerzy

    2012-01-01

    The aim of the present work was to assess the influence of organic amendment applications compared to mineral fertilization on soil microbial activity and functional diversity. The field experiment was set up on a soil classified as an Eutric Cambisol developed from loess (South-East Poland). Two doses of both dairy sewage sludge (20 Mg·ha−1 and 26 Mg·ha−1) and of mineral fertilizers containing the same amount of nutrients were applied. The same soil without any amendment was used as a control. The soil under undisturbed native vegetation was also included in the study as a representative background sample. The functional diversity (catabolic potential) was assessed using such indices as Average Well Color Development (AWCD), Richness (R) and Shannon–Weaver index (H). These indices were calculated, following the community level physiological profiling (CLPP) using Biolog Eco Plates. Soil dehydrogenase and respiratory activity were also evaluated. The indices were sensitive enough to reveal changes in community level physiological profiles due to treatment effects. It was shown that dairy sewage amended soil was characterized by greater AWCD, R, H and dehydrogenase and respiratory activity as compared to control or mineral fertilized soil. Analysis of variance (ANOVA) and principal component analysis (PCA) were used to depict the differences of the soil bacterial functional diversity between the treatments. PMID:22737006

  15. Geomorphic control of radionuclide diffusion in desert soils

    USGS Publications Warehouse

    Pelletier, J.D.; Harrington, C.D.; Whitney, J.W.; Cline, M.; DeLong, S.B.; Keating, G.; Ebert, T.K.

    2005-01-01

    Diffusion is a standard model for the vertical migration of radionuclides in soil profiles. Here we show that diffusivity values inferred from fallout 137CS profiles in soils on the Fortymile Wash alluvial fan, Nye County, Nevada, have a strong inverse correlation with the age of the geomorphic surface. This result suggests that radionuclide-bound particles are predominantly transported by infiltration rather than by bulk-mixing processes such as wetting/ drying, freeze/thaw, and bioturbation. Our results provide a preliminary basis for using soil-geomorphic mapping, point-based calibration data, and the diffusion model to predict radionuclide trans desert soils within a pedotransfer-function approach. Copyright 2005 by the American Geophysical Union.

  16. Profile soil property estimation using a VIS-NIR-EC-force probe

    USDA-ARS?s Scientific Manuscript database

    Combining data collected in-field from multiple soil sensors has the potential to improve the efficiency and accuracy of soil property estimates. Optical diffuse reflectance spectroscopy (DRS) has been used to estimate many important soil properties, such as soil carbon, water content, and texture. ...

  17. Sub-slab vs. Near-slab Soil Vapor Profiles at a Chlorinated Solvent Site

    EPA Science Inventory

    A critical issue in assessing the vapor intrusion pathway is the distribution and migration of VOCs from the subsurface source to the near surface environment. Therefore, EPA/ORD funded a research project with the primary goal of comparing vertical profiles of soil gas concentrat...

  18. Soil profile organic carbon as affected by tillage and cropping systems

    USDA-ARS?s Scientific Manuscript database

    Reports on the long-term effects of tillage and cropping systems on soil organic carbon (SOC) sequestration in the entire rooting profile are limited. A long-term experiment with three cropping systems [continuous corn (CC), continuous soybean (CSB), and soybean-corn (SB-C)] in six primary tillage s...

  19. Process-based modeling of temperature and water profiles in the seedling recruitment zone: Part I. Model validation

    USDA-ARS?s Scientific Manuscript database

    Process-based modeling provides detailed spatial and temporal information of the soil environment in the shallow seedling recruitment zone across field topography where measurements of soil temperature and water may not sufficiently describe the zone. Hourly temperature and water profiles within the...

  20. [Influence of organochlorine pesticides in wastewater on the soil along the channel].

    PubMed

    Xu, Liang; Zhang, Cai-Xiang; Liu, Min; Liao, Xiao-Ping; Yao, Lin-Lin; Li, Jia-Le; Xiang, Qing-Qing

    2013-08-01

    Nine profile soil samples and two sewage water samples were collected from Xiaodian sewage irrigation area in Taiyuan city, concentrations of organochlorine pesticides (OCPs) were determined by the gas chromatography coupled with electron capture detector (GC-ECD) to analyze the influence of the leakage of sewage water. The result shows that OCPs in sewage water were mainly composed of HCHs. Concentrations of DDTs and other organochlorine pesticides were very low or out of the detection limit. Concentrations of sigmaOCPs and HCHs in eight profiles near irrigation channels to some extend decreased with the increasing of the linear distance off the channel, which shows influences of the leakage of sewage water on the soil nearby. Concentrations of HCHs clearly decreased with the increasing of soil depth in most profile soils. For the horizontal direction, concentrations of HCHs also decreased with the increasing of the linear distance off the channel. The correlation between HCHs and TOC was positive, but no correlation between pH and HCHs was found.

  1. [Deuterium isotope characteristics of precipitation infiltrated in the West Ordos Desert of Inner Mongolia, China].

    PubMed

    Chen, Jie; Xu, Qing; Gao, De Qiang; Ma, Ying Bin; Zhang, Bei Bei; Hao, Yu Guang

    2017-07-18

    Understanding the soil-profile temporal and spatial distribution of rainwater in arid and semiarid regions provides a scientific basis for the restoration and maintenance of degraded desert ecosystems in the West Ordos Desert of Inner Mongolia, China. In this study, the deuterium isotope (δD) value of rainwater, soil water, and groundwater were examined in the West Ordos Desert. The contribution of precipitation to soil water in each layer of the soil profile was calculated with two-end linear mixed model. In addition, the temporal and spatial distribution of δD of soil water in the soil profile was analyzed under different-intensity precipitation. The results showed that small rainfall events (0-10 mm) affected the soil moisture and the δD value of soil water in surface soil (0-10 cm). About 30.3% to 87.9% of rainwater was kept in surface soil for nine days following the rainfall event. Medium rainfall events (10-20 mm) influenced the soil moisture and the δD value of soil water at soil depth of 0-40 cm. About 28.2% to 80.8% of rainwater was kept in soil layer of 0-40 cm for nine days following the medium rainfall event. Large (20-30 mm) and extremely large (>30 mm) rainfall events considerably influenced the soil moisture and δD value of soil water in each of the soil layers, except for the 100-150 cm layer. The δD value of soil water was between those δD values of rainwater and groundwater, which suggested that precipitation and groundwater were the sources of soil water in the West Ordos Desert. Under the same intensity rainfall, the δD value of surface soil water (0-10 cm) was directly affected by δD of rainwater. With increasing soil depth, the variation of soil water δD decreased, and the soil water of 100-150 cm kept stable. With increasing intensity of precipitation, the influence of precipitation on soil water δD lasted for a longer duration and occurred at a deeper soil depth.

  2. Water movement in stony soils: The influence of stoniness on soil water content profiles

    NASA Astrophysics Data System (ADS)

    Novak, Viliam; Knava, Karol

    2010-05-01

    WATER MOVEMENT IN STONY SOILS: THE INFLUENCE OF STONINESS ON SOIL WATER CONTENT PROFILES Viliam Novák, Karol Kňava Institute of Hydrology, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3, Slovakia, e-mail: novak@uh.savba.sk Soils containing rock fragments are widespread over the world, on Europe such soil account for 30%, 60% in Mediterranean region. In comparison to fine earth soils (soil particles are less then 2 mm) stony soils contain rock fragments characterized by the low retention capacity and hydraulic conductivity. So, for stony soils -in comparison to the fine-earth soils - is typical lower hydraulic conductivity and retention capacity, which lead to the decrease decrease of infiltration rate and low water retention. So, water movement and its modeling in stony soil would differ from fine earth (usually agricultural) soil. The aim of this contribution is to demonstrate the differences in water movement in homogeneous soil (fine earth) and stony soil. The influence of different stoniness on soil water content and soil water dynamics was studied too. Windthrow at High Tatra mountains in Slovakia (November 2004) cleared nearly 12 000 ha of 80 year conifers and this event initiated complex research of windthrow impact on the ecosystem. The important part of this study was water movement in impacted area. Specific feature of the soil in this area was moraine soil consisting of fine earth, characterized as silty sand, with the relative stone content up to 0.49, increasing with depth. Associated phenomenon to the forest clearing is the decrease of rain interception and higher undercanopy precipitation. Conifers interception capacity can be three times higher than low canopy interception, and can reach up to 40% of annual precipitation in Central Europe. Stones in the soil are decreasing infiltration rate, but paradoxically increased understorey precipitation and followingly the increased cumulative infiltration led to the increase of the soil water content of the upper 1 meter soil layer up to 53 mm at the end of vegetation period in comparison to the afforested area. Finally, soil water content profiles of stony soil differ from homogeneous ones and contain less water comparing to soil without stones.

  3. Soil Atterberg limits of different weathering profiles of the collapsing gullies in the hilly granitic region of southern China

    NASA Astrophysics Data System (ADS)

    Deng, Yusong; Cai, Chongfa; Xia, Dong; Ding, Shuwen; Chen, Jiazhou; Wang, Tianwei

    2017-04-01

    Collapsing gullies are one of the most serious soil erosion problems in the tropical and subtropical areas of southern China. However, few studies have been performed on the relationship of soil Atterberg limits with soil profiles of the collapsing gullies. Soil Atterberg limits, which include plastic limit and liquid limit, have been proposed as indicators for soil vulnerability to degradation. Here, the soil Atterberg limits within different weathering profiles and their relationships with soil physicochemical properties were investigated by characterizing four collapsing gullies in four counties in the hilly granitic region of southern China. The results showed that with the fall of weathering degree, there was a sharp decrease in plastic limit, liquid limit, plasticity index, soil organic matter, cation exchange capacity and free iron oxide. Additionally, there was a gradual increase in liquidity index, a sharp increase in particle density and bulk density followed by a slight decline, a decrease in the finer soil particles, a noticeable decline in the clay contents, and a considerable increase in the gravel and sand contents. The plastic limit varied from 19.43 to 35.93 % in TC, 19.51 to 33.82 % in GX, 19.32 to 35.58 % in AX and 18.91 to 36.56 % in WH, while the liquid limit varied from 30.91 to 62.68 % in TC, 30.89 to 57.70 % in GX, 32.48 to 65.71 % in AX and 30.77 to 62.70 % in WH, respectively. The soil Atterberg limits in the sandy soil layers and detritus layers were lower than those in the surface layers and red soil layers, which results in higher vulnerability of the sandy soil layers and detritus layers to erosion and finally the formation of the collapsing gully. The regression analyses showed that soil Atterberg limits had significant and positive correlation with SOM, clay content, cationic exchange capacity and Fed, significant and negative correlation with sand content and no obvious correlation with other properties. The results of this study revealed that soil Atterberg limits are an informative indicator to reflect the weathering degree of different weathering profiles of the collapsing gullies in the hilly granitic region.

  4. Soil organic matter degradation and enzymatic profiles of intertidal and subaqueous soils

    NASA Astrophysics Data System (ADS)

    Ferronato, Chiara; Marinari, Sara; Bello, Diana; Vianello, Gilmo; Trasar-Cepeda, Carmen; Vittori Antisari, Livia

    2017-04-01

    The interest on intertidal and subaqueous soils has recently arisen because of the climate changes forecasts. The preservation of these habitats represents an important challenge for the future of humanity, because these systems represent an important global C sink since soil organic matter (SOM) on intertidal and subaqueous soils undergoes very slow degradation rates due to oxygen limitation. Publications on SOM cycle in saltmarshes are very scarce because of the difficulties involved on those studies i.e. the interaction of many abiotic and biotic factors (e.g., redox changes, water and bio-turbation processes, etc) and stressors (e.g., salinity and anoxia). However, saltmarshes constitute an unique natural system to observe the influence of anoxic conditions on SOM degradation, because the tide fluctuations on the soil surface allow the formation of provisionally or permanently submerged soils. With the aim to investigate the quality of SOM in subaqueous soils, triplicates of subaqueous soils (SASs), intertidal soils (ITSs) and terrestrial soils (TESs) were collected in the saltmarshes of the Baiona Lagoon (Northern Italy) and classified according to their pedogenetic horizons. The SOM quality on each soil horizon was investigated by quantifying SOM, total and water-soluble organic carbon (TOC, WSC) and microbial biomass carbon (MBC). Given the contribution of soil enzymes to the degradation of SOM, some enzymatic assays were also performed. Thereafter, soil classification and humus morpho-functional classification were used to join together similar soil profiles to facilitate the description and discussion of results. Soils were ranked as Aquent or Wassent Entisols, with an A/AC/C pedosequence. SOM, TOC and MBC were statistically higher in A than in AC and C horizons. Among the A horizons, ITSs were those showing the highest values for these parameters (11% TOC, 1.6 mg kg-1 MBC, 0.9 mg kg-1 WSC). These results, combined with the morpho-functional classification of epipedons, reflect the influence of the type of annual biomass depositions on ITSs (i.e. Salicornia europaea), but also the important role of the tide oscillation that promotes the continuous alternation of red-ox exchanges and thus fasten the organic matter turnover in ITSs. On these pedons, invertase was the most effective enzymes (11.6 μmol glucose g-1h-1). Moreover, in SASs and ITSs, most of the activities linked to the degradation of exoskeletons and fungi (e.g. chitinase) increase along the soil profile, probably due to the disrupting effect of water on the soil and to the type of SOM in saltmarshes soils. By considering the specific activity (enzymatic activity/TOC content), data showed how SASs, ITSs and TESs had different oxidoreductases and hydrolases trends, suggesting a different path and effectiveness of SOM degradation, which probably depends both on the soil hydric regime, and on the different type of organic compounds. A particular increase of catalase and invertase specific activities along the soil profiles, suggests the presence of microaerophilic environment in some saturated AC and C sandy horizons but generally, it was observed a gradual decrease of biochemical alteration of the SOM by enzymatic activities along the soil profile due to the progressive restriction of the edaphic conditions.

  5. Human Performance in the Tropics I: Man-Packing A Typical Load over a Standard Jungle Course in the Wet and Dry Seasons.

    DTIC Science & Technology

    1974-09-01

    of soil found along the course are clay in nature, their development having been largely influenced by climate and relief. Soils are primarily Oxisols ...and Entisols, Oxisols were recognized as highly weathered residual yellowish-red and reddish soil, occurring on footslopes and hilltops, respectively...Frijoles river. Comparatively shallow profiles characterize the footslope Oxisols . PRepresentative profiles examined along the course (stations 5, 93, 115

  6. Theoretical Relationships between Luminescence and Hillslope Soil Vertical Diffusivity: a Numerical Modeling Approach

    NASA Astrophysics Data System (ADS)

    Gray, H. J.; Tucker, G. E.; Mahan, S.

    2017-12-01

    Luminescence is a property of matter that can be used to obtain depositional ages from fine sand. Luminescence generates due to exposure to background ionizing radiation and is removed by sunlight exposure in a process known as bleaching. There is evidence to suggest that luminescence can also serve as a sediment tracer in fluvial and hillslope environments. For hillslope environments, it has been suggested that the magnitude of luminescence as a function of soil depth is related to the strength of soil mixing. Hillslope soils with a greater extent of mixing will have previously surficial sand grains moved to greater depths in a soil column. These previously surface-exposed grains will contain a lower luminescence than those which have never seen the surface. To attempt to connect luminescence profiles with soil mixing rate, here defined as the soil vertical diffusivity, I conduct numerical modelling of particles in hillslope soils coupled with equations describing the physics of luminescence. I use recently published equations describing the trajectories of particles under both exponential and uniform soil velocity soils profiles and modify them to include soil diffusivity. Results from the model demonstrates a strong connection between soil diffusivity and luminescence. Both the depth profiles of luminescence and the total percent of surface exposed grains will change drastically based on the magnitude of the diffusivity. This suggests that luminescence could potentially be used to infer the magnitude of soil diffusivity. However, I test other variables such as the soil production rate, e-folding length of soil velocity, background dose rate, and soil thickness, and I find these other variables can also affect the relationship between luminescence and diffusivity. This suggests that these other variables may need to be constrained prior to any inferences of soil diffusivity from luminescence measurements. Further field testing of the model in areas where the soil vertical diffusivity and other parameters are independently known will provide a test of this potential new method.

  7. Using an Art Project to Stimulate Youth Interest in Soil

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Brevik, Corinne E.; Steffan, Joshua J.

    2017-04-01

    Dickinson State University organizes four Family Science Day events each fall during the months of September, October, November, and December. Activities are geared toward elementary-aged children to increase student engagement in the sciences. Offered on Saturday afternoons, each event focuses on a different science-related theme. Families can attend these events free of charge, and the kids participate in a large variety of hands-on activities that center around the event's theme. An important part of generating enthusiasm for a subject is making it interesting, and with young children art projects provide a great avenue to generate interest and enthusiasm. Such projects are fun and involve creativity, allowing the children a chance to express themselves. To this end, each of the Family Science Days includes one or more arts and crafts projects that result in a fun learning experience the children can take home. In November 2015 the art project involved creating a soil profile. The children were given a paper handout showing a soil profile sketch lined up beside a color photograph of a soil profile. They were also supplied with glue and several containers of different colored soils from surface and subsurface horizons. To create their art project, the children glued samples of soil onto their profile sketch, attempting to create a profile that looked similar to the color photograph. The handout also included fundamental information about each of the horizons shown. The children received this project with great enthusiasm. There were nine other science-based activities available at the Family Science Day when the soil art project was offered, and the art project was one of the most popular stops in the room. The children typically spent a good deal of time working on their art project, including asking questions about the various colored soils available to them and the basic properties of soil. Whether the popularity of the project came from the chance to be creative, the challenge of trying to recreate the photograph, or just a general interest in getting their fingers dirty, it is our hope (in the bigger picture) that the art project created more awareness of soil and, in at least a few of the young participants, that it might stimulate interest in soil later in their lives.

  8. Utilizing of magnetic parameters for evaluation of soil erosion rates on two different agricultural sites

    NASA Astrophysics Data System (ADS)

    Kapicka, A.; Grison, H.; Petrovsky, E.; Jaksik, O.; Kodesova, R.

    2015-12-01

    Field measurements of magnetic susceptibility were carried out on regular grid, resulting in 101 data points at Brumovice and 65 at Vidim locality. Mass specific magnetic susceptibility χ and its frequency dependence χFD was used to estimate the significance of SP ferrimagnetic particles of pedogenic origin in topsoil horizons. The lowest magnetic susceptibility was obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). Soil profiles unaffected by erosion were investigated in detail. The vertical distribution of magnetic susceptibility along these "virgin" profiles was measured in laboratory on samples collected with 2-cm spacing. The differences between the distribution of susceptibility in the undisturbed soil profiles and the magnetic signal after uniform mixing of the soil material as a result of erosion and tillage are fundamental for the estimation of soil loss in the studied test fields. Maximum cumulative soil erosion depth in Brumovice and Vidim is around 100 cm and 50 cm respectively. The magnetic method is suitable for mapping at the chernozem localities and measurement of soil magnetic susceptibility is in this case useful and fast technique for quantitative estimation of soil loss caused by erosion. However, it is less suitable (due to lower magnetic differentiation with depth) in areas with luvisol as dominant soil unit. Acknowledgement: This study was supported by NAZV Agency of the Ministry of Agriculture of the Czech Republic through grant No QJ1230319.

  9. Distributions of zinc, copper, cadmium and lead in a tropical ultisol after long-term disposal of sewage sludge.

    PubMed

    Udom, B E; Mbagwu, J S C; Adesodun, J K; Agbim, N N

    2004-06-01

    Heavy metals present in soils constitute serious environmental hazards from the point of view of polluting the soils and adjoining streams and rivers. The distribution of heavy metals in a sandy Ultisol (Arenic Kandiustult) in south eastern Nigeria subjected to 40 years disposal of sewage wastes (sludge and effluents) was studied using two profile pits (S/NSK/1 and S/NSK/2) sited in the sewage disposal area and one profile pit (NS/NSK) sited in the non-sewage disposal area. Soil samples were collected in duplicate from these soil horizons and analyzed for their heavy metal contents. The mean concentrations of Zn, Cu, Cd and Pb in the top- and sub-soil horizons of sewage soil were 79.3, 32, 0.29 and 1.15 mg/kg, respectively. These levels were high enough to constitute health and phytotoxic risks. All the metal levels were much higher in the AB horizon in the sewage than in the non-sewage soil profile, but Pb and Cu contents were also high down to the Bt1 horizon, indicating their apparent relatively high mobility in this soil. There was a significant correlation between organic matter (OM) and Zn (r=0.818**), and between OM and Cd (0.864**) in the sewage soil. The high OM status of the sewage sludge, together with its corresponding low pH, might have favoured metal-OM complexation that could reduce heavy metal mobility and phytotoxicity in this soil.

  10. [Soil sandy desertification and salinization and their interrelationships in Yanghuang irrigated area of Hongsipu, Ningxia of northwest China].

    PubMed

    Yang, Xin-guo; Song, Nai-ping

    2011-09-01

    By the methods of controlled and typical sampling, this paper analyzed the texture, salinization characteristics, cation exchange capacity (CEC), and their correlations in the 0-40 cm soil profiles of corn land, medlar land, and non-utilized land in Yanghuang irrigated area of Hongsipu, Northwest China. Under controlled sampling, the salt content in the soil profiles was 0.69-1.30 g x kg(-1) (except in non-utilized land where the 0-10 cm soil salt content was up to 1.74 g x kg(-1)), with no obvious salinization. The sodium adsorption ratio and exchangeable sodium percentage in the 20-40 cm soil layer of medlar land were 12.18 and 14.1%, respectively, and the total content of clay and silt in the 0-40 cm soil profile of medlar land was up to 37.3% whereas that in the 0-20 cm soil layer of corn land was only 13.5%. In the 20-40 cm soil layer of corn land, the indices of sandy desertification and salinization had significant correlations under controlled sampling but no correlations under typical sampling, while the CEC and the sandy desertification and salinization indices had significant correlations under typical sampling. In different land use types in the study area, soil sandy desertification and salinization had complicated interrelationships, and CEC could be used as the indicator for the changes in soil environmental quality.

  11. Comparison of field and laboratory VNIR spectroscopy for profile soil property estimation

    USDA-ARS?s Scientific Manuscript database

    In-field, in-situ data collection with soil sensors has potential to improve the efficiency and accuracy of soil property estimates. Optical diffuse reflectance spectroscopy (DRS) has been used to estimate important soil properties, such as soil carbon, nitrogen, water content, and texture. Most pre...

  12. Kim Magrini | NREL

    Science.gov Websites

    Developing char-based soil amendments Soil carbon and char analysis via molecular beam mass spectrometry depth profiling, Fourier transform infrared [FTIR]) Rapid soil carbon analysis using analytical DRIFTS, 13C NMR, and py-MBMS to Characterize the Effects of Soil Science Oxidation Assays on Soil Organic

  13. Estimation of soil profile physical and chemical properties using a VIS-NIR-EC-force probe

    USDA-ARS?s Scientific Manuscript database

    Combining data collected in-field from multiple soil sensors has the potential to improve the efficiency and accuracy of soil property estimates. Optical diffuse reflectance spectroscopy (DRS) has been used to estimate many important soil properties, such as soil carbon, water content, and texture. ...

  14. Inversion of soil electrical conductivity data to estimate layered soil properties

    USDA-ARS?s Scientific Manuscript database

    CBulk apparent soil electrical conductivity (ECa) sensors respond to multiple soil properties, including clay content, water content, and salt content (i.e., salinity). They provide a single sensor value for an entire soil profile down to a sensor-dependent measurement depth, weighted by a nonlinear...

  15. Consumption of methane by soils.

    PubMed

    Dueñas, C; Fernández, M C; Carretero, J; Pérez, M; Liger, E

    1994-05-01

    Measurements of the methane flux and methane concentration profiles in soil air are presented. The flux of methane from the soil is calculated by two methods: a) Direct by placing a static open chamber at the soil surface. b) Indirect, using the (222)Rn concentrations profile and the (222)Rn flux in the soil surface in parallel with the methane concentration ((222)Rn calibrated fluxes). The methane flux has been determined in two kinds of soils (sandy and loamy) in the surroundings of Málaga (SPAIN). The directly measured methane fluxes at all investigated sites is higher than methane fluxes derived from "Rn calibrated fluxes". Atmospheric methane is consumed by soils, mean direct flux to the atmosphere were - 0.33 g m(-2)yr-1. The direct methane flux is the same within the measuring error in sandy and loamy soils. The influence of the soil parameters on the methane flux indicates that microbial decomposition of methane is primarily controlled by the transport of methane.

  16. A multiisotope C and N modeling analysis of soil organic matter turnover and transport as a function of soil depth in a California annual grassland soil chronosequence

    USGS Publications Warehouse

    Baisden, W.T.; Amundson, Ronald; Brenner, D.L.; Cook, A.C.; Kendall, C.; Harden, J.W.

    2002-01-01

    We examine soil organic matter (SOM) turnover and transport using C and N isotopes in soil profiles sampled circa 1949, 1978, and 1998 (a period spanning pulse thermonuclear 14C enrichment of the atmosphere) along a 3-million-year annual grassland soil chronosequence. Temporal differences in soil ??14C profiles indicate that inputs of recently living organic matter (OM) occur primarily in the upper 20-30 cm but suggest that OM inputs can occur below the primary rooting zone. A three-pool SOM model with downward transport captures most observed variation in ??14C, percentages of C and N, ??13C, and ??15N, supporting the commonly accepted concept of three distinct SOM pools. The model suggests that the importance of the decadal SOM pool in N dynamics is greatest in young and old soils. Altered hydrology and possibly low pH and/or P dynamics in highly developed old soils cause changes in soil C and N turnover and transport of importance for soil biogeochemistry models.

  17. Responses of Water and Salt Parameters to Groundwater Levels for Soil Columns Planted with Tamarix chinensis

    PubMed Central

    Xia, Jiangbao; Zhao, Ximei; Chen, Yinping; Fang, Ying; Zhao, Ziguo

    2016-01-01

    Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL), soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC) declined significantly, whereas the salt content (SC) and absolute soil solution concentration (CS) decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9–1.2 m) and shallow water levels (0.6 m) respectively, whereas the CS presented the greatest variation at the deep water level (1.5–1.8 m).The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5–1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions. PMID:26730602

  18. The microbial communities and potential greenhouse gas production in boreal acid sulphate, non-acid sulphate, and reedy sulphidic soils.

    PubMed

    Šimek, Miloslav; Virtanen, Seija; Simojoki, Asko; Chroňáková, Alica; Elhottová, Dana; Krištůfek, Václav; Yli-Halla, Markku

    2014-01-01

    Acid sulphate (AS) soils along the Baltic coasts contain significant amounts of organic carbon and nitrogen in their subsoils. The abundance, composition, and activity of microbial communities throughout the AS soil profile were analysed. The data from a drained AS soil were compared with those from a drained non-AS soil and a pristine wetland soil from the same region. Moreover, the potential production of methane, carbon dioxide, and nitrous oxide from the soils was determined under laboratory conditions. Direct microscopic counting, glucose-induced respiration (GIR), whole cell hybridisation, and extended phospholipid fatty acid (PLFA) analysis confirmed the presence of abundant microbial communities in the topsoil and also in the deepest Cg2 horizon of the AS soil. The patterns of microbial counts, biomass and activity in the profile of the AS soil and partly also in the non-AS soil therefore differed from the general tendency of gradual decreases in soil profiles. High respiration in the deepest Cg2 horizon of the AS soil (5.66 μg Cg(-1)h(-1), as compared to 2.71 μg Cg(-1)h(-1) in a top Ap horizon) is unusual but reasonable given the large amount of organic carbon in this horizon. Nitrous oxide production peaked in the BCgc horizon of the AS and in the BC horizon of the non-AS soil, but the peak value was ten-fold higher in the AS soil than in the non-AS soil (82.3 vs. 8.6 ng Ng(-1)d(-1)). The data suggest that boreal AS soils on the Baltic coast contain high microbial abundance and activity. This, together with the abundant carbon and total and mineral nitrogen in the deep layers of AS soils, may result in substantial gas production. Consequently, high GHG emissions could occur, for example, when the generally high water table is lowered because of arable farming. © 2013.

  19. Historical Perspectives and Future Needs in the Development of the Soil Series Concept

    NASA Astrophysics Data System (ADS)

    Beaudette, Dylan E.; Brevik, Eric C.; Indorante, Samuel J.

    2016-04-01

    The soil series concept is an ever-evolving understanding of soil profile observations, their connection to the landscape, and functional limits on the range in characteristics that affect management. Historically, the soil series has played a pivotal role in the development of soil-landscape theory, modern soil survey methods, and concise delivery of soils information to the end-user-- in other words, soil series is the palette from which soil survey reports are crafted. Over the last 20 years the soil series has received considerable criticism as a means of soil information organization (soil survey development) and delivery (end-user application of soil survey data), with increasing pressure (internal and external) to retire the soil series. We propose that a modern re-examination of soil series information could help address several of the long-standing critiques of soil survey: consistency across survey vintage and political divisions and more robust estimates of soil properties and associated uncertainty. A new library of soil series data would include classic narratives describing morphology and management, quantitative descriptions of soil properties and their ranges, graphical depiction of the relationships between associated soil series, block diagrams illustrating soil-landscape models, maps of series distribution, and a probabilistic representation of a "typical" soil profile. These data would be derived from re-correlation of existing morphologic and characterization data informed by modern statistical methods and regional expertise.

  20. Carbon Flux and Isotopic Character of Soil and Soil Gas in Stabilized and Active Thaw Slumps in Northwest Alaska

    NASA Astrophysics Data System (ADS)

    Jensen, A.; Crosby, B. T.; Mora, C. I.; Lohse, K. A.

    2012-12-01

    Permafrost soils store nearly half the world's global carbon. Warming of arctic landscape results in permafrost thaw which causes ground subsidence or thermokarst. On hillslopes, these features rapidly and dramatically alter soil structure, temperature, and moisture, as well as the content and quality of soil organic matter. These changes alter both the rate and mechanism of carbon cycling in permafrost soils, making frozen soils available to both anaerobic and aerobic decomposition. In order to improve our predictive capabilities, we use a chronosequence thaw slumps to examine how fluxes from active and stabilized features differ. Our study site is along the Selawik River in northwest Alaska where a retrogressive thaw slump initiated in the spring of 2004. It has grown to a surface area of 50,000 m2. Products of the erosion are stored on the floor of the feature, trapped on a fan or flushed into the Selawik River. North of slump is undisturbed tundra and adjacent to the west is a slump feature that stabilized and is now covered with a second generation of spruce trees. In this 2 year study, we use measurements of CO2 efflux, δC13 in soil profiles and CO2 and CH4 abundance to constrain the response of belowground carbon emissions. We also focused on constraining which environmental factors govern C emissions within each of the above ecosystems. To this end, we measured soil temperature, and moisture, abundance and quality of soil organic carbon (SOC), water content, and bulk carbon compositions. Preliminary data from the summer of 2011 suggest that vegetation composition and soil temperature exert the strong control on CO2 efflux. The floor of the active slump and fan are bare mineral soils and are generally 10 to 15°C warmer than the tundra and stabilized slump. Consistently decreasing δC13 soil gas profiles in the recovered slump confirm that this region is a well-drained soil dominated by C3 vegetation. The δC13 gas profiles for the tundra, active slump floor, and active fan tend to be more variable as a consequence of less consistently structured soils. This could be due to either the predominance of older carbon being recycled within these profiles or a skewed balance between anaerobic vs. aerobic respiration.

  1. Describing Soils: Calibration Tool for Teaching Soil Rupture Resistance

    ERIC Educational Resources Information Center

    Seybold, C. A.; Harms, D. S.; Grossman, R. B.

    2009-01-01

    Rupture resistance is a measure of the strength of a soil to withstand an applied stress or resist deformation. In soil survey, during routine soil descriptions, rupture resistance is described for each horizon or layer in the soil profile. The lower portion of the rupture resistance classes are assigned based on rupture between thumb and…

  2. Soil CO2 production in upland tundra where permafrost is thawing

    Treesearch

    Hanna Lee; Edward A.G. Schuur; Jason G. Vogel

    2010-01-01

    Permafrost soils store nearly half of global soil carbon (C), and therefore permafrost thawing could lead to large amounts of greenhouse gas emissions via decomposition of soil organic matter. When ice-rich permafrost thaws, it creates a localized surface subsidence called thermokarst terrain, which changes the soil microenvironment. We used soil profile CO2...

  3. Magnetic analyses of soils from the Wind River Range, Wyoming, constrain rates and pathways of magnetic enhancement for soils from semiarid climates

    NASA Astrophysics Data System (ADS)

    Quinton, Emily E.; Dahms, Dennis E.; Geiss, Christoph E.

    2011-07-01

    In order to constrain the rate of magnetic enhancement in soils, we investigated modern soils from five fluvial terraces in the eastern Wind River Range, Wyoming. Profiles up to 1.2 m deep were sampled in 5-cm intervals from hand-dug pits or natural riverbank exposures. Soils formed in fluvial terraces correlated to the Sacajawea Ridge (730-610 ka BP), Bull Lake (130-100 ka BP) and Pinedale-age (˜20 ka BP) glacial advances. One soil profile formed in Holocene-age sediment. Abundance, mineralogy, and grain size of magnetic minerals were estimated through magnetic measurements. Magnetic enhancement of the A-horizon as well as an increase in fine-grained magnetic minerals occurred mostly in Bull Lake profiles but was absent from the older profile. Such low rates of magnetic enhancement may limit the temporal resolution of paleosol-based paleoclimate reconstructions in semiarid regions even where high sedimentation rates result in multiple paleosols. A loss of ferrimagnetic and an increase in antiferromagnetic minerals occurred with age. Our findings suggest either the conversion of ferrimagnetic minerals to weakly magnetic hematite with progressing soil age, or the presence of ferrimagnetic minerals as an intermediate product of pedogenesis. Absolute and relative hematite abundance increase with age, making both useful proxies for soil age and the dating of regional glacial deposits. All coercivity proxies are consistent with each other, which suggests that observed changes in HIRM and S-ratio are representative of real changes in hematite abundance rather than shifts in coercivity distributions, even though the modified L-ratio varies widely.

  4. Mechanistic modeling of microbial interactions at pore to profile scale resolve methane emission dynamics from permafrost soil

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Ali; Or, Dani

    2017-05-01

    The sensitivity of polar regions to raising global temperatures is reflected in rapidly changing hydrological processes associated with pronounced seasonal thawing of permafrost soil and increased biological activity. Of particular concern is the potential release of large amounts of soil carbon and stimulation of other soil-borne greenhouse gas emissions such as methane. Soil methanotrophic and methanogenic microbial communities rapidly adjust their activity and spatial organization in response to permafrost thawing and other environmental factors. Soil structural elements such as aggregates and layering affect oxygen and nutrient diffusion processes thereby contributing to methanogenic activity within temporal anoxic niches (hot spots). We developed a mechanistic individual-based model to quantify microbial activity dynamics in soil pore networks considering transport processes and enzymatic activity associated with methane production in soil. The model was upscaled from single aggregates to the soil profile where freezing/thawing provides macroscopic boundary conditions for microbial activity at different soil depths. The model distinguishes microbial activity in aerate bulk soil from aggregates (or submerged profile) for resolving methane production and oxidation rates. Methane transport pathways by diffusion and ebullition of bubbles vary with hydration dynamics. The model links seasonal thermal and hydrologic dynamics with evolution of microbial community composition and function affecting net methane emissions in good agreement with experimental data. The mechanistic model enables systematic evaluation of key controlling factors in thawing permafrost and microbial response (e.g., nutrient availability and enzyme activity) on long-term methane emissions and carbon decomposition rates in the rapidly changing polar regions.

  5. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaofeng; Thornton, Peter E; Post, Wilfred M

    2013-01-01

    Soil microbes play a pivotal role in regulating land-atmosphere interactions; the soil microbial biomass carbon (C), nitrogen (N), phosphorus (P) and C:N:P stoichiometry are important regulators for soil biogeochemical processes; however, the current knowledge on magnitude, stoichiometry, storage, and spatial distribution of global soil microbial biomass C, N, and P is limited. In this study, 3087 pairs of data points were retrieved from 281 published papers and further used to summarize the magnitudes and stoichiometries of C, N, and P in soils and soil microbial biomass at global- and biome-levels. Finally, global stock and spatial distribution of microbial biomass Cmore » and N in 0-30 cm and 0-100 cm soil profiles were estimated. The results show that C, N, and P in soils and soil microbial biomass vary substantially across biomes; the fractions of soil nutrient C, N, and P in soil microbial biomass are 1.6% in a 95% confidence interval of (1.5%-1.6%), 2.9% in a 95% confidence interval of (2.8%-3.0%), and 4.4% in a 95% confidence interval of (3.9%-5.0%), respectively. The best estimates of C:N:P stoichiometries for soil nutrients and soil microbial biomass are 153:11:1, and 47:6:1, respectively, at global scale, and they vary in a wide range among biomes. Vertical distribution of soil microbial biomass follows the distribution of roots up to 1 m depth. The global stock of soil microbial biomass C and N were estimated to be 15.2 Pg C and 2.3 Pg N in the 0-30 cm soil profiles, and 21.2 Pg C and 3.2 Pg N in the 0-100 cm soil profiles. We did not estimate P in soil microbial biomass due to data shortage and insignificant correlation with soil total P and climate variables. The spatial patterns of soil microbial biomass C and N were consistent with those of soil organic C and total N, i.e. high density in northern high latitude, and low density in low latitudes and southern hemisphere.« less

  6. Functional Diversity of Microbial Communities in Sludge-Amended Soils

    NASA Astrophysics Data System (ADS)

    Sun, Y. H.; Yang, Z. H.; Zhao, J. J.; Li, Q.

    The BIOLOG method was applied to exploration of functional diversity of soil microbial communities in sludge-amended soils sampled from the Yangtze River Delta. Results indicated that metabolic profile, functional diversity indexes and Kinetic parameters of the soil microbial communities changed following soil amendment with sewage sludge, suggesting that the changes occurred in population of the microbes capable of exploiting carbon substrates and in this capability as well. The kinetic study of the functional diversity revealed that the metabolic profile of the soil microbial communities exhibited non-linear correlation with the incubation time, showing a curse of sigmoid that fits the dynamic model of growth of the soil microbial communities. In all the treatments, except for treatments of coastal fluvo-aquic soil amended with fresh sludge and dried sludge from Hangzhou, kinetic parameters K and r of the functional diversity of the soil microbial communities decreased significantly and parameter S increased. Changes in characteristics of the functional diversity well reflected differences in C utilizing capacity and model of the soil microbial communities in the sludge-amended soils, and changes in functional diversity of the soil microbial communities in a particular eco-environment, like soil amended with sewage sludge.

  7. Soil profile property estimation with field and laboratory VNIR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Diffuse reflectance spectroscopy (DRS) soil sensors have the potential to provide rapid, high-resolution estimation of multiple soil properties. Although many studies have focused on laboratory-based visible and near-infrared (VNIR) spectroscopy of dried soil samples, previous work has demonstrated ...

  8. Soil ecology of a rock outcrop ecosystem: Abiotic stresses, soil respiration, and microbial community profiles in limestone cedar glades

    USGS Publications Warehouse

    Cartwright, Jennifer M.; Advised by Dzantor, E. Kudjo

    2015-01-01

    Stress factors quantified by this research include shallow soil (depth to bedrock ranging from 2.4 to 22.6 cm), volumetric soil water content levels seasonally ranging from xeric (below 5%) to saturated (above 50%), and seasonally extreme ground-surface temperatures (above 48°C). Findings from this research indicate that spatial and temporal heterogeneity exists in limestone cedar glades in terms of abiotic stress factors and soil physical and chemical properties. Several such soil properties (e.g. soil depth, organic matter levels, pH, and particle size distribution) are spatially correlated. These soil properties were statistically related to ecological structures and functions such as vegetation patterns, soil respiration, the density of culturable heterotrophic microbes in soil and metabolic diversity of soil microbial community profiles. In general, zones within limestone cedar glades that had relatively shallow soil, alkaline pH, low levels of organic matter and high levels of silt also tended to have depressed rates of soil respiration and reduced densities and metabolic diversity of culturable heterotrophic soil microbes. Additionally, seasonally-relevant stress factors including soil water content and temperatures at or near the soil surface were related to the same set of ecological structures and functions.

  9. Vertical distribution of soil saturated hydraulic conductivity and its influencing factors in a small karst catchment in Southwest China.

    PubMed

    Fu, Tonggang; Chen, Hongsong; Zhang, Wei; Nie, Yunpeng; Wang, Kelin

    2015-03-01

    Saturated hydraulic conductivity (Ks) is one of the most important soil hydraulic parameters influencing hydrological processes. This paper aims to investigate the vertical distribution of Ks and to analyze its influencing factors in a small karst catchment in Southwest China. Ks was measured in 23 soil profiles for six soil horizons using a constant head method. These profiles were chosen in different topographical locations (upslope, downslope, and depression) and different land-use types (forestland, shrubland, shrub-grassland, and farmland). The influencing factors of Ks, including rock fragment content (RC), bulk density (BD), capillary porosity (CP), non-capillary porosity (NCP), and soil organic carbon (SOC), were analyzed by partial correlation analysis. The mean Ks value was higher in the entire profile in the upslope and downslope, but lower value, acting as a water-resisting layer, was found in the 10-20 cm soil depth in the depression. Higher mean Ks values were found in the soil profiles in the forestland, shrubland, and shrub-grassland, but lower in the farmland. These results indicated that saturation-excess runoff could occur primarily in the hillslopes but infiltration-excess runoff in the depression. Compared with other land-use types, surface runoff is more likely to occur in the farmlands. RC had higher correlation coefficients with Ks in all categories concerned except in the forestland and farmland with little or no rock fragments, indicating that RC was the dominant influencing factor of Ks. These results suggested that the vertical distributions of Ks and RC should be considered for hydrological modeling in karst areas.

  10. Landscape scale estimation of soil carbon stock using 3D modelling.

    PubMed

    Veronesi, F; Corstanje, R; Mayr, T

    2014-07-15

    Soil C is the largest pool of carbon in the terrestrial biosphere, and yet the processes of C accumulation, transformation and loss are poorly accounted for. This, in part, is due to the fact that soil C is not uniformly distributed through the soil depth profile and most current landscape level predictions of C do not adequately account the vertical distribution of soil C. In this study, we apply a method based on simple soil specific depth functions to map the soil C stock in three-dimensions at landscape scale. We used soil C and bulk density data from the Soil Survey for England and Wales to map an area in the West Midlands region of approximately 13,948 km(2). We applied a method which describes the variation through the soil profile and interpolates this across the landscape using well established soil drivers such as relief, land cover and geology. The results indicate that this mapping method can effectively reproduce the observed variation in the soil profiles samples. The mapping results were validated using cross validation and an independent validation. The cross-validation resulted in an R(2) of 36% for soil C and 44% for BULKD. These results are generally in line with previous validated studies. In addition, an independent validation was undertaken, comparing the predictions against the National Soil Inventory (NSI) dataset. The majority of the residuals of this validation are between ± 5% of soil C. This indicates high level of accuracy in replicating topsoil values. In addition, the results were compared to a previous study estimating the carbon stock of the UK. We discuss the implications of our results within the context of soil C loss factors such as erosion and the impact on regional C process models. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Effects of soil depth and plant-soil interaction on microbial community in temperate grasslands of northern China.

    PubMed

    Yao, Xiaodong; Zhang, Naili; Zeng, Hui; Wang, Wei

    2018-07-15

    Although the patterns and drivers of soil microbial community composition are well studied, little is known about the effects of plant-soil interactions and soil depth on soil microbial distribution at a regional scale. We examined 195 soil samples from 13 sites along a climatic transect in the temperate grasslands of northern China to measure the composition of and factors influencing soil microbial communities within a 1-m soil profile. Soil microbial community composition was measured using phospholipid fatty acids (PLFA) analysis. Fungi predominated in topsoil (0-10 cm) and bacteria and actinomycetes in deep soils (40-100 cm), independent of steppe types. This variation was explained by contemporary environmental factors (including above- and below-ground plant biomass, soil physicochemical and climatic factors) >58% in the 0-40 cm of soil depth, but <45% in deep soils. Interestingly, when we considered the interactive effects between plant traits (above ground biomass and root biomass) and soil factors (pH, clay content, and soil total carbon, nitrogen, phosphorous), we observed a significant interaction effect occurring at depths of 10-20 cm soil layer, due to different internal and external factors of the plant-soil system along the soil profile. These results improve understanding of the drivers of soil microbial community composition at regional scales. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Microbial functional diversity and enzymatic activity of soil degraded by sulphur mining reclaimed with various waste

    NASA Astrophysics Data System (ADS)

    Joniec, Jolanta; Frąc, Magdalena

    2017-10-01

    The aim of the study was to evaluate microbial functional diversity based on community level physiological profiling and β-glucosidase activity changes in soil degraded by sulphur mining and subjected to reclamation with various waste. The experiment was set up in the area of the former `Jeziórko' Sulphur Mine (Poland), on a soilless substrate with a particle size distribution of slightly loamy sand. The experimental variants included the application of post-flotation lime, sewage sludge and mineral wool. The analyses of soil samples included the assessment of the following microbiological indices: β-glucosidase activity and functional diversity average well color development and richness). The results indicate that sewage sludge did not exert a significant impact on the functional diversity of microorganisms present in the reclaimed soil. In turn, the application of other types of waste contributed to a significant increase in the parameters of total metabolic activity and functional diversity of the reclaimed soil. However, the temporal analysis of the metabolic profile of soil microorganisms demonstrated that a single application of waste did not yield a durable, stable metabolic profile in the reclaimed soil. Still, there was an increase in β-glucosidase activity, especially in objects treated with sewage sludge.

  13. Towards a global understanding of vertical soil carbon dynamics: meta-analysis of soil 14C data

    NASA Astrophysics Data System (ADS)

    hatte, C.; Balesdent, J.; Guiot, J.

    2012-12-01

    Soil represents the largest terrestrial storage mechanism for atmospheric carbon from photosynthesis, with estimates ranging from 1600 Pg C within the top 1 meter to 2350 Pg C for the top 3 meters. These values are at least 2.5 times greater than atmospheric C pools. Small changes in soil organic carbon storage could result in feedback to atmospheric CO2 and the sensitivity of soil organic matter to changes in temperature, and precipitation remains a critical area of research with respect to the global carbon cycle. As an intermediate storage mechanism for organic material through time, the vertical profile of carbon generally shows an age continuum with depth. Radiocarbon provides critical information for understanding carbon exchanges between soils and atmosphere, and within soil layers. Natural and "bomb" radiocarbon has been used to demonstrate the importance and nature of the soil carbon response to climatic and human impacts on decadal to millennial timescales. Radiocarbon signatures of bulk, or chemically or physically fractionated soil, or even of specific organic compounds, offer one of the only ways to infer terrestrial carbon turnover times or test ecosystem carbon models. We compiled data from the literature on radiocarbon distribution on soil profiles and characterized each study according to the following categories: soil type, analyzed organic fraction, location (latitude, longitude, elevation), climate (temperature, precipitation), land use and sampling year. Based on the compiled data, soil carbon 14C profiles were reconstructed for each of the 226 sites. We report here partial results obtained by statistical analyses of portion of this database, i.e. bulk and bulk-like organic matter and sampling year posterior to 1980. We highlight here 14C vertical pattern in relationship with external parameters (climate, location and land use).

  14. Mechanistic modeling of thermo-hydrological processes and microbial interactions at pore to profile scales resolve methane emission dynamics from permafrost soil

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Ali; Or, Dani

    2017-04-01

    The sensitivity of the Earth's polar regions to raising global temperatures is reflected in rapidly changing hydrological processes with pronounced seasonal thawing of permafrost soil and increased biological activity. Of particular concern is the potential release of large amounts of soil carbon and the stimulation of other soil-borne GHG emissions such as methane. Soil methanotrophic and methanogenic microbial communities rapidly adjust their activity and spatial organization in response to permafrost thawing and a host of other environmental factors. Soil structural elements such as aggregates and layering and hydration status affect oxygen and nutrient diffusion processes thereby contributing to methanogenic activity within temporal anoxic niches (hotspots or hot-layers). We developed a mechanistic individual based model to quantify microbial activity dynamics within soil pore networks considering, hydration, temperature, transport processes and enzymatic activity associated with methane production in soil. The model was the upscaled from single aggregates (or hotspots) to quantifying emissions from soil profiles in which freezing/thawing processes provide macroscopic boundary conditions for microbial activity at different soil depths. The model distinguishes microbial activity in aerate bulk soil from aggregates (or submerged parts of the profile) for resolving methane production and oxidation rates. Methane transport pathways through soil by diffusion and ebullition of bubbles vary with hydration dynamics and affect emission patterns. The model links seasonal thermal and hydrologic dynamics with evolution of microbial community composition and function affecting net methane emissions in good agreement with experimental data. The mechanistic model enables systematic evaluation of key controlling factors in thawing permafrost and microbial response (e.g., nutrient availability, enzyme activity, PH) on long term methane emissions and carbon decomposition rates in the rapidly changing polar regions.

  15. Identifying the optimal spatially and temporally invariant root distribution for a semiarid environment

    NASA Astrophysics Data System (ADS)

    Sivandran, Gajan; Bras, Rafael L.

    2012-12-01

    In semiarid regions, the rooting strategies employed by vegetation can be critical to its survival. Arid regions are characterized by high variability in the arrival of rainfall, and species found in these areas have adapted mechanisms to ensure the capture of this scarce resource. Vegetation roots have strong control over this partitioning, and assuming a static root profile, predetermine the manner in which this partitioning is undertaken.A coupled, dynamic vegetation and hydrologic model, tRIBS + VEGGIE, was used to explore the role of vertical root distribution on hydrologic fluxes. Point-scale simulations were carried out using two spatially and temporally invariant rooting schemes: uniform: a one-parameter model and logistic: a two-parameter model. The simulations were forced with a stochastic climate generator calibrated to weather stations and rain gauges in the semiarid Walnut Gulch Experimental Watershed (WGEW) in Arizona. A series of simulations were undertaken exploring the parameter space of both rooting schemes and the optimal root distribution for the simulation, which was defined as the root distribution with the maximum mean transpiration over a 100-yr period, and this was identified. This optimal root profile was determined for five generic soil textures and two plant-functional types (PFTs) to illustrate the role of soil texture on the partitioning of moisture at the land surface. The simulation results illustrate the strong control soil texture has on the partitioning of rainfall and consequently the depth of the optimal rooting profile. High-conductivity soils resulted in the deepest optimal rooting profile with land surface moisture fluxes dominated by transpiration. As we move toward the lower conductivity end of the soil spectrum, a shallowing of the optimal rooting profile is observed and evaporation gradually becomes the dominate flux from the land surface. This study offers a methodology through which local plant, soil, and climate can be accounted for in the parameterization of rooting profiles in semiarid regions.

  16. [Environmental Education Units.] Soil Sampling. Stream Profiles. Tree Watching. Plant Puzzles.

    ERIC Educational Resources Information Center

    Minneapolis Independent School District 275, Minn.

    Five of these eleven units describe methods elementary school students can use when studying soil characteristics. Soil nitrogen and water holding capacity tests are included with two techniques for measuring soil pH. Survey methods for soil organisms are suggested. The remaining pamphlets describe diverse activities associated with field…

  17. A common soil handling technique can generate incorrect estimates of soil biota effects on plants

    USDA-ARS?s Scientific Manuscript database

    Several plant-soil biota (PSB) studies were recently published in high profile journals that used the suspect “mixed soil sampling” methodology. To explore the extent to which mixing field samples (i.e. employing mixed soil sample designs) can generate erroneous conclusions, we used real data to pa...

  18. Soil Erosion. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Buydos, John F., Comp.

    Soil erosion is the detachment and movement of topsoil or soil material from the upper part of the soil profile. It may occur in the form of rill, gully, sheet, or wind erosion. Agents of erosion may be water, wind, glacial ice, agricultural implements, machinery, and animals. Soil conservation measures require a thorough understanding of the…

  19. Summer survival of Phytophthora ramorum in forest soils

    Treesearch

    Elizabeth J. Fichtner; Shannon C. Lynch; David M. Rizzo

    2006-01-01

    Recovery of Phytophthora ramorum from soils throughout Sudden Oak Death-affected regions of California illustrates that soil serves as an inoculum reservoir for the pathogen, but the potential for survival in soils throughout the summer is largely unknown. In this study we assess pathogen survival in infected leaf tissue in the upper soil profile in...

  20. Hyperspectral remote sensing of postfire soil properties

    Treesearch

    Sarah A. Lewis; Peter R. Robichaud; William J. Elliot; Bruce E. Frazier; Joan Q. Wu

    2004-01-01

    Forest fires may induce changes in soil organic properties that often lead to water repellent conditions within the soil profile that decrease soil infiltration capacity. The remote detection of water repellent soils after forest fires would lead to quicker and more accurate assessment of erosion potential. An airborne hyperspectral image was acquired over the Hayman...

  1. Design of a soil cutting resistance sensor for application in site-specific tillage.

    PubMed

    Agüera, Juan; Carballido, Jacob; Gil, Jesús; Gliever, Chris J; Perez-Ruiz, Manuel

    2013-05-10

    One objective of precision agriculture is to provide accurate information about soil and crop properties to optimize the management of agricultural inputs to meet site-specific needs. This paper describes the development of a sensor equipped with RTK-GPS technology that continuously and efficiently measures soil cutting resistance at various depths while traversing the field. Laboratory and preliminary field tests verified the accuracy of this prototype soil strength sensor. The data obtained using a hand-operated soil cone penetrometer was used to evaluate this field soil compaction depth profile sensor. To date, this sensor has only been tested in one field under one gravimetric water content condition. This field test revealed that the relationships between the soil strength profile sensor (SSPS) cutting force and soil cone index values are assumed to be quadratic for the various depths considered: 0-10, 10-20 and 20-30 cm (r2 = 0.58, 0.45 and 0.54, respectively). Soil resistance contour maps illustrated its practical value. The developed sensor provides accurate, timely and affordable information on soil properties to optimize resources and improve agricultural economy.

  2. Soil depth mapping using seismic surface waves: Evaluation on eroded loess covered hillslopes

    NASA Astrophysics Data System (ADS)

    Bernardie, Severine; Samyn, Kevin; Cerdan, Olivier; Grandjean, Gilles

    2010-05-01

    The purposes of the multidisciplinary DIGISOIL project are the integration and improvement of in situ and proximal technologies for the assessment of soil properties and soil degradation indicators. Foreseen developments concern sensor technologies, data processing and their integration to applications of (digital) soil mapping (DSM). Among available techniques, the seismic one is, in this study, particularly tested for characterising soil vulnerability to erosion. The spectral analysis of surface waves (SASW) method is an in situ seismic technique used for evaluation of the stiffnesses (G) and associated depth in layered systems. A profile of Rayleigh wave velocity versus frequency, i.e., the dispersion curve, is calculated from each recorded seismogram before to be inverted to obtain the vertical profile of shear wave velocity Vs. Then, the soil stiffness can easily be calculated from the shear velocity if the material density is estimated, and the soil stiffness as a function of depth can be obtained. This last information can be a good indicator to identify the soil bedrock limit. SASW measurements adapted to soil characterisation is proposed in the DIGISOIL project, as it produces in an easy and quick way a 2D map of the soil. This system was tested for the digital mapping of the depth of loamy material in a catchment of the European loess belt. The validation of this methodology has been performed with the realisation of several acquisitions along the seismic profiles: - Several boreholes were drilled until the bedrock, permitting to get the geological features of the soil and the depth of the bedrock; - Several laboratory measurements of various parameters were done on samples taken from the boreholes at various depths, such as dry density, solid density, and water content; - Dynamic penetration tests were also conducted along the seismic profile, until the bedrock is attained. Some empirical correlations between the parameters measured with laboratory tests, the qc obtained from the dynamic penetration tests and the Vs acquired from the SASW measurements permit to assess the accuracy of the procedure and to evaluate its limitations. The depth to bedrock determined by this procedure can then be combined with the soil erosion susceptibility to produce a risk map. This methodology will help to target measures within areas that show a reduced soil depth associated with a high soil erosion susceptibility.

  3. A GIS semiautomatic tool for classifying and mapping wetland soils

    NASA Astrophysics Data System (ADS)

    Moreno-Ramón, Héctor; Marqués-Mateu, Angel; Ibáñez-Asensio, Sara

    2016-04-01

    Wetlands are one of the most productive and biodiverse ecosystems in the world. Water is the main resource and controls the relationships between agents and factors that determine the quality of the wetland. However, vegetation, wildlife and soils are also essential factors to understand these environments. It is possible that soils have been the least studied resource due to their sampling problems. This feature has caused that sometimes wetland soils have been classified broadly. The traditional methodology states that homogeneous soil units should be based on the five soil forming-factors. The problem can appear when the variation of one soil-forming factor is too small to differentiate a change in soil units, or in case that there is another factor, which is not taken into account (e.g. fluctuating water table). This is the case of Albufera of Valencia, a coastal wetland located in the middle east of the Iberian Peninsula (Spain). The saline water table fluctuates throughout the year and it generates differences in soils. To solve this problem, the objectives of this study were to establish a reliable methodology to avoid that problems, and develop a GIS tool that would allow us to define homogeneous soil units in wetlands. This step is essential for the soil scientist, who has to decide the number of soil profiles in a study. The research was conducted with data from 133 soil pits of a previous study in the wetland. In that study, soil parameters of 401 samples (organic carbon, salinity, carbonates, n-value, etc.) were analysed. In a first stage, GIS layers were generated according to depth. The method employed was Bayesian Maxim Entropy. Subsequently, it was designed a program in GIS environment that was based on the decision tree algorithms. The goal of this tool was to create a single layer, for each soil variable, according to the different diagnostic criteria of Soil Taxonomy (properties, horizons and diagnostic epipedons). At the end, the program generated a set of layers with the geographical information, which corresponded with each diagnostic criteria. Finally, the superposition of layers generated the different homogeneous soil units where the soil scientist should locate the soil profiles. Historically, the Albufera of Valencia has been classified as a soil homogeneous unit, but it was demonstrated that there were six homogeneous units after the methodology and the GIS tool application. In that regard, the outcome reveals that it had been necessary to open only six profiles, against the 19 profiles opened when the real study was carried out. As a conclusion, the methodology and the SIG tool demonstrated that could be employed in areas where the soil forming-factors cannot be distinguished. The application of rapid measurement methods and this methodology could economise the definition process of homogeneous units.

  4. Taxonomic and functional profiles of soil samples from Atlantic forest and Caatinga biomes in northeastern Brazil

    PubMed Central

    Pacchioni, Ralfo G; Carvalho, Fabíola M; Thompson, Claudia E; Faustino, André L F; Nicolini, Fernanda; Pereira, Tatiana S; Silva, Rita C B; Cantão, Mauricio E; Gerber, Alexandra; Vasconcelos, Ana T R; Agnez-Lima, Lucymara F

    2014-01-01

    Although microorganisms play crucial roles in ecosystems, metagenomic analyses of soil samples are quite scarce, especially in the Southern Hemisphere. In this work, the microbial diversity of soil samples from an Atlantic Forest and Caatinga was analyzed using a metagenomic approach. Proteobacteria and Actinobacteria were the dominant phyla in both samples. Among which, a significant proportion of stress-resistant bacteria associated to organic matter degradation was found. Sequences related to metabolism of amino acids, nitrogen, and DNA and stress resistance were more frequent in Caatinga soil, while the forest sample showed the highest occurrence of hits annotated in phosphorous metabolism, defense mechanisms, and aromatic compound degradation subsystems. The principal component analysis (PCA) showed that our samples are close to the desert metagenomes in relation to taxonomy, but are more similar to rhizosphere microbiota in relation to the functional profiles. The data indicate that soil characteristics affect the taxonomic and functional distribution; these characteristics include low nutrient content, high drainage (both are sandy soils), vegetation, and exposure to stress. In both samples, a rapid turnover of organic matter with low greenhouse gas emission was suggested by the functional profiles obtained, reinforcing the importance of preserving natural areas. PMID:24706600

  5. Frozen soil parameterization in a distributed biosphere hydrological model

    NASA Astrophysics Data System (ADS)

    Wang, L.; Koike, T.; Yang, K.; Jin, R.; Li, H.

    2009-11-01

    In this study, a frozen soil parameterization has been modified and incorporated into a distributed biosphere hydrological model (WEB-DHM). The WEB-DHM with the frozen scheme was then rigorously evaluated in a small cold area, the Binngou watershed, against the in-situ observations from the WATER (Watershed Allied Telemetry Experimental Research). In the summer 2008, land surface parameters were optimized using the observed surface radiation fluxes and the soil temperature profile at the Dadongshu-Yakou (DY) station in July; and then soil hydraulic parameters were obtained by the calibration of the July soil moisture profile at the DY station and by the calibration of the discharges at the basin outlet in July and August that covers the annual largest flood peak of 2008. The calibrated WEB-DHM with the frozen scheme was then used for a yearlong simulation from 21 November 2007 to 20 November 2008, to check its performance in cold seasons. Results showed that the WEB-DHM with the frozen scheme has given much better performance than the WEB-DHM without the frozen scheme, in the simulations of soil moisture profile at the DY station and the discharges at the basin outlet in the yearlong simulation.

  6. A comparison of groundwater recharge estimation methods in a semi-arid, coastal avocado and citrus orchard (Ventura County, California)

    NASA Astrophysics Data System (ADS)

    Grismer, Mark E.; Bachman, S.; Powers, T.

    2000-10-01

    We assess the relative merits of application of the most commonly used field methods (soil-water balance (SWB), chloride mass balance (CMB) and soil moisture monitoring (NP)) to determine recharge rates in micro-irrigated and non-irrigated areas of a semi-arid coastal orchard located in a relatively complex geological environment.Application of the CMB method to estimate recharge rates was difficult owing to the unusually high, variable soil-water chloride concentrations. In addition, contrary to that expected, the chloride concentration distribution at depths below the root zone in the non-irrigated soil profiles was greater than that in the irrigated profiles. The CMB method severely underestimated recharge rates in the non-irrigated areas when compared with the other methods, although the CMB method estimated recharge rates for the irrigated areas, that were similar to those from the other methods, ranging from 42 to 141 mm/year.The SWB method, constructed for a 15-year period, provided insight into the recharge process being driven by winter rains rather than summer irrigation and indicated an average rate of 75 mm/year and 164 mm/year for the 1984 - 98 and 1996 - 98 periods, respectively. Assuming similar soil-water holding capacity, these recharge rates applied to both irrigated and non-irrigated areas. Use of the long period of record was important because it encompassed both drought and heavy rainfall years. Successful application of the SWB method, however, required considerable additional field measurements of orchard ETc, soil-water holding capacity and estimation of rainfall interception - runoff losses.Continuous soil moisture monitoring (NP) was necessary to identify both daily and seasonal seepage processes to corroborate the other recharge estimates. Measured recharge rates during the 1996 - 1998 period in both the orchards and non-irrigated site averaged 180 mm/year. The pattern of soil profile drying during the summer irrigation season, followed by progressive wetting during the winter rainy season was observed in both irrigated and non-irrigated soil profiles, confirming that groundwater recharge was rainfall driven and that micro-irrigation did not predispose the soil profile to excess rainfall recharge. The ability to make this recharge assessment, however, depended on making multiple field measurements associated with all three methods, suggesting that any one should not be used alone.

  7. Estimation of soil profile properties using field and laboratory VNIR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Diffuse reflectance spectroscopy (DRS) soil sensors have the potential to provide rapid, high-resolution estimation of multiple soil properties. Although many studies have focused on laboratory-based visible and near-infrared (VNIR) spectroscopy of dried soil samples, previous work has demonstrated ...

  8. Characteristics of water infiltration in layered water repellent soils

    USDA-ARS?s Scientific Manuscript database

    Hydrophobic soil can influence soil water infiltration, but information regarding the impacts of different levels of hydrophobicity within a layered soil profile is limited. An infiltration study was conducted to determine the effects of different levels of hydrophobicity and the position of the hyd...

  9. Depth distribution of exchangeable aluminum in acid soils: A study from subtropical Brazil

    USDA-ARS?s Scientific Manuscript database

    High exchangeable aluminum (Al3+) requires greater attention when preparing agricultural soils. However, research examining the relationship between natural levels of soil Al3+ and pedogenetic processes receives little priority, particularly regarding the number of soil profiles investigated. To rep...

  10. HYDRAULIC REDISTRIBUTION OF SOIL WATER: ECOSYSTEM IMPLICATIONS FOR PACIFIC NORTHWEST FORESTS

    EPA Science Inventory

    The physical process of hydraulic redistribution (HR) is driven by competing soil, tree and atmospheric water potential gradients, and may delay severe water stress for roots and other biota associated with the upper soil profile. We monitored soil moisture characteristics across...

  11. Surface compaction estimates and soil sensitivity in Aspen stands of the Great Lakes States

    Treesearch

    Aaron Steber; Ken Brooks; Charles H. Perry; Randy Kolka

    2007-01-01

    Aspen forests in the Great Lakes States support much of the regional timber industry. Management-induced soil compaction is a concern because it affects forest health and productivity and soil erosion. Soil compaction increases bulk density and soil strength and can also decrease air and water movement into and through the soil profile. Currently, most inventories, and...

  12. Estimates of soil erosion using cesium-137 tracer models.

    PubMed

    Saç, M M; Uğur, A; Yener, G; Ozden, B

    2008-01-01

    The soil erosion was studied by 137Cs technique in Yatagan basin in Western Turkey, where there exist intensive agricultural activities. This region is subject to serious soil loss problems and yet there is not any erosion data towards soil management and control guidelines. During the soil survey studies, the soil profiles were examined carefully to select the reference points. The soil samples were collected from the slope facets in three different study areas (Kirtas, Peynirli and Kayisalan Hills). Three different models were applied for erosion rate calculations in undisturbed and cultivated sites. The profile distribution model (PDM) was used for undisturbed soils, while proportional model (PM) and simplified mass balance model (SMBM) were used for cultivated soils. The mean annual erosion rates found using PDM in undisturbed soils were 15 t ha(-1) year(-1) at the Peynirli Hill and 27 t ha(-1) year(-1) at the Kirtas Hill. With the PM and SMBM in cultivated soils at Kayişalan, the mean annual erosion rates were obtained to be 65 and 116 t ha(-1) year(-1), respectively. The results of 137Cs technique were compared with the results of the Universal Soil Loss Equation (USLE).

  13. Soils of Low-Mountain Landscapes of North Karelia

    NASA Astrophysics Data System (ADS)

    Medvedeva, M. V.; Akhmetova, G. V.; Fedorets, N. G.; Yakovlev, A. S.; Raevskii, B. V.; Travin, V. V.

    2018-02-01

    Soils of low-mountain landscapes in the northwest of Karelia have been studied. The soil cover of the studied area is mainly represented by Al-Fe-humus soils (Podzols); thin soils (Leptosols) are widespread. Characteristic morphological features of all the studied soils are relatively shallow profiles, high stone content, and underlying by hard bedrock with fine earth material in crevices between large boulders. The studied soils have the high carbon and low nitrogen content, which points to unfavorable conditions of organic matter transformation. The content of most macro- and microelements is not high, which is typical for soils of the region; the content of copper and zinc exceeds the regional background two-three times. Regularities of the vertical zonality in the properties of soils of mountain ecosystems manifest themselves in decreasing thickness of the soil profile at higher altitude above sea level in parallel to decreasing thickness of the layer of loose rocks, while the stone content increases. In soils of the forest-tundra zone, the organomineral horizon with the high organic matter content is formed immediately under the forest litter. The litter horizon is the soils of this zone is characterized by increased concentrations of calcium, magnesium, phosphorus, and zinc.

  14. Integrated use of soil physical and water isotope methods for ecohydrological characterization of desertified areas

    NASA Astrophysics Data System (ADS)

    Külls, Christoph; Nunes, Alice; Köbel-Batista, Melanie; Branquinho, Cristina; Bianconi, Nadja; Costantini, Eduardo

    2014-05-01

    Measures for monitoring desertification and soil degradation require a thorough understanding of soil physical properties and of the water balance in order to guide restoration efforts (Costantini et al. 2009). It is hypothesized that long term restoration success on degraded land depends on a series of interacting factors such as exposition, soil type, soil hydrology including lateral flow on hill-slope catenae. Recently, new soil water isotope measurement techniques have been developed (Garvelmann et al. 2012) that provide much faster and reliable stable water isotope profiles in soils. This technique yield information on groundwater recharge, soil water balance and on the origin of water available for plants, which in combination with conservative chemical tracers (chloride) can be validated. A multidisciplinary study including ecologists, soil physicists and hydrologists of the COST Action Desert Restoration Hub was carried out on four semi-arid sites in Portugal. A comparative characterization of soil physical parameters, soil water isotope and chloride profiles was performed in order to estimate pedoclimate, soil aridity, soil water balance and groundwater recharge. In combination with soil physical data a comprehensive and cross-validated characterization of pedoclimate and soil aridity was obtained. These indicators were then integrated and related to plant cover. The long-term rainfall of the four sites ranges from 512 to 638 mm, whereas air temperature is from 15.8 to 17.0°C. The De Martonne index of aridity spans from 19.3 to 24.6, pointing to semiarid to moderately arid climatic conditions. The long-term average number of days when the first 0.50 m of soil is dry ranges from 110 to 134, while the mean annual soil temperature at 0.50 m spans from 15.8 and 19.1°C. The studied profiles show different hydrological characteristics, in particular, the estimated hydraulic conductivity ranges from 0.1-1 to 10-100 µm/s. Three out of four profiles show a marked decrease in water permeability at 0.04, 0.20, or 0.40 m depth. Soil isotope profiles indicated that percolation beneath the root zone and groundwater recharge ranges from 21.7 mm/y to 29.7 mm/y. The recharge rate was positively related to mean annual rainfall and soil organic matter, and interestingly, increased with aridity and desertification. The difference between mean annual rainfall and percolation was positively related to plant cover and in inverse proportion to the aridity index. Our results highlight the importance of combining different methods of site characterization by soil physics, soil water isotopes and soil water chemistry (chloride) with vegetation data, providing a more specific analysis of ecohydrological conditions and their relation to ecosystem functioning and recovery potential. The field protocol applied can provide relevant information for guiding restoration strategies. Costantini, E. A. C., Urbano, F., Aramini, G., Barbetti, R., Bellino, F., Bocci, M., & Tascone, F. (2009). Rationale and methods for compiling an atlas of desertification in Italy. Land Degradation & Development, 20(3), 261-276. Garvelmann, J., Külls, C., & Weiler, M. (2012). A porewater-based stable isotope approach for the investigation of subsurface hydrological processes. Hydrology and Earth System Sciences, 16(2), 631-640.

  15. A Canadian upland forest soil profile and carbon stocks database.

    PubMed

    Shaw, Cindy; Hilger, Arlene; Filiatrault, Michelle; Kurz, Werner

    2018-04-01

    "A Canadian upland forest soil profile and carbon stocks database" was compiled in phases over a period of 10 years to address various questions related to modeling upland forest soil carbon in a national forest carbon accounting model. For 3,253 pedons, the SITES table contains estimates for soil organic carbon stocks (Mg/ha) in organic horizons and mineral horizons to a 100-cm depth, soil taxonomy, leading tree species, mean annual temperature, annual precipitation, province or territory, terrestrial ecozone, and latitude and longitude, with an assessment of the quality of information about location. The PROFILES table contains profile data (16,167 records by horizon) used to estimate the carbon stocks that appear in the SITES table, plus additional soil chemical and physical data, where provided by the data source. The exceptions to this are estimates for soil carbon stocks based on Canadian National Forest Inventory data (NFI [2006] in REFERENCES table), where data were collected by depth increment rather than horizon and, therefore, total soil carbon stocks were calculated separately before being entered into the SITES table. Data in the PROFILES table include the carbon stock estimate for each horizon (corrected for coarse fragment content), and the data used to calculate the carbon stock estimate, such as horizon thickness, bulk density, and percent organic carbon. The PROFILES table also contains data, when reported by the source, for percent carbonate carbon, pH, percent total nitrogen, particle size distribution (percent sand, silt, clay), texture class, exchangeable cations, cation and total exchange capacity, and percent Fe and Al. An additional table provides references (REFERENCES table) for the source data. Earlier versions of the database were used to develop national soil carbon modeling categories based on differences in carbon stocks linked to soil taxonomy and to examine the potential of using soil taxonomy and leading tree species to improve accuracy in modeled predictions. The current database is being used to develop soil carbon model parameters linked to soil taxonomy and leading tree species and, by various governmental and nongovernmental organizations, to improve digital mapping of ecosite types and soil properties regionally, nationally, and internationally. © Her Majesty the Queen in Right of Canada, 2018. Information contained in this publication or product may be reproduced, in part or in whole, and by any means, for personal or public non-commercial purposes, without charge or further permission, unless otherwise specified. You are asked to: exercise due diligence in ensuring the accuracy of the materials reproduced; indicate the complete title of the materials reproduced, and the name of the author organization; indicate that the reproduction is a copy of an official work that is published by Natural Resources Canada (NRCan) and that the reproduction has not been produced in affiliation with, or with the endorsement of, NRCan. Commercial reproduction and distribution is prohibited except with written permission from NRCan. For more information, contact NRCan at copyright.droitdauteur@nrcan-rncan.gc.ca. © 2018 by the Ecological Society of America.

  16. Methodological approach for evaluating the response of soil hydrological behavior to irrigation with treated municipal wastewater

    NASA Astrophysics Data System (ADS)

    Coppola, A.; Santini, A.; Botti, P.; Vacca, S.; Comegna, V.; Severino, G.

    2004-06-01

    This paper aims mainly to provide experimental evidence of the consequences of urban wastewater reuse in irrigation practices on the hydrological behavior of soils. The effects on both the hydraulic and dispersive properties of representative soils in southern Sardinia are illustrated. Ten undisturbed soil monoliths, 120 cm in height and 40 cm in diameter, were collected from plots previously selected through a soil survey. Soil hydraulic and solute transport properties were determined before and after application of wastewater using transient water infiltration and steady state-solute transport column experiments. Detailed spatial-temporal information on the propagation of water and solute through the soil profiles were obtained by monitoring soil water contents, θ, pressure heads, h, and solute concentrations, C, measured by a network of time domain reflectometry probes, tensiometers and solution samplers horizontally inserted in each column at different depths. A disturbed layer at the soil surface, which expands in depth with time, was observed, characterized by reduced soil porosity, translation of pore size distribution towards narrower pores and consequent decrease in water retention, hydraulic conductivity and hydrodynamic dispersion. It is shown that these changes occurring in the disturbed soil layer, although local by nature, affect the hydrological behavior of the whole soil profile. Due to the disturbed layer formation, the soil beneath never saturates. Such behavior has important consequences on the solute transport in soils, as unsaturated conditions mean higher residence times of solutes, even of those normally characterized by considerable mobility (e.g. boron), which may accumulate along the profile. The results mainly provide experimental evidence that knowledge of the chemical and microbiological composition of the water is not sufficient to evaluate its suitability for irrigation. Other factors, mainly soil physical and hydrological characteristics, should be considered in order to define appropriate guidelines for wastewater management.

  17. Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin

    USGS Publications Warehouse

    Wynn, J.G.; Harden, J.W.; Fries, T.L.

    2006-01-01

    Analysis of depth trends of 13C abundance in soil organic matter and of 13C abundance from soil-respired CO2 provides useful indications of the dynamics of the terrestrial carbon cycle and of paleoecological change. We measured depth trends of 13C abundance from cropland and control pairs of soils in the lower Mississippi Basin, as well as the 13C abundance of soil-respired CO2 produced during approximately 1-year soil incubation, to determine the role of several candidate processes on the 13C depth profile of soil organic matter. Depth profiles of 13C from uncultivated control soils show a strong relationship between the natural logarithm of soil organic carbon concentration and its isotopic composition, consistent with a model Rayleigh distillation of 13C in decomposing soil due to kinetic fractionation during decomposition. Laboratory incubations showed that initially respired CO 2 had a relatively constant 13C content, despite large differences in the 13C content of bulk soil organic matter. Initially respired CO2 was consistently 13C-depleted with respect to bulk soil and became increasingly 13C-depleted during 1-year, consistent with the hypothesis of accumulation of 13C in the products of microbial decomposition, but showing increasing decomposition of 13C-depleted stable organic components during decomposition without input of fresh biomass. We use the difference between 13C / 12C ratios (calculated as ??-values) between respired CO 2 and bulk soil organic carbon as an index of the degree of decomposition of soil, showing trends which are consistent with trends of 14C activity, and with results of a two-pooled kinetic decomposition rate model describing CO2 production data recorded during 1 year of incubation. We also observed inconsistencies with the Rayleigh distillation model in paired cropland soils and reasons for these inconsistencies are discussed. ?? 2005 Elsevier B.V. All rights reserved.

  18. Fifteen-year patterns of soil carbon and nitrogen following biomass harvesting

    USGS Publications Warehouse

    Kurth, Valerie J.; D'Amato, Anthony W.; Palik, Brian J.; Bradford, John B.

    2014-01-01

    The substitution of forest-derived woody biofuels for fossil fuel energy has garnered increasing attention in recent years, but information regarding the mid- and long-term effects on soil productivity is limited. We investigated 15-yr temporal trends in forest floor and mineral soil (0–30 cm) C and N pools in response to organic matter removal treatments (OMR; stem-only harvest, SOH; whole-tree harvest, WTH; and whole-tree plus forest floor removal, FFR) at three edaphically distinct aspen (Populus tremuloides Michx. and P. grandidentata Michx.) forests in the Great Lakes region. The OMR and temporal effects were generally site specific, and both were most evident in the forest floor and combined profile (mineral soil and forest floor) compared with the mineral soil alone. Forest floor and combined profile C and N pools were generally similar in the SOH and WTH treatments, suggesting that slash retention has little impact on soil C and N in this time frame. Temporal changes in C and N at one of the three sites were consistent with patterns documented following exotic earthworm invasion, but mineral soil pools at the other two sites were stable over time. Power analyses demonstrated that significant effects were more likely to be detected for temporal differences than the effects of OMR and in the combined profile than in the mineral soil. Our findings are consistent with previous work demonstrating that OMR effects on soil C and N pools are site specific and more apparent in the forest floor than the mineral soil.

  19. Rare earth elements in German soils - A review.

    PubMed

    Mihajlovic, Julia; Rinklebe, Jörg

    2018-08-01

    Rare earth elements (REEs) are increasingly used in high-tech industry, agriculture, and healthcare technologies what leads to their release into soils and waters, and to the transfer into plants what may have negative impacts on human health and the environment. The toxicity and potential mobilization of REEs in soils can be assessed by their content and geochemical behavior along with soil properties. However, those interactions are so far not reviewed in German soils although such a review is important for a better understanding and prediction of the potential mobilization and toxicity. Therefore, this review summarizes the recent knowledge about REE contents and potential mobilization in different soil profiles in Germany. We found that the REE content tends to decrease in dependence on the parent material in the following order: Carbonatite > basalt > orthogneiss > clay slate > loess > sandstone > Pleistocene and Holocene sediments > organic material. Also, we used data of earlier studies, summarized and newly evaluated those data aiming to quantify the factors influencing the total REE content in German soil profiles. The contents of REEs in soil profiles of different parent material showed significant relations with content of clay, carbonate, organic matter, aluminium, iron, and manganese. Geochemical fractionation results suggest that the bioavailability of REEs is relatively low while the residual fraction is relatively high in German soils. In soils, where water fluctuations are important, the redox potential is a key factor controlling the mobilization of REEs also via related changes of pH. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. A semester-long soil mapping project for an undergraduate pedology course

    NASA Astrophysics Data System (ADS)

    Brown, David J.

    2015-04-01

    Most students taking a pedology course will never work as soil mappers. But many will use soil maps at some point in their careers. At Montana State University, students spent 3 "lab" hours a week, complementing two lectures a week, in the field learning how to study soils literally from the ground up. The only prerequisites for enrollment were completion of an introductory soil science class and 3rd year standing at the university. The area to be mapped, just a km from campus, included a steep mountain backslope, and a complex footslope-toeslope area with diverse soils. Students were divided into teams of 3-4, with approximately 40 students altogether split over two sections that overlapped in the field by one hour. In the first lab session, groups completed a very basic description of just one soil profile. In subsequent weeks, they rotated through multiple pits excavated in a small area, and expanded their soil profile descriptions and interpretations. As students developed proficiency, they were assigned more dispersed locations to study, working for the most part independently as I hiked between pits. Throughout this process, every pit was geolocated using a GPS unit, and every profile description was copied and retained in a designated class file. Student groups delineated map units using stereo air photography, then used these delineations to guide the selection of their final locations to describe. At the end of the course, groups used all of the combined and georeferenced profile descriptions to construct a soil map of the study area complete with map unit descriptions. Most students struggled to make sense of the substantial variability within their map units, but through this struggle -- and their semester of field work -- they gained an appreciation for the value and limitations of a soil map that could not be obtained from even the most entertaining lecture. Both the class and particularly the field sessions received consistently high student reviews during the four years I had students map soils at Montanta State University.

  1. [Concentrations and Component Profiles PAHs in Surface Soils and Wheat Grains from the Cornfields Close to the Steel Smelting Industry in Handan, Hebei Province].

    PubMed

    Wu, Di; Wang, Yi-long; Liu, Wei-jian; Chen, Yuan-chen; Fu, Xiao-fang; Tao, Shu; Liu, Wen-xin

    2016-02-15

    In this study, paired surface soil and mature wheat grain samples were collected in the cornfields near the large Handan Steel Manufacturer; and the total concentrations and compositional profiles of the parent PAHs were measured, then the spatial distribution characteristics and correlation with total organic carbon fractions in soil were determined. Accordingly, a preliminary source identification was performed, and the association between PAHs in surface soil and wheat grain was briefly discussed. The median concentration of total PAHs in surface soils from the cornfields of Handan was 398.9 ng x g(-1) (ranged from 123.4 ng x g(-1) to 1626.4 ng x g(-1), where around 18% and 10% of all the studied soil samples were over the corresponding quality criteria for total PAHs and B [a] P in soils, respectively. The MMW and HMW species were the main components in the compositional profiles of surface soils. Based on the specific isomeric ratios of PAHs species, coal/biomass combustion and transportation fuel (tail gas) were the dominant mixed sources for the local PAHs emission. The fractions of surface soil TOC had significant positive correlations with the total PAHs and also with the individual components with different rings. In addition, the median concentration of total PAHs in wheat grains collected in the cornfields near the Handan Steel Manufacture was 27.0 ng x g(-1) (ranged from 19.0-34.0 ng x g(-1)). The levels in wheat grains were not high, and lower than the related hygienic standards of food proposed by EU and China. The LMW and MMW PAHs with 2 to 4 rings occupied a larger proportion, more than 84% of the total PAHs, which was largely different from the component profiles in surface soils. This situation suggested that the local sources of PAHs in wheat grains may originate not only from surface soil via root absorption and internal transportation, but also from ambient air through dry and wet deposition on the leaf surface (stoma).

  2. Physiological profiling of soil microbial communities in a Florida scrub-oak ecosystem: spatial distribution and nutrient limitations.

    PubMed

    Brown, Alisha L P; Garland, Jay L; Day, Frank P

    2009-01-01

    Rapid physiological profiling of heterotrophic microbial communities enables intensive analysis of the factors affecting activity in aerobic habitats, such as soil. Previous methods for performing such profiling were severely limited due to enrichment bias and inflexibility in incubation conditions. We tested a new physiological profiling approach based on a microtiter plate oxygen sensor system (Becton Dickinson Oxygen Biosensor System (BDOBS)), which allows for testing of lower substrate addition (i.e., lower enrichment potential) and manipulation of physiochemical assay conditions, such as pH and nutrients. Soil microbial communities associated with a scrub-oak forest ecosystem on Merritt Island Wildlife Refuge in central Florida, USA, were studied in order to evaluate microbial activity in a nutrient poor soil and to provide baseline data on the site for subsequent evaluation of the effects of elevated CO(2) on ecosystem function. The spatial variation in physiological activity amongst different habitats (litter, bulk soil, and rhizosphere) was examined as a function of adaptation to local resources (i.e., water soluble extracts of roots and leaf litter) and the degree of N and P limitation. All the communities were primarily N-limited, with a secondary P limitation, which was greater in the rhizosphere and bulk soil. The litter community showed greater overall oxygen consumption when exposed to litter extracts relative to the rhizosphere or soil, suggesting acclimation toward greater use of the mixed substrates in the extract. Root extracts were readily used by communities from all the habitats with no habitat specific acclimation observed. A priming effect was detected in all habitats; addition of glucose caused a significant increase in the use of soil organic carbon. Response to added glucose was only observed with N and P addition, suggesting that C may be lost to the groundwater from these porous soils because nutrient limitation prevents C immobilization.

  3. Assessment of soil nitrogen variability related to N doses applied through fertirrigation system.

    NASA Astrophysics Data System (ADS)

    Castellanos, M. T.; Tarquis, A. M.; Ribas, F.; Cabello, M. J.; Arce, A.; Cartagena, M. C.

    2009-04-01

    The knowledge of water and nitrogen dynamics in soils under drip irrigation and fertilizer application is essential to optimizing water and nitrogen management. Recent studies of water and nitrogen distribution in the soil under drip irrigation focus on water and inorganic nitrogen distribution around the drip emitters. Results of the studies are not verified with field experimental data. Reasons might include difficulties in obtaining field experimental data under irrigation and nitrogen fertilization [1]. N is an element which produces a stronger crop response, accelerates vegetative growth, plant development and yield increase. Accumulation and redistribution of N within the soil varies depending on management practices, soil characteristics, and growing season precipitation. Soil N high content at post-harvest is usually provided as evidence that N fertilizer had been applied in excess. The aim of this study is to characterize mineral N distribution in the soil profile measured at 5, 15, 25, 35, 45 and 55 cm of depth at the end of melon crop that received three N treatments: 93 (N93), 243 (N243) and 393 kg N ha-1(N393). The agronomic practices created a higher variability in soil Nitrogen content. NH4- N reduction in the soil profile can also be explained by the nitrification process. The high absorption and rapid nitrification of NH4+ ions in the plot layer are the main reason of a reduce movement downstream. NO3- ions present higher mobility in the soil profile. [1] Rahil, M.H.; Antonopoulos, V.Z. 2007. Simulating soil water flow and nitrogen dynamics in a sunflower field irrigated with reclaimed wastewater. Agricultural Water Management 92, 142 - 150. Acknowledgements: This project has been supported by INIA-RTA04-111

  4. Spatial distribution and vertical migration of (137)Cs in soils of Belgrade (Serbia) 25 years after the Chernobyl accident.

    PubMed

    Petrović, Jelena; Ćujić, Mirjana; Đorđević, Milan; Dragović, Ranko; Gajić, Boško; Miljanić, Šćepan; Dragović, Snežana

    2013-06-01

    In this study, the specific activity of (137)Cs was determined by gamma-ray spectrometry in 72 surface soil samples and 11 soil profiles collected from the territory of Belgrade 25 years after the Chernobyl accident. Based on the data obtained the external effective gamma dose rates due to (137)Cs were assessed and geographically mapped. The influence of pedogenic factors (pH, specific electrical conductivity, cation exchange capacity, organic matter content, soil particle size and carbonate content) on the spatial and vertical distribution of (137)Cs in soil was estimated through Pearson correlations. The specific activity of (137)Cs in surface soil samples ranged from 1.00 to 180 Bq kg(-1), with a mean value of 29.9 Bq kg(-1), while in soil profiles they ranged from 0.90 to 58.0 Bq kg(-1), with a mean value of 15.3 Bq kg(-1). The mean external effective gamma dose at 1 m above the ground due to (137)Cs in the soil was calculated to be 1.96 nSv h(-1). Geographic mapping of the external effective gamma dose rates originating from (137)Cs revealed much higher dose rates in southern parts of Belgrade city and around the confluence of the Sava and Danube. Negative Pearson correlation coefficients were found between pH, cation exchange capacity and (137)Cs specific activity in surface soil. There were positive correlations between organic matter and (137)Cs specific activity in surface soil; and between specific electrical conductivity, organic matter, silt content and (137)Cs specific activity in soil profiles.

  5. The World Soil Museum: education and advocacy on soils of the world

    NASA Astrophysics Data System (ADS)

    Mantel, Stephan; Land, Hiske

    2013-04-01

    The World Soil Museum (WSM) in Wageningen, is part of ISRIC World Soil Information and was founded in 1966 on request of the United Nations Educational, Scientific and Cultural Organization (UNESCO) and the International Soil Science Society. The World Soil Museum has a collection of over 1100 soil profiles from more than 70 countries. This soil profiles are vertical sections and show the composition, layering and structure of the soil. The collection is unique in the world and includes a significant number of soil profiles from the Netherlands. The Dutch soil collection is important for serving broader visitor groups, as some visitors, such as secondary school classes, are specifically interested in the Dutch landscape and soils. Broadly speaking, the World Soil Museum has five functions: (i) education and courses, (ii) research, (iii) information and edutainment, (iv) social function, and (v) a real museum function (Art). The World Soil Museum (World Soil Museum) is well known in national and international circles soil and the English name has almost 1,000 references on the Internet. The World Soil Museum is visited by about 1000 people a year, mainly university and college students from Western Europe. Other visitor groups that have found their way to the museum are students from disciplines broader then soil science, such as geography and rural development. Secondary school classes visit the museum for geography classes. The uniqueness and the value of the collection of soil profiles (soil monoliths) and associated collections, such as soil samples, hand pieces, thin sections, slides, is emphasized by the fact ISRIC is the only World Data Centre for Soils (WDC-Soils) within the World Data System of the International Council of Science (ICSU). The collection provides an insight in and overview of the diversity of soils in the world, their properties and their limitations and possibilities for use. A new building is under construction for the WSM, which is expected to be ready mid-2013. The location is appropriately placed on the Wageningen University Campus, close to the students and research centres of the University. The new exposition space will provide new opportunities for serving different visitor groups. The selection of about 80 soil monoliths representing the world's soils will be maintained in the new exposition. In addition, interactive displays will support education. A circular, interactive map of the world will be placed centrally in the exposition and will serve as a portal to the soil information. The map data refer to the monoliths on the walls and vice versa. Around the central map six theme stations communicate current topics that show the relevance of soil in different fields. For the general public it will explain the principles of soil formation and it will show the relevance to actual issues like food production and climate change. High school students in their final years can come here for work assignments and orientation days. Academic students and scientists, from both the Netherlands and other (mainly) northern European countries can continue to come to the WSM for education, study and research.

  6. Root growth and water relations of oak and birch seedlings.

    PubMed

    Osonubi, O; Davies, W J

    1981-01-01

    First year seedlings of English oak (Quercus Cobur) and silver birch (Betula pendula) were subjected to pressure-volume analysis to investigate the water potential components and cell wall properties of single leaves. It was hoped that this rapid-drying technique would differentiate between reductions in plant solute potential resulting from dehydration and the effects of solute accumulation.Comparison of results from these experiments with those of slow drying treatments (over a number of days) with plants growing in tubes of soil, indicated that some solute accumulation may have occurred in drying oak leaves. High leaf turgor and leaf conductance were maintained for a significant period of the drying cycle. Roots of well-watered oak plants extended deep into the soil profile, and possibly as a result of solute regulation and therefore turgor maintenance, root growth of unwatered plants was greater than that of their well-watered counterparts. This was particularly the case deep in the profile. As a result of deep root penetration, water deep in the soil core was used by oak plants to maintain plant turgor, and quite low soil water potentials were recorded in the lower soil segments.Root growth of well-watered birch seedlings was prolific but roots of both well-watered and unwatered plants were restricted to the upper part of the profile. Root growth of unwatered plants was reduced despite the existence of high soil water potentials deep in the profile. Shallow rooting birch seedlings were unable to use this water.Pressure-volume analysis indicated that significant reductions of water potential, which are required for water uptake from drying soil, would occur in oak with only a small reduction in plant water content compared to the situation in birch. This was a result of the low solute potential in oak leaves combined with a high modulus of elasticity of cell walls. Deep rooting of oak seedlings, combined with these characteristics, which will be particularly important when soil deep in the profile begins to dry, mean that this species may be comparatively successful when growing on dry sites.

  7. Stability of organic carbon in deep soil layers controlled by fresh carbon supply.

    PubMed

    Fontaine, Sébastien; Barot, Sébastien; Barré, Pierre; Bdioui, Nadia; Mary, Bruno; Rumpel, Cornelia

    2007-11-08

    The world's soils store more carbon than is present in biomass and in the atmosphere. Little is known, however, about the factors controlling the stability of soil organic carbon stocks and the response of the soil carbon pool to climate change remains uncertain. We investigated the stability of carbon in deep soil layers in one soil profile by combining physical and chemical characterization of organic carbon, soil incubations and radiocarbon dating. Here we show that the supply of fresh plant-derived carbon to the subsoil (0.6-0.8 m depth) stimulated the microbial mineralization of 2,567 +/- 226-year-old carbon. Our results support the previously suggested idea that in the absence of fresh organic carbon, an essential source of energy for soil microbes, the stability of organic carbon in deep soil layers is maintained. We propose that a lack of supply of fresh carbon may prevent the decomposition of the organic carbon pool in deep soil layers in response to future changes in temperature. Any change in land use and agricultural practice that increases the distribution of fresh carbon along the soil profile could however stimulate the loss of ancient buried carbon.

  8. Constraining Gas Diffusivity-Soil Water Content Relationships in Forest Soils Using Surface Chamber Fluxes and Depth Profiles of Multiple Trace Gases

    NASA Astrophysics Data System (ADS)

    Dore, J. E.; Kaiser, K.; Seybold, E. C.; McGlynn, B. L.

    2012-12-01

    Forest soils are sources of carbon dioxide (CO2) to the atmosphere and can act as either sources or sinks of methane (CH4) and nitrous oxide (N2O), depending on redox conditions and other factors. Soil moisture is an important control on microbial activity, redox conditions and gas diffusivity. Direct chamber measurements of soil-air CO2 fluxes are facilitated by the availability of sensitive, portable infrared sensors; however, corresponding CH4 and N2O fluxes typically require the collection of time-course physical samples from the chamber with subsequent analyses by gas chromatography (GC). Vertical profiles of soil gas concentrations may also be used to derive CH4 and N2O fluxes by the gradient method; this method requires much less time and many fewer GC samples than the direct chamber method, but requires that effective soil gas diffusivities are known. In practice, soil gas diffusivity is often difficult to accurately estimate using a modeling approach. In our study, we apply both the chamber and gradient methods to estimate soil trace gas fluxes across a complex Rocky Mountain forested watershed in central Montana. We combine chamber flux measurements of CO2 (by infrared sensor) and CH4 and N2O (by GC) with co-located soil gas profiles to determine effective diffusivity in soil for each gas simultaneously, over-determining the diffusion equations and providing constraints on both the chamber and gradient methodologies. We then relate these soil gas diffusivities to soil type and volumetric water content in an effort to arrive at empirical parameterizations that may be used to estimate gas diffusivities across the watershed, thereby facilitating more accurate, frequent and widespread gradient-based measurements of trace gas fluxes across our study system. Our empirical approach to constraining soil gas diffusivity is well suited for trace gas flux studies over complex landscapes in general.

  9. Structure, composition and metagenomic profile of soil microbiomes associated to agricultural land use and tillage systems in Argentine Pampas.

    PubMed

    Carbonetto, Belén; Rascovan, Nicolás; Álvarez, Roberto; Mentaberry, Alejandro; Vázquez, Martin P

    2014-01-01

    Agriculture is facing a major challenge nowadays: to increase crop production for food and energy while preserving ecosystem functioning and soil quality. Argentine Pampas is one of the main world producers of crops and one of the main adopters of conservation agriculture. Changes in soil chemical and physical properties of Pampas soils due to different tillage systems have been deeply studied. Still, not much evidence has been reported on the effects of agricultural practices on Pampas soil microbiomes. The aim of our study was to investigate the effects of agricultural land use on community structure, composition and metabolic profiles on soil microbiomes of Argentine Pampas. We also compared the effects associated to conventional practices with the effects of no-tillage systems. Our results confirmed the impact on microbiome structure and composition due to agricultural practices. The phyla Verrucomicrobia, Plactomycetes, Actinobacteria, and Chloroflexi were more abundant in non cultivated soils while Gemmatimonadetes, Nitrospirae and WS3 were more abundant in cultivated soils. Effects on metabolic metagenomic profiles were also observed. The relative abundance of genes assigned to transcription, protein modification, nucleotide transport and metabolism, wall and membrane biogenesis and intracellular trafficking and secretion were higher in cultivated fertilized soils than in non cultivated soils. We also observed significant differences in microbiome structure and taxonomic composition between soils under conventional and no-tillage systems. Overall, our results suggest that agronomical land use and the type of tillage system have induced microbiomes to shift their life-history strategies. Microbiomes of cultivated fertilized soils (i.e. higher nutrient amendment) presented tendencies to copiotrophy while microbiomes of non cultivated homogenous soils appeared to have a more oligotrophic life-style. Additionally, we propose that conventional tillage systems may promote copiotrophy more than no-tillage systems by decreasing soil organic matter stability and therefore increasing nutrient availability.

  10. Structure, Composition and Metagenomic Profile of Soil Microbiomes Associated to Agricultural Land Use and Tillage Systems in Argentine Pampas

    PubMed Central

    Carbonetto, Belén; Rascovan, Nicolás; Álvarez, Roberto; Mentaberry, Alejandro; Vázquez, Martin P.

    2014-01-01

    Agriculture is facing a major challenge nowadays: to increase crop production for food and energy while preserving ecosystem functioning and soil quality. Argentine Pampas is one of the main world producers of crops and one of the main adopters of conservation agriculture. Changes in soil chemical and physical properties of Pampas soils due to different tillage systems have been deeply studied. Still, not much evidence has been reported on the effects of agricultural practices on Pampas soil microbiomes. The aim of our study was to investigate the effects of agricultural land use on community structure, composition and metabolic profiles on soil microbiomes of Argentine Pampas. We also compared the effects associated to conventional practices with the effects of no-tillage systems. Our results confirmed the impact on microbiome structure and composition due to agricultural practices. The phyla Verrucomicrobia, Plactomycetes, Actinobacteria, and Chloroflexi were more abundant in non cultivated soils while Gemmatimonadetes, Nitrospirae and WS3 were more abundant in cultivated soils. Effects on metabolic metagenomic profiles were also observed. The relative abundance of genes assigned to transcription, protein modification, nucleotide transport and metabolism, wall and membrane biogenesis and intracellular trafficking and secretion were higher in cultivated fertilized soils than in non cultivated soils. We also observed significant differences in microbiome structure and taxonomic composition between soils under conventional and no- tillage systems. Overall, our results suggest that agronomical land use and the type of tillage system have induced microbiomes to shift their life-history strategies. Microbiomes of cultivated fertilized soils (i.e. higher nutrient amendment) presented tendencies to copiotrophy while microbiomes of non cultivated homogenous soils appeared to have a more oligotrophic life-style. Additionally, we propose that conventional tillage systems may promote copiotrophy more than no-tillage systems by decreasing soil organic matter stability and therefore increasing nutrient availability. PMID:24923965

  11. Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment.

    PubMed

    Fernandez, Adria L; Sheaffer, Craig C; Wyse, Donald L; Staley, Christopher; Gould, Trevor J; Sadowsky, Michael J

    2016-10-01

    Agricultural management practices can produce changes in soil microbial populations whose functions are crucial to crop production and may be detectable using high-throughput sequencing of bacterial 16S rRNA. To apply sequencing-derived bacterial community structure data to on-farm decision-making will require a better understanding of the complex associations between soil microbial community structure and soil function. Here 16S rRNA sequencing was used to profile soil bacterial communities following application of cover crops and organic fertilizer treatments in certified organic field cropping systems. Amendment treatments were hairy vetch (Vicia villosa), winter rye (Secale cereale), oilseed radish (Raphanus sativus), buckwheat (Fagopyrum esculentum), beef manure, pelleted poultry manure, Sustane(®) 8-2-4, and a no-amendment control. Enzyme activities, net N mineralization, soil respiration, and soil physicochemical properties including nutrient levels, organic matter (OM) and pH were measured. Relationships between these functional and physicochemical parameters and soil bacterial community structure were assessed using multivariate methods including redundancy analysis, discriminant analysis, and Bayesian inference. Several cover crops and fertilizers affected soil functions including N-acetyl-β-d-glucosaminidase and β-glucosidase activity. Effects, however, were not consistent across locations and sampling timepoints. Correlations were observed among functional parameters and relative abundances of individual bacterial families and phyla. Bayesian analysis inferred no directional relationships between functional activities, bacterial families, and physicochemical parameters. Soil functional profiles were more strongly predicted by location than by treatment, and differences were largely explained by soil physicochemical parameters. Composition of soil bacterial communities was predictive of soil functional profiles. Differences in soil function were better explained using both soil physicochemical test values and bacterial community structure data than using soil tests alone. Pursuing a better understanding of bacterial community composition and how it is affected by farming practices is a promising avenue for increasing our ability to predict the impact of management practices on important soil functions. Copyright © 2016. Published by Elsevier B.V.

  12. Retention of Nickel in Soils: Sorption-Desorption and Extended X-ray Absorption Fine Structure Experiments

    EPA Science Inventory

    Adsorption and desorption of heavy metals in soils are primary factors that influence their bioavailability and mobility in the soil profile. To examine the characteristics of nickel (Ni) adsorption-desorption in soils, kinetic batch experiments were carried out followed by Ni re...

  13. Laboratory evaluation of dual-frequency multisensor capacitance probes to monitor soil water and salinity

    USDA-ARS?s Scientific Manuscript database

    Real-time information on salinity levels and transport of fertilizers are generally missing from soil profile knowledge bases. A dual-frequency multisensor capacitance probe (MCP) is now commercially available for sandy soils that simultaneously monitor volumetric soil water content (VWC, ') and sa...

  14. Redistribution of magnetic iron oxide along soil profile after eight years managing a commercial olive orchard in a Vertisol

    NASA Astrophysics Data System (ADS)

    Guzmán, Gema; Gómez, José Alfonso

    2017-04-01

    Magnetic iron oxide has been used as a tracer to monitor top soil movement and to identify source of sediments at the short-term scale, after high intensity rainfall events (Guzmán et al., 2010; Obereder et al., 2016) and periods up to two years (Guzmán et al., 2013). As it can be strongly bound to soil particles, its use allows the tacking of tagged soil all over the years until all this soil is lost or it is totally diluted with blank soil making the signal undetectable. Olive orchards planted on Vertisols are subject not only to tillage operations modifying soil profile but also to expansion-compression cycles and cracks appearance due to soil moisture changes. The aim of communication is to assess the soil movement at the mid-term scale, taking advantage of a tracer trial already performed by Guzmán et al. (2013) and a new sampling after 8 years of soil disturbance. In October 2008 two plots of 330 m2 were delimited and in which the top 5 cm of the inter tree rows were tagged with magnetite. Seventy locations at both plots were sampled so as to measure magnetic susceptibility twice (just after the tagging and March 2010), at three depth intervals (0-1, 1-8 and 8-12 cm) and distinguishing two zones: tree and inter tree rows. A third sampling was carried out at 0-2, 2-10 and 10-20 cm in August 2016 at the same locations and zones. Furthermore, in twenty of the sampling points additional samples from 20-30, 30-40, 40-50 and 50-60 cm were taken to check if tagged soil went deeper into the soil profile. Background values of susceptibility and bulk density at each depth, were characterized as well at the three sampling campaigns. Rainfall, soil management during these years and the inherent characteristics of a Vertisol have enhanced the movement of top soil not only superficially but also within the soil profile. First results comparing the evolution of magnetite distribution along soil profile indicate that while in 2008 and 2010 background values were measured at 12 cm, in 2016, in both zones (tree and inter tree rows) magnetite decreases slightly from the 10-20 cm interval but still finding tagged soil at a depth of 60 cm where background values were nearly reached. The implications of these results on the use of erosion magnetic tracers in long-term erosion experiments and soil vertical fluxes in Vertic soils will be discussed. References: Guzmán G., Vanderlinden K., Giráldez J.V., Gómez J. A. 2013. Assessment of spatial variability in water erosion rates in an olive orchard at plot scale using a magnetic iron oxide tracer. Soil Science Society of America Journal, 77(2), 350-361. Guzmán G., Barrón V., Gómez J.A. 2010. Evaluation of magnetic iron oxides as sediment tracers in water erosion experiments. Catena, 82(2), 126-133. Obereder E., Klik A., Wakolbinger S., Guzmán G., Strohmeier S., Demelash N., Gómez, J.A. 2016. Investigation of the impact of stone bunds on erosion and deposition processes combining conventional and tracer methodology in the Gumara Maksegnit watershed, Northern highlands of Ethiopia. In EGU General Assembly Conference Abstracts (Vol. 18, p. 2455).

  15. Microbial communities in carbonate rocks-from soil via groundwater to rocks.

    PubMed

    Meier, Aileen; Singh, Manu K; Kastner, Anne; Merten, Dirk; Büchel, Georg; Kothe, Erika

    2017-09-01

    Microbial communities in soil, groundwater, and rock of two sites in limestone were investigated to determine community parameters differentiating habitats in two lithostratigraphic untis. Lower Muschelkalk and Middle Muschelkalk associated soils, groundwater, and rock samples showed different, but overlapping microbial communities linked to carbon fluxes. The microbial diversities in soil were highest, groundwater revealed overlapping taxa but lower diversity, and rock samples were predominantly characterized by endospore forming bacteria and few archaea. Physiological profiles could establish a differentiation between habitats (soil, groundwater, rock). From community analyses and physiological profiles, different element cycles in limestone could be identified for the three habitats. While in soil, nitrogen cycling was identified as specific determinant, in rock methanogenesis linked carbonate rock to atmospheric methane cycles. These patterns specifically allowed for delineation of lithostratigraphic connections to physiological parameters. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A dialog with a puzzled profile: Poetry of an old pedological discussion

    NASA Astrophysics Data System (ADS)

    Itkin, Danny

    2017-04-01

    Defining and classifying are fundamental needs in the everyday life of humans. Among quite a few relevant examples in pedology, stands the question of whether soils and some types of sediments should or can be distinct. This issue is as old as soil science itself and is possibly very much related to the never ending debate regarding "the definition of soil". As is the case in many fields, the necessity of humans to create and keep a uniform common language might collide with different cultural and/or scientific perspectives. Such is the case with the wide variety of soil classifications found throughout the world. One can easily note this diversity when reading publications that address two similar regolith profiles from different locations round the globe. In some cases it would be impossible to correlate two comparable profiles when using different classification systems. This contradictory situation is one of the most challenging topics in pedology. This whole background gave the inspiration for the following poem, titled "A dialog with a puzzled profile": Are you a soil or a sediment? Ask the oak, see if he knows. Ask him whether these are peds Or maybe a bedrock under his toes. And if you're a soil, what are you? It depends on the viewpoint, you see: Some define me with Soil Taxonomy, While others with WRB. For Hutton and Lyell I'm a weathered rock, Yet Hilgard and Dokuchaev dispute. If you ask me, well I'm a 'pedosediment', I couldn't care less for the suit. If it helps you I'll be whatever it takes,
Making sure that no one will lose. I know it depends very much on the platform Where experts are setting the rules.

  17. Soils of the Eastern mountainsides of the southern Sikhote-Alin (on the example of Lazovsky nature reserve, Russia)

    NASA Astrophysics Data System (ADS)

    Tregubova, Valentina; Semal, Victoria; Nesterova, Olga; Yaroslavtsev, Alexis

    2017-04-01

    The most common soils of the southern Far East are Brownzems under Russian classification (Cambisols), which are the zonal ones, emerging on the steep slopes and tops of hills, on high river terraces under broad-leaved and cedar-broad-leaved forests. Those soils formed due to two processes: organic matter metamorphism and clayization by siallite, leading to the formation of clay-metamorphic horizon Bw. The main morphological features of Cambisols are not deep soil profile (50 - 70 cm), weak horizons differentiation, with lots of cobble. Chemically those soils are low saturated, even in the humus horizon. Distribution of total absorbed bases is mostly accumulative, which is related to the distribution of humus in these soils, and the predominant type of clay fraction distribution of. The only exception are Humic Cambisols and Humic Cambisols Calcic which were formed on redeposited products of limestone rock weathering. Fine-grained deposits are mainly loams with a low content of silt. Silt distribution has an accumulative character with a gradual decrease in the content of silt down from the top of the profile. Layer of fresh leaf fall is very common for the Humic Cambisols surfaces, and under it there is the litter of plant residues with different degrees of decomposition. Accumulative humus horizon is dark gray with brownish tint, thin, from 10 to 15 cm in depth, loose, crumbly, highly penetrated by roots, with a strong granular structure, with aggregates tightly attached to the root hairs, sandy loam or sandy clay loam. The middle horizon is brown, yellowish-brown, divided into sub-horizons, with different color intensity, density, soil texture and amount of cobble. Dystric Cambisols are acidic or strongly acidic with low saturation of soil absorbing complex. Due to amount and distribution of organic matter these soils can be divided into two groups. The first group is soils with accumulative humus distribution: with a low depth humus-accumulative horizon (11 - 12 cm) and high content of organic matter (23 - 26 %); humus in the upper horizons mainly consists of humic acids, while in lower horizons it is with higher ratio of fulvic acids. The second group is soils with a gradual humus distribution along the profile and with a smaller amount of organic matter in the upper horizon (9 - 13 %) and with no differentiation in humus composition. Folic Cambisols are formed on the watershed surfaces, on the steep slopes under pine and oak trees. Under thin litter horizon these soils have organic-accumulative horizon of well decomposed organic matter, but in contrast with Dystric Cambisols it doesn't have strong granular structure. At the bottom the organic horizon is humic-impregnated or has clear streaks of humus. Humic Cambisols are formed in the lower parts of slopes, on steep slopes and high river terraces under pine and deciduous forests. All this soils have humified litter horizon, which is up to 7 cm in depth, weak differentiation of the soil profile, deep humus-accumulative horizon (18 - 31 cm) with dark gray, almost black color, with strong granular structure and loam or clay loam texture. Soil acidity is determined by the lithogenic basis. Base saturation is quite high (77 - 90%) in mineral horizons and is up to 70 % in organic and accumulative ones. There is a high amount of humus on the entire profile (5 - 16 %), which consists of humic acids in the upper half of the profile and of fulvates at the bottom. Humic Cambisols Gleyic are located in the lower parts of gentle slopes under mixed forest. Due to higher moisture at the lower parts of slopes this soils have signs of weak gley process in dense subsoil horizons in the form of small light grey spots. Humic Leptosols are weakly developed soils formed on rocky hills, boulders, rocky outcrops, under thick moss layer, under which is a layer of weathered gravel rock. Humic Cambisols (Calcic) are formed on the surface sediments of limestone. They have a deep soil profile, up to 40 cm and it's humus-accumulative horizon is dark gray or black, gradually passing into soil-forming rock. Bw horizon, typical for Cambisols, is weak.

  18. Data documentation for the bare soil experiment at the University of Arkansas

    NASA Technical Reports Server (NTRS)

    Waite, W. P.; Scott, H. D. (Principal Investigator); Hancock, G. D.

    1980-01-01

    The reflectivities of several controlled moisture test plots were investigated. These test plots were of a similar soil texture which was clay loam and were prepared to give a desired initial soil moisture and density profile. Measurements were conducted on the plots as the soil water redistributed for both long term and diurnal cycles. These measurements included reflectivity, gravimetric and volumetric soil moisture, soil moisture potential, and soil temperature.

  19. Lipid profiling of the soybean pathogen Phytophthora sojae using Fatty Acid Methyl Esters (FAMEs).

    PubMed

    Yousef, Lina Fayez; Wojno, Michal; Dick, Warren A; Dick, Richard P

    2012-05-01

    Phytophthora sojae is a destructive soilborne pathogen of soybean, but currently there is no rapid or commercially available testing for its infestation level in soil. For growers, such information would greatly improve their ability to make management decisions to minimize disease damage to soybean crops. Fatty acid profiling of P. sojae holds potential for determining the prevalence of this pathogen in soil. In this study, the Fatty Acid Methyl Ester (FAME) profile of P. sojae was determined in pure culture, and the profile was subsequently evaluated for its potential use in detecting the pathogen in soil. The predominant fatty acids in the FAME profile of P. sojae are the unsaturated 18C fatty acids (18:1ω9 and 18:2ω6) followed by the saturated and unsaturated 16C fatty acids (16:0 and 16:1ω7). FAME analysis of P. sojae zoospores showed two additional long-chain saturated fatty acids (20:0 and 22:0) that were not detected in the mycelium of this organism. Addition of a known number of zoospores of P. sojae to soil demonstrated that fatty acids such as 18:1ω9, 18:2ω6, 20:1ω9, 20:4ω6, and 22:1ω9 could be detected and quantified against the background levels of fatty acids present in soil. These results show the potential for using selected FAMEs of P. sojae as a marker for detecting this pathogen in soybean fields. Copyright © 2012 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  20. Towards Understanding Soil Forming in Santa Clotilde Critical Zone Observatory: Modelling Soil Mixing Processes in a Hillslope using Luminescence Techniques

    NASA Astrophysics Data System (ADS)

    Sanchez, A. R.; Laguna, A.; Reimann, T.; Giráldez, J. V.; Peña, A.; Wallinga, J.; Vanwalleghem, T.

    2017-12-01

    Different geomorphological processes such as bioturbation and erosion-deposition intervene in soil formation and landscape evolution. The latter processes produce the alteration and degradation of the materials that compose the rocks. The degree to which the bedrock is weathered is estimated through the fraction of the bedrock which is mixing in the soil either vertically or laterally. This study presents an analytical solution for the diffusion-advection equation to quantify bioturbation and erosion-depositions rates in profiles along a catena. The model is calibrated with age-depth data obtained from profiles using the luminescence dating based on single grain Infrared Stimulated Luminescence (IRSL). Luminescence techniques contribute to a direct measurement of the bioturbation and erosion-deposition processes. Single-grain IRSL techniques is applied to feldspar minerals of fifteen samples which were collected from four soil profiles at different depths along a catena in Santa Clotilde Critical Zone Observatory, Cordoba province, SE Spain. A sensitivity analysis is studied to know the importance of the parameters in the analytical model. An uncertainty analysis is carried out to stablish the better fit of the parameters to the measured age-depth data. The results indicate a diffusion constant at 20 cm in depth of 47 (mm2/year) in the hill-base profile and 4.8 (mm2/year) in the hilltop profile. The model has high uncertainty in the estimation of erosion and deposition rates. This study reveals the potential of luminescence single-grain techniques to quantify pedoturbation processes.

  1. Relationship soil-water-plant after the dry season in dry Mediterranean areas

    NASA Astrophysics Data System (ADS)

    Hueso-González, P.; Jiménez-Donaire, V.; Ruiz-Sinoga, J. D.

    2012-04-01

    Preliminary studies have determined the existence of a pluviometric gradient around Mediterranean system, which varies from 240 to 1 100 mm mean annual rainfall. This gradient has an incidence in the physical, chemical and hydrological properties in soils with the same litology. Empiric results conclude that humid eco-geomorphological systems are controlled by biotic processes, whereas in arid eco-geomorphological systems, are abiotic factors which have more importance in soil degradation processes. The study area of the present work is located in Málaga (Andalusia, Spain), in the southern part of the Natural Park "Sierra Tejeda, Almijara y Alhama". There, the mean annual temperature is around 18 °C and the mean rainfall is 650 mm. Predominant vegetation corresponds to the termomediterranean serie Smilaci Mauritanicae-Querceto Rotundifoliae Sigmetum, typical of basic soils. The aim of this study is to analyse the immediate hydrological response of the soil under different vegetation covers, through the analysis of certain properties, all this, under subhumid ombrotipe. A random choice of ten representative plants has been done. These plants, with different sizes, were located in the same Southern slope. The soil samples were taken right beside the plant log, and also within a distance of 0.4 to 1 metre from them, depending on the plant size. The sampling was carried out between the end of the dry season and the beginning of the wet one, after a 20% of the mean annual rainfall had rained. The physical, chemical and hydrological analyzes -both in the field and the laboratory- were: exchange-base, total carbon, cation exchange capacity, soil infiltration capacity, salt content, hydrophobia, organic matter, soil organic carbon, total nitrogen, wetting profile in bared soil, wetting profile under vegetation cover (shrubland), and p.H. Literature reveals that rainfall affects significantly the edafogenetic factors, regarding the pluviometric gradient level. In the present study, from a 20% accumulated rainfall of the total mean, not considerable incidences can be found. Furthermore, after the dry season, rainfall event higher than 0.5 mm are necessary in order to observe changes in soil wetting profile. However, for intense rainfall episodes, the hydrological soil response -observe by its wetting profile- in bare soil is 24 hours, and 48 hours in soils vegetation cover. Secondly, soil hydraulic conductivity - measured with a minidisc infiltrometer at different distances from the selected plants- shows that soil infiltration capacity does not follow a determined patter. This could be due to the significant stony character of the studied area soil/presence of stones in of the studied area soil. Finally, not major differences regarding soil organic matter have been observed, either at species level or temporal level, from the selected plant.

  2. How deep does disturbance go? The legacy of hurricanes on tropical forest soil biogeochemistry

    NASA Astrophysics Data System (ADS)

    Gutiérrez del Arroyo, O.; Silver, W. L.

    2016-12-01

    Ecosystem-scale disturbances, such as hurricanes and droughts, are periodic events with the capacity to cycle vast amounts of energy and matter. Such is the case of hurricanes in wet tropical forests, where intense winds defoliate the forest canopy and deposit large quantities of debris on the forest floor. These disturbances strongly affect soil biogeochemistry by altering soil moisture and temperature regimes, as well as litterfall, decomposition rates, and ultimately soil carbon (C) pools. Although these impacts are mostly concentrated near the soil surface, it is critical to consider the long-term effects on hurricanes on the deep soil profile, given the potential for soil C sequestration to occur at depth. Our study was conducted in the Canopy Trimming Experiment, an ongoing experiment within the Luquillo LTER in Puerto Rico. Ten years prior to our study, treatments including canopy trimming and debris deposition, independently and in combination, were imposed on 30 x 30 m plots within Tabonuco forests. We sampled 12 soil profiles (4 treatments, n=3) from 0 to 100 cm, at 10 cm intervals, and measured a suite of biogeochemical properties to explore treatment effects, as well as changes with depth. After a decade of recovery from the imposed treatments, there were no significant differences in soil moisture or soil pH among treatments at any depth, although significant changes with depth occurred for both variables. Iron concentrations, despite showing no treatment effects, decreased markedly with depth, highlighting the biogeochemical thresholds that occur along the soil profile. Notably, debris deposition resulted in significantly higher soil C, nitrogen (N), and phosphorus (P) concentrations in bulk soils, with effects being detected even at depths >50 cm. Moreover, density fractionation analyses of surface and deep soils revealed potential pathways for the measured increases in C, N, and P, including the accumulation of organic matter in the light fraction, as well as physiochemical interactions between organic molecules and minerals in the heavy fraction. Together, our data suggests that hurricane disturbances, by providing unusually large quantities of litterfall, can serve as a periodic subsidy of organic matter to the soil, which helps to maintain soil fertility and promote soil C sequestration.

  3. Moment Analysis Characterizing Water Flow in Repellent Soils from On- and Sub-Surface Point Sources

    NASA Astrophysics Data System (ADS)

    Xiong, Yunwu; Furman, Alex; Wallach, Rony

    2010-05-01

    Water repellency has a significant impact on water flow patterns in the soil profile. Flow tends to become unstable in such soils, which affects the water availability to plants and subsurface hydrology. In this paper, water flow in repellent soils was experimentally studied using the light reflection method. The transient 2D moisture profiles were monitored by CCD camera for tested soils packed in a transparent flow chamber. Water infiltration experiments and subsequent redistribution from on-surface and subsurface point sources with different flow rates were conducted for two soils of different repellency degrees as well as for wettable soil. We used spatio-statistical analysis (moments) to characterize the flow patterns. The zeroth moment is related to the total volume of water inside the moisture plume, and the first and second moments are affinitive to the center of mass and spatial variances of the moisture plume, respectively. The experimental results demonstrate that both the general shape and size of the wetting plume and the moisture distribution within the plume for the repellent soils are significantly different from that for the wettable soil. The wetting plume of the repellent soils is smaller, narrower, and longer (finger-like) than that of the wettable soil compared with that for the wettable soil that tended to roundness. Compared to the wettable soil, where the soil water content decreases radially from the source, moisture content for the water-repellent soils is higher, relatively uniform horizontally and gradually increases with depth (saturation overshoot), indicating that flow tends to become unstable. Ellipses, defined around the mass center and whose semi-axes represented a particular number of spatial variances, were successfully used to simulate the spatial and temporal variation of the moisture distribution in the soil profiles. Cumulative probability functions were defined for the water enclosed in these ellipses. Practically identical cumulative probability functions (beta distribution) were obtained for all soils, all source types, and flow rates. Further, same distributions were obtained for the infiltration and redistribution processes. This attractive result demonstrates the competence and advantage of the moment analysis method.

  4. Observations of a two-layer soil moisture influence on surface energy dynamics and planetary boundary layer characteristics in a semiarid shrubland

    NASA Astrophysics Data System (ADS)

    Sanchez-Mejia, Zulia Mayari; Papuga, Shirley A.

    2014-01-01

    We present an observational analysis examining soil moisture control on surface energy dynamics and planetary boundary layer characteristics. Understanding soil moisture control on land-atmosphere interactions will become increasingly important as climate change continues to alter water availability. In this study, we analyzed 4 years of data from the Santa Rita Creosote Ameriflux site. We categorized our data independently in two ways: (1) wet or dry seasons and (2) one of the four cases within a two-layer soil moisture framework for the root zone based on the presence or absence of moisture in shallow (0-20 cm) and deep (20-60 cm) soil layers. Using these categorizations, we quantified the soil moisture control on surface energy dynamics and planetary boundary layer characteristics using both average responses and linear regression. Our results highlight the importance of deep soil moisture in land-atmosphere interactions. The presence of deep soil moisture decreased albedo by about 10%, and significant differences were observed in evaporative fraction even in the absence of shallow moisture. The planetary boundary layer height (PBLh) was largest when the whole soil profile was dry, decreasing by about 1 km when the whole profile was wet. Even when shallow moisture was absent but deep moisture was present the PBLh was significantly lower than when the entire profile was dry. The importance of deep moisture is likely site-specific and modulated through vegetation. Therefore, understanding these relationships also provides important insights into feedbacks between vegetation and the hydrologic cycle and their consequent influence on the climate system.

  5. Soil gas 222Rn concentration in northern Germany and its relationship with geological subsurface structures.

    PubMed

    Künze, N; Koroleva, M; Reuther, C-D

    2013-01-01

    (222)Rn in soil gas activity was measured across the margins of two active salt diapirs in Schleswig-Holstein, northern Germany, in order to reveal the impact of halokinetic processes on the soil gas signal. Soil gas and soil sampling were carried out in springtime and summer 2011. The occurrence of elevated (222)Rn in soil gas concentrations in Schleswig-Holstein has been ascribed to radionuclide rich moraine boulder material deposits, but the contribution of subsurface structures has not been investigated so far. Reference samples were taken from a region known for its granitic moraine boulder deposits, resulting in (222)Rn in soil gas activity of 40 kBq/m(3). The values resulting from profile sampling across salt dome margins are of the order of twice the moraine boulder material reference values and exceed 100 kBq/m(3). The zones of elevated concentrations are consistent throughout time despite variations in magnitude. One soil gas profile recorded in this work expands parallel to a seismic profile and reveals multiple zones of elevated (222)Rn activities above a rising salt intrusion. The physical and chemical properties of salt have an impact on the processes influencing gas migration and surface near radionuclide accumulations. The rise of salt supports the breakup of rock components thus leading to enhanced emanation. This work provides a first approach regarding the halokinetic contribution to the (222)Rn in soil gas occurrence and a possible theoretical model which summarizes the relevant processes was developed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Numerical analysis for electrokinetic soil processing enhanced by chemical conditioning of the electrode reservoirs.

    PubMed

    Park, Jin-Soo; Kim, Soon-Oh; Kim, Kyoung-Woong; Kim, Byung Ro; Moon, Seung-Hyeon

    2003-04-04

    A numerical analysis was undertaken for enhanced electrokinetic soil processing. To perform chemical conditioning of the electrode reservoirs, the electrokinetic soil process employed a membrane as a barrier between the electrode reservoirs and the contaminated soil. An alkaline solution was purged in the anode reservoir that was bounded by the membrane. A mathematical model was used for demonstration of pH change and phenol removal from a kaolinite soil bed, the prediction of pH variations in both electrode reservoirs, and the determination of an optimized injection time of the anode-purging solution. The time-dependent dispersion coefficient was employed in consideration of the averaging effect of the velocity profile on a one-dimensional transport. The estimation of pH and phenol profiles in the soil bed reasonably agreed with the experimental data. The simulation revealed that the removal efficiency of phenol from the kaolinite soil could be improved by maintaining pH of the anode solution.

  7. Vertical distribution of heavy metals associated with the coarse and medium sand fraction in the forest soils of European Russia

    NASA Astrophysics Data System (ADS)

    Samonova, Olga; Aseyeva, Elena

    2015-04-01

    To accurately model metal behavior in soils, studies on possible geochemical changes occurring within a specific grain-size fraction during pedogenesis are needed. In the present study we analyze concentrations and vertical distributions of heavy metals associated with the coarse and medium sand fraction (1-0.25mm) for soils in the middle Protva basin, situated in the mixed forest zone of European Russia. Two soil types were analyzed: well-differentiated sod-podzolic soils (podzoluvisols) with AEBtC-profile, the major soil type in the study area occupying the interfluve's sub-horizontal surfaces and gentle slopes; and poorly differentiated soddy soils of subordinate positions: soddy soils, soddy gleyic soils and soddy soils with buried fluvial soil horizons. In total 27 samples, collected from 4 soil profiles, were analyzed for Fe, Ti, Mn, Cu, Ni, Co, Cr, Zn, Pb and Zr contents in the partitioned coarse and medium sand fraction. The median concentrations calculated are for Fe - 4%, for Mn - 760 ppm; for Ti - 980 ppm; for Zr - 130 ppm; for Zn - 30 ppm; and for Cu, Pb, Co, Cr, Ni - 67, 13, 11, 38, 33 ppm, respectively. The metal concentrations in total sample population vary differently, with the variation coefficients diminishing from Mn (171%) and Fe (112%) to Zr, Ni and Pb (53%). Comparing the chemical composition of coarse and medium sand fractions in the vertical sequence of horizons within a soil profile showed that in the sod-podzolic soil developed on mantle loam metals are enriched in the sand fraction of the upper A and AE horizons. The second but less distinct maximum levels for Cu, Ni, Fe, Cr, Mn and Co were found in the subsoil with gleyic features (Cg horizon). In soddy soils developed on diluvium on the steep section of the slope the studied sand fraction generally showed larger amounts of metals in A and AC horizons. In similar soils with gleyic features the concentrations of Fe, Cr, Co, Ni, Cu are the highest in the uppermost horizon, while the levels of Mn, Pb, Ti, Zr are higher in the ACg horizon. In the genetically heterogeneous soil profile combining horizons typical for contemporary soddy soils and buried fluvial soils the metal concentrations depend on the genesis of the sand fraction, with higher concentrations found in the contemporary soil horizons and lower concentrations in the buried fluvial soils. Thus, our results imply that during soil formation, under the influence of soil and geochemical processes conditioned by a humid temperate climate, the composition of the sand fraction in relation to metal contents changes. In most cases the enrichment of the sand fraction with a wide spectrum of metals was found in upper soil horizons of the studied soil types where humus accumulation, active biogeochemical processes and sand grain weathering takes place. Periodic saturation of the soils with water might also have contributed to metal accumulation in the sand fraction through the formation of iron and manganese compounds which can serve as sinks for metals.

  8. Modeling carbon cycle process of soil profile in Loess Plateau of China

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Finke, P.; Guo, Z.; Wu, H.

    2011-12-01

    SoilGen2 is a process-based model, which could reconstruct soil formation under various climate conditions, parent materials, vegetation types, slopes, expositions and time scales. Both organic and inorganic carbon cycle processes could be simulated, while the later process is important in carbon cycle of arid and semi-arid regions but seldom being studied. After calibrating parameters of dust deposition rate and segments depth affecting elements transportation and deposition in the profile, modeling results after 10000 years were confronted with measurements of two soil profiles in loess plateau of China, The simulated trends of organic carbon and CaCO3 in the profile are similar to measured values. Relative sensitivity analysis for carbon cycle process have been done and the results show that the change of organic carbon in long time scale is more sensitive to precipitation, temperature, plant carbon input and decomposition parameters (decomposition rate of humus, ratio of CO2/(BIO+HUM), etc.) in the model. As for the inorganic carbon cycle, precipitation and potential evaporation are important for simulation quality, while the leaching and deposition of CaCO3 are not sensitive to pCO2 and temperature of atmosphere.

  9. Profile of a city: characterizing and classifying urban soils in the city of Ghent

    NASA Astrophysics Data System (ADS)

    Delbecque, Nele; Verdoodt, Ann

    2017-04-01

    Worldwide, urban lands are expanding rapidly. Conversion of agricultural and natural landscapes to urban fabric can strongly influence soil properties through soil sealing, excavation, leveling, contamination, waste disposal and land management. Urban lands, often characterized by intensive use, need to deliver many production, ecological and cultural ecosystem services. To safeguard this natural capital for future generations, an improved understanding of biogeochemical characteristics, processes and functions of urban soils in time and space is essential. Additionally, existing (inter)national soil classification systems, based on the identification of soil genetic horizons, do not always allow a functional classification of urban soils. This research aims (1) to gain insight into urban soils and their properties in the city of Ghent (Belgium), and (2) to develop a procedure to functionally incorporate urban soils into existing (inter)national soil classification systems. Undisturbed soil cores (depth up to 1.25 m) are collected at 15 locations in Ghent with different times since development and land uses. Geotek MSCL-scans are taken to determine magnetic susceptibility and gamma density and to obtain high resolution images. Physico-chemical characterization of the soil cores is performed by means of detailed soil profile descriptions, traditional lab analyses, as well as proximal soil sensing techniques (XRF). The first results of this research will be presented and critically discussed to improve future efforts to characterize, classify and evaluate urban soils and their ecosystem services.

  10. "Modeled and measured carbon cycling in Mojave Desert soils: toward present and projected greenhouse gas budgets for arid regions

    NASA Astrophysics Data System (ADS)

    Maurer, G. E.; Amundson, R.; Lammers, L. N.; Mills, J.; Oerter, E.

    2017-12-01

    Drylands comprise roughly 35% of the Earth's surface, store globally significant amounts of carbon, and cycle this carbon at rates that vary greatly from year to year. Consequently, drylands are thought to contribute to inter-annual changes in the global atmospheric CO2 budget. Sparse measurements and limited process-based modeling have made quantifying dryland carbon cycling at regional or larger scales a major challenge. We parameterized and ran the DayCent model, an ecosystem model that simulates soil C and N cycling and greenhouse gas (GHG) fluxes, using long-term regional climate, soil, and vegetation data for the Mojave Desert region (southwest USA). DayCent predicted somewhat greater soil organic C than was observed in a database of 186 measured Mojave soil survey samples, but successfully recreated climate-driven patterns in soil carbon storage across the landscape. Modeled soil organic carbon storage increased by between 4.1 and 5.1 kg/m2 per km of elevation gained, while Mojave soil survey data indicated an increase of 4.6 kg/m2. Model predictions of soil CO2 flux were validated and calibrated against field observations from ten Mojave soil gas profile studies sampled intermittently between 1986 and the present. DayCent had a tendency to overestimate soil respiration measured at some sites by up to 600% compared to profile measurements. Modeled soil CO2 fluxes increased by between 1280 and 4141 kg/ha/yr per km of elevation gained.This elevational pattern did not match well with landscape-level changes in observed soil profile CO2 flux data, indicating further calibration of DayCent will be needed to produce regional estimates of GHG flux. This ongoing synthesis of modeling and measurements extends the current knowledge of the Mojave's contribution to the global GHG budget and will provide a basis from which to project future emissions from the Mojave and other dryland regions.

  11. [Distribution characteristics of soil profile nitrous oxide concentration in paddy fields with different rice-upland crop rotation systems].

    PubMed

    Liu, Ping-li; Zhang, Xiao-lin; Xiong, Zheng-qin; Huang, Tai-qing; Ding, Min; Wang, Jin-yang

    2011-09-01

    To investigate the dynamic distribution patterns of nitrous oxide (N2O) in the soil profiles in paddy fields with different rice-upland crop rotation systems, a special soil gas collection device was adopted to monitor the dynamics of N2O at the soil depths 7, 15, 30, and 50 cm in the paddy fields under both flooding and drainage conditions. Two rotation systems were installed, i.e., wheat-single rice and oilseed rape-double rice, each with or without nitrogen (N) application. Comparing with the control, N application promoted the N2O production in the soil profiles significantly (P < 0.01), and there existed significant correlations in the N2O concentration among the four soil depths during the whole observation period (P < 0.01). In the growth seasons of winter wheat and oilseed rape under drainage condition and with or without N application, the N2O concentrations at the soil depths 30 cm and 50 cm were significantly higher than those at the soil depths 7 cm and 15 cm; whereas in the early rice growth season under flooding condition and without N application, the N2O concentrations at the soil depth 7 cm and 15 cm were significantly higher than those at the soil depths 30 cm and 50 cm (P < 0.05). No significant differences were observed in the N2O concentrations at the test soil depths among the other rice cropping treatments. The soil N2O concentrations in the treatments without N application peaked in the transitional period from the upland crops cropping to rice planting, while those in the treatments with N application peaked right after the second topdressing N of upland crops. Relatively high soil N2O concentrations were observed at the transitional period from the upland crops cropping to rice planting.

  12. Three-Dimensional Mapping of Soil Organic Carbon by Combining Kriging Method with Profile Depth Function.

    PubMed

    Chen, Chong; Hu, Kelin; Li, Hong; Yun, Anping; Li, Baoguo

    2015-01-01

    Understanding spatial variation of soil organic carbon (SOC) in three-dimensional direction is helpful for land use management. Due to the effect of profile depths and soil texture on vertical distribution of SOC, the stationary assumption for SOC cannot be met in the vertical direction. Therefore the three-dimensional (3D) ordinary kriging technique cannot be directly used to map the distribution of SOC at a regional scale. The objectives of this study were to map the 3D distribution of SOC at a regional scale by combining kriging method with the profile depth function of SOC (KPDF), and to explore the effects of soil texture and land use type on vertical distribution of SOC in a fluvial plain. A total of 605 samples were collected from 121 soil profiles (0.0 to 1.0 m, 0.20 m increment) in Quzhou County, China and SOC contents were determined for each soil sample. The KPDF method was used to obtain the 3D map of SOC at the county scale. The results showed that the exponential equation well described the vertical distribution of mean values of the SOC contents. The coefficients of determination, root mean squared error and mean prediction error between the measured and the predicted SOC contents were 0.52, 1.82 and -0.24 g kg(-1) respectively, suggesting that the KPDF method could be used to produce a 3D map of SOC content. The surface SOC contents were high in the mid-west and south regions, and low values lay in the southeast corner. The SOC contents showed significant positive correlations between the five different depths and the correlations of SOC contents were larger in adjacent layers than in non-adjacent layers. Soil texture and land use type had significant effects on the spatial distribution of SOC. The influence of land use type was more important than that of soil texture in the surface soil, and soil texture played a more important role in influencing the SOC levels for 0.2-0.4 m layer.

  13. Three-Dimensional Mapping of Soil Organic Carbon by Combining Kriging Method with Profile Depth Function

    PubMed Central

    Chen, Chong; Hu, Kelin; Li, Hong; Yun, Anping; Li, Baoguo

    2015-01-01

    Understanding spatial variation of soil organic carbon (SOC) in three-dimensional direction is helpful for land use management. Due to the effect of profile depths and soil texture on vertical distribution of SOC, the stationary assumption for SOC cannot be met in the vertical direction. Therefore the three-dimensional (3D) ordinary kriging technique cannot be directly used to map the distribution of SOC at a regional scale. The objectives of this study were to map the 3D distribution of SOC at a regional scale by combining kriging method with the profile depth function of SOC (KPDF), and to explore the effects of soil texture and land use type on vertical distribution of SOC in a fluvial plain. A total of 605 samples were collected from 121 soil profiles (0.0 to 1.0 m, 0.20 m increment) in Quzhou County, China and SOC contents were determined for each soil sample. The KPDF method was used to obtain the 3D map of SOC at the county scale. The results showed that the exponential equation well described the vertical distribution of mean values of the SOC contents. The coefficients of determination, root mean squared error and mean prediction error between the measured and the predicted SOC contents were 0.52, 1.82 and -0.24 g kg-1 respectively, suggesting that the KPDF method could be used to produce a 3D map of SOC content. The surface SOC contents were high in the mid-west and south regions, and low values lay in the southeast corner. The SOC contents showed significant positive correlations between the five different depths and the correlations of SOC contents were larger in adjacent layers than in non-adjacent layers. Soil texture and land use type had significant effects on the spatial distribution of SOC. The influence of land use type was more important than that of soil texture in the surface soil, and soil texture played a more important role in influencing the SOC levels for 0.2-0.4 m layer. PMID:26047012

  14. Vertical electric sounding of selected Arctic and Antarctic soils: advances in express field investigation of the Cryosols

    NASA Astrophysics Data System (ADS)

    Abakumov, Evgeny

    2016-04-01

    Physical properties of the soils of the cold environments are underestimated. Soil and permafrost border and active layer thickness are the key classification indicators for the polar soils. That is why electrophysical research has been conducted with aim to determine the soil-permafrost layer heterogeneity and the depth of the uppermost permafrost layer on examples of selected plots in Antarctic region and Russian Arctic. The electric resistivity (ER) was measured directly in the soil profiles using the vertical electrical sounding (VERS) method, which provides data on the changes in the electrical resistivity throughout the profile from the soil surface without digging pits or drilling. This method allows dividing the soil layer vertically into genetic layers, which are different on main key properties and characteristics Different soil layers have different ER values, that is why the sharp changes in ER values in soil profile can be interpreted as results of transition of one horizon to another. In our study, the resistivity measurements were performed using four-electrode (AB + MN) arrays of the AMNB configuration with use of the Schlumberger geometry. A Landmapper ERM-03 instrument (Landviser, USA) was used for the VES measurements in this study. Electrodes were situated on the soil surface, distance between M and N was fixes, while distance from A to B were changed during the sounding. Vertical Electrical Resistivity Soundings (VERS) using Schlumberger array were carried out at stations, situated on the different plots of terrestrial ecosystems of Arctic and Antarctic. The resistance readings at every VERS point were automatically displayed on the digital readout screen and then written down on the field note book. The soils had been 'sounded' thoroughly and found to vary between 5 cm and 3-5 m in A-B distances. It was shown that use of VES methodology in soil survey is quite useful for identification of the permafrost depth without digging of soil pit. This method allow identify soil heterogeneity, because the ER values are strongly affected by soil properties and intensively changes on the border of different geochemical regimes, i.e. on the border of active layer and permafrost. VES data obtained show that the upper border of the permafrost layer coincides with that border, which were identified in field on the base of soil profile morphology. The VERS method also can used for identification of Gleyic, Histic and Podzolic layers. It has been also shown that permafrost layer is less homogenous in upper part of permafrost, than in lower one. It is caused by number of cracks, channels and other paths of dissolved organic matter and iron containing compounds migration. VES methodology is useful for preliminary soil survey in the regions with permafrost affected soil cover. It is also can be applied for detalization of soil-permafrost layer stratification in field soil pits.

  15. Effects of subsurface aeration and trinexapac-ethyl application on soil microbial communities in a creeping bentgrass putting green

    USGS Publications Warehouse

    Feng, Y.; Stoeckel, D.M.; Van Santen, E.; Walker, R.H.

    2002-01-01

    The sensitivity of creeping bentgrass (Agrostis palustris Huds.) to the extreme heat found in the southeastern United States has led to the development of new greens-management methods. The purpose of this study was to examine the effects of subsurface aeration and growth regulator applications on soil microbial communities and mycorrhizal colonization rates in a creeping bentgrass putting green. Two cultivars (Crenshaw and Penncross), a growth regulator (trinexapacethyl), and subsurface aeration were evaluated in cool and warm seasons. Total bacterial counts were higher in whole (unsieved) soils than in sieved soils, indicating a richer rhizosphere soil environment. Mycorrhizal infection rates were higher in trinexapac-ethyl (TE) treated plants. High levels of hyphal colonization and relatively low arbuscule and vesicle occurrence were observed. Principal components analysis of whole-soil fatty acid methyl ester (FAME) profiles indicated that warm-season microbial populations in whole and sieved soils had similar constituents, but the populations differed in the cool season. FAME profiles did not indicate that subsurface aeration and TE application affected soil microbial community structure. This is the first reported study investigating the influences of subsurface aeration and TE application on soil microorganisms in a turfgrass putting green soil.

  16. Black Carbon Contribution to Organic Carbon Stocks in Urban Soil.

    PubMed

    Edmondson, Jill L; Stott, Iain; Potter, Jonathan; Lopez-Capel, Elisa; Manning, David A C; Gaston, Kevin J; Leake, Jonathan R

    2015-07-21

    Soil holds 75% of the total organic carbon (TOC) stock in terrestrial ecosystems. This comprises ecosystem-derived organic carbon (OC) and black carbon (BC), a recalcitrant product of the incomplete combustion of fossil fuels and biomass. Urban topsoils are often enriched in BC from historical emissions of soot and have high TOC concentrations, but the contribution of BC to TOC throughout the urban soil profile, at a regional scale is unknown. We sampled 55 urban soil profiles across the North East of England, a region with a history of coal burning and heavy industry. Through combined elemental and thermogravimetic analyses, we found very large total soil OC stocks (31-65 kg m(-2) to 1 m), exceeding typical values reported for UK woodland soils. BC contributed 28-39% of the TOC stocks, up to 23 kg C m(-2) to 1 m, and was affected by soil texture. The proportional contribution of the BC-rich fraction to TOC increased with soil depth, and was enriched in topsoil under trees when compared to grassland. Our findings establish the importance of urban ecosystems in storing large amounts of OC in soils and that these soils also capture a large proportion of BC particulates emitted within urban areas.

  17. Design of a Soil Cutting Resistance Sensor for Application in Site-Specific Tillage

    PubMed Central

    Agüera, Juan; Carballido, Jacob; Gil, Jesús; Gliever, Chris J.; Perez-Ruiz, Manuel

    2013-01-01

    One objective of precision agriculture is to provide accurate information about soil and crop properties to optimize the management of agricultural inputs to meet site-specific needs. This paper describes the development of a sensor equipped with RTK-GPS technology that continuously and efficiently measures soil cutting resistance at various depths while traversing the field. Laboratory and preliminary field tests verified the accuracy of this prototype soil strength sensor. The data obtained using a hand-operated soil cone penetrometer was used to evaluate this field soil compaction depth profile sensor. To date, this sensor has only been tested in one field under one gravimetric water content condition. This field test revealed that the relationships between the soil strength profile sensor (SSPS) cutting force and soil cone index values are assumed to be quadratic for the various depths considered: 0–10, 10–20 and 20–30 cm (r2 = 0.58, 0.45 and 0.54, respectively). Soil resistance contour maps illustrated its practical value. The developed sensor provides accurate, timely and affordable information on soil properties to optimize resources and improve agricultural economy. PMID:23666127

  18. Dynamic changes in water and salinity in saline-alkali soils after simulated irrigation and leaching.

    PubMed

    Wang, Shutao; Feng, Qian; Zhou, Yapeng; Mao, Xiaoxi; Chen, Yaheng; Xu, Hao

    2017-01-01

    Soil salinization is a global problem that limits agricultural development and impacts human life. This study aimed to understand the dynamic changes in water and salinity in saline-alkali soil based on an indoor soil column simulation. We studied the changes in the water and salt contents of soils with different degrees of salinization under various irrigation conditions. The results showed that after seven irrigations, the pH, conductivity and total soluble salt content of the percolation samples after irrigation generally increased initially then decreased with repeated irrigation. The soil moisture did not change significantly after irrigation. The pH, conductivity, and total soluble salt content of each layer of the soil profile exhibited general declining trends. In the soil profile from Changguo Township (CG), the pH decreased from 8.21-8.35 to 7.71-7.88, the conductivity decreased from 0.95-1.14 ms/cm to 0.45-0.68 ms/cm, and the total soluble salt content decreased from 2.63-2.81 g/kg to 2.28-2.51 g/kg. In the soil profile from Zhongjie Industrial Park (ZJ), the pH decreased from 8.36-8.54 to 7.73-7.96, the conductivity decreased from 1.58-1.68 ms/cm to 1.45-1.54 ms/cm, and the total soluble salt decreased from 2.81-4.03 g/kg to 2.56-3.28 g/kg. The transported salt ions were primarily K+, Na+ and Cl-. After several irrigations, a representative desalination effect was achieved. The results of this study can provide technical guidance for the comprehensive management of saline-alkali soils.

  19. Dynamic changes in water and salinity in saline-alkali soils after simulated irrigation and leaching

    PubMed Central

    Feng, Qian; Mao, Xiaoxi

    2017-01-01

    Soil salinization is a global problem that limits agricultural development and impacts human life. This study aimed to understand the dynamic changes in water and salinity in saline-alkali soil based on an indoor soil column simulation. We studied the changes in the water and salt contents of soils with different degrees of salinization under various irrigation conditions. The results showed that after seven irrigations, the pH, conductivity and total soluble salt content of the percolation samples after irrigation generally increased initially then decreased with repeated irrigation. The soil moisture did not change significantly after irrigation. The pH, conductivity, and total soluble salt content of each layer of the soil profile exhibited general declining trends. In the soil profile from Changguo Township (CG), the pH decreased from 8.21–8.35 to 7.71–7.88, the conductivity decreased from 0.95–1.14 ms/cm to 0.45–0.68 ms/cm, and the total soluble salt content decreased from 2.63–2.81 g/kg to 2.28–2.51 g/kg. In the soil profile from Zhongjie Industrial Park (ZJ), the pH decreased from 8.36–8.54 to 7.73–7.96, the conductivity decreased from 1.58–1.68 ms/cm to 1.45–1.54 ms/cm, and the total soluble salt decreased from 2.81–4.03 g/kg to 2.56–3.28 g/kg. The transported salt ions were primarily K+, Na+ and Cl-. After several irrigations, a representative desalination effect was achieved. The results of this study can provide technical guidance for the comprehensive management of saline-alkali soils. PMID:29091963

  20. Change of PAHs with evolution of paddy soils from prehistoric to present over the last six millennia in the Yangtze River Delta region, China.

    PubMed

    Zhang, Jin; Cornelia, Mueller-Niggemann; Wang, Minyan; Cao, Zhihong; Luo, Xiping; Wong, Minghung; Chen, Wei

    2013-04-01

    To evaluate the influence of hydroponics management on soil organic components with evolution of paddy soil over the last six millennia, PAHs, as a biomarker, as well as total organic carbon content were used to explore changes of paddy soil organic carbon in two entirely buried ancient paddy soil profiles. The results showed that hydroponics management can cause organic carbon deposition in rice paddy. The changing of total PAH concentrations was not always in accordance with the changing of total organic carbon contents in layers of the buried ancient paddy soils. The PAHs in 6280 BP prehistoric paddy soil layer was 3-ring>5-ring>4-ring>6-ring, while in layers of the present paddy soil and the prehistoric upland were 3-ring>4-ring>5-ring>6-ring. The contribution of phenanthrene to total PAHs in two profiles and the increasing ratio of phenanthrene to alkylated PAHs from parent material/6280 BP prehistoric upland to 6280 BP paddy suggested substantial increase of the anthropogenic influence of hydroponics management on rice paddy soil. And in view of the (14)C age and bioremains in the two profiles, it was only possible for PAHs to be derived from hydroponics management with evolution of the paddy soils form the Neolithic age. Cadalene could be used as an indicator for biological sources of PAHs released by rice plant residues, and benzo[g,h,i]fluoranthene and benzo[g,h,i]perylene for pyrogenic sources released by field vegetation fires. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  1. Topographic imprint on chemical weathering in deeply weathered soil-mantled landscapes (southern Brazil)

    NASA Astrophysics Data System (ADS)

    Vanacker, Veerle; Schoonejans, Jerome; Ameijeiras-Marino, Yolanda; Opfergelt, Sophie; Minella, Jean

    2017-04-01

    The regolith mantle is defined as the thin layer of unconsolidated material overlaying bedrock that contributes to shape the Earth's surface. The development of the regolith mantle in a landscape is the result of in-situ weathering, atmospheric input and downhill transport of weathering products. Bedrock weathering - the physical and chemical transformations of rock to soil - contributes to the vertical development of the regolith layer through downward propagation of the weathering front. Lateral transport of soil particles, aggregates and solutes by diffusive and concentrated particle and solute fluxes result in lateral redistribution of weathering products over the hillslope. In this study, we aim to expand the empirical basis on long-term soil evolution at the landscape scale through a detailed study of soil weathering in subtropical soils. Spatial variability in chemical mass fluxes and weathering intensity were studied along two toposequences with similar climate, lithology and vegetation but different slope morphology. This allowed us to isolate the topographic imprint on chemical weathering and soil development. The toposequences have convexo-concave slope morphology, and eight regolith profiles were analysed involving the flat upslope, steep midslope and flat toeslope part. Our data show a clear topographic imprint on soil development. Along hillslope, the chemical weathering intensity of the regolith profiles increases with distance from the crest. In contrast to the upslope positions, the soils in the basal concavities develop on in-situ and transported regolith. While the chemical weathering extent on the slope convexities (the upslope profiles) is similar for the steep and gentle toposequence, there is a clear difference in the rate of increase of the chemical weathering extent with distance from the crest. The increase of chemical weathering extent along hillslope is highest for the steep toposequence, suggesting that topography enhances soil particle, aggregate and solute fluxes.

  2. Improvements of the Profil Cultural Method for a better Low-tech Field Assessment of Soil Structure under no-till

    NASA Astrophysics Data System (ADS)

    Roger-Estrade, Jean; Boizard, Hubert; Peigné, Josephine; Sasal, Maria Carolina; Guimaraes, Rachel; Piron, Denis; Tomis, Vincent; Vian, Jean-François; Cadoux, Stephane; Ralisch, Ricardo; Filho, Tavares; Heddadj, Djilali; de Battista, Juan; Duparque, Annie

    2016-04-01

    In France, agronomists have studied the effects of cropping systems on soil structure, using a field method based on a visual description of soil structure. The "profil cultural" method (Manichon and Gautronneau, 1987) has been designed to perform a field diagnostic of the effects of tillage and compaction on soil structure dynamics. This method is of great use to agronomists improving crop management for a better preservation of soil structure. However, this method was developed and mainly used in conventional tillage systems, with ploughing. As several forms of reduced, minimum and no tillage systems are expanding in many parts of the world, it is necessary to re-evaluate the ability of this method to describe and interpret soil macrostructure in unploughed situations. In unploughed fields, soil structure dynamics of untilled layers is mainly driven by compaction and regeneration by natural agents (climatic conditions, root growth and macrofauna) and it is of major importance to evaluate the importance of these natural processes on soil structure regeneration. These concerns have led us to adapt the standard method and to propose amendments based on a series of field observations and experimental work in different situations of cropping systems, soil types and climatic conditions. We improved the description of crack type and we introduced an index of biological activity, based on the visual examination of clods. To test the improved method, a comparison with the reference method was carried out and the ability of the "profil cultural" method to make a diagnosis was tested on five experiments in France, Brazil and Argentina. Using the improved method, the impact of cropping systems on soil functioning was better assessed when natural processes were integrated into the description.

  3. Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system

    USGS Publications Warehouse

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Meyer, M.T.

    2010-01-01

    During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. ?? 2009 SETAC.

  4. Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system.

    PubMed

    Conn, Kathleen E; Siegrist, Robert L; Barber, Larry B; Meyer, Michael T

    2010-02-01

    During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. Copyright 2009 SETAC.

  5. Depth profiling of Pu, 241Am and 137Cs in soils from southern Belarus measured by ICP-MS and alpha and gamma spectrometry.

    PubMed

    Boulyga, Sergei F; Zoriy, Myroslav; Ketterer, Michael E; Becker, J Sabine

    2003-08-01

    The depth distribution of plutonium, americium, and 137Cs originating from the 1986 accident at the Chernobyl Nuclear Power Plant (NPP) was investigated in several soil profiles in the vicinity from Belarus. The vertical migration of transuranic elements in soils typical of the 30 km relocation area around Chernobyl NPP was studied using inductively coupled plasma mass spectrometry (ICP-MS), alpha spectrometry, and gamma spectrometry. Transuranic concentrations in upper soil layers ranged from 6 x 10(-12) g g(-1) to 6 x 10(-10) g g(-1) for plutonium and from 1.8 x 10(-13) g g(-1) to 1.6 x 10(-11) g g(-1) for americium. These concentrations correspond to specific activities of (239+240)Pu of 24-2400 Bq kg(-1) and specific activity of 241Am of 23-2000 Bq kg(-1), respectively. Transuranics in turf-podzol soil migrate slowly to the deeper soil layers, thus, 80-95%, of radionuclide inventories were present in the 0-3 cm intervals of turf-podzol soils collected in 1994. In peat-marsh soil migration processes occur more rapidly than in turf-podzol and the maximum concentrations are found beneath the soil surface (down to 3-6 cm). The depth distributions of Pu and Am are essentially identical for a given soil profile. (239+240)Pu/137Cs and 241Am/137Cs activity ratios vary by up to a factor of 5 at some sites while smaller variations in these ratios were observed at a site close to Chernobyl, suggesting that 137Cs is dominantly particle associated close to Chernobyl but volatile species of 137Cs are of relatively greater importance at the distant sites.

  6. Effect of soil moisture on the temperature sensitivity of Northern soils

    NASA Astrophysics Data System (ADS)

    Minions, C.; Natali, S.; Ludwig, S.; Risk, D.; Macintyre, C. M.

    2017-12-01

    Arctic and boreal ecosystems are vast reservoirs of carbon and are particularly sensitive to climate warming. Changes in the temperature and precipitation regimes of these regions could significantly alter soil respiration rates, impacting atmospheric concentrations and affecting climate change feedbacks. Many incubation studies have shown that both temperature and soil moisture are important environmental drivers of soil respiration; this relationship, however, has rarely been demonstrated with in situ data. Here we present the results of a study at six field sites in Alaska from 2016 to 2017. Low-power automated soil gas systems were used to measure soil surface CO2 flux from three forced diffusion chambers and soil profile concentrations from three soil depth chambers at hourly intervals at each site. HOBO Onset dataloggers were used to monitor soil moisture and temperature profiles. Temperature sensitivity (Q10) was determined at each site using inversion analysis applied over different time periods. With highly resolved data sets, we were able to observe the changes in soil respiration in response to changes in temperature and soil moisture. Through regression analysis we confirmed that temperature is the primary driver in soil respiration, but soil moisture becomes dominant beyond a certain threshold, suppressing CO2 flux in soils with high moisture content. This field study supports the conclusions made from previous soil incubation studies and provides valuable insights into the impact of both temperature and soil moisture changes on soil respiration.

  7. Vertical profile of tritium concentration in air during a chronic atmospheric HT release.

    PubMed

    Noguchi, Hiroshi; Yokoyama, Sumi

    2003-03-01

    The vertical profiles of tritium gas and tritiated water concentrations in air, which would have an influence on the assessment of tritium doses as well as on the environmental monitoring of tritium, were measured in a chronic tritium gas release experiment performed in Canada in 1994. While both of the profiles were rather uniform during the day because of atmospheric mixing, large gradients of the profiles were observed at night. The gradient coefficients of the profiles were derived from the measurements. Correlations were analyzed between the gradient coefficients and meteorological conditions: solar radiation, wind speed, and turbulent diffusivity. It was found that the solar radiation was highly correlated with the gradient coefficients of tritium gas and tritiated water profiles and that the wind speed and turbulent diffusivity showed weaker correlations with those of tritiated water profiles. A one-dimensional tritium transport model was developed to analyze the vertical diffusion of tritiated water re-emitted from the ground into the atmosphere. The model consists of processes of tritium gas deposition to soil including oxidation into tritiated water, reemission of tritiated water, dilution of tritiated water in soil by rain, and vertical diffusion of tritiated water in the atmosphere. The model accurately represents the accumulation of tritiated water in soil water and the time variations and vertical profiles of tritiated water concentrations in air.

  8. Natural and Anthropogenic Factors Controlling the Down Profile Increase in δ13C of Soil Organic Matter

    NASA Astrophysics Data System (ADS)

    Serach, L.; Breecker, D.

    2016-12-01

    The increases in the stable C isotope ratio (δ13C) of soil organic carbon (SOC) with depth common in well-drained soils are widely accepted as being due to the C isotope fractionation between CO2 and SOC during microbial respiration. However, results from previous studies that investigate C isotope fractionation during respiration are conflicting. Respired CO2 with 13C values lower, higher and not significantly different than the associated SOC have been reported in the literature. This project aims to quantify the contribution of isotopic fractionation during microbial respiration to the down-profile shift in δ13C values by means of a long-term (2 year) incubation of topsoil (0-2cm). The topsoil used in the incubations was collected from undisturbed temperate and tropical forests. At each location, soil profiles from 0-20 cm depth were also collected and the down profile trends in concentrations and δ13C values of bulk organic carbon were measured. The CO2-SOC carbon isotope enrichment factor ɛCO2-SOM required to explain each profile was then calculated. We compared these calculated ɛCO2-SOM values with empirical values determined from soil incubations. ɛCO2-SOM values were determined from incubations as the difference between δ13C values of headspace CO2 and bulk SOC. We have thus far measured these δ13C values at 1,4 and 7 months, allowing us to track if and when empirical ɛCO2-SOM values reach the magnitude required to explain the profiles. Thus far, all empirical ɛCO2-SOM values are either too small or of the wrong sign to explain the profiles, suggesting that a mechanism other than C isotope fractionation during microbial respiration may be responsible. Therefore, we are also investigating the possibility that the anthropogenic increase in concentrations of atmospheric CO2, through its influence on δ13C values of C3 plants, explains a substantial portion of the typical down profile increase in SOC δ13C values.

  9. Effect of long-term industrial waste effluent pollution on soil enzyme activities and bacterial community composition.

    PubMed

    Subrahmanyam, Gangavarapu; Shen, Ju-Pei; Liu, Yu-Rong; Archana, Gattupalli; Zhang, Li-Mei

    2016-02-01

    Although numerous studies have addressed the influence of exogenous pollutants on microorganisms, the effect of long-term industrial waste effluent (IWE) pollution on the activity and diversity of soil bacteria was still unclear. Three soil samples characterized as uncontaminated (R1), moderately contaminated (R2), and highly contaminated (R3) receiving mixed organic and heavy metal pollutants for more than 20 years through IWE were collected along the Mahi River basin, Gujarat, western India. Basal soil respiration and in situ enzyme activities indicated an apparent deleterious effect of IWE on microbial activity and soil function. Community composition profiling of soil bacteria using 16S rRNA gene amplification and denaturing gradient gel electrophoresis (DGGE) method indicated an apparent bacterial community shift in the IWE-affected soils. Cloning and sequencing of DGGE bands revealed that the dominated bacterial phyla in polluted soil were affiliated with Firmicutes, Acidobacteria, and Actinobacteria, indicating that these bacterial phyla may have a high tolerance to pollutants. We suggested that specific bacterial phyla along with soil enzyme activities could be used as relevant biological indicators for long-term pollution assessment on soil quality. Graphical Abstract Bacterial community profiling and soil enzyme activities in long-term industrial waste effluent polluted soils.

  10. Taxonomic and functional profiles of soil samples from Atlantic forest and Caatinga biomes in northeastern Brazil.

    PubMed

    Pacchioni, Ralfo G; Carvalho, Fabíola M; Thompson, Claudia E; Faustino, André L F; Nicolini, Fernanda; Pereira, Tatiana S; Silva, Rita C B; Cantão, Mauricio E; Gerber, Alexandra; Vasconcelos, Ana T R; Agnez-Lima, Lucymara F

    2014-06-01

    Although microorganisms play crucial roles in ecosystems, metagenomic analyses of soil samples are quite scarce, especially in the Southern Hemisphere. In this work, the microbial diversity of soil samples from an Atlantic Forest and Caatinga was analyzed using a metagenomic approach. Proteobacteria and Actinobacteria were the dominant phyla in both samples. Among which, a significant proportion of stress-resistant bacteria associated to organic matter degradation was found. Sequences related to metabolism of amino acids, nitrogen, and DNA and stress resistance were more frequent in Caatinga soil, while the forest sample showed the highest occurrence of hits annotated in phosphorous metabolism, defense mechanisms, and aromatic compound degradation subsystems. The principal component analysis (PCA) showed that our samples are close to the desert metagenomes in relation to taxonomy, but are more similar to rhizosphere microbiota in relation to the functional profiles. The data indicate that soil characteristics affect the taxonomic and functional distribution; these characteristics include low nutrient content, high drainage (both are sandy soils), vegetation, and exposure to stress. In both samples, a rapid turnover of organic matter with low greenhouse gas emission was suggested by the functional profiles obtained, reinforcing the importance of preserving natural areas. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  11. Hexabromocyclododecanes (HBCDDs) in surface soils from coastal cities in North China: Correlation between diastereoisomer profiles and industrial activities.

    PubMed

    Zhang, Yueqing; Li, Qifeng; Lu, Yonglong; Jones, Kevin; Sweetman, Andrew J

    2016-04-01

    Hexabromocyclododecane (HBCDD) is a brominated flame retardant with a wide range of industrial applications, although little is known about its patterns of spatial distribution in soils in relation to industrial emissions. This study has undertaken a large-scale investigation around an industrialized coastal area of China, exploring the concentrations, spatial distribution and diastereoisomer profiles of HBCDD in 188 surface soils from 21 coastal cities in North China. The detection frequency was 100% and concentrations of total HBCDD in the surface soils ranged from 0.123 to 363 ng g(-1) and averaged 7.20 ng g(-1), showing its ubiquitous existence at low levels. The spatial distribution of HBCDD exhibited a correlation with the location of known manufacturing facilities in Weifang, suggesting the production of HBCDD as major emission source. Diastereoisomer profiles varied in different cities. Diastereoisomer compositions in soils were compared with emissions from HBCDD industrial activities, and correlations were found between them, which has the potential for source identification. Although the contemporary concentrations of HBCDD in soils from the study were relatively low, HBCDD-containing products (expanded/extruded polystyrene insulation boards) would be a potential source after its service life, and attention needs to be paid to prioritizing large-scale waste management efforts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Ammonium supply rate influences archaeal and bacterial ammonia oxidizers in a wetland soil vertical profile.

    PubMed

    Höfferle, Špela; Nicol, Graeme W; Pal, Levin; Hacin, Janez; Prosser, James I; Mandić-Mulec, Ines

    2010-11-01

    Oxidation of ammonia, the first step in nitrification, is carried out in soil by bacterial and archaeal ammonia oxidizers and recent studies suggest possible selection for the latter in low-ammonium environments. In this study, we investigated the selection of ammonia-oxidizing archaea and bacteria in wetland soil vertical profiles at two sites differing in terms of the ammonium supply rate, but not significantly in terms of the groundwater level. One site received ammonium through decomposition of organic matter, while the second, polluted site received a greater supply, through constant leakage of an underground septic tank. Soil nitrification potential was significantly greater at the polluted site. Quantification of amoA genes demonstrated greater abundance of bacterial than archaeal amoA genes throughout the soil profile at the polluted site, whereas bacterial amoA genes at the unpolluted site were below the detection limit. At both sites, archaeal, but not the bacterial community structure was clearly stratified with depth, with regard to the soil redox potential imposed by groundwater level. However, depth-related changes in the archaeal community structure may also be associated with physiological functions other than ammonia oxidation. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. A novel in-situ method for real-time monitoring of gas transport in soil

    NASA Astrophysics Data System (ADS)

    Laemmel, Thomas; Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike

    2017-04-01

    Gas exchange between soil and atmosphere is important for the biogeochemistry of soils. Gas transport in soil is commonly assumed to be governed by molecular diffusion and is usually described by the soil gas diffusion coefficient DS characterizing the ability of the soil to "transport passively" gas through the soil. One way to determine DS is sampling soil cores in the field and measuring DS in the lab. Unfortunately this method is destructive and laborious. Moreover, a few previous field studies identified other gas transport processes in soil to significantly enhance the diffusive gas transport. However, until now, no method is available to measure gas transport in situ in the soil. We developed a novel method to monitor gas transport in soil in situ. The method includes a custom made gas sampling device, the continuous injection of an inert tracer gas and inverse gas transport modelling in the soil. The gas sampling device has several sampling depths and can be easily installed into a vertical hole drilled by an auger, which allows for fast installation of the system. Helium (He) as inert tracer gas was injected continuously at the lower end of the device. The resulting steady state distribution of He was used to deduce the depth profile of DS. Gas transport in the soil surrounding the gas-sampling-device/soil system was modeled using the Finite Element Modeling program COMSOL . We tested our new method both in the lab and during two short field studies and compared the results with a reference method using soil cores. DS profiles obtained by our in-situ method were consistent with DS profiles determined based on soil core analyses. During a longer monitoring field campaign, typical soil-moisture effects upon gas diffusivity such as an increase during a drying period or a decrease after rain could be observed consistently. Under windy conditions we additionally measured for the first time the direct enhancement of gas transport in soil due to wind-induced pressure-pumping which could increase the effective DS up to 30% in the topsoil. Our novel monitoring method can be quickly and easily installed and allows for monitoring continuously soil gas transport over a long time. It allows monitoring physical modifications of soil gas diffusivity due to rain events or evaporation but it also allows studying non-diffusive gas transport processes in the soil.

  14. Inventory and vertical migration of ¹³⁷Cs in Spanish mainland soils.

    PubMed

    Legarda, F; Romero, L M; Herranz, M; Barrera, M; Idoeta, R; Valiño, F; Olondo, C; Caro, A

    2011-06-01

    In this study the total activity of (137)Cs deposited per unit area over the Spanish peninsular territory was analysed using a 150 × 150 km(2) mesh grid, with samples taken from 29 points. The deposited activities ranged between 251 and 6074 Bq/m(2). A linear relationship was obtained between these values and the mean annual rainfall at each sampling point which allowed a map to be drawn, using GIS software, which shows the distribution of total deposited (137)Cs activity across the Spanish mainland. At twelve of these sampling points the vertical migration profile of (137)Cs was obtained. These profiles are separated into two groups with different behaviour, one of which includes clay and loam soils and the other containing sandy soils. For both groups of profiles the parameters of the convective-diffusive model, which describes the vertical migration of (137)Cs in the soil, v (apparent convection velocity) and D (apparent diffusion coefficient) were calculated. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Silicate and carbonate mineral weathering in soil profiles developed on Pleistocene glacial drift (Michigan, USA): Mass balances based on soil water geochemistry

    NASA Astrophysics Data System (ADS)

    Jin, Lixin; Williams, Erika L.; Szramek, Kathryn J.; Walter, Lynn M.; Hamilton, Stephen K.

    2008-02-01

    Geochemistry of soil, soil water, and soil gas was characterized in representative soil profiles of three Michigan watersheds. Because of differences in source regions, parent materials in the Upper Peninsula of Michigan (the Tahquamenon watershed) contain only silicates, while those in the Lower Peninsula (the Cheboygan and the Huron watersheds) have significant mixtures of silicate and carbonate minerals. These differences in soil mineralogy and climate conditions permit us to examine controls on carbonate and silicate mineral weathering rates and to better define the importance of silicate versus carbonate dissolution in the early stage of soil-water cation acquisition. Soil waters of the Tahquamenon watershed are the most dilute; solutes reflect amphibole and plagioclase dissolution along with significant contributions from atmospheric precipitation sources. Soil waters in the Cheboygan and the Huron watersheds begin their evolution as relatively dilute solutions dominated by silicate weathering in shallow carbonate-free soil horizons. Here, silicate dissolution is rapid and reaction rates dominantly are controlled by mineral abundances. In the deeper soil horizons, silicate dissolution slows down and soil-water chemistry is dominated by calcite and dolomite weathering, where solutions reach equilibrium with carbonate minerals within the soil profile. Thus, carbonate weathering intensities are dominantly controlled by annual precipitation, temperature and soil pCO 2. Results of a conceptual model support these field observations, implying that dolomite and calcite are dissolving at a similar rate, and further dissolution of more soluble dolomite after calcite equilibrium produces higher dissolved inorganic carbon concentrations and a Mg 2+/Ca 2+ ratio of 0.4. Mass balance calculations show that overall, silicate minerals and atmospheric inputs generally contribute <10% of Ca 2+ and Mg 2+ in natural waters. Dolomite dissolution appears to be a major process, rivaling calcite dissolution as a control on divalent cation and inorganic carbon contents of soil waters. Furthermore, the fraction of Mg 2+ derived from silicate mineral weathering is much smaller than most of the values previously estimated from riverine chemistry.

  16. Activity and diversity of methane-oxidizing bacteria in glacier forefields on siliceous and calcareous bedrock

    NASA Astrophysics Data System (ADS)

    Nauer, P. A.; Dam, B.; Liesack, W.; Zeyer, J.; Schroth, M. H.

    2012-06-01

    The global methane (CH4) cycle is largely driven by methanogenic archaea and methane-oxidizing bacteria (MOB), but little is known about their activity and diversity in pioneer ecosystems. We conducted a field survey in forefields of 13 receding Swiss glaciers on both siliceous and calcareous bedrock to investigate and quantify CH4 turnover based on soil-gas CH4 concentration profiles, and to characterize the MOB community by sequencing and terminal restriction fragment length polymorphism (T-RFLP) analysis of pmoA. Methane turnover was fundamentally different in the two bedrock categories. Of the 36 CH4 concentration profiles from siliceous locations, 11 showed atmospheric CH4 consumption at concentrations of ~1-2 μL L-1 with soil-atmosphere CH4 fluxes of -0.14 to -1.1 mg m-2 d-1. Another 11 profiles showed no apparent activity, while the remaining 14 exhibited slightly increased CH4 concentrations of ~2-10 μL L-1 , most likely due to microsite methanogenesis. In contrast, all profiles from calcareous sites suggested a substantial, yet unknown CH4 source below our sampling zone, with soil-gas CH4 concentrations reaching up to 1400 μL L-1. Remarkably, most soils oxidized ~90 % of the deep-soil CH4, resulting in soil-atmosphere fluxes of 0.12 to 31 mg m-2 d-1. MOB showed limited diversity in both siliceous and calcareous forefields: all identified pmoA sequences formed only 5 operational taxonomic units (OTUs) at the species level and, with one exception, could be assigned to either Methylocystis or the as-yet-uncultivated Upland Soil Cluster γ (USCγ). The latter dominated T-RFLP patterns of all siliceous and most calcareous samples, while Methylocystis dominated in 4 calcareous samples. Members of Upland Soil Cluster α (USCα) were not detected. Apparently, USCγ adapted best to the oligotrophic cold climate conditions at the investigated pioneer sites.

  17. Seedling establishment and physiological responses to temporal and spatial soil moisture changes

    Treesearch

    Jeremy Pinto; John D. Marshall; Kas Dumroese; Anthony S. Davis; Douglas R. Cobos

    2016-01-01

    In many forests of the world, the summer season (temporal element) brings drought conditions causing low soil moisture in the upper soil profile (spatial element) - a potentially large barrier to seedling establishment. We evaluated the relationship between initial seedling root depth, temporal and spatial changes in soil moisture during drought after...

  18. Terra Pretas: Charcoal Amendments Influence on Relict Soils and Modern Agriculture

    ERIC Educational Resources Information Center

    Ricigliano, Kristin

    2011-01-01

    Most soils found in the Amazon region are characterized by highly weathered profiles that are incapable of longterm agricultural production. However, small patches of highly fertile relict soil referred to as Terra Pretas, are also found in the Amazon region, and have maintained their integrity for thousands of years. These soils were…

  19. Soil-profile distribution of organic C and N at the end of 6 years of tillage and grazing management

    USDA-ARS?s Scientific Manuscript database

    Stocks of soil organic carbon (SOC) and total soil nitrogen (TSN) are key determinants for evaluating agricultural management practices to address climate change, environmental quality, and soil productivity issues. We determined SOC, TSN, and particulate organic C and N depth distributions and cum...

  20. COSMOS soil water sensor compared with EM sensor network & weighing lysimeter

    USDA-ARS?s Scientific Manuscript database

    Soil water sensing methods are widely used to characterize the root zone and below, but only a few are capable of delivering water content data with accuracy for the entire soil profile such that evapotranspiration (ET) can be determined by soil water balance and irrigations can be scheduled with mi...

  1. From soilscapes to landscapes: A landscape-oriented approach to simulate soil organic carbon dynamics in intensively managed landscapes

    USDA-ARS?s Scientific Manuscript database

    Most available biogeochemical models focus within a soil profile and cannot adequately resolve contributions of the lighter size fractions of organic rich soils for Enrichment Ratio (ER) estimates, thereby causing unintended errors in Soil Organic Carbon (SOC) storage predictions. These models set E...

  2. Soil moisture depletion patterns around scattered trees

    Treesearch

    Robert R. Ziemer

    1968-01-01

    Soil moisture was measured around an isolated mature sugar pine tree (Pinus lambertiana Dougl.) in the mixed conifer forest type of the north central Sierra Nevada, California, from November 1965 to October 1966. From a sequence of measurements, horizontal and vertical soil moisture profiles were developed. Estimated soil moisture depletion from the 61-foot radius plot...

  3. Biochar impact on improving root growth and water retention capacity in Norfolk hard setting subsoil layer

    USDA-ARS?s Scientific Manuscript database

    The Norfolk soil series is a well-drained soil used commonly for agricultural production in the Eastern Carolinas. Certain profile features such as a hard setting subsoil layer with high bulk density, low water holding capacity and meager soil fertility characteristics makes this soil less producti...

  4. Numerical Investigations of Moisture Distribution in a Selected Anisotropic Soil Medium

    NASA Astrophysics Data System (ADS)

    Iwanek, M.

    2018-01-01

    The moisture of soil profile changes both in time and space and depends on many factors. Changes of the quantity of water in soil can be determined on the basis of in situ measurements, but numerical methods are increasingly used for this purpose. The quality of the results obtained using pertinent software packages depends on appropriate description and parameterization of soil medium. Thus, the issue of providing for the soil anisotropy phenomenon gains a big importance. Although anisotropy can be taken into account in many numerical models, isotopic soil is often assumed in the research process. However, this assumption can be a reason for incorrect results in the simulations of water changes in soil medium. In this article, results of numerical simulations of moisture distribution in the selected soil profile were presented. The calculations were conducted assuming isotropic and anisotropic conditions. Empirical verification of the results obtained in the numerical investigations indicated statistical essential discrepancies for the both analyzed conditions. However, better fitting measured and calculated moisture values was obtained for the case of providing for anisotropy in the simulation model.

  5. Estimation of Soil Moisture Profile using a Simple Hydrology Model and Passive Microwave Remote Sensing

    NASA Technical Reports Server (NTRS)

    Soman, Vishwas V.; Crosson, William L.; Laymon, Charles; Tsegaye, Teferi

    1998-01-01

    Soil moisture is an important component of analysis in many Earth science disciplines. Soil moisture information can be obtained either by using microwave remote sensing or by using a hydrologic model. In this study, we combined these two approaches to increase the accuracy of profile soil moisture estimation. A hydrologic model was used to analyze the errors in the estimation of soil moisture using the data collected during Huntsville '96 microwave remote sensing experiment in Huntsville, Alabama. Root mean square errors (RMSE) in soil moisture estimation increase by 22% with increase in the model input interval from 6 hr to 12 hr for the grass-covered plot. RMSEs were reduced for given model time step by 20-50% when model soil moisture estimates were updated using remotely-sensed data. This methodology has a potential to be employed in soil moisture estimation using rainfall data collected by a space-borne sensor, such as the Tropical Rainfall Measuring Mission (TRMM) satellite, if remotely-sensed data are available to update the model estimates.

  6. Treatability of volatile chlorinated hydrocarbon-contaminated soils of different textures along a vertical profile by mechanical soil aeration: A laboratory test.

    PubMed

    Ma, Yan; Shi, Yi; Hou, Deyi; Zhang, Xi; Chen, Jiaqi; Wang, Zhifen; Xu, Zhu; Li, Fasheng; Du, Xiaoming

    2017-04-01

    Mechanical soil aeration is a simple, effective, and low-cost soil remediation technology that is suitable for sites contaminated with volatile chlorinated hydrocarbons (VCHs). Conventionally, this technique is used to treat the mixed soil of a site without considering the diversity and treatability of different soils within the site. A laboratory test was conducted to evaluate the effectiveness of mechanical soil aeration for remediating soils of different textures (silty, clayey, and sandy soils) along a vertical profile at an abandoned chloro-alkali chemical site in China. The collected soils were artificially contaminated with chloroform (TCM) and trichloroethylene (TCE). Mechanical soil aeration was effective for remediating VCHs (removal efficiency >98%). The volatilization process was described by an exponential kinetic function. In the early stage of treatment (0-7hr), rapid contaminant volatilization followed a pseudo-first order kinetic model. VCH concentrations decreased to low levels and showed a tailing phenomenon with very slow contaminant release after 8hr. Compared with silty and sandy soils, clayey soil has high organic-matter content, a large specific surface area, a high clay fraction, and a complex pore structure. These characteristics substantially influenced the removal process, making it less efficient, more time consuming, and consequently more expensive. Our findings provide a potential basis for optimizing soil remediation strategy in a cost-effective manner. Copyright © 2016. Published by Elsevier B.V.

  7. Oxidized charcoal contribution to the humic material of deeper soil horizons in selected soils of the Doñana National Park, Spain

    NASA Astrophysics Data System (ADS)

    Knicker, Heike; González-Vila, Fransisco; Clemente-Salas, Luis

    2017-04-01

    The Doñana National Park is located at the mouth of the river Guadalquivir in Southern Spain and represents one of the largest marshlands reserves of Europe. Although vegetation fires are now prevented as far as possible, some of the areas were formerly subjected to frequent prescribed fires since 1628 (approximately every 25-30 years). The so formed pyrogenic organic matter (PyOM) is supposed to compose a major proportion of the slow-cycling carbon pools in soils and as such it is expected to affect quality and quantity of the soil organic matter (SOM) in the present reclaimed soils. In order to test this, the SOM of three profiles (Humaquepts) within the protected center region were analyzed by solid state 13C NMR spectroscopy. The respective pyrogenic organic carbon (PyOC) content was elucidated, using the chemical oxidation method. Two of the selected profiles had experienced no fire since installation of the park in 1969. Here, no major quantities of PyOC were recovered in the O layer, but an increase of aromaticity correlating with PyOC contents was revealed with soil depth. At both sites, PyOC accounted for more than 15% of the Ctot in the A/C horizon (> 50 cm). This clearly evidences a downward translocation of charcoal within the soil profile. The third profile suffered a severe fire in 1985. The fire combusted all of the O layer (0-20 cm), but after 19 years, it recovered to approximately 15 cm, although only minor contributions of PyOC were revealed. Whereas directly after the fire, the soil at a depths of 55 cm contained only 3 mg g-1 organic C without any evidence of PyOC, after 16 and 19 years a clear increase of Ctot (10-15 mg g-1) with a considerable contribution of PyOC (12% of Ctot) was revealed. Although the absolute concentration of PyOC did not decrease in the lower depths, its relative contribution to Ctot declined. This may be explained by the constant input of fresh litter l, which on a long term masks the presence of char. Alternatively, a more efficient downwards transport and subsequent stabilization of PyOC may have occurred. In summary, the studied profiles clearly demonstrate that not only in tropical soils but also in fire-affected soils of the temperate climatic zones, PyOC has an important contribution to the chemical composition of humic material in deeper horizons.

  8. Exploitation of nutrient- and C-rich paleosols by deep rooting plants in Dutch drift- and coversands

    NASA Astrophysics Data System (ADS)

    Gocke, Martina; Kessler, Fabian; van Mourik, Jan; Jansen, Boris; Wiesenberg, Guido L. B.

    2015-04-01

    Plant roots are commonly assumed to be most abundant in topsoil, with strongly decreasing frequencies in underlying soil horizons with incrasing depth and almost absence of roots below the uppermost few dm due to unfavorable environmental conditions in terms of e.g. aeration, nutrient availability or water, that hamper root growth. It still remains unknown, to which extent roots might be able to exploit deeper parts of soils and underlying soil parent material as well as burried paleosols. The study site is located in SE Netherlands. Undisturbed oak forests developed about 200 years ago on stabilized driftsand, deposited on a plaggic Anthrosol after approximately 700 years of agricultural use. The soil profile, consisting of the recent initial Podzol in driftsand, overlying 1.1 m thick plaggic deposits that were established in a 0.5 m thick residual Podzol in coversand, was excavated in a pit of 2.3 m depth. Living and dead roots were counted throughout the profile on both, the vertical wall and horizontal levels. Additionally, soil or sediment samples free of visible root remains were collected in depth intervals between 0.05 m and 0.15 m from topsoil down to the coversand. A multi-proxy approach, including assessment of bulk elemental composition of soil, sediments and paleosol and molecular structure of organic matter therein, organic carbon contents, bulk density and pH was applied in order to comprehensively describe the varying environmental conditions within the soil profile and in transects from roots to root-free material. The burried agricultural soil revealed low density and high organic carbon contents compared to the coversand parent material, and especially in its lower part, high phosphorous contents. In contrast, the burried Podzol was characterized by completely different geochemical and physical properties, like increasing pH with depth and high iron and aluminium contents. In the recent initial Podzol, fine roots (≤ 2 mm), deriving from both oak trees and understory vegetation, immediately decreased from 476 m-2 to 24 m-2, whereas medium roots (2-5 mm) from oak trees continuously increased from 8 m-2 at the surface to 188 m-2 within the upper part of the agricultural soil. Both, frequencies of fine and medium roots peaked at 4.448 m-2 and 216 m-2, respectively, in the uppermost part of the burried Podzol, thus considerably exceeding topsoil abundances. Comparison of these results with those obtained at the profile wall demonstrated that fine root abundances might be considerably underestimated by the more traditional approach of profile wall investigation, because fine roots were growing vertically to exploit the nutrient-rich burried paleosols. Unlike fine roots, medium roots and even more, large roots (> 5 mm) were not able to penetrate the hard sesquioxide crusts of the burried Podzol in larger numbers. Our results show that roots are able to deeply penetrate the soil and underlying soil parent material or paleosols, if the latter provides nutrition benefits. Root distribution strongly depends on physical and chemical properties of the deep subsoil, which should be taken into account when interpreting complex soil profiles covering recent and paleosols.

  9. The impact of in-canopy wind profile formulations on heat flux estimation in an open orchard using the remote sensing-based two-source model

    NASA Astrophysics Data System (ADS)

    Cammalleri, C.; Anderson, M. C.; Ciraolo, G.; Durso, G.; Kustas, W. P.; La Loggia, G.; Minacapilli, M.

    2010-12-01

    For open orchard and vineyard canopies containing significant fractions of exposed soil (>50%), typical of Mediterranean agricultural regions, the energy balance of the vegetation elements is strongly influenced by heat exchange with the bare soil/substrate. For these agricultural systems a "two-source" approach, where radiation and turbulent exchange between the soil and canopy elements are explicitly modelled, appears to be the only suitable methodology for reliably assessing energy fluxes. In strongly clumped canopies, the effective wind speed profile inside and below the canopy layer can strongly influence the partitioning of energy fluxes between the soil and vegetation components. To assess the impact of in-canopy wind profile on model flux estimates, an analysis of three different formulations is presented, including algorithms from Goudriaan (1977), Massman (1987) and Lalic et al. (2003). The in-canopy wind profile formulations are applied to the thermal-based two-source energy balance (TSEB) model developed by Norman et al. (1995) and modified by Kustas and Norman (1999). High resolution airborne remote sensing images, collected over an agricultural area located in the western part of Sicily (Italy) comprised primarily of vineyards, olive and citrus orchards, are used to derive all the input parameters needed to apply the TSEB. The images were acquired from June to October 2008 and include a relatively wide range of meteorological and soil moisture conditions. A preliminary sensitivity analysis of the three wind profile algorithms highlights the dependence of wind speed just above the soil/substrate to leaf area index and canopy height over the typical range of canopy properties encountered in these agricultural areas. It is found that differences among the models in wind just above the soil surface are most significant under sparse and medium fractional cover conditions (15-50%). The TSEB model heat flux estimates are compared with micro-meteorological measurements from a small aperture scintillometer and an eddy covariance tower collected over an olive orchard characterized by moderate fractional vegetation cover (≍35%) and relatively tall crop (≍3.5 m). TSEB fluxes for the 7 image acquisition dates generated using both the Massman and Goudriaan in-canopy wind profile formulations give close agreement with measured fluxes, while the Lalic et al. equations yield poor results. The Massman wind profile scheme slightly outperforms that of Goudriaan, but it requires an additional parameter accounting for the roughness sub-layer of the underlying vegetative surface. The analysis also suggests that within-canopy wind profile model discrepancies become important, in terms of impact on modelled sensible heat flux, only for sparse canopies with moderate vegetation coverage.

  10. The Effect of Land Use Change on Transformation of Relief and Modification of Soils in Undulating Loess Area of East Poland

    PubMed Central

    Rejman, Jerzy; Rafalska-Przysucha, Anna; Rodzik, Jan

    2014-01-01

    The change of primary forest areas into arable land involves the transformation of relief and modification of soils. In this study, we hypothesized that relatively flat loess area was largely transformed after the change of land use due to erosion. The modifications in soil pedons and distribution of soil properties were studied after 185 years of arable land use. Structure of pedons and solum depth were measured in 128 and soil texture and soil organic carbon in 39 points. Results showed that soils of noneroded and eroded profiles occupied 14 and 50%, respectively, and depositional soils 36% of the area. As a consequence, the clay, silt, and SOC concentration varied greatly in the plowed layer and subsoil. The reconstructed profiles of eroded soils and depositional soils without the accumulation were used to develop the map of past relief. The average inclination of slopes decreased from 4.3 to 2.2°, and slopes >5° vanished in the present topography. Total erosion was 23.8 Mg ha−1 year−1. From that amount, 88% was deposited within the study area, and 12% was removed outside. The study confirmed the hypothesis of the significant effect of the land use change on relief and soils in loess areas. PMID:25614883

  11. Soil Carbon Dioxide Production and Surface Fluxes: Subsurface Physical Controls

    NASA Astrophysics Data System (ADS)

    Risk, D.; Kellman, L.; Beltrami, H.

    Soil respiration is a critical determinant of landscape carbon balance. Variations in soil temperature and moisture patterns are important physical processes controlling soil respiration which need to be better understood. Relationships between soil respi- ration and physical controls are typically addressed using only surface flux data but other methods also exist which permit more rigorous interpretation of soil respira- tion processes. Here we use a combination of subsurface CO_{2} concentrations, surface CO_{2} fluxes and detailed physical monitoring of the subsurface envi- ronment to examine physical controls on soil CO_{2} production at four climate observatories in Eastern Canada. Results indicate that subsurface CO_{2} produc- tion is more strongly correlated to the subsurface thermal environment than the surface CO_{2} flux. Soil moisture was also found to have an important influence on sub- surface CO_{2} production, particularly in relation to the soil moisture - soil profile diffusivity relationship. Non-diffusive profile CO_{2} transport appears to be im- portant at these sites, resulting in a de-coupling of summertime surface fluxes from subsurface processes and violating assumptions that surface CO_{2} emissions are the result solely of diffusion. These results have implications for the study of soil respiration across a broad range of terrestrial environments.

  12. Novel Proximal Sensing for Monitoring Soil Organic C Stocks and Condition.

    PubMed

    Viscarra Rossel, Raphael A; Lobsey, Craig R; Sharman, Chris; Flick, Paul; McLachlan, Gordon

    2017-05-16

    Soil information is needed for environmental monitoring to address current concerns over food, water and energy securities, land degradation, and climate change. We developed the Soil Condition ANalysis System (SCANS) to help address these needs. It integrates an automated soil core sensing system (CSS) with statistical analytics and modeling to characterize soil at fine depth resolutions and across landscapes. The CSS's sensors include a γ-ray attenuation densitometer to measure bulk density, digital cameras to image the measured soil, and a visible-near-infrared (vis-NIR) spectrometer to measure iron oxides and clay mineralogy. The spectra are also modeled to estimate total soil organic carbon (C), particulate, humus, and resistant organic C (POC, HOC, and ROC, respectively), clay content, cation exchange capacity (CEC), pH, volumetric water content, available water capacity (AWC), and their uncertainties. Measurements of bulk density and organic C are combined to estimate C stocks. Kalman smoothing is used to derive complete soil property profiles with propagated uncertainties. The SCANS provides rapid, precise, quantitative, and spatially explicit information about the properties of soil profiles with a level of detail that is difficult to obtain with other approaches. The information gained effectively deepens our understanding of soil and calls attention to the central role soil plays in our environment.

  13. Sensitivity Analysis of the USLE Soil Erodibility Factor to Its Determining Parameters

    NASA Astrophysics Data System (ADS)

    Mitova, Milena; Rousseva, Svetla

    2014-05-01

    Soil erosion is recognized as one of the most serious soil threats worldwide. Soil erosion prediction is the first step in soil conservation planning. The Universal Soil Loss Equation (USLE) is one of the most widely used models for soil erosion predictions. One of the five USLE predictors is the soil erodibility factor (K-factor), which evaluates the impact of soil characteristics on soil erosion rates. Soil erodibility nomograph defines K-factor depending on soil characteristics, such as: particle size distribution (fractions finer that 0.002 mm and from 0.1 to 0.002 mm), organic matter content, soil structure and soil profile water permeability. Identifying the soil characteristics, which mostly influence the K-factor would give an opportunity to control the soil loss through erosion by controlling the parameters, which reduce the K-factor value. The aim of the report is to present the results of analysis of the relative weight of these soil characteristics in the K-factor values. The relative impact of the soil characteristics on K-factor was studied through a series of statistical analyses of data from the geographic database for soil erosion risk assessments in Bulgaria. Degree of correlation between K-factor values and the parameters that determine it was studied by correlation analysis. The sensitivity of the K-factor was determined by studying the variance of each parameter within the range between minimum and maximum possible values considering average value of the other factors. Normalizing transformation of data sets was applied because of the different dimensions and the orders of variation of the values of the various parameters. The results show that the content of particles finer than 0.002 mm has the most significant relative impact on the soil erodibility, followed by the content of particles with size from 0.1 mm to 0.002 mm, the class of the water permeability of the soil profile, the content of organic matter and the aggregation class. The relationships of the K-factor with the relative content of particle size from 0.1 to 0.002 mm and the class of aggregation are linear, directly proportional. When the content of particles sized from 0.1 to 0.002 mm increases with one relative unit, the K-factor increases with 0.0091 t ha h / ha MJ mm, while the same relative increase of the class of aggregation, results to an increase of the K-factor by 0.0034 t ha h / ha MJ mm. On the other side, the relationships between the K-factor values and the contents of clay and organic matter, and the class of profile water permeability, are linear, inversely proportional. When the clay content increases with one relative unit, the K-factor value decreases by 0.0099 t ha h / ha MJ mm. The same relative increases in the content of soil organic matter and the class of soil profile water permeability, result to a decrease of the values of K-factor respectively by 0.0042 and 0.0045 t ha h / ha MJ mm.

  14. Compositional changes of soil organic matter with cropping time were more profound in subsoils and distinct between Phaeozem and Chernozem in Northeast China

    USDA-ARS?s Scientific Manuscript database

    Soil organic matter (SOM) contributes to soil processes and is found both in shallow and deep soil layers. Its activity can be affected by its chemical composition, yet knowledge is incomplete of how land use alters the structural composition of SOM throughout the profiles of different soil types. T...

  15. Temporal changes of soil physic-chemical properties at different soil depths during larch afforestation by multivariate analysis of covariance.

    PubMed

    Wang, Hui-Mei; Wang, Wen-Jie; Chen, Huanfeng; Zhang, Zhonghua; Mao, Zijun; Zu, Yuan-Gang

    2014-04-01

    Soil physic-chemical properties differ at different depths; however, differences in afforestation-induced temporal changes at different soil depths are seldom reported. By examining 19 parameters, the temporal changes and their interactions with soil depth in a large chronosequence dataset (159 plots; 636 profiles; 2544 samples) of larch plantations were checked by multivariate analysis of covariance (MANCOVA). No linear temporal changes were found in 9 parameters (N, K, N:P, available forms of N, P, K and ratios of N: available N, P: available P and K: available K), while marked linear changes were found in the rest 10 parameters. Four of them showed divergent temporal changes between surface and deep soils. At surface soils, changing rates were 262.1 g·kg(-1)·year(-1) for SOM, 438.9 mg·g(-1)·year(-1) for C:P, 5.3 mg·g(-1)·year(-1) for C:K, and -3.23 mg·cm(-3)·year(-1) for bulk density, while contrary tendencies were found in deeper soils. These divergences resulted in much moderated or no changes in the overall 80-cm soil profile. The other six parameters showed significant temporal changes for overall 0-80-cm soil profile (P: -4.10 mg·kg(-1)·year(-1); pH: -0.0061 unit·year(-1); C:N: 167.1 mg·g(-1)·year(-1); K:P: 371.5 mg·g(-1) year(-1); N:K: -0.242 mg·g(-1)·year(-1); EC: 0.169 μS·cm(-1)·year(-1)), but without significant differences at different soil depths (P > 0.05). Our findings highlight the importance of deep soils in studying physic-chemical changes of soil properties, and the temporal changes occurred in both surface and deep soils should be fully considered for forest management and soil nutrient balance.

  16. Assessment of crop growth and soil water modules in SWAT2000 using extensive field experiment data in an irrigation district of the Yellow River Basin

    USGS Publications Warehouse

    Luo, Y.; He, C.; Sophocleous, M.; Yin, Z.; Hongrui, R.; Ouyang, Z.

    2008-01-01

    SWAT, a physically-based, hydrological model simulates crop growth, soil water and groundwater movement, and transport of sediment and nutrients at both the process and watershed scales. While the different versions of SWAT have been widely used throughout the world for agricultural and water resources applications, little has been done to test the performance, variability, and transferability of the parameters in the crop growth, soil water, and groundwater modules in an integrated way with multiple sets of field experimental data at the process scale. Using an multiple years of field experimental data of winter wheat (Triticum aestivum L.) in the irrigation district of the Yellow River Basin, this paper assesses the performance of the plant-soil-groundwater modules and the variability and transferability of SWAT2000. Comparison of the simulated results by SWAT to the observations showed that SWAT performed quite unsatisfactorily in LAI predictions during the senescence stage, in yield predictions, and in soil-water estimation under dry soil-profile conditions. The unsatisfactory performance in LAI prediction might be attributed to over-simplified senescence modeling; in yield prediction to the improper computation of the harvest index; and in soil water under dry conditions to the exclusion of groundwater evaporation from the soil water balance in SWAT. In this paper, improvements in crop growth, soil water, and groundwater modules in SWAT were implemented. The saturated soil profile was coupled to the oscillating groundwater table. A variable evaporation coefficient taking into account soil water deficit index, groundwater depth, and crop root depth was used to replace the fixed coefficient in computing groundwater evaporation. The soil water balance included the groundwater evaporation. The modifications improved simulations of crop evapotranspiration and biomass as well as soil water dynamics under dry soil-profile conditions. The evaluation shows that the crop growth and soil water components of SWAT could be further refined to better simulate the hydrology of agricultural watersheds. ?? 2008 Elsevier B.V. All rights reserved.

  17. Understanding on Soil Inorganic Carbon Transformation in North China

    NASA Astrophysics Data System (ADS)

    Li, Guitong; Yang, Lifang; Zhang, Chenglei; Zhang, Hongjie

    2015-04-01

    Soil total carbon balance in long-term fertilization field experiments in North China Plain. Four long-term fertilization experiments (20-30 years) were investigated on SOC in 40 cm, calcium carbonate and active carbonate (AC) in 180 or 100 cm soil profile, δ13C values of SOC and δ13C and δ18O values of carbonate in soil profile, particle distribution of SOC and SIC in main soil layers, and ratios of pedogenic carbonate (PC) in SIC and C3-SOC in SOC. The most important conclusion is that fertilization of more than 20 years can produce detectable impact on pool size, profile distribution, ratio of active component and PC of SIC, which make it clear that SIC pool must be considered in the proper evaluation of the response of soil carbon balance to human activities in arid and semi-arid region. Land use impact on soil total carbon pool in Inner Mongolia. With the data of the second survey of soils in Inner Mongolia and the 58 soil profile data from Wu-lan-cha-bu-meng and Xi-lin-hao-te, combining with the 13C and 18O techniques, SIC density and stock in Inner Mongolia is estimated. The main conclusion is that soils in inner Mongolia have the same level of SOC and SIC, with the density in 100cm pedons of 8.97 kg•m-2 and 8.61 kg•m-2, respectively. Meanwhile, the significantly positive relationship between SOC and SIC in A layer indicates co-sequestration of SOC and SIC exist. Evaluation of the methods for measuring CA enzyme activity in soil. In laboratory, method in literature to measure CA activity in soil sample was repeated, and found it was not valid indeed. The failure could not attribute to the disturbance of common ions like NO3-, SO42-, Ca2+, and Mg2+. The adsorption of CA to soil material was testified as the main reason for that failure. A series of extractants were tested but no one can extract the adsorbed CA and be used in measuring CA activity in soil sample. Carbonate transformation in field with straw returned and biochar added. In 2009, a field experiment concerning soil carbonate transformation under straw return and biochar addition was carried out. It is designed as a long-term field experiment. In the experiment, Ca2+ and Mg2+ in soil solution of different depth and time, in situ soil pH, soil CO2 concentration, and microbial activity will be measured. The main propose of the experiment is to explore the relationship between the transformation of SOC and SIC. Meanwhile, it is one of important field experiment for biochar effects on crop production, soil processes, and environmental impact. These researches were funded by National Natural Science Foundation of China (NNSFC) under projects of 41171211,40771106, and 40303015.

  18. The Glinka Memorial Soil Monolith Collection: a treasure of Soil Science

    NASA Astrophysics Data System (ADS)

    Muggler, C. C.; Spaargaren, O.; Hartemink, A. E.

    2012-04-01

    The first World Congress of Soil Science, held in 1927 in Washington DC, USA, had as one of its highlights the exposition of soils from all over the world. The Russian delegation had planned the presentation of 50 soil monoliths. The soil profiles were collected under the supervision of Konstantin D. Glinka, then director of the Leningrad Agricultural Institute. The soil profiles included a geographical sequence form St Petersburg to the Caucasus and soils from Georgia, Azerbaijan, Kazakhstan, the Amu Darya region and the Siberian Far East. Due to shipping problems they did not arrive on time for the congress, and ended up in an USDA storage facility, where they remained untouched in their original wooden boxes. At first congress Glinka gave a lecture on Dokuchaev's ideas and the Russian developments on soil science, and joined the transcontinental field trip of 30 days that followed the congress. At that congress, Glinka was elected president of the International Soil Science Society, and was in charge to organize the next congress in Russia. However, he passed away a few months after the congress. In the 1970s, after a consultation with Wim Sombroek, then director of the International Soil Museum (ISM) in the Netherlands, the collection was donated to ISRIC by the US Soil Conservation Service. The soil profiles were shipped over in 1980 to become part of the collection of the Museum. The collection was named as "Glinka Memorial Collection" in agreement with the Dokuchaev Soil Institute, Moscow and the U.S. Soil Conservation Service, Washington. The monoliths were treated with a sugar solution by the Russians before shipment to the USA, this way keeping a good preservation quality. They were aimed for a single exhibition and for that they were poorly documented and lacked additional samples. In the early 1990s a project for revisit the sites was set up and six sites around St Petersburg were sampled for a comparative study of the soils within a time span of 70 years of great environmental change. The Glinka Memorial Collection is a special collection of the World Soil Museum, a scientific and historical treasure that offers possibilities to dig into the history of soil science and the history of the soils themselves.

  19. Heavy metals fluxes and speciation in the surface layer of urban soils in the province of Brescia (Italy)

    NASA Astrophysics Data System (ADS)

    Peli, Marco; Raffelli, Giulia; Barontini, Stefano; Bostick, Benjamin C.; Donna, Filippo; Lucchini, Roberto G.; Ranzi, Roberto

    2017-04-01

    For the last forty years (1974-2015), a ferroalloy industry has been working in Bagnolo Mella, a municipality nearby the city of Brescia (Northern Italy), producing particulate emissions enriched in heavy metals: manganese (Mn) in particular, but also lead (Pb), iron (Fe), aluminum (Al) and arsenic (As). Although some of these metals are required trace elements for most living organisms and can be largely found in natural environments (e.g. Mn being the fifth most abundant metal in the Earth crust), they all lead to toxic effects when they contaminate work and life environments of the exposed population. Aiming at contributing to quantify the exposure of the population to environmental pollution near the factory, as well as the heavy metals possible tendency to migrate through the considered soil matrix, in this work we investigated metals speciation and fluxes within the Earth Critical Zone. The factory is located near residential areas in a plain characterised by little wind and shallow water table with a great number of water resurgences. Three test sites were identified among the pronest ones to particulate matter deposition, on the basis of data collected during a previous experimental field campaign and of the local wind rose. One more site was selected upwind to the factory as a reference site minimally prone to particulate matter deposition, on the basis of the previous investigations. Sites where lawns have been maintained at least for the last forty years where selected in order to avoid agriculture—induced effects on the metals movement. Total soil metal concentrations were measured by means of a portable X-Ray Fluorescence (XRF) device along the soil profiles, down to the depth of 40 cm from the soil surface. Four loose soil samples were collected at each site, at depths ranging from 5 to 30 cm, and they were later subjected to sequential extractions procedure and ICP—MS analyses, in order to investigate differences in heavy metals speciation along the considered soil profiles. The XRF metal total content profiles show an accumulation of metals in the subsurface soil layers, around 5 cm under the soil surface (this feature is highlighted in the normalized profiles). They also give evidence of the plant activity consequences, with the closest downwind site showing values which are for all metals at least one order of magnitude -two for Mn- higher than the ones in the test site. The speciation profiles, besides describing loosely the same pattern, show how the amorphous oxides species is always prevalent for Mn and Pb along the whole profile, while for As the species associated with crystalline oxides is always the prevalent one.

  20. Distributed Soil Moisture Estimation in a Mountainous Semiarid Basin: Constraining Soil Parameter Uncertainty through Field Studies

    NASA Astrophysics Data System (ADS)

    Yatheendradas, S.; Vivoni, E.

    2007-12-01

    A common practice in distributed hydrological modeling is to assign soil hydraulic properties based on coarse textural datasets. For semiarid regions with poor soil information, the performance of a model can be severely constrained due to the high model sensitivity to near-surface soil characteristics. Neglecting the uncertainty in soil hydraulic properties, their spatial variation and their naturally-occurring horizonation can potentially affect the modeled hydrological response. In this study, we investigate such effects using the TIN-based Real-time Integrated Basin Simulator (tRIBS) applied to the mid-sized (100 km2) Sierra Los Locos watershed in northern Sonora, Mexico. The Sierra Los Locos basin is characterized by complex mountainous terrain leading to topographic organization of soil characteristics and ecosystem distributions. We focus on simulations during the 2004 North American Monsoon Experiment (NAME) when intensive soil moisture measurements and aircraft- based soil moisture retrievals are available in the basin. Our experiments focus on soil moisture comparisons at the point, topographic transect and basin scales using a range of different soil characterizations. We compare the distributed soil moisture estimates obtained using (1) a deterministic simulation based on soil texture from coarse soil maps, (2) a set of ensemble simulations that capture soil parameter uncertainty and their spatial distribution, and (3) a set of simulations that conditions the ensemble on recent soil profile measurements. Uncertainties considered in near-surface soil characterization provide insights into their influence on the modeled uncertainty, into the value of soil profile observations, and into effective use of on-going field observations for constraining the soil moisture response uncertainty.

  1. The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria.

    PubMed

    Walsh, Fiona; Duffy, Brion

    2013-01-01

    Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR) mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16-23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR) resistance genes) were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.

  2. [Fluorine speciation and its distribution characteristics in selected agricultural soils of North China Plain].

    PubMed

    Yi, Chun-Yao; Wang, Bing-Guo; Jin, Meng-Gui

    2013-08-01

    The objectives of this study were to study fluorine speciation and its distribution characteristics in the cultivated soils of wheat-corn fields at the typical areas, the North China Plain. The fluorine contents in cultivated soils and profile soils were measured by consecutive extraction. The results showed that the soil total fluorine (T-F) content at typical areas in the North China Plain ranged from 338.31 mg x kg(-1) to 781.67 mg x kg(-1), with a mean of 430.46 mg x kg(-1). The soil fluorine speciation with the highest content was Residual-Fluorine (Res-F), with a mean of 402.73 mg x kg(-1). The average content of Water soluble Fluorine (Ws-F) was 14.39 mg x kg(-1). The result indicated that the cultivated soil in the study area was at a relatively high fluoride pollution level, which may be harmful to human health and the ecological environment. The contents of Organic Fluorine (Or-F) and Fe/Mn Oxide-Fluorine (Fe/ Mn-F) were also quite high, with a mean of 8.90 mg x kg(-1) and 4.10 mg x kg(-1), respectively. The exchangeable fluorine (Ex-F) only had a very small amount of 0.33 mg x kg(-1). Soil Ws-F was positively correlated with soil pH and CEC, while it was negatively correlated with the percentage of soil clay. The content of soil Fe/Mn-F was positively correlated with soil pH, CEC and the sand grain content percentage, while it was negatively correlated with the clay grain content percentage. The soil pH value had the most significant influence on the water soluble fluorine (Ws-F) and Fe/Mn Oxide-Fluorine (Fe/Mn-F), and the soil CEC had the most significant influence on the soil total fluorine (T-F) and residual-Fluorine (Res-F) by stepwise regression analysis. In the soil profiles, the T-F content appeared as peaks and valleys representing the change of the soil lithology in the vadose zone. The Ws-F in the soil profiles mainly changed in the depth of 0-100 cm near the surface soil and was little influenced by the soil lithology. But it was strongly influenced by the soil pH, and was positively correlated with the soil pH. This study can provide a scientific evidence for soil fluorine pollution, prevention and a theoretical basis for soil fluorine mobility and its influence on ecology and environment.

  3. Amelioration of an Ultisol profile acidity using crop straws combined with alkaline slag.

    PubMed

    Li, Jiu-yu; Masud, M M; Li, Zhong-yi; Xu, Ren-kou

    2015-07-01

    The acidity of Ultisols (pH <5) is detrimental to crop production. Technologies should be explored to promote base saturation and liming effect for amelioration of Ultisol pH. Column leaching experiments were conducted to investigate the amelioration effects of canola straw (CS) and peanut straw (PS) in single treatment and in combination whether with alkaline slag (AS) or with lime on Ultisol profile acidity. The treatment without liming materials was set as control, and the AS and lime in single treatment are set for comparison. Results indicated that all the liming materials increase soil profile pH and soil exchangeable base cations at the 0-40-cm depth, except that the lime had amelioration effect just on 0 to 15-cm profile. The amelioration effect of the liming materials on surface soil acidity was mainly dependent on the ash alkalinity in organic materials or acid neutralization capacity of inorganic materials. Specific adsorption of sulfate (SO4(2-)) or organic anions, decarboxylation of organic acids/anions, and the association of H(+) with organic anions induced a "liming effect" of crop residues and AS on subsoil acidity. Moreover, SO4(2-) and chloride (Cl(-)) in PS, CS, and AS primarily induced base cations to move downward to subsoil and exchange with exchangeable aluminum (Al(3+)) and protons (H(+)). These anions also promoted the exchangeable Al to leach out of the soil profile. The CS was more effective than PS in decreasing soil acidity in the subsoil, which mainly resulted from higher sulfur (S) and Cl content in CS compared to PS. The CS combined with AS was the better amendment choice in practical agricultural systems.

  4. Control of the U and Th behaviour in forest soils

    NASA Astrophysics Data System (ADS)

    Rihs, Sophie; Gontier, Adrien; Chabaux, François; Pelt, Eric; Turpault, Marie-Pierre

    2015-04-01

    U- and Th-series disequilibria and U, Th, Fe and Al speciation, were measured in several soil profiles from the experimental forest site of Breuil (Morvan, France) in order to address the impact of the vegetation on U and Th nuclides behaviour in soils. Thirty-five years after an experimental clear-felling of the native forest, the soil developed under two replacing mono-specific plantations (Oak and Douglas fir) were therefore compared to the undisturbed native forest soil. The analogous physical and chemical properties of these soils before the replacement were formerly demonstrated. Our results suggest that a shift in the Iron distribution seems to occur under the stand replaced by Oaks, with a significant replacement of Fe-bearing silicates by well crystallized Fe oxides. In contrast, such evolution was not demonstrated in the soils under Douglas fir. The concurrent loss of U and Th from the soils under Oak was tentatively related to the dissolution of Fe-bearing minerals. A mass balance calculation demonstrates that the observed increase in U oxalate-extracted fractions can quantitatively be explained through the entire profiles by a mere dissolution of up to 20% of U-Fe-bearing silicated minerals, without significant re-adsorption onto the amorphous Fe-Al oxides for U. Beside this primary release from Fe-bearing silicate minerals, the mobility of U and Th seems more likely controlled by Al phases rather than Fe oxides in surface layers during further pedogenic processes. Indeed, some of the U- and Th series disequilibria seem to be strongly related to Al dynamic in these layers. This relationship can be seen in the native forest profiles as well as in the replaced profiles, suggesting that this feature is not linked to the cover change. The redistribution of U and Th isotopes through these pedogenic processes therefore rule out the use of U-series for weathering rate determination in shallowest soils layers. In contrast, below 25 cm, the release of U and Th as well as the change of their distribution among the soil phases does not affect U- and Th series disequilibria. The activity ratios measured in oxalate leachates and the residues allow to demonstrate that the dissolution of a U-bearing silicate mineral and the consequent release of up to 20% of U would shift the (234U/238U) and (230Th/234U) ratios by less than 2%. These results therefore reveal that, after 35 years, no significant impact of the cover change on U-series disequilibria was recorded in the main part of the soil profiles, which, at this stage, justify the use of these nuclides as chronometers for weathering determination.

  5. Canonical discrimination of the effect of a new broiler production facility on soil chemical profiles as related to current management practices.

    PubMed

    Sheffield, Cynthia L; Crippen, Tawni L; Byrd, J Allen; Beier, Ross C; Yeater, Kathleen

    2015-01-01

    The effect dirt-floored broiler houses have on the underlying native soil, and the potential for contamination of the ground water by leaching under the foundation, is an understudied area. This study examines alterations in fifteen quantitative soil parameters (Ca, Cu, electrical conductivity, Fe, K, Mg, Mn, Na, NO3, organic matter, P, pH, S, soil moisture and Zn) in the underlayment of a newly constructed dirt-floored broiler house over the first two years of production (Native through Flock 11). The experiment was conducted near NW Robertson County, Texas, where the native soil is a fine, smectitic thermic Udertic Paleustalfs and the slopes range from zero to three percent. Multiple samples were collected from under each of three water and three feed lines the length of the house, in a longitudinal study during February 2008 through August 2010. To better define the relationship between the soil parameters and sampling times, a canonical discriminant analysis approach was used. The soil profiles assembled into five distinctive clusters corresponding to time and management practices. Results of this work revealed that the majority of parameters increased over time. The management practices of partial and total house clean-outs markedly altered soil profiles the house underlayment, thus reducing the risk of infiltration into the ground water near the farm. This is important as most broiler farms consist of several houses within a small area, so the cumulative ecological impact could be substantial if not properly managed.

  6. Canonical Discrimination of the Effect of a New Broiler Production Facility on Soil Chemical Profiles as Related to Current Management Practices

    PubMed Central

    Sheffield, Cynthia L.; Crippen, Tawni L.; Byrd, J. Allen; Beier, Ross C.; Yeater, Kathleen

    2015-01-01

    The effect dirt-floored broiler houses have on the underlying native soil, and the potential for contamination of the ground water by leaching under the foundation, is an understudied area. This study examines alterations in fifteen quantitative soil parameters (Ca, Cu, electrical conductivity, Fe, K, Mg, Mn, Na, NO3, organic matter, P, pH, S, soil moisture and Zn) in the underlayment of a newly constructed dirt-floored broiler house over the first two years of production (Native through Flock 11). The experiment was conducted near NW Robertson County, Texas, where the native soil is a fine, smectitic thermic Udertic Paleustalfs and the slopes range from zero to three percent. Multiple samples were collected from under each of three water and three feed lines the length of the house, in a longitudinal study during February 2008 through August 2010. To better define the relationship between the soil parameters and sampling times, a canonical discriminant analysis approach was used. The soil profiles assembled into five distinctive clusters corresponding to time and management practices. Results of this work revealed that the majority of parameters increased over time. The management practices of partial and total house clean-outs markedly altered soil profiles the house underlayment, thus reducing the risk of infiltration into the ground water near the farm. This is important as most broiler farms consist of several houses within a small area, so the cumulative ecological impact could be substantial if not properly managed. PMID:26029909

  7. Spatiotemporal monitoring of soil water content profiles in an irrigated field using probabilistic inversion of time-lapse EMI data

    NASA Astrophysics Data System (ADS)

    Moghadas, Davood; Jadoon, Khan Zaib; McCabe, Matthew F.

    2017-12-01

    Monitoring spatiotemporal variations of soil water content (θ) is important across a range of research fields, including agricultural engineering, hydrology, meteorology and climatology. Low frequency electromagnetic induction (EMI) systems have proven to be useful tools in mapping soil apparent electrical conductivity (σa) and soil moisture. However, obtaining depth profile water content is an area that has not been fully explored using EMI. To examine this, we performed time-lapse EMI measurements using a CMD mini-Explorer sensor along a 10 m transect of a maize field over a 6 day period. Reference data were measured at the end of the profile via an excavated pit using 5TE capacitance sensors. In order to derive a time-lapse, depth-specific subsurface image of electrical conductivity (σ), we applied a probabilistic sampling approach, DREAM(ZS) , on the measured EMI data. The inversely estimated σ values were subsequently converted to θ using the Rhoades et al. (1976) petrophysical relationship. The uncertainties in measured σa, as well as inaccuracies in the inverted data, introduced some discrepancies between estimated σ and reference values in time and space. Moreover, the disparity between the measurement footprints of the 5TE and CMD Mini-Explorer sensors also led to differences. The obtained θ permitted an accurate monitoring of the spatiotemporal distribution and variation of soil water content due to root water uptake and evaporation. The proposed EMI measurement and modeling technique also allowed for detecting temporal root zone soil moisture variations. The time-lapse θ monitoring approach developed using DREAM(ZS) thus appears to be a useful technique to understand spatiotemporal patterns of soil water content and provide insights into linked soil moisture vegetation processes and the dynamics of soil moisture/infiltration processes.

  8. Seasonal Dynamics of Trace Elements in Tidal Salt Marsh Soils as Affected by the Flow-Sediment Regulation Regime

    PubMed Central

    Bai, Junhong; Xiao, Rong; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing; Reddy, K. Ramesh

    2014-01-01

    Soil profiles were collected in three salt marshes with different plant species (i.e. Phragmites australis, Tamarix chinensis and Suaeda salsa) in the Yellow River Delta (YRD) of China during three seasons (summer and fall of 2007 and the following spring of 2008) after the flow-sediment regulation regime. Total elemental contents of As, Cd, Cu, Pb and Zn were determined using inductively coupled plasma atomic absorption spectrometry to investigate temporal variations in trace elements in soil profiles of the three salt marshes, assess the enrichment levels and ecological risks of these trace elements in three sampling seasons and identify their influencing factors. Trace elements did not change significantly along soil profiles at each site in each sampling season. The highest value for each sampling site was observed in summer and the lowest one in fall. Soils in both P. australis and S. salsa wetlands tended to have higher trace element levels than those in T. chinensis wetland. Compared to other elements, both Cd and As had higher enrichment factors exceeding moderate enrichment levels. However, the toxic unit (TU) values of these trace elements did not exceed probable effect levels. Correlation analysis showed that these trace elements were closely linked to soil properties such as moisture, sulfur, salinity, soil organic matter, soil texture and pH values. Principal component analysis showed that the sampling season affected by the flow-sediment regulation regime was the dominant factor influencing the distribution patterns of these trace elements in soils, and plant community type was another important factor. The findings of this study could contribute to wetland conservation and management in coastal regions affected by the hydrological engineering. PMID:25216278

  9. Microbial Profiling of a Suppressiveness-Induced Agricultural Soil Amended with Composted Almond Shells

    PubMed Central

    Vida, Carmen; Bonilla, Nuria; de Vicente, Antonio; Cazorla, Francisco M.

    2016-01-01

    This study focused on the microbial profile present in an agricultural soil that becomes suppressive after the application of composted almond shells (AS) as organic amendments. For this purpose, we analyzed the functions and composition of the complex communities present in an experimental orchard of 40-year-old avocado trees, many of them historically amended with composted almond shells. The role of microbes in the suppression of Rosellinia necatrix, the causative agent of avocado white root rot, was determined after heat-treatment and complementation experiments with different types of soil. Bacterial and fungal profiles obtained from natural soil samples based on the 16S rRNA gene and ITS sequencing revealed slight differences among the amended (AS) and unamended (CT) soils. When the soil was under the influence of composted almond shells as organic amendments, an increase in Proteobacteria and Ascomycota groups was observed, as well as a reduction in Acidobacteria and Mortierellales. Complementary to these findings, functional analysis by GeoChip 4.6 confirmed these subtle differences, mainly present in the relative abundance of genes involved in the carbon cycle. Interestingly, a group of specific probes included in the “soil benefit” category was present only in AS-amended soils, corresponding to specific microorganisms previously described as potential biocontrol agents, such as Pseudomonas spp., Burkholderia spp., or Actinobacteria. Considering the results of both analyses, we determined that AS-amendments to the soil led to an increase in some orders of Gammaproteobacteria, Betaproteobacteria, and Dothideomycetes, as well as a reduction in the abundance of Xylariales fungi (where R. necatrix is allocated). The combination of microbial action and substrate properties of suppressiveness are discussed. PMID:26834725

  10. Effective soil hydraulic properties in space and time: some field data analysis and modeling concepts

    USDA-ARS?s Scientific Manuscript database

    Soil hydraulic properties, which control surface fluxes and storage of water and chemicals in the soil profile, vary in space and time. Spatial variability above the measurement scale (e.g., soil area of 0.07 m2 or support volume of 14 L) must be upscaled appropriately to determine “effective” hydr...

  11. Effects of microcystins contamination on soil enzyme activities and microbial community in two typical lakeside soils.

    PubMed

    Cao, Qing; Steinman, Alan D; Su, Xiaomei; Xie, Liqiang

    2017-12-01

    A 30-day indoor incubation experiment was conducted to investigate the effects of different concentrations of microcystin (1, 10, 100 and 1000 μg eq. MC-LR L -1 ) on soil enzyme activity, soil respiration, physiological profiles, potential nitrification, and microbial abundance (total bacteria, total fungi, ammonia-oxidizing bacteria and archaea) in two lakeside soils in China (Soil A from the lakeside of Lake Poyanghu at Jiujiang; Soil B from the lakeside of Lake Taihu at Suzhou). Of the enzymes tested, only phenol oxidase activity was negatively affected by microcystin application. In contrast, dehydrogenase activity was stimulated in the 1000 μg treatment, and a stimulatory effect also occurred with soil respiration in contaminated soil. The metabolic profiles of the microbial communities indicated that overall carbon metabolic activity in the soils treated with high microcystin concentrations was inhibited, and high concentrations of microcystin also led to different patterns of potential carbon utilization. High microcystin concentrations (100, 1000 μg eq. MC-LR L -1 in Soil A; 10, 100 1000 μg eq. MC-LR L -1 in Soil B) significantly decreased soil potential nitrification rate. Furthermore, the decrease in soil potential nitrification rate was positively correlated with the decrease of the amoA gene abundance, which corresponds to the ammonia-oxidizing bacterial community. We conclude that application of microcystin-enriched irrigation water can significantly impact soil microbial community structure and function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Bruno Braunerde und die Bodentypen - The German-speaking friends of the Scottish soil characters

    NASA Astrophysics Data System (ADS)

    Hofmann, Anett

    2014-05-01

    Cartoon figures of soil profiles with faces, legs, arms and funny names: the Scottish soil characters Rusty (Cambisol), Heather (Podzol), Pete (Histosol) and five others were developed at the James Hutton Institute in Aberdeen for outreach activities. They represent eight soil types that are common in Scotland. Recently they have become movie stars in an animated film, where they speak with a Scottish accent. The Scottish soil characters are a true soil science communication success story and it would be great if they had friends in many places to tell some stories from the underground in the respective native languages. This contribution will introduce the draft for 13 German-speaking soil characters that represent the most common soil types in Austria, Germany and Switzerland. Each name is a play on words with respect to German soil classification terms and serves as a mnemonic for typical characteristics of these soils. The 'hair' shows detailed vegetation and the context with common land use. For non-soil scientists the soil characters can be used as story-tellers, e.g. about their life (soil evolution), home (spatial distribution), job (function), fears (threats) and joys (best-practice land use, restoration). Because the International Year of Soil (2015) is an excellent opportunity for new outreach activities, the aim is to publish the German-speaking soil characters as a collaboration of the Austrian, German and Swiss Soil Science Societies. The soil characters could be used in print or online formats, and even - as can be seen in Aberdeen - as human-sized walking soil profiles.

  13. Soil formation in the Tsauchab Valley, Namibia

    NASA Astrophysics Data System (ADS)

    Eden, Marie; Bens, Oliver; Ramisch, Arne; Schwindt, Daniel; Völkel, Jörg

    2016-04-01

    The BMBF-funded project GeoArchives (Spaces) investigates soils and sediments in Southern Africa. A focus area lies on the Tsauchab Valley (Namibia), South of the Naukluft mountain range (24°26'40'' S, 16°10'40'' E). On a gently sloping alluvial fan facing East towards the river, the surface is characterized by a desert pavement covering soils used as farmland. The landscape units were mapped and the area at the lower slope of a hill was divided into three units: a rinsing surface and a gravel plain, separated by a channel. On these surfaces soil profiles were excavated. Profile description followed the German system (Bodenkundliche Kartieranleitung KA 5) and disturbed samples were taken at various depths and analysed in the lab. Undisturbed soil cores with a volume of 100 cm³ were taken just below the surface at a depth of ~1-6 cm. Lab analyses included texture and gravel content, colour, pH, electrical conductivity, carbonates, CNS, cation exchange capacity, pedogenic oxides, main and trace elements (XRF), and clay mineral distribution (XRD). Undisturbed samples were used to determine soil water retention curve, air permeability and bulk density. The profiles revealed moderately developed cambic soils rich in clay minerals and with total carbon contents ranging up to 1.8 %, bearing shrubs and after episodic rainfall a dense grass vegetation. Their genesis is discussed and interpreted in the context of the landscape and climate history of this semi-desert environment.

  14. Extractable Al and Si compounds in pale-podzolic soils of the Central Forest Reserve: Contents and distribution along the profile and by size fractions

    NASA Astrophysics Data System (ADS)

    Sokolova, T. A.; Tolpeshta, I. I.; Izosimova, Yu. G.

    2017-06-01

    The profile distributions of oxalate- and pyrophosphate-soluble Al compounds and oxalate-soluble Si compounds in the main horizons of pale-podzolic soils of the Central Forest Reserve and the fractions <1. 1-5, and >5 μm have been considered. In the clay-eluvial part of soil profile, the content of these compounds is differentiated by the eluvial-illuvial type with a clear accumulation in the EL horizon compared to the AEL horizon. This distribution is largely ensured by their differentiation in the clay and fine silt fractions, while an accumulative distribution of mobile Al compounds is observed in fractions >5 μm. The high correlation between the Al and Si contents in the Tamm extracts from the clay and fine silt fractions with the (Alox-Alpy)/Siox molar ratios, which are in the range of 1-3 in the EL horizon, confirms that mobile compounds are accumulated in these fractions in the form of amorphous aluminosilicates. In the AEL and EL horizons, an additional amount of Al can pass into the oxalate solution from the fine fractions due to the dissolution of Al hydroxide interlayers of soil chlorites. The eluvial-illuvial distribution of mobile Al and Si compounds typical for Al-Fe-humus podzols within the clay-illuvial part of profiles of the soils under study can be considered as an example of superimposed evolution.

  15. Migration of fallout radiocaesium in a grassland soil from 1986 to 2001. Part I: activity-depth profiles of (134)Cs and (137)Cs.

    PubMed

    Schimmack, W; Schultz, W

    2006-09-15

    The temporal changes of the vertical distribution of (134)Cs (deposited by the Chernobyl fallout in 1986) and (137)Cs (deposited by the Chernobyl and the global fallout) in the soil were investigated at an undisturbed Bavarian grassland site in Germany. At ten sampling dates between 1986 and 2001, the activity density of (134)Cs and (137)Cs was determined in various soil layers down to 80 cm depth. In 2001, the small-scale spatial variability of the radiocaesium activity was determined by sampling five plots within 10 m(2) (coefficient of variation about 20% for the upper soil layers). Between 1987 and 1990, substantial changes of the activity-depth profiles were observed. The percentage depth distributions of (134)Cs and (137)Cs were rather similar. The 50%-depth of the accumulated activity increased from 2.4 cm in 1988 to 5.3 cm in 2001 for (134)Cs and from 2.7 to 5.8 cm for (137)Cs. This indicates that at the study site the migration data of Chernobyl-derived (137)Cs can be estimated by those of total (137)Cs. In the second part of this study, the activity-depth profiles will be evaluated by the convection-dispersion model [Schimmack, W, Feria Márquez, F. Migration of fallout radiocaesium in a grassland soil from 1986 to 2001. Part II: Evaluation of the activity-depth profiles by transport models. Sci Total Environ 2006-this issue].

  16. Humus in some soils from Western Antarctica

    NASA Astrophysics Data System (ADS)

    Abakumov, E.

    2009-04-01

    Soils of Antarctica are well known as a thick profile soils with low amounts of humus concentrated in the upper layers - O or A horizons. Also there are specific soils of seashore landscapes which affected by penguins guano accumulation and, therefore characterized by high stocks of organic matter in solum. These two types of soils were studied during the Western Antarctica part of 53th Russian Antarctic Expedition in 2008 International Polar Year. These rote of expedition was on Polar stations "Russkaya", "Leningradskaya" and "Bellinsgausen" and also two places, not affected by polar men's - Lindsey Island and Hudson mountains (Ross Sea). Typical soils of "Russkaya" and "Leningradskaya" stations was a Cryosoils with low humus content (0,02 - 0,20 %) which was a product of lichens decaying and further humification. The humus profile was not deep and humic substances migration stopped on the 30 cm deeps maximally. Soils of Sub-Antarctica (Bellinsgausen station, King-George Island) show higher portions of humus which maximum was 3,00 % under the mosses. Humus distribution was more gradual through profile due to the higher thickness of active layer and longer period of biological activity. Soils under the penguin's beaches shows big portions of organic matter, in some cases more than 50 % to total soil mass. Humification starts in first years in cases of Sub-Antarctic guano soils and only after 3-7 years of leaching in seashore Antarctic guano-soils. Soils under the guano layers were extremely reached by nitrogen, and in some cases there were not any plants there due to toxicity of guano. This event was more typical for cold seashore soils of Antarctica. In all cases humus consists mostly of fulvic acids and low molecular non-specific organic acids. The CHA/CFA ratio in all cases were lesser than 1,0 and in more that 50 % of cases it was lesser than 0,5. The investigations conducted shows that the stocks of humus in soil of Antarctica are not estimated and till now we didn't know the total stocks of organic matter in automorphous dry plains and valleys and seashore landscapes of this continent.

  17. Using (137)Cs to quantify the redistribution of soil organic carbon and total N affected by intensive soil erosion in the headwaters of the Yangtze River, China.

    PubMed

    Guoxiao, Wei; Yibo, Wang; Yan Lin, Wang

    2008-12-01

    Characteristics of soil organic carbon (SOC) and total nitrogen (total N) are important for determining the overall quality of soils. Studies on spatial and temporal variation in SOC and total N are of great importance because of global environmental concerns. Soil erosion is one of the major processes affecting the redistribution of SOC and total N in the test fields. To characterize the distribution and dynamics of SOC and N in the intensively eroded soil of the headwaters of the Yangtze River, China, we measured profiles of soil organic C, total N stocks, and (137)Cs in a control plot and a treatment plot. The amounts of SOC, (137)Cs of sampling soil profiles increased in the following order, lower>middle>upper portions on the control plot, and the amounts of total N of sampling soil profile increase in the following order: upper>middle>lower on the control plot. Intensive soil erosion resulted in a significant decrease of SOC amounts by 34.9%, 28.3% and 52.6% for 0-30cm soil layer at upper, middle and lower portions and (137)Cs inventory decreased by 68%, 11% and 85% at upper, middle and lower portions, respectively. On the treatment plot total N decreased by 50.2% and 14.6% at the upper and middle portions and increased by 48.9% at the lower portion. Coefficients of variation (CVs) of SOC decreased by 31%, 37% and 30% in the upper, middle and lower slope portions, respectively. Similar to the variational trend of SOC, CVs of (137)Cs decreased by 19.2%, 0.5% and 36.5%; and total N decreased by 45.7%, 65.1% and 19% in the upper, middle and lower slope portions, respectively. The results showed that (137)Cs, SOC and total N moved on the sloping land almost in the same physical mechanism during the soil erosion procedure, indicating that fallout of (137)Cs could be used directly for quantifying dynamic SOC and total N redistribution as the soil was affected by intensive soil erosion.

  18. Concentrations, profiles, and estimated human exposures for polychlorinated dibenzo-p-dioxins and dibenzofurans from electronic waste recycling facilities and a chemical industrial complex in Eastern China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, J.; Kannan, K.; Cheng, J.

    2008-11-15

    Electronic shredder waste and dust from e-waste facilities, and leaves and surface soil collected in the vicinity of a large scale e-waste recycling facility in Taizhou, Eastern China, were analyzed for total dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) including 2,3,7,8-substituted congeners. We also determined PCDD/Fs in surface agricultural soils from several provinces in China for comparison with soils from e-waste facilities. Concentrations of total PCDD/Fs were high in all of the matrices analyzed and ranged from 30.9 to 11,400 pg/g for shredder waste, 3460 to 9820 pg/g dry weight for leaves, 2560 to 148,000 pg/g dry weight for workshop-floor dust, and 854more » to 10200 pg/g dry weight for soils. We also analyzed surface soils from a chemical industrial complex (a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) in Shanghai. Concentrations of total PCDD/Fs in surface soil from the chemical industrial complex were lower than the concentrations found in soils from e-waste recycling plants, but higher than the concentrations found in agricultural soils. Agricultural soils from six cities in China contained low levels of total PCDD/Fs. Profiles of dioxin toxic equivalents (TEQs) of 2,3,7,8-PCDD/Fs in soils from e-waste facilities in Taizhou differed from the profiles found in agricultural soils. The estimated daily intakes of TEQs of PCDD/Fs via soil/dust ingestion and dermal exposure were 2 orders of magnitude higher in people at e-waste recycling facilities than in people at the chemical industrial site, implying greater health risk for humans from dioxin exposures at e-waste recycling facilities. The calculated TEQ exposures for e-waste workers from dust and soil ingestion alone were 2-3 orders of magnitude greater than the exposures from soils in reference locations. 37 refs., 1 fig., 2 tabs.« less

  19. Polder effects on sediment-to-soil conversion: water table, residual available water capacity, and salt stress interdependence.

    PubMed

    Radimy, Raymond Tojo; Dudoignon, Patrick; Hillaireau, Jean Michel; Deboute, Elise

    2013-01-01

    The French Atlantic marshlands, reclaimed since the Middle Age, have been successively used for extensive grazing and more recently for cereal cultivation from 1970. The soils have acquired specific properties which have been induced by the successive reclaiming and drainage works and by the response of the clay dominant primary sediments, that is, structure, moisture, and salinity profiles. Based on the whole survey of the Marais Poitevin and Marais de Rochefort and in order to explain the mechanisms of marsh soil behavior, the work focuses on two typical spots: an undrained grassland since at least 1964 and a drained cereal cultivated field. The structure-hydromechanical profiles relationships have been established thanks to the clay matrix shrinkage curve. They are confronted to the hydraulic functioning including the fresh-to-salt water transfers and to the recording of tensiometer profiles. The CE1/5 profiles supply the water geochemical and geophysical data by their better accuracy. Associated to the available water capacity calculation they allow the representation of the parallel evolution of the residual available water capacity profiles and salinity profiles according to the plant growing and rooting from the mesophile systems of grassland to the hygrophile systems of drained fields.

  20. Polder Effects on Sediment-to-Soil Conversion: Water Table, Residual Available Water Capacity, and Salt Stress Interdependence

    PubMed Central

    Radimy, Raymond Tojo; Dudoignon, Patrick; Hillaireau, Jean Michel; Deboute, Elise

    2013-01-01

    The French Atlantic marshlands, reclaimed since the Middle Age, have been successively used for extensive grazing and more recently for cereal cultivation from 1970. The soils have acquired specific properties which have been induced by the successive reclaiming and drainage works and by the response of the clay dominant primary sediments, that is, structure, moisture, and salinity profiles. Based on the whole survey of the Marais Poitevin and Marais de Rochefort and in order to explain the mechanisms of marsh soil behavior, the work focuses on two typical spots: an undrained grassland since at least 1964 and a drained cereal cultivated field. The structure-hydromechanical profiles relationships have been established thanks to the clay matrix shrinkage curve. They are confronted to the hydraulic functioning including the fresh-to-salt water transfers and to the recording of tensiometer profiles. The CE1/5 profiles supply the water geochemical and geophysical data by their better accuracy. Associated to the available water capacity calculation they allow the representation of the parallel evolution of the residual available water capacity profiles and salinity profiles according to the plant growing and rooting from the mesophile systems of grassland to the hygrophile systems of drained fields. PMID:23990758

  1. Improving Soil Moisture and Temperature Profile and Surface Turbulent Fluxes Estimations in Irrigated Field by Assimilating Multi-source Data into Land Surface Model

    NASA Astrophysics Data System (ADS)

    Chen, Weijing; Huang, Chunlin; Shen, Huanfeng; Wang, Weizhen

    2016-04-01

    The optimal estimation of hydrothermal conditions in irrigation field is restricted by the deficiency of accurate irrigation information (when and how much to irrigate). However, the accurate estimation of soil moisture and temperature profile and surface turbulent fluxes are crucial to agriculture and water management in irrigated field. In the framework of land surface model, soil temperature is a function of soil moisture - subsurface moisture influences the heat conductivity at the interface of layers and the heat storage in different layers. In addition, soil temperature determines the phase of soil water content with the transformation between frozen and unfrozen. Furthermore, surface temperature affects the partitioning of incoming radiant energy into ground (sensible and latent heat flux), as a consequence changes the delivery of soil moisture and temperature. Given the internal positive interaction lying in these variables, we attempt to retrieve the accurate estimation of soil moisture and temperature profile via assimilating the observations from the surface under unknown irrigation. To resolve the input uncertainty of imprecise irrigation quantity, original EnKS is implemented with inflation and localization (referred to as ESIL) aiming at solving the underestimation of the background error matrix and the extension of observation information from the top soil to the bottom. EnKS applied in this study includes the states in different time points which tightly connect with adjacent ones. However, this kind of relationship gradually vanishes along with the increase of time interval. Thus, the localization is also employed to readjust temporal scale impact between states and filter out redundant or invalid correlation. Considering the parameter uncertainty which easily causes the systematic deviation of model states, two parallel filters are designed to recursively estimate both states and parameters. The study area consists of irrigated farmland and is located in an artificial oasis in the semi-arid region of northwestern China. Land surface temperature (LST) and soil volumetric water content (SVW) at first layer measured at Daman station are taken as observations in the framework of data assimilation. The study demonstrates the feasibility of ESIL in improving the soil moisture and temperature profile under unknown irrigation. ESIL promotes the coefficient correlation with in-situ measurements for soil moisture and temperature at first layer from 0.3421 and 0.7027 (ensemble simulation) to 0.8767 and 0.8304 meanwhile all the RMSE of soil moisture and temperature in deeper layers dramatically decrease more than 40 percent in different degree. To verify the reliability of ESIL in practical application, thereby promoting the utilization of satellite data, we test ESIL with varying observation internal interval and standard deviation. As a consequence, ESIL shows stabilized and promising effectiveness in soil moisture and soil temperature estimation.

  2. Models for root water uptake under deficit irrigation

    NASA Astrophysics Data System (ADS)

    Lazarovitch, Naftali; Krounbi, Leilah; Simunek, Jirka

    2010-05-01

    Modern agriculture, with its dependence on irrigation, fertilizers, and pesticide application, contributes significantly to the water and solute influx through the soil into the groundwater, specifically in arid areas. The quality and quantity of this water as it passes through the vadose zone is influenced primarily by plant roots. Root water uptake is a function of both a physical root parameter, commonly referred to as the root length density, and the soil water status. The location of maximum water uptake in a homogenous soil profile of uniform water content and hydraulic conductivity occurs in the soil layer containing the largest root length density. Under field conditions, in a drying soil, plants are both subject to, and the source of, great spatial variability in the soil water content. The upper soil layers containing the bulk of the root zone are usually the most water depleted, while the deeper regions of the soil profile containing fewer roots are wetter. Changes in the physiological functioning of plants have been shown to result from extended periods of water stress, but the short term effects of water stress on root water uptake are less well understood. While plants can minimize transpiration and the resulting growth rates under limiting conditions to conserve water, many plants maintain a constant potential transpiration rate long after the commencement of the drying process. Compensatory uptake, whereby plants respond to non-uniform, limiting conditions by increasing water uptake from areas in the root zone characterized by more favorable conditions, is one such mechanism by which plants sustain potential transpiration rates in drying soils. The development of models which accurately characterize temporal and spatial root water uptake patterns is important for agricultural resource optimization, upon which subsequent management decisions affecting resource conservation and environmental pollution are based. Numerical simulations of root water uptake in various irrigation and fertilization regimes provide a much-needed alternative to tiring and expensive field work. These simulations can aid in raising agricultural water use efficiency while preserving soil and water resources. In this research, controlled lab experiments were carried out in soil-packed lysimeters designed for plant cultivation. Both the water balance of the growing plants as well as the temporary matric head distribution in the soil profile were calculated and measured. The experiment was conducted with sweet sorghum grown in two different soil profiles with different hydraulic properties. The experiment provided the data necessary to calculate the parameters of various models used to simulate root water uptake, by using an inverse solution method imbedded in the HYDRUS-1D code. The observed increase in uptake from the wetter soil regions under drying conditions, as measured and calculated, sheds light on the dominant role of soil hydraulic properties over the root distribution, and consequently root water uptake.

  3. Vertical distribution of 137Cs in alluvial soils of the Lokna River floodplain (Tula oblast) long after the Chernobyl accident and its simulation

    NASA Astrophysics Data System (ADS)

    Mamikhin, S. V.; Golosov, V. N.; Paramonova, T. A.; Shamshurina, E. N.; Ivanov, M. M.

    2016-12-01

    Profiles of vertical 137Cs distribution in alluvial meadow soils on the low and medium levels of the Lokna River floodplain (central part of the Plavsk radioactive spot in Tula oblast) 28 years after the Chernobyl fallout have been studied. A significant increase in the 137Cs pool is revealed on the low floodplain areas compared to the soils of interfluves due to the accumulation of alluvium, which hampers the reduction of the total radionuclide pool in alluvial soils because of radioactive decay. The rate of alluvium accumulation in the soil on the medium floodplain level is lower by three times on average. An imitation prognostic model has been developed, which considers the flooding and climatic conditions in the region under study. Numerical experiments have quantitatively confirmed the deciding role of low-mobile forms in the migration of maximum 137Cs content along the soil profile in the absence of manifested erosion-accumulation processes.

  4. Subsurface Characterization using Geophysical Seismic Refraction Survey for Slope Stabilization Design with Soil Nailing

    NASA Astrophysics Data System (ADS)

    Ashraf Mohamad Ismail, Mohd; Ng, Soon Min; Hazreek Zainal Abidin, Mohd; Madun, Aziman

    2018-04-01

    The application of geophysical seismic refraction for slope stabilization design using soil nailing method was demonstrated in this study. The potential weak layer of the study area is first identify prior to determining the appropriate length and location of the soil nail. A total of 7 seismic refraction survey lines were conducted at the study area with standard procedures. The refraction data were then analyzed by using the Pickwin and Plotrefa computer software package to obtain the seismic velocity profiles distribution. These results were correlated with the complementary borehole data to interpret the subsurface profile of the study area. It has been identified that layer 1 to 3 is the potential weak zone susceptible to slope failure. Hence, soil nails should be installed to transfer the tensile load from the less stable layer 3 to the more stable layer 4. The soil-nail interaction will provide a reinforcing action to the soil mass thereby increasing the stability of the slope.

  5. Electrical Resistivity Tomography Reveals Upward Redistribution of Soil-Water by Coyote Brush in a Shrub-Grassland Ecotone

    NASA Astrophysics Data System (ADS)

    Manning, J. E.; Schulz, M. S.; Lambrecht, D. S.

    2016-12-01

    Species imbalance within many California plant assemblages may arise due to more intense wildfires as well as climate warming. Given this, coyote brush (Baccharis pilularis DC), a native evergreen shrub known as a ready colonizer of disturbed soil, may become more dominant. While prolonged spring soil moisture is required for seedling establishment, 1+ year-old coyote brush can withstand low soil water potentials (-1.2 MPa). Beyond this, little is known about its soil-water dynamics. Hydraulic redistribution of water within the soil profile by plant roots has been established in numerous species in the past 20 years. Recent quantification of the water quantity re-distributed by root systems are beginning to provide detail that could inform ET, weathering, and carbon cycling models. Electrical resistivity tomography (ERT) has been used to study soil hydraulics in natural as well as cropland settings. This study is the first known to use ERT to investigate hydraulic redistribution in coyote brush. One mid-size shrub surrounded by open grassland was selected at the study site, located on a coastal marine terrace west of Santa Cruz, CA. The soil profile, previously characterized with ERT and auger-based soil-water sampling, includes a clay-rich B horizon and is texturally non-uniform due to bioturbation to 0.6 meter. The 12-m ERT survey transect had 48 semi-permanent electrodes, with the 4-m wide shrub canopy at probes 16 to 32. Five repeats of evening and morning surveys were conducted. Heterogeneous texture and severe soil drying necessitated qualitative comparison across time. Overnight resistivity changes using differences plots of the modelled data revealed increased moisture beneath the shrub canopy during the night. Areas beyond the canopy—presumably outside the root zone—experienced variable overnight changes, with moisture increasing in the clay-rich horizon. Preliminary analysis suggests that coyote brush roots redistribute water upward within the soil profile.

  6. [Heavy Metals Accmultio in the Caofeidian Reclamation Soils: Indicated by Soil Magnetic Susceptibility].

    PubMed

    Xue, Yong; Zhou, Qian; Li, Yuan; Zhang, Hai-bo; Hu, Xue-feng; Luo, Yong-ming

    2016-04-15

    The environmental magnetism method has been widely applied to identify soil heavy metal pollution, which is characterized by simplicity, efficiency, non-destructivity and sensitivity. The present study used magnetic susceptibility to assess the accumulation of heavy metals in soils of the Caofeidian industrial zone which is a typical reclamation area in northern China. The study area was divided into three sub-zones based on the function, including industrial zone, living zone, natural tidal flat and wetland. A total of 35 topsoil samples (0-10 cm) and 3 soil profiles were collected from the three sub-zones. Magnetic susceptibility (X(lf)), iron oxide (Fe2O3) contents and heavy metals contents (Cr, Ni, Cu, Zn, As, Pb, Mn and V) of the samples were analyzed. The results showed that X(lf) values and heavy metals contents exhibited higher spatial variability in the top soil of the industrial zone, indicating the severe impacts of industrial activities. In the soil profiles of the industrial and living zones, all heavy metals were enriched to different degrees in the upper layer (0-20 cm). However, there was no significant change of heavy metal contents in the soil profiles of tidal flat which was far from the industrial area. The X(lf) value was significantly (P < 0.01) positively correlated with the contents of Fe2O3, Ni, Cu, As and V in the industrial top soil. This indicated that X(lf) could be used as an indicator for heavy metal accumulation in the industrial zone. However, the X(lf) value was not suitable to be an indicator to show the heavy metal accumulation in the soils of living zone and natural tidal flat. This might be associated with the different sources of magnetic materials among the different sub-zones and the special characteristics of the soils in the tidal flat and wetland.

  7. The influence of plant communities on postagrogenic soils in the middle taiga zone.

    NASA Astrophysics Data System (ADS)

    Churilin, Nikita; Churilina, Alexandra; Chizhikova, Natalia; Varlamov, Evgeny

    2016-04-01

    At the present time there are many abandoned postagrogenic croplands in Russia. These lands are gradually involved in natural plant succession, which has affect on the properties of the soil. Therefore, the study of these soils is one of the important trends in the Russian soil science. The aim of the study was to identify possible trends in soil changes after a long anthropogenic impact on a base of morphological, chemical and some physical properties of postagrogenic soils under different plant communities. Soils were sampled in the south of Arkhangelsk region, Ustyansky district, near Akichkin Pochinok village. Soils are formed on clay moraine of Moscow glaciation with klastolits. All soil profiles were dug on interfluve. We determined chemical composition (pH, CaCO3%, organic carbon, CEC, F2O3 (Mer-Jackson), NPK), physical characteristics (particle size distribution, bulk density of the soil) and XRD of <1μm, 1-5μm, 5-10μm fractions from soils. We selected 4 plant communities on different stages of succession: upland meadow with domination of sod grasses (Phleum pratense, Agrostis tenuis), 16 years old birch forest where dominatants are herbaceous plants such as Poa sp., Chamerion angustiflium, Agrostis tenuis, 16 years old spruce forest with no herbaceous vegetation and 70 years old bilberry spruce forest with domination of Vaccinium myrtillus and Vaccinium vitis-idaea. To study postagrogenic soils we made 4 soil profiles under these plant communities. All profiles have evidence of anthraquic horizon and they have plough pan on a depth of 20-24 cm (confirmed by bulk density). The plowed horizon is better expressed in soils under the meadow. All 4 soils are characterized by presence of Fe-Mn segregations throughout the profiles, particle size distribution heaving to the lower horizon and residual albic horizon. We identified following soils: Albic Dystric Retisol (Cutanic Abrubptic Loamic) under the old spruce, Dystric Retisol (Cutanic Loamic Anthraquic) in young spruce, Glossic Albic Dystric Retisol (Cutanic Loamic Anthraquic) in young birch forest and Dystric Retisol (Loamic Abruptic Anthraquic) under upland meadow. We found a correlation between amount of clay fraction in upper horizons (<20 cm) of these soils and crown density: the amount of clay increases with density of branches. This trend can be explained by the fact that amount of precipitation on the surface of the soil decreases with crown density, therefore clay doesn't migrate to the underlying horizons in the soil. Over time, acid aqueous solution can influence on process of clay fraction redistribution, so it explains the reduction of clay content in the old spruce forest and well-defined albic horizon. The results of chemical analyses showed that pH of these soils varies between 3 and 4. In all soils we can see illuvial accumulation of P2O5, exchangeable bases, K2O, Fe2O3. It was also shown that carbonates are present in horizons close to the subsoil, which content is less than 1%.

  8. Systems, methods, and software for determining spatially variable distributions of the dielectric properties of a heterogeneous material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrington, Stephen P.

    Systems, methods, and software for measuring the spatially variable relative dielectric permittivity of materials along a linear or otherwise configured sensor element, and more specifically the spatial variability of soil moisture in one dimension as inferred from the dielectric profile of the soil matrix surrounding a linear sensor element. Various methods provided herein combine advances in the processing of time domain reflectometry data with innovations in physical sensing apparatuses. These advancements enable high temporal (and thus spatial) resolution of electrical reflectance continuously along an insulated waveguide that is permanently emplaced in contact with adjacent soils. The spatially resolved reflectance ismore » directly related to impedance changes along the waveguide that are dominated by electrical permittivity contrast due to variations in soil moisture. Various methods described herein are thus able to monitor soil moisture in profile with high spatial resolution.« less

  9. Testing plant use of mobile vs immobile soil water sources using stable isotope experiments.

    PubMed

    Vargas, Ana I; Schaffer, Bruce; Yuhong, Li; Sternberg, Leonel da Silveira Lobo

    2017-07-01

    We tested for isotope exchange between bound (immobile) and mobile soil water, and whether there is isotope fractionation during plant water uptake. These are critical assumptions to the formulation of the 'two water worlds' hypothesis based on isotope profiles of soil water. In two different soil types, soil-bound water in two sets of 19-l pots, each with a 2-yr-old avocado plant (Persea americana), were identically labeled with tap water. After which, one set received isotopically enriched water whereas the other set received tap water as the mobile phase water. After a dry down period, we analyzed plant stem water as a proxy for soil-bound water as well as total soil water by cryogenic distillation. Seventy-five to 95% of the bound water isotopically exchanged with the mobile water phase. In addition, plants discriminated against 18 O and 2 H during water uptake, and this discrimination is a function of the soil water loss and soil type. The present experiment shows that the assumptions for the 'two water worlds' hypothesis are not supported. We propose a novel explanation for the discrepancy between isotope ratios of the soil water profile and other water compartments in the hydrological cycle. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  10. Measurements of pH and redox potential distributions in TNT-contaminated plant-soil systems using microelectrode techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pang, H.; Zhang, T.C.

    1997-12-31

    The pH and redox potential profiles in TNT-contaminated soils with and without plants were investigated using microelectrode techniques. The new pH cocktail and double-barreled structure greatly improved the performance of the pH microelectrode. For soil without plants, there is almost no pH difference at different locations with different heights; while for the TNT-contaminated soils with plants there exist pH profiles. The soil immediately near the root of the plant has the lowest pH value. The pH value increases as the distance between the measuring point and the plant roots increases. The pH gradient (the increased pH value over the unitmore » distance) decreases with an increase of the distance between the measuring point and the plant roots. These results show that the plant presence can greatly affect the pH distribution. In vegetated soil, the redox potentials in the layer nearest the plant roots are higher than those in the bulk soil without plants. The redox potentials in the central part of the plant are lower than those in the soil around the plant and soil without the plant. The redox potentials in the soil without plants decrease with an increase of depth.« less

  11. Hydrocarbon status of soils in the asphalt deposit area (Samara Bend)

    NASA Astrophysics Data System (ADS)

    Pikovskiy, Yu. I.; Gennadiev, A. N.; Kovach, R. G.; Zhidkin, A. P.; Khlynina, N. I.; Kiseleva, A. Yu.

    2017-04-01

    The composition and distribution features of the main components of soil hydrocarbon complex― organic (noncarbonate) carbon, hexane bitumoids, and individual polycyclic aromatic hydrocarbons (PAHs)―in the area of depleted Bakhilovo asphalt deposit (Samara oblast) have been studied. According to their proportions, three genetic types of soil hydrocarbon status are distinguished: (a) emanation-injection type prevailing within the limits of the former production field and characterized by anomalous contents of heavy resinous bitumoids (5000-7000 mg/kg on the average) throughout the soil profile and a high content of PAHs (4-9 mg/kg on the average, 29 mg/kg as the maximum, with the dominance of naphthalene homologues); (b) emanation-biogeochemical type confined to mechanogenically undisturbed soils within and beyond the deposit area, where the emanation component is manifested in soils with heavy texture and higher concentrations and very light composition of bitumoids in the lower parts of the soil profile; and (c) atmosedimentation-biogeochemical type characteristic of conventionally background soils with light texture; benzo[ a]pyrene traces are detected among PAHs in the upper soil horizon, which indicates the input of this hydrocarbon with aerosols from the atmosphere; the concentrations of bitumoids and PAHs in parent rocks are lower than in the soils.

  12. Roles of saltcedar (Tamarix spp.) and capillary rise in salinizing a non-flooding terrace on a flow-regulated desert river

    USGS Publications Warehouse

    Glenn, E.P.; Morino, K.; Nagler, P.L.; Murray, R.S.; Pearlstein, S.; Hultine, K.R.

    2012-01-01

    Tamarix spp. (saltcedar) secretes salts and has been considered to be a major factor contributing to the salinization of river terraces in western US riparian zones. However, salinization can also occur from the capillary rise of salts from the aquifer into the vadose zone. We investigated the roles of saltcedar and physical factors in salinizing the soil profile of a non-flooding terrace at sites on the Cibola National Wildlife Refuge on the Lower Colorado River, USA. We placed salt traps under and between saltcedar shrubs and estimated the annual deposition rate of salts from saltcedar. These were then compared to the quantities and distribution on of salts in the soil profile. Dense stands of saltcedar deposited 0.159kgm -2yr -1 of salts to the soil surface. If this rate was constant since seasonal flooding ceased in 1938 and all of the salts were retained in the soil profile, they could account for 11.4kgm -2 of salt, about 30% of total salts in the profile today. Eliminating saltcedar would not necessarily reduce salts, because vegetation reduces the upward migration of salts in bulk flow from the aquifer. The densest saltcedar stand had the lowest salt levels in the vadose zone in this study. ?? 2011 Elsevier Ltd.

  13. Soil charcoal as long-term pyrogenic carbon storage in Amazonian seasonal forests.

    PubMed

    Turcios, Maryory M; Jaramillo, Margarita M A; do Vale, José F; Fearnside, Philip M; Barbosa, Reinaldo Imbrozio

    2016-01-01

    Forest fires (paleo + modern) have caused charcoal particles to accumulate in the soil vertical profile in Amazonia. This forest compartment is a long-term carbon reservoir with an important role in global carbon balance. Estimates of stocks remain uncertain in forests that have not been altered by deforestation but that have been impacted by understory fires and selective logging. We estimated the stock of pyrogenic carbon derived from charcoal accumulated in the soil profile of seasonal forest fragments impacted by fire and selective logging in the northern portion of Brazilian Amazonia. Sixty-nine soil cores to 1-m depth were collected in 12 forest fragments of different sizes. Charcoal stocks averaged 3.45 ± 2.17 Mg ha(-1) (2.24 ± 1.41 Mg C ha(-1) ). Pyrogenic carbon was not directly related to the size of the forest fragments. This carbon is equivalent to 1.40% (0.25% to 4.04%) of the carbon stocked in aboveground live tree biomass in these fragments. The vertical distribution of pyrogenic carbon indicates an exponential model, where the 0-30 cm depth range has 60% of the total stored. The total area of Brazil's Amazonian seasonal forests and ecotones not altered by deforestation implies 65-286 Tg of pyrogenic carbon accumulated along the soil vertical profile. This is 1.2-2.3 times the total amount of residual pyrogenic carbon formed by biomass burning worldwide in 1 year. Our analysis suggests that the accumulated charcoal in the soil vertical profile in Amazonian forests is a substantial pyrogenic carbon pool that needs to be considered in global carbon models. © 2015 John Wiley & Sons Ltd.

  14. Salt composition of groundwater and reclaimed solonetzes in the Baraba Lowland

    NASA Astrophysics Data System (ADS)

    Semendyaeva, N. V.; Elizarov, N. V.

    2017-10-01

    Solonetzes of experimental trials established in 1981 and 1986 in the Baraba Lowland were examined. It was found that gypsum-based ameliorants improve the soil and lead to a decrease in the content of soluble salts in the soil profile. Exchange processes between cations of the soil adsorption complex and calcium of gypsum were particularly intensive in the first years after gypsum application. This resulted in a sharp rise in the content of soluble salts that migrated down the soil profile to the groundwater. In the following years, the reclaimed solonetzes were desalinized under the conditions of relatively stable groundwater level. On the 30th year after single gypsum application, the groundwater level sharply rose (to 50 cm), and the soil was subjected to the secondary salinization; the contents of bicarbonates, carbonates, and sodium in the soils increased. Spring leaching caused some desalinization, but the content of soluble salts in the upper soil meter increased again in the fall. A close correlation between the salt compositions of the groundwater and the reclaimed solonetzes was revealed.

  15. [Stable Isotopes Characters of Soil Water Movement in Shijiazhuang City].

    PubMed

    Chen, Tong-tong; Chen, Hui; Han, Lu; Xing, Xing; Fu, Yang-yang

    2015-10-01

    In this study, we analyzed the stable hydrogen and oxygen isotope values of precipitation, soil water, irrigation water that collected in Shijiazhuang City from April 2013 to May 2014 to investigate the changing rule of the stable isotopes in different soil profiles and the process of soil water movement according to using the isotope tracer technique. The results showed that the mean excess deuterium of the local precipitation was -6.188 5 per thousand. Those reflected that the precipitation in Shijiazhuang City mainly brought by the monsoon from the ocean surface moisture, and also to some extent by the local evaporation. Precipitation was the main source of the soil water and the irrigation water played the supplementary role. In the rainy season, precipitation was enough to supply the soil water. The stable oxygen isotopes at 10-100 cm depth decreased with the increase of depth, the maximum depth of evaporation in the rainy season reached 40 cm. The peak of stable oxygen isotopes of soil water pushed down along the profile, which was infected by the interaction of the precipitation infiltration, evaporation and the mixing water.

  16. Responses of soil microbial activity to cadmium pollution and elevated CO2.

    PubMed

    Chen, Yi Ping; Liu, Qiang; Liu, Yong Jun; Jia, Feng An; He, Xin Hua

    2014-03-06

    To address the combined effects of cadmium (Cd) and elevated CO2 on soil microbial communities, DGGE (denaturing gradient gel electrophoresis) profiles, respiration, carbon (C) and nitrogen (N) concentrations, loessial soils were exposed to four levels of Cd, i.e., 0 (Cd0), 1.5 (Cd1.5), 3.0 (Cd3.0) and 6.0 (Cd6.0) mg Cd kg(-1) soil, and two levels of CO2, i.e., 360 (aCO2) and 480 (eCO2) ppm. Compared to Cd0, Cd1.5 increased fungal abundance but decreased bacterial abundance under both CO2 levels, whilst Cd3.0 and Cd6.0 decreased both fungal and bacterial abundance. Profiles of DGGE revealed alteration of soil microbial communities under eCO2. Soil respiration decreased with Cd concentrations and was greater under eCO2 than under aCO2. Soil total C and N were greater under higher Cd. These results suggest eCO2 could stimulate, while Cd pollution could restrain microbial reproduction and C decomposition with the restraint effect alleviated by eCO2.

  17. Nitrous Oxide Reductase (nosZ) Gene Fragments Differ between Native and Cultivated Michigan Soils

    PubMed Central

    Stres, Blaž; Mahne, Ivan; Avguštin, Gorazd; Tiedje, James M.

    2004-01-01

    The effect of standard agricultural management on the genetic heterogeneity of nitrous oxide reductase (nosZ) fragments from denitrifying prokaryotes in native and cultivated soil was explored. Thirty-six soil cores were composited from each of the two soil management conditions. nosZ gene fragments were amplified from triplicate samples, and PCR products were cloned and screened by restriction fragment length polymorphism (RFLP). The total nosZ RFLP profiles increased in similarity with soil sample size until triplicate 3-g samples produced visually identical RFLP profiles for each treatment. Large differences in total nosZ profiles were observed between the native and cultivated soils. The fragments representing major groups of clones encountered at least twice and four randomly selected clones with unique RFLP patterns were sequenced to verify nosZ identity. The sequence diversity of nosZ clones from the cultivated field was higher, and only eight patterns were found in clone libraries from both soils among the 182 distinct nosZ RFLP patterns identified from the two soils. A group of clones that comprised 32% of all clones dominated the gene library of native soil, whereas many minor groups were observed in the gene library of cultivated soil. The 95% confidence intervals of the Chao1 nonparametric richness estimator for nosZ RFLP data did not overlap, indicating that the levels of species richness are significantly different in the two soils, the cultivated soil having higher diversity. Phylogenetic analysis of deduced amino acid sequences grouped the majority of nosZ clones into an interleaved Michigan soil cluster whose cultured members are α-Proteobacteria. Only four nosZ sequences from cultivated soil and one from the native soil were related to sequences found in γ-Proteobacteria. Sequences from the native field formed a distinct, closely related cluster (Dmean = 0.16) containing 91.6% of the native clones. Clones from the cultivated field were more distantly related to each other (Dmean = 0.26), and 65% were found outside of the cluster from the native soil, further indicating a difference in the two communities. Overall, there appears to be a relationship between use and richness, diversity, and the phylogenetic position of nosZ sequences, indicating that agricultural use of soil caused a shift to a more diverse denitrifying community. PMID:14711656

  18. A numerical model for the movement of H 2O, H 218O, and 2HHO in the unsaturated zone

    NASA Astrophysics Data System (ADS)

    Shurbaji, Abdel-Rahman M.; Phillips, Fred M.

    1995-09-01

    Vertical profiles of H 218O and 2HHO concentrations have yielded useful information on evaporation and infiltration processes in soils. However, in the field, quantitative interpretation of such profiles has been limited by the restrictions inherent in the quasi-steady-state and transient analytical models available to describe the physical processes. This study presents a flexible numerical model that simulates transient fluxes of heat, liquid water, water vapor, and isotopic species. The model can simulate both infiltration and evaporation under fluctuating meteorological conditions and thus should be useful in reproducing changes in field isotope profiles. A transition factor is introduced in the isotope transport equation. This factor combines hydrologic and isotopic parameters and changes slowly with depth in the soil profile but strongly in the evaporation zone, owing to the rapid change in the dominant phase of water from liquid to vapor. Using the transition factor in the isotope transport equation facilitates obtaining the typical shape of the isotope profile (bulge at the evaporation zone). This factor also facilitates producing broad isotope enrichment peaks that may be seen in very dry soils.

  19. Developing High-resolution Soil Database for Regional Crop Modeling in East Africa

    NASA Astrophysics Data System (ADS)

    Han, E.; Ines, A. V. M.

    2014-12-01

    The most readily available soil data for regional crop modeling in Africa is the World Inventory of Soil Emission potentials (WISE) dataset, which has 1125 soil profiles for the world, but does not extensively cover countries Ethiopia, Kenya, Uganda and Tanzania in East Africa. Another dataset available is the HC27 (Harvest Choice by IFPRI) in a gridded format (10km) but composed of generic soil profiles based on only three criteria (texture, rooting depth, and organic carbon content). In this paper, we present a development and application of a high-resolution (1km), gridded soil database for regional crop modeling in East Africa. Basic soil information is extracted from Africa Soil Information Service (AfSIS), which provides essential soil properties (bulk density, soil organic carbon, soil PH and percentages of sand, silt and clay) for 6 different standardized soil layers (5, 15, 30, 60, 100 and 200 cm) in 1km resolution. Soil hydraulic properties (e.g., field capacity and wilting point) are derived from the AfSIS soil dataset using well-proven pedo-transfer functions and are customized for DSSAT-CSM soil data requirements. The crop model is used to evaluate crop yield forecasts using the new high resolution soil database and compared with WISE and HC27. In this paper we will present also the results of DSSAT loosely coupled with a hydrologic model (VIC) to assimilate root-zone soil moisture. Creating a grid-based soil database, which provides a consistent soil input for two different models (DSSAT and VIC) is a critical part of this work. The created soil database is expected to contribute to future applications of DSSAT crop simulation in East Africa where food security is highly vulnerable.

  20. Description and spatial inference of soil drainage using matrix soil colours in the Lower Hunter Valley, New South Wales, Australia

    PubMed Central

    McBratney, Alex B.; Minasny, Budiman

    2018-01-01

    Soil colour is often used as a general purpose indicator of internal soil drainage. In this study we developed a necessarily simple model of soil drainage which combines the tacit knowledge of the soil surveyor with observed matrix soil colour descriptions. From built up knowledge of the soils in our Lower Hunter Valley, New South Wales study area, the sequence of well-draining → imperfectly draining → poorly draining soils generally follows the colour sequence of red → brown → yellow → grey → black soil matrix colours. For each soil profile, soil drainage is estimated somewhere on a continuous index of between 5 (very well drained) and 1 (very poorly drained) based on the proximity or similarity to reference soil colours of the soil drainage colour sequence. The estimation of drainage index at each profile incorporates the whole-profile descriptions of soil colour where necessary, and is weighted such that observation of soil colour at depth and/or dominantly observed horizons are given more preference than observations near the soil surface. The soil drainage index, by definition disregards surficial soil horizons and consolidated and semi-consolidated parent materials. With the view to understanding the spatial distribution of soil drainage we digitally mapped the index across our study area. Spatial inference of the drainage index was made using Cubist regression tree model combined with residual kriging. Environmental covariates for deterministic inference were principally terrain variables derived from a digital elevation model. Pearson’s correlation coefficients indicated the variables most strongly correlated with soil drainage were topographic wetness index (−0.34), mid-slope position (−0.29), multi-resolution valley bottom flatness index (−0.29) and vertical distance to channel network (VDCN) (0.26). From the regression tree modelling, two linear models of soil drainage were derived. The partitioning of models was based upon threshold criteria of VDCN. Validation of the regression kriging model using a withheld dataset resulted in a root mean square error of 0.90 soil drainage index units. Concordance between observations and predictions was 0.49. Given the scale of mapping, and inherent subjectivity of soil colour description, these results are acceptable. Furthermore, the spatial distribution of soil drainage predicted in our study area is attuned with our mental model developed over successive field surveys. Our approach, while exclusively calibrated for the conditions observed in our study area, can be generalised once the unique soil colour and soil drainage relationship is expertly defined for an area or region in question. With such rules established, the quantitative components of the method would remain unchanged. PMID:29682425

  1. Description and spatial inference of soil drainage using matrix soil colours in the Lower Hunter Valley, New South Wales, Australia.

    PubMed

    Malone, Brendan P; McBratney, Alex B; Minasny, Budiman

    2018-01-01

    Soil colour is often used as a general purpose indicator of internal soil drainage. In this study we developed a necessarily simple model of soil drainage which combines the tacit knowledge of the soil surveyor with observed matrix soil colour descriptions. From built up knowledge of the soils in our Lower Hunter Valley, New South Wales study area, the sequence of well-draining → imperfectly draining → poorly draining soils generally follows the colour sequence of red → brown → yellow → grey → black soil matrix colours. For each soil profile, soil drainage is estimated somewhere on a continuous index of between 5 (very well drained) and 1 (very poorly drained) based on the proximity or similarity to reference soil colours of the soil drainage colour sequence. The estimation of drainage index at each profile incorporates the whole-profile descriptions of soil colour where necessary, and is weighted such that observation of soil colour at depth and/or dominantly observed horizons are given more preference than observations near the soil surface. The soil drainage index, by definition disregards surficial soil horizons and consolidated and semi-consolidated parent materials. With the view to understanding the spatial distribution of soil drainage we digitally mapped the index across our study area. Spatial inference of the drainage index was made using Cubist regression tree model combined with residual kriging. Environmental covariates for deterministic inference were principally terrain variables derived from a digital elevation model. Pearson's correlation coefficients indicated the variables most strongly correlated with soil drainage were topographic wetness index (-0.34), mid-slope position (-0.29), multi-resolution valley bottom flatness index (-0.29) and vertical distance to channel network (VDCN) (0.26). From the regression tree modelling, two linear models of soil drainage were derived. The partitioning of models was based upon threshold criteria of VDCN. Validation of the regression kriging model using a withheld dataset resulted in a root mean square error of 0.90 soil drainage index units. Concordance between observations and predictions was 0.49. Given the scale of mapping, and inherent subjectivity of soil colour description, these results are acceptable. Furthermore, the spatial distribution of soil drainage predicted in our study area is attuned with our mental model developed over successive field surveys. Our approach, while exclusively calibrated for the conditions observed in our study area, can be generalised once the unique soil colour and soil drainage relationship is expertly defined for an area or region in question. With such rules established, the quantitative components of the method would remain unchanged.

  2. Soil carbon dynamics of tree plantings for woody biomass feedstock

    USDA-ARS?s Scientific Manuscript database

    Agroforestry practices are being considered for their bioenergy potential as the wood could be harvested for direct combustion, cellulose to ethanol conversion, or pyrolysis to bio-oils. The objective of this project was to use spatially-distributed soil sampling and soil profile descriptions to det...

  3. Geophysical Sensing Applications on Claypan Soils

    USDA-ARS?s Scientific Manuscript database

    Maps of apparent electrical conductivity (ECa) of the soil profile are widely used in precision agriculture practice and research. A number of ECa sensors are commercially available, each with a unique response function (i.e., the relative contribution of soil at each depth to the integrated ECa rea...

  4. Comparison of two spectrometers for profile soil carbon sensing

    USDA-ARS?s Scientific Manuscript database

    Visible and near-infrared reflectance spectroscopy satisfies the need for speed and precision in estimation of soil carbon and other soil properties. Previous work has established accuracy of the method, with much of the reported research done using bench spectrometers from a single manufacturer. Ho...

  5. Characterizing the Soil Ecology of Red Raspberry Produced under Different Production Regimes

    USDA-ARS?s Scientific Manuscript database

    Soil and rhizosphere ecology play important roles in plant health and development. Using culture-independent microbial community profiling, we investigated the effects of fertilizer (composted dairy solids + mustard seed meal) on fungal communities in soil and endophytic in a raspberry production sy...

  6. 40 CFR 265.280 - Closure and post-closure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., including amount, frequency, and pH of precipitation; (5) Geological and soil profiles and surface and subsurface hydrology of the site, and soil characteristics, including cation exchange capacity, total organic..., concentration, and depth of migration of hazardous waste constituents in the soil as compared to their...

  7. 40 CFR 265.280 - Closure and post-closure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., including amount, frequency, and pH of precipitation; (5) Geological and soil profiles and surface and subsurface hydrology of the site, and soil characteristics, including cation exchange capacity, total organic..., concentration, and depth of migration of hazardous waste constituents in the soil as compared to their...

  8. 40 CFR 265.280 - Closure and post-closure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., including amount, frequency, and pH of precipitation; (5) Geological and soil profiles and surface and subsurface hydrology of the site, and soil characteristics, including cation exchange capacity, total organic..., concentration, and depth of migration of hazardous waste constituents in the soil as compared to their...

  9. 40 CFR 265.280 - Closure and post-closure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., including amount, frequency, and pH of precipitation; (5) Geological and soil profiles and surface and subsurface hydrology of the site, and soil characteristics, including cation exchange capacity, total organic..., concentration, and depth of migration of hazardous waste constituents in the soil as compared to their...

  10. 40 CFR 265.280 - Closure and post-closure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., including amount, frequency, and pH of precipitation; (5) Geological and soil profiles and surface and subsurface hydrology of the site, and soil characteristics, including cation exchange capacity, total organic..., concentration, and depth of migration of hazardous waste constituents in the soil as compared to their...

  11. Chemical indicators of cryoturbation and microbial processing throughout an alaskan permafrost soil depth profile

    USDA-ARS?s Scientific Manuscript database

    Although permafrost soils contain vast stores of carbon, we know relatively little about the chemical composition of their constituent organic matter. Soil organic matter chemistry is an important predictor of decomposition rates, especially in the initial stages of decomposition. Permafrost, organi...

  12. Estimation of bare soil evaporation for different depths of water table in the wind-blown sand area of the Ordos Basin, China

    NASA Astrophysics Data System (ADS)

    Chen, Li; Wang, Wenke; Zhang, Zaiyong; Wang, Zhoufeng; Wang, Qiangmin; Zhao, Ming; Gong, Chengcheng

    2018-04-01

    Soil surface evaporation is a significant component of the hydrological cycle, occurring at the interface between the atmosphere and vadose zone, but it is affected by factors such as groundwater level, soil properties, solar radiation and others. In order to understand the soil evaporation characteristics in arid regions, a field experiment was conducted in the Ordos Basin, central China, and high accuracy sensors of soil moisture, moisture potential and temperature were installed in three field soil profiles with water-table depths (WTDs) of about 0.4, 1.4 and 2.2 m. Soil-surface-evaporation values were estimated by observed data combined with Darcy's law. Results showed that: (1) soil-surface-evaporation rate is linked to moisture content and it is also affected by air temperature. When there is sufficient moisture in the soil profile, soil evaporation increases with rising air temperature. For a WTD larger than the height of capillary rise, the soil evaporation is related to soil moisture content, and when air temperature is above 25 °C, the soil moisture content reduces quickly and the evaporation rate lowers; (2) phreatic water contributes to soil surface evaporation under conditions in which the WTD is within the capillary fringe. This indicates that phreatic water would not participate in soil evaporation for a WTD larger than the height of capillary rise. This finding developed further the understanding of phreatic evaporation, and this study provides valuable information on recognized soil evaporation processes in the arid environment.

  13. Spatial and vertical distribution of soil physico-chemical properties and the content of heavy metals in the pedosphere in Poland

    Treesearch

    Marek Degorski

    1998-01-01

    The lithological and petrographical characteristics of soil pedogenesis was determined, and the spatial and vertical distribution of some soil physico-chemical properties (including heavy metal content) were studied along two transects in Poland. The genetic horizon for 22 soil profiles were described for particle size and petrographic composition, quartz grain...

  14. Comparison of tillage equipment for improving soil conditions and root health in bareroot nurseries

    Treesearch

    Jennifer Juzwik; Kathryn Kromroy; Raymond Allmaras

    2002-01-01

    Two series of trials were conducted in northern bareroot forest nurseries to determine: 1) the effects of different incorporation implements and two chemical application rates on the efficacy of dazomet fumigation; and 2) soil penetration resistance in the vertical soil profile following sub-soiling by two different implements. When target pests were located > 18 cm...

  15. Comparison of Tillage for Improving Soil Conditions and Root Health in Barefoot Nurseries

    Treesearch

    Jennifer Juzwik; Kathryn Kromroy; Raymond Allmaras

    2002-01-01

    Two series of trials were conducted in northern bareroot forest nurseries to determine: 1) the effects of different incorporation implements and two chemical application rates on the efficacy of dazomet fumigation; and 2) soil penetration resistance in the vertical soil profile following sub-soiling by two different implements. When target pests were located > 18 cm...

  16. Changes in Soil Organic Carbon and Nitrogen as a Result of Cultivation

    DOE Data Explorer

    Post, Wilfred M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mann, L. K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2005-01-01

    We assembed and analyzed a data base of soil organic carbon and nitrogen information from over 1100 profiles in order to explore factors related to the changes in storage of soil organic matter resulting from land conversion. The relationship between cultivated and uncultivated organic carbon and nitrogen storage in soils can be described by regression lines with uncultivated storage on the abscissa, and cultivated storage on the ordinate. The slope of the regression lines is less than 1 indicating that the amount of carbon or nitrogen lost is an increasing fraction of the intial amount stored in the soil. Average carbon loss for soils with high initial carbon is 23% for 1-meter depth. Average nitrogen loss for the same depth is 6%. In addition, for soils with very low uncultivated carbon or nitrogen storage, cultivation results in increases in storage. In soils with the same uncultivated carbon contents, profiles with higher C:N ratios lost more carbon than those with low C:N ratios, suggesting that decomposition of organic matter may, in general, be more limited by microbial ability to break carbon bonds than by nitrogen deficiency.

  17. Detection of decomposition volatile organic compounds in soil following removal of remains from a surface deposition site.

    PubMed

    Perrault, Katelynn A; Stefanuto, Pierre-Hugues; Stuart, Barbara H; Rai, Tapan; Focant, Jean-François; Forbes, Shari L

    2015-09-01

    Cadaver-detection dogs use volatile organic compounds (VOCs) to search for human remains including those deposited on or beneath soil. Soil can act as a sink for VOCs, causing loading of decomposition VOCs in the soil following soft tissue decomposition. The objective of this study was to chemically profile decomposition VOCs from surface decomposition sites after remains were removed from their primary location. Pig carcasses were used as human analogues and were deposited on a soil surface to decompose for 3 months. The remains were then removed from each site and VOCs were collected from the soil for 7 months thereafter and analyzed by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS). Decomposition VOCs diminished within 6 weeks and hydrocarbons were the most persistent compound class. Decomposition VOCs could still be detected in the soil after 7 months using Principal Component Analysis. This study demonstrated that the decomposition VOC profile, while detectable by GC×GC-TOFMS in the soil, was considerably reduced and altered in composition upon removal of remains. Chemical reference data is provided by this study for future investigations of canine alert behavior in scenarios involving scattered or scavenged remains.

  18. Activity and diversity of methane-oxidizing bacteria in glacier forefields on siliceous and calcareous bedrock

    NASA Astrophysics Data System (ADS)

    Nauer, P. A.; Dam, B.; Liesack, W.; Zeyer, J.; Schroth, M. H.

    2012-01-01

    The global methane (CH4) cycle is largely driven by methanogenic archaea and methane-oxidizing bacteria (MOB), but little is known about their activity and diversity in pioneer ecosystems. We conducted a field survey in forefields of 13 receding Swiss glaciers on both siliceous and calcareous bedrock to investigate and quantify CH4 turnover based on soil-gas CH4 concentration profiles, and to characterize MOB communities using pmoA sequencing and T-RFLP. Methane turnover was fundamentally different in the two bedrock categories. Of the 36 CH4 concentration profiles from siliceous locations, 11 showed atmospheric CH4 consumption at concentrations of ∼1-2 μl l-1 with soil-atmosphere CH4 fluxes of -0.14 to -1.1 mg m-2 d-1. Another 11 profiles showed no apparent activity, while the remaining 14 exhibited slightly increased CH4 concentrations of ∼2-10 μl l-1, most likely due to microsite methanogenesis. In contrast, all profiles from calcareous sites suggested a substantial, yet unknown CH4 source below our sampling zone, with soil-gas CH4 concentrations reaching up to 1400 μl l-1. Remarkably, most soils oxidized ∼90% of the deep-soil CH4, resulting in soil-atmosphere fluxes of 0.12 to 31 mg m-2 d-1. MOB showed limited diversity in both siliceous and calcareous forefields: all identified pmoA sequences formed only 5 OTUs and, with one exception, could be assigned to either Methylocystis or the as-yet-uncultivated Upland Soil Cluster γ (USCγ). The latter dominated T-RFLP patterns of all siliceous and most calcareous samples, while Methylocystis dominated in 4 calcareous samples. As Type I MOB are widespread in cold climate habitats with elevated CH4 concentrations, USCγ might be the corresponding Type I MOBs in habitats exposed to near-atmospheric CH4 concentrations.

  19. Seeing the soil through the net: an eye-opener on the soil map of the Flemish region (Belgium)

    NASA Astrophysics Data System (ADS)

    Dondeyne, Stefaan; Vanierschot, Laura; Langohr, Roger; Van Ranst, Eric; Deckers, Jozef; Oorts, Katrien

    2017-04-01

    A systematic soil survey of Belgium was conducted from 1948 to 1991. Field surveys were done at the detailed scale of 1:5000 with the final maps published at a 1:20,000 scale. The legend of these detailed soil maps (scale 1:20,000) has been converted to the 3rd edition of the international soil classification system 'World Reference Base for Soil Resources' (WRB). Over the last years, the government of the Flemish region made great efforts to make these maps, along with other environmental data, available to the general audience through the internet. The soil maps are widely used and consulted by researchers, teachers, land-use planners, environmental consultancy agencies and archaeologists. The maps can be downloaded and consulted in the viewer 'Visual Soil Explorer' ('Bodemverkenner'). To increase the legibility of the maps, we assembled a collection of photographs from soil profiles representing 923 soil types and 413 photos of related landscape settings. By clicking on a specific location in the 'Visual Soil Explorer', pictures of the corresponding soil type and landscape appear in a pop-up window, with a brief explanation about the soil properties. The collection of photographs of soil profiles cover almost 80% of the total area of the Flemish region, and include the 100 most common soil types. Our own teaching experience shows that these information layers are particular valuable for teaching soil geography and earth sciences in general. Overall, such visual information layers should contribute to a better interpretation of the soil maps and legacy soil data by serving as an eye-opener on the soil map to the wider community.

  20. Infiltration Processes and Flow Velocities Across the Landscape: When and Where is Macropore Flow Relevant?

    NASA Astrophysics Data System (ADS)

    Demand, D.; Blume, T.; Weiler, M.

    2017-12-01

    Preferential flow in macropores significantly affects the distributions of water and solutes in soil and many studies showed its relevance worldwide. Although some models include this process as a second pore domain, little is known about the spatial patterns and temporal dynamics. For example, while flow in the matrix is usually modeled and parameterized based on soil texture, an influence of texture on non-capillary flow for a given land-use class is poorly understood. To investigate the temporal and spatial dynamics on preferential flow we used a four-year soil moisture dataset from the mesoscale Attert catchment (288 km²) in Luxembourg. This dataset contains time series from 126 soil profiles in different textures and two land-use classes (forest, grassland). The soil moisture probes were installed in 10, 30 and 50 cm depth and measured in a 5-minute temporal resolution. Events were defined by a soil moisture increase higher than the instrument noise after a precipitation sum of more than 1 mm. Precipitation was measured next to the profiles so that each location could be associated to its unique precipitation characteristics. For every event and profile the soil moisture reaction was classified in sequential (ordered by depth) and non-sequential response. A non-sequential soil moisture reaction was used as an indicator of preferential flow. For sequential flow, the velocity was determined by the first reaction between two vertically adjacent sensors. The sensor reaction and wetting front velocity was analyzed in the context of precipitation characteristics and initial soil water content. Grassland sites showed a lower proportion of non-sequential flow than forest sites. For forest, non-sequential response is dependent on texture, rainfall intensity and initial water content. This is less distinct for the grassland sites. Furthermore, sequential reactions show higher flow velocities at sites, which also have high percentage of non-sequential response. In contrast, grassland sites show a more homogenous wetting front independent of soil texture. Compared against common modelling approaches of soil water flow, measured velocities show clear evidence of preferential flow, especially for forest soils. The analysis also shows that vegetation can alter the soil properties above the textural properties alone.

  1. Chernozems microbial community under anthropogenic impact (Russia)

    NASA Astrophysics Data System (ADS)

    Ivashchenko, Kristina; Ananyeva, Nadezhda; Sushko, Sofia; Vasenev, Viacheslav

    2017-04-01

    Chernozems is important natural resource, which in the last decade under intense influence as a result of plowing and urbanization. The parameters of soil microbial community functioning might be identify some soil deterioration under the impacts. Our research was focused on assessment of microbial community status in different soil layers of virgin steppe, bare fallow and urban ecosystems (Kursk region). In each ecosystem, we chose randomly 3-5 spatially distributed sites, where soil samples were collected by auguring up to 0.5 m depth (each layer 10 cm thickness) and up to 1.5 m depth (0-10, 10-50, 50-100, 100-150 cm layers), totally 127 samples. The bulk density was measured for these soil layers. In all soil samples the microbial biomass carbon content (Cmic) was analyzed by substrate-induced respiration (SIR) method and basal respiration (BR) was assessed by CO2 rate production. The fungi-to-bacteria ratio (selective inhibition technique with antibiotics) was determined and portion of Cmic in soil organic carbon (Corg) content was calculated in topsoil (0-10 cm). The Corg (dichromate oxidation) and pHw (potentiometry) values were measured. The Cmic and BR profile pools were calculated using bulk density and thickness of studied layers. The Cmic (0-10 cm) was varied from 84 to 1954 µg C g-1 soil, in steppe it was on average 3-4 times higher than those in bare fallow and urban. The BR rate was amounted from 0.20 to 1.57 µg CO2-C g-1 soil h-1, however no significant difference between studied ecosystems was found. It was shown the relationship between Cmic, BR and Corg (the linear regression, R2=0.92 and 0.75, respectively, p<0.05). The Cmic / Corg ratio in steppe was on average 3.3%, it was significantly higher those bare fallow and urban (1.6 and 0.7%, respectively). The fungi-to-bacteria ratio was decreased along ecosystems row: virgin steppe>bare fallow>urban, and it was on average 6.0, 5.2 and 1.8, respectively. The Cmic profile pool (0.5 m) of steppe was reached up on average 206 g C m-2, and it was 2.0 and 2.5 times higher those bare fallow and urban, respectively. The BR profile pool (0.5 m) in steppe and bare fallow was reached up 5.9 and 5.8 g CO2-C m-2 d-1, respectively, it was on average 2 times higher urban. The Cmic profile pool (1.5 m) in steppe was amounted to 372 g C m-2, and it was essentially higher those in bare fallow and urban (138 and 140 g C m-2, respectively). The BR profile pool (1.5 m) was also decreased along ecosystems row: steppe> fallow>urban, and it was on average 13.0, 8.0 and 5.6 g CO2-C m-2 d-1, respectively. Thus, we found a significant decreasing soil microbial biomass content, its portion in soil Corg, fungi content, and the Cmic and BR profile pools along Chernozems' ecosystems gradient from natural (virgin steppe) to anthropogenically transformed (bare fallow, urban). It might be illustrated some deterioration of soil microbial community functioning under plowing and urbanization. This research was supported by RFBR grants Nos. 15-04-00915 and 16-34-00398

  2. Root development of winter wheat in erosion-affected soils depending on the position in a hummocky ground moraine soil landscape

    NASA Astrophysics Data System (ADS)

    Herbrich, Marcus; Gerke, Horst H.; Sommer, Michael

    2017-04-01

    The soil water uptake by crops is a key process in the hydrological cycle of agricultural ecosystems. In the arable hummocky ground moraines soil landscapes, an erosion-induced spatial differentiation of soil types has been established due to water and tillage erosion. Crop development may reflect soil landscape patterns and erosion-induced soil profile modifications, respectively, by increased or reduced plant and root growth. The objective was analyze field data of the root density and the root lengths of winter wheat for a non-eroded reference soil at the plateau (Albic Luvisol), an extremely eroded soil at steep midslope (Calcaric Regosol), and depositional soil at the footslope (Colluvic Regosol) using the minirhizotron technique. From 9/14 to 8/15 results indicate that root density values were highest for the Colluvic Regosol, followed by the Albic Luvisol and lowest for the Calcaric Regosol. In turn, the lowest maximum root penetration depth was found in the Colluvic Regosol because of the relatively high and fluctuating water table at this landscape position. The analyzed field root data revealed positive relations to above-ground plant parameters and corroborated the hypothesis that the crop root system was reflecting erosion-induced soil profile modifications. When accounting for the position-specific root development, the simulation of water and solute movement suggested differences in the balances as compared to assuming a spatially uniform development.

  3. Fine Increment Soil Collector (FISC): A new device to support high resolution soil and sediment sampling for agri-environmental assessments

    NASA Astrophysics Data System (ADS)

    Mabit, Lionel; Meusburger, Katrin; Iurian, Andra-Rada; Owens, Philip N.; Toloza, Arsenio; Alewell, Christine

    2014-05-01

    Soil and sediment related research for terrestrial agri-environmental assessments requires accurate depth incremental sampling of soil and exposed sediment profiles. Existing coring equipment does not allow collecting soil/sediment increments at millimetre resolution. Therefore, the authors have designed an economic, portable, hand-operated surface soil/sediment sampler - the Fine Increment Soil Collector (FISC) - which allows extensive control of soil/sediment sampling process and easy recovery of the material collected by using a simple screw-thread extraction system. In comparison with existing sampling tools, the FISC has the following advantages and benefits: (i) it permits sampling of soil/sediment samples at the top of the profile; (ii) it is easy to adjust so as to collect soil/sediment at mm resolution; (iii) it is simple to operate by one single person; (iv) incremental samples can be performed in the field or at the laboratory; (v) it permits precise evaluation of bulk density at millimetre vertical resolution; and (vi) sample size can be tailored to analytical requirements. To illustrate the usefulness of the FISC in sampling soil and sediments for 7Be - a well-known cosmogenic soil tracer and fingerprinting tool - measurements, the sampler was tested in a forested soil located 45 km southeast of Vienna in Austria. The fine resolution increments of 7Be (i.e. 2.5 mm) affects directly the measurement of the 7Be total inventory but above all impacts the shape of the 7Be exponential profile which is needed to assess soil movement rates. The FISC can improve the determination of the depth distributions of other Fallout Radionuclides (FRN) - such as 137Cs, 210Pbexand239+240Pu - which are frequently used for soil erosion and sediment transport studies and/or sediment fingerprinting. Such a device also offers great potential to investigate FRN depth distributions associated with fallout events such as that associated with nuclear emergencies. Furthermore, prior to remediation activities - such as topsoil removal - in contaminated soils and sediments (e.g. by heavy metals, pesticides or nuclear power plant accident releases), basic environmental assessment often requires the determination of the extent and the depth penetration of the different contaminants, precision that can be provided by using the FISC.

  4. Soil carbon sequestration by three perennial legume pastures is greater in deeper soil layers than in the surface soil

    NASA Astrophysics Data System (ADS)

    Guan, X.-K.; Turner, N. C.; Song, L.; Gu, Y.-J.; Wang, T.-C.; Li, F.-M.

    2016-01-01

    Soil organic carbon (SOC) plays a vital role as both a sink for and source of atmospheric carbon. Revegetation of degraded arable land in China is expected to increase soil carbon sequestration, but the role of perennial legumes on soil carbon stocks in semiarid areas has not been quantified. In this study, we assessed the effect of alfalfa (Medicago sativa L.) and two locally adapted forage legumes, bush clover (Lespedeza davurica S.) and milk vetch (Astragalus adsurgens Pall.) on the SOC concentration and SOC stock accumulated annually over a 2 m soil profile. The results showed that the concentration of SOC in the bare soil decreased slightly over the 7 years, while 7 years of legume growth substantially increased the concentration of SOC over the 0-2.0 m soil depth. Over the 7-year growth period the SOC stocks increased by 24.1, 19.9 and 14.6 Mg C ha-1 under the alfalfa, bush clover and milk vetch stands, respectively, and decreased by 4.2 Mg C ha-1 in the bare soil. The sequestration of SOC in the 1-2 m depth of the soil accounted for 79, 68 and 74 % of the SOC sequestered in the 2 m deep soil profile under alfalfa, bush clover and milk vetch, respectively. Conversion of arable land to perennial legume pasture resulted in a significant increase in SOC, particularly at soil depths below 1 m.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meharg, A.A.; Shore, R.F.; Broadgate, K.

    The toxicity and accumulation of arsenate was determined in the earthworm Lumbricus terrestris in soil from different layers of a forest profile. Toxicity increased fourfold between 2 and 10 d. Edaphic factors (pH, soil organic matter, and depth in soil profile) also affected toxicity with a three fold decrease in the concentration that causes 50% mortality with increasing depth in soil. In a 4-d exposure study, there was no evidence of arsenic bioconcentration in earthworm tissue, although bioaccumulation was occurring. There was a considerable difference in tissue residues between living and dead earthworms, with dead worms having higher concentrations. Thismore » difference was dependent on both soil arsenate concentration and on soil type. Over a wide range of soil arsenate concentrations, earthworm arsenic residues are homeostatically maintained in living worms, but this homeostasis breaks down during death. Alternatively, equilibration with soil residues may occur via accumulation after death. In long-term accumulation studies in soils dosed with a sublethal arsenate concentration, bioconcentration of arsenate did not occur until day 12, after which earthworm concentrations rose steadily above the soil concentration, with residues in worms three fold higher than soil concentrations by the termination of the study. This bioconcentration only occurred in depurated worms over the time period of the study. Initially, depurated worms had lower arsenic concentrations than undepurated until tissue concentrations were equivalent to the soil concentration. Once tissue concentration was greater than soil concentration, depurated worms had higher arsenic residues than undepurated.« less

  6. Soil life in reconstructed ecosystems: Initial soil food web responses after rebuilding a forest soil profile for a climate change experiment

    EPA Science Inventory

    Disrupting ecosystem components, while transferring and reconstructing them for experiments can produce myriad responses. Establishing the extent of these biological responses as the system approaches a new equilibrium allows us more reliably to emulate comparable native systems....

  7. Profiling soil water content sensor

    USDA-ARS?s Scientific Manuscript database

    A waveguide-on-access-tube (WOAT) sensor system based on time domain reflectometry (TDR) principles was developed to sense soil water content and bulk electrical conductivity in 20-cm (8 inch) deep layers from the soil surface to depths of 3 m (10 ft) (patent No. 13/404,491 pending). A Cooperative R...

  8. Special Section: Soil Ecology and Restoration Ecology

    Treesearch

    M.A. Callaham

    2008-01-01

    Sediments left behind in this dewatered reservoir in Wisconsin, USA, have different physical, chemical, and spatial characteristics than the soils they buried, a potential challenge for restoration (upper left, photo: Nick Balster). The soil profile shows effects of land-use history at the Calhoun Experimental Forest in South Carolina, USA.

  9. Microbial community-level physiological profiling based on O2 consumption as an indicator of nitrogen status of agricultural soils

    USDA-ARS?s Scientific Manuscript database

    Nitrogen-limited soil microbial activity has important implications for soil carbon storage and nutrient availability, but previous methods for assessing resource limitation have been restricted, due to enrichment criteria (i.e., long incubation periods, high substrate amendments) and/or logistical ...

  10. Site-specific cotton management: Soil measurements

    USDA-ARS?s Scientific Manuscript database

    oil variability within fields has a large effect on crop growth and yield, often due to variations in soil texture and water holding capacity. This is particularly true in the alluvial soils of the Mississippi Delta, where profile sand contents can range from 20% to 90% within a field. Variable-rate...

  11. Water Storage and Related Physical Characteristics of Four Mineral Soils in North Central Minnesota

    Treesearch

    E. S. Verry

    1969-01-01

    Soil water storage in a 7.5 foot profile varied nearly 100 percent (7.9 to 15.5 inches) among four mineral soils ranging from a sand to sandy loam. Bulk density, size fractions, and four water retention values are tabulated for each horizon.

  12. Working with Soil - Soil science in the field

    NASA Astrophysics Data System (ADS)

    Hannam, Jacqueline; Lacelles, Bruce; Owen, Jason; Thompson, Dick; Jones, Bob; Towers, Willie

    2015-04-01

    Working with Soil is the Professional Competency Scheme developed by the British Society of Soil Science's Professional Practice Committee, formerly the Institute of Professional Soil Scientists. Ten competency documents cover the required qualifications, skills and knowledge for different aspects of applied soil science. The Society is currently engaged in a five year plan to translate the competency documents into a comprehensive set of training courses. Foundation skills in field-based science are covered by three separate training courses - Exposing and describing a soil profile (Course 1), Soil classification (Course 2), and Soil survey techniques (Course 3). Course 1 has run successfully twice a year since 2013. The other two courses are under development and are scheduled to start in 2015. The primary objective of Foundation Skills Course 1 is to develop confidence and familiarity with field soil investigation and description, understanding the soil underfoot and putting soils into a wider landscape context. Delegates excavate a soil profile pit, and describe and sample the exposed soil to standard protocols. Delegates work in teams of 4 or 5 so that an element of shared learning is part of the process. This has been a very positive aspect of the courses we have run to date. The course has attracted professionals from agricultural and environmental consultancies but is also very popular with research students and has formed a part of an Advanced Training Programme in Soil Science for postgraduates. As there is only one soil science degree course remaining in the UK, many students on their admission do not have a background in field-based pedology and lack an understanding of soil in the context of landscape scale soil functions. Feedback to date has been very positive.

  13. Modelling Soil Heat and Water Flow as a Coupled Process in Land Surface Models

    NASA Astrophysics Data System (ADS)

    García González, Raquel; Verhoef, Anne; Vidale, Pier Luigi; Braud, Isabelle

    2010-05-01

    To improve model estimates of soil water and heat flow by land surface models (LSMs), in particular in the first few centimetres of the near-surface soil profile, we have to consider in detail all the relevant physical processes involved (see e.g. Milly, 1982). Often, thermal and iso-thermal vapour fluxes in LSMs are neglected and the simplified Richard's equation is used as a result. Vapour transfer may affect the water fluxes and heat transfer in LSMs used for hydrometeorological and climate simulations. Processes occurring in the top 50 cm soil may be relevant for water and heat flux dynamics in the deeper layers, as well as for estimates of evapotranspiration and heterotrophic respiration, or even for climate and weather predictions. Water vapour transfer, which was not incorporated in previous versions of the MOSES/JULES model (Joint UK Land Environment Simulator; Cox et al., 1999), has now been implemented. Furthermore, we also assessed the effect of the soil vertical resolution on the simulated soil moisture and temperature profiles and the effect of the processes occurring at the upper boundary, mainly in terms of infiltration rates and evapotranspiration. SiSPAT (Simple Soil Plant Atmosphere Transfer Model; Braud et al., 1995) was initially used to quantify the changes that we expect to find when we introduce vapour transfer in JULES, involving parameters such as thermal vapour conductivity and diffusivity. Also, this approach allows us to compare JULES to a more complete and complex numerical model. Water vapour flux varied with soil texture, depth and soil moisture content, but overall our results suggested that water vapour fluxes change temperature gradients in the entire soil profile and introduce an overall surface cooling effect. Increasing the resolution smoothed and reduced temperature differences between liquid (L) and liquid/vapour (LV) simulations at all depths, and introduced a temperature increase over the entire soil profile. Thermal gradients rather than soil water potential gradients seem to cause temporal and spatial (vertical) soil temperature variability. We conclude that a multi-soil layer configuration may improve soil water dynamics, heat transfer and coupling of these processes, as well as evapotranspiration estimates and land surface-atmosphere coupling. However, a compromise should be reached between numerical and process-simulation aspects. References: Braud I., A.C. Dantas-Antonino, M. Vauclin, J.L. Thony and P. Ruelle, 1995b: A Simple Soil Plant Atmo- sphere Transfer model (SiSPAT), Development and field verification, J. Hydrol, 166: 213-250 Cox, P.M., R.A. Betts, C.B. Bunton, R.L.H. Essery, P.R. Rowntree, and J. Smith (1999), The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim. Dyn., 15, 183-203. Milly, P.C.D., 1982. Moisture and heat transport in hysteric inhomogeneous porous media: a matric head- based formulation and a numerical model, Water Resour. Res., 18:489-498

  14. A soil catena on schist in northwestern California

    USGS Publications Warehouse

    Marron, D.C.; Popenoe, J.H.

    1986-01-01

    Soil characteristics in a small steepland watershed underlain by schist in a rainy, tectonically active area in northwestern California show close associations with drainage-basin position and slope characteristics. Five soil-topography units based on these associations are defined in the study watershed. Spatial relationships of soil series, and patterns of soil development as indicated by B-horizon clay content and redness, reflect interactions between pedogenesis and erosion. General soil-topography patterns include: (1) decreases in soil-development moving from low-order to higher-order stream vallyes; and (2) more developed soils on north-facing as opposed to south-facing slopes. Decreases in soil-profile development moving from slopes near low-order streams to slopes near higher-order streams approximately correlate with increases in gradient, vertical relief, and drainage density, and reflect a more vigorous stripping of regolith by erosion on the slopes near the higher-order streams. The larger percentage of area covered by the more developed soils on north-facing as opposed to south-facing slopes appears to reflect a contrast in the way dominant erosional processes interact with pedogenic processes. Roadcuts on middle and upper slopes show soil discontinuities indicative of disturbance by block slides or slumps or both. Roadcuts on lower slopes show disrupted soils in small bedrock hollows that could have been created by rapid, shallow landslides or by the pulled-up root wads of toppled trees. Soil-profile characteristics and soil-topography patterns in the study area demonstrate that both erosional and pedogenic processes need to be considered when interpreting characteristics of hillslope soils. ?? 1986.

  15. Stable carbon isotopes as an indicator for soil degradation in an alpine environment (Urseren Valley, Switzerland).

    PubMed

    Schaub, Monika; Alewell, Christine

    2009-05-01

    Analyses of soil organic carbon (SOC) content and stable carbon isotope signatures (delta(13)C) of soils were assessed for their suitability to detect early stage soil erosion. We investigated the soils in the alpine Urseren Valley (southern central Switzerland) which are highly impacted by soil erosion. Hill slope transects from uplands (cambisols) to adjacent wetlands (histosols and histic to mollic gleysols) differing in their intensity of visible soil erosion, and reference wetlands without erosion influence were sampled. Carbon isotopic signature and SOC content of soil depth profiles were determined. A close correlation of delta(13)C and carbon content (r > 0.80) is found for upland soils not affected by soil erosion, indicating that depth profiles of delta(13)C of these upland soils mainly reflect decomposition of SOC. Long-term disturbance of an upland soil is indicated by decreasing correlation of delta(13)C and SOC (r

  16. Effects of Agronomic Treatments on Structure and Function of Ammonia-Oxidizing Communities

    PubMed Central

    Phillips, Carol J.; Harris, Dave; Dollhopf, Sherry L.; Gross, Katherine L.; Prosser, James I.; Paul, Eldor A.

    2000-01-01

    The aim of this study was to determine the effects of different agricultural treatments and plant communities on the diversity of ammonia oxidizer populations in soil. Denaturing gradient gel electrophoresis (DGGE), coupled with specific oligonucleotide probing, was used to analyze 16S rRNA genes of ammonia oxidizers belonging to the β subgroup of the division Proteobacteria by use of DNA extracted from cultivated, successional, and native deciduous forest soils. Community profiles of the different soil types were compared with nitrification rates and most-probable-number (MPN) counts. Despite significant variation in measured nitrification rates among communities, there were no differences in the DGGE banding profiles of DNAs extracted from these soils. DGGE profiles of DNA extracted from samples of MPN incubations, cultivated at a range of ammonia concentrations, showed the presence of bands not amplified from directly extracted DNA. Nitrosomonas-like bands were seen in the MPN DNA but were not detected in the DNA extracted directly from soils. These bands were detected in some samples taken from MPN incubations carried out with medium containing 1,000 μg of NH4+-N ml−1, to the exclusion of bands detected in the native DNA. Cell concentrations of ammonia oxidizers determined by MPN counts were between 10- and 100-fold lower than those determined by competitive PCR (cPCR). Although no differences were seen in ammonia oxidizer MPN counts from the different soil treatments, cPCR revealed higher numbers in fertilized soils. The use of a combination of traditional and molecular methods to investigate the activities and compositions of ammonia oxidizers in soil demonstrates differences in fine-scale compositions among treatments that may be associated with changes in population size and function. PMID:11097922

  17. Weathering profiles in soils and rocks on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Hausrath, E.; Adcock, C. T.; Bamisile, T.; Baumeister, J. L.; Gainey, S.; Ralston, S. J.; Steiner, M.; Tu, V.

    2017-12-01

    Interactions of liquid water with rock, soil, or sediments can result in significant chemical and mineralogical changes with depth. These changes can include transformation from one phase to another as well as translocation, addition, and loss of material. The resulting chemical and mineralogical depth profiles can record characteristics of the interacting liquid water such as pH, temperature, duration, and abundance. We use a combined field, laboratory, and modeling approach to interpret the environmental conditions preserved in soils and rocks. We study depth profiles in terrestrial field environments; perform dissolution experiments of primary and secondary phases important in soil environments; and perform numerical modeling to quantitatively interpret weathering environments. In our field studies we have measured time-integrated basaltic mineral dissolution rates, and interpreted the impact of pH and temperature on weathering in basaltic and serpentine-containing rocks and soils. These results help us interpret fundamental processes occurring in soils on Earth and on Mars, and can also be used to inform numerical modeling and laboratory experiments. Our laboratory experiments provide fundamental kinetic data to interpret processes occurring in soils. We have measured dissolution rates of Mars-relevant phosphate minerals, clay minerals, and amorphous phases, as well as dissolution rates under specific Mars-relevant conditions such as in concentrated brines. Finally, reactive transport modeling allows a quantitative interpretation of the kinetic, thermodynamic, and transport processes occurring in soil environments. Such modeling allows the testing of conditions under longer time frames and under different conditions than might be possible under either terrestrial field or laboratory conditions. We have used modeling to examine the weathering of basalt, olivine, carbonate, phosphate, and clay minerals, and placed constraints on the duration, pH, and solution chemistry of past aqueous alteration occurring on Mars.

  18. Profile Changes in the Soil Microbial Community When Desert Becomes Oasis

    PubMed Central

    Li, Chen-hua; Tang, Li-song; Jia, Zhong-jun; Li, Yan

    2015-01-01

    The conversion of virgin desert into oasis farmland creates two contrasting types of land-cover. During oasis formation with irrigation and fertilizer application, however, the changes in the soil microbial population, which play critical roles in the ecosystem, remain poorly understood. We applied high-throughput pyrosequencing to investigate bacterial and archaeal communities throughout the profile (0–3 m) in an experimental field, where irrigation and fertilization began in 1990 and cropped with winter wheat since then. To assess the effects of cultivation, the following treatments were compared with the virgin desert: CK (no fertilizer), PK, NK, NP, NPK, NPKR, and NPKM (R: straw residue; M: manure fertilizer). Irrigation had a greater impact on the overall microbial community than fertilizer application. The greatest impact occurred in topsoil (0–0.2 m), e.g., Cyanobacteria (25% total abundance) were most abundant in desert soil, while Actinobacteria (26%) were most abundant in oasis soil. The proportions of extremophilic and photosynthetic groups (e.g., Deinococcus-Thermus and Cyanobacteria) decreased, while the proportions of R-strategy (e.g., Gammaproteobacteria including Xanthomonadales), nitrifying (e.g., Nitrospirae), and anaerobic bacteria (e.g., Anaerolineae) increased throughout the oasis profile. Archaea occurred only in oasis soil. The impact of fertilizer application was mainly reflected in the non-dominant communities or finer taxonomic divisions. Oasis formation led to a dramatic shift in microbial community and enhanced soil enzyme activities. The rapidly increased soil moisture and decreased salt caused by irrigation were responsible for this shift. Furthermore, difference in fertilization and crop growth altered the organic carbon contents in the soil, which resulted in differences of microbial communities within oasis. PMID:26426279

  19. Accumulation and leaching potential of some pharmaceuticals and potential endocrine disruptors in soils irrigated with wastewater in the Tula Valley, Mexico.

    PubMed

    Gibson, Richard; Durán-Álvarez, Juan C; Estrada, Karina León; Chávez, Alma; Jiménez Cisneros, Blanca

    2010-12-01

    The reuse of wastewater for irrigation of agricultural land is a well established practice but introduces many contaminants into the terrestrial environment including pharmaceuticals and personal care products. This study reports the persistence and leaching potential of a group of acidic pharmaceuticals, carbamazepine, and three endocrine disruptors in soils from the Tula Valley in Mexico, one of the largest irrigation districts in the world that uses untreated wastewater. After irrigation of soil columns with fortified wastewater over the equivalent of one crop cycle, between 0% and 7% of the total added amounts of ibuprofen, naproxen, and diclofenac and between 0% and 25% of 4-nonylphenol, triclosan, and bisphenol-A were recovered from the soil profiles. Carbamazepine was more persistent, between 55% and 107% being recovered. Amounts in leachates suggested that movement through the soil was possible for all of the analytes, particularly in profiles of low organic matter and clay content. Analysis of soil samples from the Tula Valley confirmed the general lack of accumulation of the acidic pharmaceuticals (concentrations from below the limit of detection to 0.61 μgkg(-1)) and endocrine disruptors (concentrations from below the limit of detection to 109 μgkg(-1)) despite continual addition through regular irrigation with untreated wastewater; there was little evidence of movement through the soil profiles. In contrast, carbamazepine was present in horizon A of the soil at concentrations equivalent to several years of additions by irrigation (2.6-7.5 μgkg(-1)) and was also present in the deeper horizons. The persistence and mobility of carbamazepine suggested a potential to contaminate groundwater. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Quantitative study on the fate of residual soil nitrate in winter wheat based on a 15N-labeling method.

    PubMed

    Zhang, Jing-Ting; Wang, Zhi-Min; Liang, Shuang-Bo; Zhang, Ying-Hua; Zhou, Shun-Li; Lu, Lai-Qing; Wang, Run-Zheng

    2017-01-01

    A considerable amount of surplus nitrogen (N), which primarily takes the form of nitrate, accumulates in the soil profile after harvesting crops from an intensive production system in the North China Plain. The residual soil nitrate (RSN) is a key factor that is included in the N recommendation algorithm. Quantifying the utilization and losses of RSN is a fundamental necessity for optimizing crop N management, improving N use efficiency, and reducing the impact derived from farmland N losses on the environment. In this study, a 15N-labeling method was introduced to study the fate of the RSN quantitatively during the winter wheat growing season by 15N tracer technique combined with a soil column study. A soil column with a 2 m height was vertically divided into 10 20-cm layers, and the RSN in each layer was individually labeled with a 15N tracer before the wheat was sown. The results indicated that approximately 17.68% of the crop N derived from RSN was located in the 0-2 m soil profile prior to wheat sowing. The wheat recovery proportions of RSN at various layers ranged from 0.21% to 33.46%. The percentages that still remained in the soil profile after the wheat harvest ranged from 47.08% to 75.44%, and 19.46-32.64% of the RSN was unaccounted for. Upward and downward movements in the RSN were observed, and the maximum upward and downward distances were 40 cm and 100 cm, respectively. In general, the 15N-labeling method contributes to a deeper understanding of the fates of the RSN. Considering the low crop recovery of the RSN from deep soil layers, water and N saving practices should be adopted during crop production.

  1. Sources and pathways of artificial radionuclides to soils at a High Arctic site.

    PubMed

    Lokas, E; Bartmiński, P; Wachniew, P; Mietelski, J W; Kawiak, T; Srodoń, J

    2014-11-01

    Activity concentrations, inventories and activity ratios of (137)Cs, (238)Pu, (239 + 240)Pu and (241)Am in soil profiles were surveyed in the dry tundra and the adjoining proglacial zones of glaciers at a High Arctic site on Svalbard. Vertical profiles of radionuclide activities were determined in up to 14-cm-thick soil sequences. Additionally, soil properties (pH, organic matter, texture, mineral composition and sorption capacity) were analyzed. Results obtained in this study revealed a large range of activity concentrations and inventories of the fallout radionuclides from the undetectable to the uncommonly high levels (inventories of 30,900 ± 940, 47 ± 6, 886 ± 80 and 296 ± 19 Bq/m(2) for (137)Cs, (238)Pu, (239 + 240)Pu and (241)Am, respectively) found in two profiles from the proglacial zone. Concentration of these initially airborne radionuclides in the proglacial zone soils is related to their accumulation in cryoconites that have a large ability to concentrate trace metals. The cryoconites develop on the surface of glaciers, and the material they accumulate is deposited on land surface after the glaciers retreat. The radionuclide inventories in the tundra soils, which effectively retain radionuclides due to high organic matter contents, were comparable to the global fallout deposition for this region of the world. The (238)Pu/(239 + 240)Pu activity ratios for tundra soils suggested global fallout as the dominant source of Pu. The (238)Pu/(239 + 240)Pu and (239 + 240)Pu/(137)Cs activity ratios in the proglacial soils pointed to possible contributions of these radionuclides from other, unidentified sources.

  2. Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants.

    PubMed

    Aboughalma, Hanssan; Bi, Ran; Schlaak, Michael

    2008-07-01

    The use of a combination of electrokinetic remediation and phytoremediation to decontaminate soil polluted with heavy metals has been demonstrated in a laboratory-scale experiment. Potato tubers were planted in plastic vessels filled with Zn, Pb, Cu and Cd contaminated soil and grown in a greenhouse. Three of these vessels were treated with direct current electric field (DC), three with alternative current (AC) and three remained untreated as control vessels. The soil pH varied from anode to cathode with a minimum of pH 3 near the anode and a maximum of pH 8 near the cathode in the DC treated soil profile. There was an accumulation of Zn, Cu and Cd at about 12 cm distance from anode when soil pH was 5 in the DC treated soil profile. There was no significant metal redistribution and pH variation between anode and cathode in the AC soil profile. The biomass production of the plants was 72% higher under AC treatment and 27% lower under DC treatment compared to the control. Metal accumulation was generally higher in the plant roots treated with electrical fields than the control. The overall metal uptake in plant shoots was lower under DC treatment compared to AC treatment and control, although there was a higher accumulation of Zn and Cu in the plant roots treated with electrical fields. The Zn uptake in plant shoots under AC treatment was higher compared to the control and DC treatment. Zn and Cu accumulation in the plant roots under AC and DC treatment was similar, and both were higher comparing to control. Cd content in plant roots under all three treatments was found to be higher than that in the soil. The Pb accumulation in the roots and the uptake into the shoots was lower compared to its content in the soil.

  3. Contrasting the microbiomes from forest rhizosphere and deeper bulk soil from an Amazon rainforest reserve.

    PubMed

    Fonseca, Jose Pedro; Hoffmann, Luisa; Cabral, Bianca Catarina Azeredo; Dias, Victor Hugo Giordano; Miranda, Marcio Rodrigues; de Azevedo Martins, Allan Cezar; Boschiero, Clarissa; Bastos, Wanderley Rodrigues; Silva, Rosane

    2018-02-05

    Pristine forest ecosystems provide a unique perspective for the study of plant-associated microbiota since they host a great microbial diversity. Although the Amazon forest is one of the hotspots of biodiversity around the world, few metagenomic studies described its microbial community diversity thus far. Understanding the environmental factors that can cause shifts in microbial profiles is key to improving soil health and biogeochemical cycles. Here we report a taxonomic and functional characterization of the microbiome from the rhizosphere of Brosimum guianense (Snakewood), a native tree, and bulk soil samples from a pristine Brazilian Amazon forest reserve (Cuniã), for the first time by the shotgun approach. We identified several fungi and bacteria taxon significantly enriched in forest rhizosphere compared to bulk soil samples. For archaea, the trend was the opposite, with many archaeal phylum and families being considerably more enriched in bulk soil compared to forest rhizosphere. Several fungal and bacterial decomposers like Postia placenta and Catenulispora acidiphila which help maintain healthy forest ecosystems were found enriched in our samples. Other bacterial species involved in nitrogen (Nitrobacter hamburgensis and Rhodopseudomonas palustris) and carbon cycling (Oligotropha carboxidovorans) were overrepresented in our samples indicating the importance of these metabolic pathways for the Amazon rainforest reserve soil health. Hierarchical clustering based on taxonomic similar microbial profiles grouped the forest rhizosphere samples in a distinct clade separated from bulk soil samples. Principal coordinate analysis of our samples with publicly available metagenomes from the Amazon region showed grouping into specific rhizosphere and bulk soil clusters, further indicating distinct microbial community profiles. In this work, we reported significant shifts in microbial community structure between forest rhizosphere and bulk soil samples from an Amazon forest reserve that are probably caused by more than one environmental factors such as rhizosphere and soil depth. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Infiltration and runoff generation processes in fire-affected soils

    USGS Publications Warehouse

    Moody, John A.; Ebel, Brian A.

    2014-01-01

    Post-wildfire runoff was investigated by combining field measurements and modelling of infiltration into fire-affected soils to predict time-to-start of runoff and peak runoff rate at the plot scale (1 m2). Time series of soil-water content, rainfall and runoff were measured on a hillslope burned by the 2010 Fourmile Canyon Fire west of Boulder, Colorado during cyclonic and convective rainstorms in the spring and summer of 2011. Some of the field measurements and measured soil physical properties were used to calibrate a one-dimensional post-wildfire numerical model, which was then used as a ‘virtual instrument’ to provide estimates of the saturated hydraulic conductivity and high-resolution (1 mm) estimates of the soil-water profile and water fluxes within the unsaturated zone.Field and model estimates of the wetting-front depth indicated that post-wildfire infiltration was on average confined to shallow depths less than 30 mm. Model estimates of the effective saturated hydraulic conductivity, Ks, near the soil surface ranged from 0.1 to 5.2 mm h−1. Because of the relatively small values of Ks, the time-to-start of runoff (measured from the start of rainfall),  tp, was found to depend only on the initial soil-water saturation deficit (predicted by the model) and a measured characteristic of the rainfall profile (referred to as the average rainfall acceleration, equal to the initial rate of change in rainfall intensity). An analytical model was developed from the combined results and explained 92–97% of the variance of  tp, and the numerical infiltration model explained 74–91% of the variance of the peak runoff rates. These results are from one burned site, but they strongly suggest that  tp in fire-affected soils (which often have low values of Ks) is probably controlled more by the storm profile and the initial soil-water saturation deficit than by soil hydraulic properties.

  5. Fate of Organic Matters in a Soil Erosion Context : Qualitative and Quantitative Monitoring in a Karst Hydrosystem

    NASA Astrophysics Data System (ADS)

    Quiers, M.; Gateuille, D.; Perrette, Y.; Naffrechoux, E.; David, B.; Malet, E.

    2017-12-01

    Soils are a key compartments of hydrosystems, especially in karst aquifers which are characterized by fast hydrologic responses to rainfalls. In steady state, soils are efficient filters preventing karst water from pollutions. But agricultural or forestry land uses can alter or even reverse the role of soils. Thus , soils can act as pollution sources rather than pollution filters. In order to manage water quality together with man activities in karst environment, the development of new tools and procedures designed to monitor the fate of soil organic matter are needed. This study reports two complementary methods applied in a moutain karst system impacted by anthropic activities and environmental stresses. A continuous monitoring of water fluorescence coupled with punctual sampling was analyzed by chemiometric methods and allowed to discriminate the type of organic matter transferred through the karst system along the year (winter / summer) and hydrological stages. As a main result, the modelisation of organic carbone fluxes is dominated by a colloidal or particulate part during highwaters, and a main part dissolved in solution during low water, demonstrating the change of organic carbone source. To confirm this result, a second method was used based on the observation of Polycyclic Aromatic Hydrocarbons (PAH) profiles. Two previous studies (Perrette et al 2013, Schwarz et al 2011) led to opposite conclusions about the fate of PAH from soil to groundwaters. This opposition leads to a potential use of PAH profiles (low molecular weight less hydrophobic ones versus high molecular weight more hydrophobic ones) as an indicator of soil erosion. We validate that use by the anaylsis of these PAH profiles for low and high waters (floods). These results demonstrate if needed the high vulnerability of karst system to soil erosion, and propose a new proxy to record soils erosion in groundwaters and in natural archives as stalagmites or sediments.

  6. The Culturable Soil Antibiotic Resistome: A Community of Multi-Drug Resistant Bacteria

    PubMed Central

    Walsh, Fiona; Duffy, Brion

    2013-01-01

    Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR) mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16–23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR) resistance genes) were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family. PMID:23776501

  7. Seismic behavior of breakwaters on complex ground by numerical tests: Liquefaction and post liquefaction ground settlements

    NASA Astrophysics Data System (ADS)

    Gu, Linlin; Zhang, Feng; Bao, Xiaohua; Shi, Zhenming; Ye, Guanlin; Ling, Xianzhang

    2018-04-01

    A large number of breakwaters have been constructed along coasts to protect humans and infrastructures from tsunamis. There is a risk that foundation soils of these structures may liquefy, or partially liquefy during the earthquake preceding a tsunami, which would greatly reduce the structures' capacity to resist the tsunami. It is necessary to consider not only the soil's liquefaction behavior due to earthquake motions but also its post-liquefaction behavior because this behavior will affect the breakwater's capacity to resist an incoming tsunami. In this study, numerical tests based on a sophisticated constitutive model and a soil-water coupled finite element method are used to predict the mechanical behavior of breakwaters and the surrounding soils. Two real breakwaters subjected to two different seismic excitations are examined through numerical simulation. The simulation results show that, earthquakes affect not only the immediate behavior of breakwaters and the surrounding soils but also their long-term settlements due to post-earthquake consolidation. A soil profile with thick clayey layers beneath liquefied soil is more vulnerable to tsunami than a soil profile with only sandy layers. Therefore, quantitatively evaluating the seismic behavior of breakwaters and surrounding soils is important for the design of breakwater structures to resist tsunamis.

  8. Experiments on nonlinear acoustic landmine detection: Tuning curve studies of soil-mine and soil-mass oscillators

    NASA Astrophysics Data System (ADS)

    Korman, Murray S.; Witten, Thomas R.; Fenneman, Douglas J.

    2004-10-01

    Donskoy [SPIE Proc. 3392, 211-217 (1998); 3710, 239-246 (1999)] has suggested a nonlinear technique that is insensitive to relatively noncompliant targets that can detect an acoustically compliant buried mine. Airborne sound at two primary frequencies eventually causes interactions with the soil and mine generating combination frequencies that can affect the vibration velocity at the surface. In current experiments, f1 and f2 are closely spaced near a mine resonance and a laser Doppler vibrometer profiles the surface. In profiling, certain combination frequencies have a much greater contrast ratio than the linear profiles at f1 and f2-but off the mine some nonlinearity exists. Near resonance, the bending (a softening) of a family of tuning curves (over the mine) exhibits a linear relationship between peak velocity and corresponding frequency, which is characteristic of nonlinear mesoscopic elasticity effects that are observed in geomaterials like rocks or granular media. Results are presented for inert plastic VS 1.6, VS 2.2 and M14 mines buried 3.6 cm in loose soil. Tuning curves for a rigid mass plate resting on a soil layer exhibit similar results, suggesting that nonresonant conditions off the mine are desirable. [Work supported by U.S. Army RDECOM, CERDEC, NVESD, Fort Belvoir, VA.

  9. Towards quantitative usage of EMI-data for Digital Soil Mapping

    NASA Astrophysics Data System (ADS)

    Nüsch, A.-K.; Wunderlich, T.; Kathage, S.; Werban, U.; Dietrich, P.

    2009-04-01

    As formulated in the Thematic Strategy for Soil Protection prepared by the European Commission soil degradation is a serious problem in Europe. The degradation is driven or exacerbated by human activity and has a direct impact on water and air quality, biodiversity, climate and human life-quality. High-resolution soil property maps are one major prerequisite for the specific protection of soil function and restoration of degraded soils as well as sustainable land use, water and environmental management. However, the currently available techniques for (digital) soil mapping still have deficiencies in terms of reliability and precision, the feasibility of investigation of large areas (e.g. catchments and landscapes) and the assessment of soil degradation threats at this scale. The focus of the iSOIL (Interactions between soil related science - Linking geophysics, soil science and digital soil mapping) project is on improving fast and reliable mapping of soil properties, soil functions and soil degradation threats. This requires the improvement as well as integration of geophysical and spectroscopic measurement techniques in combination with advanced soil sampling approaches, pedometrical and pedophysical approaches. Many commercially available geophysical sensors and equipment (EMI, DC, gamma-spectroscopy, magnetics) are ready to use for measurements of different parameters. Data collection with individual sensors is well developed and numerously described. However comparability of data of different sensor types as well as reproducibility of data is not self-evident. In particular handling of sensors has to be carried out accurately, e.g. consistent calibration. Soil parameters will be derived from geophysical properties to create comprehensive soil maps. Therefore one prerequisite is the comparison of different geophysical properties not only qualitative but also quantitative. At least reproducibility is one of the most important conditions for monitoring tasks. The first parameter we focussed on is apparent electrical conductivity (ECa). It is an important geophysical properity in soil science since soil parameters (water content, etc.) can be deduced. Nowadays mobile geophysical platforms allow to survey large areas comprehensively in a short time period. These platforms have been equipped with EM38DD (Geonics) and Profiler EMP-400 (GSSI) - two different types of electromagnetic induction (EMI) instruments - within first iSOIL field campaign. While EM38DD measures in horizontal and vertical mode at the same time, Profiler measures three frequencies simultaneously and magnetic susceptibility additionally. Coil separation of the instruments is nearly the same, so penetration depth is similar. On the other hand, frequencies are arbitrary at Profiler but fixed at EM38DD. These differences in penetration depth have to taken into account. By our measurement we tested the comparability of the data to show differences between instruments of the same type (EM38DD-EM38DD) using different settings, and different types (EM38DD-Profiler). Moreover both sensors work in continuous as well in discontinuous mode. The results show that quality of data is comparable, but the quantities are varying. This has to be considered for further interpretations and monitoring. In the next steps we have to determine how to convert relative data into absolute data since ECa data from different locations are not comparable to each other in a quantitative way. In the talk we will give an introduction in the application of EMI for soil monitoring, followed by an overview about comparability and reproducibility of data.

  10. Atmospheric dust contribution to budget of U-series nuclides in weathering profiles. The Mount Cameroon volcano

    NASA Astrophysics Data System (ADS)

    Pelt, E.; Chabaux, F. J.; Innocent, C.; Ghaleb, B.

    2009-12-01

    Analysis of U-series nuclides in weathering profiles is developed today for constraining time scale of soil and weathering profile formation (e.g., Chabaux et al., 2008). These studies require the understanding of U-series nuclides sources and fractionation in weathering systems. For most of these studies the impact of aeolian inputs on U-series nuclides in soils is usually neglected. Here, we propose to discuss such an assumption, i.e., to evaluate the impact of dust deposition on U-series nuclides in soils, by working on present and paleo-soils collected on the Mount Cameroon volcano. Recent Sr, Nd, Pb isotopic analyses performed on these samples have indeed documented significant inputs of Saharan dusts in these soils (Dia et al., 2006). We have therefore analyzed 238U-234U-230Th nuclides in the same samples. Comparison of U-Th isotopic data with Sr-Nd-Pb isotopic data indicates a significant impact of the dust input on the U and Th budget of the soils, around 10% for both U and Th. Using Sr-Nd-Pb isotopic data of Saharan dusts given by Dia et al. (2006) we estimate U-Th concentrations and U-Th isotope ratios of dusts compatible with U-Th data obtained on Saharan dusts collected in Barbados (Rydell H.S. and Prospero J.M., 1972). However, the variations of U/Th ratios along the weathering profiles cannot be explained by a simple mixing scenario between material from basalt and from the defined atmospheric dust pool. A secondary uranium migration associated with chemical weathering has affected the weathering profiles. Mass balance calculation suggests that U in soils from Mount Cameroon is affected at the same order of magnitude by both chemical migration and dust accretion. Nevertheless, the Mount Cameroon is a limit case were large dust inputs from continental crust of Sahara contaminate basaltic terrain from Mount Cameroon volcano. Therefore, this study suggests that in other contexts were dust inputs are lower, or the bedrocks more concentrated in U and Th, the dust contribution will not significantly influence U-series dating. Chabaux F., Bourdon B., Riotte J. (2008). U-series Geochemistry in weathering profiles, river waters and lakes. Radioactivity in the Environment, 13, 49-104. Dia A., Chauvel C., Bulourde M. and Gérard M. (2006). Eolian contribution to soils on Mount Cameroon: Isotopic and trace element records. Chem. Geol. 226, 232-252. Rydell H.S. and Prospero J.M. (1972). Uranium and thorium concentrations in wind-borne Saharan dust over the western equatorial north atlantic ocean. EPSL 14, 397-402.

  11. Surface Wave Characterization of New Orleans Levee Soil Foundations

    NASA Astrophysics Data System (ADS)

    Delisser, T. A.; Lorenzo, J. M.; Hayashi, K.; Craig, M. S.

    2016-12-01

    Standard geotechnical tests such as the drilling of boreholes and cone penetration tests are able to assess soil stability at point locations vertically but lack lateral resolution in a complex sedimentary environment, such as the Louisiana Coastal system. Multi-Channel Analysis of Surface Waves (MASW) can complement geotechnical tests to improve certainty in resolving lateral features when predicting soil types in the near surface of levee soil foundations. A portion of the Inner-Harbor Navigation Canal levee wall that intersects the 9th Ward of New Orleans failed in the aftermath of Hurricane Katrina in 2005. Failures were attributed to floodwaters overtopping the levee wall and eroding its base. Geotechnical and geological data from test points can be used to calibrate continuous shear strength estimates derived from MASW. It is important to understand soil stability and strength to prevent future failures in New Orleans levee foundation soils. MASW analyzes the dispersive property of Rayleigh waves to develop shear wave velocity profiles for the near surface. Data are acquired using a seismic land streamer containing 4.5-Hz vertical-component geophones and a sledgehammer as the source. We plot and contour 18 inverted models of the interpreted fundamental mode and generate a 200-m-long profile to help us (1) better understand the characteristics of levee foundation soils as well as (2) improve existing geological cross-sections to help in future planning and maintenance of the levees. In comparison to the prior geological models, we find unexpected large vertical and horizontal shear-velocity gradients, as well as relatively low shear strengths throughout the seismic profile.

  12. Profiles, sources, and transport of polycyclic aromatic hydrocarbons in soils affected by electronic waste recycling in Longtang, south China.

    PubMed

    Huang, De-Yin; Liu, Chuan-Ping; Li, Fang-Bai; Liu, Tong-Xu; Liu, Cheng-Shuai; Tao, Liang; Wang, Yan

    2014-06-01

    We studied the profiles, possible sources, and transport of polycyclic aromatic hydrocarbons (PAHs) in soils from the Longtang area, which is an electronic waste (e-waste) recycling center in south China. The sum of 16 PAH concentrations ranged from 25 to 4,300 ng/g (dry weight basis) in the following order: pond sediment sites (77 ng/g), vegetable fields (129 ng/g), paddy fields (180 ng/g), wastelands (258 ng/g), dismantling sites (678 ng/g), and former open burning sites (2,340 ng/g). Naphthalene, phenanthrene, fluoranthene, pyrene, chrysene, and benzo[b]fluoranthene were the dominant PAHs and accounted for approximately 75 % of the total PAHs. The similar composition characteristics of PAHs and the significant correlations among individual, low molecular weight, high molecular weight, and total PAHs were found in all six sampling site types, thus indicating that PAHs originated from similar sources. The results of both isomeric ratios and principal component analyses confirmed that PAHs were mainly derived from the incomplete combustion of e-waste. The former open burning sites and dismantling sites were the main sources of PAHs. Soil samples that were taken closer to the point sources had high PAH concentrations. PAHs are transported via different soil profiles, including those in agricultural fields, and have been detected not only in 0- to 40-cm-deep soil but also in 40 cm to 80 cm-deep soil. PAH concentrations in soils in Longtang have been strongly affected by primitive e-waste recycling, particularly by former open burning activities.

  13. Scale and the isotopic record of C4 plants in pedogenic carbonate: from the biome to the rhizospere.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monger, Dr. H Curtis; Cole, David R; Buck, Dr. Brenda

    2009-01-01

    The 13C/12C ratio in pedogenic carbonate (i.e., CaCO3 formed in soil) is a significant tool for investigating C4 biomes of the past. However, the paleoecological meaning of d13C values in pedogenic carbonate can change with the scale at which one considers the data. We describe studies of modern soils, fossil soils, and vegetation change in the Chihuahuan Desert of North America and elsewhere that reveal four scales important for paleoecologic interpretations. (1) At the broadest scale, the biome scale (hundreds to millions of km2), an isotopic record interpreted as C3 vegetation replacing C4 grasslands may indicate invading C3 woody shrubsmore » instead of expanding C3 forests (a common interpretation). (2) At the landscape scale (several tens of m2 to hundreds of km2), the accuracy of scaling up paleoclimatic interpretations to a regional level is affected by the landform containing the isotopic record. (3) At the soil-profile scale (cm2 to m2), soil profiles with multiple generations of carbonate mixed together have a lower-resolution paleoecologic record than soil profiles repeatedly buried. (4) At the rhizosphere scale (lm2 to cm2), carbonate formed on roots lack the 14 17 enrichment observed at broader scales, revealing different fractionation processes at different scales. A multi-scale approach in dealing with d13C in pedogenic carbonate will increase the accuracy of paleoecologic interpretations and understanding of soil geomorphic climatic interactions that affect boundaries between C4 and C3 vegetation.« less

  14. Scale and the isotopic record of C4 plants in pedogenic carbonate: from the biome to the rhizosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monger, Dr. H Curtis; Cole, David; Buck, Dr. Brenda

    2009-01-01

    The 13C/12C ratio in pedogenic carbonate (i.e., CaCO3 formed in soil) is a significant tool for investigating C4 biomes of the past. However, the paleoecological meaning of d13C values in pedogenic carbonate can change with the scale at which one considers the data. We describe studies of modern soils, fossil soils, and vegetation change in the Chihuahuan Desert of North America and elsewhere that reveal four scales important for paleoecologic interpretations. (1) At the broadest scale, the biome scale (hundreds to millions of km2), an isotopic record interpreted as C3 vegetation replacing C4 grasslands may indicate invading C3 woody shrubsmore » instead of expanding C3 forests (a common interpretation). (2) At the landscape scale (several tens of m2 to hundreds of km2), the accuracy of scaling up paleoclimatic interpretations to a regional level is affected by the landform containing the isotopic record. (3) At the soil-profile scale (cm2 to m2), soil profiles with multiple generations of carbonate mixed together have a lower-resolution paleoecologic record than soil profiles repeatedly buried. (4) At the rhizosphere scale (lm2 to cm2), carbonate formed on roots lack the 14 17 enrichment observed at broader scales, revealing different fractionation processes at different scales. A multi-scale approach in dealing with d13C in pedogenic carbonate will increase the accuracy of paleoecologic interpretations and understanding of soil geomorphic climatic interactions that affect boundaries between C4 and C3 vegetation.« less

  15. A dynamic two-dimensional system for measuring volatile organic compound volatilization and movement in soils.

    PubMed

    Allaire, S E; Yates, S R; Ernst, F F; Gan, J

    2002-01-01

    There is an important need to develop instrumentation that allows better understanding of atmospheric emission of toxic volatile compounds associated with soil management. For this purpose, chemical movement and distribution in the soil profile should be simultaneously monitored with its volatilization. A two-dimensional rectangular soil column was constructed and a dynamic sequential volatilization flux chamber was attached to the top of the column. The flux chamber was connected through a manifold valve to a gas chromatograph (GC) for real-time concentration measurement. Gas distribution in the soil profile was sampled with gas-tight syringes at selected times and analyzed with a GC. A pressure transducer was connected to a scanivalve to automatically measure the pressure distribution in the gas phase of the soil profile. The system application was demonstrated by packing the column with a sandy loam in a symmetrical bed-furrow system. A 5-h furrow irrigation was started 24 h after the injection of a soil fumigant, propargyl bromide (3-bromo-1-propyne; 3BP). The experience showed the importance of measuring lateral volatilization variability, pressure distribution in the gas phase, chemical distribution between the different phases (liquid, gas, and sorbed), and the effect of irrigation on the volatilization. Gas movement, volatilization, water infiltration, and distribution of degradation product (Br-) were symmetric around the bed within 10%. The system saves labor cost and time. This versatile system can be modified and used to compare management practices, estimate concentration-time indexes for pest control, study chemical movement, degradation, and emissions, and test mathematical models.

  16. Scale and the isotopic record of C4 plants in pedogenic carbonate: from the biome to the rhizosphere.

    PubMed

    Monger, H Curtis; Cole, David R; Buck, Brenda J; Gallegos, Robert A

    2009-06-01

    The 13C/12C ratio in pedogenic carbonate (i.e., CaCO3 formed in soil) is a significant tool for investigating C4 biomes of the past. However, the paleoecological meaning of delta13C values in pedogenic carbonate can change with the scale at which one considers the data. We describe studies of modern soils, fossil soils, and vegetation change in the Chihuahuan Desert of North America and elsewhere that reveal four scales important for paleoecologic interpretations. (1) At the broadest scale, the biome scale (hundreds to millions of km2), an isotopic record interpreted as C3 vegetation replacing C4 grasslands may indicate invading C3 woody shrubs instead of expanding C3 forests (a common interpretation). (2) At the landscape scale (several tens of m2 to hundreds of km2), the accuracy of scaling up paleoclimatic interpretations to a regional level is affected by the landform containing the isotopic record. (3) At the soil-profile scale (cm2 to m2), soil profiles with multiple generations of carbonate mixed together have a lower-resolution paleoecologic record than soil profiles repeatedly buried. (4) At the rhizosphere scale (microm2 to cm2), carbonate formed on roots lack the 14-17 per thousand enrichment observed at broader scales, revealing different fractionation processes at different scales. A multi-scale approach in dealing with delta13C in pedogenic carbonate will increase the accuracy of paleoecologic interpretations and understanding of soil-geomorphic-climatic interactions that affect boundaries between C4 and C3 vegetation.

  17. Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil.

    PubMed

    Cordovez, Viviane; Carrion, Victor J; Etalo, Desalegn W; Mumm, Roland; Zhu, Hua; van Wezel, Gilles P; Raaijmakers, Jos M

    2015-01-01

    In disease-suppressive soils, plants are protected from infections by specific root pathogens due to the antagonistic activities of soil and rhizosphere microorganisms. For most disease-suppressive soils, however, the microorganisms and mechanisms involved in pathogen control are largely unknown. Our recent studies identified Actinobacteria as the most dynamic phylum in a soil suppressive to the fungal root pathogen Rhizoctonia solani. Here we isolated and characterized 300 isolates of rhizospheric Actinobacteria from the Rhizoctonia-suppressive soil. Streptomyces species were the most abundant, representing approximately 70% of the isolates. Streptomyces are renowned for the production of an exceptionally large number of secondary metabolites, including volatile organic compounds (VOCs). VOC profiling of 12 representative Streptomyces isolates by SPME-GC-MS allowed a more refined phylogenetic delineation of the Streptomyces isolates than the sequencing of 16S rRNA and the house-keeping genes atpD and recA only. VOCs of several Streptomyces isolates inhibited hyphal growth of R. solani and significantly enhanced plant shoot and root biomass. Coupling of Streptomyces VOC profiles with their effects on fungal growth, pointed to VOCs potentially involved in antifungal activity. Subsequent assays with five synthetic analogs of the identified VOCs showed that methyl 2-methylpentanoate, 1,3,5-trichloro-2-methoxy benzene and the VOCs mixture have antifungal activity. In conclusion, our results point to a potential role of VOC-producing Streptomyces in disease suppressive soils and show that VOC profiling of rhizospheric Streptomyces can be used as a complementary identification tool to construct strain-specific metabolic signatures.

  18. Development and validation of an open source O2-sensitive gel for physiological profiling of soil microbial communities.

    PubMed

    McLamore, E S; Garland, J L; Mackowiak, C; Desaunay, A; Garland, N; Chaturvedi, P; Taguchi, M; Dreaden, K; Catechis, John; Ullman, J L

    2014-01-01

    Community level physiological profiling is a simple, high-throughput technique for assessing microbial community physiology. Initial methods relying on redox-dye based detection of respiration were subject to strong enrichment bias, but subsequent development of a microtiter assay using an oxygen-quenched dye reduced this bias and improved the versatility of the approach. Commercial production of the oxygen microplates recently stopped, which led to the present effort to develop and validate a system using a luminophore dye (platinum tetrakis pentafluorophenyl) immobilized at the bottom of wells within a 96 well microtiter plate. The technique was used to analyze three well-characterized Florida soils: oak saw palmetto scrub, coastal mixed hardwood, and soil from an agricultural field used to grow corn silage. Substrate induced respiration was monitored by measuring respiration rates in soils under basal conditions and comparing to soils supplemented with nitrogen and various carbon sources (mannose, casein, asparagine, coumaric acid). All data was compared to a previously available commercial assay. There were no significant differences in the maximum peak intensity or the time to peak response for all soils tested (p<0.001, α=0.05). The experimental assay plates can be reused on soils up to four times (based on a deviation of less than 5%), where the commercial assay should not be reused. The results indicate that the new oxygen-based bioassay is a cost effective, open source tool for functional profiling of microbial communities. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Pore size distribution of a deeply excavated Oxisol after 19 years reclamation

    NASA Astrophysics Data System (ADS)

    dos Santos Batista Bonini, Carolina; de Cássia Marchini, Débora; Alves, Marlene Cristina; García de Arruda, Otton; Paz-Ferreiro, Jorge

    2013-04-01

    Digging of the local soil and using it as a raw material for construction purposes has been identified as a non-negligible source of land degradation. Techniques aimed at soil profile reconstruction and ecological restoration of soils truncated by mechanical excavation using heavy machinery have been investigated Both, total soil porosity and pore size distribution are important properties for soil management as well as for assessing the recovery of soil function after land degradation. In this way, macropores are responsible for aeration, whereas water storage depends on soil meso- and micropores in the soil and the optimal pore-size distribution is also an indicator of soil quality. We investigated the changes in the pore size distribution of a soil that was beheaded to extract raw materials after a 19 year period of reclamation, which involved the use of green manures, gypsum and pasture for the purpose of profile recovery. The studied area is located in Mato Grosso do Sul State, Brzil. A field trial was performed following a completely randomized experimental design with seven treatments and four replications. Starting 1992, the initial treatments were: 1) control (tilled bare soil), 2)Stizolobium aterrium, 3)Cajanus cajan, 4)lime+S. aterrimum, 5) lime+C. cajan, 6) lime + gypsum + S. aterrimum, 7) lime + gypsum+C. cajan. In 1994, all treatments with C. cajan were replaced by Canavalia ensiformis and in 1999, Brachiaria decumbens was implanted in all the experimental plots. Data from vegetated treatments were compared with bare soil (control) and native vegetation (Savannah). Soil samples were collected in 2011 at the 0.00-0.10, 0.10-0.20, and 0.20-0.40 m depths. Treatment differences were assessed by analysis of variance, following the Scott-Knott test (5%) of probability to compare averages. Macroporosity of the 0.00-0.10 m top layer was above the 0.10 m3m-3 threshold considered as critical for plant growth. On the 0.10-0.20 m layer only treatments with C. cajan later on followed by C. ensiformis reached macroporosities over the 0.10 m3m-3 threshold, and on the 0.20-0.40 m no treatment was above this critical value. In spite of the positive development of macroporosity in the restored soil profile, this physical attribute was far from the typical values corresponding to local soils under native Savannah vegetation.

  20. SOIL RESPIRED D13C SIGNATURES REFLECT ROOT EXUDATE OR ROOT TURNOVER SIGNATURES IN AN ELEVATED CO2 AND OZONE MESOCOSM EXPERIMENT

    EPA Science Inventory

    Bulk tissue and root and soil respired d13C signatures were measured throughout the soil profile in a Ponderosa Pine mesocosm experiment exposed to ambient and elevated CO2 concentrations. For the ambient treatment, root (0-1mm, 1-2mm, and >2mm) and soil d13C signatures were ?24...

  1. Quantifying bioturbation and soil thickening over the late Quaternary

    NASA Astrophysics Data System (ADS)

    Wilkinson, M. T.; Pietsch, T.; Fox, J. F.

    2009-04-01

    We present geochemistry and biochemistry data to explore how bioturbation has operated in a residual sandstone-derived soil that thickened during the Holocene following aeolian deflation during the Last Glacial Maximum. Our site is located on a plateau cut into Triassic sandstones in humid Blue Mountains, SE Australia, where precipitation is ~1100 mm/a, and the mean annual maximum and minimum temperatures are 17°C and 5°C, respectively. Vegetation cover increase occurred ~13 ka, based on nearby palaeodune activity and pollen data from other highland sites. Our interpretation of terrestrial cosmogenic radionuclides (TCN) data suggests that ~30 cm of soil thickening has taken place since 13 ka, which includes 16 cm of bedrock lowering. Biofabrics preserve a short-term picture of biotically-displaced soil. In general, bioturbation decreases exponentially with increasing soil depth. The upper 21 cm of the profile is ~95% bioturbated; the middle 13 cm is 13 - 32% bioturbated; and the lowest 52 cm is 1 - 6% bioturbated. Tree roots penetrate weakness in the sandstone below this depth. Fallout radionuclides (7Be, 210Pb, and 137Cs) in the profile also suggest that vertical mixing in the upper 20 - 40 cm occurs over short—decadal—timescales. Optically stimulated luminescene (OSL) data records the time that quartz grains were last at the surface, and are used here to demonstrate vertical mixing of the profile over tens of thousands of years. OSL data indicates that some soil grains at all burial depths were once at the surface, consistent with modern process observations. Carbon and nitrogen isotopic values (delta 13C and delta 15N) of soil organic matter support the existence of soil organic matter turnover in the upper 30 cm of the soil column when regressed with log(SOC) and log(TN). Our carbon isotope data defy typical trends below ~30 cm for residual, undisturbed soils. We suggest this may reflect the absence of bioturbation during the LGM when the climate was cold and dry, and soil was deflated. Since ~13 ka, we believe the vegetation cover increased and bioturbation became affective, resulting in mixing of organic and mineral material, and concurrent soil thickening.

  2. Effect of antecedent soil moisture on preferential flow in a texture-contrast soil

    NASA Astrophysics Data System (ADS)

    Hardie, Marcus A.; Cotching, William E.; Doyle, Richard B.; Holz, Greg; Lisson, Shaun; Mattern, Kathrin

    2011-02-01

    SummaryThe effect of soil moisture status on preferential flow in a texture-contrast soil was investigated by applying 25 mm Brilliant Blue dye tracer to soil profiles at high and low antecedent soil moisture. Differences in soil morphology and chemistry between soil profiles had little effect on the depth of dye infiltration and dye distribution down the profile. Antecedent soil moisture strongly influenced the type, depth and rate of dye tracer movement. In the wet treatment, the dye tracer infiltrated to depths between 0.24 and 0.40 m, at an average rate of 120 mm h -1. Whilst in the dry treatment, the same volume of dye tracer infiltrated to between 0.85 and 1.19 m depth at an average rate of 1160 mm h -1. In dry antecedent conditions, finger flow developed in the A1 horizon as a result of water repellency. In the wet treatment, the wetting front developed permutations but did not break into fingers. Despite similar particle size distributions, flow in the A2 e was slower than the A1 horizon, due to the absence of macropores. In the dry treatment, the dye tracer ponded on the upper surface of the B21 horizon, which then spilled down the sides of the large clay columns as rivulets, at rates of between 2000 and 3000 mm h -1. The dye tracer accumulated at the base of the columns resulting in backfilling of the inter column shrinkage cracks, at an estimated rate of 750 mm h -1. In the subsoil, water movement occurred via shrinkage cracks which resulted in flow by-passing 99% of the soil matrix in the B21 horizon and 94% of the soil matrix in the B22 horizon. Evidence of rapid and deep infiltration in 'dry' texture-contrast soils has implications for water and solute management. This knowledge could be used to: (i) improve irrigation and fertilizer efficiency (ii) explain variations in crop yield (iii) reduce salinity through improved leaching practices, (iv) reduce the risk of agrochemicals contaminating shallow groundwater.

  3. The COsmic-ray Soil Moisture Interaction Code (COSMIC) for use in data assimilation

    NASA Astrophysics Data System (ADS)

    Shuttleworth, J.; Rosolem, R.; Zreda, M.; Franz, T.

    2013-08-01

    Soil moisture status in land surface models (LSMs) can be updated by assimilating cosmic-ray neutron intensity measured in air above the surface. This requires a fast and accurate model to calculate the neutron intensity from the profiles of soil moisture modeled by the LSM. The existing Monte Carlo N-Particle eXtended (MCNPX) model is sufficiently accurate but too slow to be practical in the context of data assimilation. Consequently an alternative and efficient model is needed which can be calibrated accurately to reproduce the calculations made by MCNPX and used to substitute for MCNPX during data assimilation. This paper describes the construction and calibration of such a model, COsmic-ray Soil Moisture Interaction Code (COSMIC), which is simple, physically based and analytic, and which, because it runs at least 50 000 times faster than MCNPX, is appropriate in data assimilation applications. The model includes simple descriptions of (a) degradation of the incoming high-energy neutron flux with soil depth, (b) creation of fast neutrons at each depth in the soil, and (c) scattering of the resulting fast neutrons before they reach the soil surface, all of which processes may have parameterized dependency on the chemistry and moisture content of the soil. The site-to-site variability in the parameters used in COSMIC is explored for 42 sample sites in the COsmic-ray Soil Moisture Observing System (COSMOS), and the comparative performance of COSMIC relative to MCNPX when applied to represent interactions between cosmic-ray neutrons and moist soil is explored. At an example site in Arizona, fast-neutron counts calculated by COSMIC from the average soil moisture profile given by an independent network of point measurements in the COSMOS probe footprint are similar to the fast-neutron intensity measured by the COSMOS probe. It was demonstrated that, when used within a data assimilation framework to assimilate COSMOS probe counts into the Noah land surface model at the Santa Rita Experimental Range field site, the calibrated COSMIC model provided an effective mechanism for translating model-calculated soil moisture profiles into aboveground fast-neutron count when applied with two radically different approaches used to remove the bias between data and model.

  4. Impact of fire disturbance on soil thermal and carbon dynamics in Alaskan Tundra and Boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Rastetter, E.; Shaver, G. R.; Rocha, A. V.

    2012-12-01

    In Alaska, fire disturbance is a major component influencing the soil water and energy balance in both tundra and boreal forest ecosystems. Fire-caused changes in soil environment further affect both above- and below-ground carbon cycles depending on different fire severities. Understanding the effects of fire disturbance on soil thermal change requires implicit modeling work on the post-fire soil thawing and freezing processes. In this study, we model the soil temperature profiles in multiple burned and non-burned sites using a well-developed soil thermal model which fully couples soil water and heat transport. The subsequent change in carbon dynamics is analyzed based on site level observations and simulations from the Multiple Element Limitation (MEL) model. With comparison between burned and non-burned sites, we compare and contrast fire effects on soil thermal and carbon dynamics in continuous permafrost (Anaktuvik fire in north slope), discontinuous permafrost (Erickson Creek fire at Hess Creek) and non-permafrost zone (Delta Junction fire in interior Alaska). Then we check the post-fire recovery of soil temperature profiles at sites with different fire severities in both tundra and boreal forest fire areas. We further project the future changes in soil thermal and carbon dynamics using projected climate data from Scenarios Network for Alaska & Arctic Planning (SNAP). This study provides information to improve the understanding of fire disturbance on soil thermal and carbon dynamics and the consequent response under a warming climate.

  5. Vertical characterization of soil contamination using multi-way modeling--a case study.

    PubMed

    Singh, Kunwar P; Malik, Amrita; Basant, Ankita; Ojha, Priyanka

    2008-11-01

    This study describes application of chemometric multi-way modeling approach to analyze the dataset pertaining to soils of industrial area with a view to assess the soil/sub-soil contamination, accumulation pathways and mobility of contaminants in the soil profiles. The three-way (sampling depths, chemical variables, sampling sites) dataset on heavy metals in soil samples collected from three different sites in an industrial area, up to a depth of 60 m each was analyzed using three-way Tucker3 model validated for stability and goodness of fit. A two component Tucker3 model, explaining 66.6% of data variance, allowed interpretation of the data information in all the three modes. The interpretation of core elements revealing interactions among the components of different modes (depth, variables, sites) allowed inferring more realistic information about the contamination pattern of soils both along the horizontal and vertical coordinates, contamination pathways, and mobility of contaminants through soil profiles, as compared to the traditional data analysis techniques. It concluded that soils at site-1 and site-2 are relatively more contaminated with heavy metals of both the natural as well as anthropogenic origins, as compared to the soil of site-3. Moreover, the accumulation pathways of metals for upper shallow layers and deeper layers of soils in the area were differentiated. The information generated would be helpful in developing strategies for remediation of the contaminated soils for reducing the subsequent risk of ground-water contamination in the study region.

  6. Water in the critical zone: soil, water and life from profile to planet

    NASA Astrophysics Data System (ADS)

    Kirkby, Mike

    2015-04-01

    Water is essential to the critical zone between bedrock and the atmosphere, and without water the soil is dead. Water provides the basis for the abundant life within the soil and, interacting with micro-organisms, drives the key processes in the critical zone. This review looks at the balances that control the flow of water through the soil, and how water movement is one of the major controls on the fluxes and transformations that control the formation, evolution and loss of material that controls the 'life' and 'health' of the soil. At regional scales, climate, acting largely through the soil hydrology, plays a major part in determining the type of soils developed - from hyper arid soils dominated by aeolian inputs, through arid and semi-arid soils with largely vertical water exchanges with the atmosphere, to temperate soils with substantial lateral drainage, and humid soils dominated by organic peats. Soil water balance controls the partition of precipitation between evaporative loss, lateral subsurface flow and groundwater recharge, and, in turn, has a major influence on the potential for plant growth and on the lateral connectivity between soils on a hillslope. Sediment and solute balances distinguish soils of accumulation from soils that tend towards a stable chemical depletion ratio. Reflecting the availability of water and the soil material, carbon balance plays a major role in soil horizonation and distinguishes soils dominated by mineral or organic components. At finer catena and catchment scales, lateral connectivity, or its absence, determines how soils evolve through the transfer of water and sediment downslope, creating more or less integrated landscapes in a balance between geomorphological and pedological processes. Within single soil profiles, the movement of water controls the processes of weathering and soil horizonation by ion diffusion, advective leaching and bioturbation, creating horizonation that, in turn, modifies the hydrological responses of both soil and landscape. For example, the soil hydrological regime helps to contrast soils that accumulate more and less soluble constituents of the parent material.

  7. Boreal forest soil erosion and soil-atmosphere carbon exchange

    NASA Astrophysics Data System (ADS)

    Billings, S. A.; Harden, J. W.; O'Donnell, J.; Sierra, C. A.

    2013-12-01

    Erosion may become an increasingly important agent of change in boreal systems with climate warming, due to enhanced ice wedge degradation and increases in the frequency and intensity of stand-replacing fires. Ice wedge degradation can induce ground surface subsidence and lateral movement of mineral soil downslope, and fire can result in the loss of O horizons and live roots, with associated increases in wind- and water-promoted erosion until vegetation re-establishment. It is well-established that soil erosion can induce significant atmospheric carbon (C) source and sink terms, with the strength of these terms dependent on the fate of eroded soil organic carbon (SOC) and the extent to which SOC oxidation and production characteristics change with erosion. In spite of the large SOC stocks in the boreal system and the high probability that boreal soil profiles will experience enhanced erosion in the coming decades, no one has estimated the influence of boreal erosion on the atmospheric C budget, a phenomenon that can serve as a positive or negative feedback to climate. We employed an interactive erosion model that permits the user to define 1) profile characteristics, 2) the erosion rate, and 3) the extent to which each soil layer at an eroding site retains its pre-erosion SOC oxidation and production rates (nox and nprod=0, respectively) vs. adopts the oxidation and production rates of previous, non-eroded soil layers (nox and nprod=1, respectively). We parameterized the model using soil profile characteristics observed at a recently burned site in interior Alaska (Hess Creek), defining SOC content and turnover times. We computed the degree to which post-burn erosion of mineral soil generates an atmospheric C sink or source while varying erosion rates and assigning multiple values of nox and nprod between 0 and 1, providing insight into the influence of erosion rate, SOC oxidation, and SOC production on C dynamics in this and similar profiles. Varying nox and nprod did not induce meaningful changes in model estimates of atmospheric C source or sink strength, likely due to the low turnover rate of SOC in this system. However, variation in mineral soil erosion rates induced large shifts in the source and sink strengths for atmospheric C; after 50 y of mineral soil erosion at 5 cm y-1, we observed a maximum C source of 35 kg C m-2 and negligible sink strength. Doubling the erosion rate approximately doubled the source strength. Scaling these estimates to the region requires estimates of the area undergoing mineral soil erosion in forests similar to those modeled. We suggest that erosion is an important but little studied feature of fire-driven boreal systems that will influence atmospheric CO2 budgets.

  8. Assessment of possibilities and conditions of irrigation in Hungary by digital soil map products

    NASA Astrophysics Data System (ADS)

    Laborczi, Annamária; Bakacsi, Zsófia; Takács, Katalin; Szatmári, Gábor; Szabó, József; Pásztor, László

    2016-04-01

    Sustaining proper soil moisture is essentially important in agricultural management. However, irrigation can be really worth only, if we lay sufficient emphasis on soil conservation. Nationwide planning of irrigation can be taken place, if we have spatially exhaustive maps and recommendations for the different areas. Soil moisture in the pores originate from 'above' (precipitation), or from 'beneath' (from groundwater by capillary lift). The level of groundwater depends on topography, climatic conditions and water regime of the nearby river. The thickness of capillary zone is basicly related to the physical and water management properties of the soil. Accordingly the capillary rise of sandy soils - with very high infiltration rate and very poor water retaining capacity - are far smaller than in the case of clay soils - with very poor infiltration rate and high water retaining capacity. Applying irrigation water can be considered as a reinforcement from 'above', and it affects the salinity and sodicity as well as the soil structure, nutrient supply and soil formation. We defined the possibilities of irrigation according to the average salt content of the soil profile. The nationwide mapping of soil salinity was based on legacy soil profile data, and it was carried out by regression kriging. This method allows that environmental factors with exhaustive spatial extension, such as climatic-, vegetation-, topographic-, soil- and geologic layers can be taken into consideration to the spatial extension of the reference data. According to soil salinity content categories, the areas were delineated as 1. to be irrigated, 2. to be irrigated conditionally, 3. not to be irrigated. The conditions of irrigation was determined by the comparison of the 'actual' and the 'critical' depth of the water table. Since, if the water rises above the critical level, undesirable processes, such as salinization and alkalinization can be developed. The critical depth of the water table was calculated according to the literature, and based on average soil content of the soil profile, the water regime category of soil, salt content of the groundwater, and soil pH. The water regime category map originated from legacy polygon-based map of physical soil properties. The soil content, and the actual level of groundwater as well as the soil pH map - similarly to the soil salinity map - was compiled by regression kriging. The conditions are classified into the following three categories: 1. level of groundwater have to be sinked, 2. rising of groundwater level have to be hindered, 3. level of groundwater have to be regularly controlled. The newly compiled maps can help decision makers to improve land use management, taking soil conservation into consideration. Our work was supported by the Hungarian National Scientific Research Foundation (OTKA, Grant No. K105167) and the Research Institute of Agricultural Economics.

  9. Assessment of carbon pools in two soils from the Campania region (Southwest, Italy) under different forest types

    NASA Astrophysics Data System (ADS)

    Álvarez-Romero, Marta; Papa, Stefania; Lozano-García, Beatriz; Parras-Alcántara, Luis; González-Pérez, José A.; Jordán, Antonio; Zavala, Lorena M.; González-Vila, Francisco J.; Coppola, Elio

    2014-05-01

    Soil is the largest carbon reservoir of terrestrial ecosystems, this reservoir is not inert, but it is constantly in a dynamic phase of accumulation an depletion. After the addition, in the soil, of organic residues of different origin and nature, two processes can occur in charge of SOM (Soil Organic Matter) during the pedogenesis: mineralization and humification. The accumulation of SOM in soil is controlled by the balance between carbon inputs and losses through mineralization and/or leaching. In particular the humification process leads to the formation of organic compounds (in some cases even complex organo-mineral) chemically stable able to distribute itself in the soil second rules of site-specific pedogenesis. The transport process along the profile can take very different forms which may extend in the formation of Bh horizons of accumulation in depth also strongly cemented (so-called ortstein). The transport process along the profile occurs for the occurrence of certain conditions such as deposition of high amounts of organic residues on the top of the profile, high porosity of the soil for the presence of coarse solid fractions (coarse sands or skeleton) that determinate a strong infiltrating capacity of the circulating waters, extreme temperatures can slow or stop the process of mineralization and/or humification in one intermediate step of the degradation process releasing organic metabolites with high or medium solubility and high loads of percolating water related to intense rainfall. The nature of the forest cover influence the quantity and quality of the organic materials deposited with marked differences between coniferous and deciduous especially in relation to resistance to degradation and production of intermediate metabolites. Two soils from Campania region located in Monte Santa Croce (Caserta, Italy) with andic properties, different forest cover (pine and chestnut) and that meets the requirements of the place and pedological formation suitable for the formation and accumulation of SOM in depth (Bh horizon) were studied. The content of the different soil C fractions was assessed for each soil profile and included: total extractable C, (TEC), total organic C (TOC), total extractable lipds (TEL), humified C (humic and fulvic acids, HA & FA) and non humic C (NHC), lignin C, cellulose C. Also were calculated parameters of humification, humification degree (DH), humification rate (HR), total level of humification (HU) and humification index (HI) The results are discussed in terms of how soil use and vegetation influences the identified C pools, and the humification indexes.

  10. Soil discontinuities as potential factors of shallow landslides: a case study from Calabria, southern Italy

    NASA Astrophysics Data System (ADS)

    Scarciglia, Fabio; Morrone, Fabio; Pelle, Teresa; Buttafuoco, Gabriele; Conforti, Massimo; Muto, Francesco; Critelli, Salvatore; Fabbricatore, Davide; Filomena, Luciana; Rago, Valeria; Robustelli, Gaetano; Tripodi, Vincenzo; Versace, Pasquale

    2015-04-01

    Effects of chemical and physical weathering processes on different rock types as predisposing factors of a number of landslides are often investigated in detail. Conversely, very few research studies on triggering mechanisms of shallow landslides and related risk assessment are focused on evaluation of morphological and physical discontinuities caused by pedogenetic processes affecting parent materials. Also sampling strategies for geotechnical or hydrological laboratory analyses can be biased by the lack of detailed information about the soil spatial variability and of a consequent horizon-wise selection of samples from soil profiles. In this work we summarize the main results on the assessment of shallow landslide susceptibility along the A3 highway section between Cosenza Sud and Altilia in northern Calabria (southern Italy). This research is part of a wider project (PON01-01503: "Integrated systems for hydrogeological risk monitoring, early warning and mitigation along the main lifelines"), aimed at hydro-geological risk mitigation and early warning along three highway sections of southern Italy. Based on a detailed geological and geomorphological survey, the main lithological, structural and relief features of the landscape were mapped, with a special emphasis on active, dormant and inactive landslides and their geo-lithological control factors. A soil survey was also carried out in the field, showing a dominance of Entisols and Inceptisols on steep slopes, and Mollisols and Alfisols on gentle landforms. Soil observations were focused on the identification of pedological discontinuities as potential factors that might trigger shallow landslides. A number of soil profiles, often close to landslide scarps, evidenced significant morphological changes of the parent materials, such as texture, pedogenic structure, dry consistence and moisture, or hydromorphic features caused by transient water-logging conditions, and clay-illuviated horizons. Buried soils were recognized, often truncated by erosion, and overlain by younger soils developed on colluvia, debris flows and detrital slope deposits. Five representative soil profiles were selected and sampled for pedological, geotechnical and hydrological laboratory analyses. Bulk and undisturbed samples were collected for chemical and physical soil analyses (particle size distribution, organic and inorganic carbon, pH, electrical conductivity, soluble salts), for determining bulk density, Atterberg limits, cohesive strength, angle of internal friction, water retention and for thin sections to be observed under an optical polarizing microscope, respectively. Preliminary results of laboratory analyses showed irregular patterns of pedological (particle size distribution, organic matter content, bulk density), geotechnical (Atterberg limits) and hydrological data (water content, pore distribution) along the soil profiles, coherently with field observations.

  11. Out of sight - Profiling soil characteristics, nutrients and microbial communities affected by organic amendments down to one meter in a long-term maize cultivation experiment

    NASA Astrophysics Data System (ADS)

    Lehtinen, Taru; Mikkonen, Anu; Zavattaro, Laura; Grignani, Carlo; Baumgarten, Andreas; Spiegel, Heide

    2016-04-01

    Soil characteristics, nutrients and microbial activity in the deeper soil layers are topics not of-ten covered in agricultural studies since the main interest lies within the most active topsoils and deep soils are more time-consuming to sample. Studies have shown that deep soil does matter, although biogeochemical cycles are not fully understood yet. The main aim of this study is to investigate the soil organic matter dynamics, nutrients and microbial community composition in the first meter of the soil profiles in the long-term maize cropping system ex-periment Tetto Frati, in the vicinity of the Po River in Northern Italy. The trial site lies on a deep, calcareous, free-draining soil with a loamy texture. The following treatments have been applied since 1992: 1) maize for silage with 250 kg mineral N ha-1 (crop residue removal, CRR), 2) maize for grain with 250 kg mineral N ha-1 (crop residue incorporation, CRI), 3) maize for silage with 250 kg bovine slurry N ha-1 (SLU), 4) maize for silage with 250 kg farm yard manure N ha-1 (FYM). Soil characteristics (pH, carbonate content, soil organic carbon (SOC), aggregate stability (WSA)), and nutrients (total nitrogen (Nt), CAL-extractable phos-phorous (P) and potassium (K), potential N mineralisation) were investigated. Bacteri-al community composition was investigated with Ion PGM high-throughput sequencing at the depth of 8000 sequences per sample. Soil pH was moderately alkaline in all soil samples, in-creasing with increasing soil depth, as the carbonate content increased. SOC was significantly higher in the treatments with organic amendments (CRI, SLU and FYM) compared to CRR in 0-25 cm (11.1, 11.6, 14.7 vs. 9.8 g kg-1, respectively), but not in the deeper soil. At 50-75 cm soil depth FYM treatment revealed higher WSA compared to CRR, as well as higher CAL-extractable K (25 and 15 mg kg-1, respectively) and potential N mineralisation (11.30 and 8.78 mg N kg-1 7d-1, respectively). At 75-100 cm soil depth, SLU and FYM had the highest poten-tial N mineralisation. Microbial biomass and bacterial diversity decreased downwards the soil profile. Incorporation of crop residues alone showed no positive impacts on either biomass or diversity, whereas fertilization by FYM instead of mineral fertilizer did. Microbial community composition showed depth-related shifts: Proteobacteria and Actinobacteria dominated the upper layer, whereas Gemmatimonadetes showed the highest relative abundance in the mid-layers and Chloroflexi deeper in the soil profile. The main factor determining soil bacterial community composition in the entire dataset was not the treatments but the layers. Interesting-ly, the surface layers that we expected to be most impacted by the treatments were much more similar to each other, regardless of treatment or block, than samples from the deeper layers were to each other. This means that agricultural practices strongly influence the soil bacterial composition and reduce its wide natural heterogeneity. This calls for continuous efforts to study the deeper soil layers in the numerous long-term field experiments, where mostly the topsoils are currently studied in detail.

  12. Soil C and N patterns in a semiarid piñon-juniper woodland: Topography of slope and ephemeral channels add to canopy-intercanopy heterogeneity

    USGS Publications Warehouse

    Law, Darin J.; Breshears, David D.; Ebinger, Michael H.; Meyer, Clifton W.; Allen, Craig D.

    2012-01-01

    Carbon and nitrogen are crucial to semiarid woodlands, determining decomposition, production and redistribution of water and nutrients. Carbon and nitrogen are often greater beneath canopies than intercanopies. Upslope vs. downslope position and ephemeral channels might also cause variation in C and N. Yet, few studies have simultaneously evaluated spatial variation associated with canopy–intercanopy patches and topography. We estimated C and N upslope and downslope in an eroding piñon–juniper woodland for canopies beneath piñons (Pinus edulis) and junipers, (Juniperus monosperma), intercanopies, and ephemeral channels. Soil C and N in the surface and profile beneath canopies exceeded that of intercanopies and channels. Relative to intercanopies, channels had more profile C upslope but less downslope (profile N was not significant). Relative to upslope, profile C downslope for intercanopies was greater and for channels was less (profile N was not significant). Relative to profile, surface soil C and N exhibited less heterogeneity. Although some topographic heterogeneity was detected, results did not collectively support our redistribution hypotheses, and we are unable to distinguish if this heterogeneity is due to in situ or redistribution effects. Nonetheless, results highlight finer topographical spatial variation in addition to predominant canopy and intercanopy variation that is applicable for semiarid woodland management.

  13. High-Resolution Vertical Profile Measurements for Carbon Dioxide and Water Vapour Concentrations Within and Above Crop Canopies

    NASA Astrophysics Data System (ADS)

    Ney, Patrizia; Graf, Alexander

    2018-03-01

    We present a portable elevator-based facility for measuring CO2, water vapour, temperature and wind-speed profiles between the soil surface and the atmospheric surface layer above crop canopies. The end of a tube connected to a closed-path gas analyzer is continuously moved up and down over the profile range (in our case, approximately 2 m) while concentrations are logged at a frequency of 20 s^{-1}. Using campaign measurements in winter wheat, winter barley and a catch crop mixture (spring 2015 to autumn 2016) during different stages of crop development and different times of the day, we demonstrate a simple approach to correct for time lags, and the resulting profiles of 30-min mean mole fractions of CO2 and H2O over height increments of 0.025 m. The profiles clearly show the effects of soil respiration and photosynthetic carbon assimilation, varying both during the diurnal cycle and during the growing season. Profiles of temperature and wind speed are based on a ventilated finewire thermocouple and a hot-wire anemometer, respectively. Measurements over bare soil and a short plant canopy were analyzed in the framework of Monin-Obukhov similarity theory to check the validity of the measurements and raw-data-processing approach. Derived fluxes of CO2, latent and sensible heat and momentum show good agreement with eddy-covariance measurements.

  14. The structure of fungal biomass and diversity of cultivated micromycetes in Antarctic soils (progress and Russkaya Stations)

    NASA Astrophysics Data System (ADS)

    Marfenina, O. E.; Nikitin, D. A.; Ivanova, A. E.

    2016-08-01

    The distribution of the fungal biomass and diversity of cultivated microscopic fungi in the profiles of some soils from East (Progress Station, valleys of the Larsemann Hills oasis) and West (Russkaya Station, the Marie Byrd Land) Antarctica regions were studied. The structure of the biomass (spore/mycelium and live cells/dead cells) was analyzed by fluorescence microscopy with staining using a set of coloring agents: calcofluor white, ethidium bromide, and fluorescein diacetate. The species composition of the cultivated microscopic fungi was determined on Czapek's medium. The fungal biomass in the soils studied is not high (on the average, 0.3 mg/g of soil); the greatest biomass (0.6 mg/g) was found in the soil samples with plant residues. The fungal biomass is mainly (to 70%) represented by small (to 2.5 μm) spores. About half of the fungal biomass is composed of living cells. There are differences in the distribution of the fungal biomass within the profiles of different primitive soils. In the soil samples taken under mosses and lichens, the maximal biomass was registered in the top soil horizons. In the soils with the peat horizon under stone pavements, the greatest fungal biomass was registered in the subsurface horizons. Thirty-eight species of cultivated microscopic fungi were isolated from the soils studied. Species of the genus Penicillium and Phoma herbarum predominated.

  15. Microrelief and vegetation as the factors of spatial redistribution of nutrients in the soils of forest ecosystems

    NASA Astrophysics Data System (ADS)

    Chernitsova, Olga; Krechetov, Pavel

    2017-04-01

    The study is aimed at the identifying factors and mechanisms controlling the redistribution of nutrients in the profile of sod-podzolic soils (Umbric Albeluvisols Abruptic in WRB, 2006). The data of chemical analyzes of soil samples of soddy-pale-podzolic soils under mixed coniferous-deciduous forests, picked from the genetic horizons of 28 soil profiles up to the depth of 120-150 cm in the key area with a polygonal-block microrelief (58.39°N, 56.52°E) were used. Soil profiles were placed at the key area considering vegetation and microrelief. Samples were analyzed for humus content, available forms of N, P, K, Ca, Mg and soil texture. Published data on the capacity and the structure of biogeochemical cycling in forest phytocenoses of different ages in the southern taiga were summarized. Field sketches were used for the construction of the digital elevation model of the key area and for plotting the vegetation map showing the crowns' projections of trees and shrubs of different species. Using spatial interpolation in GIS, series of schematic maps were created that characterize the depth of the lower boundary of genetic horizons and their thickness, as well as the texture of the different soil horizons, humus content and distribution of nutrients at different depths. These schematic maps were analyzed for patterns of radial and lateral differentiation of all examined features. Pronounced textural differentiation of soils of micro-elevations and poor textural differentiation of soil of micro-depressions are revealed. It is shown that in the soils with the positions from micro-elevations through flat surfaces to micro-depressions the humus content in the upper layers (horizon A) increases 1.6-1.7 times, the content of nitrogen ‒ 1.4-1.5, phosphorus ‒ 2.6 8.4, calcium and magnesium cations ‒ 1.8-2.9 times. This differentiation in nutrients' content is coming along with the settlement of more demanding to soil fertility plants in micro-depressions. Also the bimodal distribution of the available forms of potassium, phosphorus, calcium, magnesium in the soil profile was revealed. The first maximum of nutrients content is detected in the humus-accumulative horizon A, the second - in the illuvial horizon Bt. The eluvial horizons EL are characterized by the minimum values. Considering the thickness of soil horizons, supplies of available forms of phosphorus, potassium, calcium and magnesium were estimated, which are 1.5-2.5 times higher in deeper soil horizons than in the upper ones. The complex ecological and geochemical structure of forest ecosystems is regulated by both the lateral additional supply of mobile chemical compounds by the surface and subsurface runoff, including melted snow water, as well as the peculiarities of biogeochemical cycling (the age of the forest, the penetration depth of suction roots of various species of trees, the chemical composition of the litter).

  16. A new in-situ method to determine the apparent gas diffusion coefficient of soils

    NASA Astrophysics Data System (ADS)

    Laemmel, Thomas; Paulus, Sinikka; Schack-Kirchner, Helmer; Maier, Martin

    2015-04-01

    Soil aeration is an important factor for the biological activity in the soil and soil respiration. Generally, gas exchange between soil and atmosphere is assumed to be governed by diffusion and Fick's Law is used to describe the fluxes in the soil. The "apparent soil gas diffusion coefficient" represents the proportional factor between the flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gases through the soil. One common way to determine this coefficient is to take core samples in the field and determine it in the lab. Unfortunately this method is destructive and needs laborious field work and can only reflect a small fraction of the whole soil. As a consequence insecurity about the resulting effective diffusivity on the profile scale must remain. We developed a new in-situ method using new gas sampling device, tracer gas and inverse soil gas modelling. The gas sampling device contains several sampling depths and can be easily installed into vertical holes of an auger, which allows for fast installation of the system. At the lower end of the device inert tracer gas is injected continuously. The tracer gas diffuses into the surrounding soil. The resulting distribution of the tracer gas concentrations is used to deduce the diffusivity profile of the soil. For Finite Element Modeling of the gas sampling device/soil system the program COMSOL is used. We will present the results of a field campaign comparing the new in-situ method with lab measurements on soil cores. The new sampling pole has several interesting advantages: it can be used in-situ and over a long time; so it allows following modifications of diffusion coefficients in interaction with rain but also vegetation cycle and wind.

  17. 30 CFR 250.907 - Where must I locate foundation boreholes?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... platforms and tension leg platforms, your maximum distance from any foundation pile to a soil boring must... throughout the anchor pattern to establish the soil profile suitable for foundation design purposes. ...

  18. 30 CFR 250.907 - Where must I locate foundation boreholes?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... soil boring must not exceed 500 feet. (b) For deepwater floating platforms which utilize catenary or..., other points throughout the anchor pattern to establish the soil profile suitable for foundation design...

  19. 30 CFR 250.907 - Where must I locate foundation boreholes?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... soil boring must not exceed 500 feet. (b) For deepwater floating platforms which utilize catenary or..., other points throughout the anchor pattern to establish the soil profile suitable for foundation design...

  20. Sustainable landscaping practices for enhancing vegetation establishment.

    DOT National Transportation Integrated Search

    2016-02-01

    Soil compaction can severely limit the success of vegetation establishment. Current grading and landscaping : practices commonly produce compacted soils of varied textures and profiles within SHA medians and roadsides, : resulting in limited capacity...

  1. 30 CFR 250.907 - Where must I locate foundation boreholes?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... soil boring must not exceed 500 feet. (b) For deepwater floating platforms which utilize catenary or..., other points throughout the anchor pattern to establish the soil profile suitable for foundation design...

  2. Magnetic Measurements as a Useful Tool for the Evaluation of Spatial Variability of the Arable Horizon Thickness

    NASA Astrophysics Data System (ADS)

    Fattakhova, Leysan; Shinkarev, Alexandr; Ryzhikh, Lyudmila; Kosareva, Lina

    2017-04-01

    In normal practice, the thickness of the arable horizon is determined on the basis of field morphological descriptions, allowing the subjectivity of perception and judgment at the crucial role of experience of the researcher. The subject of special interest are independent analytical and technically relatively simple in design approaches to the diagnosis of the lower boundary of the blended plowing the profiles part. Theoretical premises to use spectrophotometry and magnetometry to arable horizon depth diagnose is based on the concept of regular color and magnetic properties vertical differentiation in a profile of virgin soils. This work is devoted to the comparative assessment of the possibility to objectively and reliably diagnose the lower boundary of the arable horizon in gray forest soils by determining the color characteristics and the magnetic susceptibility of their layer-wise samples. It was shown with arable gray forest soil (Cutanic Luvisols (Anthric)) as example that the magnetic susceptibility profile distribution curves can provide more reliable and objective assessment of the arable horizon thickness spatial variability than the profile curves of the color characteristics in the CIELAB coordinates. Therefore, magnetic measurements can be a useful tool for the tillage erosion estimation in the monitoring of soil characteristics in connection with the development of precision agriculture technologies and the organizing of agricultural field plot experiments.

  3. Using Flux Site Observations to Calibrate Root System Architecture Stencils for Water Uptake of Plant Functional Types in Land Surface Models.

    NASA Astrophysics Data System (ADS)

    Bouda, M.

    2017-12-01

    Root system architecture (RSA) can significantly affect plant access to water, total transpiration, as well as its partitioning by soil depth, with implications for surface heat, water, and carbon budgets. Despite recent advances in land surface model (LSM) descriptions of plant hydraulics, RSA has not been included because of its three-dimensional complexity, which makes RSA modelling generally too computationally costly. This work builds upon the recently introduced "RSA stencil," a process-based 1D layered model that captures the dynamic shifts in water potential gradients of 3D RSA in response to heterogeneous soil moisture profiles. In validations using root systems calibrated to the rooting profiles of four plant functional types (PFT) of the Community Land Model, the RSA stencil predicts plant water potentials within 2% of the outputs of full 3D models, despite its trivial computational cost. In transient simulations, the RSA stencil yields improved predictions of water uptake and soil moisture profiles compared to a 1D model based on root fraction alone. Here I show how the RSA stencil can be calibrated to time-series observations of soil moisture and transpiration to yield a water uptake PFT definition for use in terrestrial models. This model-data integration exercise aims to improve LSM predictions of soil moisture dynamics and, under water-limiting conditions, surface fluxes. These improvements can be expected to significantly impact predictions of downstream variables, including surface fluxes, climate-vegetation feedbacks and soil nutrient cycling.

  4. Elemental and isotopic behaviour of Zn in Deccan basalt weathering profiles: Chemical weathering from bedrock to laterite and links to Zn deficiency in tropical soils.

    PubMed

    Suhr, Nils; Schoenberg, Ronny; Chew, David; Rosca, Carolina; Widdowson, Mike; Kamber, Balz S

    2018-04-01

    Zinc (Zn) is a micronutrient for organisms and essential for plant growth, therefore knowledge of its elemental cycling in the surface environment is important regarding wider aspects of human nutrition and health. To explore the nature of Zn cycling, we compared its weathering behaviour in a sub-recent regolith versus an ancient laterite profile of the Deccan Traps, India - an area of known soil Zn deficiency. We demonstrate that progressive breakdown of primary minerals and the associated formation of phyllosilicates and iron oxides leads to a depletion in Zn, ultimately resulting in a loss of 80% in lateritic residues. This residue is mainly composed of resistant iron oxides and hydroxides ultimately delivering insufficient amounts of bio-available Zn. Moreover, (sub)-tropical weathering in regions experiencing extended tectonic quiescence (e.g., cratons) further enhance the development of old and deep soil profiles that become deficient in Zn. This situation is clearly revealed by the spatial correlation of the global distribution of laterites, cratons (Africa, India, South America and Australia) and known regions of Zn deficient soils that result in health problems for humans whose diet is derived from such land. We also investigate whether this elemental depletion of Zn is accompanied by isotope fractionation. In the saprolitic horizons of both weathering profiles, compositions of δ 66 Zn JMC-Lyon lie within the "crustal average" of +0.27±0.07‰ δ 66 Zn JMC-Lyon . By contrast, soil horizons enriched in secondary oxides show lighter isotope compositions. The isotopic signature of Zn (Δ 66 Zn sample-protolith up to ~ -0.65‰) during the formation of the ferruginous-lateritic weathering profile likely resulted from a combination of biotically- and kinetically-controlled sorption reactions on Fe-oxyhydroxides. Our findings suggest that oxide rich soil types/horizons in (sub)-tropical regions likely exert a control on riverine Zn isotope compositions such that these become heavier than the crustal average. This isotopic behaviour invites a broader study of global soils to test whether light isotope composition alone could serve as an indicator for reduced bioavailability of Zn. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. On the appropriate definition of soil profile configuration and initial conditions for land surface-hydrology models in cold regions

    NASA Astrophysics Data System (ADS)

    Sapriza-Azuri, Gonzalo; Gamazo, Pablo; Razavi, Saman; Wheater, Howard S.

    2018-06-01

    Arctic and subarctic regions are amongst the most susceptible regions on Earth to global warming and climate change. Understanding and predicting the impact of climate change in these regions require a proper process representation of the interactions between climate, carbon cycle, and hydrology in Earth system models. This study focuses on land surface models (LSMs) that represent the lower boundary condition of general circulation models (GCMs) and regional climate models (RCMs), which simulate climate change evolution at the global and regional scales, respectively. LSMs typically utilize a standard soil configuration with a depth of no more than 4 m, whereas for cold, permafrost regions, field experiments show that attention to deep soil profiles is needed to understand and close the water and energy balances, which are tightly coupled through the phase change. To address this gap, we design and run a series of model experiments with a one-dimensional LSM, called CLASS (Canadian Land Surface Scheme), as embedded in the MESH (Modélisation Environmentale Communautaire - Surface and Hydrology) modelling system, to (1) characterize the effect of soil profile depth under different climate conditions and in the presence of parameter uncertainty; (2) assess the effect of including or excluding the geothermal flux in the LSM at the bottom of the soil column; and (3) develop a methodology for temperature profile initialization in permafrost regions, where the system has an extended memory, by the use of paleo-records and bootstrapping. Our study area is in Norman Wells, Northwest Territories of Canada, where measurements of soil temperature profiles and historical reconstructed climate data are available. Our results demonstrate a dominant role for parameter uncertainty, that is often neglected in LSMs. Considering such high sensitivity to parameter values and dependency on the climate condition, we show that a minimum depth of 20 m is essential to adequately represent the temperature dynamics. We further show that our proposed initialization procedure is effective and robust to uncertainty in paleo-climate reconstructions and that more than 300 years of reconstructed climate time series are needed for proper model initialization.

  6. ACCUMULATION OF POLY-B-HYDROXYBUTYRATE IN A METHANE- ENRICHED, HALOGENATED, HYDROCARBON-DEGRADING SOIL COLUMN: IMPLICATIONS FOR MICROBIAL COMMUNITY STRUCTURE AND NUTRITIONAL STATUS

    EPA Science Inventory

    The prokarotic, endogenous storage polymer poly--hydroxybutyrate (PHB) accumulated in soil from a methane-enriched, halogenated hydrocarbon-degrading soil column. Based on phospholipid ester-linked fatty acid (PLFA) profiles, this mocrocosm has been previously reported to be sign...

  7. STUDY OF SOIL AND LEAF LITTER MICROBIAL FATTY ACID PROFILES IN TABONUCO FOREST IN THE LUQUILLO EXPERIMENTAL FOREST IN PUERTO RICO

    EPA Science Inventory

    The results of this study suggests that there are two significantly distinct microbial communities in the leaf litter and soil components of this tropical forest. Fungi are more abundant in the leaf litter while bacteria are more abundant in the soil.

  8. Influence of FGD gypsum on the properties of a highly erodible soil under conservation tillage

    USDA-ARS?s Scientific Manuscript database

    The performance of conservation tillage practices imposed on highly erodible soils may be improved by the use of amendments with a high solubility rate, and whose dissolution products are translocated at depth in the soil profile faster than normally used agricultural lime and fertilizer products. T...

  9. Event-based estimation of water budget components using the network of multi-sensor capacitance probes

    USDA-ARS?s Scientific Manuscript database

    A time-scale-free approach was developed for estimation of water fluxes at boundaries of monitoring soil profile using water content time series. The approach uses the soil water budget to compute soil water budget components, i.e. surface-water excess (Sw), infiltration less evapotranspiration (I-E...

  10. Imaging a soil fragipans using a high-frequency MASW method

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to noninvasively image a fragipan layer, a naturally occurring dense soil layer, using a high-frequency (HF) multi-channel analysis of surface wave (MASW) method. The HF-MASW is developed to measure the soil profile in terms of the shear (S) wave velocity at depths up...

  11. Upper Washita River experimental watersheds: Multiyear stability of soil water content profiles

    USDA-ARS?s Scientific Manuscript database

    Scaling in situ soil water content time series data to a large spatial domain is a key element of watershed environmental monitoring and modeling. The primary method of estimating and monitoring large-scale soil water content distributions is via in situ networks. It is critical to establish the s...

  12. Water movement and isoproturon behaviour in a drained heavy clay soil: 1. Preferential flow processes

    NASA Astrophysics Data System (ADS)

    Haria, A. H.; Johnson, A. C.; Bell, J. P.; Batchelor, C. H.

    1994-12-01

    The processes and mechanisms that control pesticide transport from drained heavy clay catchments are being studied at Wytham Farm (Oxford University) in southern England. In the first field season field-drain water contained high concentrations of pesticide. Soil studies demonstrated that the main mechanism for pesticide translocation was by preferential flow processes, both over the soil surface and through the soil profile via a macropore system that effectively by-passed the soil matrix. This macropore system included worm holes, shrinkage cracks and cracks resulting from ploughing. Rainfall events in early winter rapidly created a layer of saturation in the A horizon perched above a B horizon of very low hydraulic conductivity. Drain flow was initiated when the saturated layer in the A horizon extended into the upper 0.06m of the soil profile; thereafter water moved down slope via horizontal macropores possibly through a band of incorporated straw residues. These horizontal pathways for water movement connected with the fracture system of the mole drains, thus feeding the drains. Overland flow occurred infrequently during the season.

  13. The pedological heritage of the Dolomites (Northern Italy): Features, distribution and evolution of the soils, with some implications for land management

    NASA Astrophysics Data System (ADS)

    Zilioli, Diana Maria; Bini, Claudio; Wahsha, Mohammad; Ciotoli, Giancarlo

    2011-12-01

    Since 1997, the Department of Environmental Sciences of Ca' Foscari University of Venice has undertaken numerous research projects aimed at deepening understanding of pedogenic processes in the Dolomites, and at highlighting the fundamental contribution that soil science can give to the conservation of natural resources and achieve sustainable management of mountain ecosystems. A total of several hundred profiles have been described, analyzed and mapped. This paper reports the results from the analysis of pedo-environmental characters of profiles developed from different parent materials, at altitudes between 1300 m and 2900 m and in different conditions of slope, exposure and vegetation cover. Soil forming factors, landforms and land surfaces have been interpreted to understand the soil-landscape in the mapped areas and to develop a qualitative model of soil geography into the Dolomites scenery. The application of land evaluation methods in some of the investigated territories that are subjected to intensive tourist fluxes revealed some criticisms. Collected results also highlighted the high environmental heterogeneity of soils of the Dolomites.

  14. A passive air sampler for characterizing the vertical concentration profile of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air.

    PubMed

    Zhang, Yuzhong; Deng, Shuxing; Liu, Yanan; Shen, Guofeng; Li, Xiqing; Cao, Jun; Wang, Xilong; Reid, Brian; Tao, Shu

    2011-03-01

    Air-soil exchange is an important process governing the fate of polycyclic aromatic hydrocarbons (PAHs). A novel passive air sampler was designed and tested for measuring the vertical concentration profile of 4 low molecular weight PAHs in gaseous phase (PAH(LMW4)) in near soil surface air. Air at various heights from 5 to 520 mm above the ground was sampled by polyurethane foam disks held in down-faced cartridges. The samplers were tested at three sites: A: an extremely contaminated site, B: a site near A, and C: a background site on a university campus. Vertical concentration gradients were revealed for PAH(LMW4) within a thin layer close to soil surface at the three sites. PAH concentrations either decreased (Site A) or increased (Sites B and C) with height, suggesting either deposition to or evaporation from soils. The sampler is a useful tool for investigating air-soil exchange of gaseous phase semi-volatile organic chemicals. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Fate of 137Cs, 90Sr and 239+240Pu in soil profiles at a water recharge site in Basel, Switzerland.

    PubMed

    Abraham, Johannes; Meusburger, Katrin; Waldis, Judith Kobler; Ketterer, Michael E; Zehringer, Markus

    2018-02-01

    An important process in the production of drinking water is the recharge of the withdrawn ground water with river water at protected recharge fields. While it is well known that undisturbed soils are efficiently filtering and adsorbing radionuclides, the goal of this study was to investigate their behaviour in an artificial recharge site that may receive rapid and additional input of radionuclides by river water (particularly when draining a catchment including nuclear power plants (NPP)). Soil profiles of recharge sites were drilled and analysed for radionuclides, specifically radiocesium ( 137 Cs), radiostrontium ( 90 Sr) and plutonium ( 239+240 Pu). The distribution of the analysed radionuclides were compared with an uncultivated reference soil outside the recharge site. The main activity of 137 Cs was located in the top soil (4.5-7.5 cm) and reached down to a depth of 84 cm and 48 cm for the recharge and the reference site, respectively. The found activities of 239+240 Pu originate from the global fallout after 1950. 239+240 Pu appeared to be strongly adsorbed onto soil particles. The shape of the depth profile was similar to 137 Cs, but also similar between the recharge and the reference site. In contrast, 90 Sr showed a uniform distribution over the entire depth of the recharge and reference profiles indicating that 90 Sr already entered the gravel zone and the ground water. Elevated inventories of the radionuclides were observed for the recharge site. The soil of the recharge field exhibited a threefold higher activity of 137 Cs compared to the reference soil. Also for 239+240 Pu higher inventories where observed for the recharge sites (40%). 90 Sr behaved differently, showing similar inventories between reference and recharge site. We estimate that 75-89% of the total inventory of 137 Cs in the soil at the recharge site (7.000 Bq/m 2 ) originated from the fallout of the Chernobyl accident and from emissions of Swiss NPPs. This estimate is based on the actual activity ratio of 137 Cs/ 239+240 Pu of 22 for global fallout. The investigations identified radiostrontium as potential threat to the ground water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Soil profile of Yellow-brown Earth overlying Red Clay in southern Anhui Province: A pedogenic response to the Last Glacial - Interglacial cycle in mid-subtropical China

    NASA Astrophysics Data System (ADS)

    Hu, Xue-Feng; Du, Yan

    2013-04-01

    Soil profile of Yellow-brown Earth (YBE) overlying Red Clay (RC) is commonly seen along the Yangtze River in mid-subtropical China. To study its paleoclimatic implications, one YBE - RC profile in Langxi county, southern Anhui Province, were dated with the optically stimulated luminescence (OSL) method in detail. The results indicated that the dual - layered profile is actually a pedogenic response to a great climatic change during the Last Glacial - Last Interglacial cycle: The YBE is homogenous to the aeolian Xiashu Loess widely distributed along the Yangtze River and was dated from 12.2 ka to 57.1 ka; and the underlying RC approximately from 60 ka to 132.8 ka, which fully suggests that the YBE is really the Last Glacial loess, correlated with the Malan Loess in the Chinese Loess Plateau, Northwest China, and the RC was mainly formed during the Last Interglacial. Two sub-class events of the Last Glacial, the Last Glacial Maximum (LGM) and the Last Glacial Optimum (LGO), correlated with the marine oxygen isotopic stage (MIS) 2 and 3, can be separated and identified in the YBE. Likewise, the RC can be divided into the Uniform Red Clay (URC) and Reticulate Red Clay (RRC). The URC was formed during the transitional time from the Last Interglacial to the Last Glacial, and the RRC mainly during the Last Interglacial, MIS 5. The RC is highly weathered but still shows aeolian-dust characteristics. The duplicate information implies that the paleoclimate during the Last Interglacial is instable and might also oscillate between warm and cold, but sub-class paleoclimatic events, potential correlated with MIS 5 a - 5 e, cannot be identified in the RRC possibly due to the overlapped paleoclimatic information caused by highly chemical weathering. A great climatic transfer during the Last Glacial - Interglacial cycle left soil parent materials diversified in the study areas and hence caused the parallel distribution of different zonal soils in a small scale. Two surface soils, Yellow-brown Soils (Acrisols), derived from the YBE, and Red Soils (Plinthosols), derived from the RC, often coexist in the areas. The Red Soils are really relict and not correlated with the current soil-forming conditions. Sometimes, the influence of climatic change on the pedogenesis is so significant that it should never be neglected.

  17. Analysis of Bacterial Community Structure in Sulfurous-Oil-Containing Soils and Detection of Species Carrying Dibenzothiophene Desulfurization (dsz) Genes

    PubMed Central

    Duarte, Gabriela Frois; Rosado, Alexandre Soares; Seldin, Lucy; de Araujo, Welington; van Elsas, Jan Dirk

    2001-01-01

    The selective effects of sulfur-containing hydrocarbons, with respect to changes in bacterial community structure and selection of desulfurizing organisms and genes, were studied in soil. Samples taken from a polluted field soil (A) along a concentration gradient of sulfurous oil and from soil microcosms treated with dibenzothiophene (DBT)-containing petroleum (FSL soil) were analyzed. Analyses included plate counts of total bacteria and of DBT utilizers, molecular community profiling via soil DNA-based PCR-denaturing gradient gel electrophoresis (PCR-DGGE), and detection of genes that encode enzymes involved in the desulfurization of hydrocarbons, i.e., dszA, dszB, and dszC.Data obtained from the A soil showed no discriminating effects of oil levels on the culturable bacterial numbers on either medium used. Generally, counts of DBT degraders were 10- to 100-fold lower than the total culturable counts. However, PCR-DGGE showed that the numbers of bands detected in the molecular community profiles decreased with increasing oil content of the soil. Analysis of the sequences of three prominent bands of the profiles generated with the highly polluted soil samples suggested that the underlying organisms were related to Actinomyces sp., Arthrobacter sp., and a bacterium of uncertain affiliation. dszA, dszB, and dszC genes were present in all A soil samples, whereas a range of unpolluted soils gave negative results in this analysis. Results from the study of FSL soil revealed minor effects of the petroleum-DBT treatment on culturable bacterial numbers and clear effects on the DBT-utilizing communities. The molecular community profiles were largely stable over time in the untreated soil, whereas they showed a progressive change over time following treatment with DBT-containing petroleum. Direct PCR assessment revealed the presence of dszB-related signals in the untreated FSL soil and the apparent selection of dszA- and dszC-related sequences by the petroleum-DBT treatment. PCR-DGGE applied to sequential enrichment cultures in DBT-containing sulfur-free basal salts medium prepared from the A and treated FSL soils revealed the selection of up to 10 distinct bands. Sequencing a subset of these bands provided evidence for the presence of organisms related to Pseudomonas putida, a Pseudomonas sp., Stenotrophomonas maltophilia, and Rhodococcus erythropolis. Several of 52 colonies obtained from the A and FSL soils on agar plates with DBT as the sole sulfur source produced bands that matched the migration of bands selected in the enrichment cultures. Evidence for the presence of dszB in 12 strains was obtained, whereas dszA and dszC genes were found in only 7 and 6 strains, respectively. Most of the strains carrying dszA or dszC were classified as R. erythropolis related, and all revealed the capacity to desulfurize DBT. A comparison of 37 dszA sequences, obtained via PCR from the A and FSL soils, from enrichments of these soils, and from isolates, revealed the great similarity of all sequences to the canonical (R. erythropolis strain IGTS8) dszA sequence and a large degree of internal conservation. The 37 sequences recovered were grouped in three clusters. One group, consisting of 30 sequences, was minimally 98% related to the IGTS8 sequence, a second group of 2 sequences was slightly different, and a third group of 5 sequences was 95% similar. The first two groups contained sequences obtained from both soil types and enrichment cultures (including isolates), but the last consisted of sequences obtained directly from the polluted A soil. PMID:11229891

  18. Brominated flame retardants in the surrounding soil of two manufacturing plants in China: Occurrence, composition profiles and spatial distribution.

    PubMed

    Li, Wen-Long; Liu, Li-Yan; Zhang, Zi-Feng; Song, Wei-Wei; Huo, Chun-Yan; Qiao, Li-Na; Ma, Wan-Li; Li, Yi-Fan

    2016-06-01

    Surface soil samples were collected surrounding two brominated flame retardants (BFRs) manufacturing plants in China in August 2014 and analyzed for 23 polybrominated diphenyl ethers (PBDEs) and 8 novel brominated flame retardants (NBFRs). BDE209 and decabromodiphenylethane (DBDPE) were the predominant compounds in soil with the median levels of 1600 and 560 ng/g dw, respectively. The PBDEs profiles in soil samples were consistent with that of commercial product (comDecaBDE). The percentage contributions to total PBDEs decreased from higher to lower brominated homologues. Lower concentrations of NBFRs (excluding DBDPE) were detected in soil surrounding the two plants, suggesting they are byproducts or degradation products of the manufacturing activities. The concentrations of most BFRs dropped exponentially within 3-5 km of the manufacturing plants, suggesting recent deposition of these compounds to the soil. Directional distribution indicated that PBDEs and DBDPE concentrations were highest in the north direction of Plants 1. Three-day air parcel forward trajectories confirmed that the air parcel was responsible for the higher concentration of BFRs in the soil of north direction of the plant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Production and transport of gases in the soil: from 1-D soil gas profiles towards 2- and 3-D representations of soil gas processes

    NASA Astrophysics Data System (ADS)

    Maier, Martin; Lang, Friederike; Schack-Kirchner, Helmer

    2017-04-01

    Most studies implicitly use a 1 dimensional simplification of soil processes with a dominating vertical profile, e.g in soil physical and chemical properties. In many cases, this is a useful and sufficient representation of the realty which helps to answer research questions in an efficient way. Yet, in some cases, a 2 D or 3 D analysis of the processes is necessary to avoid misinterpretation of experimental results, e.g. modeling the impact of chamber deployment time during the measurement of gas fluxes (von Fischer et al. 2009) or trenching experiments (Jassal et al. 2006). We developed a new method to determine the 2 D patterns of the soil gas diffusion coefficient DS/D0 in situ, using simultaneously several inert tracer gases. Soil gas transport was modelled inversely using the Finite Element Modeling program COMSOL. In combination with measurements of target gases such as CO2, CH4 and N2O, this allowed us for modelling the 2-D patterns of transport and production of CO2, CH4 and N2O in the soil. We observed how methane oxidation and soil respiration zones shifted within the soil profile while the gas fluxes at the surface remain rather stable during a 3 week campaign. The soil was a net sink for N2O, yet, in the subsoil local (weak) source of N2O lead to horizontal fluxes of N2O. We are testing the 3 D approach in the lab on defined substrates and objects to quantify the spatial resolution and reliability of the method. In a next step, we want to test the method in the field and study the ventilation and soil gas fluxes of an ant nest in 3D. References: von Fischer, J. C., G. Butters, P. C. Duchateau, R. J. Thelwell, and R. Siller (2009), In situ measures of methanotroph activity in upland soils: A reaction-diffusion model and field observation of water stress, J. Geophys. Res., 114, G01015, Jassal RS, Black TA (2006) Estimating heterotrophic and autotrophic soil respiration using small-area trenched plot technique: theory and practice. Agric. For. Meteorol. 140:193-202

  20. The role of regolith and soil development with respect to assessing heavy metal contamination in urban soils with particular reference to iron.

    NASA Astrophysics Data System (ADS)

    van de Graaff, R.

    2012-04-01

    The role of regolith and soil development with respect to assessing heavy metal contamination in urban soils with particular reference to iron. Robert H.M. van de Graaff, PhD Van de Graaff & Associates Pty Ltd, 14 Linlithgow Street, Mitcham, Victoria, 3132, Australia Environmental assessors investigating brown and green development areas in inner and peripheral urban land in Australia routinely collect soil samples at prescribed depths, e.g. 0.1 - 0.5 - 1.0 - etc., in the soil profile. These sampling depths take no notice of the natural horizonation of a soil profile and hence are blind to geomorphological and weathering history of the site. In a continent like Australia, which largely has been spared the wholesale removal and re-deposition of soil and rock materials by Pleistocene glaciers, the vertical and lateral movement of heavy metals, including iron, nearly always explains the occurrence of elevated concentrations of As, Cu, Pb, V, Co, Cr, Zn and Ni in certain strata of the soil profile. The localised accumulation of these metals is normally controlled by changing redox potentials, which in turn are affected by translocation of clay and differences in soil hydraulic conductivity between A, B and C soil horizons. In other cases, the soil profile has operated like a chromatogram over many thousands of years. In Australian cities many urban soils do not have anthropogenic origins. This paper will give some examples of misinterpreted contamination scares in relation to As, Ba, Cr and V that sometimes caused large financial budget overruns at developments in Melbourne. These examples are all based on practical consulting experience but elucidated by reference to the scientific literature. Because of its huge spread, the greater Melbourne Metropolitan region extends from its western extremity with 450 mm annual rainfall to its eastern extremity with 900 mm, a distance of 70 km. A similar rainfall gradient may well have operated during much of the Quaternary, although during the Glacial phases the climate is thought to have been much drier. Likewise, the region spreads out over several very different "hard rock" lithologies from Quaternary basalt to Silurian sedimentary rocks and Devonian granites. However, there are landscapes in the region that probably date back to the Tertiary, 5-10 M years ago, without much change, and basalt landscapes 2 M years old. The geochemical inheritance of this long period of weathering and soil formation on such different parent materials must be understood, or at least appreciated, to interpret the results of soil chemical analyses for environmental assessments. In Victoria, the majority of environmental assessors do not have a sound background in geomorphology, soil science and geochemistry but come from a geotechnical, civil or chemical engineering background, or have studied environmental science more generally. Therefore there are professional opportunities for those that have the desirable educational basis. Finally, assessment of potential soil contamination by heavy metals would be greatly assisted by including analytical methods that selectively dissolve sesquioxides to determine the proportion of total heavy metals that is released by this procedure. It can explain so much!

Top