Sample records for soil quality monitoring

  1. 40 CFR 264.278 - Unsaturated zone monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... or operator must monitor the soil and soil-pore liquid to determine whether hazardous constituents... unsaturated zone monitoring system that includes soil monitoring using soil cores and soil-pore liquid... the quality of background soil-pore liquid quality and the chemical make-up of soil that has not been...

  2. 40 CFR 264.278 - Unsaturated zone monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... or operator must monitor the soil and soil-pore liquid to determine whether hazardous constituents... unsaturated zone monitoring system that includes soil monitoring using soil cores and soil-pore liquid... the quality of background soil-pore liquid quality and the chemical make-up of soil that has not been...

  3. 40 CFR 264.278 - Unsaturated zone monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... or operator must monitor the soil and soil-pore liquid to determine whether hazardous constituents... unsaturated zone monitoring system that includes soil monitoring using soil cores and soil-pore liquid... the quality of background soil-pore liquid quality and the chemical make-up of soil that has not been...

  4. 40 CFR 264.278 - Unsaturated zone monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... or operator must monitor the soil and soil-pore liquid to determine whether hazardous constituents... unsaturated zone monitoring system that includes soil monitoring using soil cores and soil-pore liquid... the quality of background soil-pore liquid quality and the chemical make-up of soil that has not been...

  5. 40 CFR 264.278 - Unsaturated zone monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or operator must monitor the soil and soil-pore liquid to determine whether hazardous constituents... unsaturated zone monitoring system that includes soil monitoring using soil cores and soil-pore liquid... the quality of background soil-pore liquid quality and the chemical make-up of soil that has not been...

  6. Is the soil quality monitoring an effective tool in consumers' protection of agricultural crops from cadmium soil contamination?-a case of the Silesia region (Poland).

    PubMed

    Piekut, Agata; Baranowska, Renata; Marchwińska-Wyrwał, Ewa; Ćwieląg-Drabek, Małgorzata; Hajok, Ilona; Dziubanek, Grzegorz; Grochowska-Niedworok, Elżbieta

    2017-12-16

    The monitoring of soil quality should be a control tool used to reduce the adverse health effects arising from exposure to toxic chemicals in soil through cultivated crop absorption. The aim of the study was to evaluate the effectiveness of the monitoring and control system of soil quality in Poland, in terms of consumer safety, for agricultural plants cultivated in areas with known serious cadmium contamination, such as Silesia Province. To achieve the objective, the contents of cadmium in soils and vegetables in the Silesia administrative area were examined. The obtained results were compared with the results of soil contamination from the quality monitoring of arable soil in Poland. The studies show a significant exceedance of the permissible values of cadmium in soil samples and the vegetables cultivated on that soil. The threat to consumer health is a valid concern, although this threat was not indicated by the results of the national monitoring of soil quality. The results indicated an unequal distribution of risk to consumers resulting from contaminated soil. Moreover, the monitoring systems should be designed at the local or regional scale to guarantee the safety of consumers of edible plants cultivated in the areas contaminated with cadmium.

  7. Soil quality monitoring: Examples of existing protocols

    Treesearch

    Daniel G. Neary; Carl C. Trettin; Deborah Page-Dumroese

    2010-01-01

    Many forestry and agricultural agencies and organizations worldwide have developed soil monitoring and quality standards and guidelines to ensure future sustainability of land management. These soil monitoring standards are typically developed in response to international initiatives such as the Montreal Process, the Helsinki Ministerial Conference,or in support of...

  8. Soil quality monitoring: examples of existing protocols

    Treesearch

    Daniel G. Neary; Carl C. Trettin; Deborah Page-Dumroese

    2010-01-01

    Many forestry and agricultural agencies and organizations worldwide have developed soil monitoring and quality standards and guidelines to ensure future sustainability of land management. These soil monitoring standards are typically developed in response to international initiatives such as the Montreal Process, the Helsinki Ministerial Conference, or in support of...

  9. Physical soil quality indicators for monitoring British soils

    NASA Astrophysics Data System (ADS)

    Corstanje, Ron; Mercer, Theresa G.; Rickson, Jane R.; Deeks, Lynda K.; Newell-Price, Paul; Holman, Ian; Kechavarsi, Cedric; Waine, Toby W.

    2017-09-01

    Soil condition or quality determines its ability to deliver a range of functions that support ecosystem services, human health and wellbeing. The increasing policy imperative to implement successful soil monitoring programmes has resulted in the demand for reliable soil quality indicators (SQIs) for physical, biological and chemical soil properties. The selection of these indicators needs to ensure that they are sensitive and responsive to pressure and change, e.g. they change across space and time in relation to natural perturbations and land management practices. Using a logical sieve approach based on key policy-related soil functions, this research assessed whether physical soil properties can be used to indicate the quality of British soils in terms of their capacity to deliver ecosystem goods and services. The resultant prioritised list of physical SQIs was tested for robustness, spatial and temporal variability, and expected rate of change using statistical analysis and modelling. Seven SQIs were prioritised: soil packing density, soil water retention characteristics, aggregate stability, rate of soil erosion, depth of soil, soil structure (assessed by visual soil evaluation) and soil sealing. These all have direct relevance to current and likely future soil and environmental policy and are appropriate for implementation in soil monitoring programmes.

  10. Data Quality Objectives Supporting the Environmental Soil Monitoring Program for the Idaho National Laboratory Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haney, Thomas Jay

    This document describes the process used to develop data quality objectives for the Idaho National Laboratory (INL) Environmental Soil Monitoring Program in accordance with U.S. Environmental Protection Agency guidance. This document also develops and presents the logic that was used to determine the specific number of soil monitoring locations at the INL Site, at locations bordering the INL Site, and at locations in the surrounding regional area. The monitoring location logic follows the guidance from the U.S. Department of Energy for environmental surveillance of its facilities.

  11. In Field Monitoring of Potential Detrimental Effects of Biofuels Production on Soil Quality

    USDA-ARS?s Scientific Manuscript database

    Soil organic carbon (SOC) content is recognized as a soil quality indicator that is susceptible to degradation with tillage and with biomass removal from the soil surface. In addition to reported benefits of leaving crop residue on the soil surface in preventing soil erosion, providing plant nutrien...

  12. Towards Integrating Soil Quality Monitoring Targets as Measures of Soil Natural Capital Stocks with the Provision of Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Taylor, M. D.; Mackay, A. D.; Dominati, E.; Hill, R. B.

    2012-04-01

    This paper presents the process used to review soil quality monitoring in New Zealand to better align indicators and indicator target ranges with critical values of change in soil function. Since its inception in New Zealand 15 year ago, soil quality monitoring has become an important state of the environment reporting tool for Regional Councils. This tool assists councils to track the condition of soils resources, assess the impact of different land management practices, and provide timely warning of emerging issues to allow early intervention and avoid irreversible loss of natural capital stocks. Critical to the effectiveness of soil quality monitoring is setting relevant, validated thresholds or target ranges. Provisional Target Ranges were set in 2003 using expert knowledge available and data on production responses. Little information was available at that time for setting targets for soil natural capital stocks other than those for food production. The intention was to revise these provisional ranges as further information became available and extend target ranges to cover the regulating and cultural services provided by soils. A recently developed ecosystems service framework was used to explore the feasibility of linking soil natural capital stocks measured by the current suite of soil quality indicators to the provision of ecosystem services by soils. Importantly the new approach builds on and utilises the time series data sets collected by current suite of soil quality indicators, adding value to the current effort, and has the potential to set targets ranges based on the economic and environmental outcomes required for a given farm, catchment or region. It is now timely to develop a further group of environmental indicators for measuring specific soil issues. As with the soil quality indicators, these environmental indicators would be aligned with the provision of ecosystem services. The toolbox envisaged is a set of indicators for specific soil issues with appropriate targets tied to ecosystem services and changes in critical soil function. Such indicators would be used for specific purposes for limited periods, rather than long-term, continuous monitoring. Some examples will be presented. An important step needed to successfully initiate and complete the review was assigning national oversight. Reigniting scientific interest (which had declined with the cessation of funding in 2003) and documentation of the process were other important steps. We had to extend the recently developed ecosystem service approach to accommodate the catchment scale. This required additional attributes in the framework and recognition that some of the proxies will change with scale as will the techniques to value the services. The framework was originally developed for use at the farm scale. Macroporosity, one of the two indicators used to monitor the physical condition of the soil, was used to illustrate how the ecosystem service framework could be used to link a change in the physical condition of the soil with the provision of services. The sum of the dollar values of selected soil ecosystem services were used to inform the state of soil natural capital stocks. This estimate provides a new insight into the value of the soil quality indicators and existing target ranges. Doing so will enable targets to be more closely aligned and integrated with the provision of a range of ecosystem services, going far beyond food production.

  13. Implementation monitoring temperature, humidity and mositure soil based on wireless sensor network for e-agriculture technology

    NASA Astrophysics Data System (ADS)

    Sumarudin, A.; Ghozali, A. L.; Hasyim, A.; Effendi, A.

    2016-04-01

    Indonesian agriculture has great potensial for development. Agriculture a lot yet based on data collection for soil or plant, data soil can use for analys soil fertility. We propose e-agriculture system for monitoring soil. This system can monitoring soil status. Monitoring system based on wireless sensor mote that sensing soil status. Sensor monitoring utilize soil moisture, humidity and temperature. System monitoring design with mote based on microcontroler and xbee connection. Data sensing send to gateway with star topology with one gateway. Gateway utilize with mini personal computer and connect to xbee cordinator mode. On gateway, gateway include apache server for store data based on My-SQL. System web base with YII framework. System done implementation and can show soil status real time. Result the system can connection other mote 40 meters and mote lifetime 7 hours and minimum voltage 7 volt. The system can help famer for monitoring soil and farmer can making decision for treatment soil based on data. It can improve the quality in agricultural production and would decrease the management and farming costs.

  14. Predicting soil quality indices with near infrared analysis in a wildfire chronosequence.

    PubMed

    Cécillon, Lauric; Cassagne, Nathalie; Czarnes, Sonia; Gros, Raphaël; Vennetier, Michel; Brun, Jean-Jacques

    2009-01-15

    We investigated the power of near infrared (NIR) analysis for the quantitative assessment of soil quality in a wildfire chronosequence. The effect of wildfire disturbance and soil engineering activity of earthworms on soil organic matter quality was first assessed with principal component analysis of NIR spectra. Three soil quality indices were further calculated using an adaptation of the method proposed by Velasquez et al. [Velasquez, E., Lavelle, P., Andrade, M. GISQ, a multifunctional indicator of soil quality. Soil Biol Biochem 2007; 39: 3066-3080.], each one addressing an ecosystem service provided by soils: organic matter storage, nutrient supply and biological activity. Partial least squares regression models were developed to test the predicting ability of NIR analysis for these soil quality indices. All models reached coefficients of determination above 0.90 and ratios of performance to deviation above 2.8. This finding provides new opportunities for the monitoring of soil quality, using NIR scanning of soil samples.

  15. Assessing and monitoring soil quality at agricultural waste disposal areas-Soil Indicators

    NASA Astrophysics Data System (ADS)

    Doula, Maria; Kavvadias, Victor; Sarris, Apostolos; Lolos, Polykarpos; Liakopoulou, Nektaria; Hliaoutakis, Aggelos; Kydonakis, Aris

    2014-05-01

    The necessity of elaborating indicators is one of the priorities identified by the United Nations Convention to Combat Desertification (UNCCD). The establishment of an indicator monitoring system for environmental purposes is dependent on the geographical scale. Some indicators such as rain seasonality or drainage density are useful over large areas, but others such as soil depth, vegetation cover type, and land ownership are only applicable locally. In order to practically enhance the sustainability of land management, research on using indicators for assessing land degradation risk must initially focus at local level because management decisions by individual land users are taken at this level. Soils that accept wastes disposal, apart from progressive degradation, may cause serious problems to the surrounding environment (humans, animals, plants, water systems, etc.), and thus, soil quality should be necessarily monitored. Therefore, quality indicators, representative of the specific waste type, should be established and monitored periodically. Since waste composition is dependent on their origin, specific indicators for each waste type should be established. Considering agricultural wastes, such a specification, however, could be difficult, since almost all agricultural wastes are characterized by increased concentrations of the same elements, namely, phosphorous, nitrogen, potassium, sulfur, etc.; contain large amounts of organic matter; and have very high values of chemical oxygen demand (COD), biochemical oxygen demand (BOD), and electrical conductivity. Two LIFE projects, namely AgroStrat and PROSODOL are focused on the identification of soil indicators for the assessment of soil quality at areas where pistachio wastes and olive mill wastes are disposed, respectively. Many soil samples were collected periodically for 2 years during PROSODOL and one year during AgroStrat (this project is in progress) from waste disposal areas and analyzed for 23 parameters. Results indicate that there are soil parameters that can be used as indictors to assess soil quality at such areas. For the two cases, i.e pistachio wastes and olive oil mill wastes, different soil parameters were identified as potential indicators. In specific, for OMW the proposed indicators are: organic matter, electrical conductivity, total N, total polyphenols, exchangeable K, DTPA-available Fe, available P and pH (for the cases of acid soils). For pistachio wastes, it seems that the most appropriate indictors are: organic matter, electrical conductivity, exchangeable Mg, DTPA-available Fe, DTPA-available Cu, available B. A monitoring system was developed which may assist authorities and policy makers to continuously monitor the disposal areas or areas where wastes are used for fertilization/irrigation. For this, soil parameters were mapped with respect to the depth, date and temporal variations of their spatial distribution (spatial surfaces). Interpolated surfaces based on the Inverse Distance Weighted method (IDW) were created and integrated within a geospatial web based map application tool.

  16. Ecological evaluation of rangeland quality in dry subtropics of Azerbaijan

    NASA Astrophysics Data System (ADS)

    Gasanova, A. F.

    2014-12-01

    The results of ecological evaluation of soil-landscape complexes of winter rangelands of Gobustan with the use of energy criteria are discussed. The diagnostic characteristics of soil fertility and correction coefficients for the thickness of texture of soil horizons, soil salinization, soil erosion, and microelemental composition of soils have been used to separate the soils of winter rangelands into several quality groups. A larger part of the soils belongs to the medium quality group with the mean weighted quality factor (bonitet) of 52. Special assessment scales have been suggested for the differential ecological assessment and monitoring of the rangelands. In the past 40 years, the area of steppe landscapes has decreased from 22.7 to 12%, whereas the area of semideserts has increased up to 64%. The area of best-quality soils within the studied rangelands had decreased by three times, and their average quality factor has decreased from 92 to 86.

  17. Real-time measurement of quality during the compaction of subgrade soils.

    DOT National Transportation Integrated Search

    2012-12-01

    Conventional quality control of subgrade soils during their compaction is usually performed by monitoring moisture content and dry density at a few discrete locations. However, randomly selected points do not adequately represent the entire compacted...

  18. Soil erosion from harvested sites versus streamside management zone sediment deposition in the Piedmont of Virginia

    Treesearch

    William A. Lakel; W. Michael Aust; C. Andrew Dolloff; Amy W. Easterbrook

    2006-01-01

    Forestry best management practices were primarily developed to address two major issues related to soil erosion: water quality and site productivity. Sixteen watersheds managed as loblolly pine plantations in the piedmont region were monitored for soil erosion and water quality prior to treatment. Subsequently, all watersheds were harvested with clearcutting, ground-...

  19. Optimization of Sample Points for Monitoring Arable Land Quality by Simulated Annealing while Considering Spatial Variations

    PubMed Central

    Wang, Junxiao; Wang, Xiaorui; Zhou, Shenglu; Wu, Shaohua; Zhu, Yan; Lu, Chunfeng

    2016-01-01

    With China’s rapid economic development, the reduction in arable land has emerged as one of the most prominent problems in the nation. The long-term dynamic monitoring of arable land quality is important for protecting arable land resources. An efficient practice is to select optimal sample points while obtaining accurate predictions. To this end, the selection of effective points from a dense set of soil sample points is an urgent problem. In this study, data were collected from Donghai County, Jiangsu Province, China. The number and layout of soil sample points are optimized by considering the spatial variations in soil properties and by using an improved simulated annealing (SA) algorithm. The conclusions are as follows: (1) Optimization results in the retention of more sample points in the moderate- and high-variation partitions of the study area; (2) The number of optimal sample points obtained with the improved SA algorithm is markedly reduced, while the accuracy of the predicted soil properties is improved by approximately 5% compared with the raw data; (3) With regard to the monitoring of arable land quality, a dense distribution of sample points is needed to monitor the granularity. PMID:27706051

  20. Soil quality monitoring in an area with land use change

    NASA Astrophysics Data System (ADS)

    Wilson, Marcelo; Gabioud, Emmanuel; Sasal, María Carolina; Oszust, José; Paz Gonzalez, Antonio

    2013-04-01

    The characterization of the soil quality through soil quality indicators (SQI), provides an effective method for the monitoring of the impacts to soil by use and management decisions. The key is to identify variables that are sensitive to changes in the soil functions and processes. The native forest area of Entre Ríos (Argentina) is associated with a constant change in land use, with an increase in recent years in agricultural use, especially for soybean crop. The aim was to monitor soil quality in three soils of an area of this area where native forest is being replaced by an agricultural system based in soybean crop, using a a minimum data set (MDS) previously selected for three soil type. The three soils selected were a Vertic Argiudoll, an Aquic Argiudoll and a Vertic Ocracualf. Treatments included plots with continuous cropping with different number of years under soybean crop, crop-pasture rotation, long-term pasture (PP), and uncropped land (UC) in pristine situation, which was taken as a reference. The crops were sowed under no tillage system and some plots were systematized with terraces contour to runoff management. The selection of a group of soil indicators in a MDS, was developed locally because it must be different for each soil type and each particular use. Total organic carbon (TOC), aggregate stability and pH were common indicators. Furthermore, it was assessed macroporosity, total porosity, cation exchange capacity two biological indicators (microbial biomass Carbon and potentially mineralizable Nitrogen) and A horizon soil mass, as a measure of the soil erosion. Statistical analysis, as linear regression analysis, ANOVA and cluster analysis were used. The soil indicators showed the changes caused by soil use, being more marked deterioration in the Vertic Ocracualf. TOC, microbial biomass Carbon and aggregate stability were the most sensitive SQI. However, positive changes were observed in potentially mineralizable Nitrogen, wiht PP. In the Vertic Argiudoll, the changes caused by agricultural use were significant in the plots with most years of continuous cropping as compared with UC and PP treatments, whereas in the Vertic Ocracualf with few years under agriculture, processes of soil deterioration started to be detected. The Aquic Argiudoll showed high resilience through all SQI. In the Vertic Ocracualf, we recommended that the period of crops rotation should be shorter than the period under pasture, to maintain the soil quality. The native forest should be the basis of sustainable production systems in the area. In addition, the agricultural use should be defined according to the soil limitations, and the dynamic soil qualities.

  1. Soil-plant water status and wine quality: the case study of Aglianico wine (the ZOViSA project)

    NASA Astrophysics Data System (ADS)

    Bonfante, Antonello; Manna, Piero; Albrizio, Rossella; Basile, Angelo; Agrillo, Antonietta; De Mascellis, Roberto; Caputo, Pellegrina; Delle Cave, Aniello; Gambuti, Angelita; Giorio, Pasquale; Guida, Gianpiero; Minieri, Luciana; Moio, Luigi; Orefice, Nadia; Terribile, Fabio

    2014-05-01

    The terroir analysis, aiming to achieve a better use of environmental features with respect to plant requirement and wine production, needs to be strongly rooted on hydropedology. In fact, the relations between wine quality and soil moisture regime during the cropping season is well established. The ZOViSA Project (Viticultural zoning at farm scale) tests a new physically oriented approach to terroir analysis based on the relations between the soil-plant water status and wine quality. The project is conducted in southern Italy in the farm Quintodecimo of Mirabella Eclano (AV) located in the Campania region, devoted to quality Aglianico red wine production (DOC). The soil spatial distribution of study area (about 3 ha) was recognized by classical soil survey and geophysics scan by EM38DD; then the soil-plant water status was monitored for three years in two experimental plots from two different soils (Cambisol and Calcisol). Daily climate variables (temperature, solar radiation, rainfall, wind), daily soil water variables (through TDR probes and tensiometers), crop development (biometric and physiological parameters), and grape must and wine quality were monitored. The agro-hydrological model SWAP was calibrated and applied in the two experimental plots to estimate soil-plant water status in different crop phenological stages. The effects of crop water status on crop response and wine quality was evaluated in two different pedo-systems, comparing the crop water stress index with both: crop physiological measurements (leaf gas exchange, leaf water potential, chlorophyll content, LAI measurement), grape bunches measurements (berry weight, sugar content, titratable acidity, etc.) and wine quality (aromatic response). Finally a "spatial application" of the model was carried out and different terroirs defined.

  2. Exploring the potential of the permanganate oxidation method as a tool to monitor soil quality in agricultural upland systems of Southeast Asia

    NASA Astrophysics Data System (ADS)

    Hepp, Catherine M.; Bruun, Thilde Bech; de Neergaard, Andreas

    2014-05-01

    The transition to more intensified upland systems is having an impact on the soil quality, defined as the ability of a soil to both provide and maintain essential services to an ecosystem. As many tropical upland soils are inherently low in quality, it is essential that impacts be monitored. Soil quality is assessed by using a combination of parameters that serve as indicators and cover the soil chemical, biological and physical properties. An ideal indicator should be sensitive to changes in the environment and management practices and should be widely accessible, meaning low resource requirement (i.e. time and equipment). Total organic carbon (TOC) content is a commonly used indicator of soil quality as it is linked to many soil functions and processes; however analysis is costly and requires access to advanced instrumental facilities, rendering it unsuited for many developing countries. An alternative indicator is the soil fraction dominated by easily decomposable carbon; this may be measured by treating soil samples with 0.2M potassium permanganate (KMnO4), an oxidizing agent which is thought to mimic the enzymes released by the soil microbial community. The advantage of this method is that it is accessible: it is fast, requires little resource input and is field appropriate. There is no consensus however as to which soil carbon fraction the method targets. Furthermore Skjemstad et al. (2006) has indicated that KMnO4 may oxidise charcoal, a component of the non-labile carbon pool; this has implications for the suitability of the method when used for soils of shifting cultivation systems. The purpose of this study was to investigate the potential of permanganate oxidizable carbon (Pox C) as a reliable indicator of soil quality in agricultural upland systems in Northern Lao PDR. Focus was placed on the relations between Pox C and other soil quality parameters (bulk density, pH, CEC, TOC, total N, exchangeable K, plant available P) and upland rice yields. The ability of KMnO4 to oxidize charcoal was also a focus however, as the study is still in its initial stage, no results can be discussed. Volumetric soil samples (at the surface and at 10 cm) and upland rice yield measurements were taken from three fields with three plots that were previously left fallow for five years (n=9; soil n=81). Pearson's Correlation test and Stepwise Regression analysis was done using SPSS v 16.0 for Windows. Results show that Pox C is significantly correlated to the measured soil parameters in a manner similar to TOC. Both are positively correlated to the soil nutrients: Total N %, P Avail and K Exch; Pox C however had a stronger correlation to K Exch than TOC. This affirms the important role of Pox C in soil processes in the biological, chemical and physical spheres. Furthermore, the regression analysis identified Pox C as an influencing factor for the variations seen in upland rice yields. It is concluded that Pox C is a suitable indicator for soil quality and may be useful in monitoring changes in the soil quality of agricultural upland systems.

  3. The Soils and Groundwater – EM-20 S&T Roadmap Quality Assurance Project Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, N. J.

    The Soils and Groundwater – EM-20 Science and Technology Roadmap Project is a U.S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies and technology for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by EM-20 Roadmap Project staff.

  4. Soil quality indexing strategies for evaluating sugarcane expansion in Brazil

    USDA-ARS?s Scientific Manuscript database

    Increasing demands for biofuels have intensified the land use change (LUC) for sugarcane cropping expansion in Brazil. Assessments of LUC-induced changes on soil quality (SQ) are essential for quantifying and monitoring the sustainability of sugarcane production over time. Since there is not a unive...

  5. Identification of regional soil quality factors and indicators: a case study on an alluvial plain (central Turkey)

    NASA Astrophysics Data System (ADS)

    Şeker, Cevdet; Hüseyin Özaytekin, Hasan; Negiş, Hamza; Gümüş, İlknur; Dedeoğlu, Mert; Atmaca, Emel; Karaca, Ümmühan

    2017-05-01

    Sustainable agriculture largely depends on soil quality. The evaluation of agricultural soil quality is essential for economic success and environmental stability in rapidly developing regions. In this context, a wide variety of methods using vastly different indicators are currently used to evaluate soil quality. This study was conducted in one of the most important irrigated agriculture areas of Konya in central Anatolia, Turkey, to analyze the soil quality indicators of Çumra County in combination with an indicator selection method, with the minimum data set using a total of 38 soil parameters. We therefore determined a minimum data set with principle component analysis to assess soil quality in the study area and soil quality was evaluated on the basis of a scoring function. From the broad range of soil properties analyzed, the following parameters were chosen: field capacity, bulk density, aggregate stability, and permanent wilting point (from physical soil properties); electrical conductivity, Mn, total nitrogen, available phosphorus, pH, and NO3-N (from chemical soil properties); and urease enzyme activity, root health value, organic carbon, respiration, and potentially mineralized nitrogen (from biological properties). According to the results, the chosen properties were found as the most sensitive indicators of soil quality and they can be used as indicators for evaluating and monitoring soil quality at a regional scale.

  6. Mapping Erosion Risk in California's Rangelands Using the Universal Soil Loss Equation (USLE)

    NASA Astrophysics Data System (ADS)

    Salls, W. B.; O'Geen, T. T.

    2015-12-01

    Soil loss constitutes a multi-faceted problem for agriculture: in addition to reducing soil fertility and crop yield, it compromises downstream water quality. Sediment itself is a major issue for aquatic ecosystems, but also serves as a vector for transporting nutrients, pesticides, and pathogens. Rangelands are thought to be a contributor to water quality degradation in California, particularly in the northern Coast Range. Though total maximum daily loads (TMDLs) have been imposed in some watersheds, and countless rangeland water quality outreach activities have been conducted, the connection between grazing intensity recommendations and changes in water quality is poorly understood at the state level. This disconnect gives rise to poorly informed regulations and discourages adoption of best management practices by ranchers. By applying the Universal Soil Loss Equation (USLE) at a statewide scale, we highlighted areas most prone to erosion. We also investigated how two different grazing intensity scenarios affect modeled soil loss. Geospatial data layers representing the USLE parameters—rainfall erosivity, soil erodibility, slope length and steepness, and cover—were overlaid to model annual soil loss. Monitored suspended sediment data from a small North Coast watershed with grazing as the predominant land use was used to validate the model. Modeled soil loss values were nearly one order of magnitude higher than monitored values; average soil loss feeding the downstream-most site was modeled at 0.329 t ha-1 yr-1, whereas storm-derived sediment passing the site over two years was calculated to be 0.037 t ha-1 yr-1. This discrepancy may stem from the fact that the USLE models detached sediment, whereas stream monitoring reflects sediment detached and subsequently transported to the waterway. Preliminary findings from the statewide map support the concern that the North Coast is particularly at risk given its combination of intense rain, erodible soils, and relatively steep terrain, though there is a fair degree of variability statewide.

  7. North American long-term soil productivity research program

    Treesearch

    Allan E. Tiarks; Robert F. Powers; Jerry F. Ragus; Deborah S. Page-Dumroese; Felix, Jr. Ponder; Douglas M. Stone

    1997-01-01

    The National Long-term Soil Productivity research program was chartered to address National Forest Management Act concerns over possible losses in soil productivity on National Forest lands. The program supports validation of soil quality monitoring standards and process-level productivity research. Summarized results are supplied to Forests as collected. National...

  8. North American long-term soil productivity research program

    Treesearch

    Allan E. Tiarks; Robert F. Powers; Jerry F. Ragus; Deborah S. Page-Dumroese; Felix Ponder; Douglas M. Stone

    1997-01-01

    The National Long-term Soil Productivity research program was chartered to address National Forest Management Act concerns over possible losses n soil productivity on national forest lands. The program supports validation of soil quality monitoring standards and process-level productivity research. Summarized results are supplied to forests as collected. National...

  9. Wireless in-situ Sensor Network for Agriculture and Water Monitoring on a River Basin Scale in Southern Finland: Evaluation from a Data User’s Perspective

    PubMed Central

    Kotamäki, Niina; Thessler, Sirpa; Koskiaho, Jari; Hannukkala, Asko O.; Huitu, Hanna; Huttula, Timo; Havento, Jukka; Järvenpää, Markku

    2009-01-01

    Sensor networks are increasingly being implemented for environmental monitoring and agriculture to provide spatially accurate and continuous environmental information and (near) real-time applications. These networks provide a large amount of data which poses challenges for ensuring data quality and extracting relevant information. In the present paper we describe a river basin scale wireless sensor network for agriculture and water monitoring. The network, called SoilWeather, is unique and the first of this type in Finland. The performance of the network is assessed from the user and maintainer perspectives, concentrating on data quality, network maintenance and applications. The results showed that the SoilWeather network has been functioning in a relatively reliable way, but also that the maintenance and data quality assurance by automatic algorithms and calibration samples requires a lot of effort, especially in continuous water monitoring over large areas. We see great benefits on sensor networks enabling continuous, real-time monitoring, while data quality control and maintenance efforts highlight the need for tight collaboration between sensor and sensor network owners to decrease costs and increase the quality of the sensor data in large scale applications. PMID:22574050

  10. Using soil quality indicators for monitoring sustainable forest management

    Treesearch

    James A. Burger; Garland Gray; D. Andrew Scott

    2010-01-01

    Most private and public forest land owners and managers are compelled to manage their forests sustainably, which means management that is economically viable,environmentally sound, and socially acceptable. To meet this mandate, the USDA Forest Service protects the productivity of our nation’s forest soils by monitoring and evaluating management activities to ensure...

  11. Combining Landsat-8 and WorldView-3 data to assess crop residue cover

    USDA-ARS?s Scientific Manuscript database

    Crop residues on the soil surface contribute to soil quality and form the first line defense against the erosive forces of water and wind. Quantifying crop residue cover on the soil surface after crops are planted is crucial for monitoring soil tillage intensity and assessing the extent of conserva...

  12. Improved Prediction of Quasi-Global Vegetation Conditions Using Remotely-Sensed Surface Soil Moisture

    NASA Technical Reports Server (NTRS)

    Bolten, John; Crow, Wade

    2012-01-01

    The added value of satellite-based surface soil moisture retrievals for agricultural drought monitoring is assessed by calculating the lagged rank correlation between remotely-sensed vegetation indices (VI) and soil moisture estimates obtained both before and after the assimilation of surface soil moisture retrievals derived from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) into a soil water balance model. Higher soil moisture/VI lag correlations imply an enhanced ability to predict future vegetation conditions using estimates of current soil moisture. Results demonstrate that the assimilation of AMSR-E surface soil moisture retrievals substantially improve the performance of a global drought monitoring system - particularly in sparsely-instrumented areas of the world where high-quality rainfall observations are unavailable.

  13. Principles of control automation of soil compacting machine operating mechanism

    NASA Astrophysics Data System (ADS)

    Anatoly Fedorovich, Tikhonov; Drozdov, Anatoly

    2018-03-01

    The relevance of the qualitative compaction of soil bases in the erection of embankment and foundations in building and structure construction is given.The quality of the compactible gravel and sandy soils provides the bearing capability and, accordingly, the strength and durability of constructed buildings.It has been established that the compaction quality depends on many external actions, such as surface roughness and soil moisture; granulometry, chemical composition and degree of elasticity of originalfilled soil for compaction.The analysis of technological processes of soil bases compaction of foreign and domestic information sources showed that the solution of such important problem as a continuous monitoring of soil compaction actual degree in the process of machine operation carry out only with the use of modern means of automation. An effective vibrodynamic method of gravel and sand material sealing for the building structure foundations for various applications was justified and suggested.The method of continuous monitoring the soil compaction by measurement of the amplitudes and frequencies of harmonic oscillations on the compactible surface was determined, which allowed to determine the basic elements of facilities of soil compacting machine monitoring system of operating, etc. mechanisms: an accelerometer, a bandpass filter, a vibro-harmonics, an on-board microcontroller. Adjustable parameters have been established to improve the soil compaction degree and the soil compacting machine performance, and the adjustable parameter dependences on the overall indexhave been experimentally determined, which is the soil compaction degree.A structural scheme of automatic control of the soil compacting machine control mechanism and theoperation algorithm has been developed.

  14. Enhancing wind erosion monitoring and assessment for U.S. rangelands

    USGS Publications Warehouse

    Webb, Nicholas P.; Van Zee, Justin W.; Karl, Jason W.; Herrick, Jeffrey E.; Courtright, Ericha M.; Billings, Benjamin J.; Boyd, Robert C.; Chappell, Adrian; Duniway, Michael C.; Derner, Justin D.; Hand, Jenny L.; Kachergis, Emily; McCord, Sarah E.; Newingham, Beth A.; Pierson, Frederick B.; Steiner, Jean L.; Tatarko, John; Tedela, Negussie H.; Toledo, David; Van Pelt, R. Scott

    2017-01-01

    On the GroundWind erosion is a major resource concern for rangeland managers because it can impact soil health, ecosystem structure and function, hydrologic processes, agricultural production, and air quality.Despite its significance, little is known about which landscapes are eroding, by how much, and when.The National Wind Erosion Research Network was established in 2014 to develop tools for monitoring and assessing wind erosion and dust emissions across the United States.The Network, currently consisting of 13 sites, creates opportunities to enhance existing rangeland soil, vegetation, and air quality monitoring programs.Decision-support tools developed by the Network will improve the prediction and management of wind erosion across rangeland ecosystems.

  15. Integrated monitoring technologies for the management of a Soil-Aquifer-Treatment (SAT) system.

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Alexandros; Kallioras, Andreas; Kofakis, Petros; Bumberger, Jan; Schmidt, Felix; Athanasiou, Georgios; Uzunoglou, Nikolaos; Amditis, Angelos; Dietrich, Peter

    2016-04-01

    Artificial recharge of groundwater has an important role to play in water reuse as treated wastewater effluent can be infiltrated into the ground for aquifer recharge. As the effluent moves through the soil and the aquifer, it undergoes significant quality improvements through physical, chemical, and biological processes in the underground environment. Collectively, these processes and the water quality improvement obtained are called soil-aquifer-treatment (SAT) or geopurification. The pilot site of Lavrion Technological & Cultural Park (LTCP) of the National Technical University of Athens (NTUA), involves the employment of plot infiltration basins at experimental scale, which will be using waters of impaired quality as a recharge source, and hence acting as a Soil-Aquifer-Treatment, SAT, system. Τhe LTCP site will be employed as a pilot SAT system complemented by new technological developments, which will be providing continuous monitoring of the quantitative and qualitative characteristics of infiltrating groundwater through all hydrologic zones (i.e. surface, unsaturated and saturated zone). This will be achieved by the development and installation of an integrated system of prototype sensing technologies, installed on-site, and offering a continuous evaluation of the performance of the SAT system. An integrated approach of the performance evaluation of any operating SAT system should aim at parallel monitoring of all hydrologic zones, proving the sustainability of all involved water quality treatment processes within unsaturated and saturated zone. Hence a prototype system of Time and Frequency Domain Reflectometry (TDR & FDR) sensors is developed and will be installed, in order to achieve continuous quantitative monitoring of the unsaturated zone through the entire soil column down to significant depths below the SAT basin. Additionally, the system contains two different radar-based sensing systems that will be offering (i) identification of preferential flow effects of the TDR/FDR sensors and (ii) monitoring of the water table within the shallow karst aquifer layer. The above technique will offer continuous monitoring of infiltration rates and identify possible mechanical or biological clogging effects. The monitoring system will be connected to an ad-hoc wireless network for continuous data transfer within the SAT facilities. It is envisaged that the development and combined application of all the above technologies will provide an integrated monitoring platform for the evaluation of SAT system performance.

  16. Measuring environmental change in forest ecosystems by repeated soil sampling: A North American perspective

    Treesearch

    Gregory B. Lawrence; Ivan J. Fernandez; Daniel D. Richter; Donald S. Ross; Paul W. Hazlett; Scott W. Bailey; Rock Ouimet; Richard A. F. Warby; Arthur H. Johnson; Henry Lin; James M. Kaste; Andrew G. Lapenis; Timothy J. Sullivan

    2013-01-01

    Environmental change is monitored in North America through repeated measurements of weather, stream and river flow, air and water quality, and most recently, soil properties. Some skepticism remains, however, about whether repeated soil sampling can effectively distinguish between temporal and spatial variability, and efforts to document soil change in forest...

  17. A monitoring of environmental effects from household greywater reuse for garden irrigation.

    PubMed

    Mohamed, Radin Maya Saphira Radin; Kassim, Amir Hashim Mohd; Anda, Martin; Dallas, Stewart

    2013-10-01

    The option of reusing greywater is proving to be increasingly attractive to address the water shortage issue in many arid and semiarid countries. Greywater represents a constant resource, since an approximately constant amount of greywater is generated from kitchen, laundries, bathroom in every household daily, independent of the weather. However, the use of greywater for irrigation in particular for household gardening may pose major hazards that have not been studied thoroughly. In this study, a 1-year monitoring was conducted in four selected households in Perth, Western Australia. The aim of the monitoring works is to investigate the variability in the greywater flow and quality, and to understand its impact in the surrounding environments. Case studies were selected based on different family structure including number, ages of the occupants, and greywater system they used. Samples of greywater effluent (showers, laundries, bathtub, and sinks), leachate, soil, and plants at each case study were collected between October 2008 and December 2009 which covered the high (spring/summer) and low (autumn/winter) production of greywater. Physical and chemical tests were based on the literature and expected components of laundry and bathroom greywater particularly on greywater components likely to have detrimental impacts on soils, plants, and other water bodies. Monitoring results showed the greywater quality values for BOD, TSS, and pH which sometimes fell outside the range as stipulated in the guidelines. The soil analyses results showed that salinity, SAR, and the organic content of the soil increased as a function of time and affected the plant growth. Nutrient leaching or losses from soil irrigated with greywater shows the movement of nutrients and the sole impact from greywater in uncontrolled plots in case studies is difficult to predicted due to the influence of land dynamics and activities. Investigative and research monitoring was used to understand greywater irrigation in households. Greywater quality is very site specific and difficult to predetermine or control except for the use of some recommended household products when using greywater. Investigative and research monitoring was indicated that greywater quality is very site specific and difficult to predetermine or control except for the use of some recommended household products when using greywater.

  18. Gap assessment in current soil monitoring networks across Europe for measuring soil functions

    NASA Astrophysics Data System (ADS)

    van Leeuwen, J. P.; Saby, N. P. A.; Jones, A.; Louwagie, G.; Micheli, E.; Rutgers, M.; Schulte, R. P. O.; Spiegel, H.; Toth, G.; Creamer, R. E.

    2017-12-01

    Soil is the most important natural resource for life on Earth after water. Given its fundamental role in sustaining the human population, both the availability and quality of soil must be managed sustainably and protected. To ensure sustainable management we need to understand the intrinsic functional capacity of different soils across Europe and how it changes over time. Soil monitoring is needed to support evidence-based policies to incentivise sustainable soil management. To this aim, we assessed which soil attributes can be used as potential indicators of five soil functions; (1) primary production, (2) water purification and regulation, (3) carbon sequestration and climate regulation, (4) soil biodiversity and habitat provisioning and (5) recycling of nutrients. We compared this list of attributes to existing national (regional) and EU-wide soil monitoring networks. The overall picture highlighted a clearly unbalanced dataset, in which predominantly chemical soil parameters were included, and soil biological and physical attributes were severely under represented. Methods applied across countries for indicators also varied. At a European scale, the LUCAS-soil survey was evaluated and again confirmed a lack of important soil biological parameters, such as C mineralisation rate, microbial biomass and earthworm community, and soil physical measures such as bulk density. In summary, no current national or European monitoring system exists which has the capacity to quantify the five soil functions and therefore evaluate multi-functional capacity of a soil and in many countries no data exists at all. This paper calls for the addition of soil biological and some physical parameters within the LUCAS-soil survey at European scale and for further development of national soil monitoring schemes.

  19. Winter wheat quality monitoring and forecasting system based on remote sensing and environmental factors

    NASA Astrophysics Data System (ADS)

    Haiyang, Yu; Yanmei, Liu; Guijun, Yang; Xiaodong, Yang; Dong, Ren; Chenwei, Nie

    2014-03-01

    To achieve dynamic winter wheat quality monitoring and forecasting in larger scale regions, the objective of this study was to design and develop a winter wheat quality monitoring and forecasting system by using a remote sensing index and environmental factors. The winter wheat quality trend was forecasted before the harvest and quality was monitored after the harvest, respectively. The traditional quality-vegetation index from remote sensing monitoring and forecasting models were improved. Combining with latitude information, the vegetation index was used to estimate agronomy parameters which were related with winter wheat quality in the early stages for forecasting the quality trend. A combination of rainfall in May, temperature in May, illumination at later May, the soil available nitrogen content and other environmental factors established the quality monitoring model. Compared with a simple quality-vegetation index, the remote sensing monitoring and forecasting model used in this system get greatly improved accuracy. Winter wheat quality was monitored and forecasted based on the above models, and this system was completed based on WebGIS technology. Finally, in 2010 the operation process of winter wheat quality monitoring system was presented in Beijing, the monitoring and forecasting results was outputted as thematic maps.

  20. Comparing Effects of Forestland conversion to Tea Farming on Soil Quality Indices

    NASA Astrophysics Data System (ADS)

    Gholoubi, A.; Emami, H.; Alizadeh, A.; Jones, S. B.

    2017-12-01

    The effect of land use type on soil function within an ecosystem can be assessed and monitored using soil quality indices. The research examined effects of land use change from natural forest to tea farming (with the same physiography and parent materials) on soil properties in different regions of the Guilan province, northern Iran. Two universally-accepted methods of soil quality evaluation were used to understand soil conditions in these two land uses. Thirty-six soil samples (0 -30 cm) were randomly collected from six sites with 3 replications. The soil quality of forestland and tea farms was determined using the cumulative rating (CR) index and the Cornell Comprehensive Assessment of Soil Health (CASH) scoring functions. Effects of Land use change on soil quality or health were significant (P <0.01) using both methods. In the CR method, a relative weighting factor (RWF) from 1 to 5 was assigned each key soil property. The results of both methods for all regions showed that the forestland use was more sustainable (lower CR and higher CASH score) than tea farm soils. forestland use affected most soil properties and thus their scores in both evaluation methods. Soil organic carbon and pH were the most important indicators reduced by land use change at all locations. There were significant correlations between these indicators and other soil chemical, physical and biological factors affected by changing forestland use.

  1. Monitoring of Urban Soil Contamination under Various Technogenic Impact: Comparison of the Two Seaside Cities

    NASA Astrophysics Data System (ADS)

    Miroshnychenko, Mykola; Krivitska, Ivetta; Hladkikh, Yevgenia

    2017-04-01

    The aim of the research was to show how the environmental policy of city can affect the quality of soils. Studies were carried out simultaneously in the two cities of Ukrainian coast of the Azov Sea, which are significantly different in terms of technogenic impact. Berdyansk is a well known resort and wellness center, but until recently around 30 petrochemical, machine-building and other enterprises were located there. The largest industrial center Mariupol, where emissions from enterprises to the atmosphere exceed 300 thousand tons per year, is located about 60 km from Berdyansk in similar natural conditions. Observations of soil contamination was performed on 60 monitoring sites not less than 2500 m2, located in industrial, administrative, cultural, residential and recreational zones of each city. The time series of observations: the first stage in 2002-2003, the second in 2007-2008, third in 2012-2014. The available forms of heavy metals in the soils were determined by atomic-absorption method after extraction of buffer solution with pH 4.8 as well as 1 N HCl. The content of mineral salts in a water extract was measured titrimetrically. The content of heavy metals in grass vegetation and phytotoxicity of soil was determined in 50% of monitoring sites. Since 2002-2003, the level of soil contamination in the industrial zones of Berdyansk gradually decreased, but heavy metals began accumulate in soils of residential, cultural and administrative areas, and especially, in recreation objects. Probably, this is related to the reduction of the industrial sector and the increase of resort and tourist business. Consequently, the content of cadmium, chromium, and nickel in soils is reduced, but the content of micronutrients (Zn, Cu, Mn) increases. Currently the contamination of plants becomes less so the quality of local agricultural products is improved. In contrast to this, due to the intensive activity of the enterprises of iron and steel industry in Mariupol the level of soil contamination in industrial, residential areas and parks has increased by 8-18%. This is caused by the accumulation of zinc, manganese, lead and mineral salts, sometimes in excess of the permitted rate. The contamination of plants in Mariupol is higher than soil contamination due to deposition of heavy metals directly from the atmosphere. Phytotoxicity effect has been discovered on the most of monitoring sites. Conclusions. Due to extremely high heterogeneity and combination of pollution from multiple sources, the changes of urban soil quality can be objectively assessed using observations which are systematic in space and time. The quality of urban soils is improving over five-ten years after reducing the amount of industrial pollution, but heavy metals are continuing to dissipate from the industrial zone to the surrounding land. Soil quality is deteriorating significantly in case of a constant dominance of the steel industry over other activities.

  2. Monitoring Changes in Soil Quality from Post-fire Logging in the Inland Northwest

    Treesearch

    Deborah Page-Dumroese; Martin Jurgensen; Ann Abbott; Tom Rice; Joanne Tirocke; Sue Farley; Sharon DeHart

    2006-01-01

    The wildland fires of 2000, 2002, and 2003 created many opportunities to conduct post-fire logging operations in the Inland Northwest. Relatively little information is available on the impact of post-fire logging on long-term soil productivity or on the best method for monitoring these changes. We present a USDA Forest Service Northern Region study of post-fire logged...

  3. Results of soil, ground-water, surface-water, and streambed-sediment sampling at Air Force Plane 85, Columbus, Ohio, 1996

    USGS Publications Warehouse

    Parnell, J.M.

    1997-01-01

    The U.S. Geological Survey (USGS), in cooperation with Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, prepared the Surface- and Ground- Water Monitoring Work Plan for Air Force Plant 85 (AFP 85 or Plant), Columbus, Ohio, under the Air Force Installation Restoration Program to characterize any ground-water, surface-water, and soil contamination that may exist at AFP 85. The USGS began the study in November 1996. The Plant was divided into nine sampling areas, which included some previously investi gated study sites. The investigation activities included the collection and presentation of data taken during drilling and water-quality sampling. Data collection focused on the saturated and unsatur ated zones and surface water. Twenty-three soil borings were completed. Ten monitoring wells (six existing wells and four newly constructed monitoring wells) were selected for water-quality sam pling. Surface-water and streambed-sediment sampling locations were chosen to monitor flow onto and off of the Plant. Seven sites were sampled for both surface-water and streambed-sediment quality. This report presents data on the selected inorganic and organic constituents in soil, ground water, surface water, and streambed sediments at AFP 85. The methods of data collection and anal ysis also are included. Knowledge of the geologic and hydrologic setting could aid Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, and its governing regulatory agencies in future remediation studies.

  4. Soil structural quality assessment for soil protection regulation

    NASA Astrophysics Data System (ADS)

    Johannes, Alice; Boivin, Pascal

    2017-04-01

    Soil quality assessment is rapidly developing worldwide, though mostly focused on the monitoring of arable land and soil fertility. Soil protection regulations assess soil quality differently, focusing on priority pollutants and threshold values. The soil physical properties are weakly considered, due to lack of consensus and experimental difficulties faced with characterization. Non-disputable, easy to perform and inexpensive methods should be available for environmental regulation to be applied, which is unfortunately not the case. As a consequence, quantitative soil physical protection regulation is not applied, and inexpensive soil physical quality indicators for arable soil management are not available. Overcoming these limitations was the objective of a research project funded by the Swiss federal office for environment (FOEN). The main results and the perspectives of application are given in this presentation. A first step of the research was to characterize soils in a good structural state (reference soils) under different land use. The structural quality was assessed with field expertise and Visual Evaluation of the Soil Structure (VESS), and the physical properties were assessed with Shrinkage analysis. The relationships between the physical properties and the soil constituents were linear and highly determined. They represent the reference properties of the corresponding soils. In a second step, the properties of physically degraded soils were analysed and compared to the reference properties. This allowed defining the most discriminant parameters departing the different structure qualities and their threshold limits. Equivalent properties corresponding to these parameters but inexpensive and easy to determine were defined and tested. More than 90% of the samples were correctly classed with this method, which meets, therefore, the requirements for practical application in regulation. Moreover, result-oriented agri-environmental schemes for soil quality are now proposed to farmers based on these indicators.

  5. Enhanced Representation of Soil NO Emissions in the Community Multiscale Air Quality (CMAQ) Model Version 5.0.2

    NASA Technical Reports Server (NTRS)

    Rasool, Quazi Z.; Zhang, Rui; Lash, Benjamin; Cohan, Daniel S.; Cooter, Ellen J.; Bash, Jesse O.; Lamsal, Lok N.

    2016-01-01

    Modeling of soil nitric oxide (NO) emissions is highly uncertain and may misrepresent its spatial and temporal distribution. This study builds upon a recently introduced parameterization to improve the timing and spatial distribution of soil NO emission estimates in the Community Multiscale Air Quality (CMAQ) model. The parameterization considers soil parameters, meteorology, land use, and mineral nitrogen (N) availability to estimate NO emissions. We incorporate daily year-specific fertilizer data from the Environmental Policy Integrated Climate (EPIC) agricultural model to replace the annual generic data of the initial parameterization, and use a 12km resolution soil biome map over the continental USA. CMAQ modeling for July 2011 shows slight differences in model performance in simulating fine particulate matter and ozone from Interagency Monitoring of Protected Visual Environments (IMPROVE) and Clean Air Status and Trends Network (CASTNET) sites and NO2 columns from Ozone Monitoring Instrument (OMI) satellite retrievals. We also simulate how the change in soil NO emissions scheme affects the expected O3 response to projected emissions reductions.

  6. Evaluating Land-Atmosphere Interactions with the North American Soil Moisture Database

    NASA Astrophysics Data System (ADS)

    Giles, S. M.; Quiring, S. M.; Ford, T.; Chavez, N.; Galvan, J.

    2015-12-01

    The North American Soil Moisture Database (NASMD) is a high-quality observational soil moisture database that was developed to study land-atmosphere interactions. It includes over 1,800 monitoring stations the United States, Canada and Mexico. Soil moisture data are collected from multiple sources, quality controlled and integrated into an online database (soilmoisture.tamu.edu). The period of record varies substantially and only a few of these stations have an observation record extending back into the 1990s. Daily soil moisture observations have been quality controlled using the North American Soil Moisture Database QAQC algorithm. The database is designed to facilitate observationally-driven investigations of land-atmosphere interactions, validation of the accuracy of soil moisture simulations in global land surface models, satellite calibration/validation for SMOS and SMAP, and an improved understanding of how soil moisture influences climate on seasonal to interannual timescales. This paper provides some examples of how the NASMD has been utilized to enhance understanding of land-atmosphere interactions in the U.S. Great Plains.

  7. Comparison of radionuclide levels in soil, sagebrush, plant litter, cryptogams, and small mammals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landeen, D.S.

    1994-09-01

    Soil, sagebrush, plant litter, cryptogam, and small mammal samples were collected and analyzed for cesium-137, strontium-90, plutonium-238, plutonium 239/240, technetium-99, and iodine-129 from 1981 to 1986 at the US Department of Energy Hanford Site in southeastern Washington State as part of site characterization and environmental monitoring activities. Samples were collected on the 200 Areas Plateau, downwind from ongoing waste management activities. Plant litter, cryptogams, and small mammals are media that are not routinely utilized in monitoring or characterization efforts for determination of radionuclide concentrations. Studies at Hanford, other US Department of Energy sites, and in eastern Europe have indicated thatmore » plant litter and cryptogams may serve as effective ``natural`` monitors of air quality. Plant litter in this study consists of fallen leaves from sagebrush and ``cryptogams`` describes that portion of the soil crust composed of mosses, lichens, algae, and fungi. Comparisons of cesium-137 and strontium-90 concentrations in the soil, sagebrush, litter, and cryptogams revealed significantly higher (p<0.05) levels in plant litter and cryptogams. Technetium-99 values were the highest in sagebrush and litter. Plutonium-238 and 239/40 and iodine-129 concentrations never exceeded 0.8 pCi/gm in all media. No evidence of any significant amounts of any radionuclides being incorporated into the small mammal community was discovered. The data indicate that plant litter and cryptogams may be better, indicators of environmental quality than soil or vegetation samples. Augmenting a monitoring program with samples of litter and cryptogams may provide a more accurate representation of radionuclide environmental uptake and/or contamination levels in surrounding ecosystems. The results of this study may be applied directly to other radioecological monitoring conducted at other nuclear sites and to the monitoring of other pollutants.« less

  8. No-migration variance petition. Appendices K--O, Response to notice of deficiencies: Volume 6, Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, N.T.

    1990-03-01

    This document reports data collected as part of the Ecological Monitoring Program (EMP) at the Waste Isolation Pilot Plant near Carlsbad, New Mexico, for Calendar Year 1987. Also included are data from the last quarter (October through December) of 1986. This report divides data collection activities into two parts. Part A covers general environmental monitoring which includes meteorology, aerial photography, air quality monitoring, water quality monitoring, and wildlife population surveillance. Part B focuses on the special studies being performed to evaluate the impacts of salt dispersal from the site on the surrounding ecosystem. The fourth year of salt impact monitoringmore » was completed in 1987. These studies involve the monitoring of soil chemistry, soil microbiota, and vegetation in permanent study plots. None of the findings indicate that the WIPP project is adversely impacting environmental quality at the site. As in 1986, breeding bird censuses completed this year indicate changes in the local bird fauna associated with the WIPP site. The decline in small mammal populations noted in the 1986 census is still evident in the 1987 data; however, populations are showing signs of recovery. There is no indication that this decline is related to WIPP activities. Rather, the evidence indicates that natural population fluctuations may be common in this ecosystem. The salt impact studies continue to reveal some short-range transport of salt dust from the saltpiles. This material accumulates at or near the soil surface during the dry seasons in areas near the saltpiles, but is flushed deeper into the soil during the rainy season. Microbial activity does not appear to be affected by this salt importation. Vegetation coverage and density data from 1987 also do not show any detrimental effect associated with aerial dispersal of salt.« less

  9. Soil cover patterns influence on the land environmental functions, agroecological quality, land-use and monitoring efficiency in the Central Russia

    NASA Astrophysics Data System (ADS)

    Vasenev, Ivan; Yashin, Ivan; Lukin, Sergey; Valentini, Riccardo

    2015-04-01

    First decades of XXI century actualized for soil researches the principal methodical problem of most modern geosciences: what spatial and temporal scale would be optimal for land quality evaluation and land-use practice optimizing? It is becoming obvious that this question cannot have one solution and have to be solved with especial attention on the features of concrete region and landscape, land-use history and practical issues, land current state and environmental functions, soil cover patterns and variability, governmental requirements and local society needs, best available technologies and their potential profitability. Central Russia is one of the most dynamical economic regions with naturally high and man-made complicated landscape and soil cover variability, long-term land-use history and self-contradictory issues, high potential of profitable farming and increased risks of land degradation. Global climate and technological changes essentially complicate the originally high and sharply increased in XX century farming land heterogeneity in the Central Russia that actualizes system analysis of its zonal, intra-zonal and azonal soil cover patterns according to their influence on land environmental functions, agroecological quality, and land-use and monitoring efficiency variability. Developed by the Laboratory of agroecological monitoring, ecosystem modeling & prediction (LAMP / RTSAU with support of RF Governmental projects #11.G34.31.0079 and #14.120.14.4266) regional systems of greenhouse gases environmental monitoring RusFluxNet (6 fixed & 1 mobile eddy covariance stations with zonal functional sets of key plots with chamber investigations in 5 Russian regions) and of agroecological monitoring (in representative key plots with different farming practice in 9 RF regions) allow to do this analysis in frame of enough representative regional multi-factorial matrix of soil cover patterns, bioclimatic conditions, landscape features, and land-use history and current practice versions. Well-elaborated monitoring collaboration with the principal natural reserves in south-taiga and forest-steppe zones provides process-based interaction with long-term data on zonal climatic, landscape and soil features necessary to test the process, functional and evaluation models in the specific conditions of each bioclimatic zone. The dominated erosion and dehumification trends have been essentially activated for last 3-4 decades due to hu¬mus negative balance around 0.6-0.7 t ha-1year-1 and connected disaggregation with annual rate between 1 and 25 g/kg for aggregates 10-0.25 mm. "Standard" monitoring objects and regionally generalized data showed characteristic for Chernozems 2-2.5 % humus drop during this period and active processes of CO2 emission and humus eluvial-illuvial profile redistribution too. Forest-steppe Chernozems are usually characterized by higher stability than steppe ones. The ratio between erosive and biological losses in humus stock can be ten¬tatively estimated as fifty-fifty with essential variability within slope landscape. Both these processes have essential impacts on different sets of soil environmental and agroecological functions (including atmospheric air, surface and ground water quality, biodiversity and profitability) that we need to understand and predict. A drop of humus content below threshold values (for different soils between 1.5 and 6%) considerably reduces not only soil environmental regulation functions but also effectiveness of used fertilizers, crop yield quality and possibility of sustainable agricultural land-use. The carried out long-term researches of representative natural, rural and urban landscapes in Tver, Yaroslavl, Vladimir, Moscow, Kaluga, Kursk, Belgorod, Tambov, Voronezh and Saratov regions give us validation and ranging of the limiting factors of the elementary soil cover patterns current features and transformation processes, environmental functions and agroecological quality, monitoring results functional interpretation, spatial and temporal interpolation and extrapolation. These data allow essentially improve our understanding and quantitative assessments of the regional and within-field variability of land agroecological and environmental functions that is crucial for agroecosystem services evaluation, current and planned land-use environmental impacts, and DSS development for land-use agroecological optimizing taking into attention the regional and local landscapes features and most realistic scenarios of climate change and agro-technology transfer. Developed and verified within the project regionally adapted DSS (ACORD-R - RF #2012612944) gives effective informational and methodological support for land-use agroecological optimization.

  10. Soil quality in the Lomellina area using in vitro models and ecotoxicological assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baderna, Diego, E-mail: diego.baderna@marionegri.it; Colombo, Andrea; Romeo, Margherita

    2014-08-15

    Soil quality is traditionally evaluated by chemical characterization to determine levels of pollutants. Biological tools are now employed for soil monitoring since they can take account of the global biological effects induced by all xenobiotics. A combined monitoring of soils based on chemical analyses, human-related in vitro models and ecotoxicological assay was applied in the Lomellina, a semirural area of northern Italy. Chemical characterization indicated overall good quality of the soils, with low levels of toxic and carcinogenic pollutants such as heavy metals, PAHs, PCDD/Fs and PCBs. HepG2 cells were used as a model for the human liver and BALB/cmore » 3T3 cells to evaluate carcinogenic potential. Cells were treated with soil extractable organic matter (EOM) and the MTS assay, DNA release and morphological transformation were selected as endpoints for toxicity and carcinogenicity. Soil EOMs induced dose-dependent inhibition of cell growth at low doses and cytotoxicity only at doses of 500 and 1000 mg soil equivalents/ml. Potential issues for human health can be hypothesized after ingestion of soil samples from some sites. No statistically significant inductions of foci were recorded after exposure to EOMs, indicating that the levels of the soil-extracted organic pollutants were too low to induce carcinogenesis in our experimental conditions. An acute phytotoxicity test and studies on Caenorhabditis elegans were used as ecotoxicological assays for plants and small invertebrates. No significant alerts for ecotoxicity were found. In this proposed case study, HepG2 cells detected differences in the toxicity of soil EOMs, indicating that this cell line could be appropriate to assess the potential harm caused by the ingestion of contaminated soil. Additional information on the carcinogenic potential of mixtures was provided by the cell transformation assay, strengthening the combined approach. - Highlights: • A combined approach for evaluation of soil quality is proposed. • Organic extracts from investigated soils inhibited HepG2 cell proliferation. • The carcinogenic potential of extracts was evaluated by cell transformation assay. • Potential alerts were estimated after ingestion of soils. • Caenorhabditis elegans and phytotest were used to evaluate ecological effects.« less

  11. Monitoring technologies for the evaluation of a Soil-Aquifer-Treatment system in coastal aquifer environments.

    NASA Astrophysics Data System (ADS)

    Kallioras, Andreas; Tsertou, Athanasia; Foglia, Laura; Bumberger, Jan; Vienken, Thomas; Dietrich, Peter; Schüth, Christoph

    2014-05-01

    Artificial recharge of groundwater has an important role to play in water reuse. Treated sewage effluent can be infiltrated into the ground for recharge of aquifers. As the effluent water moves through the soil and the aquifer, it undergoes significant quality improvements through physical, chemical, and biological processes in the underground environment. Collectively, these processes and the water quality improvement obtained are called soil-aquifer-treatment (SAT) or geopurification. Recharge systems for SAT can be designed as infiltration-recovery systems, where all effluent water is recovered as such from the aquifer, or after blending with native groundwater. SAT typically removes essentially all suspended solids, biochemical oxygen demand (BOD), and pathogens (viruses, bacteria, protozoa, and helminthic eggs). Concentrations of synthetic organic carbon, phosphorous, and heavy metals are greatly reduced. The pilot site of LTCP will involve the employment of infiltration basins, which will be using waters of impaired quality as a recharge source, and hence acting as a Soil-Aquifer-Treatment, SAT, system. T he LTCP site will be employed as a pilot SAT system complemented by new technological developments, which will be providing continuous monitoring of the quantitative and qualitative characteristics of infiltrating groundwater through all hydrologic zones (i.e. surface, unsaturated and saturated zone). This will be achieved through the development and installation of an integrated system of prototype sensors, installed on-site, and offering a continuous evaluation of the performance of the SAT system. An integrated approach of the performance evaluation of any operating SAT system should aim at parallel monitoring of all hydrologic zones, proving the sustainability of all involved water quality treatment processes within unsaturated and saturated zone. Hence a prototype system of Time Domain Reflectometry (TDR) sensors will be developed, in order to achieve continuous quantitative monitoring of the unsaturated zone through the entire soil column down to significant depths below the SAT basin. The above technique will offer continuous monitoring of infiltration rates and possible mechanical clogging effects. The qualitative monitoring of the unsaturated zone will be achieved through the installation of appropriate pore-water samplers within a multi-level basis, ensuring repeatability of sampling of infiltrating water of impaired quality. This study also involves the qualitative and quantitative assessment of the Lavrion multi-aquifer system through continuous monitoring of the performance of (i) the alluvial aquifer and its potential for additional water treatment as well as (ii) the effects of the SAT system for countermeasuring seawater intrusion in the area of Lavrion. Additionally, setup and calibration of numerical flow and transport models for evaluating and optimizing different operational modes of the SAT system within both saturated and unsaturated zones will be conducted. The monitoring system will be connected to an ad-hoc wireless network for continuous data transfer within the SAT facilities. It is envisaged that the development and combined application of all the above technologies will provide an integrated monitoring platform for the evaluation of SAT system performance.

  12. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation.

    PubMed

    Liao, Yingping; Min, Xiaobo; Yang, Zhihui; Chai, Liyuan; Zhang, Shujuan; Wang, Yangyang

    2014-01-01

    Chemical and microbial methods are the main remediation technologies for chromium-contaminated soil. These technologies have progressed rapidly in recent years; however, there is still a lack of methods for evaluating the chemical and biological quality of soil after different remediation technologies have been applied. In this paper, microbial remediation with indigenous bacteria and chemical remediation with ferrous sulphate were used for the remediation of soils contaminated with Cr(VI) at two levels (80 and 1,276 mg kg(-1)) through a column leaching experiment. After microbial remediation with indigenous bacteria, the average concentration of water-soluble Cr(VI) in the soils was reduced to less than 5.0 mg kg(-1). Soil quality was evaluated based on 11 soil properties and the fuzzy comprehensive assessment method, including fuzzy mathematics and correlative analysis. The chemical fertility quality index was improved by one grade using microbial remediation with indigenous bacteria, and the biological fertility quality index increased by at least a factor of 6. Chemical remediation with ferrous sulphate, however, resulted in lower levels of available phosphorus, dehydrogenase, catalase and polyphenol oxidase. The result showed that microbial remediation with indigenous bacteria was more effective for remedying Cr(VI)-contaminated soils with high pH value than chemical remediation with ferrous sulphate. In addition, the fuzzy comprehensive evaluation method was proven to be a useful tool for monitoring the quality change in chromium-contaminated soils.

  13. The soil indicator of forest health in the Forest Inventory and Analysis Program

    Treesearch

    Michael C. Amacher; Charles H. Perry

    2010-01-01

    Montreal Process Criteria and Indicators (MPCI) were established to monitor forest conditions and trends to promote sustainable forest management. The Soil Indicator of forest health was developed and implemented within the USFS Forest Inventory and Analysis (FIA) program to assess condition and trends in forest soil quality in U.S. forests regardless of ownership. The...

  14. Soil conservation applications with C-band SAR

    NASA Technical Reports Server (NTRS)

    Brisco, B.; Brown, R. J.; Naunheimer, J.; Bedard, D.

    1992-01-01

    Soil conservation programs are becoming more important as the growing human population exerts greater pressure on this non-renewable resource. Indeed, soil degradation affects approximately 10 percent of Canada's agricultural land with an estimated loss of 6,000 hectares of topsoil annually from Ontario farmland alone. Soil loss not only affects agricultural productivity but also decreases water quality and can lead to siltation problems. Thus, there is a growing demand for soil conservation programs and a need to develop an effective monitoring system. Topography and soil type information can easily be handled within a geographic information system (GIS). Information about vegetative cover type and surface roughness, which both experience considerable temporal change, can be obtained from remote sensing techniques. For further development of the technology to produce an operational soil conservation monitoring system, an experiment was conducted in Oxford County, Ontario which investigated the separability of fall surface cover type using C-band Synthetic Aperture Radar (SAR) data.

  15. Monitoring the Vadose Zone Moisture Regime Below a Surface Barrier

    NASA Astrophysics Data System (ADS)

    Zhang, Z. F.; Strickland, C. E.; Field, J. G.

    2009-12-01

    A 6000 m2 interim surface barrier has been constructed over a portion of the T Tank Farm in the Depart of Energy’s Hanford site. The purpose of using a surface barrier was to reduce or eliminate the infiltration of meteoric precipitation into the contaminated soil zone due to past leaks from Tank T-106 and hence to reduce the rate of movement of the plume. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barrier on the reduction of soil moisture flow. A vadose zone monitoring system was installed to measure soil water conditions at four horizontal locations (i.e., instrument Nests A, B, C, and D) outside, near the edge of, and beneath the barrier. Each instrument nest consists of a capacitance probe with multiple sensors, multiple heat-dissipation units, and a neutron probe access tube used to measure soil-water content and soil-water pressure. Nest A serves as a control by providing subsurface conditions outside the influence of the surface barrier. Nest B provides subsurface measurements to assess barrier edge effects. Nests C and D are used to assess the impact of the surface barrier on soil-moisture conditions beneath it. Monitoring began in September 2006 and continues to the present. To date, the monitoring system has provided high-quality data. Results show that the soil beneath the barrier has been draining from the shallower depth. The lack of climate-caused seasonal variation of soil water condition beneath the barrier indicates that the surface barrier has minimized water exchange between the soil and the atmosphere.

  16. Iowa flood studies (IFloodS) in the South Fork experimental watershed: soil moisture and precipitation monitoring

    USDA-ARS?s Scientific Manuscript database

    Soil moisture estimates are valuable for hydrologic modeling and agricultural decision support. These estimates are typically produced via a combination of sparse ¬in situ networks and remotely-sensed products or where sensory grids and quality satellite estimates are unavailable, through derived h...

  17. Rationale for Quality Assurance in Fecal Egg Monitoring of Soil-Transmitted Helminthiasis

    PubMed Central

    Hoekendijk, David J. L.; Hill, Philip C.; Sowerby, Stephen J.

    2016-01-01

    Substantial investment has been made into the once “neglected” tropical disease, soil-transmitted helminthiasis, and into control programs that operate within a framework of mapping baseline disease distribution, measuring the effectiveness of applied interventions, establishing when to cease drug administration, and for posttreatment evaluations. However, critical to each of these stages is the determination of helminth infection. The limitations of traditional microscope-based fecal egg diagnostics have not provided quality assurance in the monitoring of parasite disease and suboptimal treatment regimes provide for the potential development of parasite resistance to anthelmintic drugs. Improved diagnostic and surveillance tools are required to protect therapeutic effectiveness and to maintain funder confidence. Such tools may be on the horizon with emergent technologies that offer potential for enhanced visualization and quality-assured quantitation of helminth eggs. PMID:27352875

  18. Soil degradation in farmlands of California's San Joaquin Valley resulting from drought-induced land-use changes

    NASA Astrophysics Data System (ADS)

    Scudiero, Elia; Skaggs, Todd; Anderson, Ray; Corwin, Dennis

    2016-04-01

    Irrigation in California's Central Valley (USA) has decreased significantly due to water shortages resulting from the current drought, which began in 2010. In particular, fallow fields in the west side of the San Joaquin Valley (WSJV), which is the southwest portion of the Central Valley, increased from around 12% in the years before the drought (2007-2010) to 20-25% in the following years (2011-2015). We monitored and mapped drought-induced edaphic changes in salinity at two scales: (i) field scale (32.4-ha field in Kings County) and (ii) water district scale (2400 ha at -former- Broadview Water District in Fresno County). At both scales drought-induced land-use changes (i.e., shift from irrigated agriculture to fallow) drastically decreased soil quality by increasing salinity (and sodicity), especially in the root-zone (top 1.2 m). The field study monitors the spatial (three dimensions) changes of soil salinity (and sodicity) in the root-zone during 10 years of irrigation with drainage water followed by 4 years of no applied irrigation water (only rainfall) due to drought conditions. Changes of salinity (and other edaphic properties), through the soil profile (down to 1.2 m, at 0.3-m increments), were monitored and modeled using geospatial apparent electrical conductivity measurements and extensive soil sampling in 1999, 2002, 2004, 2009, 2011, and 2013. Results indicate that when irrigation was applied, salts were leached from the root-zone causing a remarkable improvement in soil quality. However, in less than two years after termination of irrigation, salinity in the soil profile returned to original levels or higher across the field. At larger spatial scales the effect of drought-induced land-use change on root-zone salinity is also evident. Up to spring 2006, lands in Broadview Water District (BWD) were used for irrigated agriculture. Water rights were then sold and the farmland was retired. Soil quality decreased since land retirement, especially during the drought years. Root-zone soil salinity was mapped in 1991 using geospatial apparent electrical conductivity measurements and extensive soil sampling and in 2013 using recent root-zone remote sensing salinity map for the WSJV (developed and published by the U.S. Salinity Laboratory, USDA-ARS), which was calibrated and (independently) validated, including fields from the BWD. Results reveal dramatic increases in soil salinity for all the fields that were originally non-saline and slightly-saline in 1991. Additionally, time-series analysis of very-high resolution ortho-imagery (from Google Earth and USGS) suggests that surface soil quality drastically decreased especially during the drought years. Our research shows how terminating irrigation in California's Central Valley can lead to substantial soil salinization in a very short time. Salinization in WSJV due to the termination of irrigation is a consequence of the complex multi-scale interaction of geomorphologic, topographic, and anthropogenic factors requiring yearly monitoring to adequately assess the impacts of drought for use in field- and basin-scale water management decisions. Among other concerns, increased salinity and sodicity affect vegetation growth and may lead to increased soil erosion and very-fine dust formation creating health and environmental hazards.

  19. Annual Quality Assurance Conference Files by Tom Mancuso

    EPA Pesticide Factsheets

    25th Annual Quality Assurance Conference. Abstract: Learn about the NEW EPA Method 325b for Refinery Fence Line Monitoring and TO-17 Extended for Soil Gas by Tom Mancuso and Abstract: Success Using Alternate Carrier Gases for Volatile Methods

  20. Carbon storage, soil carbon dioxide efflux and water quality in three widths of piedmont streamside management zones

    Treesearch

    Erica F. Wadl; William Lakel; Michael Aust; John Seiler

    2010-01-01

    Streamside management zones (SMZs) are used to protect water quality. Monitoring carbon pools and fluxes in SMZs may a good indicator of the SMZ’s overall function and health. In this project we evaluated some of these pools and fluxes from three different SMZ widths (30.5, 15.3, and 7.6 m) in the Piedmont of Virginia. We quantified carbon storage in the soil (upper 10...

  1. Quality improvement of acidic soils by biochar derived from renewable materials.

    PubMed

    Moon, Deok Hyun; Hwang, Inseong; Chang, Yoon-Young; Koutsospyros, Agamemnon; Cheong, Kyung Hoon; Ji, Won Hyun; Park, Jeong-Hun

    2017-02-01

    Biochar derived from waste plant materials and agricultural residues was used to improve the quality of an acidic soil. The acidic soil was treated for 1 month with both soy bean stover-derived biochar and oak-derived biochar in the range of 1 to 5 wt% for pH improvement and exchangeable cation enhancement. Following 1 month of treatment, the soil pH was monitored and exchangeable cations were measured. Moreover, a maize growth experiment was performed for 14 days with selected treated soil samples to confirm the effectiveness of the treatment. The results showed that the pH of the treated acidic soil increased by more than 2 units, and the exchangeable cation values were greatly enhanced upon treatment with 5 wt% of both biochars, after 1 month of curing. Maize growth was superior in the 3 wt% biochar-treated samples compared to the control sample. The presented results demonstrate the effective use of biochar derived from renewable materials such as waste plant materials and agricultural residues for quality improvement of acidic soils.

  2. Effect of irrigation on soil health: a case study of the Ikere irrigation project in Oyo State, southwest Nigeria.

    PubMed

    Adejumobi, M A; Awe, G O; Abegunrin, T P; Oyetunji, O M; Kareem, T S

    2016-12-01

    Irrigated agriculture is one of the significant contributors to the food security of the millennium development goals (MDGs); however, the modification of soil matrix by irrigation could alter the overall soil health due to changes in soil properties and processes. The objective of the study was to evaluate the effect of irrigation on soil quality status of the Ikere center pivot irrigation project site in Oyo State, southwest Nigeria. Disturbed soil samples were collected from 0 to 30, 30 to 60, and 60 to 90-cm layers from four different sites in three replicates, within the project location for the determination of soil bio-chemical properties. The average values of sodium adsorption ratio (SAR) < 13, electrical conductivity (EC) <4 μS/cm, and pH < 8.5 showed that the soil condition is normal in relation to salinity and sodicity hazards. The effective cation exchange capacity (ECEC), soil organic matter (SOM), total nitrogen (TN), and calcium ion (Ca 2+ ) concentrations were low while the available phosphorus (P) was moderate. The principal component analysis showed EC, ECEC, SAR, SOM, and TN as the minimum data set (MDS) for monitoring and assessing the soil quality status of this irrigation field. In terms of bio-chemical properties, the soil quality index (SQI) of the field was average (about 0.543) while the sampling locations were ranked as site 2 > site 4 > site 3 > site 1 in terms of SQI. The results of this study are designated as baseline for future evaluation of soil quality status of this irrigation field and further studies should incorporate soil physical and more biological properties when considering overall soil quality status.

  3. Oak Ridge Reservation annual site environmental report for 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koncinski, W.S.

    1996-09-01

    This report presents the details of the environmental monitoring and management program for the Oak Ridge Reservation. Topics discussed include: site background, climate, and operations; environmental compliance strategies; effluent monitoring; environmental management program including environmental restoration, decontamination and decommissioning, technology development, and public involvement; effluent monitoring of airborne discharges, liquid discharges, toxicity control and monitoring, biological monitoring and abatement; environmental surveillance which encompasses meteorological monitoring, ambient air monitoring, surface water monitoring, soils monitoring, sediment monitoring, and contamination of food stuffs monitoring; radiation doses; chemical exposures; ground water monitoring; and quality assurance.

  4. Ensemble classification for identifying neighbourhood sources of fugitive dust and associations with observed PM10

    NASA Astrophysics Data System (ADS)

    Khuluse-Makhanya, Sibusisiwe; Stein, Alfred; Breytenbach, André; Gxumisa, Athi; Dudeni-Tlhone, Nontembeko; Debba, Pravesh

    2017-10-01

    In urban areas the deterioration of air quality as a result of fugitive dust receives less attention than the more prominent traffic and industrial emissions. We assessed whether fugitive dust emission sources in the neighbourhood of an air quality monitor are predictors of ambient PM10 concentrations on days characterized by strong local winds. An ensemble maximum likelihood method is developed for land cover mapping in the vicinity of an air quality station using SPOT 6 multi-spectral images. The ensemble maximum likelihood classifier is developed through multiple training iterations for improved accuracy of the bare soil class. Five primary land cover classes are considered, namely built-up areas, vegetation, bare soil, water and 'mixed bare soil' which denotes areas where soil is mixed with either vegetation or synthetic materials. Preliminary validation of the ensemble classifier for the bare soil class results in an accuracy range of 65-98%. Final validation of all classes results in an overall accuracy of 78%. Next, cluster analysis and a varying intercepts regression model are used to assess the statistical association between land cover, a fugitive dust emissions proxy and observed PM10. We found that land cover patterns in the neighbourhood of an air quality station are significant predictors of observed average PM10 concentrations on days when wind speeds are conducive for dust emissions. This study concludes that in the absence of an emissions inventory for ambient particulate matter, PM10 emitted from dust reservoirs can be statistically accounted for by land cover characteristics. This supports the use of land cover data for improved prediction of PM10 at locations without air quality monitoring stations.

  5. Two Fixed Ratio Dilutions for Soil Salinity Monitoring in Hypersaline Wetlands

    PubMed Central

    Herrero, Juan; Weindorf, David C.; Castañeda, Carmen

    2015-01-01

    Highly soluble salts are undesirable in agriculture because they reduce yields or the quality of most cash crops and can leak to surface or sub-surface waters. In some cases salinity can be associated with unique history, rarity, or special habitats protected by environmental laws. Yet in considering the measurement of soil salinity for long-term monitoring purposes, adequate methods are required. Both saturated paste extracts, intended for agriculture, and direct surface and/or porewater salinity measurement, used in inundated wetlands, are unsuited for hypersaline wetlands that often are only occasionally inundated. For these cases, we propose the use of 1:5 soil/water (weight/weight) extracts as the standard for expressing the electrical conductivity (EC) of such soils and for further salt determinations. We also propose checking for ion-pairing with a 1:10 or more diluted extract in hypersaline soils. As an illustration, we apply the two-dilutions approach to a set of 359 soil samples from saline wetlands ranging in ECe from 2.3 dS m-1 to 183.0 dS m-1. This easy procedure will be useful in survey campaigns and in the monitoring of soil salt content. PMID:26001130

  6. Two fixed ratio dilutions for soil salinity monitoring in hypersaline wetlands.

    PubMed

    Herrero, Juan; Weindorf, David C; Castañeda, Carmen

    2015-01-01

    Highly soluble salts are undesirable in agriculture because they reduce yields or the quality of most cash crops and can leak to surface or sub-surface waters. In some cases salinity can be associated with unique history, rarity, or special habitats protected by environmental laws. Yet in considering the measurement of soil salinity for long-term monitoring purposes, adequate methods are required. Both saturated paste extracts, intended for agriculture, and direct surface and/or porewater salinity measurement, used in inundated wetlands, are unsuited for hypersaline wetlands that often are only occasionally inundated. For these cases, we propose the use of 1:5 soil/water (weight/weight) extracts as the standard for expressing the electrical conductivity (EC) of such soils and for further salt determinations. We also propose checking for ion-pairing with a 1:10 or more diluted extract in hypersaline soils. As an illustration, we apply the two-dilutions approach to a set of 359 soil samples from saline wetlands ranging in ECe from 2.3 dS m(-1) to 183.0 dS m(-1). This easy procedure will be useful in survey campaigns and in the monitoring of soil salt content.

  7. Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR)

    NASA Astrophysics Data System (ADS)

    Cary, L.; Kloppmann, W.; Battilani, A.; Bertaki, M.; Blagojevic, S.; Chartzoulakis, K.; Dalsgaard, A.; Forslund, A.; Jovanovic, Z.; Kasapakis, I.

    2009-04-01

    The safe use of treated domestic wastewater for irrigation needs to address the risks for humans (workers, exposed via contact with irrigation water, soil, crops and food, consumers, exposed via ingestion of fresh and processed food), for animals (via ingestion of crops an soil), for the crops and agricultural productivity (via salinity and trace element uptake), for soil (via accumulation or release of pollutants) as well as for surface, groundwaters and the associated ecosystems (via runoff and infiltration, Kass et al., 2005, Bouwer, 2000). A work package in the EU FP5 project SAFIR is dedicated to study the impact of wastewater irrigation on the soil-water-plant-product system. Its monitoring program comprises pathogens and inorganic pollutants, including both geogenic and potentially anthropogenic trace elements in the aim to better understand soil-irrigation water interactions. The SAFIR field study sites are found in China, Italy, Crete, and Serbia. A performance evaluation of SAFIR-specific treatment technology through the monitoring of waste water and irrigation water quality was made through waste water chemical and microbiological qualities, which were investigated upstream and downstream of the SAFIR specific treatment three times per season. Irrigation water transits through the uppermost soil decimetres to the crop roots. The latter will become, in the course of the irrigation season, the major sink of percolating water, together with evaporation. The water saving irrigation techniques used in SAFIR are surface and subsurface drip irrigation. The investigation of the solid soil phase concentrates on the root zone as main transit and storage compartment for pollutants and, eventually, pathogens. The initial soil quality was assessed through a sampling campaign before the onset of the first year irrigation; the soil quality has been monitored throughout three years under cultivation of tomatoes or potatoes. The plot layout for each of the study sites allows comparing different combinations of (1) water quality, including tap water as a reference, (2) irrigation techniques, and (3) irrigation strategies (including full irrigation, partial root drying, RDI). The replication of each of the combinations on three different plots takes into account the local variations of soil properties and allows a proper statistical treatment. Reactions of the infiltrating water with the soil solid phase are important for the solute cycling, temporary fixation and remobilisation of trace pollutants. The type of reaction (sorption, co-precipitation…) and the reactive mineral phases will also determine the availability of trace elements for the plant and determine the passage towards crops and products. Therefore it is important to assess the soil water quality, directly or indirectly. Direct measurements of soil water imply soil water sampling through an appropriate system; porous cups were installed on the Cretan, Italian and Chinese sites. Indirect evaluation of water-soil interactions can be obtained through sequential extractions. The combination of a variable input function (through diffuse pollution, irrigation, fertigation) and of variable MTE mobility in soils can be expected to lead to short term variations in soil metal concentrations even if such short term variations have been rarely investigated (Féder, 2001; Cary and Trolard, 2008). The sampling focused upon the fully irrigated plots given that the potential impact of irrigation water quality on soil and plant quality can be expected higher for fully irrigated soils compared to other irrigation strategies. Samples were taken within the soil volume of potential influence around each of the drip emitters. This volume varies depending on the nature of the soil and the irrigation system so that each site adopted a specific protocol. For all experiments, three sampling campaigns were scheduled for each irrigation season: at pre-planting, at the end of irrigation, at harvest. The geochemical evolution of soil properties over the 3 years shows significant variations in major and minor elements, especially trace metallic elements. It implies the role of the cultivated plant as a sink of elements which leads to direct loss of elements in the soil system. Bouwer, H., 2000. Groundwater problems caused by irrigation with sewage effluent. Journal of Environmental Health 63, 17-20. Cary L., Trolard F. (2008). Metal mobility in the ground water of a paddy field in Camargue (South eastern France). Journal of Geochemical Exploration 96/2-3 : 132-143. Féder, 2001. Dynamique des processus d'oxydo-reduction dans les sols hydromorphes, These de l'Universite Aix Marseille III. Kass, A. Gavrieli, I. Yechieli, Y. Vengosh A.and Starinsky, A., 2005. The impact of freshwater and wastewater irrigation on the chemistry of shallow groundwater: a case study from the Israeli Coastal Aquifer, Journal of Hydrology, 300, 314-331.

  8. Monitoring ecosystem quality and function in arid settings of the Mojave Desert

    USGS Publications Warehouse

    Belnap, Jayne; Webb, Robert H.; Miller, Mark E.; Miller, David M.; DeFalco, Lesley A.; Medica, Philip A.; Brooks, Matthew L.; Esque, Todd C.; Bedford, Dave

    2008-01-01

    Monitoring ecosystem quality and function in the Mojave Desert is both a requirement of state and Federal government agencies and a means for determining potential long-term changes induced by climatic fluctuations and land use. Because it is not feasible to measure every attribute and process in the desert ecosystem, the choice of what to measure and where to measure it is the most important starting point of any monitoring program. In the Mojave Desert, ecosystem function is strongly influenced by both abiotic and biotic factors, and an understanding of the temporal and spatial variability induced by climate and landform development is needed to determine where site-specific measurements should be made. We review a wide variety of techniques for sampling, assessing, and measuring climatic variables, desert soils, biological soil crusts, annual and perennial vegetation, reptiles, and small mammals. The complete array of ecosystem attributes and processes that we describe are unlikely to be measured or monitored at any given location, but the array of possibilities allows for the development of specific monitoring protocols, which can be tailored to suit the needs of land-management agencies.

  9. Soil Quality as an Indicator of Forest Health: an Overview and Initial Results from the USFS Forest Inventory and Analysis Soil Indicator Program

    Treesearch

    Katherine O' Neill; Michael Amacher; Craig Palmer; Barbara Conkling; Greg C. Liknes

    2003-01-01

    The Montreal Process was formed in 1994 to develop an internationally agreed upon set of criteria and indicators for the conservation and sustainable management of temperate and boreal forests. In response to this effort, the USDA Forest Service Forest Inventory and Analysis (FIA) and Forest Health Monitonhg (FHM) programs implemented a national soil monitoring program...

  10. Soil moisture and precipitation monitoring in the South Fork experimental watershed during the Iowa flood studies (IFloodS)

    USDA-ARS?s Scientific Manuscript database

    Soil moisture estimates are valuable for hydrologic modeling and agricultural decision support. These estimates are typically produced via a combination of sparse in situ networks and remotely-sensed products or where sensory grids and quality satellite estimates are unavailable, through derived hy...

  11. DEMONSTRATION AND QUALITY ASSURANCE PROJECT PLAN TECHNOLOGIES FOR THE MONITORING AND MEASUREMENT OF DIOXIN AND DIOXIN-LIKE COMPOUNDS IN SOIL AND SEDIMENT

    EPA Science Inventory

    The demonstration of technologies for determining the presence of dioxin in soil and sediment is being conducted under the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation Program in Saginaw, Michigan, at Green Point Environmental Learning Center fr...

  12. Soil and water quality implications of production of herbaceous and woody energy crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolbert, V.R.; Lindberg, J.E.; Green, T.H.

    1997-10-01

    Field-scale studies in three physiographic regions of the Tennessee Valley in the Southeastern US are being used to address the environmental effects of producing biomass energy crops on former agricultural lands. Comparison of erosion, surface water quality and quantity, and subsurface movement of water and nutrients from woody crops, switchgrass and agricultural crops began with crop establishment in 1994. Nutrient cycling, soil physical changes, and productivity of the different crops are also being monitored at the three sites.

  13. Rationale for Quality Assurance in Fecal Egg Monitoring of Soil-Transmitted Helminthiasis.

    PubMed

    Hoekendijk, David J L; Hill, Philip C; Sowerby, Stephen J

    2016-09-07

    Substantial investment has been made into the once "neglected" tropical disease, soil-transmitted helminthiasis, and into control programs that operate within a framework of mapping baseline disease distribution, measuring the effectiveness of applied interventions, establishing when to cease drug administration, and for posttreatment evaluations. However, critical to each of these stages is the determination of helminth infection. The limitations of traditional microscope-based fecal egg diagnostics have not provided quality assurance in the monitoring of parasite disease and suboptimal treatment regimes provide for the potential development of parasite resistance to anthelmintic drugs. Improved diagnostic and surveillance tools are required to protect therapeutic effectiveness and to maintain funder confidence. Such tools may be on the horizon with emergent technologies that offer potential for enhanced visualization and quality-assured quantitation of helminth eggs. © The American Society of Tropical Medicine and Hygiene.

  14. Induced polarization for characterizing and monitoring soil stabilization processes

    NASA Astrophysics Data System (ADS)

    Saneiyan, S.; Ntarlagiannis, D.; Werkema, D. D., Jr.

    2017-12-01

    Soil stabilization is critical in addressing engineering problems related to building foundation support, road construction and soil erosion among others. To increase soil strength, the stiffness of the soil is enhanced through injection/precipitation of a chemical agents or minerals. Methods such as cement injection and microbial induced carbonate precipitation (MICP) are commonly applied. Verification of a successful soil stabilization project is often challenging as treatment areas are spatially extensive and invasive sampling is expensive, time consuming and limited to sporadic points at discrete times. The geophysical method, complex conductivity (CC), is sensitive to mineral surface properties, hence a promising method to monitor soil stabilization projects. Previous laboratory work has established the sensitivity of CC on MICP processes. We performed a MICP soil stabilization projects and collected CC data for the duration of the treatment (15 days). Subsurface images show small, but very clear changes, in the area of MICP treatment; the changes observed fully agree with the bio-geochemical monitoring, and previous laboratory experiments. Our results strongly suggest that CC is sensitive to field MICP treatments. Finally, our results show that good quality data alone are not adequate for the correct interpretation of field CC data, at least when the signals are low. Informed data processing routines and the inverse modeling parameters are required to produce optimal results.

  15. Applicability of ELISA-based Determination of Pesticides for Groundwater Quality Monitoring

    NASA Astrophysics Data System (ADS)

    Tsuchihara, Takeo; Yoshimoto, Shuhei; Ishida, Satoshi; Imaizumi, Masayuki

    The principals and procedures of ELISA (Enzyme-linked Immunosorbent Assay)-based determination of pesticides (Fenitrothion) in environmental samples were reviewed, and the applicability of the ELISA method for groundwater quality monitoring were validated through the experimental tracer tests in soil columns and the field test in Okinoerabu Island. The test results showed that the ELISA method could be useful not only for screening but also for quantitative analysis of pesticides. In the experimental tracer tests in soil columns, the retardation of pesticides leaching compared with conservative tracers were observed. In the field test, the contamination of the pesticide was detected in groundwater samples in Okinoerabu Island, even though the targeted pesticide was considered to be applied to the upland field 4 months ago. In order to investigate the transport and fate of pesticides in groundwater taking into account retardation from the field to groundwater table and the residue in groundwater, continuous observations of pesticides in groundwater are in a strong need, and the ELISA method is applicable to the long-term quality groundwater monitoring.

  16. Wireless lysimeters for real-time online soil water monitoring

    USDA-ARS?s Scientific Manuscript database

    Identification of nitrate-nitrogen (NO3-N) in drainage water allows accessing the effectiveness of water quality management. A passive capillary wick-type lysimeter (PCAPs) was used to monitor water flux and NO3-N leached below the root zone under an irrigated cropping system. Wireless lysimeters we...

  17. Blackbird Creek Monitoring Program to Study the impact of Climate Change and Land Use

    NASA Astrophysics Data System (ADS)

    Ozbay, G.; Chintapenta, L. K.; Roeske, K. P.; Stone, M.; Phalen, L.

    2014-12-01

    The Blackbird Creek Monitoring Program at Delaware State University continues to utilize various perspectives to study the dynamics of one of Delaware's most pristine ecosystems. The water quality of Blackbird Creek has been constantly monitored for 3 years and correlated with the rain and storm events. Soil nutrients composition has been studied by extracting the water associated with soil aggregates and analyzing the levels of different nutrients. Soil quality is also assessed for heavy metals to identify potential human impact that may affect the health of ecosystem. Within the Blackbird Creek there is a threat to native plant communities from invasive plant species as they alter the ecosystem dynamics. Saltmarsh cord grass (Spartina alterniflora) and common reed (Phragmites australius) are the common wetland plants. Aerial mapping of the creek has been conducted to determine the area covered by invasive plant species. The microbial community structure plays a key role in soil carbon and nitrogen cycles in the ecosystem. Molecular analysis has been performed to study the microbial diversity with respect to the type of marsh grasses. This program has also incorporated the use of diatoms as biological indicators to assess the health of ecosystem and correlate that data with physical and chemical water quality data. The abundance and diversity of macro fauna such as blue crabs, fish and other significant species has also been studied. Stable isotopic analysis of these macro fauna has also been performed to study the food web. The results from this program will be helpful in addressing environmental challenges and designing management strategies.

  18. Evaluating the Utility of Remotely-Sensed Soil Moisture Retrievals for Operational Agricultural Drought Monitoring

    NASA Technical Reports Server (NTRS)

    Bolten, John D.; Crow, Wade T.; Zhan, Xiwu; Jackson, Thomas J.; Reynolds,Curt

    2010-01-01

    Soil moisture is a fundamental data source used by the United States Department of Agriculture (USDA) International Production Assessment Division (IPAD) to monitor crop growth stage and condition and subsequently, globally forecast agricultural yields. Currently, the USDA IPAD estimates surface and root-zone soil moisture using a two-layer modified Palmer soil moisture model forced by global precipitation and temperature measurements. However, this approach suffers from well-known errors arising from uncertainty in model forcing data and highly simplified model physics. Here we attempt to correct for these errors by designing and applying an Ensemble Kalman filter (EnKF) data assimilation system to integrate surface soil moisture retrievals from the NASA Advanced Microwave Scanning Radiometer (AMSR-E) into the USDA modified Palmer soil moisture model. An assessment of soil moisture analysis products produced from this assimilation has been completed for a five-year (2002 to 2007) period over the North American continent between 23degN - 50degN and 128degW - 65degW. In particular, a data denial experimental approach is utilized to isolate the added utility of integrating remotely-sensed soil moisture by comparing EnKF soil moisture results obtained using (relatively) low-quality precipitation products obtained from real-time satellite imagery to baseline Palmer model runs forced with higher quality rainfall. An analysis of root-zone anomalies for each model simulation suggests that the assimilation of AMSR-E surface soil moisture retrievals can add significant value to USDA root-zone predictions derived from real-time satellite precipitation products.

  19. Soil properties discriminating Araucaria forests with different disturbance levels.

    PubMed

    Bertini, Simone Cristina Braga; Azevedo, Lucas Carvalho Basilio; Stromberger, Mary E; Cardoso, Elke Jurandy Bran Nogueira

    2015-04-01

    Soil biological, chemical, and physical properties can be important for monitoring soil quality under one of the most spectacular vegetation formation on Atlantic Forest Biome, the Araucaria Forest. Our aim was to identify a set of soil variables capable of discriminating between disturbed, reforested, and native Araucaria forest soils such that these variables could be used to monitor forest recovery and maintenance. Soil samples were collected at dry and rainy season under the three forest types in two state parks at São Paulo State, Brazil. Soil biological, chemical, and physical properties were evaluated to verify their potential to differentiate the forest types, and discriminant analysis was performed to identify the variables that most contribute to the differentiation. Most of physical and chemical variables were sensitive to forest disturbance level, but few biological variables were significantly different when comparing native, reforested, and disturbed forests. Despite more than 20 years following reforestation, the reforested soils were chemically and biologically distinct from native and disturbed forest soils, mainly because of the greater acidity and Al3+ content of reforested soil. Disturbed soils, in contrast, were coarser in texture and contained greater concentrations of extractable P. Although biological properties are generally highly sensitive to disturbance and amelioration efforts, the most important soil variables to discriminate forest types in both seasons included Al3+, Mg2+, P, and sand, and only one microbial attribute: the NO2- oxidizers. Therefore, these five variables were the best candidates, of the variables we employed, for monitoring Araucaria forest disturbance and recovery.

  20. Analyzing water soluble soil organics as Trifluoroacetyl derivatives by liquid state proton nuclear magnetic resonance

    Treesearch

    Felipe Garza Sanchez; Zakiya Holmes Leggett; Sabapathy Sankar

    2005-01-01

    In forested ecosystems, water soluble organics play an important role in soil processes including carbon and nutrient turnover, microbial activity and pedogenesis. The quantity and quality (i.e., chemistry) of these materials is sensitive to land management practices. Monitoring alterations in the chemistry of water soluble organics resulting from land management...

  1. Harvesting costs and environmental impacts associated with skyline yarding shelterwood harvests and thinning in Appalachian hardwoods

    Treesearch

    J. E. Baumgras; C. B. LeDoux; J. R. Sherar

    1993-01-01

    To evaluate the potential for moderating the visual impact and soil disturbance associated with timber harvesting on steep-slope hardwood sites, thinning and shelterwood harvests were conducted with a skyline yarding system. Operations were monitored to document harvesting production, residual stand damage, soil disturbance, and visual quality. Yarding costs for...

  2. Soil Disturbance Monitoring in the USDA Forest Service, Pacific Northwest Region

    Treesearch

    Steven W. Howes

    2006-01-01

    In order to make reasoned decisions, USDA Forest Service managers must understand how changes in specific indicators of soil quality resulting from project implementation affect long-term forest productivity and watershed health. They must also be able to efficiently and economically assess the degree and extent of such changes across specified areas and adjust...

  3. Assessing environmental impacts of constructed wetland effluents for vegetable crop irrigation.

    PubMed

    Castorina, A; Consoli, S; Barbagallo, S; Branca, F; Farag, A; Licciardello, F; Cirelli, G L

    2016-01-01

    The objective of this study was to monitor and assess environmental impacts of reclaimed wastewater (RW), used for irrigation of vegetable crops, on soil, crop quality and irrigation equipment. During 2013, effluents of a horizontal sub-surface flow constructed treatment wetland (TW) system, used for tertiary treatment of sanitary wastewater from a small rural municipality located in Eastern Sicily (Italy), were reused by micro-irrigation techniques to irrigate vegetable crops. Monitoring programs, based on in situ and laboratory analyses were performed for assessing possible adverse effects on water-soil-plant systems caused by reclaimed wastewater reuse. In particular, experimental results evidenced that Escherichia coli content found in RW would not present a risk for rotavirus infection following WHO (2006) standards. Irrigated soil was characterized by a certain persistence of microbial contamination and among the studied vegetable crops, lettuce responds better, than zucchini and eggplants, to the irrigation with low quality water, evidencing a bettering of nutraceutical properties and production parameters.

  4. The role of metadata and strategies to detect and control temporal data bias in environmental monitoring of soil contamination.

    PubMed

    Desaules, André

    2012-11-01

    It is crucial for environmental monitoring to fully control temporal bias, which is the distortion of real data evolution by varying bias through time. Temporal bias cannot be fully controlled by statistics alone but requires appropriate and sufficient metadata, which should be under rigorous and continuous quality assurance and control (QA/QC) to reliably document the degree of consistency of the monitoring system. All presented strategies to detect and control temporal data bias (QA/QC, harmonisation/homogenisation/standardisation, mass balance approach, use of tracers and analogues and control of changing boundary conditions) rely on metadata. The Will Rogers phenomenon, due to subsequent reclassification, is a particular source of temporal data bias introduced to environmental monitoring here. Sources and effects of temporal data bias are illustrated by examples from the Swiss soil monitoring network. The attempt to make a comprehensive compilation and assessment of required metadata for soil contamination monitoring reveals that most metadata are still far from being reliable. This leads to the conclusion that progress in environmental monitoring means further development of the concept of environmental metadata for the sake of temporal data bias control as a prerequisite for reliable interpretations and decisions.

  5. Effects of land use and land cover on selected soil quality indicators in the headwater area of the Blue Nile basin of Ethiopia.

    PubMed

    Teferi, Ermias; Bewket, Woldeamlak; Simane, Belay

    2016-02-01

    Understanding changes in soil quality resulting from land use and land management changes is important to design sustainable land management plans or interventions. This study evaluated the influence of land use and land cover (LULC) on key soil quality indicators (SQIs) within a small watershed (Jedeb) in the Blue Nile Basin of Ethiopia. Factor analysis based on principal component analysis (PCA) was used to determine different SQIs. Surface (0-15 cm) soil samples with four replications were collected from five main LULC types in the watershed (i.e., natural woody vegetation, plantation forest, grassland, cultivated land, and barren land) and at two elevation classes (upland and midland), and 13 soil properties were measured for each replicate. A factorial (2 × 5) multivariate analysis of variance (MANOVA) showed that LULC and altitude together significantly affected organic matter (OM) levels. However, LULC alone significantly affected bulk density and altitude alone significantly affected bulk density, soil acidity, and silt content. Afforestation of barren land with eucalypt trees can significantly increase the soil OM in the midland part but not in the upland part. Soils under grassland had a significantly higher bulk density than did soils under natural woody vegetation indicating that de-vegetation and conversion to grassland could lead to soil compaction. Thus, the historical LULC change in the Jedeb watershed has resulted in the loss of soil OM and increased soil compaction. The study shows that a land use and management system can be monitored if it degrades or maintains or improves the soil using key soil quality indicators.

  6. Study on the methodology of road carbon sink forest

    NASA Astrophysics Data System (ADS)

    Wan, Lijuan; Zhang, Yi; Cheng, Dongxiang; Huang, Yanan

    2017-01-01

    Advanced concepts of forest carbon sink and forestry carbon sequestration are introduced in road carbon sink forest project and the measurement and carbon monitoring of road carbon sink forest are explored. Experience and technology are accumulated and a set of the carbon sequestration forestation and carbon measurement and monitoring technology systems on both sides of road are formed. To update the green concept, improve the forestation quality along road and to enhanced sequestration and ecological efficiency, it is important to realize the traffic low carbon and energy saving and emission reduction. To use scientific planting and monitoring methods, soil properties, carbon sequestration of soil organic carbon pool, and carbon sequestration capacity of different species of trees were studied and monitored. High carbon sequestration species selection, silvicultural management, measurement of carbon sink and carbon monitoring are explored.

  7. Application of a modeling approach to designate soil and soil organic carbon loss to wind erosion on long-term monitoring sites (BDF) in Northern Germany

    NASA Astrophysics Data System (ADS)

    Nerger, Rainer; Funk, Roger; Cordsen, Eckhard; Fohrer, Nicola

    2017-04-01

    Soil organic carbon (SOC) loss is a serious problem in maize monoculture areas of Northern Germany. Sites of the soil monitoring network (SMN) "Boden-Dauerbeobachtung" show long-term soil and SOC losses, which cannot be explained by conventional SOC balances nor by other non-Aeolian causes. Using a process-based model, the main objective was to determine whether these losses can be explained by wind erosion. In the long-term context of 10 years, wind erosion was not measured directly but often observed. A suitable estimation approach linked high-quality soil/farming monitoring data with wind erosion modeling results. The model SWEEP, validated for German sandy soils, was selected using 10-minute wind speed data. Two similar local SMN study sites were compared, however, site A was characterized by high SOC loss and often affected by wind erosion, while the reference site B was not. At site A soil mass and SOC stock decreased by 49.4 and 2.44 kg m-2 from 1999 to 2009. Using SWEEP, a total soil loss of 48.9 kg m-2 resulted for 16 erosion events (max. single event 12.6 kg m-2). A share of 78% was transported by suspension with a SOC enrichment ratio (ER) of 2.96 (saltation ER 0.98), comparable to the literature. At the reference site measured and modeled topsoil losses were minimal. The good agreement between monitoring and modeling results suggested that wind erosion caused significant long-term soil and SOC losses. The approach uses results of prior studies and is applicable to similar well-studied sites without other noteworthy SOC losses.

  8. EVERGLADES ECOSYSTEM ASSESSMENT: WATER MANAGEMENT AND QUALITY, EUTROPHICATION, MERCURY CONTAMINATION, SOILS AND HABITAT: MONITORING FOR ADAPTIVE MANAGEMENT: A R-EMAP STATUS REPORT

    EPA Science Inventory

    The United States Environmental Protection Agency’s Everglades Ecosystem Assessment Program is a long-term research, monitoring and assessment effort. Its goal is to provide critical, timely, scientific information needed for management decisions on the Everglades ecosystem and i...

  9. Soil- and groundwater-quality data for petroleum hydrocarbon compounds within Fuels Area C, Ellsworth Air Force Base, South Dakota, 2014

    USGS Publications Warehouse

    Bender, David A.; Rowe, Barbara L.

    2015-01-01

    Ellsworth Air Force Base is an Air Combat Command located approximately 10 miles northeast of Rapid City, South Dakota. Ellsworth Air Force Base occupies about 6,000 acres within Meade and Pennington Counties, and includes runways, airfield operations, industrial areas, housing, and recreational facilities. Fuels Area C within Ellsworth Air Force Base is a fuels storage area that is used to support the mission of the base. In fall of 2013, the U.S. Geological Survey began a study in cooperation with the U.S. Air Force, Ellsworth Air Force Base, to estimate groundwater-flow direction, select locations for permanent monitoring wells, and install and sample monitoring wells for petroleum hydrocarbon compounds within Fuels Area C. Nine monitoring wells were installed for the study within Fuels Area C during November 4–7, 2014. Soil core samples were collected during installation of eight of the monitoring wells and analyzed for benzene, toluene, ethylbenzene, total xylenes, naphthalene,m- and p-xylene, o-xylene, and gasoline- and diesel-range organic compounds. Groundwater samples were collected from seven of the nine wells (two of the monitoring wells did not contain enough water to sample or were dry) during November 19–21, 2014, and analyzed for select physical properties, benzene, toluene, ethylbenzene, total xylenes, naphthalene, m- and p-xylene, o-xylene, and gasoline- and diesel-range organic compounds. This report describes the nine monitoring well locations and presents the soil- and groundwater-quality data collected in 2014 for this study.

  10. Hydrologic Impacts of Oak Harvesting and Evaluation of the Modified Universal Soil Loss Equation

    Treesearch

    Charlette R. Epifanio; Michael J. Singer; Xiaohong Huang

    1991-01-01

    Two Sierra foothill watersheds were monitored to learn what effects selective oak removal would have on watershed hydrology and water quality. We also used the data to generate sediment rating curves and evaluate the modified universal soil loss equation (MUSLE). Annual sediment rating curves better accounted for the variability in precipitation events from year to...

  11. Image processing developments and applications for water quality monitoring and trophic state determination

    NASA Technical Reports Server (NTRS)

    Blackwell, R. J.

    1982-01-01

    Remote sensing data analysis of water quality monitoring is evaluated. Data anaysis and image processing techniques are applied to LANDSAT remote sensing data to produce an effective operational tool for lake water quality surveying and monitoring. Digital image processing and analysis techniques were designed, developed, tested, and applied to LANDSAT multispectral scanner (MSS) data and conventional surface acquired data. Utilization of these techniques facilitates the surveying and monitoring of large numbers of lakes in an operational manner. Supervised multispectral classification, when used in conjunction with surface acquired water quality indicators, is used to characterize water body trophic status. Unsupervised multispectral classification, when interpreted by lake scientists familiar with a specific water body, yields classifications of equal validity with supervised methods and in a more cost effective manner. Image data base technology is used to great advantage in characterizing other contributing effects to water quality. These effects include drainage basin configuration, terrain slope, soil, precipitation and land cover characteristics.

  12. Approaches and challenges of soil water monitoring in an irrigated vineyard

    NASA Astrophysics Data System (ADS)

    Nolz, Reinhard; Loiskandl, Willibald

    2016-04-01

    Monitoring of water content is an approved method to quantify certain components of the soil water balance, for example as basis for hydrological studies and soil water management. Temporal soil water data also allow controlling water status by means of demand-oriented irrigation. Regarding spatial variability of water content due to soil characteristics, plant water uptake and other non-uniformities, it is a great challenge to select a location that is most likely representing soil water status of a larger area (e.g. an irrigated field). Although such an approach might not satisfy the requirements of precision farming - which becomes more and more related to industrial agriculture - it can help improving water use efficiency of small-scale farming. In this regard, specific conditions can be found in typical vineyards in the eastern part of Austria, where grapes are grown for high quality wine production. Generally, the local dry-subhumid climate supports grape development. However, irrigation is temporarily essential in order to guarantee stable yields and high quality. As the local winegrowers traditionally control irrigation based on their experience, there is a potential to improve irrigation management by means of soil water data. In order to gain experience with regard to irrigation management, soil water status was determined in a small vineyard in Austria (47°48'16'' N, 17°01'57'' E, 118 m elevation). The vineyard was equipped with a subsurface drip irrigation system and access tubes for measuring water content in soil profiles. The latter was measured using a portable device as well as permanently installed multi-sensor capacitance probes. Soil samples were taken at chosen dates and gravimetrically analyzed in the laboratory. Water content data were analyzed using simple statistical procedures and the temporal stability concept. Soil water content was interpreted considering different environmental conditions, including rainfall and irrigation periods, and influences from tillage operations. Variability of sensor readings was substantial across the study plot. However, locations could be identified that were most likely representative for soil water monitoring. Tillage operations and weed growth in the inter-rows had a recognizable impact on soil water distribution, which also has to be considered when installing probes. Furthermore, the distance of sensors to drip emitters was of great importance for correctly interpreting data for irrigation management.

  13. Lessons from a 5 yr citizen-science monitoring program, Mountain Watch, to engage hikers in air quality/visibility and plant phenology monitoring in the mountains

    NASA Astrophysics Data System (ADS)

    Murray, G.; Weihrauch, D.; Kimball, K.; McDonough, C.

    2010-12-01

    The AMC’s citizen scientist monitoring program, Mountain Watch, engages hikers in observational monitoring while recreating in the northern Appalachian Mountains. The program uses two monitoring activities:1) tracking the phenology of 11 mountain flowers species, and 2) the visitors real world perception of on-mountain visibility and its ‘quality’ with proximate monitored air quality parameters. The Mountain Watch program objectives are a) to engage and educate the public through hands-on monitoring, b) to motivate the participant to take further action towards environmental stewardship, and c) to provide supplemental data to AMC’s ongoing science-based research to further our understanding of the impact of human activity on mountain ecosystems. The Mountain Watch plant monitoring includes recording the time and location of alpine and forest plants flowering and other phenological phases using AMC field guides and datasheets. In the White Mountains of New Hampshire concurrent meteorological data, including soil temperature, is paired with the phenology observations as part of AMC’s research to develop spatial and temporal phenology models with air and soil temperature for northeastern mountains. Mountain Watch’s visibility monitoring program has hikers record visual range and rate the view at select vistas in comparison to a clear day view photo guide when visiting AMC’s backcountry huts. The results are compared to proximate air quality measurements, which assists in determining how White Mountain National Forest air quality related values and natural resources management objectives are being met. Since 2006 the Mountain Watch program has received over 3,500 citizen datasheets for plant reproductive phenology and visibility monitoring. We estimate that we have reached more than 15,000 hikers through our facility based education programming focused on air quality and phenology and field monitoring hikes. While we consider this good success in engaging hikers to date, the ratio of resource expenditures in recruiting volunteers and QA/QCing their data for actual research application has been high. Mountain Watch staff are now refining the program to achieve education and research goals a manner that is sustainable into the future with limited fiscal and staff resources. The quality of our citizen phenology observations, in comparison to staff monitoring, has lead to refinements including directing general audience hikers to well-defined trailside observation stations, growing our more skilled amateur botanist volunteer base, and use of remote cameras for quality controls and better temporal coverage. Visibility monitoring at four mountain vistas has recently been analyzed in the context of policy applications. Refinements will be presented that will further inform natural resource management of air quality in relation to Clean Air Act Air Quality Related Values and a potential visibility focused particulate matter secondary National Ambient Air Quality Standard. Overall lessons learned, regarding audience considerations, resource needs, and long-term sustainability, from our 5-year field based geoscience programs will be discussed.

  14. Elemental Analysis of Soils by Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gondal, Mohammed Ashraf; Dastageer, Mohamed A.

    The chemical and elemental composition of soil is very complex as it contains many constituents like minerals, organic matters, living organisms, fossils, air and water. Considering the diversity of soil contents, quality and usability, a systematic scientific study on the elemental and chemical composition of soil is very important. In order to study the chemical composition of soil, Laser induced breakdown spectroscopy (LIBS) has been applied recently. The important features of LIBS system and its applications for the measurement of nutrients in green house soil, on-line monitoring of remediation process of chromium polluted soil, determination of trace elements in volcanic erupted soil samples collected from ancient cenozoic lava eruption sites and detection of toxic metals in Gulf war oil spill contaminated soil using LIBS are described in this chapter.

  15. Evaluation of AMSR2 soil moisture products over the contiguous United States using in situ data from the International Soil Moisture Network

    NASA Astrophysics Data System (ADS)

    Wu, Qiusheng; Liu, Hongxing; Wang, Lei; Deng, Chengbin

    2016-03-01

    High quality soil moisture datasets are required for various environmental applications. The launch of the Advanced Microwave Scanning Radiometer 2 (AMSR2) on board the Global Change Observation Mission 1-Water (GCOM-W1) in May 2012 has provided global near-surface soil moisture data, with an average revisit frequency of two days. Since AMSR2 is a new passive microwave system in operation, it is very important to evaluate the quality of AMSR2 products before widespread utilization of the data for scientific research. In this paper, we provide a comprehensive evaluation of the AMSR2 soil moisture products retrieved by the Japan Aerospace Exploration Agency (JAXA) algorithm. The evaluation was performed for a three-year period (July 2012-June 2015) over the contiguous United States. The AMSR2 soil moisture products were evaluated by comparing ascending and descending overpass products to each other as well as comparing them to in situ soil moisture observations of 598 monitoring stations obtained from the International Soil Moisture Network (ISMN). The accuracy of AMSR2 soil moisture product was evaluated against several types of monitoring networks, and for different land cover types and ecoregions. Three performance metrics, including mean difference (MD), root mean squared difference (RMSD), and correlation coefficient (R), were used in our accuracy assessment. Our evaluation results revealed that AMSR2 soil moisture retrievals are generally lower than in situ measurements. The AMSR2 soil moisture retrievals showed the best agreement with in situ measurements over the Great Plains and the worst agreement over forested areas. This study offers insights into the suitability and reliability of AMSR2 soil moisture products for different ecoregions. Although AMSR2 soil moisture retrievals represent useful and effective measurements for some regions, further studies are required to improve the data accuracy.

  16. Research on visible and near infrared spectral-polarimetric properties of soil polluted by crude oil

    NASA Astrophysics Data System (ADS)

    Shen, Hui-yan; Zhou, Pu-cheng; Pan, Bang-long

    2017-10-01

    Hydrocarbon contaminated soil can impose detrimental effects on forest health and quality of agricultural products. To manage such consequences, oil leak indicators should be detected quickly by monitoring systems. Remote sensing is one of the most suitable techniques for monitoring systems, especially for areas which are uninhabitable and difficulty to access. The most available physical quantities in optical remote sensing domain are the intensity and spectral information obtained by visible or infrared sensors. However, besides the intensity and wavelength, polarization is another primary physical quantity associated with an optical field. During the course of reflecting light-wave, the surface of soil polluted by crude oil will cause polarimetric properties which are related to the nature of itself. Thus, detection of the spectralpolarimetric properties for soil polluted by crude oil has become a new remote sensing monitoring method. In this paper, the multi-angle spectral-polarimetric instrument was used to obtain multi-angle visible and near infrared spectralpolarimetric characteristic data of soil polluted by crude oil. And then, the change rule between polarimetric properties with different affecting factors, such as viewing zenith angle, incidence zenith angle of the light source, relative azimuth angle, waveband of the detector as well as different grain size of soil were discussed, so as to provide a scientific basis for the research on polarization remote sensing for soil polluted by crude oil.

  17. Assessment of the effectiveness of onsite exsitu remediation by enhanced natural attenuation in the Niger Delta region, Nigeria.

    PubMed

    Okparanma, Reuben N; Azuazu, Ikeabiama; Ayotamuno, Josiah M

    2017-12-15

    This study was conducted to quantify and rank the effectiveness of onsite exsitu remediation by enhanced natural attenuation using soil quality index. The investigation was conducted at three oil spill sites in the Niger Delta (5.317°N, 6.467°E), Nigeria with a predominance of Oxisols. Baseline assessment and a two-step post-remediation monitoring of the sites were conducted. Target contaminants including total petroleum hydrocarbon (TPH) and BTEX (benzene, toluene, ethylbenzene, and xylene) were analyzed by gas chromatography-mass spectrometry. Results of the baseline assessment showed that TPH concentrations across the study sites averaged between 5113 and 7640 mg/kg at 0- to 1-m depth, which was higher than the local regulatory value of 5000 mg/kg. The soil quality index across the sites ranged between 68 and 45, suggesting medium to high potential ecological health risks with medium to high priority for remediation. BTEX concentrations followed a similar trend. However, after remediation TPH degraded rapidly initially and then slowly but asymptotically during the post-remediation monitoring period. Then, soil quality index across the study sites ranged between 100 and 58, indicating very low to medium potential ecological health risks. This demonstrates the effectiveness of onsite exsitu remediation by enhanced natural attenuation as a remediation strategy for petroleum-contaminated soils, which holds great promise for the Niger Delta province. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Trace metal concentrations in forest and lawn soils of Paris region (France) along a gradient of urban pressure

    NASA Astrophysics Data System (ADS)

    Ludovic, Foti

    2017-04-01

    Urban soils differ greatly from natural ones as they are located in areas of intense anthropogenic activity (e.g. pollution, physical disturbance, surface transformation). Urban soils are a crucial component of urban ecosystems, especially in public green spaces, and contribute to many ecosystem services from the mitigation of urban heat island to recreational services. In the last decade, the study of urban soils has emerged as an important frontier in environmental research, at least because of their impact on the quality of life of urban populations, because of the services they deliver and because they are more and more recognized as a valuable resource. One of the key issues is the pollution of urban soils because they receive a variety of deposits from local (vehicle emissions, industrial discharges, domestic heating, waste incineration and other anthropogenic activities) and from remote sources (through atmospheric transport). Typical contaminants include persistent toxic substances, such as trace metals (TMs) that have drawn wide attention due to their long persistence in the environment, their tendency to bioaccumulate in the food chain and their toxicity for humans and other organisms. Concentrations, spatial distributions, dynamics, impacts and sources of TMs (e.g. industry or fossil fuels combustion) have attracted a global interest in urban soils and are the subject of ongoing research (e.g. ecotoxicological urban ecology). Some studies have already documented soil pollution with TMs at both the town and regional scales. So far, several monitoring programs (e.g. National Network for the long term Monitoring of Forest Ecosystem, Regional Monitoring Quality of Soil in France) and studies have been carried out on a national scale to measure the ranges of TM concentrations and natural background values in French soils. These studies have focused on French agricultural and forest soils and have not tackled urban soils. No study has described TM concentrations and subsequent risks in soils of Paris and Paris region (Île-de-France). Our study aims at filling this knowledge gap, focusing on contamination and pollution by TMs in lawns and forests that constitute the main types of vegetation in urban areas of Paris region. Considering the rational described above, the aims of the present study were (i) to examine the concentration of eight selected TMs (As, Cd, Cr, Cu, Fe, Ni, Pb, Zn) in soils of two land-uses (public lawns and woods) along an urban pressure gradient in Paris region, (ii) to distinguish origins and sources of contamination or pollution, (iii) to evaluate the individual and overall TM contamination degree as well as the individual and overall TM pollution degree, (iiii) to use soil characteristics to better understand soil origins and histories along the urban pressure gradient and the relationship between these characteristics and TM concentrations. Ultimately, this study provides a baseline TM assessment for the long-term monitoring of the evolution of TM soil contents in urban area of the Paris region.

  19. Impacts of soil conditioners and water table management on phosphorus loss in tile drainage from a clay loam soil.

    PubMed

    Zhang, T Q; Tan, C S; Zheng, Z M; Welacky, T W; Reynolds, W D

    2015-03-01

    Adoption of waste-derived soil conditioners and refined water management can improve soil physical quality and crop productivity of fine-textured soils. However, the impacts of these practices on water quality must be assessed to ensure environmental sustainability. We conducted a study to determine phosphorus (P) loss in tile drainage as affected by two types of soil conditioners (yard waste compost and swine manure compost) and water table management (free drainage and controlled drainage with subirrigation) in a clay loam soil under corn-soybean rotation in a 4-yr period from 1999 to 2003. Tile drainage flows were monitored and sampled on a year-round continuous basis using on-site auto-sampling systems. Water samples were analyzed for dissolved reactive P (DRP), particulate P (PP), and total P (TP). Substantially greater concentrations and losses of DRP, PP, and TP occurred with swine manure compost than with control and yard waste compost regardless of water table management. Compared with free drainage, controlled drainage with subirrigation was an effective way to reduce annual and cumulative losses of DRP, PP, and TP in tile drainage through reductions in flow volume and P concentration with control and yard waste compost but not with swine manure compost. Both DRP and TP concentrations in tile drainage were well above the water quality guideline for P, affirming that subsurface loss of P from fine-textured soils can be one critical source for freshwater eutrophication. Swine manure compost applied as a soil conditioner must be optimized by taking water quality impacts into consideration. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. The contribution of space observations to water resources management; Proceedings of the Symposium, Bangalore, India, May 29-June 9, 1979

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V. (Editor); Bhavsar, P. D.

    1980-01-01

    The symposium focused on hydrology, soil moisture estimation and ground water exploration, wetlands monitoring and water quality estimation, hydrometeorology, snow and ice monitoring, and evapotranspiration estimation. Other problems discussed include surface water and flood mapping, watershed runoff estimation and prediction, and new space systems contributing to water resources management.

  1. The nematode Caenorhabditis elegans as an integrated toxicological tool to assess water quality and pollution.

    PubMed

    Clavijo, Araceli; Kronberg, María Florencia; Rossen, Ariana; Moya, Aldana; Calvo, Daniel; Salatino, Santa Esmeralda; Pagano, Eduardo Antonio; Morábito, José Antonio; Munarriz, Eliana Rosa

    2016-11-01

    Determination of water quality status in rivers is critical to establish a sustainable water management policy. For this reason, over the last decades it has been recommended to perform integrated water assessments that include water quantities and physicochemical, ecological and toxicological tests. However, sometimes resources are limited and it is not possible to perform large-scale chemical determinations of pollutants or conduct numerous ecotoxicological tests. To overcome this problem we use and measure the growth, as a response parameter, of the soil nematode Caenorhabditis elegans to assess water quality in rivers. The C. elegans is a ubiquitous organism that has emerged as an important model organism in aquatic and soil toxicology research. The Tunuyán River Basin (Province of Mendoza, Argentina) has been selected as a representative traditional water monitoring system to test the applicability of the C. elegans toxicological bioassay to generate an integrated water quality evaluation. Jointly with the C. elegans toxic assays, physicochemical and bacteriological parameters were determined for each monitoring site. C. elegans bioassays help to identify different water qualities in the river basin. Multivariate statistical analysis (PCA and linear regression models) has allowed us to confirm that traditional water quality studies do not predict potential toxic effects on living organisms. On the contrary, physicochemical and bacteriological analyzes explain <62% of the C. elegans growth response variability, showing that ecotoxicological bioassays are important to obtain a realistic scenario of water quality threats. Our results confirm that the C. elegans bioassay is a sensible and suitable tool to assess toxicity and should be implemented in routine water quality monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Towards quantitative usage of EMI-data for Digital Soil Mapping

    NASA Astrophysics Data System (ADS)

    Nüsch, A.-K.; Wunderlich, T.; Kathage, S.; Werban, U.; Dietrich, P.

    2009-04-01

    As formulated in the Thematic Strategy for Soil Protection prepared by the European Commission soil degradation is a serious problem in Europe. The degradation is driven or exacerbated by human activity and has a direct impact on water and air quality, biodiversity, climate and human life-quality. High-resolution soil property maps are one major prerequisite for the specific protection of soil function and restoration of degraded soils as well as sustainable land use, water and environmental management. However, the currently available techniques for (digital) soil mapping still have deficiencies in terms of reliability and precision, the feasibility of investigation of large areas (e.g. catchments and landscapes) and the assessment of soil degradation threats at this scale. The focus of the iSOIL (Interactions between soil related science - Linking geophysics, soil science and digital soil mapping) project is on improving fast and reliable mapping of soil properties, soil functions and soil degradation threats. This requires the improvement as well as integration of geophysical and spectroscopic measurement techniques in combination with advanced soil sampling approaches, pedometrical and pedophysical approaches. Many commercially available geophysical sensors and equipment (EMI, DC, gamma-spectroscopy, magnetics) are ready to use for measurements of different parameters. Data collection with individual sensors is well developed and numerously described. However comparability of data of different sensor types as well as reproducibility of data is not self-evident. In particular handling of sensors has to be carried out accurately, e.g. consistent calibration. Soil parameters will be derived from geophysical properties to create comprehensive soil maps. Therefore one prerequisite is the comparison of different geophysical properties not only qualitative but also quantitative. At least reproducibility is one of the most important conditions for monitoring tasks. The first parameter we focussed on is apparent electrical conductivity (ECa). It is an important geophysical properity in soil science since soil parameters (water content, etc.) can be deduced. Nowadays mobile geophysical platforms allow to survey large areas comprehensively in a short time period. These platforms have been equipped with EM38DD (Geonics) and Profiler EMP-400 (GSSI) - two different types of electromagnetic induction (EMI) instruments - within first iSOIL field campaign. While EM38DD measures in horizontal and vertical mode at the same time, Profiler measures three frequencies simultaneously and magnetic susceptibility additionally. Coil separation of the instruments is nearly the same, so penetration depth is similar. On the other hand, frequencies are arbitrary at Profiler but fixed at EM38DD. These differences in penetration depth have to taken into account. By our measurement we tested the comparability of the data to show differences between instruments of the same type (EM38DD-EM38DD) using different settings, and different types (EM38DD-Profiler). Moreover both sensors work in continuous as well in discontinuous mode. The results show that quality of data is comparable, but the quantities are varying. This has to be considered for further interpretations and monitoring. In the next steps we have to determine how to convert relative data into absolute data since ECa data from different locations are not comparable to each other in a quantitative way. In the talk we will give an introduction in the application of EMI for soil monitoring, followed by an overview about comparability and reproducibility of data.

  3. Viticulture microzoning: a functional approach aiming to grape and wine qualities

    NASA Astrophysics Data System (ADS)

    Bonfante, A.; Agrillo, A.; Albrizio, R.; Basile, A.; Buonomo, R.; De Mascellis, R.; Gambuti, A.; Giorio, P.; Guida, G.; Langella, G.; Manna, P.; Minieri, L.; Moio, L.; Siani, T.; Terribile, F.

    2014-12-01

    This paper aims to test a new physically oriented approach to viticulture zoning at the farm scale, strongly rooted on hydropedology and aiming to achieve a better use of environmental features with respect to plant requirement and wine production. The physics of our approach is defined by the use of soil-plant-atmosphere simulation models which applies physically-based equations to describe the soil hydrological processes and solves soil-plant water status. This study (ZOVISA project) was conducted in a farm devoted to high quality wines production (Aglianico DOC), located in South Italy (Campania region, Mirabella Eclano-AV). The soil spatial distribution was obtained after standard soil survey informed by geophysical survey. Two Homogenous Zones (HZs) were identified; in each one of those a physically based model was applied to solve the soil water balance and estimate the soil functional behaviour (crop water stress index, CWSI) defining the functional Homogeneous Zones (fHzs). In these last, experimental plots were established and monitored for investigating soil-plant water status, crop development (biometric and physiological parameters) and daily climate variables (temperature, solar radiation, rainfall, wind). The effects of crop water status on crop response over must and wine quality were then evaluated in the fHZs. This was performed by comparing crop water stress with (i) crop physiological measurement (leaf gas exchange, chlorophyll a fluorescence, leaf water potential, chlorophyll content, LAI measurement), (ii) grape bunches measurements (berry weight, sugar content, titratable acidity, etc.) and (iii) wine quality (aromatic response). Eventually this experiment has proved the usefulness of the physical based approach also in the case of mapping viticulture microzoning.

  4. Polycyclic aromatic hydrocarbons pollution effect on soil biological activity in the anthropogenic contaminated area

    NASA Astrophysics Data System (ADS)

    Batukaev, Abdulmalik; Sushkova, Svetlana; Minkina, Tatiana; Antonenko, Elena; Salamova, Anzhelika; Gimp, Alina; Deryabkina, Irina

    2017-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are one of the most significant environmental contaminants with mutagenic and carcinogenic properties to all living organisms. The changes in microbial community structure in technogenic polluted soil may be used as tools for predicting and monitoring natural degradation and for search the most effective and appropriate pathways of bioremediation. The present study is aimed to research the biological activity of the soil in the emission zone of Novocherkassk Power station (NPs) (Russia) polluted by PAHs in 2015. The NPs is one of the largest thermal power stations in the south of Russia burning low-quality coal appurtenant the enterprises of I hazardous class. Monitoring plots were located on virgin or no-till fallow areas and not subject to the sanitary-protection zone of the NPs. Soil samples were taken from a depth of 0- to 20-cm, because the major part of PAHs are accumulated in the surface soil layer. The soils of the plots mainly include Chernozems Calcic (plots 1, 4, 5, 7, 9 and 10), Phaeozems Haplic (plots 3, 6, 8 and 11) Fluvisols Umbric (plots 2 and 12). In the soil of 12 monitoring plots located around NPs there were determined the main enzymes, abundance of soil bacteria and 17 priority PAHs. PAHs extraction from soil was performed by new developed ecologically clean method of subcritical water extraction without organic solvents (Sushkova et al., 2015). The level of PAHs around NPs is high at the nearest to factory monitoring plots situated at distance 1,0-1,2 km and reaches from 1600,1±14,7 up to 373,6±7,1 mkg/kg in the 20-cm soil layer. Gradually decrease of PAHs contamination is observed while increasing the distance from the NPs. The level of highmolecular PAHs (4-6 aromatic rings) exceeds the level of lowmolecular (2-3 aromatic rings) PAHs in all monitoring plots situated though the prevailing wind direction from NPs. The close correlations were found between PAHs content and biological activity parameters in the monitoring plots situated through the prevailing wind direction from NPs. Level of dehydrogenases has high positive correlation with technogenic accumulated biphenyl, acenaphthene and negative correlation with anthracene content in studied soil. The lowmolecular PAHs content of soil influenced activity of dehydrogenases positively. Urease activity of monitoring plots has a high positive correlation with 12 PAHs exclude biphenyl, benzo(a)anthracene, naphthalene. Negative dependence of urease activity was observed for lowmolecular PAHs. The abundance of soil bacteria has a negative correlation with PAHs level. Anthracene has no correlations with abundance of soil bacteria and negatively influences on dehydrogenase, urease. Thus, the most subjected to technogenic pollution in 2015 were monitoring plots situated through the prevailing wind direction from NPs. It was established that ratio of low- and highmolecular PAHs content in soils of monitoring plots is the indicator of technogenic pollution soils. Contamination by PAHs in the affected zone has negative influence at the abundance of soil bacteria. The most number of PAHs has positive correlation with biological activity parameters of soil. This work was supported by grant of the Russian Scientific Foundation № 16-14-10217.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Staunton 1 Reclamation Demonstration Project involves an evaluation of the reclamation process for a deep coal mine refuse system. A typical abandoned midwestern deep coal mine refuse site was selected, final land use was determined, baseline data were collected, engineering plans were developed and implemented, and a post-construction evaluation was begun. The project is a cooperative effort by two state agencies--the Abandoned Mined Land Reclamation Council of Illinois the Illinois Institute for Environmental Quality--and the U.S. Department of Energy through the Land Reclamation Program at Argonne National Laboratory. Current investigations are monitoring groundwater, surface water quality, aquatic ecosystems, revegetation,more » soil characteristics, erosion and runoff, soil microbial and soil fauna populations, wildlife, and economic effects of the reclamation effort. The research is a multidisciplinary approach to the concept of ecosystem response to reclamation.« less

  6. International Conference on Environmental Sensing and Assessment, Las Vegas, Nev., September 14-19, 1975, Proceedings. Volumes 1 & 2

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The papers deal with the detection of hazardous environmental pollutants, the development of emission control plans, and the design of compliance monitoring systems. Topics include remote sensing techniques in environmental pollution monitoring, monitoring of atmospheric particulate matter, air pollution due to sulfur dioxide and other inorganic compounds, marine pollution, atmospheric aerosols, industrial pollution, and legal aspects of pollution monitoring. Other papers examine the toxic effects of heavy metals and halogenated hydrocarbons, pollution associated with waste-disposal processes, pesticide residues in soil and groundwater, evaluations of groundwater quality, and monitoring of nuclear wastes. The interaction of climate and pollution is also discussed along with global pollutant transport, environmental modeling, ambient environmental air quality, aircraft and ground-vehicle emissions, and pollution associated with energy extraction and utilization processes. Individual items are announced in this issue.

  7. Hydrology and Water Quality of Forested Lands in Eastern North Carolina

    Treesearch

    George M. Chescheir; M.E. Lebo; Devendra M. Amatya; J. Hughes; J.W. Gilliam; R. Wayne Skaggs; R.B. Hermann

    2003-01-01

    More than 100 site years of hydrology and water quality data spanning 25 years (1976-2000) were compiled from research and monitoring studies on forest stands with natural vegetation and tracts managed for timber production. A total of 41 watersheds located on poorly drained to very poorly drained soils on flat divides between coastal streams were included ranging in...

  8. Playing with LISEM: Experiences from Norway

    NASA Astrophysics Data System (ADS)

    Greipsland, Inga; Krzeminska, Dominika

    2017-04-01

    Reducing soil loss from agricultural land is an important environmental challenge that is of relevance for both the European Soil Thematic Strategy (EC 2002) and the Water Framework Directive (EC 2000). Agricultural land in Norway is scarce, covering only around 3% of the total land area (The World Bank, 2015), which puts stress on preserving soil quality for food production. Additionally, reducing sediment loss is a national priority because of associated transport of pollutants such as phosphorous, which can cause eutrophication in nearby waterbodies. It is necessary to find tools that can estimate the effect of different scenarios on erosion processes on agricultural areas. We would like to present the challenges experienced and the results obtained by using LISEM (Limburg Soil Erosion Model) on the plot- subcatchment- and catchment scale in southeastern Norway. The agricultural catchment has been the subject of long-term monitoring of water quality. Challenges included spatial upscaling of local calibration, calibration on areas with very low soil loss rates and equifinality. In this poster, we want to facilitate a discussion about the possibilities of and limitations to the model for predicting hydrological and soil erosion processes at different scales.

  9. Monitoring Two Small Catchments to Evaluate Effects of No-Tillage Agricultural Management in São Paulo State, Brazil

    NASA Astrophysics Data System (ADS)

    Figueiredo, R. D. O.; Gonçalves, A. O.; Melo, A. D. S.; de Bona, F. D.; Hernani, L. C.

    2015-12-01

    In recent years, declines in water and soil quality have been observed in areas of Brazil where no-till agriculture had been previously implemented. Poor soil management associated with the absence of public policies has caused soil erosion, because many farmers are moving back from no-till to traditional cultivation for faster economic gains. A research project - SoloVivo Project - leaded by Embrapa (Brazilian Agricultural Research Corporation) in partnership with Itaipu Binacional aims to develop and validate, in a participatory way, tools to evaluate the technical performance of soil and water management at the rural properties that practice no-till agriculture. In this context we have selected two paired small (< 100 ha) catchments in the Paranapanema region, São Paulo State, where no-till management is practiced at two different degrees of effectiveness. In the figure bellow it can be seen a scene of one of the two studied catchments. For monitoring rainfall, soil solution and stream water, each catchment will be equipped with a programmable datalogger (with cell phone communication for data collection) linked to: a high intensity tipping bucket rain gage; a reflectometer to monitor soil volumetric water content, bulk electric conductivity and temperature; a radar water level sensor; a turbidity sensor; and an electric conductivity-temperature probe. We expect that stream flow and sediment generation, besides water quality (measured by conductivity) may serve as indicators of the benefits of no-tillage agriculture done more or less well. The results of this study will be used to stimulate discussions at workshops with the farmers who participate in a rural producers association in the region. In addition this and other results can be used to help the Brazilian National Water Agency (ANA) decide about applying no-till agricultural management systems in its programs of payment for environmental services.

  10. A Novel Method to Quantify Soil Aggregate Stability by Measuring Aggregate Bond Energies

    NASA Astrophysics Data System (ADS)

    Efrat, Rachel; Rawlins, Barry G.; Quinton, John N.; Watts, Chris W.; Whitmore, Andy P.

    2016-04-01

    Soil aggregate stability is a key indicator of soil quality because it controls physical, biological and chemical functions important in cultivated soils. Micro-aggregates are responsible for the long term sequestration of carbon in soil, therefore determine soils role in the carbon cycle. It is thus vital that techniques to measure aggregate stability are accurate, consistent and reliable, in order to appropriately manage and monitor soil quality, and to develop our understanding and estimates of soil as a carbon store to appropriately incorporate in carbon cycle models. Practices used to assess the stability of aggregates vary in sample preparation, operational technique and unit of results. They use proxies and lack quantification. Conflicting results are therefore drawn between projects that do not provide methodological or resultant comparability. Typical modern stability tests suspend aggregates in water and monitor fragmentation upon exposure to an un-quantified amount of ultrasonic energy, utilising a laser granulometer to measure the change in mean weight diameter. In this project a novel approach has been developed based on that of Zhu et al., (2009), to accurately quantify the stability of aggregates by specifically measuring their bond energies. The bond energies are measured operating a combination of calorimetry and a high powered ultrasonic probe, with computable output function. Temperature change during sonication is monitored by an array of probes which enables calculation of the energy spent heating the system (Ph). Our novel technique suspends aggregates in heavy liquid lithium heteropolytungstate, as opposed to water, to avoid exposing aggregates to an immeasurable disruptive energy source, due to cavitation, collisions and clay swelling. Mean weight diameter is measured by a laser granulometer to monitor aggregate breakdown after successive periods of calculated ultrasonic energy input (Pi), until complete dispersion is achieved and bond energy (Pb; input energy used in aggregate breakdown) can be calculated by the following equation: ΣPi - Ph = Pb The novel technique was tested by comparing the bond energies measured from a series of soil aggregates sampled from different land management histories, to the samples corresponding stability measurement obtained from standard modern stability tests. The effectiveness of the heavy liquid as a suspension (as opposed to water) was evaluated by comparing the bond energies of samples measured in both suspensions. Our results determine i) how disruptive water is in aggregate stability tests, ii) how accurate and representative standard aggregate stability tests are, and iii) how bond strength varies depending on land use. Keywords: Aggregate; Bond; Fragmentation; Soil; Sonication; Stability References: Zhu, Z. L., Minasny, B. & Field D. J. 2009. Measurement of aggregate bond energy using ultrasonic dispersion. European Journal of Soil Science, 60, 695-705

  11. Visible and infrared spectroscopy to evaluate soil quality in degraded sites: an applicative study in southern Italy

    NASA Astrophysics Data System (ADS)

    Ancona, Valeria; Matarrese, Raffaella; Salvatori, Rosamaria; Salzano, Roberto; Regano, Simona; Calabrese, Angelantonio; Campanale, Claudia; Felice Uricchio, Vito

    2014-05-01

    Land degradation processes like organic matter impoverishment and contamination are growing increasingly all over the world due to a non-rational and often sustainable spread of human activities on the territory. Consequently the need to characterize and monitor degraded sites is becoming very important, with the aim to hinder such main threats, which could compromise drastically, soil quality. Visible and infrared spectroscopy is a well-known technique/tool to study soil properties. Vis-NIR spectral reflectance, in fact, can be used to characterize spatial and temporal variation in soil constituents (Brown et al., 2006; Viscarra Rossel et al., 2006), and potentially its surface structure (Chappell et al., 2006, 2007). It is a rapid, non-destructive, reproducible and cost-effective analytical method to analyse soil properties and therefore, it can be a useful method to study land degradation phenomena. In this work, we present the results of proximal sensing investigations of three degraded sites (one affected by organic and inorganic contamination and two affected by soil organic matter decline) situated southern Italy close to Taranto city (in Apulia Region). A portable spectroradiometer (ASD-FieldSpec) was used to measure the reflectance properties in the spectral range between 350-2500 nm of the soil, in the selected sites, before and after a recovery treatment by using compost (organic fertilizer). For each measurement point the soil was sampled in order to perform chemical analyses to evaluate soil quality status. Three in-situ campaigns have been carried out (September 2012, June 2013, and September 2013), collecting about 20 soil samples for each site and for each campaign. Chemical and spectral analyses have been focused on investigating soil organic carbon, carbonate content, texture and, in the case of polluted site, heavy metals and organic toxic compounds. Statistical analyses have been carried out to test a prediction model of different soil quality indicators based on the spectral signatures behaviour of each sample ranging.

  12. 40 CFR 265.278 - Unsaturated zone (zone of aeration) monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... soils nearby; this background monitoring must be conducted before or in conjunction with the monitoring... a minimum: (1) Soil monitoring using soil cores, and (2) Soil-pore water monitoring using devices... demonstrate in his unsaturated zone monitoring plan that: (1) The depth at which soil and soil-pore water...

  13. 40 CFR 265.278 - Unsaturated zone (zone of aeration) monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... soils nearby; this background monitoring must be conducted before or in conjunction with the monitoring... a minimum: (1) Soil monitoring using soil cores, and (2) Soil-pore water monitoring using devices... demonstrate in his unsaturated zone monitoring plan that: (1) The depth at which soil and soil-pore water...

  14. 40 CFR 265.278 - Unsaturated zone (zone of aeration) monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... soils nearby; this background monitoring must be conducted before or in conjunction with the monitoring... a minimum: (1) Soil monitoring using soil cores, and (2) Soil-pore water monitoring using devices... demonstrate in his unsaturated zone monitoring plan that: (1) The depth at which soil and soil-pore water...

  15. 40 CFR 265.278 - Unsaturated zone (zone of aeration) monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... soils nearby; this background monitoring must be conducted before or in conjunction with the monitoring... a minimum: (1) Soil monitoring using soil cores, and (2) Soil-pore water monitoring using devices... demonstrate in his unsaturated zone monitoring plan that: (1) The depth at which soil and soil-pore water...

  16. 40 CFR 265.278 - Unsaturated zone (zone of aeration) monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... soils nearby; this background monitoring must be conducted before or in conjunction with the monitoring... a minimum: (1) Soil monitoring using soil cores, and (2) Soil-pore water monitoring using devices... demonstrate in his unsaturated zone monitoring plan that: (1) The depth at which soil and soil-pore water...

  17. Parametric fate and transport profiling for selective groundwater monitoring at closed landfills: a case study.

    PubMed

    Sizirici, Banu; Tansel, Berrin

    2015-04-01

    Monitoring contaminant concentrations in groundwater near closed municipal solid waste landfills requires long term monitoring program which can require significant investment for monitoring efforts. The groundwater monitoring data from a closed landfill in Florida was analyzed to reduce the monitoring efforts. The available groundwater monitoring data (collected over 20 years) were analyzed (i.e., type, concentration and detection level) to identify the trends in concentrations of contaminants and spatial mobility characteristics of groundwater (i.e., groundwater direction, retardation characteristics of contaminants, groundwater well depth, subsoil characteristics), to identify critical monitoring locations. Among the 7 groundwater monitoring well clusters (totaling 22 wells) in landfill, the data from two monitoring well clusters (totaling 7 wells) located along direction of groundwater flow showed similarities (the highest concentrations and same contaminants). These wells were used to assess the transport characteristics of the contaminants. Some parameters (e.g., iron, sodium, ammonia as N, chlorobenzene, 1,4-dichlorobenzene) showed decreasing trends in the groundwater due to soil absorption and retardation. Metals were retarded by ion exchange and their concentration increased by depth indicating soil reached breakthrough over time. Soil depth did not have a significant effect on the concentrations of volatile organic contaminants. Based on the analyses, selective groundwater monitoring modifications were developed for effective monitoring to acquire data from the most critical locations which may be impacted by leachate mobility. The adjustments in the sampling strategy reduced the amount of data collected by as much as 97.7% (i.e., total number of parameters monitored). Effective groundwater sampling strategies can save time, effort and monitoring costs while improving the quality of sample handling and data analyses for better utilization of post closure monitoring funds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Establishing a Multi-spatial Wireless Sensor Network to Monitor Nitrate Concentrations in Soil Moisture

    NASA Astrophysics Data System (ADS)

    Haux, E.; Busek, N.; Park, Y.; Estrin, D.; Harmon, T. C.

    2004-12-01

    The use of reclaimed wastewater for irrigation in agriculture can be a significant source of nutrients, in particular nitrogen species, but its use raises concern for groundwater, riparian, and water quality. A 'smart' technology would have the ability to measure wastewater nutrients as they enter the irrigation system, monitor their transport in situ and optimally control inputs with little human intervention, all in real-time. Soil heterogeneity and economic issues require, however, a balance between cost and the spatial and temporal scales of the monitoring effort. Therefore, a wireless and embedded sensor network, deployed in the soil vertically across the horizon, is capable of collecting, processing, and transmitting sensor data. The network consists of several networked nodes or 'pylons', each outfitted with an array of sensors measuring humidity, temperature, precipitation, soil moisture, and aqueous nitrate concentrations. Individual sensor arrays are controlled by a MICA2 mote (Crossbow Technology Inc., San Jose, CA) programmed with TinyOS (University of California, Berkeley, CA) and a Stargate (Crossbow Technology Inc., San Jose, CA) base-station capable of GPRS for data transmission. Results are reported for the construction and testing of a prototypical pylon at the benchtop and in the field.

  19. Current status, uncertainty and future needs in soil organic carbon monitoring.

    PubMed

    Jandl, Robert; Rodeghiero, Mirco; Martinez, Cristina; Cotrufo, M Francesca; Bampa, Francesca; van Wesemael, Bas; Harrison, Robert B; Guerrini, Iraê Amaral; Richter, Daniel Deb; Rustad, Lindsey; Lorenz, Klaus; Chabbi, Abad; Miglietta, Franco

    2014-01-15

    Increasing human demands on soil-derived ecosystem services requires reliable data on global soil resources for sustainable development. The soil organic carbon (SOC) pool is a key indicator of soil quality as it affects essential biological, chemical and physical soil functions such as nutrient cycling, pesticide and water retention, and soil structure maintenance. However, information on the SOC pool, and its temporal and spatial dynamics is unbalanced. Even in well-studied regions with a pronounced interest in environmental issues information on soil carbon (C) is inconsistent. Several activities for the compilation of global soil C data are under way. However, different approaches for soil sampling and chemical analyses make even regional comparisons highly uncertain. Often, the procedures used so far have not allowed the reliable estimation of the total SOC pool, partly because the available knowledge is focused on not clearly defined upper soil horizons and the contribution of subsoil to SOC stocks has been less considered. Even more difficult is quantifying SOC pool changes over time. SOC consists of variable amounts of labile and recalcitrant molecules of plant, and microbial and animal origin that are often operationally defined. A comprehensively active soil expert community needs to agree on protocols of soil surveying and lab procedures towards reliable SOC pool estimates. Already established long-term ecological research sites, where SOC changes are quantified and the underlying mechanisms are investigated, are potentially the backbones for regional, national, and international SOC monitoring programs. © 2013.

  20. Soil nitrogen balance under wastewater management: Field measurements and simulation results

    USGS Publications Warehouse

    Sophocleous, M.; Townsend, M.A.; Vocasek, F.; Ma, Liwang; KC, A.

    2009-01-01

    The use of treated wastewater for irrigation of crops could result in high nitrate-nitrogen (NO3-N) concentrations in the vadose zone and ground water. The goal of this 2-yr field-monitoring study in the deep silty clay loam soils south of Dodge City, Kansas, was to assess how and under what circumstances N from the secondary-treated, wastewater-irrigated corn reached the deep (20-45 m) water table of the underlying High Plains aquifer and what could be done to minimize this problem. We collected 15.2-m-deep soil cores for characterization of physical and chemical properties; installed neutron probe access tubes to measure soil-water content and suction lysimeters to sample soil water periodically; sampled monitoring, irrigation, and domestic wells in the area; and obtained climatic, crop, irrigation, and N application rate records for two wastewater-irrigated study sites. These data and additional information were used to run the Root Zone Water Quality Model to identify key parameters and processes that influence N losses in the study area. We demonstrated that NO3-N transport processes result in significant accumulations of N in the vadose zone and that NO3-N in the underlying ground water is increasing with time. Root Zone Water Quality Model simulations for two wastewater-irrigated study sites indicated that reducing levels of corn N fertilization by more than half to 170 kg ha-1 substantially increases N-use efficiency and achieves near-maximum crop yield. Combining such measures with a crop rotation that includes alfalfa should further reduce the accumulation and downward movement of NO3-N in the soil profile. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  1. Can homogeneous harvest zones magnify the terroir effect of every vintage? The three year project VignaCRU in Chianti D.O.C.G. (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Priori, Simone; Bianconi, Nadia; Valboa, Giuseppe; Mocali, Stefano; Pellegrini, Sergio; Leprini, Marco; Perria, Rita; Storchi, Paolo; Ciambotti, Aldo; Dell'Oro, Valentina; Costantini, Edoardo A. C.

    2015-04-01

    Grape composition, which affects the wine sensory qualities, depends on vine features (rootstock, scion, vine health) and vineyard management as much as environmental factors. Mapping soil at the vineyard scale, in particular, helps in optimizing the terroir expression of the wine. The terroir effect however varies year by year, depending on the interaction of several factors, such as climate and soil. Aim of this research work was to set up a methodology to delineate homogeneous harvest zones (HZ) in the vineyard and to evaluate the vintage effect in them. Four terroir macro-units suitable for premium Sangiovese wine, which is the main cultivar of Chianti D.O.C.G., were selected within a wide farm of Chianti Classico district (Siena, Central Italy). The selected macro-units are representative of the most common and suitable viticultural environments of the Chianti Classico D.O.C.G. and include: 1) hills of high altitude (450-500 m a.s.l.) on feldspathic sandstones, with shallow sandy soils; 2) hills of high altitude (400-500 m a.s.l.) on calcareous flysches, with stony, clayey and calcareous soils; 3) hills of moderate altitude (250-350 m a.s.l.) on Pliocene sandy marine deposits; 4) hills and fluvial terraces of moderate altitude (200-300 m a.s.l., 50-100 m above the present river valley) on ancient fluvial deposits. Each terroir macro-unit was surveyed by soil proximal sensing, to define two homogeneous zones (HZs) in terms of soil physics and hydrology. The proximal sensors used to map the HZs were: i) γ-ray spectrometer, to map the variability of soil surface in terms of parent material, texture and stoniness; ii) electromagnetic induction sensor (EMI) to determine the spatial variability of texture and soil moisture in the sub-surface horizons. Thus, the soil moisture of each HZ was monitored during spring shoot growth (beginning of April), berries veraison (end of July-beginning of August) and final ripening phase before harvest (September). Three representative plots of 10 grapevines each were selected within each HZs to monitor: i) grapevine root development; ii) vine physiology and water stress; iii) grape yield and quality. Moreover, the grapes of each HZs were harvested and vinified separately. After three vintages ('12, '13, and '14) the main results are: i) terroir macro-units differentiated the grape and wine peculiarities every vintage; ii) The delineation of HZs within each macro-units, intensified the effect of terroir on wine quality only in the warmest and driest summer '12, whereas the effects under more humid summers, like in '13 and '14, were smaller; iii) the sandy soils on feldspathic sandstones and marine sands increased the quality of the wines only in the warm-dry vintage ('12), whereas the wine quality decreased in humid summers ('13-'14), because of lacking of suitable water stress; iv) the grapevines in the terroir characterized by stony and clayey soils, showed light water stress also in wetter summers ('13-'14) and the wines produced in this terroir showed the highest quality and the greatest stability in typicality during the years. Concluding, the results of our work seem to indicate that the differentiation of HZs within a suitable macro-terroir can be fruitful only in specific vintages, when the soil hydrology plays a major role on the wine quality and typicality.

  2. The use of fortified soil-clay as on-site system for domestic wastewater purification.

    PubMed

    Oladoja, N A; Ademoroti, C M A

    2006-02-01

    The quest for simple, low-cost and high-performance decentralized wastewater treatment system for domestic application in developing nations necessitated this study. Clay samples collected from different deposits in Nigeria were characterized by studying the mineralogical and geochemical composition using X-ray diffraction (XRD) and atomic absorption spectroscopy (AAS), respectively. Three major clay minerals of kaolinite, illite and smectite were identified. The geochemical studies showed the abundance of SiO2, Al2O3 and H2O+ in each of the clay samples. Performance efficiency studies were conducted to determine the best combination ratio of pebbles/soil-clay. Soil-clay fortified by pebbles in combination ratios of 1:3 (i.e. pebbles:soil-clay = 1:3 (w/w) showed the optimum water purification, while the combination 3:1 gave the least. The flow rate studies showed that the wastewater had a longer residence time in non-fortified soil-clay than in fortified soil-clay. Two modes of treatment methods were employed-single and double column treatment methods (SCT and DCT). The two methods gave effluents of good quality characteristics, but those from the DCT were of better quality. The quality of effluents also varies from one clay type to another. The quality of effluents from media containing smectite clay mineral was better than those from other columns. Repeated usage of the fortified clay column showed a decrease of pH, TS and DO, and an increase of COD when monitored over a period of 10 days.

  3. Functional and environmental assessment of the urboecosystems designed in the biologically reclamated landfill with industrial wastes (in Ryazan city)

    NASA Astrophysics Data System (ADS)

    Karyakin, Alexey; Vasenev, Ivan; Karyakina, Svetlana

    2015-04-01

    Regional environmental bodies' ability to understand, model and predict their soil cover environmental functions are especially important in case of landfill reclamation. The special attention has to be done to landfills with industrial wastes created earlier in frame of big city - comparatively closed to their residential areas. Dominated in Ryazan region sandy loam gray forest soils with not so high soil organic matter content and soil exchange capacity determine additional problems with landfill biological reclamation and continuous sustainable vegetation cover development. The modern environmental monitoring system has been developed in the big landfill with tanning industrial wastes from the biggest in Europe tannery to develop recommendation on the environmentally friendly reclamation technologies adapted to concrete landscape conditions and functional features of 2 m fresh soil-ground coating the landfill surface. More detailed monitoring system has to be developed to assess the regulatory environmental functions of the regenerated soil cover to minimize the reclamated landfill' negative impacts on the urban ecosystem air, surface and ground water quality. Obtained result will be useful for similar landfills with tanning industrial wastes environmental impact assessment and smart design.

  4. The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, N. J.

    Pacific Northwest National Laboratory researchers are working on the Columbia River Protection Supplemental Technologies Project. This project is a U. S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies, and technologies for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Technologies Project staff.

  5. Monitoring, analysis and classification of vegetation and soil data collected by a small and lightweight hyperspectral imaging system

    NASA Astrophysics Data System (ADS)

    Mönnig, Carsten

    2014-05-01

    The increasing precision of modern farming systems requires a near-real-time monitoring of agricultural crops in order to estimate soil condition, plant health and potential crop yield. For large sized agricultural plots, satellite imagery or aerial surveys can be used at considerable costs and possible time delays of days or even weeks. However, for small to medium sized plots, these monitoring approaches are cost-prohibitive and difficult to assess. Therefore, we propose within the INTERREG IV A-Project SMART INSPECTORS (Smart Aerial Test Rigs with Infrared Spectrometers and Radar), a cost effective, comparably simple approach to support farmers with a small and lightweight hyperspectral imaging system to collect remotely sensed data in spectral bands in between 400 to 1700nm. SMART INSPECTORS includes the whole remote sensing processing chain of small scale remote sensing from sensor construction, data processing and ground truthing for analysis of the results. The sensors are mounted on a remotely controlled (RC) Octocopter, a fixed wing RC airplane as well as on a two-seated Autogyro for larger plots. The high resolution images up to 5cm on the ground include spectra of visible light, near and thermal infrared as well as hyperspectral imagery. The data will be analyzed using remote sensing software and a Geographic Information System (GIS). The soil condition analysis includes soil humidity, temperature and roughness. Furthermore, a radar sensor is envisaged for the detection of geomorphologic, drainage and soil-plant roughness investigation. Plant health control includes drought stress, vegetation health, pest control, growth condition and canopy temperature. Different vegetation and soil indices will help to determine and understand soil conditions and plant traits. Additional investigation might include crop yield estimation of certain crops like apples, strawberries, pasture land, etc. The quality of remotely sensed vegetation data will be tested with ground truthing tools like a spectrometer, visual inspection and ground control panel. The soil condition will also be monitored with a wireless sensor network installed on the examined plots of interest. Provided with this data, a farmer can respond immediately to potential threats with high local precision. In this presentation, preliminary results of hyperspectral images of distinctive vegetation cover and soil on different pasture test plots are shown. After an evaluation period, the whole processing chain will offer farmers a unique, near real- time, low cost solution for small to mid-sized agricultural plots in order to easily assess crop and soil quality and the estimation of harvest. SMART INSPECTORS remotely sensed data will form the basis for an input in a decision support system which aims to detect crop related issues in order to react quickly and efficiently, saving fertilizer, water or pesticides.

  6. PERFORMANCE VERIFICATION OF ADVANCED MONITORING SYSTEMS FOR AIR, WATER, AND SOIL

    EPA Science Inventory

    The Environmental Technology Verification (ETV) Program, beginning as an initiative of the U.S. Environmental Protection Agency (EPA) in 1995, verifies the performance of commercially available, innovative technologies that can be used to assess environmental quality. The ETV p...

  7. Biological and biochemical soil quality indicators for agricultural management

    NASA Astrophysics Data System (ADS)

    Bongiorno, Giulia

    2017-04-01

    Soil quality is defined as the capacity of a soil to perform multiple functions. Agricultural soils can, in principle, sustain a wide range of functions. However, negative pressure exerted by natural and anthropogenic soil threats such as soil erosion, soil organic matter losses and soil compaction have the potential to permanently damage soil quality. Soil chemical, physical and biological parameters can be used as indicators of soil quality. The specific objective of this study is to assess the suitability of novel soil parameters as soil quality indicators. We focus on biological/biochemical parameters, due to the unique role of soil biota in soil functions and to their high sensitivity to disturbances. The novel indicators are assessed in ten European long-term field experiments (LTEs) with different agricultural land use (arable and permanent crops), management regimes and pedo-climatic characteristics. The contrasts in agricultural management are represented by conventional/reduced tillage, organic/mineral fertilization and organic matter addition/no organic matter addition. We measured two different pools of labile organic carbon (dissolved organic carbon (DOC), and permanganate oxidizable carbon (POXC)), and determined DOC quality through its fractionation in hydrophobic and hydrophilic compounds. In addition, total nematode abundance has been assessed with qPCR. These parameters will be related to soil functions which have been measured with a minimum data set of indicators for soil quality (including TOC, macronutrients, and soil respiration). As a preliminary analysis, the Sensitivity Index (SI) for a given LTE was calculated for DOC and POXC according to Bolinder et al., 1999 as the ratio of the soil attribute under modified practices (e.g. reduced tillage) compared to the conventional practices (e.g. conventional tillage). The overall effect of the sustainable management on the indicators has been derived by calculating an average SI for those LTEs which included the sustainable management taken into account. A parametric t-test was used to determine the comprehensive significance of the average SI for a given indicator. Reduced tillage increased DOC and POXC in the 0-10 cm of soil (SI=1.19 and 1.18 respectively) compared to conventional tillage. Organic fertilization increased DOC and POXC in the 0-10 cm compared to mineral fertilization (SI=1.43 and 1.41) and compared to no fertilizer applications (SI=1.27 and 1.17). DOC was slightly more sensitive than POXC, however, the t-test resulted to be significant only for POXC. Preliminary tests revealed a significant correlation between POXC and DOC (Spearman ρ=0.53, p<0.001). POXC was more strongly correlated with TOC (ρ=0.8, p<0.001), soil respiration (ρ=0.5, p<0.001) and total nematode number (ρ=0.25, p<0.001), than DOC (ρ=0.37, p<0.001; ρ=0.28, p<0.001; ρ=0.04, p=0.5, respectively). These preliminary results could indicate the better suitability of POXC as soil quality indicator compared to DOC. Further analyses will be implemented to elucidate these relations (including DOC quality parameters and hot water extractable carbon). In the coming months, nematode community composition and abundance of specific groups will be assessed with molecular techniques (sequencing and qPCR). Together, the results will permit to assess the feasibility of the implementation of novel indicators to monitor the effects of agricultural management on soil functions.

  8. Building a strategy for soil protection at local and regional scale--the case of agricultural wastes landspreading.

    PubMed

    Doula, M K; Sarris, A; Hliaoutakis, A; Kydonakis, A; Papadopoulos, N S; Argyriou, L

    2016-03-01

    Agricultural wastes (AW) are produced in huge quantities worldwide and may cause detrimental effects on environmental quality, affecting soil, water, and air quality. Given the growing soil degradation worldwide, the need for more food of good quality and therefore the intensified agriculture, it is important to develop recycling plans even for those types of treated AW (e.g., composts) that are not considered hazardous. Two strategic approaches for safe and sustainable landspreading of organic wastes are proposed, depending on wastes properties and hazard potential, i.e., an approach appropriate for traditionally used wastes (manures and composts) and another approach for wastes that are potentially hazardous or hazardous and should only be reused under specific restrictions. Both approaches foresee concrete steps, require close cooperation between farmers and local/regional authorities, and are appropriate to ensure environmental sustainability at AW recycling or disposal areas. Desktop and web application tools are also presented that are anticipated to assist authorities in implementing their monitoring strategies.

  9. Evaluating ESA CCI soil moisture in East Africa.

    PubMed

    McNally, Amy; Shukla, Shraddhanand; Arsenault, Kristi R; Wang, Shugong; Peters-Lidard, Christa D; Verdin, James P

    2016-06-01

    To assess growing season conditions where ground based observations are limited or unavailable, food security and agricultural drought monitoring analysts rely on publicly available remotely sensed rainfall and vegetation greenness. There are also remotely sensed soil moisture observations from missions like the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) and NASA's Soil Moisture Active Passive (SMAP), however these time series are still too short to conduct studies that demonstrate the utility of these data for operational applications, or to provide historical context for extreme wet or dry events. To promote the use of remotely sensed soil moisture in agricultural drought and food security monitoring, we use East Africa as a case study to evaluate the quality of a 30+ year time series of merged active-passive microwave soil moisture from the ESA Climate Change Initiative (CCI-SM). Compared to the Normalized Difference Vegetation index (NDVI) and modeled soil moisture products, we found substantial spatial and temporal gaps in the early part of the CCI-SM record, with adequate data coverage beginning in 1992. From this point forward, growing season CCI-SM anomalies were well correlated (R>0.5) with modeled, seasonal soil moisture, and in some regions, NDVI. We use correlation analysis and qualitative comparisons at seasonal time scales to show that remotely sensed soil moisture can add information to a convergence of evidence framework that traditionally relies on rainfall and NDVI in moderately vegetated regions.

  10. Development and application of a soil organic matter-based soil quality index in mineralized terrane of the Western US

    USGS Publications Warehouse

    Blecker, S.W.; Stillings, Lisa L.; Amacher, M.C.; Ippolito, J.A.; DeCrappeo, N.M.

    2013-01-01

    Soil quality indices provide a means of distilling large amounts of data into a single metric that evaluates the soil’s ability to carry out key ecosystem functions. Primarily developed in agroecosytems, then forested ecosystems, an index using the relation between soil organic matter and other key soil properties in more semi-arid systems of the Western US impacted by different geologic mineralization was developed. Three different sites in two different mineralization types, acid sulfate and Cu/Mo porphyry in California and Nevada, were studied. Soil samples were collected from undisturbed soils in both mineralized and nearby unmineralized terrane as well as waste rock and tailings. Eight different microbial parameters (carbon substrate utilization, microbial biomass-C, mineralized-C, mineralized-N and enzyme activities of acid phosphatase, alkaline phosphatase, arylsulfatase, and fluorescein diacetate) along with a number of physicochemical parameters were measured. Multiple linear regression models between these parameters and both total organic carbon and total nitrogen were developed, using the ratio of predicted to measured values as the soil quality index. In most instances, pooling unmineralized and mineralized soil data within a given study site resulted in lower model correlations. Enzyme activity was a consistent explanatory variable in the models across the study sites. Though similar indicators were significant in models across different mineralization types, pooling data across sites inhibited model differentiation of undisturbed and disturbed sites. This procedure could be used to monitor recovery of disturbed systems in mineralized terrane and help link scientific and management disciplines.

  11. Identification of sensitive indicators to assess the interrelationship between soil quality, management practices and human health

    NASA Astrophysics Data System (ADS)

    Zornoza, R.; Acosta, J. A.; Bastida, F.; Domínguez, S. G.; Toledo, D. M.; Faz, A.

    2014-09-01

    Soil quality (SQ) assessment has been a challenging issue since soils present high variability in properties and functions. This paper aims to increase understanding of SQ through review of SQ assessments in different scenarios providing evidence about the interrelationship between SQ, land use and human health. There is a general consensus that there is a need to develop methods to assess and monitor SQ for assuring sustainable land use with no prejudicial effects on human health. This review points out the importance of adopting indicators of different nature (physical, chemical and biological) to achieve a holistic image of SQ. Most authors use single indicators to assess SQ and its relationship with land uses, being the most used indicators soil organic carbon and pH. The use of nitrogen and nutrients content has resulted sensitive for agricultural and forest systems, together with physical properties such as texture, bulk density, available water and aggregate stability. These physical indicators have also been widely used to assess SQ after land use changes. The use of biological indicators is less generalized, being microbial biomass and enzyme activities the most selected indicators. Although most authors assess SQ using independent indicators, it is preferable to combine some of them into models to create a soil quality index (SQI), since it provides integrated information about soil processes and functioning. The majority of revised articles used the same methodology to establish a SQI, based on scoring and weighting of different soil indicators, selected by multivariate analyses. The use of multiple linear regressions has been successfully used under forest land use. Urban soil quality has been poorly assessed, with lack of adoption of SQIs. In addition, SQ assessments were human health indicators or exposure pathways are incorporated are practically inexistent. Thus, new efforts should be carried out to establish new methodologies not only to assess soil quality in terms of sustainability, productivity and ecosystems quality, but also human health. Additionally, new challenges arise with the use and integration into SQIs of stable isotopic, genomic, proteomic and spectroscopy data.

  12. Identification of sensitive indicators to assess the interrelationship between soil quality, management practices and human health

    NASA Astrophysics Data System (ADS)

    Zornoza, R.; Acosta, J. A.; Bastida, F.; Domínguez, S. G.; Toledo, D. M.; Faz, A.

    2015-02-01

    Soil quality (SQ) assessment has long been a challenging issue, since soils present high variability in properties and functions. This paper aims to increase the understanding of SQ through the review of SQ assessments in different scenarios providing evidence about the interrelationship between SQ, land use and human health. There is a general consensus that there is a need to develop methods to assess and monitor SQ for assuring sustainable land use with no prejudicial effects on human health. This review points out the importance of adopting indicators of different nature (physical, chemical and biological) to achieve a holistic image of SQ. Most authors use single indicators to assess SQ and its relationship with land uses - soil organic carbon and pH being the most used indicators. The use of nitrogen and nutrient content has resulted sensitive for agricultural and forest systems, together with physical properties such as texture, bulk density, available water and aggregate stability. These physical indicators have also been widely used to assess SQ after land use changes. The use of biological indicators is less generalized, with microbial biomass and enzyme activities being the most selected indicators. Although most authors assess SQ using independent indicators, it is preferable to combine some of them into models to create a soil quality index (SQI), since it provides integrated information about soil processes and functioning. The majority of revised articles used the same methodology to establish an SQI, based on scoring and weighting of different soil indicators, selected by means of multivariate analyses. The use of multiple linear regressions has been successfully used for forest land use. Urban soil quality has been poorly assessed, with a lack of adoption of SQIs. In addition, SQ assessments where human health indicators or exposure pathways are incorporated are practically inexistent. Thus, further efforts should be carried out to establish new methodologies to assess soil quality not only in terms of sustainability, productivity and ecosystem quality but also human health. Additionally, new challenges arise with the use and integration of stable isotopic, genomic, proteomic and spectroscopic data into SQIs.

  13. Effects of land disposal of municipal sewage sludge on fate of nitrates in soil, streambed sediment, and water quality

    USGS Publications Warehouse

    Tindall, James A.; Lull, Kenneth J.; Gaggiani, Neville G.

    1994-01-01

    This study was undertaken to determine the effects of sewage-sludge disposal at the Lowry sewage-sludge-disposal area, near Denver, Colorado, on ground- and surface-water quality, to determine the fate of nitrates from sludge leachate, and to determine the source areas of leachate and the potential for additional leaching from the disposal area.Sewage-sludge disposal began in 1969. Two methods were used to apply the sludge: burial and plowing. Also, the sludge was applied both in liquid and cake forms. Data in this report represent the chemical composition of soil and streambed sediment from seven soil- and four streambed-sampling sites in 1986, chemical and bacterial composition of ground water from 28 wells from 1981 to 1987, and surface-water runoff from seven water-sampling sites from 1984 to 1987. Ground water samples were obtained from alluvial and bedrock aquifers. Samples of soil, streambed sediment, ground water and surface water were obtained for onsite measurement and chemical analysis. Measurements included determination of nitrogen compounds and major cations and anions, fecal-coliform and -streptococcus bacteria, specific conductance, and pH.Thirteen wells in the alluvial aquifer in Region 3 of the study area contain water that was probably affected by sewage-sludge leachate. The plots of concentration of nitrate with time show seasonal trends and trends caused by precipitation. In addition to yearly fluctuation, there were noticeable increases in ground-water concentrations of nitrate that coincided with increased precipitation. After 3 years of annual ground-water-quality monitoring and 4 years of a quarterly sampling program, it has been determined that leachate from the sewage-sludge-disposal area caused increased nitrite plus nitrate (as nitrogen) concentration in the alluvial ground water at the site. Soil analyses from the disposal area indicate that organic nitrogen was the dominant form of nitrogen in the soil.As a result of investigations at the research site, it has been determined that a potentially large source of contamination exists in the soils of the study area owing to increased concentrations of nitrogen, sodium, calcium, magnesium, sulfate, bicarbonate, and chloride because of sewage disposal. Continued monitoring of surface and ground water for nitrogen and the other ions previously mentioned is required to assess long-term effects of municipal sludge disposal on water quality.

  14. Effects of land disposal of municipal sewage sludge on fate of nitrates in soil, streambed sediment, and water quality

    NASA Astrophysics Data System (ADS)

    Tindall, James A.; Lull, Kenneth J.; Gaggiani, Neville G.

    1994-12-01

    This study was undertaken to determine the effects of sewage-sludge disposal at the Lowry sewage-sludge-disposal area, near Denver, Colorado, on ground- and surface-water quality, to determine the fate of nitrates from sludge leachate, and to determine the source areas of leachate and the potential for additional leaching from the disposal area. Sewage-sludge disposal began in 1969. Two methods were used to apply the sludge: burial and plowing. Also, the sludge was applied both in liquid and cake forms. Data in this report represent the chemical composition of soil and streambed sediment from seven soil- and four streambed-sampling sites in 1986, chemical and bacterial composition of ground water from 28 wells from 1981 to 1987, and surface-water runoff from seven water-sampling sites from 1984 to 1987. Ground water samples were obtained from alluvial and bedrock aquifers. Samples of soil, streambed sediment, ground water and surface water were obtained for onsite measurement and chemical analysis. Measurements included determination of nitrogen compounds and major cations and anions, fecal-coliform and -streptococcus bacteria, specific conductance, and pH. Thirteen wells in the alluvial aquifer in Region 3 of the study area contain water that was probably affected by sewage-sludge leachate. The plots of concentration of nitrate with time show seasonal trends and trends caused by precipitation. In addition to yearly fluctuation, there were noticeable increases in ground-water concentrations of nitrate that coincided with increased precipitation. After 3 years of annual ground-water-quality monitoring and 4 years of a quarterly sampling program, it has been determined that leachate from the sewage-sludge-disposal area caused increased nitrite plus nitrate (as nitrogen) concentration in the alluvial ground water at the site. Soil analyses from the disposal area indicate that organic nitrogen was the dominant form of nitrogen in the soil. As a result of investigations at the research site, it has been determined that a potentially large source of contamination exists in the soils of the study area owing to increased concentrations of nitrogen, sodium, calcium, magnesium, sulfate, bicarbonate, and chloride because of sewage disposal. Continued monitoring of surface and ground water for nitrogen and the other ions previously mentioned is required to assess long-term effects of municipal sludge disposal on water quality.

  15. Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China.

    PubMed

    Shen, Feng; Liao, Renmei; Ali, Amjad; Mahar, Amanullah; Guo, Di; Li, Ronghua; Xining, Sun; Awasthi, Mukesh Kumar; Wang, Quan; Zhang, Zengqiang

    2017-05-01

    A large scale survey and a small scale continuous monitoring was conducted to evaluate the impact of Pb/Zn smelting on soil heavy metals (HMs) accumulation and potential ecological risk in Feng County, Shaanxi province of China. Soil parameters including pH, texture, CEC, spatial and temporal distribution of HMs (Cd, Cu, Ni, Pb and Zn), and BCR fractionation were monitored accordingly. The results showed the topsoil in the proximity of smelter, especially the smelter area and county seat, were highly polluted by HMs in contrast to the river basins. Fractionation of Cd and Zn in soil samples revealed higher proportion of mobile fractions than other HMs. The soil Cd and Zn contents decreased vertically, but still exceeded the second level limits of Environmental Quality Standard for Soils of China (EQSS) within 80cm. The dominated soil pollutant (Cd) had higher ecological risk than Cu, Ni, Zn and Pb. The potential ecological risk (PER) factor of Cd were 65.7% and 100% in surrounding county and smelter area, respectively. The long-term smelter dust emission mainly contributed to the HMs pollution and posed serious environment risk to living beings. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Study on an agricultural environment monitoring server system using Wireless Sensor Networks.

    PubMed

    Hwang, Jeonghwan; Shin, Changsun; Yoe, Hyun

    2010-01-01

    This paper proposes an agricultural environment monitoring server system for monitoring information concerning an outdoors agricultural production environment utilizing Wireless Sensor Network (WSN) technology. The proposed agricultural environment monitoring server system collects environmental and soil information on the outdoors through WSN-based environmental and soil sensors, collects image information through CCTVs, and collects location information using GPS modules. This collected information is converted into a database through the agricultural environment monitoring server consisting of a sensor manager, which manages information collected from the WSN sensors, an image information manager, which manages image information collected from CCTVs, and a GPS manager, which processes location information of the agricultural environment monitoring server system, and provides it to producers. In addition, a solar cell-based power supply is implemented for the server system so that it could be used in agricultural environments with insufficient power infrastructure. This agricultural environment monitoring server system could even monitor the environmental information on the outdoors remotely, and it could be expected that the use of such a system could contribute to increasing crop yields and improving quality in the agricultural field by supporting the decision making of crop producers through analysis of the collected information.

  17. Long term (2006-2016) seasonal and inter-annual variability of soil electrical resistivity in a Laotian catchment of the OZCAR network. Impact of land use change, soil type and rainfall

    NASA Astrophysics Data System (ADS)

    Robain, Henri; Ribolzi, Olivier; De Rouw, Anneke; Silvera, Norbert; Souniaphong, Phabvilay; Soulileuth, Bousamai; Latchasak, Keooudone; Sengtaheuanghoung, Oloth; Valentin, Christian; Gaillardet, Jerome

    2017-04-01

    The MSEC(1) observatory of the critical zone in south-east Asia, which is part of the OZCAR(2) Network, has been monitored since 1999 (Laos, Thailand, Vietnam) to study the long term impact of land use changes in tropical mountainous regions, in terms of soil properties (porosity, depth, SOC, nutrients…), biodiversity (weeds, soil macro fauna), plant roots (architecture, functions,…), and transfers within the critical zone at various temporal and space scales: partition between infiltration and runoff, water quality (physical, chemical and bacteriological) and erosion processes (splash, inter-rill and rill, tillage, mass-movement). In the Houay Pano catchment located in Northern Laos, a long-term monitoring system was implemented in 2006 combining Electrical Resistivity Tomography (ERT), with soil and hydrological equipments to better analyse the interactions between bank and hillslopes groundwater, and streamwater, in a context of steep slopes (>50%) and rapid land use change (conversion of annual crops to teak plantation). This continuous ERT monitoring has been carried out along a representative 100 m long transect in the middle of the 65 ha catchment perpendicular to the stream. The data were collected every week during rainy season and every second week during dry season. It has been associated with hydrological monitoring (piezometers, limnimeters, gauging weirs). Such high resolution geophysical monitoring data set (approx. 900 apparent resistivity measurements for each acquisition) provides an invaluable non-invasive proxy of soil water content variations in the different layers of the vadose zone. It demonstrates: i) the influence of plant cover on water infiltration; ii) the pathways for vertical and horizontal water fluxes within the soil cover; iii) the control of soil organisation along the hillslope over the hydrological behaviour of the unsaturated part of the critical zone. (1) «Multi-Scale Environmental Changes» : http://msec.obs-mip.fr/ (2) «Observatoires de la Zone Critique Applications et Recherches» Including the former RBV (Réseau de Bassins Versants) : http://portailrbv.sedoo.fr/

  18. Assessment of inceptisols soil quality following long-term cropping in a calcareous environment.

    PubMed

    Rezapour, Salar; Samadi, A

    2012-03-01

    The combination of morphological, clay mineralogy, physicochemical, and fertilitical properties of inceptisols were compared for monitoring soil quality response following long-term agricultural activities. For this target, fifty-nine paired surface soils belonging to five subgroups of inceptisols from the major sugar beet growing area and the adjoining virgin lands were described, sampled, and analyzed. The soils were alkaline and calcareous as characterized by high pH, ranging from 7.2 to 8, and calcium carbonate equivalent, ranging from 60 to 300 g kg(-1). Following long-term sugar beet cultivation, morphological properties modifications were reflected as weakening of structure, hardening of consistency, and brightening of soil color. Although, the quantity of clay minerals did not significantly change through long-term cropping, some modifications in the XRD pattern of illite and smectite were observed in the cultivated soils compared to the adjoining virgin lands mainly as a result of potassium depletion. Without significant variation, sand content decreased by 4-55% and silt and clay increased by 3-22% and 2-15%, respectively, in the cultivated soils than to that of the virgin lands. Both negative and positive aspects of soil quality were reflected regarding soil chemical and fertilitical properties and the role of negative effects far exceeded the role of positive effects. Typic calcixerepts was known to be more degraded through a significant decrease (P ≤ 0.001) in mean value of soil organic carbon (a drop of 24%), total N (a drop of 23%), available K (a drop of 42%), exchangeable K (a drop of 45%), potassium adsorption ratio and potassium saturation ratio (a drop of 44% and 42%, respectively) and a significant increase (P ≤ 0.001) in EC (a rise of 53%). Soil quality index, calculated based on nine soil properties [coarse fragments, pH, SOC, total N, ESP, exchangeable cations (Ca, Mg, and K), and available phosphorus], indicated that 60% of the all soil types studied had negative changes, 20% had positive changes, and 20% produced no changes in soil heath.

  19. An integrated Modelling framework to monitor and predict trends of agricultural management (iMSoil)

    NASA Astrophysics Data System (ADS)

    Keller, Armin; Della Peruta, Raneiro; Schaepman, Michael; Gomez, Marta; Mann, Stefan; Schulin, Rainer

    2014-05-01

    Agricultural systems lay at the interface between natural ecosystems and the anthroposphere. Various drivers induce pressures on the agricultural systems, leading to changes in farming practice. The limitation of available land and the socio-economic drivers are likely to result in further intensification of agricultural land management, with implications on fertilization practices, soil and pest management, as well as crop and livestock production. In order to steer the development into desired directions, tools are required by which the effects of these pressures on agricultural management and resulting impacts on soil functioning can be detected as early as possible, future scenarios predicted and suitable management options and policies defined. In this context, the use of integrated models can play a major role in providing long-term predictions of soil quality and assessing the sustainability of agricultural soil management. Significant progress has been made in this field over the last decades. Some of these integrated modelling frameworks include biophysical parameters, but often the inherent characteristics and detailed processes of the soil system have been very simplified. The development of such tools has been hampered in the past by a lack of spatially explicit soil and land management information at regional scale. The iMSoil project, funded by the Swiss National Science Foundation in the national research programme NRP68 "soil as a resource" (www.nrp68.ch) aims at developing and implementing an integrated modeling framework (IMF) which can overcome the limitations mentioned above, by combining socio-economic, agricultural land management, and biophysical models, in order to predict the long-term impacts of different socio-economic scenarios on the soil quality. In our presentation we briefly outline the approach that is based on an interdisciplinary modular framework that builds on already existing monitoring tools and model components that are currently in development: (i) the socio-economic agent-based model SWISSland; (ii) a land management downscaling approach that provides crop rotation, fertilisers and pesticides application rates for each land management unit, and (iii) the agro-ecosystem model EPIC, which is currently being calibrated with long-term soil measurements and agricultural management data provided by the Swiss Soil Monitoring Network. Moreover, the IMF will make use of land cover information derived from remote sensing to continuously update predictions. The IMF will be tested on two case study regions to develop indicators of sustainable soil management that can be implemented into Swiss policies.

  20. Strengths and weaknesses of temporal stability analysis for monitoring and estimating grid-mean soil moisture in a high-intensity irrigated agricultural landscape

    NASA Astrophysics Data System (ADS)

    Ran, Youhua; Li, Xin; Jin, Rui; Kang, Jian; Cosh, Michael H.

    2017-01-01

    Monitoring and estimating grid-mean soil moisture is very important for assessing many hydrological, biological, and biogeochemical processes and for validating remotely sensed surface soil moisture products. Temporal stability analysis (TSA) is a valuable tool for identifying a small number of representative sampling points to estimate the grid-mean soil moisture content. This analysis was evaluated and improved using high-quality surface soil moisture data that were acquired by a wireless sensor network in a high-intensity irrigated agricultural landscape in an arid region of northwestern China. The performance of the TSA was limited in areas where the representative error was dominated by random events, such as irrigation events. This shortcoming can be effectively mitigated by using a stratified TSA (STSA) method, proposed in this paper. In addition, the following methods were proposed for rapidly and efficiently identifying representative sampling points when using TSA. (1) Instantaneous measurements can be used to identify representative sampling points to some extent; however, the error resulting from this method is significant when validating remotely sensed soil moisture products. Thus, additional representative sampling points should be considered to reduce this error. (2) The calibration period can be determined from the time span of the full range of the grid-mean soil moisture content during the monitoring period. (3) The representative error is sensitive to the number of calibration sampling points, especially when only a few representative sampling points are used. Multiple sampling points are recommended to reduce data loss and improve the likelihood of representativeness at two scales.

  1. Soil Physical Characteristics and Biological Indicators of Soil Quality Under Different Biodegradable Mulches

    NASA Astrophysics Data System (ADS)

    Schaeffer, S. M.; Flury, M.; Sintim, H.; Bandopadhyay, S.; Ghimire, S.; Bary, A.; DeBruyn, J.

    2015-12-01

    Application of conventional polyethylene (PE) mulch in crop production offers benefits of increased water use efficiency, weed control, management of certain plant diseases, and maintenance of a micro-climate conducive for plant growth. These factors improve crop yield and quality, but PE must be retrieved and safely disposed of after usage. Substituting PE with biodegradable plastic mulches (BDM) would alleviate disposal needs, and is potentially a more sustainable practice. However, knowledge of potential impacts of BDMs on agricultural soil ecosystems is needed to evaluate sustainability. We (a) monitored soil moisture and temperature dynamics, and (b) assessed soil quality upon usage of different mulches, with pie pumpkin (Cucurbita pepo) as the test crop. Experimental field trials are ongoing at two sites, one at Northwestern Washington Research and Extension Center, Mount Vernon, WA, and the other at East Tennessee Research and Education Center, Knoxville, TN. The treatments constitute four different commercial BDM products, one experimental BDM; no mulch and PE served as the controls. Soil quality parameters being examined include: organic matter content, aggregate stability, water infiltration rate, CO2 flux, pH, and extracellular enzyme activity. In addition, lysimeters were installed to examine the soil water and heat flow dynamics. We present baseline and the first field season results from this study. Mulch cover appeared to moderate soil temperatures, but biodegradable mulches also appeared to lose water more quickly than PE. All mulch types, with the exception of cellulose, reduced the diurnal fluctuations in soil temperature at 10cm depth from 1 to 4ºC. However, volumetric water content ranged from 0.10 to 0.22 m3 m-3 under the five biodegradable mulches compared to 0.22 to 0.28 m3 m-3 under conventional PE. Results from the study will be useful for management practices by providing knowledge on how different mulches impact soil physical and biological properties which are important indicators of sustainability.

  2. Monitoring coastal marine waters for spore-forming bacteria of faecal and soil origin to determine point from non-point source pollution.

    PubMed

    Fujioka, R S

    2001-01-01

    The US Environmental Protection Agency (USEPA) and the World Health Organization (WHO) have established recreational water quality standards limiting the concentrations of faecal indicator bacteria (faecal coliform, E. coli, enterococci) to ensure that these waters are safe for swimming. In the application of these hygienic water quality standards, it is assumed that there are no significant environmental sources of these faecal indicator bacteria which are unrelated to direct faecal contamination. However, we previously reported that these faecal indicator bacteria are able to grow in the soil environment of humid tropical island environments such as Hawaii and Guam and are transported at high concentrations into streams and storm drains by rain. Thus, streams and storm drains in Hawaii contain consistently high concentrations of faecal indicator bacteria which routinely exceed the EPA and WHO recreational water quality standards. Since, streams and storm drains eventually flow out to coastal marine waters, we hypothesize that all the coastal beaches which receive run-off from streams and storm drains will contain elevated concentrations of faecal indicator bacteria. To test this hypothesis, we monitored the coastal waters at four beaches known to receive water from stream or storm drains for salinity, turbidity, and used the two faecal indicator bacteria (E. coli, enterococci) to establish recreational water quality standards. To determine if these coastal waters are contaminated with non-point source pollution (streams) or with point source pollution (sewage effluent), these same water samples were also assayed for spore-forming bacteria of faecal origin (Cl. perfringens) and of soil origin (Bacillus species). Using this monitoring strategy it was possible to determine when coastal marine waters were contaminated with non-point source pollution and when coastal waters were contaminated with point source pollution. The results of this study are most likely applicable to all countries in the warm and humid region of the world.

  3. Enhancing wind erosion monitoring and assessment for US rangelands

    USDA-ARS?s Scientific Manuscript database

    Wind erosion is a major resource concern for rangeland managers because it can impact soil health, ecosystem structure and function, hydrologic processes, agricultural production and air quality. Despite its significance, little is known about which landscapes are eroding, by how much, and when. T...

  4. Integrating Multi-Sensor Remote Sensing and In-situ Measurements for Africa Drought Monitoring and Food Security Assessment

    NASA Astrophysics Data System (ADS)

    Hao, X.; Qu, J. J.; Motha, R. P.; Stefanski, R.; Malherbe, J.

    2014-12-01

    Drought is one of the most complicated natural hazards, and causes serious environmental, economic and social consequences. Agricultural production systems, which are highly susceptible to weather and climate extremes, are often the first and most vulnerable sector to be affected by drought events. In Africa, crop yield potential and grazing quality are already nearing their limit of temperature sensitivity, and, rapid population growth and frequent drought episodes pose serious complications for food security. It is critical to promote sustainable agriculture development in Africa under conditions of climate extremes. Soil moisture is one of the most important indicators for agriculture drought, and is a fundamentally critical parameter for decision support in crop management, including planting, water use efficiency and irrigation. While very significant technological advances have been introduced for remote sensing of surface soil moisture from space, in-situ measurements are still critical for calibration and validation of soil moisture estimation algorithms. For operational applications, synergistic collaboration is needed to integrate measurements from different sensors at different spatial and temporal scales. In this presentation, a collaborative effort is demonstrated for drought monitoring in Africa, supported and coordinated by WMO, including surface soil moisture and crop status monitoring. In-situ measurements of soil moisture, precipitation and temperature at selected sites are provided by local partners in Africa. Measurements from the Soil Moisture and Ocean Salinity (SMOS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) are integrated with in-situ observations to derive surface soil moisture at high spatial resolution. Crop status is estimated through temporal analysis of current and historical MODIS measurements. Integrated analysis of soil moisture data and crop status provides both in-depth understanding of drought conditions and potential impacts on crop yield. This information is extremely useful in local decision support for agricultural management.

  5. Integrating Multi-Sensor Remote Sensing and In-situ Measurements for Africa Drought Monitoring and Food Security Assessment

    NASA Astrophysics Data System (ADS)

    Hao, X.; Qu, J. J.; Motha, R. P.; Stefanski, R.; Malherbe, J.

    2015-12-01

    Drought is one of the most complicated natural hazards, and causes serious environmental, economic and social consequences. Agricultural production systems, which are highly susceptible to weather and climate extremes, are often the first and most vulnerable sector to be affected by drought events. In Africa, crop yield potential and grazing quality are already nearing their limit of temperature sensitivity, and, rapid population growth and frequent drought episodes pose serious complications for food security. It is critical to promote sustainable agriculture development in Africa under conditions of climate extremes. Soil moisture is one of the most important indicators for agriculture drought, and is a fundamentally critical parameter for decision support in crop management, including planting, water use efficiency and irrigation. While very significant technological advances have been introduced for remote sensing of surface soil moisture from space, in-situ measurements are still critical for calibration and validation of soil moisture estimation algorithms. For operational applications, synergistic collaboration is needed to integrate measurements from different sensors at different spatial and temporal scales. In this presentation, a collaborative effort is demonstrated for drought monitoring in Africa, supported and coordinated by WMO, including surface soil moisture and crop status monitoring. In-situ measurements of soil moisture, precipitation and temperature at selected sites are provided by local partners in Africa. Measurements from the Soil Moisture and Ocean Salinity (SMOS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) are integrated with in-situ observations to derive surface soil moisture at high spatial resolution. Crop status is estimated through temporal analysis of current and historical MODIS measurements. Integrated analysis of soil moisture data and crop status provides both in-depth understanding of drought conditions and potential impacts on crop yield. This information is extremely useful in local decision support for agricultural management.

  6. Soil-plant-microbial relations in hydrothermally altered soils of Northern California

    USGS Publications Warehouse

    Blecker, S.W.; Stillings, L.L.; DeCrappeo, N.M.; Ippolito, J.A.

    2014-01-01

    Soils developed on relict hydrothermally altered soils throughout the Western USA present unique opportunities to study the role of geology on above and belowground biotic activity and composition. Soil and vegetation samples were taken at three unaltered andesite and three hydrothermally altered (acid-sulfate) sites located in and around Lassen VolcanicNational Park in northeastern California. In addition, three different types of disturbed areas (clearcut, thinned, and pipeline) were sampled in acid-sulfate altered sites. Soils were sampled (0–15 cm) in mid-summer 2010 from both under-canopy and between-canopy areas within each of the sites. Soils were analyzed for numerous physical and chemical properties along with soil enzyme assays, C and N mineralization potential, microbial biomass-C and C-substrate utilization. Field vegetation measurements consisted of canopy cover by life form (tree, shrub, forb, and grass), tree and shrub density, and above-ground net primary productivity of the understory. Overall, parameters at the clearcut sites were more similar to the unaltered sites, while parameters at the thinned and pipeline sites were more similar to the altered sites. We employed principal components analysis (PCA) to develop two soil quality indices (SQI) to help quantify the differences among the sites: one based on the correlation between soil parameters and canopy cover, and the second based on six sub-indices. Soil quality indices developed in these systems could provide a means for monitoring and identifying key relations between the vegetation, soils, and microorganisms.

  7. Cover crops and crop residue management under no-till systems improve soils and environmental quality

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Wegner, Brianna; Vahyala, Ibrahim; Osborne, Shannon; Schumacher, Thomas; Lehman, Michael

    2015-04-01

    Crop residue harvest is a common practice in the Midwestern USA for the ethanol production. However, excessive removal of crop residues from the soil surface contributes to the degradation of important soil quality indicators such as soil organic carbon (SOC). Addition of a cover crop may help to mitigate these negative effects. The present study was set up to assess the impacts of corn (Zea mays L.) residue removal and cover crops on various soil quality indicators and surface greenhouse gas (GHG) fluxes. The study was being conducted on plots located at the North Central Agricultural Research Laboratory (NCARL) in Brookings, South Dakota, USA. Three plots of a corn and soybean (Glycine max (L.) Merr.) rotation under a no-till (NT) system are being monitored for soils and surface gas fluxes. Each plot has three residue removal (high residue removal, HRR; medium residue removal, MRR; and low residue removal, LRR) treatments and two cover crops (cover crops and no cover crops) treatments. Both corn and soybean are represented every year. Gas flux measurements were taken weekly using a closed static chamber method. Data show that residue removal significantly impacted soil quality indicators while more time was needed for an affect from cover crop treatments to be noticed. The LRR treatment resulted in higher SOC concentrations, increased aggregate stability, and increased microbial activity. The LRR treatment also increased soil organic matter (SOM) and particulate organic matter (POM) concentrations. Cover crops used in HRR (high corn residue removal) improved SOC (27 g kg-1) by 6% compared to that without cover crops (25.4 g kg-1). Cover crops significantly impacted POM concentration directly after the residue removal treatments were applied in 2012. CO2 fluxes were observed to increase as temperature increased, while N2O fluxes increased as soil moisture increased. CH4 fluxes were responsive to both increases in temperature and moisture. On average, soils under cover crop management had lower N2O fluxes than soils that did not have a cover crop. Results from this study concluded that it is important to allow crop residues to return to the soil as they help to improve soil quality indicators. The presence of cover crops also will contribute to the improvement of these indicators once established and may help mitigate greenhouse gas emissions.

  8. Efficiency of different techniques to identify changes in land use

    NASA Astrophysics Data System (ADS)

    Zornoza, Raúl; Mateix-Solera, Jorge; Gerrero, César

    2013-04-01

    The need for the development of sensitive and efficient methodologies for soil quality evaluation is increasing. The ability to assess soil quality and identify key soil properties that serve as indicators of soil function is complicated by the multiplicity of physical, chemical and biological factors that control soil processes. In the mountain region of the Mediterranean Basin of Spain, almond trees have been cultivated in terraced orchards for centuries. These crops are immersed in the Mediterranean forest scenery, configuring a mosaic landscape where orchards are integrated in the forest masses. In the last decades, almond orchards are being abandoned, leading to an increase in vegetation cover, since abandoned fields are naturally colonized by the surrounded natural vegetation. Soil processes and properties are expected to be associated with vegetation successional dynamics. Thus, the establishment of suitable parameters to monitor soil quality related to land use changes is particularly important to guarantee the regeneration of the mature community. In this study, we selected three land uses, constituted by forest, almond trees orchards, and orchards abandoned between 10 and 15 years previously to sampling. Sampling was carried out in four different locations in SE Spain. The main purpose was to evaluate if changes in management have significantly influenced different sets of soil characteristics. For this purpose, we used a discriminant analysis (DA). The different sets of soil characteristics tested in this study were 1: physical, chemical and biochemical properties; 2: soil near infrared (NIR) spectra; and 3: phospholipid fatty acids (PLFAs). After the DA performed with the sets 1 and 2, the three land uses were clearly separated by the two first discriminant functions, and more than 85 % of the samples were correctly classified (grouped). Using the sets 3 and 4 for DA resulted in a slightly better separation of land uses, being more than 85% of the samples correctly classified. These results suggest that the combination of properties of different nature is effective to show the state of soil quality, owing to the close interaction among physical, chemical and biochemical properties in soil. In addition, NIR spectra offer an integrate vision of soil quality, as they synthesize information regarding mineralogy, soil chemistry, soil biology, organic matter and physical attributes. With the DA developed with the PLFAs, the 100% of samples were correctly classified or grouped, indicating a clear impact of land management. This confirms the higher sensitivity of parameters related to soil microbial community structure to evaluate soil quality, perturbations and management. This result was expected as microbial communities respond very fast to changes in land use, faster than measurements of total microbial biomass and activity. Key Words: Land use changes; Phospholipids fatty acids; Near Infrared Spectroscopy

  9. Response of wine grape growth, development and the transfer of copper, lead, and cadmium in soil-fruit system to sludge compost amendment.

    PubMed

    Liu, Hong-Tao; Wang, Yan-Wen; Huang, Wei-Dong; Lei, Mei

    2016-12-01

    Sludge is an organic waste after domestic sewage being treated and contains phytonutrients and organic matter. In this study, recycling of sludge compost (SC) and its compound fertilizer (SCF) to wine grape resulted in improvement in vegetative growth, reproductive development of wine grape, and potential wine quality of grape fruit. The amounts of Cu, Pb, and Cd in grape fruit were significantly higher in response to sludge amendment than in the control, but were all below the permissible limits for agricultural product. The contents of Cu and Pb in sludge-amended soil decreased with increasing soil depth, but Cd content increased with soil depth. Ongoing monitoring of on mobility of Cd downward is proposed with sludge recycling to wine grape soil.

  10. Hochauflösendes Monitoring von Karst-Grundwasserressourcen beiderseits des Jordangrabens - Konzepte und Anwendungsbeispiele

    NASA Astrophysics Data System (ADS)

    Schmidt, Sebastian; Grimmeisen, Felix; Ries, Fabian; Goldscheider, Nico; Sauter, Martin

    2018-03-01

    In the semi-arid eastern Mediterranean water supply is highly dependent on karst aquifers. The region is characterized by multi-year dry and wet cycles combined with high hydrological dynamics, especially during intense precipitation events. The investigated karst regions in the West Bank and Jordan are experiencing strong urbanization within the groundwater catchments and hence a rising impact on water quality. Therefore, high resolution monitoring data are required for the assessment of available water resources and the hydrogeological characterization of the karst systems. These measurements are focused on the (natural) meteorological input signals and the system output signals at the karst springs. Also soil moisture and ephemeral runoff dynamics are investigated. The monitoring data enable (1) hydrogeological characterization of the aquifers, (2) estimation of groundwater recharge via soil water balance and reservoir models, and (3) assessment of contamination dynamics in groundwater (e. g. nitrate and E. coli concentrations), allowing an optimized raw water management. Several examples illustrate the importance of high-resolution hydrological monitoring data.

  11. Effect of temperature on the release of hexadecane from soil by thermal treatment.

    PubMed

    Merino, Jerónimo; Bucalá, Verónica

    2007-05-08

    A natural organic soil (2.5% of total organic carbon) was artificially contaminated with hexadecane, and thermally treated under an inert medium up to different final temperatures (150-800 degrees C) for 30 min to simulate ex situ thermal process conditions. The experiments were conducted using a complete organic soil, instead of the clays or isolated soil fractions that are commonly used. Neat and contaminated samples were separately heated to understand the impact of the soil itself and the contaminant in the release of volatiles. The soil quality as well as the quality and amount of volatile compounds generated during the process were monitored. More than 80-88% of the initial hexadecane content in the soil matrix was recovered in liquids traps after the thermal treatment, therefore the contaminant could be recovered for further recycling. The high amount of hexadecane collected without suffering chemical transformations indicated that the main mechanism for the hexadecane removal was evaporation. The analysis of the light gases released from contaminated samples indicated negligible or null hexadecane pyrolysis reaction rates, confirming that the evaporation/desorption of the contaminant are the processes that governed the removal of the contaminant from the soil. For the soil tested, of a relatively low surface area, good removal efficiencies (higher than 99.9%) were detected at about 300 degrees C, being higher temperatures not necessary to significantly improve the contamination removal.

  12. [Evaluation of environmental conditions: air, water and soil in areas of mining activity in Boyacá, Colombia].

    PubMed

    Agudelo-Calderón, Carlos A; Quiroz-Arcentales, Leonardo; García-Ubaque, Juan C; Robledo-Martínez, Rocío; García-Ubaque, Cesar A

    2016-02-01

    Objectives To determine concentrations of PM10, mercury and lead in indoor air of homes, water sources and soil in municipalities near mining operations. Method 6 points were evaluated in areas of influence and 2 in control areas. For measurements of indoor air, we used the NIOSH 600 method (PM10), NIOSH 6009 (mercury) and NIOSH 7300 (lead). For water analysis we used the IDEAM Guide for monitoring discharges. For soil analysis, we used the cold vapor technique (mercury) and atomic absorption (lead). Results In almost all selected households, the average PM10 and mercury concentrations in indoor air exceeded applicable air quality standards. Concentrations of lead were below standard levels. In all water sources, high concentrations of lead were found and in some places within the mining areas, high levels of iron, aluminum and mercury were also found. In soil, mercury concentrations were below the detection level and for lead, differences between the monitored points were observed. Conclusions The results do not establish causal relationships between mining and concentration of these pollutants in the evaluated areas because of the multiplicity of sources in the area. However, such studies provide important information, useful to agents of the environmental health system and researchers. Installation of networks for environmental monitoring to obtain continuous reports is suggested.

  13. Lysimeter monitoring as assessment of the potential for revegetation to manage former iron industry settling ponds.

    PubMed

    Huot, Hermine; Séré, Geoffroy; Charbonnier, Patrick; Simonnot, Marie-Odile; Morel, Jean Louis

    2015-09-01

    To assess the impact of metal-rich brownfields on groundwater quality, the fluxes in a Technosol developed on a former iron industry settling pond were studied. Intact soil monoliths (1 m(2) × 2 m) were extracted and placed in lysimeters. Dynamics of fluxes of metals and solutes under varying vegetation cover were monitored over the course of four years. Soil hydraulic properties were also determined. Results showed that the Technosol has a high retention capacity for water and metals, in relation to its mineral components and resulting chemical and physical properties. As a consequence, metal fluxes were limited. However, soluble compounds, such as SO4(2-), were found at significant concentrations in the leachates. The presence of a dense and deeply-rooted vegetation cover limited water- and solute-fluxes by increasing evapotranspiration and water uptake, thereby reducing the risks of transfer of potentially toxic compounds to local groundwater sources. However, vegetation development may induce changes in soil chemical (e.g. pH, redox potential) and physical properties (e.g. structure), favoring metal mobilization and transport. Revegetation is a valuable management solution for former iron industry settling ponds, provided vegetation does not change soil physico-chemical conditions in the long term. Monitored natural attenuation is required. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Reducing nutrient movement in manure-treated, tile-drained fields

    USDA-ARS?s Scientific Manuscript database

    Loss of nutrients from cropped soil represents an economic loss to producers and a threat to environmental quality. In this study, we monitored water, nutrient, and sediment in tile drainage from agricultural fields treated with manure in western Minnesota. Phosphorus results will be presented here....

  15. Unifying the functional diversity in natural and cultivated soils using the overall body-mass distribution of nematodes.

    PubMed

    Mulder, Christian; Maas, Rob

    2017-11-28

    Sustainable use of our soils is a key goal for environmental protection. As many ecosystem services are supported belowground at different trophic levels by nematodes, soil nematodes are expected to provide objective metrics for biological quality to integrate physical and chemical soil variables. Trait measurements of body mass carried out at the individual level can in this way be correlated with environmental properties that influence the performance of soil biota. Soil samples were collected across 200 sites (4 soil types and 5 land-use types resulting in 9 combinations) during a long-term monitoring programme in the Netherlands and the functional diversity of nematode communities was investigated. Using three commonly used functional diversity indices applicable to single traits (Divergence, Evenness and Richness), a unified index of overall body-mass distribution is proposed to better illustrate the application of functional metrics as a descriptor of land use. Effects of land use and soil chemistry on the functional diversity of nematodes were demonstrated and a combination of environmental factors accounts for the low functional value of Scots Pine forest soils in comparison to the high functional value of heathland soils, whereas human factors account for the low functional and chemical values of arable fields. These findings show an unexpected high functional vulnerability of nematodes inhabiting clay-rich soils in comparison to sandy soils and support the notion that soil C:N ratio is a major driver of biodiversity. The higher the C:N ratio, the higher the overall diversity, as soil nematodes cope better with nutrient-poor agroecosystems under less intense fertilization. A trait-based way focusing on size distribution of nematodes is proposed to maintain environmental health by monitoring the overall diversity in soil biota, keeping agriculture and forestry sustainable.

  16. Tolerable soil erosion in Europe

    NASA Astrophysics Data System (ADS)

    Verheijen, Frank; Jones, Bob; Rickson, Jane; Smith, Celina

    2010-05-01

    Soil loss by erosion has been identified as an important threat to soils in Europe* and is recognised as a contributing process to soil degradation and associated deterioration, or loss, of soil functioning. From a policy perspective, it is imperative to establish well-defined baseline values to evaluate soil erosion monitoring data against. For this purpose, accurate baseline values - i.e. tolerable soil loss - need to be differentiated at appropriate scales for monitoring and, ideally, should take soil functions and even changing environmental conditions into account. The concept of tolerable soil erosion has been interpreted in the scientific literature in two ways: i) maintaining the dynamic equilibrium of soil quantity, and ii) maintaining biomass production, at a location. The first interpretation ignores soil quality by focusing only on soil quantity. The second approach ignores many soil functions by focusing only on the biomass (particularly crop) production function of soil. Considering recognised soil functions, tolerable soil erosion may be defined as 'any mean annual cumulative (all erosion types combined) soil erosion rate at which a deterioration or loss of one or more soil functions does not occur'. Assumptions and problems of this definition will be discussed. Soil functions can generally be judged not to deteriorate as long as soil erosion does not exceed soil formation. At present, this assumption remains largely untested, but applying the precautionary principle appears to be a reasonable starting point. Considering soil formation rates by both weathering and dust deposition, it is estimated that for the majority of soil forming factors in most European situations, soil formation rates probably range from ca. 0.3 - 1.4 t ha-1 yr-1. Although the current agreement on these values seems relatively strong, how the variation within the range is spatially distributed across Europe and how this may be affected by climate, land use and land management change in the future remains largely unexplored. * http://ec.europa.eu/environment/soil/pdf/com_2006_0231_en.pdf

  17. Evaluation of the sources of contamination in the suburban area of Koropi-Markopoulo, Athens, Greece.

    PubMed

    Kaitantzian, Agavni; Kelepertzis, Efstratios; Kelepertsis, Akindynos

    2013-07-01

    Heavy metal concentrations were monitored in agricultural soils and irrigation groundwaters of Koropi-Markopoulo area, a representative agricultural suburb in Athens, Greece, aiming at the identification of the sources of contaminants. Multivariate analyses of geochemical data demonstrated that agricultural practices and industrial activities considerably affected the quality of both environmental compartments. The levels of Ni, Cr, Co, Mn and Fe in agricultural soils were associated with geological parent materials whereas Pb, Zn and Cu mainly originated from anthropic activities. Referring to groundwaters, individual major anions and cations (K⁺, Na⁺, Ca²⁺, Mg²⁺, NO₃⁻, SO₄²⁻, Cl⁻) were influenced by various natural and anthropogenic factors whereas Ni, Cr, Cu and Zn were controlled by industrial and agronomic activities. The identification of the sources of contaminants in soil and groundwater environments is a valuable basis for encouraging mitigation strategies preventing further quality degradation.

  18. Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest.

    PubMed

    Schilling, Erik M; Waring, Bonnie G; Schilling, Jonathan S; Powers, Jennifer S

    2016-09-01

    We investigated how forest composition, litter quality, and rainfall interact to affect leaf litter decomposition across three successional tropical dry forests in Costa Rica. We monitored litter stocks and bulk litter turnover in 18 plots that exhibit substantial variation in soil characteristics, tree community structure, fungal communities (including forests dominated by ecto- or arbuscular mycorrhizal host trees), and forest age. Simultaneously, we decomposed three standard litter substrates over a 6-month period spanning an unusually intense drought. Decay rates of standard substrates depended on the interaction between litter identity and forest type. Decomposition rates were correlated with tree and soil fungal community composition as well as soil fertility, but these relationships differed among litter types. In low fertility soils dominated by ectomycorrhizal oak trees, bulk litter turnover rates were low, regardless of soil moisture. By contrast, in higher fertility soils that supported mostly arbuscular mycorrhizal trees, bulk litter decay rates were strongly dependent on seasonal water availability. Both measures of decomposition increased with forest age, as did the frequency of termite-mediated wood decay. Taken together, our results demonstrate that soils and forest age exert strong control over decomposition dynamics in these tropical dry forests, either directly through effects on microclimate and nutrients, or indirectly by affecting tree and microbial community composition and traits, such as litter quality.

  19. Monitoring post-fire vegetation rehabilitation projects: A common approach for non-forested ecosystems

    USGS Publications Warehouse

    Wirth, Troy A.; Pyke, David A.

    2007-01-01

    Emergency Stabilization and Rehabilitation (ES&R) and Burned Area Emergency Response (BAER) treatments are short-term, high-intensity treatments designed to mitigate the adverse effects of wildfire on public lands. The federal government expends significant resources implementing ES&R and BAER treatments after wildfires; however, recent reviews have found that existing data from monitoring and research are insufficient to evaluate the effects of these activities. The purpose of this report is to: (1) document what monitoring methods are generally used by personnel in the field; (2) describe approaches and methods for post-fire vegetation and soil monitoring documented in agency manuals; (3) determine the common elements of monitoring programs recommended in these manuals; and (4) describe a common monitoring approach to determine the effectiveness of future ES&R and BAER treatments in non-forested regions. Both qualitative and quantitative methods to measure effectiveness of ES&R treatments are used by federal land management agencies. Quantitative methods are used in the field depending on factors such as funding, personnel, and time constraints. There are seven vegetation monitoring manuals produced by the federal government that address monitoring methods for (primarily) vegetation and soil attributes. These methods vary in their objectivity and repeatability. The most repeatable methods are point-intercept, quadrat-based density measurements, gap intercepts, and direct measurement of soil erosion. Additionally, these manuals recommend approaches for designing monitoring programs for the state of ecosystems or the effect of management actions. The elements of a defensible monitoring program applicable to ES&R and BAER projects that most of these manuals have in common are objectives, stratification, control areas, random sampling, data quality, and statistical analysis. The effectiveness of treatments can be determined more accurately if data are gathered using an approach that incorporates these six monitoring program design elements and objectives, as well as repeatable procedures to measure cover, density, gap intercept, and soil erosion within each ecoregion and plant community. Additionally, using a common monitoring program design with comparable methods, consistently documenting results, and creating and maintaining a central database for query and reporting, will ultimately allow a determination of the effectiveness of post-fire rehabilitation activities region-wide.

  20. Application of an in-situ soil sampler for assessing subsurface biogeochemical dynamics in a diesel-contaminated coastal site during soil flushing operations.

    PubMed

    Kwon, Man Jae; O'Loughlin, Edward J; Ham, Baknoon; Hwang, Yunho; Shim, Moojoon; Lee, Soonjae

    2018-01-15

    Subsurface biogeochemistry and contaminant dynamics during the remediation of diesel-contamination by in-situ soil flushing were investigated at a site located in a coastal region. An in-situ sampler containing diesel-contaminated soils separated into two size fractions (<0.063- and <2-mm) was utilized in two monitoring wells: DH1 (located close to the injection and extraction wells for in-situ soil flushing) and DH2 (located beyond sheet piles placed to block the transport of leaked diesel). Total petroleum hydrocarbon (TPH) concentrations and biogeochemical properties were monitored both in soil and groundwater for six months. A shift occurred in the groundwater type from Ca-HCO 3 to Na-Cl due to seawater intrusion during intense pumping, while the concentrations of Ni, Cu, Co, V, Cr, and Se increased substantially following surfactant (TWEEN 80) injection. The in-situ sampler with fine particles was more sensitive to variations in conditions during the remedial soil flushing process. In both wells, soil TPH concentrations in the <0.063-mm fraction were much higher than those in the <2-mm fraction. Increases in soil TPH in DH1 were consistent with the expected outcomes following well pumping and surfactant injection used to enhance TPH extraction. However, the number of diesel-degrading microorganisms decreased after surfactant injection. 16S-rRNA gene-based analysis also showed that the community composition and diversity depended on both particle size and diesel contamination. The multidisciplinary approach to the contaminated site assessments showed that soil flushing with surfactant enhanced diesel extraction, but negatively impacted in-situ diesel biodegradation as well as groundwater quality. The results also suggest that the in-situ sampler can be an effective monitoring tool for subsurface biogeochemistry as well as contaminant dynamics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Fate of Organic Matters in a Soil Erosion Context : Qualitative and Quantitative Monitoring in a Karst Hydrosystem

    NASA Astrophysics Data System (ADS)

    Quiers, M.; Gateuille, D.; Perrette, Y.; Naffrechoux, E.; David, B.; Malet, E.

    2017-12-01

    Soils are a key compartments of hydrosystems, especially in karst aquifers which are characterized by fast hydrologic responses to rainfalls. In steady state, soils are efficient filters preventing karst water from pollutions. But agricultural or forestry land uses can alter or even reverse the role of soils. Thus , soils can act as pollution sources rather than pollution filters. In order to manage water quality together with man activities in karst environment, the development of new tools and procedures designed to monitor the fate of soil organic matter are needed. This study reports two complementary methods applied in a moutain karst system impacted by anthropic activities and environmental stresses. A continuous monitoring of water fluorescence coupled with punctual sampling was analyzed by chemiometric methods and allowed to discriminate the type of organic matter transferred through the karst system along the year (winter / summer) and hydrological stages. As a main result, the modelisation of organic carbone fluxes is dominated by a colloidal or particulate part during highwaters, and a main part dissolved in solution during low water, demonstrating the change of organic carbone source. To confirm this result, a second method was used based on the observation of Polycyclic Aromatic Hydrocarbons (PAH) profiles. Two previous studies (Perrette et al 2013, Schwarz et al 2011) led to opposite conclusions about the fate of PAH from soil to groundwaters. This opposition leads to a potential use of PAH profiles (low molecular weight less hydrophobic ones versus high molecular weight more hydrophobic ones) as an indicator of soil erosion. We validate that use by the anaylsis of these PAH profiles for low and high waters (floods). These results demonstrate if needed the high vulnerability of karst system to soil erosion, and propose a new proxy to record soils erosion in groundwaters and in natural archives as stalagmites or sediments.

  2. Enhanced representation of soil NO emissions in the ...

    EPA Pesticide Factsheets

    Modeling of soil nitric oxide (NO) emissions is highly uncertain and may misrepresent its spatial and temporal distribution. This study builds upon a recently introduced parameterization to improve the timing and spatial distribution of soil NO emission estimates in the Community Multiscale Air Quality (CMAQ) model. The parameterization considers soil parameters, meteorology, land use, and mineral nitrogen (N) availability to estimate NO emissions. We incorporate daily year-specific fertilizer data from the Environmental Policy Integrated Climate (EPIC) agricultural model to replace the annual generic data of the initial parameterization, and use a 12 km resolution soil biome map over the continental USA. CMAQ modeling for July 2011 shows slight differences in model performance in simulating fine particulate matter and ozone from Interagency Monitoring of Protected Visual Environments (IMPROVE) and Clean Air Status and Trends Network (CASTNET) sites and NO2 columns from Ozone Monitoring Instrument (OMI) satellite retrievals. We also simulate how the change in soil NO emissions scheme affects the expected O3 response to projected emissions reductions. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and

  3. Evaluating ESA CCI Soil Moisture in East Africa

    NASA Technical Reports Server (NTRS)

    McNally, Amy; Shukla, Shraddhanand; Arsenault, Kristi R.; Wang, Shugong; Peters-Lidard, Christa D.; Verdin, James P.

    2016-01-01

    To assess growing season conditions where ground based observations are limited or unavailable, food security and agricultural drought monitoring analysts rely on publicly available remotely sensed rainfall and vegetation greenness. There are also remotely sensed soil moisture observations from missions like the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) and NASAs Soil Moisture Active Passive (SMAP), however these time series are still too short to conduct studies that demonstrate the utility of these data for operational applications, or to provide historical context for extreme wet or dry events. To promote the use of remotely sensed soil moisture in agricultural drought and food security monitoring, we use East Africa as a case study to evaluate the quality of a 30+ year time series of merged active-passive microwave soil moisture from the ESA Climate Change Initiative (CCI-SM). Compared to the Normalized Difference Vegetation index (NDVI) and modeled soil moisture products, we found substantial spatial and temporal gaps in the early part of the CCI-SM record, with adequate data coverage beginning in 1992. From this point forward, growing season CCI-SM anomalies were well correlated (R greater than 0.5) with modeled, seasonal soil moisture, and in some regions, NDVI. We use correlation analysis and qualitative comparisons at seasonal time scales to show that remotely sensed soil moisture can add information to a convergence of evidence framework that traditionally relies on rainfall and NDVI in moderately vegetated regions.

  4. Measuring environmental change in forest ecosystems by repeated soil sampling: a North American perspective

    USGS Publications Warehouse

    Lawrence, Gregory B.; Fernandez, Ivan J.; Richter, Daniel D.; Ross, Donald S.; Hazlett, Paul W.; Bailey, Scott W.; Oiumet, Rock; Warby, Richard A.F.; Johnson, Arthur H.; Lin, Henry; Kaste, James M.; Lapenis, Andrew G.; Sullivan, Timothy J.

    2013-01-01

    Environmental change is monitored in North America through repeated measurements of weather, stream and river flow, air and water quality, and most recently, soil properties. Some skepticism remains, however, about whether repeated soil sampling can effectively distinguish between temporal and spatial variability, and efforts to document soil change in forest ecosystems through repeated measurements are largely nascent and uncoordinated. In eastern North America, repeated soil sampling has begun to provide valuable information on environmental problems such as air pollution. This review synthesizes the current state of the science to further the development and use of soil resampling as an integral method for recording and understanding environmental change in forested settings. The origins of soil resampling reach back to the 19th century in England and Russia. The concepts and methodologies involved in forest soil resampling are reviewed and evaluated through a discussion of how temporal and spatial variability can be addressed with a variety of sampling approaches. Key resampling studies demonstrate the type of results that can be obtained through differing approaches. Ongoing, large-scale issues such as recovery from acidification, long-term N deposition, C sequestration, effects of climate change, impacts from invasive species, and the increasing intensification of soil management all warrant the use of soil resampling as an essential tool for environmental monitoring and assessment. Furthermore, with better awareness of the value of soil resampling, studies can be designed with a long-term perspective so that information can be efficiently obtained well into the future to address problems that have not yet surfaced.

  5. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives

    PubMed Central

    Prasad, Ram; Bhattacharyya, Atanu; Nguyen, Quang D.

    2017-01-01

    Nanotechnology monitors a leading agricultural controlling process, especially by its miniature dimension. Additionally, many potential benefits such as enhancement of food quality and safety, reduction of agricultural inputs, enrichment of absorbing nanoscale nutrients from the soil, etc. allow the application of nanotechnology to be resonant encumbrance. Agriculture, food, and natural resources are a part of those challenges like sustainability, susceptibility, human health, and healthy life. The ambition of nanomaterials in agriculture is to reduce the amount of spread chemicals, minimize nutrient losses in fertilization and increased yield through pest and nutrient management. Nanotechnology has the prospective to improve the agriculture and food industry with novel nanotools for the controlling of rapid disease diagnostic, enhancing the capacity of plants to absorb nutrients among others. The significant interests of using nanotechnology in agriculture includes specific applications like nanofertilizers and nanopesticides to trail products and nutrients levels to increase the productivity without decontamination of soils, waters, and protection against several insect pest and microbial diseases. Nanotechnology may act as sensors for monitoring soil quality of agricultural field and thus it maintain the health of agricultural plants. This review covers the current challenges of sustainability, food security and climate change that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture. PMID:28676790

  6. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives.

    PubMed

    Prasad, Ram; Bhattacharyya, Atanu; Nguyen, Quang D

    2017-01-01

    Nanotechnology monitors a leading agricultural controlling process, especially by its miniature dimension. Additionally, many potential benefits such as enhancement of food quality and safety, reduction of agricultural inputs, enrichment of absorbing nanoscale nutrients from the soil, etc. allow the application of nanotechnology to be resonant encumbrance. Agriculture, food, and natural resources are a part of those challenges like sustainability, susceptibility, human health, and healthy life. The ambition of nanomaterials in agriculture is to reduce the amount of spread chemicals, minimize nutrient losses in fertilization and increased yield through pest and nutrient management. Nanotechnology has the prospective to improve the agriculture and food industry with novel nanotools for the controlling of rapid disease diagnostic, enhancing the capacity of plants to absorb nutrients among others. The significant interests of using nanotechnology in agriculture includes specific applications like nanofertilizers and nanopesticides to trail products and nutrients levels to increase the productivity without decontamination of soils, waters, and protection against several insect pest and microbial diseases. Nanotechnology may act as sensors for monitoring soil quality of agricultural field and thus it maintain the health of agricultural plants. This review covers the current challenges of sustainability, food security and climate change that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture.

  7. Data analysis protocol for using resistivity array as an early-warning wastewater pond leak detector

    USDA-ARS?s Scientific Manuscript database

    Typically, holding ponds are used to control runoff from concentrated animal feeding operations. The integrity of these holding ponds has come under increased scrutiny since subsurface leakage has the potential to affect soil and groundwater quality. Traditionally, ponds are monitored by installin...

  8. Soil Water and Shallow Groundwater Relations in an Agricultural Hillslope

    NASA Astrophysics Data System (ADS)

    Logsdon, S. D.; Schilling, K. E.

    2007-12-01

    Shallow water tables contribute to soil water variations under rolling topography, and soil properties contribute to shallow water table fluctutations. Preferential flow through large soil pores can cause a rise in the water table with little increase in soil water except near the soil surface. Lateral groundwater flow can cause a large rise in water table at toeslope and depressional landscape positions. As plants transpire, water can move up into the root zone from the water table and wet soil below the root zone. Roots can utilize water in the capillary fringe. The purpose of this study was to interface automated measurements of soil water content and water table depth for determining the importance of drainage and upward movement. In 2006 soil water and water table depth were monitored at three positions: shoulder, backslope, and toeslope. Neutron access tubes were manually monitored to 2.3 m depth, and automated soil moisture was measured using CS616 probes installed at 0.3, 0.5, 0.7, and 0.9 m depth. Water table depths were monitored manually and automated, but the automated measurements failed during the season at two sites. In 2007, similar measurements were made at one toeslope position, but the CS616 probes were installed at nine depths and better quality automated well depth equipment was used. The 2006 data revealed little landscape position effect on daytime soil water loss on a wetter date; however, on a dry day just before a rain, daytime water loss was greatest for the toeslope positon and least for the shoulder position. After a period of intense rain, a rapid and significant water table rise occurred at the toeslope position but little water table rise occurred at the other landscape positions. The rapid toeslope water table rise was likely caused by lateral groundwater flow whereas minor water table rise at the other positions was likely due to preferential flow since the soil had not wet up below 0.6 m. Use of automated equipment has improved our understanding of the relations of soil water to water table fluctuations in an agricultural field.

  9. An innovative pot system for monitoring the effects of water stress on grapevines and grape quality

    NASA Astrophysics Data System (ADS)

    Puccioni, Sergio; Leprini, Marco; Mocali, Stefano; Perria, Rita; Priori, Simone; Storchi, Paolo; Zombardo, Alessandra; Costantini, Edoardo

    2016-04-01

    The advantage of a pot system is the possibility to control many variables and factors with a large number of replicates, obtaining statistically significant results in only one year of experimentation. An innovative pot system for the monitoring of grapevine water stress was set up. The system consists of 99 pots of 70 liters, filled by 3 different soils collected from premium vineyards of the Chianti Classico district (Tuscany). The soils showed different texture (clay-loam, loam and sandy-loam), different gravel and carbonate content, and different available water capacity (AWC). The same soils had been field monitored for grapevine water stress; therefore it was possible to compare the grapevine behaviour both in pot and in field conditions. The grapevine cultivar was Pinot noir clone ENTAV 115, which can be used to investigate the genetic expression in response to environmental factors, since its genome has been sequenced. Different rootstocks theses were compared: not grafted, 1103 Paulsen and M101-14. Each combination rootstock-soil was repeated 9 times. Every pot was equipped for drip irrigation and with electrodes for soil moisture determination by TDR. A non-stop automated control unit recorded meteorological data (temperature and rainfalls), soil temperature and water potential on 9 selected pots. These 9 selected pots were also used to calibrate a model for soil water volume/tension curve. Soil, leaves and grapes samples from each pot were collected for microbial community determination, through NGS analysis. A preliminary study was based on testing the ability of the system to simulate the natural growing conditions of the grapevines. Therefore the grape performances of the potted plants were compared to those of plants cultivated in the vineyards where the soils were taken. In July 2015 three levels of water supply were tested during 5 weeks (up to veraison) in order to study the effects of water stress on the plants and the grape. Later, all the pots were irrigated abundantly until the full ripening of the grapes. The results revealed that a period of water stress during the early stages of bunches growth can induce irreversible changes in the physiology of the plant. Even if the leaf water potential was restored after abundant irrigations, the photosynthetic capacity was compromised, provoking remarkable effects on the composition of the grape. Although the plants produced similar amounts of grape, the water stress reduced the average berry weight. The plants with higher water availability synthesized more sugars and organic acids, while a strong water stress promoted the accumulation of anthocyanins and phenolic compounds. Soil typology and AWC influenced water stress and physiology of plants, and grape yield and quality. As expected, the plants grafted on 1103 Paulsen resulted more productive, while on the 110-14 they showed similar response to water stress that non-grafted vines. The results in the pots confirmed the effect of soil type that was monitored in the field, and highlighted a strong interaction between rootstock, soil, and microbial community. Acknowledgements: Financial support for this project was provided by the Italy - Israel Cooperation in Agricultural Research.

  10. Influence of agricultural practice on trace metals in soils and vegetation in the water conservation area along the East River (Dongjiang River), South China.

    PubMed

    Luo, Chunling; Yang, Renxiu; Wang, Yan; Li, Jun; Zhang, Gan; Li, Xiangdong

    2012-08-01

    Dongjiang (East River) is the key resource of potable water for the Pearl River Delta region, South China. Although industrial activities are limited in the water conservation area along this river, agriculture is very intensive. The present study evaluated trace metals in four soils under different cultivation. The total concentrations of trace metals decreased in the order orchard soil>vegetable soil>paddy soil>natural soil, reflecting decreasing inputs of agrochemicals to soils. Relatively high concentrations of Cd were recorded in the 60-cm soil profiles. The (206)Pb/(207)Pb ratio in the above-ground tissues of plant was significantly lower than their corresponding soils. In combination with the low transfer factor of Pb from soil to plant shoots, atmospheric deposition is probably a major pathway for Pb to enter plant leaves. Regular monitoring on the soil quality in this area is recommended for the safety of water resource and agricultural products. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Monitoring the southwestern Wyoming landscape—A foundation for management and science

    USGS Publications Warehouse

    Manier, Daniel J.; Anderson, Patrick J.; Assal, Timothy J.; Chong, Geneva W.; Melcher, Cynthia P.

    2017-08-29

    Natural resource monitoring involves repeated collections of resource condition data and analyses to detect possible changes and identify underlying causes of changes. For natural resource agencies, monitoring provides the foundation for management and science. Specifically, analyses of monitoring data allow managers to better understand effects of land-use and other changes on important natural resources and to achieve their conservation and management goals. Examples of natural resources monitored on public lands include wildlife habitats, plant productivity, animal movements and population trends, soil chemistry, and water quality and quantity. Broader definitions of monitoring also recognize the need for scientifically valid data to help support planning efforts and informed decisions, to develop adaptive management strategies, and to provide the means for evaluating management outcomes.

  12. Influence of red mud on soil microbial communities: Application and comprehensive evaluation of the Biolog EcoPlate approach as a tool in soil microbiological studies.

    PubMed

    Feigl, Viktória; Ujaczki, Éva; Vaszita, Emese; Molnár, Mónika

    2017-10-01

    Red mud can be applied as soil ameliorant to acidic, sandy and micronutrient deficient soils. There are still knowledge gaps regarding the effects of red mud on the soil microbial community. The Biolog EcoPlate technique is a promising tool for community level physiological profiling. This study presents a detailed evaluation of Biolog EcoPlate data from two case studies. In experiment "A" red mud from Ajka (Hungary) was mixed into acidic sandy soil in soil microcosms at 5-50 w/w%. In experiement "B" red mud soil mixture was mixed into low quality subsoil in a field experiment at 5-50 w/w%. According to average well color development, substrate average well color development and substrate richness 5-20% red mud increased the microbial activity of the acidic sandy soil over the short term, but the effect did not last for 10months. Shannon diversity index showed that red mud at up to 20% did not change microbial diversity over the short term, but the diversity decreased by the 10th month. 30-50% red mud had deteriorating effect on the soil microflora. 5-20% red mud soil mixture in the low quality subsoil had a long lasting enhancing effect on the microbial community based on all Biolog EcoPlate parameters. However, 50% red mud soil mixture caused a decrease in diversity and substrate richness. With the Biolog EcoPlate we were able to monitor the changes of the microbial community in red mud affected soils and to assess the amount of red mud and red mud soil mixture applicable for soil treatment in these cases. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A Linkage Between Parent Materials of Soil and Potential Risk of Heavy Metals in Yunnan province, China

    NASA Astrophysics Data System (ADS)

    Cheng, X.

    2015-12-01

    A large area exceeding soil quality standards for heavy metals in South western China has been identified previously reported on a nationwide survey of soil pollution, yet the ecological risk of heavy metal in soil is unknown or uncertainty.To assess thoroughly the ecological risk in this region, seven soil profiles with a depth of 2m on the different parent materials of soil were conducted in Yunnan province, China, and the level of total concentrations and the fraction of water soluble, ion exchangeable, carbonates, humic acid, iron and manganese oxides and organic matter of As, Cd, Hg and Pb was investigated in soil profiles. The results indicate that parent materials of soil critically influenced the ecological risk of heavy metal.The fraction of water soluble and ion exchangeable of Cd and Hg in alluvial material and in terrigenous clastic rocks showed 2-6 times higher than those in carbonate rock; As and Pb has almost same fraction of water soluble and ion exchangeable in three parent materials of soil.The findings suggest that parent materials of soil play a critical role in ecological risk of heavy metal.Thus, more studies are needed to better understand a linkage between the parent materials of soil, different soil-forming processes and the potential risk of heavy metals under various geographic conditions, which is the key for the evaluating soil quality and food safety. Those soils with high concentration of Cd and Hg originated alluvial material and terrigenous clastic rocks need to be continuously monitored before determining a cost-effective remediation technology. Keywords: Heavy metals; Ecological risk;Parent materials of soil;China

  14. Functional homogeneous zones (fHZs) in viticultural zoning procedure: an Italian case study on Aglianico vine

    NASA Astrophysics Data System (ADS)

    Bonfante, A.; Agrillo, A.; Albrizio, R.; Basile, A.; Buonomo, R.; De Mascellis, R.; Gambuti, A.; Giorio, P.; Guida, G.; Langella, G.; Manna, P.; Minieri, L.; Moio, L.; Siani, T.; Terribile, F.

    2015-06-01

    This paper aims to test a new physically oriented approach to viticulture zoning at farm scale that is strongly rooted in hydropedology and aims to achieve a better use of environmental features with respect to plant requirements and wine production. The physics of our approach are defined by the use of soil-plant-atmosphere simulation models, applying physically based equations to describe the soil hydrological processes and solve soil-plant water status. This study (part of the ZOVISA project) was conducted on a farm devoted to production of high-quality wines (Aglianico DOC), located in southern Italy (Campania region, Mirabella Eclano, AV). The soil spatial distribution was obtained after standard soil survey informed by geophysical survey. Two homogeneous zones (HZs) were identified; in each one a physically based model was applied to solve the soil water balance and estimate the soil functional behaviour (crop water stress index, CWSI) defining the functional homogeneous zones (fHZs). For the second process, experimental plots were established and monitored for investigating soil-plant water status, crop development (biometric and physiological parameters) and daily climate variables (temperature, solar radiation, rainfall, wind). The effects of crop water status on crop response over must and wine quality were then evaluated in the fHZs. This was performed by comparing crop water stress with (i) crop physiological measurement (leaf gas exchange, chlorophyll a fluorescence, leaf water potential, chlorophyll content, leaf area index (LAI) measurement), (ii) grape bunches measurements (berry weight, sugar content, titratable acidity, etc.) and (iii) wine quality (aromatic response). This experiment proved the usefulness of the physically based approach, also in the case of mapping viticulture microzoning.

  15. Quantifying and modeling soil erosion and sediment export from construction sites in southern California

    NASA Astrophysics Data System (ADS)

    Wernet, A. K.; Beighley, R. E.

    2006-12-01

    Soil erosion is a power process that continuously alters the Earth's landscape. Human activities, such as construction and agricultural practices, and natural events, such as forest fires and landslides, disturb the landscape and intensify erosion processes leading to sudden increases in runoff sediment concentrations and degraded stream water quality. Understanding soil erosion and sediment transport processes is of great importance to researchers and practicing engineers, who routinely use models to predict soil erosion and sediment movement for varied land use and climate change scenarios. However, existing erosion models are limited in their applicability to constructions sites which have highly variable soil conditions (density, moisture, surface roughness, and best management practices) that change often in both space and time. The goal of this research is to improve the understanding, predictive capabilities and integration of treatment methodologies for controlling soil erosion and sediment export from construction sites. This research combines modeling with field monitoring and laboratory experiments to quantify: (a) spatial and temporal distribution of soil conditions on construction sites, (b) soil erosion due to event rainfall, and (c) potential offsite discharge of sediment with and without treatment practices. Field sites in southern California were selected to monitor the effects of common construction activities (ex., cut/fill, grading, foundations, roads) on soil conditions and sediment discharge. Laboratory experiments were performed in the Soil Erosion Research Laboratory (SERL), part of the Civil and Environmental Engineering department at San Diego State University, to quantify the impact of individual factors leading to sediment export. SERL experiments utilize a 3-m by 10-m tilting soil bed with soil depths up to 1 m, slopes ranging from 0 to 50 percent, and rainfall rates up to 150 mm/hr (6 in/hr). Preliminary modeling, field and laboratory results are presented.

  16. Effects of carbon-based nanoparticles (CNPs) on the fate of endocrine disrupting chemicals (EDCs) in different agricultural soils.

    NASA Astrophysics Data System (ADS)

    Stumpe, Britta; Wolski, Sabrina; Marschner, Bernd

    2013-04-01

    Nanotechnology is a major innovative scientific and economic growth area. To date there is a lack about possible adverse effects that may be associated with manufactured nanomaterial in terrestrial environments. Since it is known that on the one hand carbon-based nanoparticles (CNPs) and endocrine disrupting chemicals (EDCs) strongly interact in wastewater and that on the other hand CNPs and EDCs are released together via wastewater irrigation to agricultural soils, knowledge of CNP effects on the EDC fate in the soil environment is needed for further risk assessments. The overall goal of this project is to gain a better understanding of interaction of CNPs with EDCs within the soil system. Three different soil samples were applied with different CNPs, EDCs and CNP-EDC complexes and incubated over a period of 6 weeks. The EDC mineralization as well as their uptake by soil microorganisms was monitored to describe impacts of the nanomaterial on the EDC fate. As quality control for the biological soil activity soil respiration, enzyme activities and the soil microbial biomass were monitored in all incubated soil samples. Clearly, EDCs bound in CNP complexes showed a decrease in mineralization. While the free EDCs showed a total mineralization of 34 to 45 %, the nano complexed EDCs were only mineralized to 12 to 15 %. Since no effects of the nanomaterial on the biological soil activity were observed, we conclude that the reduced EDC mineralization is directly linked to their interaction with the CNPs. Since additionally the EDC adsorption to CNPs reduced the EDC uptake by soil microorganism, we assume that CNPs generally form more or less recalcitrant aggregates which likely protect the associated EDCs from degradation.

  17. Hydrologic and Soil Science in a Mediterranean Critical Zone Observatory: Koiliaris River Basin

    NASA Astrophysics Data System (ADS)

    Nikolaidis, Nikolaos; Stamati, Fotini; Schnoor, Jerald; Moraetis, Daniel; Kotronakis, Manolis

    2010-05-01

    The Koiliaris River watershed is situated 25km east from the city of Chania, Crete, Greece. The total watershed area is 145km2 and the main supply of water originates in the White Mountains. At high elevations (altitude 2014 m), the maximum slope is 43% while at the lower elevations the slope measures 1-2%. Land use includes heterogeneous agricultural areas (25.4%), olive and orange groves (15.6%), and scrub and/or herbaceous vegetation associations (57.6%). The geology of the Basin consists of 23.8% Plattenkalk (dolomites, marbles, limestone and re-crystallized limestone with cherts); 31% of Trypali units (re-crystallized calcaric breccias); 9.4% limestones with marls in Neogene formations; 13% marls in Neogene formations; 12.8% schists, and 10% quaternary alluvial deposits. Intensive hydrologic and geochemical monitoring has been conducted since 2004 while the site has historical data since the ‘60s. In addition, a telemetric high-frequency hydrologic and water quality monitoring station has been deployed to obtain data for the characterization of the hydrologic and biogeochemical processes with varying process response-times. Hydrologic and geochemical modeling confirms the estimation of characteristic times of these processes. The main type of soil degradation in the basin as well as in other arid and semi-arid regions is water erosion, which is due to the clearing of forests and natural vegetation for cropping and livestock grazing. De-vegetation and inappropriate cultivation practices induces soil organic matter (SOM) losses making soils susceptible to erosion and desertification with global consequences for food security, climate change, biodiversity, water quality, and agricultural economy. Cropland plowing breaks-up water stable aggregates making the bio-available pool bio-accessible; which could be microbially attacked and oxidized resulting in SOM decline. Chronosequence data analysis suggested first-order kinetic rate of decline of the bio-available carbon and nitrogen pools, where as much as half of the total OM loss could take place during the first year after the conversion of grassland to cropland. We have shown by physical fractionation and spectroscopic techniques in croplands and set-aside fields that most of the SOM decline in croplands has been attributed to the breakup of macroaggregates and the oxidation of particulate organic matter despite the climatic or textural conditions. However, lower decomposition rates and higher silt-clay content of Greek soil create more stable aggregates and facilitate OM stabilization. Studies on Koiliaris River highland de-vegetated grazing lands suggested decline of soil biochemical quality compared to native vegetated lands. The size of soluble mineral nitrogen and organic carbon pools have also decreased. The composition of the soluble OM pool had significantly lower DOC aromaticity and was nitrogen enriched compared with the naturally vegetated lands. The DON Aromaticity Index was shown to be a promising sensitive indicator of de-vegetation effect on the soluble pool of OM. The partitioning coefficients of the potential soluble organic nitrogen increased with increasing DON aromaticity for the de-vegetated lands, indicating that the lower the aromaticity, the more prone soils are to leaching DON and potentially affect water quality. The land-use load apportionment analysis revealed that the river export load of dissolved organic nitrogen (DON) is linearly correlated with the normalized, livestock derived, DON load input from pasture suggesting that increasing livestock grazing in a watershed would result in higher DON export in river. DON aromaticity could serve as a simple indicator of soil biochemical quality and aggregate disturbance in soils and therefore SOM stability. We have conducted a stratified soil sampling intending to validate the utility of the examined indices for the quantification of the effects of agricultural pressures to soil quality and the detection of potential effects on water quality. The watershed is one of the Critical Zone Observatories in the FP7 funded project SoilTrEC.

  18. Quality assurance report - Loch Vale Watershed, 1999-2002

    USGS Publications Warehouse

    Botte, Jorin A.; Baron, Jill S.

    2004-01-01

    The National Park Service initiated the Loch Vale Watershed (LVWS) project in 1980 with funding from the Aquatic Effects Research Program of the National Acid Precipitation Assessment Program. Long-term ecological research and monitoring address watershed-scale ecosystem processes, particularly as they respond to atmospheric deposition and climate variability. Monitoring of meteorological, hydrologic, precipitation chemistry, and surface water quality parameters enable us to use long-term trends to distinguish natural from human-caused disturbances. Research into snow distribution, hydrologic flowpaths, vegetation responses to N deposition, isotopic transformations of N by forest and soil processes, trace metals, and aquatic ecological responses to disturbance enable us to understand processes that influence high elevation ecosystems.

  19. Spectroscopic characteristics of soil organic matter as a tool to assess soil physical quality in Mediterranean ecosystems

    NASA Astrophysics Data System (ADS)

    Recio Vázquez, Lorena; Almendros, Gonzalo; Knicker, Heike; López-Martín, María; Carral, Pilar; Álvarez, Ana

    2014-05-01

    In Mediterranean areas, the loss of soil physical quality is of particular concern due to the vulnerability of these ecosystems in relation to unfavourable climatic conditions, which usually lead to soil degradation processes and severe decline of its functionality. As a result, increasing scientific attention is being paid on the exploration of soil properties which could be readily used as quality indicators, including organic matter which, in fact, represents a key factor in the maintenance of soil physical status. In this line, the present research tackles the assessment of the quality of several soils from central Spain with the purpose of identifying the physical properties most closely correlated with the organic matter, considering not only the quantity but also the quality of the different C-forms. The studied attributes consist of a series of physical properties determined in field and laboratory conditions-total porosity, aggregate stability, available water capacity, air provision, water infiltration rate and soil hydric saturation-.The bulk organic matter was characterised by solid-state 13C NMR spectroscopy and the major organic fractions (lipids, free particulate organic matter, fulvic acids, humic acids and humin) were quantified using standard procedures. The humic acids were also analysed by visible and infrared spectroscopies. The use of multidimensional scaling to classify physical properties in conjunction with molecular descriptors of soil organic matter, suggested significant correlations between the two set of variables, which were confirmed with simple and canonical regression models. The results pointed to two well-defined groups of physical attributes in the studied soils: (i) those associated with organic matter of predominantly aromatic character (water infiltration descriptors), and (ii) soil physical variables related to organic matter with marked aliphatic character, high preservation of the lignin signature and comparatively low degree of humification (properties involved in the maintenance of physical support, water storage and air provision functions). From the practical viewpoint, the results support the idea that the detailed structural study of the different soil C-forms is useful for accurately monitoring soil physical status. The quantification of total soil organic carbon ought to be complemented with qualitative analyses of the organic matter, at least at the spectroscopic level, which can be used for the early diagnosis of possible degradation processes. Moreover, in already degraded soils, the knowledge of the sources of variability for each physical property provides valuable information for the restoration of these ecosystems by adapting inputs of organic matter with specific features (aliphatic nature, oxidation degree, humification stage, etc.) to particular soil degradation problems (i.e. soil compaction, waterlogging, water erosion, etc.).

  20. Quality control of the soil moisture probe response patterns from a green infrastructure site using Dynamic Time Warping (DTW) and association rule learning

    NASA Astrophysics Data System (ADS)

    Yu, Z.; Bedig, A.; Quigley, M.; Montalto, F. A.

    2017-12-01

    In-situ field monitoring can help to improve the design and management of decentralized Green Infrastructure (GI) systems in urban areas. Because of the vast quantity of continuous data generated from multi-site sensor systems, cost-effective post-construction opportunities for real-time control are limited; and the physical processes that influence the observed phenomena (e.g. soil moisture) are hard to track and control. To derive knowledge efficiently from real-time monitoring data, there is currently a need to develop more efficient approaches to data quality control. In this paper, we employ dynamic time warping method to compare the similarity of two soil moisture patterns without ignoring the inherent autocorrelation. We also use a rule-based machine learning method to investigate the feasibility of detecting anomalous responses from soil moisture probes. The data was generated from both individual and clusters of probes, deployed in a GI site in Milwaukee, WI. In contrast to traditional QAQC methods, which seek to detect outliers at individual time steps, the new method presented here converts the continuous time series into event-based symbolic sequences from which unusual response patterns can be detected. Different Matching rules are developed on different physical characteristics for different seasons. The results suggest that this method could be used alternatively to detect sensor failure, to identify extreme events, and to call out abnormal change patterns, compared to intra-probe and inter-probe historical observations. Though this algorithm was developed for soil moisture probes, the same approach could easily be extended to advance QAQC efficiency for any continuous environmental datasets.

  1. Consequences of using different soil texture determination methodologies for soil physical quality and unsaturated zone time lag estimates

    NASA Astrophysics Data System (ADS)

    Fenton, O.; Vero, S.; Ibrahim, T. G.; Murphy, P. N. C.; Sherriff, S. C.; Ó hUallacháin, D.

    2015-11-01

    Elucidation of when the loss of pollutants, below the rooting zone in agricultural landscapes, affects water quality is important when assessing the efficacy of mitigation measures. Investigation of this inherent time lag (tT) is divided into unsaturated (tu) and saturated (ts) components. The duration of these components relative to each other differs depending on soil characteristics and the landscape position. The present field study focuses on tu estimation in a scenario where the saturated zone is likely to constitute a higher proportion of tT. In such instances, or where only initial breakthrough (IBT) or centre of mass (COM) is of interest, utilisation of site and depth specific "simple" textural class or actual sand-silt-clay percentages to generate soil water characteristic curves with associated soil hydraulic parameters is acceptable. With the same data it is also possible to estimate a soil physical quality (S) parameter for each soil layer which can be used to infer many other physical, chemical and biological quality indicators. In this study, hand texturing in the field was used to determine textural classes of a soil profile. Laboratory methods, including hydrometer, pipette and laser diffraction methods were used to determine actual sand-silt-clay percentages of sections of the same soil profile. Results showed that in terms of S, hand texturing resulted in a lower index value (inferring a degraded soil) than that of pipette, hydrometer and laser equivalents. There was no difference between S index values determined using the pipette, hydrometer and laser diffraction methods. The difference between the three laboratory methods on both the IBT and COM stages of tu were negligible, and in this instance were unlikely to affect either groundwater monitoring decisions, or to be of consequence from a policy perspective. When tu estimates are made over the full depth of the vadose zone, which may extend to several metres, errors resulting from the use of hydraulic parameters generated from hand texture data will be resultantly greater, and may lead to flawed predictions regarding the achievability of water policy targets. For this reason laboratory analysis, regardless of method, should be preferred to simple field assessments.

  2. Nutrient concentrations in leachate and runoff from dairy cattle lots with different surface materials

    USDA-ARS?s Scientific Manuscript database

    Nitrogen (N) and phosphorus (P) loss from agriculture persists as a water quality issue, and outdoor cattle lots can have a high loss potential. We monitored hydrology and nutrient concentrations in leachate and runoff from dairy heifer lots constructed with three surface materials (soil, sand, bark...

  3. Monitoring and modelling terbuthylazine and desethyl-terbuthylazine in groundwater.

    NASA Astrophysics Data System (ADS)

    Fait, G.; Balderacchi, M.; Ferrari, F.; Capri, E.; Trevisan, M.

    2009-04-01

    Protection of ground and surface water quality is critical to human health and environmental quality, as well as economic viability. The presence of contaminants in groundwater is a common phenomenon and derives from many anthropogenic activities. Among these activities most likely to pollute water resources are the use of fertilizers, pesticides, application of livestock, poultry manure, and urban sludge. Therefore, agriculture results to be a significant contributor to diffuse and point sources of groundwater contamination. A study was carried out from April 2005 until December 2007 in order to monitor the concentrations of the herbicide terbuthylazine and one of its metabolite, desethyl-terbuthylazine in shallow groundwater. Terbuthylazine is a widely used herbicide for pre-emergence and post-emergence weed control in several crops. The monitoring study was performed in different Italian areas representative of maize crop. These areas resulted to be in the north of Italy, in the Po Valley area. Inside these representative areas a total of eleven farms were identified; each farm had a plot extended for about 10 hectares, cultivated with maize according to normal agricultural practices, with slope not exceeding 5%, uniform direction of groundwater flow, absence of superficial water bodies. In order to sample groundwater, each plot was equipped with four couples of piezometers. Groundwater samplings were carried out every two months. The results showed that the concentrations of both compounds were in general low, except in a couple of sites, and especially in June and August, the months which follow the treatment, and in October and December, usually rainy months. In general metabolite concentrations were higher than the parent compound. On one hand a monitoring approach is helpful in order to understand the behaviour of a compound in real conditions; however, on the other hand it gives only an instant picture of the present situation without any prevision about the future. Therefore, after the monitoring study the leaching of terbuthylazine and desethyl-terbuthylazine in groundwater was simulated with the aim to: 1) to verify a possible dilution effect due to lateral recharge; 2) to verify that the sampling time during the monitoring study was appropriate; 3) to verify the leaching of the metabolites in time. The model MACRO (version 5.1) was used. MACRO is a physically based one-dimensional model, which considers preferential flow (i.e. 'micropores' and 'macropores') to describe the transport of water and solutes in soils. Using the data coming from the monitoring (i.e.: soil, climatic, geology and hydrological data) a scenario was set in each of the eleven Italian sites monitored from 2005 to 2007. A maize monoculture was simulated for 20 years in each site, with a pre-emergence treatment every year. Daily measurements of groundwater table depth were available for each site, and then these data were used in order to reach a good calibration of the soil hydrology. Two sets of soil data were used: soil data acquired from the analysis of the soil core sampled in each site and soil data of the corresponding reference profile obtained from the regional soil maps. Furthermore, in order to estimate soil hydraulic parameters, two sets of pedotransfer functions were used: one developed for the northern Europe soils and one developed for the Po Valley soils. The results showed that the groundwater table depth simulated fitted quite well with the measured data, and then it was demonstrated that the groundwater recharge was constant in time. Only in one site measured and simulated groundwater table depth did not match to each other. This case suggested that hydrological equilibrium was not given only by precipitation/irrigation and evapotranspiration, then lateral or bottom recharge and a consequent dilution effect were assumed. Furthermore, in order to estimate the lateral recharge "Darcy's Law" was applied and it was demonstrated that the lateral recharge was rather null in all sites except one, however for all sites it resulted that the two months sampling time was satisfactory in order to avoid dilution effect. Moreover, no particular differences resulted among the simulations with reference soil data and soil core data. Therefore, using the reference soil data the model can be applied to wider areas. In addition, no particular differences were shown in using the two different PTFs. Finally, the leaching of the parent compound and its metabolite in time was simulated and the estimated concentrations were compared with the measured ones. The ability to assess the environmental impact of pollutants at local, regional and global scales on a real time and predictive basis is a key component to achieving sustainability of the environment and agriculture.

  4. Sugarcane straw harvest effects on soil quality and plant growth: preliminary data synthesis of a multi-local project running in Brazil

    NASA Astrophysics Data System (ADS)

    Cherubin, Maurício; Cerri, Carlos E. P.; Feigl, Brigitte J.; Cerri, Carlos C.

    2017-04-01

    Brazil is the largest sugarcane producer in the world, and consequently, it is one of major players in the bioenergy production sector. Despite that, growing demands for bioenergies have raised the interest of Brazilian sugarcane industry to harvest the sugarcane straw left on the field for cellulosic ethanol production and/or bioelectricity cogeneration. However, crop residues have a key role in the soil, affecting directly or indirectly multiple soil functions and related ecosystem services. Therefore, indiscriminate straw harvest could jeopardize soil quality, decreasing its capacity to sustain plant productivity over time. In order to evaluate the potential impacts of sugarcane straw harvest on soil quality and plant growth, we are conducting since 2014 a multi-local project across central-southern Brazil, the main core of sugarcane production in the world. A wide range of soil chemical, physical and biological parameters, as well as, plant biomass production has been quantified under increasing straw harvest intensities. Our preliminary findings have showed that short-term straw harvest management did not affect total organic C stocks; however, high straw harvest led to significant reduction in labile C forms (e.g., microbial biomass C and N), and abundance of microbial communities as well. Sugarcane straw harvest affects soil nutrient cycling, since significant amount of nutrients are removed annually by straw, especially in top (green) leaves. In addition, our data show that straw acts as a thermal insulator, decreasing soil temperature amplitude and keeping soil moisture for a longer time. Straw harvest management did not affect sugarcane yields in the first two crop seasons. Based on this first synthesis of the project, we conclude that short-term sugarcane straw harvest led to soil changes, especially in more sensitive and dynamic properties, which did not affect the plant yield. However, long-term impacts should be monitored towards a better understanding about potential trade-offs and synergies associated with sugarcane straw harvest for bioenergy production in Brazil.

  5. METEOPOLE-FLUX: an observatory of terrestrial water, energy, and CO2 fluxes in Toulouse

    NASA Astrophysics Data System (ADS)

    Calvet, Jean-Christophe; Roujean, Jean-Louis; Zhang, Sibo; Maurel, William; Piguet, Bruno; Barrié, Joël; Bouhours, Gilles; Couzinier, Jacques; Garrouste, Olivier; Girres, Sandrine; Suquia, David; Tzanos, Diane

    2016-04-01

    The METEOPOLE-FLUX project (http://www.cnrm.meteo.fr/spip.php?article874&lang=en) aims at monitoring a large suburban set-aside field in the city of Toulouse (43.572898 N, 1.374384 E). Since June 2012, these data contribute to the international effort to monitor terrestrial ecosystems (grasslands in particular), to the validation of land surface models, and to the near real time quality monitoring of operational weather forecast models. Various variables are monitored at a subhourly rate: wind speed, air temperature, air humidity, atmospheric pressure, precipitation, turbulent fluxes (H, LE, CO2), downwelling and upwelling solar and infrared radiation, downwelling and upwelling PAR, fraction of diffuse incoming PAR, presence of water intercepted by vegetation (rain, dew), soil moisture profile, soil temperature profile, surface albedo, transmissivity of PAR in vegetation canopy. Moreover, local observations are performed using remote sensing techniques: infrared radiometry, GNSS reflectometry, and multi-band surface reflectometry using an aerosol photometer from the AERONET network. Destructive measurements of LAI, green/brown above-ground biomass, and necromass are performed twice a year. This site is characterized by a large fraction of gravels and stones in the soil, ranging from 17% to 35% in the top soil layer (down to 0.6 m), and peaking at 81% at 0.7 m. The impact of gravels and stones on thermal and moisture fluxes in the soil has not been much addressed in the past and is not represented in most land surface models. Their impact on the available water content for plant transpiration and plant growth is not much documented so far. The long term monitoring of this site will therefore improve the knowledge on land processes. The data will be used together with urban meteorological data to characterize the urban heat island. Finally, this site will be used for the CAL/VAL of various satellite products in conjunction with the SMOSMANIA soil moisture network (http://www.cnrm.meteo.fr/spip.php?article251&lang=en). The site will be presented together a first comparison of the ISBA land surface model with the observations.

  6. The Beaver Creek story

    USGS Publications Warehouse

    Doyle, W.H.; Whitworth, B.G.; Smith, G.F.; Byl, T.D.

    1996-01-01

    Beaver Creek watershed in West Tennessee includes about 95,000 acres of the Nation's most productive farmland and most highly erodible soils. In 1989 the U.S. Geological Survey, in cooperation with the Tennessee Department of Agriculture, began a study to evaluate the effect of agricultural activities on water quality in the watershed and for best management practices designed to reduce agricultural nonpoint-source pollution. Agrichemical monitoring included testing the soils, ground water, and streams at four farm sites ranging from 27 to 420 acres. Monitoring stations were operated downstream to gain a better understanding of the water chemistry as runoff moved from small ditches into larger streams to the outlet of the Beaver Creek watershed. Prior to the implementation of best management practices at one of the farm study sites, some storms produced an average suspended-sediment concentration of 70,000 milligrams per liter. After the implementation of BMP's, however, the average value never exceeded 7,000 milligrams per liter. No-till crop production was the most effective best management practice for conserving soil on the farm fields tested. A natural bottomland hardwood wetland and a constructed wetland were evaluated as instream resource-management systems. The wetlands improved water quality downstream by acting as a filter and removing a significant amount of nonpoint-source pollution from the agricultural runoff. The constructed wetland reduced the sediment, pesticide, and nutrient load by approximately 50 percent over a 4-month period. The results of the Beaver Creek watershed study have increased the understanding of the effects of agriculture on water resources. Study results also demonstrated that BMP's do protect and improve water quality.

  7. Scientific background for soil monitoring on National Forests and Rangelands: workshop proceedings; April 29-30, 2008; Denver, CO

    Treesearch

    Deborah Page-Dumroese; Daniel Neary; Carl Trettin

    2010-01-01

    This workshop was developed to determine the state-of-the-science for soil monitoring on National Forests and Rangelands. We asked international experts in the field of soil monitoring, soil monitoring indicators, and basic forest soil properties to describe the limits of our knowledge and the ongoing studies that are providing new information. This workshop and the...

  8. Impact of the reusing of food manufacturing wastewater for irrigation in a closed system on the microbiological quality of the food crops.

    PubMed

    Beneduce, Luciano; Gatta, Giuseppe; Bevilacqua, Antonio; Libutti, Angela; Tarantino, Emanuele; Bellucci, Micol; Troiano, Eleonora; Spano, Giuseppe

    2017-11-02

    In order to evaluate if the reuse of food industry treated wastewater is compatible for irrigation of food crops, without increased health risk, in the present study a cropping system, in which ground water and treated wastewater were used for irrigation of tomato and broccoli, during consecutive crop seasons was monitored. Water, crop environment and final products were monitored for microbial indicators and pathogenic bacteria, by conventional and molecular methods. The microbial quality of the irrigation waters influenced sporadically the presence of microbial indicators in soil. No water sample was found positive for pathogenic bacteria, independently from the source. Salmonella spp. and Listeria monocytogenes were detected in soil samples, independently from the irrigation water source. No pathogen was found to contaminate tomato plants, while Listeria monocytogenes and E. coli O157:H7 were detected on broccoli plant, but when final produce were harvested, no pathogen was detected on edible part. The level of microbial indicators and detection of pathogenic bacteria in field and plant was not dependent upon wastewater used. Our results, suggest that reuse of food industry wastewater for irrigation of agricultural crop can be applied without significant increase of potential health risk related to microbial quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Vadose Zone Monitoring of Dairy Green Water Lagoons using Soil Solution Samplers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brainard, James R.; Coplen, Amy K

    2005-11-01

    Over the last decade, dairy farms in New Mexico have become an important component to the economy of many rural ranching and farming communities. Dairy operations are water intensive and use groundwater that otherwise would be used for irrigation purposes. Most dairies reuse their process/green water three times and utilize lined lagoons for temporary storage of green water. Leakage of water from lagoons can pose a risk to groundwater quality. Groundwater resource protection infrastructures at dairies are regulated by the New Mexico Environment Department which currently relies on monitoring wells installed in the saturated zone for detecting leakage of wastemore » water lagoon liners. Here we present a proposal to monitor the unsaturated zone beneath the lagoons with soil water solution samplers to provide early detection of leaking liners. Early detection of leaking liners along with rapid repair can minimize contamination of aquifers and reduce dairy liability for aquifer remediation. Additionally, acceptance of vadose zone monitoring as a NMED requirement over saturated zone monitoring would very likely significantly reduce dairy startup and expansion costs. Acknowledgment Funding for this project was provided by the Sandia National Laboratories Small Business Assistance Program« less

  10. Study On The Application Of CBERS-02B To Quantitative Soil Erosion Monitoring

    NASA Astrophysics Data System (ADS)

    Shi, Mingchang; Xu, Jing; Wang, Lei; Wang, Xiaoyun; Mu, Jing

    2010-10-01

    Currently, the reduction of soil erosion is an important prerequisite for achieving ecological security. Since real-time and quantitative evaluation on regional soil erosion plays a significant role in reducing the soil erosion, soil erosion models are more and more widely used. Based on RUSLE model, this paper carries out the quantitative soil erosion monitoring in the Xi River Basin and its surrounding areas by using CBERS-02B CCD, DEM, TRMM and other data. Besides, it performs the validation for monitoring results by using remote sensing investigation results in 2005. The monitoring results show that in 2009, the total amount of soil erosion in the study area was 1.94×106t, the erosion area was 2055.2km2 (54.06% of the total area), and the average soil erosion modulus was 509.7t km-2 a-1. As a case using CBERS-02B data for quantitative soil erosion monitoring, this study provides experience on the application of CBERS-02B data in the field of quantitative soil erosion monitoring and also for local soil erosion management.

  11. Analysis of Actual Soil Degradation by Erosion Using Satellite Imagery and Terrain Attributes in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Zizala, Daniel

    2015-04-01

    Soil water and wind erosion (possibly tillage erosion) is the most significant soil degradation factor in the Czech Republic. Moreover, this phenomenon also affects seriously quality of water sources., About 50 % of arable land are endangered by water erosion and about 10 % of arable land are endangered wind erosion in the Czech Republic. These processes have been accelerated by human activity. Specific condition of agriculture land in the Czech Republic including highland relief and particularly size of land parcel and intensification of agriculture does not enable to reduce flow of runoff water. Insufficient protection against accelerated erosion processes is related to lack of landscape and hydrographic elements and large area of agricultural plots. Currently, this issue is solved at plot scale by field investigation or at regional scale using numerical and empirical erosion models. Nevertheless, these models enable only to predict the potential of soil erosion. Large scale assessment of actual degradation level of soils is based on expert knowledge. However, there are still many uncertainties in this issue. Therefore characterization of actual degradation level of soil is required especially for assessment of long-term impact of soil erosion on soil fertility. Soil degradation by erosion can be effectively monitored or quantified by modern tools of remote sensing with variable level of detail accessible. Aims of our study is to analyse the applicability of remote sensing for monitoring of actual soil degradation by erosion. Satellite and aerial image data (multispectral and hyperspectral), terrain attributes and data from field investigation are the main source for this analyses. The first step was the delimitation of bare soils using supervised classification of the set of Landsat scenes from 2000 - 2014. The most suitable period of time for obtaining spectral image data with the lowest vegetation cover of soil was determined. The results were verified by statistical data of areas under farm crops from Czech Statistical Office. Information on number of scenes where bare soils are identified for each land parcel is available. This set of images with bare soils is used for assessment of soil degradation stage. Some land parcels were found without vegetation cover up to 40 times. Analysis was performed on 5 test sites in the Czech Republic and also using data from database of Soil Erosion Monitoring of Agricultural Land. Currently, more than 500 erosion events are registered in this database. Additional remote sensing data (Hyperion data, aerial hyperspectral data) was used for detailed analysis on the test sites. Results reveal that satellite imagery set, soil maps, terrain attributes and erosion modelling can be successfully applied in assessment of actual soil degradation by erosion. The research has been supported by the project no. QJ330118 "Using Remote Sensing for Monitoring of Soil Degradation by Erosion and Erosion Effects" funding by Ministry of Agriculture.

  12. Use of compost to restore a contaminated site in Southern Italy: preliminary study to assess compost efficiency in remediating a heavily polluted soil in Taranto city.

    NASA Astrophysics Data System (ADS)

    Ancona, Valeria; Campanale, Claudia; Calabrese, Angelantonio; Vito Felice, Uricchio; Simona, Regano

    2014-05-01

    Soil pollution is one of the most soil relevant threats recognized in the world. Contamination affects soil quality and soil capacity to react against several land degradation processes (erosion, organic depletion, desertification, etc.). The identification of opportune strategies to hinder pollution is a fundamental requirement to restore soil quality. In particular, large attentions have got the techniques, which promote the decontamination, and at the same time, improve fertility allowing a new use of a soil restored. In this work we present a preliminary study to assess the use of compost (an organic fertilizer produced through a process of transformation and controlled stabilization of selected organic waste at the source) in remediating a heavily polluted soil in southern Italy. The study site is located in Taranto city (Apulia Region) and is contaminated predominantly by heavy metals and lightly by organic toxic compounds such us polychlorinated biphenyls (PCBs). An exhaustive chemical characterization has been carried out on soil samples and then, a treatment with compost was applied on the study site. Successively, two data acquisition campaigns have been realized (after 4 and 7 months by compost treatment, respectively). Soil chemical analyses of texture, electrical conductivity, pH, organic carbon content, total nitrogen, available phosphorous, carbonate and water content have been carried out to investigate soil properties. In the polluted site chemical analyses of characterization showed low content of nutrients (nitrogen and phosphorous) and high level of carbonate. Heavy metals screenings, carried out through ICP-MS equipment, evidenced a massive contamination by Be, Se, Sn, Pb, Cr, Zn, while GC-MS investigations revealed a lower pollution by PCBs. The results of the monitoring campaigns showed a consistent reduction of the heavy metals concentrations: a higher decrease is observed after 7 months by compost treatment. At the same time, a considerable increase of organic carbon, nitrogen and phosphorus is also registered. The overall results suggest that the use of compost contributed to improve soil physico-chemical properties and promote a relevant decrease of pollution suggesting that a process of soil quality restoration is performing.

  13. Disaggregation of remotely sensed soil moisture under all sky condition using machine learning approach in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Kim, S.; Kim, H.; Choi, M.; Kim, K.

    2016-12-01

    Estimating spatiotemporal variation of soil moisture is crucial to hydrological applications such as flood, drought, and near real-time climate forecasting. Recent advances in space-based passive microwave measurements allow the frequent monitoring of the surface soil moisture at a global scale and downscaling approaches have been applied to improve the spatial resolution of passive microwave products available at local scale applications. However, most downscaling methods using optical and thermal dataset, are valid only in cloud-free conditions; thus renewed downscaling method under all sky condition is necessary for the establishment of spatiotemporal continuity of datasets at fine resolution. In present study Support Vector Machine (SVM) technique was utilized to downscale a satellite-based soil moisture retrievals. The 0.1 and 0.25-degree resolution of daily Land Parameter Retrieval Model (LPRM) L3 soil moisture datasets from Advanced Microwave Scanning Radiometer 2 (AMSR2) were disaggregated over Northeast Asia in 2015. Optically derived estimates of surface temperature (LST), normalized difference vegetation index (NDVI), and its cloud products were obtained from MODerate Resolution Imaging Spectroradiometer (MODIS) for the purpose of downscaling soil moisture in finer resolution under all sky condition. Furthermore, a comparison analysis between in situ and downscaled soil moisture products was also conducted for quantitatively assessing its accuracy. Results showed that downscaled soil moisture under all sky condition not only preserves the quality of AMSR2 LPRM soil moisture at 1km resolution, but also attains higher spatial data coverage. From this research we expect that time continuous monitoring of soil moisture at fine scale regardless of weather conditions would be available.

  14. An invisible soil acidification: Critical role of soil carbonate and its impact on heavy metal bioavailability

    PubMed Central

    Wang, Cheng; Li, Wei; Yang, Zhongfang; Chen, Yang; Shao, Wenjing; Ji, Junfeng

    2015-01-01

    It is well known that carbonates inhibit heavy metals transferring from soil to plants, yet the mechanism is poorly understood. Based on the Yangtze River delta area, we investigated bioaccumulation of Ni and Cd in winter wheat as affected by the presence of carbonates in soil. This study aimed to determine the mechanism through which soil carbonates restrict transport and plant uptake of heavy metals in the wheat cropping system. The results indicate that soil carbonates critically influenced heavy metal transfer from soil to plants and presented a tipping point. Wheat grains harvested from carbonates-depleted (due to severe leaching) soils showed Ni and Cd concentrations 2–3 times higher than those of the wheat grains from carbonates-containing soils. Correspondingly, the incidence of Ni or Cd contamination in the wheat grain samples increased by about three times. With the carbonate concentration >1% in soil, uptake and bioaccumulation of Ni and Cd by winter wheat was independent with the soil pH and carbonate content. The findings suggest that soil carbonates play a critical role in heavy metal transfer from soil to plants, implying that monitoring soil carbonate may be necessary in addition to soil pH for the evaluating soil quality and food safety. PMID:26227091

  15. Response of stress indicators and growth parameters of Tibouchina pulchra Cogn. exposed to air and soil pollution near the industrial complex of Cubatão, Brazil.

    PubMed

    Klumpp, G; Furlan, C M; Domingos, M; Klumpp, A

    2000-01-31

    The present study was performed in the vicinity of the industrial complex of Cubatão, São Paulo, Brazil, in order to evaluate the response of 'manaca da serra' Tibouchina pulchra Cogn. (Melastomataceae), a common species of secondary Atlantic Rain Forest vegetation, to the impact of complex air pollution. Emphasis was given to changes of biochemical parameters such as ascorbic acid concentration, peroxidase activity, contents of water-soluble thiols, pH of leaf extract and buffering capacity. These plant factors are often used as early indicators of air pollution stress. Field experiments included sampling of leaves from mature trees in areas with different air pollution load (passive monitoring), exposure of saplings cultivated in uniform soil at these areas (active monitoring) and a study on the combined effects of contaminated soil and air pollution. In general, metabolic response of saplings was more accentuated than that of mature trees. Leaf extract pH and buffering capacity showed no or only small alterations in plants exposed to industrial emissions. In contrast, air pollution resulted in a distinct decrease in ascorbic acid contents and an increase in peroxidase activity and thiol concentrations in leaves. Cultivation of saplings in soil types from contaminated regions frequently caused the same modifications or enhanced the effects produced by air pollution. Growth analysis of exposed saplings demonstrated that a change of the relationship between above-ground and below-ground plant parts was the most obvious effect of air pollution and soil contamination. The experiments showed that even T. pulchra, a species considered resistant to air pollution, suffers metabolic disturbances by the present ambient air and soil quality. Although biochemical and physiological alterations were not related to a certain air pollution type, they could be used to estimate the overall pollution load and to map zones with different air quality.

  16. [Influence of the substrate composition in extensive green roof on the effluent quality].

    PubMed

    Chen, Yu-Lin; Li, Tian; Gu, Jun-Qing

    2014-11-01

    By monitoring the effluent quality from different green roof assemblies during several artificial rain events, the main pollutant characteristics and the influence of substrate composition in extensive green roof on the effluent quality were studied. Results showed that the main pollutants in the effluent were N, P and COD; with the increase of cumulative rain, the concentrations of pollutants in the effluent decreased, which had obvious leaching effect; The average concentrations of heavy metals in the early effluent from all assemblies reached drinking water standard, including the assemblies using crushed bricks; When garden soil and compost were used as organic matter, the assemblies had serious leaching of nutrient substance. After the accumulated rainfall reached 150 mm, the TN, TP and COD concentrations of effluent were 2.93, 0.73 and 78 mg x L(-1), respectively, which exceeded the Surface water V class limit. By means of application of the Water Treatment Residual, the leaching of TP from green planting soil was decreased by about 60%. The inorganic compound soil had better effluent quality, however we also need to judge whether the substrate could be applied in extensive green roof or not, by analyzing its ability of water quantity reduction and the plant growth situation.

  17. Reconceptualizing INRM in understanding environmental risks from food production systems.

    PubMed

    Pandey, Chitra; Diwan, Hema

    2018-02-15

    Sustainable agri-development is composed of soil fertility maintenance, nutrient use efficiency and resource use efficiency. In this regard, the present study aims to address the complex dynamics of farm-soil and the water nexus for integrated natural resource management by understanding the fertilizer use decision of farmers. In addition to the monitoring of soil quality parameters, that is, the total nitrogen and nitrate concentrations, factor analysis was used to explore the drivers of high fertilizer use in the most agriculturally intensive region of India. The results classified economic benefits, intrinsic and extrinsic motivations, resource-related aspects, institutional set-up and passivity towards environmental quality as major entry points for integrated natural resource management. Although the economic benefit in the form of the affordability of nitrogenous fertilizers was found to be the most critical rationale for fertilizer use, passivity towards environmental quality emerged as a factor of interest. Because short-term economic benefits outweigh concerns for environmental quality, our research suggests that outreach educational programs on sustainable farm practices can be instrumental in resource management. Support of the farming community by governmental/non-governmental agricultural agencies to formulate site-specific recommendations can significantly mitigate fertilizer-induced non-point pollution. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Implementation of SMOS data monitoring in the Integrated Forecast System. Preliminary results.

    NASA Astrophysics Data System (ADS)

    Muñoz Sabater, Joaquin; de Rosnay, Patricia; Drusch, Mathias; Dahoui, Mohamed; Delwart, Steven; Wright, Norrie

    2010-05-01

    The Soil Moisture and Ocean Salinity (SMOS) mission of the European Space Agency (ESA) was successfully launched on November 2nd 2009. Using a novel concept based on the Synthetic Aperture Radar technique, it is expected that SMOS observations will provide global accurate maps of brightness temperatures (TB) and soil moisture at L-band every 3 days and at 50 km ground-spatial resolution. Thus, SMOS data will soon provide a valuable input for numerical weather prediction (NWP), hydrological and land surface systems, among others. Operational numerical weather forecast systems are widely used to evaluate and analyse new types of satellite observations. NWP centres use these observations in their analyses to derive level 2 retrieved geophysical parameters (e.g. soil moisture and ocean salinity for SMOS) from the observed radiances. The European Centre for Medium Range Weather Forecasts is monitoring the first flow of SMOS level 1C TB over sea and land. Monitoring, i.e. the systematic comparison between observations and the corresponding model parameters, is a mandatory step prior to data assimilation. Consequently, monitoring provides an overall quality assessment of SMOS data based on departures values between SMOS observations and the modelled equivalent in the observation space. This is a significant contribution to the calibration / validation activities during the SMOS commissioning phase. Any systematic error or spikes in the data become visible and can be reported to ESA and the other calibration and validation teams without significant delays. Furthermore, the monitored data at global scale will help to calibrate the SMOS instrument at key decision points during the commissioning phase. In this paper the first SMOS data over land is monitored. Special emphasis is given to the effect of different parametrisations and auxiliary data sets on the simulated TB. This is a first step towards the assimilation of SMOS TB to improve the initialization of soil moisture for NWP systems.

  19. Environmental surveillance master sampling schedule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisping, L.E.

    This document contains the planned 1994 schedules for routine collection of samples for the Surface Environmental Surveillance Project (SESP), Drinking Water Project, and Ground-Water Surveillance Project. Samples are routinely collected for the SESP and analyzed to determine the quality of air, surface water, soil, sediment, wildlife, vegetation, foodstuffs, and farm products at Hanford Site and surrounding communities. The responsibility for monitoring the onsite drinking water falls outside the scope of the SESP. The Hanford Environmental Health Foundation is responsible for monitoring the nonradiological parameters as defined in the National Drinking Water Standards while PNL conducts the radiological monitoring of themore » onsite drinking water. PNL conducts the drinking water monitoring project concurrent with the SESP to promote efficiency and consistency, utilize the expertise developed over the years, and reduce costs associated with management, procedure development, data management, quality control and reporting. The ground-water sampling schedule identifies ground-water sampling events used by PNL for environmental surveillance of the Hanford Site.« less

  20. State of the Art in Large-Scale Soil Moisture Monitoring

    NASA Technical Reports Server (NTRS)

    Ochsner, Tyson E.; Cosh, Michael Harold; Cuenca, Richard H.; Dorigo, Wouter; Draper, Clara S.; Hagimoto, Yutaka; Kerr, Yan H.; Larson, Kristine M.; Njoku, Eni Gerald; Small, Eric E.; hide

    2013-01-01

    Soil moisture is an essential climate variable influencing land atmosphere interactions, an essential hydrologic variable impacting rainfall runoff processes, an essential ecological variable regulating net ecosystem exchange, and an essential agricultural variable constraining food security. Large-scale soil moisture monitoring has advanced in recent years creating opportunities to transform scientific understanding of soil moisture and related processes. These advances are being driven by researchers from a broad range of disciplines, but this complicates collaboration and communication. For some applications, the science required to utilize large-scale soil moisture data is poorly developed. In this review, we describe the state of the art in large-scale soil moisture monitoring and identify some critical needs for research to optimize the use of increasingly available soil moisture data. We review representative examples of 1) emerging in situ and proximal sensing techniques, 2) dedicated soil moisture remote sensing missions, 3) soil moisture monitoring networks, and 4) applications of large-scale soil moisture measurements. Significant near-term progress seems possible in the use of large-scale soil moisture data for drought monitoring. Assimilation of soil moisture data for meteorological or hydrologic forecasting also shows promise, but significant challenges related to model structures and model errors remain. Little progress has been made yet in the use of large-scale soil moisture observations within the context of ecological or agricultural modeling. Opportunities abound to advance the science and practice of large-scale soil moisture monitoring for the sake of improved Earth system monitoring, modeling, and forecasting.

  1. Wildfire and soil emissions of NOx and their consequences for ozone observed at a remote mountaintop site in Central California

    NASA Astrophysics Data System (ADS)

    Asher, E. C. C.; Caputi, D.; Conley, S. A.; Faloona, I. C.

    2016-12-01

    Nitric oxide (NOx) emissions contribute to the production of tropospheric ozone and the nutrient supply fueling primary production. Current global estimates indicate that biomass burning, including wildfires, and soil emissions represent 15 - 25 % of the total emissions. Yet estimates suggest that in North America during the summer, natural sources, including biomass burning, soil emissions and lightning, are responsible for nearly half of total emissions. Thus, as domestic air quality standards grow stricter and anthropogenic sources more regulated, constraining natural sources of NOx becomes critical. NOx concentrations in wildfire smoke differ based on the age of the plume, fire intensity and vegetation type. NOx soil emissions depend on soil moisture, soil temperature, soil porosity, and nitrogen storage. We present two years of NOx and ozone (O3) measurements from a remote mountaintop monitoring site located on Chews Ridge in the coastal mountains of Central California, airborne observations, and remotely sensed NO2 tropospheric columns retrieved using the Ozone Monitoring Instrument (OMI). We explore controls on NOx concentrations at Chews Ridge, in Monterey County, such as the age of wildfire smoke plumes and wildfire intensity (i.e. burning vs. smoldering), as well as soil moisture and precipitation, which can lead to pulsed NOx fluxes. Most recently our in situ observations fortuitously captured differing amounts of the active plume of the Soberanes wildfire, which to date has burned >45,000 acres and is expected to continue partially contained through August 2016. Implications of these episodic sources of NOx on the regional ozone budget will be discussed.

  2. Current Applications of OMI Tropospheric NO2 Data for Air Quality and a Look to the Future

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Bucsela, E.; Allen, D.; Prados, A.; Gleason, J.; Kondragunta, S.

    2010-01-01

    Ozone Monitoring Instrument (OMI) Tropospheric NO2 products are being used to enhance the ability to monitor changes in NO2 air quality, update emission inventories, and evaluate regional air quality models. Trends in tropospheric column NO2 have been examined over the eastern United States in relation to emissions changes mandated by regulatory actions. Decreases of 20 to 40 percent over the period 2005 to 2008 were noted, largely in response to major emission reductions at power plants. The OMI data have been used to identify regions in which the opposite trend has been found. We have also used OMI NO2 in efforts to improve emission inventories for NOx emissions from soil. Lightning NOx emissions have been added to CMAQ, the US Environmental Protection Agency's regional air quality model. Evaluation of the resulting NO2 columns in the model is being conducted using the OMI NO2 observations. Community Multiscale Air Quality (CMAQ) together with the OMI NO2 data comprise a valuable tool for monitoring and predicting air quality. Looking to the future, we expect that the combination of Global Ozone Monitoring Experiment-2 (GOME-2) (morning) and OMI (afternoon) data sets obtained through use of the same retrieval algorithms will substantially increase the possibility of successful integration of satellite information into regional air quality forecast models. Farther down the road, we anticipate the Geostationary Coastal and Air Pollution Events (GEO-CAPE) platform to supply data possibly on an hourly basis, allowing much more comprehensive analysis of air quality from space.

  3. Soil Quality Standards Monitoring Program administration and implementation

    Treesearch

    Randy L. Davis; Felipe Sanchez; Sharon DeHart

    2010-01-01

    Forest managers and resource scientists and specialists are engaged in a partnership to sustain the natural resource value of our national forests. Managers are faced with deciding which activities provide the best resource benefits with the least resource damage. Many, but not all, aspects of the decision process must be based on the science supporting our current...

  4. Detection of viable Cyptosporidium parvum in soil by reverse transcription real time PCR targeting hsp70 mRNA

    EPA Science Inventory

    Extraction of high-quality mRNA from Cryptosporidium parvum is a key step in PCR detection of viable oocysts in environmental samples. Current methods for monitoring oocysts are limited to water samples; therefore, the goal of this study was to develop a rapid and sensitive proce...

  5. Remote Monitoring of Post-eruption Volcano Environment Based-On Wireless Sensor Network (WSN): The Mount Sinabung Case

    NASA Astrophysics Data System (ADS)

    Soeharwinto; Sinulingga, Emerson; Siregar, Baihaqi

    2017-01-01

    An accurate information can be useful for authorities to make good policies for preventive and mitigation after volcano eruption disaster. Monitoring of environmental parameters of post-eruption volcano provides an important information for authorities. Such monitoring system can be develop using the Wireless Network Sensor technology. Many application has been developed using the Wireless Sensor Network technology, such as floods early warning system, sun radiation mapping, and watershed monitoring. This paper describes the implementation of a remote environment monitoring system of mount Sinabung post-eruption. The system monitor three environmental parameters: soil condition, water quality and air quality (outdoor). Motes equipped with proper sensors, as components of the monitoring system placed in sample locations. The measured value from the sensors periodically sends to data server using 3G/GPRS communication module. The data can be downloaded by the user for further analysis.The measurement and data analysis results generally indicate that the environmental parameters in the range of normal/standard condition. The sample locations are safe for living and suitable for cultivation, but awareness is strictly required due to the uncertainty of Sinabung status.

  6. Assessment of land use in protected areas of the state of Sao Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Iori, P.; da Silva, R. B.; Dias Junior, M. S.; Paz González, A.

    2012-04-01

    It is of universal knowledge that the soil, a basic natural resource, is renewable only if conserved or used correctly(Primavesi, 2002). It is salient for Araújo et al. (2007) that the establishment of index of soil quality is an important tool in the functions of control, supervision and monitoring of areas for environmental protection. The objective of this study was to compare the quality of the soil by means of a comparative diagram in different soil uses in permanent preservation areas (APP). The study was conducted in areas near the Ribeira de Iguape river in the city of Registro - São Paulo - Brazil, belonging to the Atlantic Forest domain, a Haplic Cambisol. The following uses of the soil had been evaluated: a) banana culture (CBAN) without agricultural traffic of machines; b) degraded pasture (PDEG) with extensive system predominantly Brachiaria decumbens L. c) use silvopastoral (MPIs), consisted in a kills with a traffic free for the animals, and d) native vegetation (MNAT), proposed in this study as a reference area.The following physical indicators were analyzed: bulk density (BD), total soil porosity (TP), macroporosity (Ma), microporosity (Mi), water dispersible clay (ADA), flocculation index (FI), preconsolidation pressure (PP), soil shear strength (SS), soil resistance to penetration (RP). To construct the comparative diagram the values for each attribute of the soil in each land use were related to the values of the native forest. It was feasible to use the comparative model in the qualitative evaluation of soil use, allowing separate environments under different uses. According to the comparative diagram of banana culture is the use that most negatively impacts the physical and mechanical soil due to the smaller size of the lower polygon.

  7. Improvements to measuring water flux in the vadose zone.

    PubMed

    Masarik, Kevin C; Norman, John M; Brye, Kristofor R; Baker, John M

    2004-01-01

    Evaluating the impact of land use practices on ground water quality has been difficult because few techniques are capable of monitoring the quality and quantity of soil water flow below the root zone without disturbing the soil profile and affecting natural flow processes. A recently introduced method, known as equilibrium tension lysimetry, was a major improvement but it was not a true equilibrium since it still required manual intervention to maintain proper lysimeter suction. We addressed this issue by developing an automated equilibrium tension lysimeter (AETL) system that continuously matches lysimeter tension to soil-water matric potential of the surrounding soil. The soil-water matric potential of the bulk soil is measured with a heat-dissipation sensor, and a small DC pump is used to apply suction to a lysimeter. The improved automated approach reported here was tested in the field for a 12-mo period. Powered by a small 12-V rechargeable battery, the AETLs were able to continuously match lysimeter suction to soil-water matric potential for 2-wk periods with minimal human attention, along with the added benefit of collecting continuous soil-water matric potential data. We also demonstrated, in the laboratory, methods for continuous measurement of water depth in the AETL, a capability that quantifies drainage on a 10-min interval, making it a true water-flux meter. Equilibrium tension lysimeters have already been demonstrated to be a reliable method of measuring drainage flux, and the further improvements have created a more effective device for studying water drainage and chemical leaching through the soil matrix.

  8. The application of soil amendments benefits to the reduction of phosphorus depletion and the growth of cabbage and corn.

    PubMed

    Liu, Wei; Ji, Hongli; Kerr, Philip; Wu, Yonghong; Fang, Yanming

    2015-11-01

    The loss of phosphorus from agricultural intensive areas can cause ecological problems such as eutrophication in downstream surface waters. Therefore, the purpose of this study is to control the phosphorus loss using environmentally benign soil amendments, viz, ferrous sulfate (FES), aluminum sulfate (ALS), and polyacrylamide (PAM). The phosphorus concentration changes in soil and leaching solution, the morphological index of plant (including stem and root), and root activity and quality (represented by chlorophyll and soluble sugar) at different growth stages of cabbage (Brassica oleracea L. var. capitata L.) were monitored in a pilot experiment. Phosphorus contents in soil and runoff were also investigated in field experiments cultivated with corn (Zea mays L.). The results show that the application of these amendments improved the phosphorus uptake by cabbage and corn, resulting in the enhanced morphologies of root and stem as well as the root activity at the early and middle stages of cabbage growth. The soil total phosphorus and available phosphorus in soils treated with FES, ALS, and PAM declined, resulting in lower concentrations of phosphorus in the leachate and the soil runoff. During the use of the soil amendments, the cabbage quality measures, determined as chlorophyll and soluble sugar in leaves, were not significantly different from those in the control. It is suggested that the application of these soil amendments is safe for cabbage production under single season cropping conditions, and the use of these three amendments is a promising measure to reduce phosphorus loss in intensive agricultural areas.

  9. Distribution of radionuclides in the environment in northern Italy after the Chernobyl accident.

    PubMed

    Berzero, A; Borroni, P A; Oddone, M; Crespi, V C; Genova, N; Meloni, S

    1992-03-01

    Soon after the Chernobyl nuclear accident, the air-pumping stations in Pavia (northern Italy) were alerted. In a few days, a rapid increase in radionuclide concentration in air particulates was observed. Consequently, an environmental radioactivity monitoring programme was started in which several matrices such as soil, grass, vegetables and cows' milk were subjected to direct gamma-ray spectrometry. The radioactivity distribution and its variation with time is presented, discussed and compared with other available data. Detection limits, precision and accuracy are also reported, and depth profiles in soils for 137Cs are presented and correlated with soil quality parameters. A survey of environmental radioactivity in soil, in a search for residual Chernobyl fallout, was carried out and a map of the 137Cs distribution over a large area in northern Italy is presented and discussed.

  10. Genesis and properties of wetland soils by VIS-NIR-SWIR as a technique for environmental monitoring.

    PubMed

    Demattê, José Alexandre Melo; Horák-Terra, Ingrid; Beirigo, Raphael Moreira; Terra, Fabrício da Silva; Marques, Karina Patrícia Prazeres; Fongaro, Caio Troula; Silva, Alexandre Christófaro; Vidal-Torrado, Pablo

    2017-07-15

    Wetlands are important ecosystems characterized by redoximorphic environments producing typical soil forming processes and organic carbon accumulation. Assessments and management of these areas are dependent on knowledge about soil characteristics and variability. By reflectance spectroscopy, information about soils can be obtained since their spectral behaviors are directly related to their chemical, physical, and mineralogical properties reflecting the pedogenetic processes and environment conditions. Our aims were: (a) to characterize the main soil classes of wetlands regarding their spectral behaviors in VIS-NIR-SWIR (350-2500 nm) and relate them to pedogenesis and environmental conditions, (b) to determine spectral ranges (bands) with greater expression of the main soil properties, (c) to identify spectral variations and similarities between hydromorphic soils from wetlands and other soils under different moisture conditions, and (d) to propose spectral models to quantify some chemical and physical soil properties used as environmental quality indicators. Nine soil profiles from the Pantanal region (Mato Grosso State, Brazil) and one from the Serra do Espinhaço Meridional (Minas Gerais State, Brazil) were investigated. Spectral morphology interpretation allowed identifying horizon differences regarding shape, absorption features and reflectance intensity. Some pedogenetic processes of wetland soils related to organic carbon accumulation and oxide iron variation were identified by spectra. Principal Component Analysis allowed discriminating soils from wetland and outside this area (oxidic environment). Quantification of organic carbon was possible with R 2 of 0.90 and low error. Quantification of clay content was masked by soils with organic carbon content over 2% where it was not possible to quantify with high R 2 and low error both properties when dataset has soil samples with high organic carbon content. By reflectance spectroscopy, important characteristics of wetland soils can be identified and used to distinguish from soils of different environments at low costs, reduced time, and with environmental quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Soil quality assessment using GIS-based chemometric approach and pollution indices: Nakhlak mining district, Central Iran.

    PubMed

    Moore, Farid; Sheykhi, Vahideh; Salari, Mohammad; Bagheri, Adel

    2016-04-01

    This paper is a comprehensive assessment of the quality of soil in the Nakhlak mining district in Central Iran with special reference to potentially toxic metals. In this regard, an integrated approach involving geostatistical, correlation matrix, pollution indices, and chemical fractionation measurement is used to evaluate selected potentially toxic metals in soil samples. The fractionation of metals indicated a relatively high variability. Some metals (Mo, Ag, and Pb) showed important enrichment in the bioavailable fractions (i.e., exchangeable and carbonate), whereas the residual fraction mostly comprised Sb and Cr. The Cd, Zn, Co, Ni, Mo, Cu, and As were retained in Fe-Mn oxide and oxidizable fractions, suggesting that they may be released to the environment by changes in physicochemical conditions. The spatial variability patterns of 11 soil heavy metals (Ag, As, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sb, and Zn) were identified and mapped. The results demonstrated that Ag, As, Cd, Mo, Cu, Pb, Sb, and Zn pollution are associated with mineralized veins and mining operations in this area. Further environmental monitoring and remedial actions are required for management of soil heavy metals in the study area. The present study not only enhanced our knowledge regarding soil pollution in the study area but also introduced a better technique to analyze pollution indices by multivariate geostatistical methods.

  12. In situ assessment of phytotechnologies for multicontaminated soil management.

    PubMed

    Ouvrard, S; Barnier, C; Bauda, P; Beguiristain, T; Biache, C; Bonnard, M; Caupert, C; Cébron, A; Cortet, J; Cotelle, S; Dazy, M; Faure, P; Masfaraud, J F; Nahmani, J; Palais, F; Poupin, P; Raoult, N; Vasseur, P; Morel, J L; Leyval, C

    2011-01-01

    Due to human activities, large volumes of soils are contaminated with organic pollutants such as polycyclic aromatic hydrocarbons, and very often by metallic pollutants as well. Multipolluted soils are therefore a key concern for remediation. This work presents a long-term evaluation of the fate and environmental impact of the organic and metallic contaminants of an industrially polluted soil under natural and plant-assisted conditions. A field trial was followed for four years according to six treatments in four replicates: unplanted, planted with alfalfa with or without mycorrhizal inoculation, planted with Noccaea caerulescens, naturally colonized by indigenous plants, and thermally treated soil planted with alfalfa. Leaching water volumes and composition, PAH concentrations in soil and solutions, soil fauna and microbial diversity, soil and solution toxicity using standardized bioassays, plant biomass, mycorrhizal colonization, were monitored. Results showed that plant cover alone did not affect total contaminant concentrations in soil. However, it was most efficient in improving the contamination impact on the environment and in increasing the biological diversity. Leaching water quality remained an issue because of its high toxicity shown by micro-algae testing. In this matter, prior treatment of the soil by thermal desorption proved to be the only effective treatment.

  13. A case study for evaluating potential soil sensitivity in aridland systems.

    PubMed

    Peterman, Wendy L; Ferschweiler, Ken

    2016-04-01

    Globally, ecosystems are subjected to prolonged droughts and extreme heat events, leading to forest die-offs and dominance shifts in vegetation. Some scientists and managers view soil as the main resource to be considered in monitoring ecosystem responses to aridification. As the medium through which precipitation is received, stored, and redistributed for plant use, soil is an important factor in the sensitivity of ecosystems to a drying climate. This study presents a novel approach to evaluating where on a landscape soils may be most sensitive to drying, making them less resilient to disturbance, and where potential future vegetation changes could lead to such disturbance. The drying and devegetation of arid lands can increase wind erosion, contributing to aerosol and dust emissions. This has implications for air quality, human health, and water resources. This approach combines soil data with vegetation simulations, projecting future vegetation change, to create maps of potential areas of concern for soil sensitivity and dust production in a drying climate. Consistent with recent observations, the projections show shifts from grasslands and woodlands to shrublands in much of the southwestern region. An increase in forested area occurs, but shifts in the dominant types and spatial distribution of the forests also are seen. A net increase in desert ecosystems in the region and some changes in alpine and tundra ecosystems are seen. Approximately 124,000 km(2) of soils flagged as "sensitive" are projected to have vegetation change between 2041 and 2050, and 82,927 km(2) of soils may become sensitive because of future vegetation changes. These maps give managers a way to visualize and identify where soils and vegetation should be investigated and monitored for degradation in a drying climate, so restoration and mitigation strategies can be focused in these areas. © 2015 SETAC.

  14. Floristic Quality Index: An assessment tool for restoration projects and monitoring sites in coastal Louisiana

    USGS Publications Warehouse

    Cretini, K.F.; Steyer, G.D.

    2011-01-01

    The Coastwide Reference Monitoring System (CRMS) program was established to assess the effectiveness of individual coastal restoration projects and the cumulative effects of multiple projects at regional and coastwide scales. In order to make these assessments, analytical teams have been assembled for each of the primary data types sampled under the CRMS program, including vegetation, hydrology, landscape, and soils. These teams consist of scientists and support staff from the U.S. Geological Survey and other Federal agencies, the Louisiana Office of Coastal Protection and Restoration, and university academics. Each team is responsible for developing or identifying parameters, indices, or tools that can be used to assess coastal wetlands at various scales. The CRMS Vegetation Analytical Team has developed a Floristic Quality Index for coastal Louisiana to determine the quality of a wetland based on its plant species composition and abundance.

  15. Main Parameters of Soil Quality and it's Management Under Changing Climate

    NASA Astrophysics Data System (ADS)

    László Phd, M., ,, Dr.

    2009-04-01

    Reviewing Paper Introduction: Malcolm summarised the topic of soil quality and it's management in a well synthetized form in 2000. So, the soils are fundamental to the well-being and productivity of agricultural and natural ecosystems. Soil quality is a concept being developed to characterize the usefulness and health of soils. Soil quality includes soil fertility, potential productivity, contaminant levels and their effects, resource sustainability and environmental quality. A general definition of soil quality is the degree of fitness of a soil for a specific use. The existence of multiple definitions suggests that the soil quality concept continues to evolve (Kádár, 1992; Várallyay, 1992, 1994, 2005; Németh, 1996; Malcolm, 2000; Márton, 2005; Márton et al. 2007). Recent attention has focused on the sustainability of human uses of soil, based on concerns that soil quality may be declining (Boehn and Anderson, 1997). We use sustainable to mean that a use or management of soil will sustain human well-being over time. Lal (1995) described the land resources of the world (of which soil is one component) as "finite, fragile, and nonrenewable," and reported that only about 22% (3.26 billion ha) of the total land area on the globe is suitable for cultivation and at present, only about 3% (450 million ha) has a high agricultural production capacity. Because soil is in large but finite supply, and some soil components cannot be renewed within a human time frame, the condition of soils in agriculture and the environment is an issue of global concern (Howard, 1993; FAO, 1997). Concerns include soil losses from erosion, maintaining agricultural productivity and system sustainability, protecting natural areas, and adverse effects of soil contamination on human health (Haberern, 1992; Howard, 1993; Sims et al., 1997). Parr et al. (1992) state, "...soil degradation is the single most destructive force diminishing the world's soil resource base." Soil quality guidelines are intended to protect the ability of ecosystems to function properly (Kádár, 1992; Várallyay, 1992, 1994, 2005; Cook and Hendershot, 1996; Németh, 1996; Malcolm, 2000; Márton, 2005; Márton et al. 2007). The Hungarian Ministry of Environment and Water (HMEW, 2004) suggests that the Hungarian Regions should adopt a national policy "...that seeks to conserve and enhance soil quality...". Useful evaluation of soil quality requires agreement about why soil quality is important, how it is defined, how it should be measured, and how to respond to measurements with management, restoration, or conservation practices. Because determining soil quality requires one or more value judgments and because we have much to learn about soil, these issues are not easily addressed (Várallyay, 1992, 1994, 2005; Cook and Hendershot, 1996; Németh, 1996; Malcolm, 2000). Definitions of soil quality have been based both on human uses of soil and on the functions of soil within natural and agricultural ecosystems. For purposes of this work, we are showing soil quality within the context of managed agricultural ecosystems. To many in agriculture and agricultural research, productivity is analogous to soil quality. Maintaining soil quality is also a human health concern because air, groundwater and surface water consumed by humans can be adversely affected by mismanaged and contaminated soils, and because humans may be exposed to contaminated soils in residential areas (Kádár, 1992; Várallyay, 2005; Cook and Hendershot, 1996; Németh, 1996; Malcolm, 2000; Márton et al. 2007). Contamination may include heavy metals, toxic elements, excess nutrients, volatile and nonvolatile organics, explosives, radioactive isotopes and inhalable fibers (Sheppard et al., 1992; Cook and Hendershot, 1996). Soil quality is not determined by any single conserving or degrading process or property, and soil has both dynamic and relatively static properties that also vary spatially (Carter et al., 1997). Gregorich et al. (1994) state that "soil quality is a composite measure of both a soil's ability to function and how well it functions, relative to a specific use." Increasingly, contemporary discussion of soil quality includes the environmental cost of production and the potential for reclamation of degraded soils (Várallyay, 2005). Reasons for assessing soil quality in an agricultural or managed system may be somewhat different than reasons for assessing soil quality in a natural ecosystem. In an agricultural context, soil quality may be managed, to maximize production without adverse environmental effect, while in a natural ecosystem, soil quality may be observed, as a baseline value or set of values against which future changes in the system may be compared (Várallyay, 1994; Cook and Hendershot, 1996; Németh, 1996; Malcolm, 2000; Márton et al. 2007). Soil quality has historically been equated with agricultural productivity, and thus is not a new idea. Soil conservation practices to maintain soil productivity are as old as agriculture itself, with documentation dating to the Roman Empire (Jenny, 1961). The Storie Index (Storie, 1932) and USDA Land Capability Classification (Klingebiel and Montgomery, 1973) were developed to separate soils into different quality classes. Soil quality is implied in many decisions farmers make about land purchases and management, and in the economic value rural assessors place on agricultural land for purposes of taxation. Beginning in the 1930s, soil productivity ratings were developed in the United States and elsewhere to help farmers select crops and management practices that would maximize production and minimize erosion or other adverse environmental effects (Huddleston, 1984). These rating systems are important predecessors of recent attempts to quantitatively assess soil quality. In the 1970s, attempts were made to identify and protect soils of the highest productive capacity by defining "prime agricultural lands" (Miller, 1979). An idea related to soil quality is "carrying capacity". Carrying capacity is the number of individuals that can be supported in a given area (Budd, 1992). Soils with high productivity have high carrying capacity, and are considered to be high quality. Sustainability implies that a system does not exceed its carrying capacity over time. Recent attempts to define soil quality and develop indices to measure it have many of the properties of the earlier soil productivity ratings (Doran and Jones, 1996; Snakin et al., 1996; Seybold et al., 1997). Cox (1995) calls for national goals for soil quality that "... recognize the inherent links between soil, water and air quality." Haberern (1992) suggests that the decade of the 1990s is the time to study the soil as we have recognized and studied air quality and water quality in the preceding two decades. Air and water quality standards are generally based on maximum allowable concentrations of materials hazardous to human health. They are specified and enforced by regulators according to public uses of these resources. The result is that changes in air and water quality are now monitored to protect human health. With few exceptions, soil quality standards have not been set, nor have regulations been created regarding maintenance of soil quality (Várallyay, 2005; Cook and Hendershot, 1996; Malcolm, 2000; Márton et al. 2007). To the extent that soil has been the disposal site of hazardous wastes, as well as a pathway by which contamination or other applied chemicals may present a human health risk, sporadic 40 regulations of soil quality (in terms of contamination) does exist in the 27 European Union (EU) countries for not just new ones but an estimated 30 000 existing chemicals, today. These regulations are in the form of laws regulating hazardous waste, toxic substances, and pesticides. However, these standards are often contradictory, inconsistent with each other and with current methods of assessing risk. For example, in the United States, federal regulations supporting CERCLA (40 CFR) is a list of "hazardous substances" and the levels in various media (e.g., soil, water) to which the Environmental Protection Agency (EPA) must respond with a cleanup effort. However, EPA has fielded considerable controversy about contaminant levels and chemical forms that legitimately constitute a human health risk. Target cleanup levels have also been subject to debate and legislation. Soil quality assessment requires definition of a "clean" soil (Sims et al., 1997). From this point of view, good quality soil has been defined as posing "...no harm to any normal use by humans, plants or animals; not adversely affecting natural cycles or functions; and not contaminating other components of the environment" (Moen, 1988). The parallel to air and water quality is easy to draw on a conceptual level, but designation of soil quality standards is significantly complicated by soil variability and heterogeneity (Smith et al., 1993). Among the authors (Merker, 1956; Odell et al. 1984; Johnston et al., 1986; Reganold et al., 1990; Granatstein and Bezdicek, 1992; Kádár, 1992; Beke et al., 1994; Jenkinson et al., 1994; Schjenning et al., 1994; Murata et al., 1995; Biederbeck et al., 1996; Lindert et al., 1996; Romig et al., 1995; Warkentin, 1995; Carter et al., 1997; Gerzabeck et al., 1997; Seybold et al., 1997; Malcolm, 2000; Várallyay, 2005) and organizations defining soil quality are Larson and Pierce (1991), Karlen et al. (1997). The next section reviews some of the definitions and soil characteristics used to define soil quality. The reader should understand that the definition of soil quality and selection of soil characteristics needed to quantify soil quality are continuing to evolve. For example, Bouma (1989) recognized that an essential problem with definitions that produce carefully limited suitability classes is that empirical decisions must be made to separate the classes along what is essentially a continuum. That is, if soil organic matter is part of a soil quality definition, where on the continuum of soil organic matter content does one draw the line between a high quality and low quality soil? Does high organic matter content always indicate high soil quality? These are non-trivial questions under discussion by the soil science community. Carter et al. (1997) suggest a framework for evaluating soil quality that includes: 1. describing each soil function on which quality is to be based, 2. selecting soil characteristics or properties that influence the capacity of the soil to provide each function, 3. choosing indicators of characteristics that can be measured, and 4. using methods that provide accurate measurement of those indicators. The following soil functions appear frequently in the soil science literature: 1. soil maintains biological activity/productivity (Karlen et al., 1997), serves as medium for plant/crop growth (Arshad and Coen, 1992), supports plant productivity/yield (Arshad and Coen, 1992), supports human/animal health (Karlen et al., 1997); 2. partitions and regulates water/ solute flow through environment (Larson and Pierce, 1991; Arshad and Coen, 1992); 3. serves as an environmental buffer/filter (Larson and Pierce, 1991), maintains environmental quality (Arshad and Ccen, 1992); 4. cycles nutrients, water, energy and other elements through the biosphere (Anderson and Gregorich, 1984). Clearly, these functions are interrelated. Later in this chapter, discussion focuses on the first and third functions (productivity and environmental buffering) as encompassing those aspects of soil quality most debated in the literature. Larson and Pierce (1991) defined soil quality as "the capacity of a soil to function within the ecosystem boundaries and interact positively with the environment external to that ecosystem." Three soil functions are considered essential: provide a medium for plant growth, regulate and partition waterllow through the environment, and serve as an effective environmental filter. Arshad and Coen (1992) define soil quality as "the sustaining capability of a soil to accept, store and recycle water, minerals and energy for production of crops at optimum levels while preserving a healthy environment." They discuss terrain, climate and hydrology as site factors that contribute to soil quality and suggest that socioeconomic factors such as land use, operator and management should be included in a soil quality analysis. This approach is consistent with the FAO approach to land quality analysis (FAO, 1997). Karlen et al. (1992) define soil quality as "the ability of the soil to serve as a natural medium for the growth of plants that sustain human and animal life." Their definition is based on the role of soil quality in the long-term productivity of soil and maintenance of environmental quality. Doran and Parkin (1994) defined soil quality as "the capacity of a soil to function within ecosystem boundaries to sustain biological productivity, maintain environmental quality, and promote plant and animal health." Gregorich et al. (1994) define soil quality as "a composite measure of both a soil's ability to function and how well it functions relative to a specific use" or "the degree of fitness of a soil for a specific use." The Soil Science Society of America Ad Hoc Committee on Soil Health proposed that soil quality is "the capacity of a specific kind of soil to function, within natural or managed ecosystem boundaries, to sustain plant and animal productivity, maintain or enhance water and air quality, and support human health and habitation" (Karlen et al., 1997). This definition requires that five functions must be evaluated to describe soil quality: 1. sustaining biological activity, diversity, and productivity; 2. regulating and partitioning water and solute flow; 3. filtering, buffering, degrading, immobilizing and detoxifying organic and inorganic materials, including industrial and municipal byproducts and atmospheric deposition; 4. storing and cycling nutrients and other elements within the earth's biosphere; and 5. providing support of socioeconomic structures and protection for archeological treasures associated with human habitation. No soil is likely to successfully provide all of these functions, some of which occur in natural ecosystems and some of which are the result of human modification. We can summarize by saying that soil quality depends on the extent to which soil functions to benefit humans. Thus, for food production or mediation of contamination, soil quality means the extent to which a soil fulfills the role we have defined for it. Within agriculture, high quality equates to maintenance of high productivity without significant soil or environmental degradation. The Glossary of Soil Science terms produced by the Soil Science Society of America (1996) states that soil quality is an inherent attribute of a soil that is inferred from soil characteristics or indirect observations. To proceed from a dictionary definition to a measure of soil quality, a minimum dataset (MDS) of soil characteristics that represents soil quality must be selected and quantified (Papendick et al., 1995). The MDS may include biological, chemical or physical soil characteristics [Organic matter (OM), Aggregation (A), Bulk density (BD), Depth to hardpan (DH), Electrical conductivity (EC), Fertility (F), Respiration (R), pH, Soil test (ST), Yield (Y), Infiltration (I), Mineralizable nitrogen potential (MNP), Water holding capacity (WHC)]. For agriculture, the measurement of properties should lead to a relatively simple and accurate way to rank soils based on potential plant production without soil degradation. Unfortunately, commonly identified soil quality parameters may not correlate well with yield (Reganold, 1988). In the next section, we consider these four points concerning the selection and quantification of soil characteristics: 1. soil characteristics may be desirable or undesirable, 2. soil renewability involves judgment of the extent to which soil characteristics can be controlled or managed, 3. rates of change in soil characteristics vary, and 4. there may be significant temporal or spatial variation in soil characteristics. Components of soil quality definitions may include desirable and undesirable characteristics. Desirable soil characteristics may either be the presence of a property that benefits soil productivity and/or other important soil functions, or the absence of a property that is detrimental to these functions. A soil characteristic may include a range of values that contributes positively to quality and a range that contributes negatively. Soil pH, for example, may be a positive or negative characteristic depending on its value. Larson and Pierce (1991) suggest that ranges of property values can be defined as optimal, suboptimal or superoptimal. A pH range of 6 to 7.5 is optimal for production of most crops. Outside of this range, pH is suboptimal and soil quality is lower than at the optimal pH range. The complexity of the soil quality concept is illustrated by the fact that the choice of optimal pH range is crop or use dependent. Letey (1985) suggested that identification of a range of water content that is nonlimiting to plant productivity might be a good way of assessing the collective effect of soil physical characteristics that contribute to crop productivity. For soils of decreasing quality, the width of the nonlimiting water range decreases. Undesirable soil characteristics may be either the presence of contaminants or a range of values of soil characteristics that contribute negatively to soil quality. The presence of chemicals that inhibit plant root growth or the absence of nutrients that result in low yields or poor crop quality are examples of undesirable soil characteristics that lower soil quality. The extent to which soil is viewed as a renewable resource shapes our approach to soil quality. "Soil" in this context is the natural, three-dimensional, horizonated individual, not something created by earth moving machinery. For the purpose of assessing human impact on sustainability of soil quality, it may be appropriate to use only those soil properties that are slowly or nonrenewable. Shorter term assessments may be based on those properties that change rapidly and are subject to easy management. Willis and Evans (1977) argued that soil is not renewable over the short term based on studies that suggest that 30 to more than 1,000 years are required to develop 25 mm of surface soil from parent material by natural processes. Jenny (1980) also argued that soil is not renewable over the time scale to which humans relate. Howard (1993) suggests defining soil quality based on undisturbed natural soils and to set quality standards based on changes in soils which cannot be reversed naturally or by ecological approaches. The renewability of soil depends on the soil property considered. For example, once soil depth is reduced by wind or water erosion so that it is too shallow to support crops, it is not renewable within a human or management time frame. Some important soil characteristics are slowly renewable. Organic matter, most nutrients and some physical properties may be renewed through careful long-term management. Certain chemical properties (pH, salinity, N, P, K content) may be altered to a more satisfactory range for agriculture within a growing season or two, while removal of unwanted chemicals may take much longer. No soil property is permanent, but rates and frequency of change vary widely among properties. Soil properties also vary with ecosystem, arguably depending most on climate. In rangelands, for example, temporal variability is high and relatively unpredictable due to the strong dependence of soil properties on soil wetness (Herrick and Whitford, 1995). Variability in soil wetness is not restricted to rangelands and may be an especially important determinant of microbial community structure and function in both irrigated and rainfed agricultural systems. Arnold et al. (1990) suggest that changes in soil properties can be nonsystematic, periodic, or trend. Nonsystematic changes are short term and unpredictable. Periodic are predictable and trend changes tend to be in one direction over time. Carter et al. (1997) distinguish between dynamic soil properties that are most subject to change through human use and are strongly influenced by agronomic practices, and intrinsic or static properties that are not subject to rapid change or management. Examples of dynamic soil characteristics are the size, membership, distribution, and activity of a soil's microbiological community; the soil solution composition, pH, and nutrient ion concentrations, and the exchangeable cation population. Soils respond quickly to changes in conditions such as water content. As a result, the optimal frequency and distribution of soil measurements vary with the property being measured. Soil mineralogy, particle size distribution and soil depth are static soil quality indicators. Although changes occur continuously, they are slow under natural conditions. Organic matter content may be a dynamic variable, but the chemical properties of organic matter may change only over periods on the order of 100 to 1,500 years depending on texture. Soil properties that change quickly present a problem because many measurements are needed to know the average value and to determine if changes in the average indicate improvement or degradation of soil quality. Conversely, properties that change very slowly are insensitive measures of short-term changes in soil quality. Papendick et al. (1995) argue that the MDS required for soil quality analysis includes a mix of "dynamic" and relatively "static" properties. A soil quality assessment must specify area. One could use the pedon (the three-dimensional soil individual) as the unit of measure, or a soil map unit, a landscape, a field or an entire watershed. The choice will depend to some degree on what property is of interest and the spatial variability of the property. Karlen et al. (1997) propose that soil quality can be evaluated at scales ranging from points to regional, national and international. They suggest that the more detailed scales provide an opportunity to "understand" soil quality while larger scale approaches provide interdisciplinary monitoring of soil quality and changes in soil quality. Pennock et al. (1994) discuss scaling up data from discrete sampling points to landscape and regional scales. Soil physical characteristics [Aeration (A), Aggregate stability (AS), Bulk density (BD), Clay mineralogy (CM), Color (C), Consistence (dry (CD), moist (CM), wet (CW)), Depth to root limiting layer (DRLL), Hydraulic conductivity (HC), Oxygen diffusion rate (ODR), Particle size distribution (PSD), Penetration resistence (PR), Pore connectivity (PC), Pore size distribution (PSD), Soil strength (SS), Soil tilth (ST), Structure type (STY), Temperature (T), Total porosity (TP), Water-holding capacity (WHC)] are a necessary part of soil quality assessment because they often cannot be easily improved (Wagenet and Hutson, 1997). Larson and Pierce (1991) summarize the physical indicators of soil quality as those properties that influence crop production by determining: 1. whether a soil can accommodate unobstructed root growth and provide pore space of sufficient size and continuity for root penetration and expansion, 2. the extent to which the soil matrix will resist deformation, and 3. the capacity of soil for water supply and aeration. Factors such as effective rooting depth, porosity or pore size distribution, bulk density, hydraulic conductivity, soil strength and particle size distribution capture these soil functions (Malcolm, 2000; Várallyay, 2005). Reganold and Palmer (1995) use texture, color, dry and moist consistence, structure type, a structure index, bulk density of the 0-5 cm zone, penetration resistance of 0 to 20 and 20 to 40 cm zones and topsoil thickness as physical determinants of soil quality. Letey (1994) suggests that structure, texture, bulk density, and profile characteristics affect management practices in agriculture but are not directly related to plant productivity. He proposes that water potential, oxygen diffusion rate, temperature, and mechanical resistance directly affect plant growth, and thus are the best indicators of the physical quality of a soil for production. Soil tilth, a poorly defined term that describes the physical condition of soil, also may be an indicator of a soil's ability to support crops. Farmers may assess soil tilth by kicking a soil clod. More formal measurements to describe soil ti]th include bulk density, porosity, structure, roughness and aggregate characteristics (Karlen et al., 1992). Many of the processes that contribute to soil structure, aggregate stability, bulk density and porosity are not well understood, making soil tilth a difficult parameter to quantify. Soil depth is an easily measured and independent property that provides direct information about a soil's ability to support plants. Effective soil depth is the depth available for roots to explore for water and nutrients. Layers that restrict root growth or water movement include hard rock, naturally dense soil layers such as fragipans, petrocalcic and, petroferric horizons, duripans, and human-induced layers of high bulk density such as plow pans and traffic pans. Effective soil depth is a problem for agricultural use of over 50% of soils in Africa (Eswaran et al., 1997). Soil depth requirements vary with crop or species. Many vegetable crops, for example, are notably shallow rooted while grain crops and some legumes like alfalfa are deep rooted. Variation will be even greater in unmanaged, natural systems. Wheat yield in Colorado was shown to decrease from 2,700 to 1,150 kg ha' over a 60-yr period of cultivation primarily due to decrease in soil depth (Bowman et al., 1990). Assessment of soil quality based on soil chemistry, whether the property is a contaminant or part of a healthy system, requires a sampling protocol, a method of chemical analysis, an understanding of how its chemistry affects biological systems and interacts with mineral forms, methods for location of possible contamination, and standards for soil characterization (Várallyay, 2005; Németh, 1996; Malcolm, 2000). Some soil chemical properties suggested as soil quality indicators are: Base saturation percentage (BSP), Cation exchange capacity (CEC), Contaminant availability (CA), Contaminant concentration (CC), Contaminant mobility (CM), Contaminant presence (CP), Electrical conductivity (EC), ESP, Nutrient cycling rates (NCR), Ph, Plant nutrient availability (PNA), Plant nutrient content (PNC) and SAR. Nutrient availability depends on soil physical and chemical processes, such as weathering and buffering, and properties such as organic matter content, CEC and pH (Kádár, 1992; Várallyay, 1992, 1994, 2005; Németh, 1996; Malcolm, 2000; Márton, 2005; Márton et al. 2007). At low and high pH, for example, some nutrients become unavailable to plants and some toxic elements become more available. Larson and Pierce (1991) chose those chemical properties that either inhibit root growth or that affect nutrient supply due to the quantity present or the availability. Reganold and Palmer (1995) used chemical parameters related to nutrient availability as measures of soil quality, including CEC, total N and P, pH and extractable P, S, Ca, Mg and K. Karlen et al. (1992) suggest that total and available plant nutrients, and nutrient cycling rates, should be included in soil quality assessments. Soil properties may be severely compromised by intended or unintended human additions of chemical compounds and soil productivity reduced if unwanted chemicals exceed safe thresholds. Data are required to determine whether or not a site is significantly polluted and if it requires clean-up (Sims et al., 1997). International standard methods have been created to maintain the quality of measurements (Hortensius and Welling, 1996). A difficult determination is the level of each chemical that is considered an ecological risk. Beck et al. (1995) provide a list of levels for organic chemicals adopted by The Netherlands and Canada. EPA uses similar lists for compounds considered hazardous (e.g., 40 CFR). Sims et al. (1997) argue that clean and unclean are two extremes of a continuum and that it is more appropriate to define the physical, chemical and biological state of the soil as acceptable or unacceptable. In The Netherlands, soil quality reference values have been created for heavy metals and organic chemicals based on a linear relationship with soil clay and organic matter content. The Dutch Ministry of Housing, Physical Planning and Environment has used the maximum of a range of reference values for a given substance as a provisional reference value for good soil quality (Howard, 1993). The focus of many soil quality definitions is soil biology [Organic carbon (OC), Microbial biomass (MB), C and N, Total bacterial biomass (TBB), Total fungal biomass (TFB), Potentially mineralizable N (PMN), Soil respiration (SR), Enzymes (Dehydrogenase, Phosphatase, Arlysulfatase), Biomass C/total organic carbon, Respiration/biomass, Microbial community fingerprinting (MCF), Substrate utilization (SU), Fatty acid analysis (FAA), Nucleic acid analysis (NAA)]. Soil supports a diverse population of organisms, ranging in size from viruses to large mammals, that usually interacts positively with plants and other system components (Paul and Clark, 1996). However, some soil organisms such as nematodes, bacterial and fungal pathogens reduce plant productivity. Many proposed soil quality definitions focus on the presence of beneficial rather than absence of detrimental organisms, although both are critically important. Various measures of microbial community viability have been suggested as measures or indices of soil quality. Community level studies consider species diversity and frequency of occurrence of species. Visser and Parkinson (1992) found that diverse soil microbiological criteria may be used to indicate deteriorating or improving soil quality. They suggested testing the biological criteria for soil quality at three levels: population, community and ecosystem. Microorganisms and microbial communities are dynamic and diverse, making them sensitive to changes in soil conditions (Kennedy and Papendick, 1995). Their populations include fungi, bacteria including actinomycetes, protozoa, and algae. Soil microorganisms form crucial symbiotic relationships with plants, including mycorrhizal infection for P and N acquisition and bacterial infection for fixation of atmospheric N. Authors emphasizing use of biological factors as indicators of soil quality often equate soil quality with relatively dynamic properties such as microbial biomass, microbial respiration, organic matter mineralization and denitrification, and organic matter content (Yakovchenko et al., 1996; Franzluebbers and Arshad, 1997), or soil microbial C, phospholipid analyses and soil enzymes (Gregorich et al., 1997), or total organic C and N (Franco-Vizcaino, 1997). Visser and Parkinson (1992) question the suitability of enzyme assays for microbial activity and soil quality assessments. Waksman (1927), who studied measurements of soil microorganisms that could indicate soil fertility, found that physical and chemical factors as well as soil biology were needed to predict soil fertility. Meso- and macrofauna populations have also been considered as part of soil quality definitions (Berry, 1994). One could choose to use presence or absence of a particular species or population of a particular species as a measure of soil quality. Stork and Eggleton (1992) discuss species richness as a powerful indicator of invertebrate community and soil quality, although determining the number of species is a problem. They suggest that keystone species, taxonomic diversity at the group level, and species richness of several dominant groups of invertebrates can be used as part of a soil quality definition. Measuring soil fauna populations involves decisions about which organisms to measure and how to measure them. An example is the earthworm population, the size of which is frequently mentioned as an important measure of soil quality. Measurement choices include numbers of organisms per volume or weight of soil, number of species, or a combination of numbers of organisms and species. Reganold and Palmer (1995) use total earthworms per square meter, total earthworm weight (g m-') and average individual earthworm weight as biological indicators of soil quality. Measurement of one or more components of the N cycle including ammonification, nitrification and nitrogen fixation, may be used to assess soil fertility and soil quality (Visser and Parkinson, 1992). Presumably, high rates of N turnover may infer a dynamic and healthy soil biological community. In contrast, low soil quality or poor soil health may be inferred from lack of N turnover. The interpretation of N turnover rates is highly dependent on the kinds of substrates added to soils and climate variables such as soil temperature and moisture. One needs to be careful when comparing N turnover rates within soils and among different soils to be sure that the cause of differences is a soil quality parameter and not natural variability. Presence of pesticide residues, for example, may reduce N turnover rate. In such an instance, both the presence of the pesticide and the N turnover rate would be needed to determine that the soil quality had been impaired. Production incorporates use of and need for functioning soil resources in agriculture, and environmental buffering incorporates the direct and indirect effects of human use on ecosystem function and human health (Kádár, 1992; Várallyay, 1992, 1994, 2005; Németh, 1996; Malcolm, 2000; Márton, 2005; Márton et al. 2007). Worldwide agriculture is the most extensive human land use, and soil characteristics are a critical determinant of agricultural productivity. Agriculture includes irrigated and rainfed cultivated cropland, permanent crops such as orchards and vineyards, irrigated pasture, range, and forestry. Each cropping system has distinct soil and soil management conditions for optimal production. It has been suggested that soil productivity is the net resultant of soil degradation processes and soil conservation practices (Parr et al., 1990). An appropriate definition of soil quality and the criteria necessary to evaluate and monitor soil quality is a step toward "the development of systematic criteria of sustainability". Issues to be considered when discussing soil quality for agriculture include: 1. How are productivity and sustainability related? 2. Is the cropping system in question cultivated or non-cultivated? 3. Is the cropping system in question an irrigated or dryland system? Sustainability of agricultural systems is critical to human welfare and is an a subject of research and debate (Letey, 1994). High productivity and sustainability must be converging goals if the growing human population is to be fed without destroying the resources necessary to produce food. Sustainability implies that a system is at a desirable steady state. Thermodynamically, soil is an open system through which matter and energy flow and a steady state is characterized by a minimum production of entropy (Andiscott, 1995). Ellert et al. (1997) review related literature on ways of assessing soil function on an ecosystem scale, commenting that the complexity and organization of living systems, which seem to defy the second law of thermodynamics (increasing disorder/entropy), may provide a means to broadly assess ecosystem function. The purpose of agriculture is to provide products for human sustenance and by definition is not sustainable unless the nutrients removed in the products are returned to the soil. Many of the arguments about the sustainability of agricultural systems relate to the form in which nutrients are most sustainably returned. No agricultural system will be sustainable in the long run without management that considers nutrient cycling and energy budgets. The more intense the agricultural system, the more energy and resources must be expended to maintain the system. The relative quality of a soil for agriculture can depend on the resources available to farmers. In the United States, resources may be readily available for management of dynamic soil properties such as nutrient or water status. In other countries, farmers may be resource poor, and agricultural systems are generally low input, meaning that large-scale irrigation is absent, use of fertilizers, pesticides, and herbicides is minimal, and high energy, mechanized equipment is not available (Eswaran et a1.,1997). This means, for example, that soil quality for agriculture will be more dependent on climate than if the same soils were part of a highly managed, irrigated system. Similarly, sustainability is more dependent on maintenance of dynamic soil properties because resources may not exist to remedy losses (Várallyay, 2005; Malcolm, 2000; Márton et al. 2007). It is difficult to overstate the importance of irrigation to food production. One-third of the total global harvest of food comes from the 17% (250 million ha) of the world's cropland that is irrigated (Hoffman et al., 1990); three-quarters of which are in developing countries (Tribe, 1994). India, China, the former Soviet Union, the United States and Pakistan have the greatest area of irrigated land. Should soil quality criteria be the same for irrigated and dryland agriculture? Sojka (1996) suggests that the arid and semi-arid soils that support most irrigated agriculture have thin erodible surfaces, characteristics that would classify such soils as having poor quality. Yet under irrigation, they feed much of the world. Without irrigation, for example, in many African soils, moisture stress becomes a significant factor limiting production, and the water-holding capacity of a soil becomes crucial (Eswaran et al., 1997). This suggests that a standard set of criteria based on potential productivity is not a sufficient definition of soil quality. Soils that are not cultivated are a much larger component of agriculture, broadly defined, than those that are cultivated. About 65% of the land in the United States is forest (284 million ha) or range land (312 million ha), with only about 284 million hacultivated (NRC,1994). Herrick and Whitford (1995) suggest that range land soils, which often serve multiple uses, present unique challenges and opportunities for assessing soil quality because spatial and temporal variability are higher than in cropped systems. On range lands and forest lands, food, fiber, timber production, biomass for fuel, wildlife, biodiversity, recreation, and water supply are all potential uses that may have diverse criteria for quality soils. Herrick and Whitford (1995) give the example of a thick O horizon that may be an indicator of good timber production but has no predictive value of soil quality for the rancher. The National Research Council (NRC, 1994) recommends that range land health be determined using three criteria: degree of soil stability and watershed function, integrity of nutrient cycles and energy flows, and presence of functioning recovery mechanisms. Soil erosion by wind and water and infiltration or capture of precipitation were selected as processes that could be used as indicators of soil stability and watershed function. Specific indicators or properties need to be related to these two broad processes. The amount of nutrients available, the speed with which nutrients cycle, and measures of the integrity of energy flow through the system were considered fundamental components of range land health. Finally, the capacity of range land ecosystems to react to change depends on recovery mechanisms that result in capture and cycling of nutrients, capture of energy, conservation of nutrients, energy and water, and resilience to change. Specific indicators include status of vegetation, age class and distribution (Kádár, 1992; Várallyay, 1992, 1994, 2005; Németh, 1996; Malcolm, 2000; Márton et al. 2007). The evaluation of land quality for forestry is a well-known practice. Indices range from quantitative through semi-quantitative to qualitative. Quantitative evaluations, such as site index, use regression equations to predict tree height at a predetermined tree age based on soil and climate data. Qualitative evaluations assign land to classes based on soil and climate properties. In soil science, the term "buffer" refers collectively to processes that constrain shifts in the dissolved concentration of any ion when it is added to or removed from the soil system (Singer and Munns, 1996). Soils "buffer" nutrients as well as contaminants and other solutes, via sorption to or incorporation into clay and organic materials. The extent to which a soil immobilizes or chemically alters substances that are toxic, thus effectively detoxifying them, reflects "quality" in the sense that humans or other biological components of the system are protected from harm. This is the basis for the European concept of soil quality (Moen, 1988; Siegrist, 1989; Denneman and Robberse, 1990). Lack of soil function in this category is reflected as direct toxicity or as contamination of air or water. Identifying substances that qualify as "contaminants" can be challenging because some, such as nitrates and phosphates, are important plant nutrients as well as potential water pollutants. An example is agricultural runoff containing N03 or soluble P (Yli-Halla et al., 1995). This chapter does not attempt a comprehensive review of research in this area, which is covered in an earlier chapter, but instead presents a few sample articles pertinent to this aspect of soil quality. Holden and Firestone (1997) define soil quality in this context as "the degree to which the physical, chemical, and biological characteristics of the soil serve to attenuate environmental pollution." Howard (1993) defines the ecological risk of a chemical in the environment as "the probability that a random species in a large community is exposed to a concentration of the chemical greater than its no-effect level." The extent to which a soil is capable of reducing the probability of exposure is a measure of its quality. A well-studied example of a common soil contaminant is Pb (McBride et al., 1997). Although legislated limits may be on a concentration basis in soil (e.g., 500 ftg kg-'), risk assessment techniques have attempted to account for the chemical form of Pb present, as well as the observed relative relationship between the amount of Pb present in soil and blood levels in local residents (Bowers and Gauthier, 1994). Critics have questioned analytical techniques used to determine bioavailable levels of Pb in soil, as well as the degree to which toxicity data account for its chemical fate and ecologically damaging properties (Cook and Hendershot, 1996). Natural variability of soils and variation within a soil series make average values or average background values inadequate for soil quality assessments. In addition, bioaccumulation and toxicity need to be considered when establishing levels of toxicants that may not be exceeded in a "high quality" soil for a given use (Traas et al. 1996). Another example is the effect of heavy metals such as Cr(VI) on soil biological properties. Based on a study of three New Zealand soils of contrasting texture, organic matter content, and CEC, Speir et al. (1995) propose an "ecological dose value" that represents the inhibitory effects of a heavy metal (in this case, Cr(VI)) on the kinetics of soil biological properties, and serves as a generic index for determination of permissible concentration levels for heavy metals in soils. A single soil characteristic is of limited use in evaluating differences in soil quality (Reganold and Palmer, 1995). Using more than one quantitative variable requires some system for combining the measurements into a useful index (Halvorson et al., 1996). The region, crop, or general soil use for which an index was created will likely limit its effectiveness outside the scope of its intended application. Even an index designed only to rate productivity is not likely to be useful for all crops and soils, leading Gersmehl and Brown (1990) to advocate regionally targeted systems. Rice is a good example of a crop requiring significantly different soil properties than other crops. It is a food staple for a large proportion of the world population. Approximately 146 million ha were in rice production in 1989 (FAO, 1989) mainly (90%) in Asia. High quality soils for paddy rice may be poor quality for most other irrigated and dryland crops because they may be saline or sodic, and high in clay with slow infiltration and permeability. These physical and chemical properties often constrain production of other crops. Although they are not reviewed here, various land suitability classifications specifically for rice have been developed since the turn of the century (Dent, 1978). Examples of several soil quality indexing systems are presented in the following sections. To some extent, recent attempts to enumerate the factors of soil quality resemble Jenny's (1941) introduction of the interrelated factors of soil formation. An index is categorized here as nonquantitative if it does not combine evaluated parameters into a numerical index that rates soils along a continuous scale. Examples are the USDA Land Capability Classification and the US Bureau of Reclamation (USBR) Irrigation Suitability. The purpose of the Land Capability Classification (LCC) was to place arable soils into groups based on their ability to sustain common cultivated crops that do not require specialized site conditioning or treatment (Klingebiel and Montgomery, 1973). Nonarable soils, unsuitable for long-term, sustained cultivation, are grouped according to their ability to support permanent vegetation, and according to the risk of soil damage if mismanaged. The LCC combines three rating values at different levels of abstraction: capability class, subclass, and unit. At the most general level, soils are placed in eight classes according to whether they (a) are capable of producing adapted plants under good management (classes I to N), (b) are capable of producing specialized crops under highly intensive management involving "elaborate practices for soil and water conservation" (classes V to VII), or (c) do not return on-site benefits as a result of management inputs for crops, grasses or trees without major reclamation (Klingebiel and Montgomery, 1973). The four possible limitations/hazards under the subclass rating are erosion hazard, wetness, rooting zone limitations and climate. The capability unit groups soils that have about the same responses to systems of management and have longtime estimated yields that do not vary by more than 25% under comparable management. The issue of critical limits is a difficult one in soils because of the range of potential uses and the interactions among variables (Arshad and Ccen, 1992). Several studies have shown that lands of higher LCC have higher productivity than lands of lower LCC (Patterson and Mackintosh, 1976; van Vliet et al., 1979; Reganold and Singer, 1984). In a study of 744 alfalfa, corn, cotton, sugar beet and wheat growing fields in the San Joaquin Valley of California, those with LCC ratings between 1 and 3 had significantly lower input/output ratios than fields with ratings between 3.01 and 6 (Reganold and Singer, 1984). This suggests that use of the LCC system provides an economically meaningful assessment of soil quality for agriculture. This was a frequently used system of land evaluation for irrigation in the Western US during the period of rapid expansion of water delivery systems (McRae and Burnham, 1981). It combines social and economic evaluations of the land with soil and other ecological variables to determine if the land has the productive capacity, once irrigated, to repay the investment necessary to bring water to an area. It recognizes the unique importance of irrigation to agriculture and the special qualities of soils that make them irrigable. Quantitative systems result in a numerical index, typically with the highest number being assigned to the best quality soils. Systems may be additive, multiplicative or more complex functions. They have two important advantages over nonquantitative systems: 1. they are easier to use with GIS and other automated data retrieval and display systems, and 2. they typically provide a continuous scale of assessment. No single national system is presently in use but several state or regional systems exist. Although he considered the productivity of the land to be dependent on 32 soil, climate and vegetative properties [Surface conditions: Physiographic position, Slope, Microrelief, Erosion deposition, External drainage, runoff. Soil physical conditions: Soil color, Soil depth, Soil density and porosity, Soil permeability, Soil texture, Stoniness, Soil structure, Soil workability-consistence, Internal drainage, Water-holding capacity, Plant-available water. Soil chemical conditions: Organic matter, Nitrogen, Reaction, Calcium carbonate, bases, Exchange capacity, Salts: Cl, SO Na, Toxicities, e.g., B, Available P, Available K, Minor elements, e.g., Zn, Fe, Fertility. Mineralogical conditions: Mineralogy. Climate: Precipitation Temperature Growing season Winds. Vegetativé cover: Natural vegetation], only nine properties were used in the SIR, because incorporating a greater number of factors made the system unwieldy. The nine factors are soil morphology (A), surface texture (B), slope (C), and six variables (X.) that rate drainage class, sodicity, acidity, erosion, microrelief and fertility; rated from 1% to 100%. These are converted to their decimal value and multiplied together (Storie, 1964). Values for each factor were derived from Storie's experience mapping and evaluating soils in California, and in soil productivity studies in cooperation with the California Agricultural Experiment Station cost-efficiency projects relating to orchard crops, grapes and cotton. In describing the SIR (SIR= [AxBxCxIIXi]x100), Storie (1932, 1964) explicitly mentioned "soil quality". Soils that were deep, had no restricting subsoil horizons, and held water well had the greatest potential for the widest range of crops. The usefulness of the SIR as a soil quality index would be greatest if there was a statistically significant relationship between SIR values and an economic indicator of land value. Reganold and Singer (1984) found that area-weighted average SIR values between 60 and 100 for 744 fields in the San Joaquin Valley of California had lower but statistically insignificant input/output ratios than fields with indices < 60. The lack of statistical significance does not mean that better quality lands could not be farmed at economically lower cost or at higher cost and higher output than the lower quality lands. We productivity index model (PI) was developed to evaluate soil productivity in the top 100 cm, especially with reference to potential productivity loss due to soil erosion (Neill, 1979; Kiniry et al., 1983). The PI model rates soils on the sufficiency for root growth based on potential available water storage capacity, bulk density, aeration, pH, and electrical conductivity. A value from zero to one is assigned to each property describing the importance of that parameter for root development. The product of these five index values is used to describe the fractional sufficiency of any soil layer for root development. Pierce et al. (1983) modified the PI to include the assumption that nutrients were not limiting and that climate, management and plant differences are constant. A number of authors found that it is useful to various degrees (Gantzer and McCarty, 1987; Lindstrom et al., 1992). Parr et al. (1992) suggest that a SQI could take the form of Equation: SQI = f (SP, P, E, H, ER, BD, FQ, MI) where SQI is a function of soil properties (SP), potential productivity (P), environmental factors (E), human and animal health (H), erodibility (ER), biological diversity (BD), food quality and safety (FQ) and management inputs (MI). Determination of the specific measurable indicators of each variable and the interactions among these diverse variables is a daunting task. Moreover, the mathematical method of combining these factors, as well as the resulting value that would indicate a high quality soil, is not specified. The inclusion of variables BD, FQ and MI make this a land quality index as suggested by FAO (1997). Larson and Pierce (1991) defined soil quality (Q) as the state of existence of soil relative to a standard or in terms of a degree of excellence. They argue that defining Q in terms of productivity is too limiting and does not serve us well. Rather, Q is defined as the sum of individual soil qualities q. and expressed as Equation: Q=f(qi ...qn). These authors do not identify the best subset of properties or their functional and quantitative relationship, but do suggest that a MDS should be selected from those soil characteristics in which changes are measurable and relatively rapid (i.e., "dynamic" properties), arguing that it is more important to know about changes in soil quality (dQ) than the magnitude of Q (Larson and Pierce, 1991). Changes in soil quality are a function of changes in soil characteristics (q) over time (t): dQ = f[(qi.t - qit0 )... (qn.t-qnt0)]. If dQ/dt is ≥0, the soil or ecosystem is improving relative to the standard at time to. If dQ/dt <0, soil degradation is occurring. Time zero can be selected to meet management needs or goals. If there is a drastic change in management, time zero can be defined as prior to the change. If a longer time period of comparison is considered more appropriate, properties of an uncultivated or pristine soil could be used. The MDS recommended by Larson and Pierce (1991) includes N mineralization potential or P buffering capacity, total organic C, labile organic C, texture, plant-available water capacity, structure (bulk density is recommended as a surrogate variable), strength, maximum rooting depth, pH and EC. In instances when data are unavailable, pedotransfer functions (Bouma, 1989) can be used to estimate values of soil characteristics. These estimates can then be used as part of the minimum dataset to estimate soil quality or changes in soil quality brought about by management. Although this is a quantitative system, some qualitative judgments are needed to make decisions about changes in soil quality. In particular, interpretation of the meaning of magnitude of changes in a characteristic or the number of characteristics to change from time zero to the time of the measurement is qualitative. The authors do not address how large a change in pH, soil depth, bulk density or organic C represents serious soil degradation, or the values that define soil as high or low quality. Karlen et al. (1994) developed QI based on a 10-year crop residue management study. QI is based on four soil functions: (1) accommodating water entry, (2) retaining and supplying water to plants, (3) resisting degradation, and (4) supporting plant growth. Numerous properties were measured and values normalized based on standard scoring functions. One function is based on the concept that more of a property is better, one that less is better and the third that an optimum is better. Lower threshold values receive a score of zero, upper threshold values receive a score of one, and baseline values receive a score of one-half. Priorities are then assigned to each value. For example, aggregate stability was given the highest weight among factors important in water entry. After normalizing, each value is then multiplied by its weighting factor (wt) and products are summed Equation: QI=qwe (wt) + qwt (wt)+qrd (wt) + qspg (wt). Subscripts refer to the four main functions described earlier. It should also be noted that resisting degradation (rd) and sustaining plant growth (spg) are assigned secondary and tertiary levels of properties that themselves are normalized and weighted before a final value is calculated and incorporated into Equation. The resulting index resulted in values between zero and one. Of the three systems in the study, the one with the highest rate of organic matter return to the soil had the highest index value, and the soil with the lowest had the lowest value. The authors suggest that this demonstrates the usefulness of the index for monitoring the status and change in status of a soil as a function of management. They also suggest that the index and the soil characteristics that go into the index may change as the index is refined (Karlen et al. 1994). Snakin et al. (1996) developed an index of soil degradation that assigns three separate values from one to five reflecting the degree to which a soil's physical, chemical, and biological properties are degraded, as well as the rate of degradation. The Canadian soil capability classification system is similar to the older US systems and is quantitative. In a study in southwestern Ontario, Patterson and Mackintosh (1976) found that high gross returns per ha were three times as likely if the productivity index of land, based on the soil capability classification, was between 90 and 100 than if it fell between 80 and 89. Smith et al. (1993) and Halvorson et al. (1996) propose a multiple-variable indicator transform procedure to combine values or ranges of values that represent the best estimate of soil quality. Their system converts measured data values into a single value according to specified criteria. They do not attempt to define soil quality or specify what soil characteristics are to be used. They combine this procedure with kriging to develop maps that indicate the probabilities of meeting a soil quality criterion on a landscape level. Critical threshold values must be known, assumed, or determined in order to separate different soil qualities. Numerous additive productivity rating systems have been developed for specific states, as reviewed by Huddleston (1984). In these systems, soil properties are assigned numerical values according to their expected impact on plant growth. The index is usually calculated as the sum of the values assigned to each property with 100 the maximum value. Huddleston (1984) notes advantages and disadvantages to such a system which are similar to those for many of the soil quality indices previously discussed. Additive systems become complex as the number of factors, cropping systems, and soil and climatic conditions increases. A unique problem of subtractive systems (one in which 100 is the starting point and values are deducted for problem conditions) is that negative values result when multiple factors are less than satisfactory. Soil quality is a concept being developed to characterize the usefulness and health of soils, because soils are fundamental to the well-being and productivity of agricultural and natural ecosystems. It is a compound characteristic that cannot be directly measured. Many definitions of soil quality can be found in the literature and no set of soil characteristics has been universally adopted to quantify definitions. Soil quality is often equated with agricultural productivity and sustainability. An approach toward developing soil quality definitions is one that assesses soil quality in the context of a soil's potential to perform given functions in a system; e.g., maintains productivity, partitions and regulates water and solute flow through an ecosystem, serves as an environmental buffer, and cycles nutrients, water, and energy through the biosphere. Air and water quality standards are usually based on maximum allowable concentrations of materials hazardous to human health. A definition of soil quality based on this concept would encompass only a fraction of the important roles soils play in agriculture and the environment but could be essential to soil remediation. To proceed from a definition to a measure of soil quality, a minimum dataset of soil characteristics that represent soil quality must be selected and quantified. Many soil physical, chemical and biological properties have been suggested to separate soils of different quality. These include desirable and undesirable properties. Desirable soil characteristics may either be the presence of a property that benefits crop productivity and environmental buffering and/or other important soil functions, or the absence of a property that is detrimental to these functions. In particular, absence of contaminants is an important soil quality characteristic. In selecting characteristics, it is necessary to recognize that some soil properties are static, in the sense that they change slowly over time and others are dynamic. In addition, spatial and temporal variability of soil properties must be considered when selecting the properties used to assess soil quality. A single soil property is of limited use in evaluating soil quality. Qualitative and quantitative soil quality indices have been suggested that combine quantitative values of soil properties. Quantitative systems may be additive, multiplicative or more complex functions. Regardless of the definition or suite of soil variables chosen to define and quantify soil quality, it is critical to human welfare that soils be managed to provide for human health and well-being while minimizing soil and environmental degradation. References Anderson, D.W., E.G. Gregorich. 1984. Effect of soil erosion on soil quality and productivity. p. 105-113. In Soil erosion and degradation. Proc. 2nd Ann. Western Prov. Conf. Rational. Water Soil Res. Manag. Sask., Saskatoon, Canada. Andiscott, T.M. 1995. Entropy and sustainability. Europ. J. Soil Sci. 46:161-168. Arnold, R.W., I. Zaboles., V.C. Targulian (ed.). 1990. Global soil change. Report of an IIASA-ISSS-UNEP task force on the role of soil in global change. International Institute for Applied Systems Analysis, Laxanberg, Austria. Arshad, M-A., G.M. Coen. 1992. Characterization of soil quality: Physical and chemical criteria. Am. J. Altern. Agr. 725-3 I . Beck, A.J., S.C. Wilson., R.E. Alcock., K.C. Jones. 1995. Kinetic constraints on the loss of organic chemicals from contaminated soils: Implications for soil-quality limits. Critical Rev. Environ. Sci. Technol. 25:1-43. Beke, G.J., H.H. Janzen., T. Entz. 1994. Salinity and nutrient distribution in soil profiles of long-term crop rota-tions. Can. J. Soil Sci. 74:229-234. Berry, E.C. 1994. Earthworms and other fauna in the soil, p. 61-90. In J.L. Hatfield and B A. Stewart (ed.) Soil biology: effects on soil quality. Lewis Publishers, Boca Raton, FL. Biederbeck, V.O., C.A. Campbell., H.U. Krainetz., D. Curtain., O.T Bouman. 1996. Soil microbial and biochemical properties after ten years of fertilization with urea and anhydrous ammonia. Can. J. Soil Sci. 76:7-14. Boehn, M.M., D.W. Anderson. 1997. A landscape-scale study of soil quality in three prairie farming systems. Soil Sci. Soc. Am. J. 61:1147-1159. Bouma, J. 1989. Land qualities in space and time. p. 3-13. In J. Bouma and A.K. Bregt (ed.) Land qualities in space and time. Pudoc, Wageningen, Netherlands. Bouma, J., A.K. Bregt (ed.). 1989. Land qualities in space and time. Pudoc, Wageningen, Netherlands. Bowers, T.S., T.D. Gauhier. 1994. Use of the output of a lead risk assessment model to establish soil lead cleanup levels. Environ. Geochem. Health 16:191-196. Bowman, R.A., J.D. Reeder., G.E. Schuman. 1990. Evaluation of selected soil physical, chemical and biological parameters as indicators of soil productivity. Proc. Int. Conf. on Soil Quality in Semi-arid Ag. 2:64-70. Univ. of Saskatchewan, Saskatoon, Canada. Budd, W.W. 1992. What capacity the land? J. Soil Water Conserv. 47:28-31. Carter, MR., E.G. Gregorich., D.W Anderson., J.W. Doran., H.H. Janzen., F.J. Pierce. 1997. Concepts of soil quality and their significance: /n E.G. Gregorich and M. Carter (ed.) Soil quality for crop production and ecosys-tem health. Elsevier Science Publishers, Amsterdam, Netherlands. Cook, N., W.H. Hendershot. 1996. The problem of establishing ecologically based soil quality criteria: The case of lead. Can J. Soil Sci. 76:335-342. Cox, C. 1995. Soil quality: Goals for national policy. J. Soil Water Conserv. 50:223. Denneman, C.A.J., J.G. Robberse. 1990. Ecotoxicological risk assessment as a base for development of soil quality criteria. p. 157-164. In F Arendt, M. Hinsenveld and W.J. van den Brink (ed.) Contaminated soil '90. Proc. Intl. KfK/I'NO Conf. on Contaminated Soil, Karlsruhe, Germany, Kluwer Academic Publishers, Dordrecht, Neth-erlands. Dent, F.J. 1978. Land suitability classification. p. 273-293. In Soils and rice. International Ri

  16. Soil microbial diversity and activity as terroir elements of Sangiovese vineyards in the Chianti Classico region (Italy)

    NASA Astrophysics Data System (ADS)

    Fabiani, Arturo; Mocali, Stefano; Priori, Simone; Valboa, Giuseppe; Vignozzi, Nadia; Pellegrini, Sergio; Storchi, Paolo; Perria, Rita; Costantini, Edoardo

    2016-04-01

    Linking the uniqueness and quality of grapes and wine to the environment they are produced, based on the terroir concept, have recently become popular in many parts of world. The natural components of terroir are actually a set of processes, which together create a delicate equilibrium and regulation of its effect on products in both space and time. Climate, geology, geomorphology and soil are therefore the main environmental factors which make up the terroir effect on different scales. However, information on the impact of soil microbial communities on soil functions, grapevine plants and wine quality is still lacking. Thus, four of the most suitable areas (so called "cru") for the production of Sangiovese wine were chosen within the Barone Ricasoli farm of Brolio, the largest winery in the Chianti Classico area in central Italy: Fattoio, Miniera, Ceni and Colli-Agresto. Based on previous pedological and sensing technologies surveys, each area was further divided into two distinct homogeneous areas of about 1.5 ha called Basic Terroir Unit (UTB), which were monitored over 3 years (2012-2014) for the soil the chemical-physical variability (moisture, organic matter, nitrogen, potassium), the vineyard physiological status (water stress, grape production, characteristics of the grapes and wine) and the structure and activity of soil microbial communities (determined through DGGE, soil respiration and microbial biomass, respectively). The aim of the work was to assess the relationships among soil parameters and vine quality at intra- and inter- UTB level and, in particular, the potential impact of microbial composition and/or function on the terroir concept. The overall results highlighted a microbial community structure specific for each cru area and, in particular, associated to each UTB. Furthermore, microbial activity in Miniera and Ceni appeared to be positively related to Sangiovese quality, as determined through the Sangiovese Performance Index. However, except for Fattoio area which showed a higher stability over time, all the other cru displayed a remarkably higher variability in terms of both microbial community structure and functions, suggesting a predominant role of annual climatic variations.

  17. Environmental analyse of soil organic carbon stock changes in Slovakia

    NASA Astrophysics Data System (ADS)

    Koco, Š.; Barančíková, G.; Skalský, R.; Tarasovičová, Z.; Gutteková, M.; Halas, J.; Makovníková, J.; Novákova, M.

    2012-04-01

    The content and quality of soil organic matter is one of the basic soil parameters on which soil production functioning depends as well as it is active in non production soil functions like an ecological one especially. Morphologic segmentation of Slovakia has significant influence of structure in using agricultural soil in specific areas of our territory. Also social changes of early 90´s of 20´th century made their impact on change of using of agricultural soil (transformation from large farms to smaller ones, decreasing the number of livestock). This research is studying changes of development of soil organic carbon stock (SOC) in agricultural soil of Slovakia as results of climatic as well as social and political changes which influenced agricultury since last 40 years. The main goal of this research is an analysis of soil organic carbon stock since 1970 until now at specific agroclimatic regions of Slovakia and statistic analysis of relation between modelled data of SOC stock and soil quality index value. Changes of SOC stock were evaluated on the basis SOC content modeling using RothC-26.3 model. From modeling of SOC stock results the outcome is that in that time the soil organic carbon stock was growing until middle 90´s years of 20´th century with the highest value in 1994. Since that year until new millennium SOC stock is slightly decreasing. After 2000 has slightly increased SOC stock so far. According to soil management SOC stock development on arable land is similar to overall evolution. In case of grasslands after slight growth of SOC stock since 1990 the stock is in decline. This development is result of transformational changes after 1989 which were specific at decreasing amount of organic carbon input from organic manure at grassland areas especially. At warmer agroclimatic regions where mollic fluvisols and chernozems are present and where are soils with good quality and steady soil organic matter (SOM) the amount of SOC in monitored time is still growing. At colder agroclimatic regions, at flysch region especially where cambisols are present with low of SOM stability since 1994 stability or decreasing of SOC stock is resulting. This is result of climatic impact (lower temperatures, higher humidity) as well as the way of soil management because at colder region the number of glasslands is increased in comparison to arable land. Close relationship between SOC stock and soil production potential index representing the official basis for soil quality evaluation in Slovakia was also determined and a polynomial model was found which describes the relation at the 95% confidence level. From the obtained results it can be concluded, that the amount of crop residues and farmyard manure coming to the soil both in the first and second simulation period (1970 - 1995 and 1996 - 2007) was responsible for general trends in SOC stock dynamics. Achieved results also show different amount and changes of SOC stock in different agroclimatic regions. It was also found that that value of soil production potential index generally used for soil quality assessment in Slovakia corresponds well with simulated values of SOC stocks in top-soils of cropland soils. Key words Soil organic carbon stock, modelling, agricultural soils, agroclimatic regions, Slovakia Acknowledgements This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0333-06.

  18. Changes in Soil Carbon and Enzyme Activity As a Result of Different Long-Term Fertilization Regimes in a Greenhouse Field

    PubMed Central

    Zhang, Lili; Chen, Wei; Burger, Martin; Yang, Lijie; Gong, Ping; Wu, Zhijie

    2015-01-01

    In order to discover the advantages and disadvantages of different fertilization regimes and identify the best management practice of fertilization in greenhouse fields, soil enzyme activities involved in carbon (C) transformations, soil chemical characteristics, and crop yields were monitored after long-term (20-year) fertilization regimes, including no fertilizer (CK), 300 kg N ha-1 and 600 kg N ha-1 as urea (N1 and N2), 75 Mg ha-1 horse manure compost (M), and M with either 300 or 600 kg N ha-1 urea (MN1 and MN2). Compared with CK, fertilization increased crop yields by 31% (N2) to 69% (MN1). However, compared with CK, inorganic fertilization (especially N2) also caused soil acidification and salinization. In the N2 treatment, soil total organic carbon (TOC) decreased from 14.1±0.27 g kg-1 at the beginning of the long-term experiment in 1988 to 12.6±0.11 g kg-1 (P<0.05). Compared to CK, N1 and N2 exhibited higher soil α-galactosidase and β-galactosidase activities, but lower soil α-glucosidase and β-glucosidase activities (P<0.05), indicating that inorganic fertilization had different impacts on these C transformation enzymes. Compared with CK, the M, MN1 and MN2 treatments exhibited higher enzyme activities, soil TOC, total nitrogen, dissolved organic C, and microbial biomass C and N. The fertilization regime of the MN1 treatment was identified as optimal because it produced the highest yields and increased soil quality, ensuring sustainability. The results suggest that inorganic fertilizer alone, especially in high amounts, in greenhouse fields is detrimental to soil quality. PMID:25706998

  19. Soil biodiversity in artificial black pine stands one year after selective silvicultural treatments

    NASA Astrophysics Data System (ADS)

    Mocali, Stefano; Fabiani, Arturo; Landi, Silvia; Bianchetto, Elisa; Montini, Piergiuseppe; Samaden, Stefano; Cantiani, Paolo

    2017-04-01

    The decay of forest cover and soil erosion is a consequence of continual intensive forest exploitation, such as grazing and wild fires over the centuries. From the end of the eighteenth century up to the mid-1900s, black pine plantations were established throughout the Apennines' range in Italy, to improve forest soil quality. The main aim of this silvicultural treatment was to re-establish the pine as a first cover and pioneer species. A series of thinning activities were therefore planned by foresters when these plantations were designed. The project Selpibiolife (LIFE13 BIO/IT/000282) has the main objective to demonstrate the potential of an innovative silvicultural treatment to enhance soil and flora biodiversity and under black pine stands. The monitoring will be carried out by comparing selective and traditional thinning methods (selecting trees from below leaving well-spaced, highest-quality trees) to areas without any silvicultural treatments (e.g. weeding, cleaning, liberation cutting). The monitoring survey was carried out in Pratomagno and Amiata Val D'Orcia areas on the Appennines (Italy) and involved different biotic levels: microorganisms, mesofauna, nematodes and macrofauna (Coleoptera) and flora. The microbial (bacteria and fungi) diversity was assessed by both biochemical (microbial biomass, microbial respiration, metabolic quotient) and molecular (microbiota) approaches whereas QBS (Soil Biological Quality) index and diversity indexes were determined for mesofauna and other organisms, respectively, including flora. The overall results highlighted different a composition and activity of microbial communities within the two areas before thinning, and revealed a significant difference between the overall biodiversity of the two areas. Even though silvicultural treatments provided no significant differences at floristic level, microbial and mesofaunal parameters revealed to be differently affected by treatments. In particular, little but significant differences were observed for mesofauna and nematode community diversity which displayed a higher diversity after thinning in both Amiata and Pratomagno. Nevertheless, Coleoptera showed higher richness values in Pratomagno, where the wood degrader Nebria tibialis subcontracta specie dominated, compared to Amiata. In conclusion, a general increase of soil biodiversity occurred in the plots after thinning compared to untreated control within the two areas, but such results are still heterogeneous and poorly statistically significant. As expected, one year is not enough time to appreciate significant enhance of the overall biodiversity after such silvicultural treatments. Thus, more evident and significant results are expected on the next two years.

  20. Root zone soil water dynamics and its effects on above ground biomass in cellulosic and grain based bioenergy crops of Midwest USA

    NASA Astrophysics Data System (ADS)

    Bhardwaj, A. K.; Hamilton, S. K.; van Dam, R. L.; Diker, K.; Basso, B.; Glbrc-Sustainability Thrust-4. 3 Biogeochemistry

    2010-12-01

    Root-zone soil moisture constitutes an important variable for hydrological and agronomic models. In agriculture, crop yields are directly related to soil moisture, levels that are most important in the root zone area of the soil. One of the most accurate in-situ methods that has established itself as a recognized standard around the world uses Time Domain Reflectometry (TDR) to determine volumetric water content of the soil. We used automated field-to-desk TDR based systems to monitor temporal (1-hr interval) soil moisture variability in 10 different bioenergy cropping systems at the Great Lakes Bioenergy Research Center’s (GLBRC) sustainability research site in south western Michigan, U.S.A. These crops range from high-diversity, low-input grass mixes to low-diversity, high-input crop monocultures. We equipped the 28 x 40 m vegetation plots with 30 cm long TDR probes at seven depths from 10 cm to 1.25 m below surface. The parent material at the site consists of coarse sandy glacial tills in which a soil with an approximately 50cm thick A-Bt horizon has developed. Additional equipment permanently installed for each system includes soil moisture access tubes, multi-depth temperature sensors, and multi-electrode resistivity arrays. The access tubes were monitored using a portable TDR system at bi-weekly intervals. 2D dipole-dipole electrical resistivity tomography (ERT) data are collected in 4-week intervals, while a subset of the electrodes is used for bi-hourly monitoring. The continuous scans (1 hr) provided us the real time changes in water content, replenishment and depletion, providing indications of water uptake by plant roots and potential seasonal water limitation of biomass accumulation. The results show significant seasonal variations between the crops and cropping systems. Significant relationships were observed between soil moisture stress, above-ground biomass and rooting characteristics. The overall goal of the study is to quantify the components of water balance, and identify water quality and water use implications of these cropping systems.Key Words

  1. Determining soil hydrologic characteristics on a remote forest watershed by continuous monitoring of soil water pressures, rainfall and runoff.

    Treesearch

    L.R. Ahuja; S. A. El-Swaify

    1979-01-01

    Continuous monitoring of soil-water pressures, rainfall and runoff under natural conditions was tested as a technique for determining soil hydrologic characteristics of a remote forest watershed plot. A completely battery-powered (and thus portable) pressure transducer–scanner–recorder system was assembled for monitoring of soil-water pressures in...

  2. Consequences of using different soil texture determination methodologies for soil physical quality and unsaturated zone time lag estimates.

    PubMed

    Fenton, O; Vero, S; Ibrahim, T G; Murphy, P N C; Sherriff, S C; Ó hUallacháin, D

    2015-11-01

    Elucidation of when the loss of pollutants, below the rooting zone in agricultural landscapes, affects water quality is important when assessing the efficacy of mitigation measures. Investigation of this inherent time lag (t(T)) is divided into unsaturated (t(u)) and saturated (t(s)) components. The duration of these components relative to each other differs depending on soil characteristics and the landscape position. The present field study focuses on tu estimation in a scenario where the saturated zone is likely to constitute a higher proportion of t(T). In such instances, or where only initial breakthrough (IBT) or centre of mass (COM) is of interest, utilisation of site and depth specific "simple" textural class or actual sand-silt-clay percentages to generate soil water characteristic curves with associated soil hydraulic parameters is acceptable. With the same data it is also possible to estimate a soil physical quality (S) parameter for each soil layer which can be used to infer many other physical, chemical and biological quality indicators. In this study, hand texturing in the field was used to determine textural classes of a soil profile. Laboratory methods, including hydrometer, pipette and laser diffraction methods were used to determine actual sand-silt-clay percentages of sections of the same soil profile. Results showed that in terms of S, hand texturing resulted in a lower index value (inferring a degraded soil) than that of pipette, hydrometer and laser equivalents. There was no difference between S index values determined using the pipette, hydrometer and laser diffraction methods. The difference between the three laboratory methods on both the IBT and COM stages of t(u) were negligible, and in this instance were unlikely to affect either groundwater monitoring decisions, or to be of consequence from a policy perspective. When t(u) estimates are made over the full depth of the vadose zone, which may extend to several metres, errors resulting from the use of hydraulic parameters generated from hand texture data will be resultantly greater, and may lead to flawed predictions regarding the achievability of water policy targets. For this reason laboratory analysis, regardless of method, should be preferred to simple field assessments. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Multi-temporal Soil Erosion Modelling over the Mt Kenya Region with Multi-Sensor Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Symeonakis, Elias; Higginbottom, Thomas

    2015-04-01

    Accelerated soil erosion is the principal cause of soil degradation across the world. In Africa, it is seen as a serious problem creating negative impacts on agricultural production, infrastructure and water quality. Regarding the Mt Kenya region, specifically, soil erosion is a serious threat mainly due to unplanned and unsustainable practices linked to tourism, agriculture and rapid population growth. The soil types roughly correspond with different altitudinal zones and are generally very fertile due to their volcanic origin. Some of them have been created by eroding glaciers while others are due to millions of years of fluvial erosion. The soils on the mountain are easily eroded once exposed: when vegetation is removed, the soil quickly erodes down to bedrock by either animals or humans, as tourists erode paths and local people clear large swaths of forested land for agriculture, mostly illegally. It is imperative, therefore, that a soil erosion monitoring system for the Mt Kenya region is in place in order to understand the magnitude of, and be able to respond to, the increasing number of demands on this renewable resource. In this paper, we employ a simple regional-scale soil erosion modelling framework based on the Thornes model and suggest an operational methodology for quantifying and monitoring water runoff and soil erosion using multi-sensor and multi-temporal remote sensing data in a GIS framework. We compare the estimates of this study with general data on the severity of soil erosion over Kenya and with measured rates of soil loss at different locations over the area of study. The results show that the measured and estimated rates of erosion are generally similar and within the same order of magnitude. They also show that, over the last years, erosion rates are increasing in large parts of the region at an alarming rate, and that mitigation measures are needed to reverse the negative effects of uncontrolled socio-economic practices.

  4. Timescales and controls on phosphorus loss from a grassland hillslope following a cessation in P application.

    NASA Astrophysics Data System (ADS)

    Cassidy, Rachel; Doody, Donnacha; Watson, Catherine

    2016-04-01

    Despite the implementation of EU regulations controlling the use of fertilisers in agriculture, reserves of phosphorus (P) in soils continue to pose a threat to water quality. Mobilisation and transport of legacy P from soil to surface waters has been highlighted as a probable cause of many water bodies continuing to fail to achieve targets under the Water Framework Directive. However, the rates and quantities lost from farmland, and the timescales for positive change to water quality, following cessation of P inputs, remain poorly understood. Monitoring data from an instrumented grassland research site in Northern Ireland provide some insights. The site is located in a hydrologically 'flashy' landscape characterised by steep gradients and poorly drained soils over impermeable bedrock. Between 2000 and 2005 soil Olsen P concentrations were altered in five 0.2 ha hydrologically isolated grazed grassland plots through chemical fertiliser applications of 0, 10, 20, 40, 80 kg P ha-1yr-1. By 2004 this had resulted in soil Olsen P concentrations of 19, 24, 28, 38 and 67 mg P L-1 across the plots, after which applications ceased. Subsequently, until 2012, changes in soil Olsen P across the plots and losses to overland flow and drainage were monitored, with near-continuous flow measurement and water samples abstracted for chemical analysis. Runoff events were sampled at 20 minute intervals while drainage flows were taken as a weekly composite of 4-hourly samples. Overland flow events were defined by at least 24 hours without flow being recorded at the respective plot outlets. Drainage flow was examined on a weekly basis as it was continuous except during prolonged dry periods. To examine the hydrological drivers of overland flow and drainage losses the dissolved reactive P (DRP) and total P (TP) time series were synchronised with rainfall data and modelled soil moisture deficits. Results demonstrated that from 2005-2012 there was no significant difference among plots in the recorded TP and DRP time series for either overland flow or drainage flow despite the large variation in soil Olsen P. Flow-weighted mean concentrations for overland flow losses declined slightly over the period but remained in excess of the chemical Environmental Quality Standard in all plots (EQS; 0.035 mg/L). In individual events the plot receiving zero P fertiliser inputs since 2000 often lost as much, or more, P than the plot which received 80 kg ha-1 yr-1 up to 2005. Annual loads also reflect this. Drainage losses showed no decline over the period. The hydrological drivers, particularly the antecedent dry period and soil moisture, were observed to have a greater influence on P loss from the plots than soil P status. Given that Olsen P often forms the basis of nutrient management advice this raises questions on the environmental sustainability of current nutrient advice for some soil types under similar geoclimatic conditions.

  5. Microbial dynamics and enzyme activities in tropical Andosols depending on land use and nutrient inputs

    NASA Astrophysics Data System (ADS)

    Mganga, Kevin; Razavi, Bahar; Kuzyakov, Yakov

    2015-04-01

    Microbial decomposition of soil organic matter is mediated by enzymes and is a key source of terrestrial CO2 emissions. Microbial and enzyme activities are necessary to understand soil biochemical functioning and identify changes in soil quality. However, little is known about land use and nutrients availability effects on enzyme activities and microbial processes, especially in tropical soils of Africa. This study was conducted to examine how microbial and enzyme activities differ between different land uses and nutrient availability. As Andosols of Mt. Kilimanjaro are limited by nutrient concentrations, we hypothesize that N and P additions will stimulate enzyme activity. N and P were added to soil samples (0-20 cm) representing common land use types in East Africa: (1) savannah, (2) maize fields, (3) lower montane forest, (4) coffee plantation, (5) grasslands and (6) traditional Chagga homegardens. Total CO2 efflux from soil, microbial biomass and activities of β-glucosidase, cellobiohydrolase, chitinase and phosphatase involved in C, N and P cycling, respectively was monitored for 60 days. Total CO2 production, microbial biomass and enzyme activities varied in the order forest soils > grassland soils > arable soils. Increased β-glucosidase and cellobiohydrolase activities after N addition of grassland soils suggest that microorganisms increased N uptake and utilization to produce C-acquiring enzymes. Low N concentration in all soils inhibited chitinase activity. Depending on land use, N and P addition had an inhibitory or neutral effect on phosphatase activity. We attribute this to the high P retention of Andosols and low impact of N and P on the labile P fractions. Enhanced CO2 production after P addition suggests that increased P availability could stimulate soil organic matter biodegradation in Andosols. In conclusion, land use and nutrients influenced soil enzyme activities and microbial dynamics and demonstrated the decline in soil quality after landuse change. Key words: Andosols, β-glucosidase, Cellobiohydrolase, Chitinase, Phosphatase, Mt. Kilimanjaro

  6. Monitoring the effects of manure policy in the Peat region, Netherlands

    NASA Astrophysics Data System (ADS)

    Hooijboer, Arno; Buis, Eke; Fraters, Dico; Boumans, Leo; Lukacs, Saskia; Vrijhoef, Astrid

    2014-05-01

    Total N concentrations in farm ditches in the Peat region of the Netherlands are on the average twice as high as the Good Ecological Potential value of the Water Framework Directive. Since ditches are connected to regional surface water, they may contribute to eutrophication. The minerals policy aims to improve the water quality. In the Netherlands, the effectiveness of the minerals policy on water quality is evaluated with data from the National Minerals Policy Monitoring Programme (LMM). This regards farm data on the quality of water leaching from the root zone and on farm practices. The soil balance nitrogen surpluses decreased between 1996 and 2003 on dairy farms in the Peat region. However, no effect on root zone leaching was found. This study aims to show how monitoring in the Peat region can be improved in order to link water quality to agricultural practice. Contrary to the other Dutch regions, nitrate concentrations in root zone leaching on farms in the Peat region are often very low (90% of the farms below 25 mg/l) due to the reduction of nitrate (denitrification). The main nitrogen (N) components in the peat region waters are ammonium and organic N. Total N is therefore a better measure for N concentrations in the Peat region. The ammonium concentration in groundwater in Dutch peat soils increases with depth. It is assumed that the deeper ammonia-rich water is older and relates to anaerobic peat decomposition instead of agricultural practice. Recent infiltrated low-ammonium water, lies like a thin freshwater lens on the older water. In the Peat region, root zone leaching is monitored by taking samples from the upper meter of groundwater. Unintended, often both lens water and older water are sampled and this distorts the relation between agricultural practice and water quality. In the Peat region, the N surplus is transported with the precipitation surplus to ditches. The relation between the N surplus and the total N in ditch water is therefore better than between N surplus and total N in root zone leaching. The precipitation surplus flows to ditches directly or via open field drains. However, the ditches may be fed partly with older water (seepage of groundwater). In the open field drain only recent water will occur. We expect that monitoring the water quality of the open field drains may even better reflect changes in agricultural practices. These data may also improve the understanding of contribution of agricultural nitrogen and natural nitrogen, necessary to develop measures to decrease the total-N concentration in ditch water.

  7. Development and evaluation of the microbial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

    NASA Astrophysics Data System (ADS)

    Hong, Eun-Mi; Park, Yongeun; Muirhead, Richard; Pachepsky, Yakov

    2017-04-01

    Pathogenic microorganisms in recreational and irrigation waters remain the subject of concern. Water quality models are used to estimate microbial quality of water sources, to evaluate microbial contamination-related risks, to guide the microbial water quality monitoring, and to evaluate the effect of agricultural management on the microbial water quality. The Agricultural Policy/Environmental eXtender (APEX) is the watershed-scale water quality model that includes highly detailed representation of agricultural management. The APEX currently does not have microbial fate and transport simulation capabilities. The objective of this work was to develop the first APEX microbial fate and transport module that could use the APEX conceptual model of manure removal together with recently introduced conceptualizations of the in-stream microbial fate and transport. The module utilizes manure erosion rates found in the APEX. The total number of removed bacteria was set to the concentrations of bacteria in soil-manure mixing layer and eroded manure amount. Bacteria survival in soil-manure mixing layer was simulated with the two-stage survival model. Individual survival patterns were simulated for each manure application date. Simulated in-stream microbial fate and transport processes included the reach-scale passive release of bacteria with resuspended bottom sediment during high flow events, the transport of bacteria from bottom sediment due to the hyporheic exchange during low flow periods, the deposition with settling sediment, and the two-stage survival. Default parameter values were available from recently published databases. The APEX model with the newly developed microbial fate and transport module was applied to simulate seven years of monitoring data for the Toenepi watershed in New Zealand. The stream network of the watershed ran through grazing lands with the daily bovine waste deposition. Based on calibration and testing results, the APEX with the microbe module reproduced well the monitored pattern of E. coli concentrations at the watershed outlet. The APEX with the microbial fate and transport module will be utilized for predicting microbial quality of water under various agricultural practices (grazing, cropping, and manure application), evaluating monitoring protocols, and supporting the selection of management practices based on regulations that rely on fecal indicator bacteria concentrations. Future development should include modeling contributions of wildlife, manure weathering, and weather effects on manure-borne microorganism survival and release.

  8. Soil carbon fractions and biological activity based indices can be used to study the impact of land management and ecological successions

    DOE PAGES

    de Moraes Sa, Joao Carlos; Potma Goncalves, Daniel Ruiz; Ferreira, Lucimara Aparecida; ...

    2017-08-31

    Soil organic carbon (SOC) is a strong indicator of soil health. Development of efficient soil quality indicators is crucial to better understand the impact of land management strategies on the recovery of degraded ecosystems. We hypothesized that SOC fractions and biological attributes can compose strong soil quality indicators to assess an ecosystem recovery following disturbance. Thus, the objective of this study was to evaluate the use of soil biological activity and SOC fractions to study the impact of different land use systems and ecological successions in ecosystem recovery. We selected six land use systems: tobacco (Nicotiana tabacum) cultivation; pastureland; reforestedmore » land with Eucalyptus sp.; and natural ecological successions with 10, 20 and 35 years of vegetation regeneration, respectively. We collected disturbed and undisturbed soil samples in triplicate at 0–5, 5–10, 10–20 and 20–40 cm depth intervals. Several fractionation approaches were used to determine SOC pools: hot water extractable organic carbon, permanganate oxidized organic carbon, particulate organic carbon, mineral associated organic carbon and total SOC. The activity of the enzyme arylsulfatase was used to represent soil biological attributes. We calculated three indices to represent the soil quality: carbon management index, soil resilience index and biological activity index. Our results suggest that the SOC fractions and the enzyme activity followed the increase of vegetation complexity of the ecological succession stages. The labile SOC pool, in addition to enzyme activity, was the most sensitive variable to assess land use changes. The biomass-C input was considered to be the main reason of SOC increase, and the gains of labile SOC fractions were directly related to the increase of SOC stocks. Both, biological and carbon management indices were efficient tools to characterize the impact of studied management systems. Also, we found that assessment of deeper soil layers (20–40 cm) was extremely important as incomplete inferences might be reached while evaluating only surface soil layers (0–20 cm). Here, we conclude that the carbon management and biological indices captured the stage of soil degradation and the influence of vegetation diversity in the soil resilience restoration, providing an advance in monitoring strategies that can be reproducible in any environment.« less

  9. Soil carbon fractions and biological activity based indices can be used to study the impact of land management and ecological successions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Moraes Sa, Joao Carlos; Potma Goncalves, Daniel Ruiz; Ferreira, Lucimara Aparecida

    Soil organic carbon (SOC) is a strong indicator of soil health. Development of efficient soil quality indicators is crucial to better understand the impact of land management strategies on the recovery of degraded ecosystems. We hypothesized that SOC fractions and biological attributes can compose strong soil quality indicators to assess an ecosystem recovery following disturbance. Thus, the objective of this study was to evaluate the use of soil biological activity and SOC fractions to study the impact of different land use systems and ecological successions in ecosystem recovery. We selected six land use systems: tobacco (Nicotiana tabacum) cultivation; pastureland; reforestedmore » land with Eucalyptus sp.; and natural ecological successions with 10, 20 and 35 years of vegetation regeneration, respectively. We collected disturbed and undisturbed soil samples in triplicate at 0–5, 5–10, 10–20 and 20–40 cm depth intervals. Several fractionation approaches were used to determine SOC pools: hot water extractable organic carbon, permanganate oxidized organic carbon, particulate organic carbon, mineral associated organic carbon and total SOC. The activity of the enzyme arylsulfatase was used to represent soil biological attributes. We calculated three indices to represent the soil quality: carbon management index, soil resilience index and biological activity index. Our results suggest that the SOC fractions and the enzyme activity followed the increase of vegetation complexity of the ecological succession stages. The labile SOC pool, in addition to enzyme activity, was the most sensitive variable to assess land use changes. The biomass-C input was considered to be the main reason of SOC increase, and the gains of labile SOC fractions were directly related to the increase of SOC stocks. Both, biological and carbon management indices were efficient tools to characterize the impact of studied management systems. Also, we found that assessment of deeper soil layers (20–40 cm) was extremely important as incomplete inferences might be reached while evaluating only surface soil layers (0–20 cm). Here, we conclude that the carbon management and biological indices captured the stage of soil degradation and the influence of vegetation diversity in the soil resilience restoration, providing an advance in monitoring strategies that can be reproducible in any environment.« less

  10. Characterization and origin of organic and inorganic pollution in urban soils in Pisa (Tuscany, Italy).

    PubMed

    Cardelli, Roberto; Vanni, Giacomo; Marchini, Fausto; Saviozzi, Alessandro

    2017-10-12

    We assessed the quality of 31 urban soils in Pisa by analyzing total petroleum hydrocarbons (TPHs), Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn, and the platinum group elements (PGEs). The risk was evaluated by the geological accumulation index (I geo ) and the enrichment factor (EF). Results were compared with those obtained from a non-urban site and with the quantitative limits fixed by Italian legislation. In nearly all the monitored sites, the legal limit for TPH of 60 mg/kg in residential areas was exceeded, indicating widespread and intense pollution throughout the entire city area. The I geo indicated no Cd, Cu, Mn, Ni, and Zn pollution and minimal Pb and Cr pollution due to anthropogenic enrichment. Legal Hg and Zn limits of 1 and 150 mg/kg, respectively, were exceeded in about 20% of sites; Cd (2 mg/kg), Cr (150 mg/kg), and Cu (120 mg/kg) in only one site; and the Ni legal limit of 120 mg/kg was never exceeded. Some urban soils showed a higher Hg level than the more restrictive legal limit of 5 mg/kg concerning areas for industrial use. Based on the soluble, exchangeable, and carbonate-bound fractions, Mn and Zn showed the highest mobility, suggesting a more potential risk of soil contamination than the other metals. The TPH and both Cr and Hg amounts were not correlated with any of the other monitored metals. The total contents of Cd, Pb, Zn, and Cu in soils were positively correlated with each other, suggesting a common origin from vehicular traffic. The PGE values (Pt and Pd) were below the detection limits in 75%-90% of the monitored areas, suggesting that their accumulation is at an early stage.

  11. Soil biodiversity in artificial black pine stands after selective silvicultural treatments: preliminary results

    NASA Astrophysics Data System (ADS)

    Mocali, Stefano; Fabiani, Arturo; Butti, Fabrizio; De Meo, Isabella; Bianchetto, Elisa; Landi, Silvia; Montini, Piergiuseppe; Samaden, Stefano; Cantiani, Paolo

    2016-04-01

    The decay of forest cover and soil erosion is a consequence of continual intensive forest exploitation, such as grazing and wildfires over the centuries. From the end of the eighteenth century up to the mid-1900s, black pine plantations were established throughout the Apennines' range in Italy, to improve forest soil quality. The main aim of this reafforestation was to re-establish the pine as a first cover, pioneer species. A series of thinning activities were therefore planned by foresters when these plantations were designed. The project Selpibiolife (LIFE13 BIO/IT/000282) has the main objective to demonstrate the potential of an innovative silvicultural treatment to enhance soil biodiversity under black pine stands. The monitoring will be carried out by comparing selective and traditional thinning methods (selecting trees from below leaving well-spaced, highest-quality trees) to areas without any silvicultural treatments (e.g. weeding, cleaning, liberation cutting). The monitoring survey was carried out in Pratomagno and Amiata Val D'Orcia areas on the Appennines (Italy) and involved different biotic levels: microorganisms, mesofauna, nematodes and macrofauna (Coleoptera). The results displayed a significant difference between the overall biodiversity of the two areas. In particular, microbial diversity assessed by both biochemical (microbial biomass, microbial respiration, metabolic quotient) and molecular (PCR-DGGE) approaches highlighted different a composition and activity of microbial communities within the two areas before thinning. Furthermore, little but significant differences were observed for mesofauna and nematode community as well which displayed a higher diversity level in Amiata areas compared to Pratomagno. In contrast, Coleoptera showed higher richness values in Pratomagno, where the wood degrader Nebria tibialis specie dominated, compared to Amiata. As expected, a general degraded biodiversity was observed in both areas before thinning.

  12. Groundwater quality under the influence of spent mushroom substrate weathering.

    PubMed

    Guo, Mingxin

    2005-10-01

    Nitrate and other solutes resulting from field-weathering of spent mushroom substrate (SMS) percolate into underlying soils and may migrate to groundwater. A field trial was conducted to investigate the potential influences of SMS weathering on groundwater quality. Spent mushroom substrate was deposited at 90 and 150 cm pile depths over a Typic Hapludult and weathered for 2 years. Eight casing wells were installed around the SMS piles to monitor the quality changes of groundwater with a high seasonal water table of 760 cm below the surface. Although leachate solutes had moved more than 200 cm deep in soil from the surface, no significant changes of groundwater quality caused by SMS weathering were observed even one year after removal of the SMS piles (3 years total). The groundwater had pH, electrical conductivity (EC) and dissolved organic carbon (DOC) of 4.3-5.7, 0.2-0.3 dS m(-1) and 0.7-2.2 mg L(-1), respectively. The major inorganic ions were Mg(2+), Ca(2+), Na(+), Cl(-), SO(4)(2-) and NO(3)(-), with a concentration range of 2.5-68.3 mg L(-1). The results suggest that SMS leachate solutes migrated fairly slow in deep subsurface soils of the experimental field. Considering that leachate solutes may move several meters in soil through preferential flow channels, weathering of SMS in fields with a high seasonal groundwater table >or=5 m below the ground is recommended. Conservatively, SMS weathering should be conducted on compact surfaces and leachate be collected and reused as liquid fertilizers.

  13. Yield and Water Quality Impacts of Field-Scale Integration of Willow into a Continuous Corn Rotation System.

    PubMed

    Zumpf, Colleen; Ssegane, Herbert; Negri, Maria Cristina; Campbell, Patty; Cacho, Julian

    2017-07-01

    Agricultural landscape design has gained recognition by the international environmental and development community as a strategy to address multiple goals in land, water, and ecosystem service management; however, field research is needed to quantify impacts on specific local environments. The production of bioenergy crops in specific landscape positions within a grain-crop field can serve the dual purpose of producing cellulosic biomass (nutrient recovery) while also providing regulating ecosystem services to improve water quality (nutrient reduction). The effectiveness of such a landscape design was evaluated by the strategic placement of a 0.8-ha short-rotation shrub willow ( Seemen) bioenergy buffer along marginal soils in a 6.5-ha corn ( L.) field in a 6-yr field study in central Illinois. The impact of willow integration on water quality (soil water, shallow groundwater leaching, and crop nutrient uptake) and quantity (soil moisture and transpiration) was monitored in comparison with corn in the willow's first cycle of growth. Willows significantly reduced nitrate leachate in shallow subsurface water by 88% while maintaining adequate nutrient and water usage. Results suggest that willows offer an efficient nutrient-reduction strategy and may provide additional ecosystem services and benefits, including enhanced soil health. However, low values for calculated willow biomass will need to be readdressed in the future as harvest data become available to understand contributing factors that affected productivity beyond nutrient availability. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Assessment and restoring soil functionality in degraded areas of organic vineyards. The preliminary results of the ReSolVe project in Italy

    NASA Astrophysics Data System (ADS)

    Priori, Simone; Agnelli, Alessandro; Castaldini, Maurizio; D'Avino, Lorenzo; D'Errico, Giada; Gagnarli, Elena; Giudi, Silvia; Goggioli, Donatella; Lagomarsino, Alessandra; Landi, Silvia; Leprini, Marco; Pellegrini, Sergio; Perria, Rita; Puccioni, Sergio; Simoni, Sauro; Storchi, Paolo; Valboa, Giuseppe; Zombardo, Alessandra; Costantini, Edoardo

    2016-04-01

    In both conventional and organic Italian vineyards, it is quite common to have areas characterized by problems in vine health, grape production and quality, often caused by improper land preparation before vine plantation and/or management. Causes for soil malfunctioning can include: reduced contribution of the soil fauna to the ecosystem services (i.e. nutrient cycles), poor organic matter content, imbalance of some element ratio, altered pH, water deficiency, soil compaction and/or scarce oxygenation. ReSolVe is a transnational and interdisciplinary 3-years research project aimed at testing the effects of selected organic strategies for restoring optimal soil functionality in degraded areas within vineyard. The different restoring strategies implemented in each plot will be: i) compost produced on farm by manure + pruning residue + grass, ii) faba bean and barley green manure, iii) sowing and dry mulching with Trifolium squarrosum L. During two years of such treatments, the trend of the soil features and the grapevine status will be monitored in detail, to reveal the positive and negative effects of such treatments. The project involves 8 research groups in 6 different EU countries (Italy, France, Spain, Sweden, Slovenia, and Turkey), with experts from several disciplines, including soil science, ecology, microbiology, grapevine physiology, viticulture, and biometry. The experimental vineyards are situated in Italy (Chianti hills and Maremma plain, Tuscany), France (Bordeaux and Languedoc), Spain (La Rioja) and Slovenia (Primorska) for winegrape, and in Turkey (Adana and Mersin) for table grape. Soil features before implementing restoring strategies showed lower content of soil organic matter and enzyme activities, and higher carbonates in degraded areas than in the non-degraded areas. The Biological Soil Quality values of microarthropods were always high, in comparison with data registered in similarly managed vineyards or stable ecosystems, and the data showed homogeneous patterns within the experimental plots. Nematode abundance, taxa richness and maturity (MI) and plant parasitic (PPI) indices were higher in non-degraded than degraded areas, but differences were not significant. Grapevines in degraded areas of both farms showed less vegetative vigour and significantly lower values in the SPAD colour index. The yield and the weight of the grape bunches and berries were greater in the not degraded. The grapes of degraded areas at harvest had instead a sugar content significantly higher (on average +2.5°Brix). The restoration techniques and the monitoring methodologies developed and tested during the ReSolVe project will be described in specific final guidelines. The restoration techniques will be accessible for all the European farmers and will be low cost and environmental-friendly. A protocol of analyses and measurements between the all partners will allow an effective and comparable monitoring of vineyard ecosystemic functioning in European countries. Keywords: organic, viticulture, soil functionality, biodiversity, soil management Aknowledgements: Financial support for this project is provided by funding bodies within the FP7 ERA-Net CORE Organic Plus, and cofunds from the European Commission.

  15. Widening ERTS applications

    NASA Technical Reports Server (NTRS)

    Mercanti, E. P.

    1974-01-01

    In less than two years of operation ERTS-1 is shown to have successfully completed its experimental mission and to be delivering an ever-increasing roster of benefits. The widening ERTS applications reviewed include air quality and weather modification, aid to oil exploration, ore-deposit exploration, short-lived event observation, flood area assessment and flood-plain mapping, land and water quality assessment, soil association mapping, crop production measurements, wildlife resources, drought and desertification studies, ground-water exploration, watershed surveys, snow and ice monitoring, surface water mapping, and iceberg surveys. Future projects and developments are also briefly reviewed.

  16. Geochemical and mineralogical data for soils of the conterminous United States

    USGS Publications Warehouse

    Smith, David B.; Cannon, William F.; Woodruff, Laurel G.; Solano, Federico; Kilburn, James E.; Fey, David L.

    2013-01-01

    In 2007, the U.S. Geological Survey initiated a low-density (1 site per 1,600 square kilometers, 4,857 sites) geochemical and mineralogical survey of soils of the conterminous United States as part of the North American Soil Geochemical Landscapes Project. Sampling and analytical protocols were developed at a workshop in 2003, and pilot studies were conducted from 2004 to 2007 to test and refine these recommended protocols. The final sampling protocol for the national-scale survey included, at each site, a sample from a depth of 0 to 5 centimeters, a composite of the soil A horizon, and a deeper sample from the soil C horizon or, if the top of the C horizon was at a depth greater than 1 meter, from a depth of approximately 80–100 centimeters. The <2-millimeter fraction of each sample was analyzed for a suite of 45 major and trace elements by methods that yield the total or near-total elemental content. The major mineralogical components in the samples from the soil A and C horizons were determined by a quantitative X-ray diffraction method using Rietveld refinement. Sampling in the conterminous United States was completed in 2010, with chemical and mineralogical analyses completed in May 2013. The resulting dataset provides an estimate of the abundance and spatial distribution of chemical elements and minerals in soils of the conterminous United States and represents a baseline for soil geochemistry and mineralogy against which future changes may be recognized and quantified. This report (1) describes the sampling, sample preparation, and analytical methods used; (2) gives details of the quality control protocols used to monitor the quality of chemical and mineralogical analyses over approximately six years; and (3) makes available the soil geochemical and mineralogical data in downloadable tables.

  17. Soil carbon fractions under maize-wheat system: effect of tillage and nutrient management.

    PubMed

    Sandeep, S; Manjaiah, K M; Pal, Sharmistha; Singh, A K

    2016-01-01

    Soil organic carbon plays a major role in sustaining agroecosystems and maintaining environmental quality as it acts as a major source and sink of atmospheric carbon. The present study aims to assess the impact of agricultural management practices on soil organic carbon pools in a maize-wheat cropping system of Indo-Gangetic Plains, India. Soil samples from a split plot design with two tillage systems (bed planting and conventional tillage) and six nutrient treatments (T1 = control, T2 = 120 kg urea-N ha(-1), T3 = T2 (25 % N substituted by FYM), T4 = T2 (25 % N substituted by sewage sludge), T5 = T2 + crop residue, T6 = 100 % organic source (50 % FYM + 25 % biofertilizer + 25 % crop residue) were used for determining the organic carbon pools. Results show that there was a significant improvement in Walkley and Black carbon in soil under integrated and organic nutrient management treatments. KMnO4-oxidizable carbon content of soil varied from 0.63 to 1.50 g kg(-1) in soils and was found to be a better indicator for monitoring the impact of agricultural management practices on quality of soil organic carbon than microbial biomass carbon. Tillage and its interaction were found to significantly influence only those soil organic carbon fractions closely associated with aggregate stability viz, labile polysaccharides and glomalin. The highest amount of C4-derived carbon was found to be in plots receiving recommended doses of N as urea (29 %) followed by control plots (25 %). The carbon management index ranged between 82 to 195 and was better in integrated nutrient sources than ones receiving recommended doses of nutrients through mineral fertilizers alone.

  18. Influence of natural factors on the quality of midwestern streams and rivers

    USGS Publications Warehouse

    Porter, Stephen D.; Harris, Mitchell A.; Kalkhoff, Stephen J.

    2001-01-01

    Streams flowing through cropland in the Midwestern Corn Belt differ considerably in their chemical and ecological characteristics, even though agricultural land use is highly intensive throughout the entire region. These differences likely are attributable to differences in riparian vegetation, soil properties, and hydrology. This conclusion is based on results from a study of the upper Midwest region conducted during seasonally low-flow conditions in August 1997 by the U.S. Geological Survey (USGS) National Water Quality Assessment (NAWQA) Program. This report summarizes significant results from the study and presents some implications for the design and interpretation of water-quality monitoring and assessment studies based on these results.

  19. [Monitoring of water and salt transport in silt and sandy soil during the leaching process].

    PubMed

    Fu, Teng-Fei; Jia, Yong-Gang; Guo, Lei; Liu, Xiao-Lei

    2012-11-01

    Water and salt transport in soil and its mechanism is the key point of the saline soil research. The dynamic rule of water and transport in soil during the leaching process is the theoretical basis of formation, flush, drainage and improvement of saline soil. In this study, a vertical infiltration experiment was conducted to monitor the variation in the resistivity of silt and sandy soil during the leaching process by the self-designed automatic monitoring device. The experimental results showed that the peaks in the resistivity of the two soils went down and faded away in the course of leaching. It took about 30 minutes for sandy soil to reach the water-salt balance, whereas the silt took about 70 minutes. With the increasing leaching times, the desalination depth remained basically the same, being 35 cm for sandy soil and 10 cm for the silt from the top to bottom of soil column. Therefore, 3 and 7 leaching processes were required respectively for the complete desalination of the soil column. The temporal and spatial resolution of this monitoring device can be adjusted according to the practical demand. This device can not only achieve the remote, in situ and dynamic monitoring data of water and salt transport, but also provide an effective method in monitoring, assessment and early warning of salinization.

  20. Coincident Above- and Below-ground Autonomous Monitoring to Quantify Co-variability in Permafrost, Soil and Vegetation Properties in Arctic Tundra: Supporting Data

    DOE Data Explorer

    Baptiste Dafflon; Rusen Oktem; John Peterson; Craig Ulrich; Anh Phuong Tran; Vladimir Romanovsky; Susan Hubbard

    2017-05-10

    The dataset contains measurements obtained through electrical resistivity tomography (ERT) to monitor soil properties, pole-mounted optical cameras to monitor vegetation dynamics, point probes to measure soil temperature, and periodic manual measurements of thaw layer thickness, snow thickness and soil dielectric permittivity.

  1. Evidence for a soil microbial terroir in the Chianti Classico district in Tuscany (Italy)

    NASA Astrophysics Data System (ADS)

    Mocali, Stefano; Priori, Simone; Valboa, Giuseppe; Fabiani, Arturo; Pellegrini, Sergio; Puccioni, Sergio; Zombardo, Alessandra; Storchi, Paolo; Costantini, Edoardo

    2017-04-01

    Originally developed for wine, the terroir concept is becoming popular throughout agri-environmental sciences in many parts of the world, linking the uniqueness and quality of agricultural products to the environment where they are produced. Even thought it is well known that geology, morphology and microclimate influence and diversify the wine characters within a wine district (macro-terroir), recent literature suggests that different soil features can drive wine characters also within the same macro-terroir, at both farm and vineyard scale. However, the drivers beyond these differences remain elusive, and the potential contribution of soil microbes has been ignored until recently. Therefore, in this multidisciplinary work we have tried to assess the possible role of soil microbial communities in vineyards on defining the quality of the wine produced. Soils from 4 different macro-terroir areas located within the Barone Ricasoli farm in Brolio (SI), Tuscany (Central Italy), characterized by different geology and cultivated with the grapevine cultivar Sangiovese, were collected: Fattoio (feldspathic sandstone), Leccio (marine sands), Agresto (limestone), and Ceni (fluvial deposits). Within each terroir, two areas homogeneous for soil features were delimited (Basic terroir unit, BTU) and monitored over 3 years for the soil physico-chemical and biological parameters as well as viticultural parameters. In this work we report the results of the analysis of microbial communities in the 8 BTUs, determined through molecular (PCR-DGGE), metabolic (BIOLOG) and biochemical (microbial respiration, biomass C) techniques. The results showed that each vineyard is characterized by a well defined bacterial community whose structure varies both as a function of different BTUs and terroir areas, depending on soil features. In fact, the vineyards Fattoio 1 and 2 exhibit a very similar bacterial composition between them and stable over time, even for the low total organic matter content. In contrast, Leccio 1 is very different from Leccio 2 (much more than Agresto 1 compared to Agresto 2) and shows values of biological fertility and bacterial diversity always lower than Leccio 2. Ceni 1 and 2, however, even though quite distinct from each other, do not show many similarities with other vineyards. Interesting to note that the values of the Sangiovese performance index, which estimate the quality of the wine produced are well correlated with the bacterial diversity of different BTU. In conclusion, despite soil bacterial community composition was shown to be strictly related to the quality of grapes, further investigation is still required in order to better highlight the effect of such microbial communities on vine physiology and wine quality.

  2. Assessment of Soil Environmental Quality in Huangguoshu Waterfalls Scenic Area

    NASA Astrophysics Data System (ADS)

    Luo, Rongbin; Feng, Kaiyu; Gu, Bo; Xu, Chengcheng

    2018-03-01

    This paper concentrates on five major heavy metal pollutants as soil environmental quality evaluation factors, respectively Lead (Pb), Cadmium (Cd), Mercury (Hg), Arsenic (As), Chromium (Cr), based on the National Soil Environmental Quality Standards (GB15618 - 1995), we used single factor index evaluation model of soil environmental quality and comprehensive index evaluation model to analyze surface soil environmental quality in the Huangguoshu Waterfalls scenic area. Based on surface soil analysis, our results showed that the individual contamination index, Pb, Hg, As and Cr in the Huangguoshu Waterfalls scenic area met class I according to requirements of National Soil Environmental Quality Standards, which indicated that Pb, Hg, As and Cr were not main heavy metal pollutants in this area, but the individual contamination index of Cd in soil was seriously exceeded National Soil Environmental Quality Standards’ requirement. Soil environmental quality in Shitouzhai, Luoshitan, Langgong Hongyan Power Plant have exceeded the requirement of National Soil Environmental Quality Standards “0.7< Pc≤ 1.0” (Alert Level), these soils had been slightly polluted; the classification of soil environmental quality assessment in Longgong downstream area was above “Alert Level”, it indicated that soil in this area was not polluted. Above all, relevant measures for soil remediation are put forward.

  3. Coal mining activities change plant community structure due to air pollution and soil degradation.

    PubMed

    Pandey, Bhanu; Agrawal, Madhoolika; Singh, Siddharth

    2014-10-01

    The aim of this study was to investigate the effects of coal mining activities on the community structures of woody and herbaceous plants. The response of individual plants of community to defilement caused by coal mining was also assessed. Air monitoring, soil physico-chemical and phytosociological analyses were carried around Jharia coalfield (JCF) and Raniganj coalfield. The importance value index of sensitive species minified and those of tolerant species enhanced with increasing pollution load and altered soil quality around coal mining areas. Although the species richness of woody and herbaceous plants decreased with higher pollution load, a large number of species acclimatized to the stress caused by the coal mining activities. Woody plant community at JCF was more affected by coal mining than herbaceous community. Canonical correspondence analysis revealed that structure of herbaceous community was mainly driven by soil total organic carbon, soil nitrogen, whereas woody layer community was influenced by sulphur dioxide in ambient air, soil sulphate and soil phosphorus. The changes in species diversity observed at mining areas indicated an increase in the proportion of resistant herbs and grasses showing a tendency towards a definite selection strategy of ecosystem in response to air pollution and altered soil characteristics.

  4. Coincident aboveground and belowground autonomous monitoring to quantify covariability in permafrost, soil, and vegetation properties in Arctic tundra

    NASA Astrophysics Data System (ADS)

    Dafflon, Baptiste; Oktem, Rusen; Peterson, John; Ulrich, Craig; Tran, Anh Phuong; Romanovsky, Vladimir; Hubbard, Susan S.

    2017-06-01

    Coincident monitoring of the spatiotemporal distribution of and interactions between land, soil, and permafrost properties is important for advancing our understanding of ecosystem dynamics. In this study, a novel monitoring strategy was developed to quantify complex Arctic ecosystem responses to the seasonal freeze-thaw-growing season conditions. The strategy exploited autonomous measurements obtained through electrical resistivity tomography to monitor soil properties, pole-mounted optical cameras to monitor vegetation dynamics, point probes to measure soil temperature, and periodic manual measurements of thaw layer thickness, snow thickness, and soil dielectric permittivity. The spatially and temporally dense monitoring data sets revealed several insights about tundra system behavior at a site located near Barrow, AK. In the active layer, the soil electrical conductivity (a proxy for soil water content) indicated an increasing positive correlation with the green chromatic coordinate (a proxy for vegetation vigor) over the growing season, with the strongest correlation (R = 0.89) near the typical peak of the growing season. Soil conductivity and green chromatic coordinate also showed significant positive correlations with thaw depth, which is influenced by soil and surface properties. In the permafrost, soil electrical conductivity revealed annual variations in solute concentration and unfrozen water content, even at temperatures well below 0°C in saline permafrost. These conditions may contribute to an acceleration of long-term thaw in Coastal permafrost regions. Demonstration of this first aboveground and belowground geophysical monitoring approach within an Arctic ecosystem illustrates its significant potential to remotely "visualize" permafrost, soil, and vegetation ecosystem codynamics in high resolution over field relevant scales.

  5. Identifying the Tillage Effects on Phosphorus Export from Phaeozems-Dominated Agricultural Watershed: a Plot-Scale Rainfall-Runoff Study in Northeast China

    NASA Astrophysics Data System (ADS)

    Zhou, Yuyan; Xu, Y. Jun; Xiao, Weihua; Wang, Jianhua; Hao, Cailian; Zhou, Pu; Shi, Min

    2017-12-01

    Evaluating tillage effects on soil phosphorus (P) loss at the plot-scale has significant implication for developing best management practices (BMPs) to protect water quality and soil productivity management in agricultural watersheds. This paper aims to quantify P loss from tilled soils under different rainfall patterns in a Phaeozems-dominated agricultural watershed. Eleven rainfall events were monitored at three experimental sites growing corns with conventional till, conservational till, and no-till during a growing season from July to August in 2013. Mean event mean concentration of dissolved phosphorus was 0.130, 0.213 and 0.614 mg L-1 and mean particulate phosphorus transfer rate was 103.502, 33.359 and 27.127 g ha-1 hr-1, respectively for three tillage practices. Results showed that less tillage practices could significantly reduce sediment runoff and PP loss, accompanied with a moderate reduction of runoff yield. While the proportion of PP has been cut down, the proportion of DP could account for the majority. Hydrological factors, including antecedent soil moisture and rainfall variables, could exert various effects on DP, PP and sediment losses under different tillage conditions. Further, the results of this study imply that the soil P loss management and water quality protection in black soil region of Northeast China should take consideration of diverse effects of tillage on phosphorus loss and the dynamics of P between different forms.

  6. Validating visual disturbance types and classes used for forest soil monitoring protocols

    Treesearch

    D. S. Page-Dumroese; A. M. Abbott; M. P. Curran; M. F. Jurgensen

    2012-01-01

    We describe several methods for validating visual soil disturbance classes used during forest soil monitoring after specific management operations. Site-specific vegetative, soil, and hydrologic responses to soil disturbance are needed to identify sensitive and resilient soil properties and processes; therefore, validation of ecosystem responses can provide information...

  7. The Utility of the Real-Time NASA Land Information System Data for Drought Monitoring Applications

    NASA Technical Reports Server (NTRS)

    White, Kristopher D.; Case, Jonathan L.

    2013-01-01

    Measurements of soil moisture are a crucial component for the proper monitoring of drought conditions. The large spatial variability of soil moisture complicates the problem. Unfortunately, in situ soil moisture observing networks typically consist of sparse point observations, and conventional numerical model analyses of soil moisture used to diagnose drought are of coarse spatial resolution. Decision support systems such as the U.S. Drought Monitor contain drought impact resolution on sub-county scales, which may not be supported by the existing soil moisture networks or analyses. The NASA Land Information System, which is run with 3 km grid spacing over the eastern United States, has demonstrated utility for monitoring soil moisture. Some of the more useful output fields from the Land Information System are volumetric soil moisture in the 0-10 cm and 40-100 cm layers, column-integrated relative soil moisture, and the real-time green vegetation fraction derived from MODIS (Moderate Resolution Imaging Spectroradiometer) swath data that are run within the Land Information System in place of the monthly climatological vegetation fraction. While these and other variables have primarily been used in local weather models and other operational forecasting applications at National Weather Service offices, the use of the Land Information System for drought monitoring has demonstrated utility for feedback to the Drought Monitor. Output from the Land Information System is currently being used at NWS Huntsville to assess soil moisture, and to provide input to the Drought Monitor. Since feedback to the Drought Monitor takes place on a weekly basis, weekly difference plots of column-integrated relative soil moisture are being produced by the NASA Short-term Prediction Research and Transition Center and analyzed to facilitate the process. In addition to the Drought Monitor, these data are used to assess drought conditions for monthly feedback to the Alabama Drought Monitoring and Impact Group and the Tennessee Drought Task Force, which are comprised of federal, state, and local agencies and other water resources professionals.

  8. Contribution of climate, soil, and MODIS predictors when modeling forest inventory invasive species distribution using forest inventory data

    Treesearch

    Dumitru Salajanu; Dennis Jacobs

    2010-01-01

    Forest inventory and analysis data are used to monitor the presence and extent of certain non-native invasive species. Effective control of its spread requires quality spatial distribution information. There is no clear consensus why some ecosystems are more favorable to non-native species. The objective of this study is to evaluate the reelative contribution of geo-...

  9. Satellite Gravimetry Applied to Drought Monitoring

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew

    2010-01-01

    Near-surface wetness conditions change rapidly with the weather, which limits their usefulness as drought indicators. Deeper stores of water, including root-zone soil wetness and groundwater, portend longer-term weather trends and climate variations, thus they are well suited for quantifying droughts. However, the existing in situ networks for monitoring these variables suffer from significant discontinuities (short records and spatial undersampling), as well as the inherent human and mechanical errors associated with the soil moisture and groundwater observation. Remote sensing is a promising alternative, but standard remote sensors, which measure various wavelengths of light emitted or reflected from Earth's surface and atmosphere, can only directly detect wetness conditions within the first few centimeters of the land s surface. Such sensors include the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) C-band passive microwave measurement system on the National Aeronautic and Space Administration's (NASA) Aqua satellite, and the combined active and passive L-band microwave system currently under development for NASA's planned Soil Moisture Active Passive (SMAP) satellite mission. These instruments are sensitive to water as deep as the top 2 cm and 5 cm of the soil column, respectively, with the specific depth depending on vegetation cover. Thermal infrared (TIR) imaging has been used to infer water stored in the full root zone, with limitations: auxiliary information including soil grain size is required, the TIR temperature versus soil water content curve becomes flat as wetness increases, and dense vegetation and cloud cover impede measurement. Numerical models of land surface hydrology are another potential solution, but the quality of output from such models is limited by errors in the input data and tradeoffs between model realism and computational efficiency. This chapter is divided into eight sections, the next of which describes the theory behind satellite gravimetry. Following that is a summary of the GRACE mission and how hydrological information is gleaned from its gravity products. The fourth section provides examples of hydrological science enabled by GRACE. The fifth and sixth sections list the challenging aspects of GRACE derived hydrology data and how they are being overcome, including the use of data assimilation. The seventh section describes recent progress in applying GRACE for drought monitoring, including the development of new soil moisture and drought indicator products, and that is followed by a discussion of future prospects in satellite gravimetry based drought monitoring.

  10. Soil properties evolution after irrigation with reclaimed water

    NASA Astrophysics Data System (ADS)

    Leal, M.; González-Naranjo, V.; de Miguel, A.; Martínez-Hernández, V.; Lillo, J.

    2012-04-01

    Many arid and semi-arid countries are forced to look for new and alternative water sources. The availability of suitable quality water for agriculture in these regions often is threatened. In this context of water scarcity, the reuse of treated wastewater for crop irrigation could represent a feasible solution. Through rigorous planning and management, irrigation with reclaimed water presents some advantages such as saving freshwater, reducing wastewater discharges into freshwater bodies and decreasing the amount of added fertilizers due to the extra supply of nutrients by reclaimed water. The current study, which involves wastewater reuse in agriculture, has been carried out in the Experimental Plant of Carrión de los Céspedes (Sevile, Spain). Here, two survey parcels equally designed have been cultivated with Jatropha curcas L, a bioenergetic plant and a non-interfering food security crop. The only difference between the two parcels lies on the irrigation water quality: one is irrigated with groundwater and another one with reclaimed water. The main aim of this study focuses on analysing the outstanding differences in soil properties derived from irrigation with two water qualities, due to their implications for plant growth. To control and monitor the soil variables, soil samples were collected before and after irrigation in the two parcels. pH, electrical conductivity, cation exchange capacity, exchangeable cations (Ca2+, Mg2+, Na+ and K+), kjeldahl nitrogen, organic matter content and nutrients (boron, phosphorus, nitrogen, potassium) were measured. Data were statistically analyzed using the R package. To evaluate the variance ANOVA test was used and to obtain the relations between water quality and soil parameters, Pearson correlation coefficient was computed. According to other authors, a decrease in the organic matter content and an increase of parameters such as pH, electrical conductivity and some exchangeable cations were expected. To date and after one year of irrigation, no significant differences have been found among the soil properties of the two parcels. The results show in one hand, a slightly decrease in phosphorus, nitrates and electrical conductivity and on the other hand, an increase of organic matter. These trends should be contrasted by new soil quality measurements. The implications on vegetation growth, oil production and nutrients assimilation derived from the irrigation with reclaimed water should be also evaluated over time.

  11. The role of pesticide fate modelling in a prevention-led approach to potable water quality management

    NASA Astrophysics Data System (ADS)

    Dolan, Tom; Pullan, Stephanie; Whelan, Mick; Parsons, David

    2013-04-01

    Diffuse inputs from agriculture are commonly the main source of pesticide contamination in surface water and may have implications for the quality of treated drinking water. After privatisation in 1991, UK water companies primarily focused on the provision of sufficient water treatment to reduce the risk of non-compliance with the European Drinking Water Directive (DWD), under which all pesticide concentrations must be below 0.1µg/l and UK Water Supply Regulations for the potable water they supply. Since 2000, Article 7 of the Water Framework Directive (WFD) has begun to drive a prevention-led approach to compliance with the DWD. As a consequence water companies are now more interested in the quality of 'raw' (untreated) water at the point of abstraction. Modelling (based upon best available estimates of cropping, pesticide use, weather conditions, pesticide characteristics, and catchment characteristics) and monitoring of raw water quality can both help to determine the compliance risks associated with the quality of this 'raw' water resource. This knowledge allows water companies to prioritise active substances for action in their catchments, and is currently used in many cases to support the design of monitoring programmes for pesticide active substances. Additional value can be provided if models are able to help to identify the type and scale of catchment management interventions required to achieve DWD compliance for pesticide active substances through pollution prevention at source or along transport pathways. These questions were explored using a simple catchment-scale pesticide fate and transport model. The model employs a daily time-step and is semi-lumped with calculations performed for soil type and crop combinations, weighted by their proportions within the catchment. Soil properties are derived from the national soil database and the model can, therefore, be applied to any catchment in England and Wales. Various realistic catchment management intervention scenarios were explored (including changes to land use and pesticide usage) with the aim of providing a useful input to the debate between water companies, their regulators and pesticide users over the scale of catchment management required to support both DWD and WFD Article 7 compliance.

  12. Geochemical processes during managed aquifer recharge with desalinated seawater

    NASA Astrophysics Data System (ADS)

    Ganot, Y.; Holtzman, R.; Weisbrod, N.; Russak, A.; Katz, Y.; Kurtzman, D.

    2017-12-01

    In this work we study the geochemical processes along the variably-saturated zone during managed aquifer recharge (MAR) with reverse-osmosis desalinated seawater (DSW) to an infiltration pond at the Menashe site, located above the Israeli coastal aquifer. The DSW is post-treated by calcite dissolution (remineralization) in order to meet the Israeli desalinated water quality criteria. Suction cups and monitoring wells inside the pond were used to monitor water quality during two MAR events on 2015 and 2016. Results show that cation exchange is dominant, driven by the high Ca2+ concentration in the post-treated DSW. Stable isotope analysis shows that the composition of the shallow groundwater is similar to the recharged DSW, but with enrichment of Mg2+, Na+, Ca2+ and HCO3-. A calibrated variably-saturated reactive transport model was used to predict the geochemical evolution during 50 years of MAR with two water quality scenarios: post-treated DSW and soft DSW (without post-treatment). The latter scenario was aimed to test soil-aquifer-treatment as an alternative post-treatment technique. In terms of water quality, the results of the two scenarios were found within the range of the desalinated water criteria. Mg2+ enrichment was stable ( 2.5 mg L-1), higher than the zero concentration found in the Israeli DSW. Calcite content reduction was low (<1%) along the variably-saturated profile, after 50 years of MAR. This suggests that using soil-aquifer-treatment as a remineralization technique for DSW is potentially a sustainable practice, which is limited only by the current hydraulic capacity of the Menashe MAR site.

  13. Real-time monitoring of methane oxidation in a simulated landfill cover soil and MiSeq pyrosequencing analysis of the related bacterial community structure.

    PubMed

    Xing, Zhilin; Zhao, Tiantao; Gao, Yanhui; He, Zhi; Zhang, Lijie; Peng, Xuya; Song, Liyan

    2017-10-01

    Real-time CH 4 oxidation in a landfill cover soil was studied using automated gas sampling that determined biogas (CH 4 and CO 2 ) and O 2 concentrations at various depths in a simulated landfill cover soil (SLCS) column reactor. The real-time monitoring system obtained more than 10,000 biogas (CH 4 and CO 2 ) and O 2 data points covering 32 steady states of CH 4 oxidation with 32 different CH 4 fluxes (0.2-125mol·m -2 ·d -1 ). The kinetics of CH 4 oxidation at different depths (0-20cm, 20-40cm, and 40-60cm) of SLCS were well fit by a CH 4 -O 2 dual-substrate model based on 32 values (averaged, n=5-15) of equilibrated CH 4 concentrations. The quality of the fit (R 2 ranged from 0.90 to 0.96) was higher than those reported in previous studies, which suggests that real time monitoring is beneficial for CH 4 oxidation simulations. MiSeq pyrosequencing indicated that CH 4 flux events changed the bacterial community structure (e.g., increased the abundance of Bacteroidetes and Methanotrophs) and resulted in a relative increase in the amount of type I methanotrophs (Methylobacter and Methylococcales) and a decrease in the amount of type II methanotrophs (Methylocystis). Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Illinois drainage water management demonstration project

    USGS Publications Warehouse

    Pitts, D.J.; Cooke, R.; Terrio, P.J.; ,

    2004-01-01

    Due to naturally high water tables and flat topography, there are approximately 4 million ha (10 million ac) of farmland artificially drained with subsurface (tile) systems in Illinois. Subsurface drainage is practiced to insure trafficable field conditions for farm equipment and to reduce crop stress from excess water within the root zone. Although drainage is essential for economic crop production, there have been some significant environmental costs. Tile drainage systems tend to intercept nutrient (nitrate) rich soil-water and shunt it to surface water. Data from numerous monitoring studies have shown that a significant amount of the total nitrate load in Illinois is being delivered to surface water from tile drainage systems. In Illinois, these drainage systems are typically installed without control mechanisms and allow the soil to drain whenever the water table is above the elevation of the tile outlet. An assessment of water quality in the tile drained areas of Illinois showed that approximately 50 percent of the nitrate load was being delivered through the tile systems during the fallow period when there was no production need for drainage to occur. In 1998, a demonstration project to introduce drainage water management to producers in Illinois was initiated by NRCS4 An initial aspect of the project was to identify producers that were willing to manage their drainage system to create a raised water table during the fallow (November-March) period. Financial assistance from two federal programs was used to assist producers in retrofitting the existing drainage systems with control structures. Growers were also provided guidance on the management of the structures for both water quality and production benefits. Some of the retrofitted systems were monitored to determine the effect of the practice on water quality. This paper provides background on the water quality impacts of tile drainage in Illinois, the status of the demonstration project, preliminary monitoring results, and other observations.

  15. Effects of golf course management on subsurface soil properties in Iowa

    NASA Astrophysics Data System (ADS)

    Streeter, Matthew T.; Schilling, Keith E.

    2018-05-01

    Currently, in the USA and especially in the Midwest region, urban expansion is developing turfgrass landscapes surrounding commercial sites, homes, and recreational areas on soils that have been agriculturally managed for decades. Often, golf courses are at the forefront of conversations concerning anthropogenic environmental impacts as they account for some of the most intensively managed soils in the world. Iowa golf courses provide an ideal location to evaluate whether golf course management is affecting the quality of soils at depth. Our study evaluated how soil properties relating to soil health and resiliency varied with depth at golf courses across Iowa and interpreted relationships of these properties to current golf course management, previous land use, and inherent soil properties. Systematic variation in soil properties including sand content, NO3, and soil organic matter (SOM) were observed with depth at six Iowa golf courses among three landform regions. Variability in sand content was identified between the 20 and 50 cm depth classes at all courses, where sand content decreased by as much as 37 %. Highest concentrations of SOM and NO3 were found in the shallowest soils, whereas total C and P variability was not related to golf course management. Sand content and NO3 were found to be directly related to golf course management, particularly at shallow depths. The effects of golf course management dissipated with depth and deeper soil variations were primarily due to natural geologic conditions. The two abovementioned soil properties were very noticeably altered by golf course management and may directly impact crop productivity, soil health, and water quality, and while NO3 may be altered relatively quickly in soil through natural processes, particle size of the soil may not be altered without extensive mitigation. Iowa golf courses continue to be developed in areas of land use change from historically native prairies and more recently agriculture to urban landscapes. As soils are continually altered by human impacts, it is imperative that we monitor the changes, both physical and chemical, in order to establish management practices that maintain environmental sustainability and productivity.

  16. SoilBioHedge, harnessing hedgerow soil biodiversity for restoration of arable soil quality and resilience to climatic extremes and land use changes: The impacts of arable to ley conversion on soil hydrological properties

    NASA Astrophysics Data System (ADS)

    Grayson, Richard; Holden, Joseph; Chapman, Pippa; Hunt, Sarah; Leake, Jonathan

    2017-04-01

    Modern agricultural practices pose a significant threat to soil security. Continuous conventional cultivation has been observed to deplete soil organic matter, degrade soil structure, reduce water drainage and water holding capacity, increase nitrate leaching, damage the ecosystem engineer earthworm and mycorrhiza populations and increase the susceptibility of soil and crops to the impacts of climatic stress through decreased resilience to flood and drought conditions. The SoilBioHedge project aims to determine the effectiveness of using grass-clover leys linking hedgerows to arable fields in restoring functional biodiversity, soil quality and resilience to drought and excess rainfall in arable farming. Paired 70m long ley strips have been inserted in to 4 fields. Within each field one ley is connected to the margin while in the other a small 1m fallow area and a steel mesh barrier inserted to bedrock is being used to disconnect the ley and margin and prevent macrofaunal movement from the margin to the ley. As part of the SoilBioHedge project we are undertaking a range of analyses to establish the impacts of arable to ley conversion on key hydrological properties of agricultural soils. Soil moisture is being continuously monitored at three depths at 48 separate locations, in addition monthly manual measurements are being taken at 1158 locations. Arable-to-ley conversion is expected to increase soil macrofaunal activity especially in locations closer to hedgerows, enhancing macropore development. Therefore the proportion of water percolating into macropores, mesopores and micropores is being measured using tension infiltrometers which also allow the calculation of saturated hydraulic conductivity. Soil cores have been extracted to examine impacts on bulk and particle density and subsequently porosity, with hydraulic conductivity being measured using a lab permeameter. Here we present the results of these analyses over the first 24 months of the project. This includes the impacts of this arable ley conversion on soil moisture dynamics and functional macroporosity.

  17. A novel low-cost open-hardware platform for monitoring soil water content and multiple soil-air-vegetation parameters.

    PubMed

    Bitella, Giovanni; Rossi, Roberta; Bochicchio, Rocco; Perniola, Michele; Amato, Mariana

    2014-10-21

    Monitoring soil water content at high spatio-temporal resolution and coupled to other sensor data is crucial for applications oriented towards water sustainability in agriculture, such as precision irrigation or phenotyping root traits for drought tolerance. The cost of instrumentation, however, limits measurement frequency and number of sensors. The objective of this work was to design a low cost "open hardware" platform for multi-sensor measurements including water content at different depths, air and soil temperatures. The system is based on an open-source ARDUINO microcontroller-board, programmed in a simple integrated development environment (IDE). Low cost high-frequency dielectric probes were used in the platform and lab tested on three non-saline soils (ECe1: 2.5 < 0.1 mS/cm). Empirical calibration curves were subjected to cross-validation (leave-one-out method), and normalized root mean square error (NRMSE) were respectively 0.09 for the overall model, 0.09 for the sandy soil, 0.07 for the clay loam and 0.08 for the sandy loam. The overall model (pooled soil data) fitted the data very well (R2 = 0.89) showing a high stability, being able to generate very similar RMSEs during training and validation (RMSE(training) = 2.63; RMSE(validation) = 2.61). Data recorded on the card were automatically sent to a remote server allowing repeated field-data quality checks. This work provides a framework for the replication and upgrading of a customized low cost platform, consistent with the open source approach whereby sharing information on equipment design and software facilitates the adoption and continuous improvement of existing technologies.

  18. A Novel Low-Cost Open-Hardware Platform for Monitoring Soil Water Content and Multiple Soil-Air-Vegetation Parameters

    PubMed Central

    Bitella, Giovanni; Rossi, Roberta; Bochicchio, Rocco; Perniola, Michele; Amato, Mariana

    2014-01-01

    Monitoring soil water content at high spatio-temporal resolution and coupled to other sensor data is crucial for applications oriented towards water sustainability in agriculture, such as precision irrigation or phenotyping root traits for drought tolerance. The cost of instrumentation, however, limits measurement frequency and number of sensors. The objective of this work was to design a low cost “open hardware” platform for multi-sensor measurements including water content at different depths, air and soil temperatures. The system is based on an open-source ARDUINO microcontroller-board, programmed in a simple integrated development environment (IDE). Low cost high-frequency dielectric probes were used in the platform and lab tested on three non-saline soils (ECe1: 2.5 < 0.1 mS/cm). Empirical calibration curves were subjected to cross-validation (leave-one-out method), and normalized root mean square error (NRMSE) were respectively 0.09 for the overall model, 0.09 for the sandy soil, 0.07 for the clay loam and 0.08 for the sandy loam. The overall model (pooled soil data) fitted the data very well (R2 = 0.89) showing a high stability, being able to generate very similar RMSEs during training and validation (RMSEtraining = 2.63; RMSEvalidation = 2.61). Data recorded on the card were automatically sent to a remote server allowing repeated field-data quality checks. This work provides a framework for the replication and upgrading of a customized low cost platform, consistent with the open source approach whereby sharing information on equipment design and software facilitates the adoption and continuous improvement of existing technologies. PMID:25337742

  19. Comparative analysis of tree classification models for detecting fusarium oxysporum f. sp cubense (TR4) based on multi soil sensor parameters

    NASA Astrophysics Data System (ADS)

    Estuar, Maria Regina Justina; Victorino, John Noel; Coronel, Andrei; Co, Jerelyn; Tiausas, Francis; Señires, Chiara Veronica

    2017-09-01

    Use of wireless sensor networks and smartphone integration design to monitor environmental parameters surrounding plantations is made possible because of readily available and affordable sensors. Providing low cost monitoring devices would be beneficial, especially to small farm owners, in a developing country like the Philippines, where agriculture covers a significant amount of the labor market. This study discusses the integration of wireless soil sensor devices and smartphones to create an application that will use multidimensional analysis to detect the presence or absence of plant disease. Specifically, soil sensors are designed to collect soil quality parameters in a sink node from which the smartphone collects data from via Bluetooth. Given these, there is a need to develop a classification model on the mobile phone that will report infection status of a soil. Though tree classification is the most appropriate approach for continuous parameter-based datasets, there is a need to determine whether tree models will result to coherent results or not. Soil sensor data that resides on the phone is modeled using several variations of decision tree, namely: decision tree (DT), best-fit (BF) decision tree, functional tree (FT), Naive Bayes (NB) decision tree, J48, J48graft and LAD tree, where decision tree approaches the problem by considering all sensor nodes as one. Results show that there are significant differences among soil sensor parameters indicating that there are variances in scores between the infected and uninfected sites. Furthermore, analysis of variance in accuracy, recall, precision and F1 measure scores from tree classification models homogeneity among NBTree, J48graft and J48 tree classification models.

  20. A spatiotemporal analysis of hydrological patterns based on a wireless sensor network system

    NASA Astrophysics Data System (ADS)

    Plaza, F.; Slater, T. A.; Zhong, X.; Li, Y.; Liang, Y.; Liang, X.

    2017-12-01

    Understanding complicated spatiotemporal patterns of eco-hydrological variables at a small scale plays a profound role in improving predictability of high resolution distributed hydrological models. However, accurate and continuous monitoring of these complex patterns has become one of the main challenges in the environmental sciences. Wireless sensor networks (WSNs) have emerged as one of the most widespread potential solutions to achieve this. This study presents a spatiotemporal analysis of hydrological patterns (e.g., soil moisture, soil water potential, soil temperature and transpiration) based on observational data collected from a dense multi-hop wireless sensor network (WSN) in a steep-forested testbed located in Southwestern Pennsylvania, USA. At this WSN testbed with an approximate area of 3000 m2, environmental variables are collected from over 240 sensors that are connected to more than 100 heterogeneous motes. The sensors include the soil moisture of EC-5, soil temperature and soil water potential of MPS-1 and MPS-2, and sap flow sensors constructed in house. The motes consist of MICAz, IRIS and TelosB. In addition, several data loggers have been installed along the site to provide a comparative reference to the WSN measurements for the purpose of checking the WSN data quality. The edaphic properties monitored by the WSN sensors show strong agreement with the data logger measurements. Moreover, sap flow measurements, scaled to tree stand transpiration, are found to be reasonable. This study also investigates the feasibility and roles that these sensor measurements play in improving the performance of high-resolution distributed hydrological models. In particular, we explore this using a modified version of the Distributed Hydrological Soil Vegetation Model (DHSVM).

  1. The U.S. Geological Survey and City of Atlanta water-quality and water-quantity monitoring network

    USGS Publications Warehouse

    Horowitz, Arthur J.; Hughes, W. Brian

    2006-01-01

    Population growth and urbanization affect the landscape, and the quality and quantity of water in nearby rivers and streams, as well as downstream receiving waters (Ellis, 1999). Typical impacts include: (1) disruption of the hydrologic cycle through increases in the extent of impervious surfaces (e.g., roads, roofs, sidewalks) that increase the velocity and volume of surface-water runoff; (2) increased chemical loads to local and downstream receiving waters from industrial sources, nonpoint-source runoff, leaking sewer systems, and sewer overflows; (3) direct or indirect soil contamination from industrial sources, power-generating facilities, and landfills; and (4) reduction in the quantity and quality of aquatic habitats. The City of Atlanta's monitoring network consists of 21 long-term sites. Eleven of these are 'fully instrumented' to provide real-time data on water temperature, pH, specific conductance, dissolved oxygen, turbidity (intended as a surrogate for suspended sediment concentration), water level (gage height, intended as a surrogate for discharge), and precipitation. Data are transmitted hourly and are available on a public Web site (http://ga.water.usgs.gov/). Two sites only measure water level and rainfall as an aid to stormwater monitoring. The eight remaining sites are used to assess water quality.

  2. Microbial ecology of the watery ecosystems of Evros river in North Eastern Greece and its influence upon the cultivated soil ecosystem.

    PubMed

    Vavias, S; Alexopoulos, A; Plessas, S; Stefanis, C; Voidarou, C; Stavropoulou, E; Bezirtzoglou, E

    2011-12-01

    The aim of the present study was to evaluate the microbial ecosystem of cultivated soils along the Evros river in NE Greece. Evros river together with its derivative rivers constitute the capital source of life and sustainable development of the area. Along this riverside watery ecosystem systematic agro-cultures were developed such as wheat, corn and vegetable cultures. The evaluation of the ecosystem microbial charge was conducted in both axes which are the watery ecosystem and the riverside cultivated soil area. Considerable discrimination of water quality was observed when considering chemical and microbiological parameters of the Evros river ecosystem. Ardas river possesses a better water quality than Evros and Erythropotamos, which is mainly due to the higher quantities that these two rivers accumulate from industrial, farming and urban residues leading to higher degree of pollution. An increased microbial pollution was recorded in two of the three rivers monitored and a direct relation in microbial and chemical charging between water and cultivated-soil ecosystems was observed. The protection of these ecosystems with appropriate cultivated practices and control of human and animal activities will define the homeostasis of the environmental area. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Assessing quality in volcanic ash soils

    Treesearch

    Terry L. Craigg; Steven W. Howes

    2007-01-01

    Forest managers must understand how changes in soil quality resulting from project implementation affect long-term productivity and watershed health. Volcanic ash soils have unique properties that affect their quality and function; and which may warrant soil quality standards and assessment techniques that are different from other soils. We discuss the concept of soil...

  4. Evaluation of Assimilated SMOS Soil Moisture Data for US Cropland Soil Moisture Monitoring

    NASA Technical Reports Server (NTRS)

    Yang, Zhengwei; Sherstha, Ranjay; Crow, Wade; Bolten, John; Mladenova, Iva; Yu, Genong; Di, Liping

    2016-01-01

    Remotely sensed soil moisture data can provide timely, objective and quantitative crop soil moisture information with broad geospatial coverage and sufficiently high resolution observations collected throughout the growing season. This paper evaluates the feasibility of using the assimilated ESA Soil Moisture Ocean Salinity (SMOS)Mission L-band passive microwave data for operational US cropland soil surface moisture monitoring. The assimilated SMOS soil moisture data are first categorized to match with the United States Department of Agriculture (USDA)National Agricultural Statistics Service (NASS) survey based weekly soil moisture observation data, which are ordinal. The categorized assimilated SMOS soil moisture data are compared with NASSs survey-based weekly soil moisture data for consistency and robustness using visual assessment and rank correlation. Preliminary results indicate that the assimilated SMOS soil moisture data highly co-vary with NASS field observations across a large geographic area. Therefore, SMOS data have great potential for US operational cropland soil moisture monitoring.

  5. Amendments and mulches improve the biological quality of soils degraded by mining activities in SE Spain

    NASA Astrophysics Data System (ADS)

    Luna Ramos, Lourdes; Miralles Mellado, Isabel; Hernández Fernández, María Teresa; García Izquierdo, Carlos; Solé Benet, Albert

    2014-05-01

    Mining and quarrying activities generate negative visual impacts in the landscape and a loss of environmental quality. Substrate properties at the end of mining are in general not suitable for plant growth, even native ones. In an experimental soil restoration in limestone quarries from Sierra de Gádor (Almería), SE Spain, the effect of organic amendment (sewage sludge, compost from the organic fraction of domestic waste or non-amendment) combined or not with two different kind of mulches (fine gravel, chopped forest residue) was tested by triplicate in 5 x 5 m plots with the aim to improve soil/substrate properties and to reduce evaporation and erosion. In each experimental plot 75 native plants (Stipa tenacissima, Anthyllis terniflora and Anthyllis cytisoides) were planted. Effects of adding organic amendments and mulches on some soil microbiological and biochemical parameters (microbial biomass carbon, basal respiration and different enzymatic activities, such as dehydrogenase, phosphatase, β-glucosidase and urease) were analyzed 5 years after the start of the experiment. Vegetation growth was also monitored. The two-way ANOVA, using as factors amendment and mulch, showed a significant positive influence of organic amendments on microbial biomass (Cmic), basal respiration and some enzymatic activities related to the cycles of C and N. The highest values of these parameters were obtained with compost. The influence of the mulch factor and its interactions with the amendment factor on the measured variables did not follow a clear trend with respect the measured parameters. Mulching did not improved significantly (p<0.05) the positive effect of organic amendments on Cmic although Cmic values increased with the incorporation of "forest chopped residue" and decreased with gravel incorporation. In general, both type of mulch decreased or have no effect on the microbial activity detected in the amended soils, with the only exception of the forest chopped residue, which increased phosphatase activity in the compost amended soil. Plant growth was significantly higher in amended soils than in the control, but it is remarkable that the mulch type "forest chopped residue" had a negative effect on vegetation growth. The addition of organic amendments, especially compost from the organic fraction of domestic wastes, is beneficial to restore degraded or man-made soils from quarrying areas because they stimulate microbial growth and activity, resulting in mineralization of nutrients necessary for plants and increasing soil fertility and quality. However, after 5 years the effects of the mulch "forest chopped residue", on the improvement of soil or substrate quality are not clear.

  6. Assessing floodplain restoration success using soil morphology indicators

    NASA Astrophysics Data System (ADS)

    Guenat, Claire; Fournier, Bertrand; Bullinger-Weber, Géraldine; Grin, Karin; Pfund, Simona; Mitchell, Edward

    2010-05-01

    Floodplains are complex ecological systems that fulfil different ecological, economic and social functions related to physical, chemical, and biological processes. The fluvial dynamics of most rivers in industrialized countries have been altered to such an extent that floodplains are now one of the most threatened ecosystems worldwide. This adverse impact has been widely recognized and, nowadays, extensive attempts are underway to return rivers to more natural conditions and restore their ecological quality and essential ecosystem functions. As a consequence, the number of restoration projects worldwide is rapidly increasing. However, despite an estimated global cost of more than 1 billion dollars annually, there is a crucial lack of monitoring and quantitative evaluations. Indeed, most projects are never monitored post-restoration (NRC 1992). In Switzerland, only 35% of the projects include a monitoring program mainly based on flora and fauna (BAFU). The design, selection and optimization of indicators for project monitoring are of major importance for sustainable management of riverine ecosystems. However, despite the growing body of literature on potential indicators and criteria for assessing the success of restoration projects no standardised or generally applicable method exists. Furthermore, soils are rarely considered among the possible indicators despite their crucial roles in ecosystems such as decomposition, supplying resources (habitats, gene pool, biomass, and raw materials), and environmental interactions (storage, filtering, transformation). We therefore hypothesized that soils may constitute an appropriate synthetic and functional indicator for the evaluation of river restoration success, especially in the framework of river widening aiming to increase the terrestrial biodiversity. In agreement with the current concepts of river restoration, we propose an assessment tool for floodplain restoration based on three soil morphology criteria (soil diversity, soil typicality, and soil dynamism) and their associated indicators (for example soil Shannon indexes, frequency of soils with specific characteristics, elevation variations due to the fluvial dynamic). The success of floodplain restoration is assessed through comparisons of these criteria between the restored river sector and a reference that could be a near natural floodplain or an embanked floodplain. As a test case, we used a near natural floodplain along the Rhine River as reference site. We then assessed the performance of the method by assessing how well the selected indicators explained a data set of soil physico-chemical characteristics in a principal component analysis. We applied this pedological tool to assess the efficiency of two rivers widening: the Thur (River Thur, CCES project RECORD: http://www.swiss-experiment.ch/index.php/Record:Home), and the Emme River restorations (http://www.bve.be.ch/site/bve_tba_dok_down_wasserbau_emme.pdf). In agreement with other studies, our results confirmed that these restoration projects were partial success. This study demonstrated that soil morphology presents multiple advantages as an indicator of floodplain restoration: ease of use, spatial delimitation of the floodplain, information on past events and fluvial dynamic, and different spatial levels of observation (topsoil horizons, deep horizons, and complete soil profiles).

  7. Factors influencing real time internal structural visualization and dynamic process monitoring in plants using synchrotron-based phase contrast X-ray imaging

    PubMed Central

    Karunakaran, Chithra; Lahlali, Rachid; Zhu, Ning; Webb, Adam M.; Schmidt, Marina; Fransishyn, Kyle; Belev, George; Wysokinski, Tomasz; Olson, Jeremy; Cooper, David M. L.; Hallin, Emil

    2015-01-01

    Minimally invasive investigation of plant parts (root, stem, leaves, and flower) has good potential to elucidate the dynamics of plant growth, morphology, physiology, and root-rhizosphere interactions. Laboratory based absorption X-ray imaging and computed tomography (CT) systems are extensively used for in situ feasibility studies of plants grown in natural and artificial soil. These techniques have challenges such as low contrast between soil pore space and roots, long X-ray imaging time, and low spatial resolution. In this study, the use of synchrotron (SR) based phase contrast X-ray imaging (PCI) has been demonstrated as a minimally invasive technique for imaging plants. Above ground plant parts and roots of 10 day old canola and wheat seedlings grown in sandy clay loam soil were successfully scanned and reconstructed. Results confirmed that SR-PCI can deliver good quality images to study dynamic and real time processes such as cavitation and water-refilling in plants. The advantages of SR-PCI, effect of X-ray energy, and effective pixel size to study plant samples have been demonstrated. The use of contrast agents to monitor physiological processes in plants was also investigated and discussed. PMID:26183486

  8. Soil Quality Indicator: a new concept

    NASA Astrophysics Data System (ADS)

    Barão, Lúcia; Basch, Gottlieb

    2017-04-01

    During the last century, cultivated soils have been intensively exploited for food and feed production. This exploitation has compromised the soils' natural functions and many of the soil-mediated ecosystems services, including its production potential for agriculture. Also, soils became increasingly vulnerable and less resilient to a wide range of threats. To overcome this situation, new and better management practices are needed to prevent soil from degradation. However, to adopt the best management practices in a specific location, it is necessary to evaluate the soil quality status first. Different soil quality indicators have been suggested over the last decades in order to evaluate the soil status, and those are often based on the performance of soil chemical, physical and biological properties. However, the direct link between these properties and the associated soil functions or soil vulnerability to threats appears more difficult to be established. This present work is part of the iSQAPER project- Interactive Soil Quality Assessment in Europe and China for Agricultural Productivity and Environmental Resilience, where new soil quality concepts are explored to provide better information regarding the effects of the most promising agricultural management practices on soil quality. We have developed a new conceptual soil quality indicator which determines the soil quality status, regarding its vulnerability towards different threats. First, different indicators were specifically developed for each of the eight threats considered - Erosion, SOM decline, Poor Structure, Poor water holding capacity, Compaction, N-Leaching, Soil-borne pests and diseases and Salinization. As an example for the case of Erosion, the RUSLE equation for the estimate of the soil annual loss was used. Secondly, a reference classification was established for each indicator to integrate all possible results into a Good, Intermediate or Bad classification. Finally, all indicators were combined to return a single evaluation of the soil status, using different techniques that are dependent on the final use of the soil quality indicator. Some of the advantages of this new concept include the evaluation of soil quality based on its vulnerability to threats, together with the evaluation of soil properties in a given context while also suggesting soil management practices that are directly capable to mitigate soil vulnerability towards specific threats. Keywords: Soil Quality, Agriculture, Sustainability, Soil threats

  9. Proceedings of the Alaska forest soil productivity workshop.

    Treesearch

    C.W. Slaughter; T. Gasbarro

    1988-01-01

    The Alaska Forest Soil Productivity Workshop addressed (1) the role of soil information for forest management in Alaska; (2) assessment, monitoring, and enhancement of soil productivity; and (3) Alaska research projects involved in studies of productivity of forests and soils. This proceedings includes 27 papers in five categories: agency objectives in monitoring and...

  10. Agricultural land use and N losses to water: the case study of a fluvial park in northern Italy.

    PubMed

    Morari, F; Lugato, E; Borin, M

    2003-01-01

    An integrated water resource management programme has been under way since 1999 to reduce agricultural water pollution in the River Mincio fluvial park. The experimental part of the programme consisted of: a) a monitoring phase to evaluate the impact of conventional and environmentally sound techniques (Best Management Practices, BMPs) on water quality; this was done on four representative landscape units, where twelve fields were instrumented to monitor the soil, surface and subsurface water quality; b) a modelling phase to extend the results obtained at field scale to the whole territory of the Mincio watershed. For this purpose a GIS developed in the Arc/Info environment was integrated into the CropSyst model. The model had previously been calibrated to test its ability to describe the complexity of the agricultural systems. The first results showed a variable efficiency of the BMPs depending on the interaction between management and pedo-climatic conditions. In general though, the BMPs had positive effects in improving the surface and subsurface water quality. The CropSyst model was able to describe the agricultural systems monitored and its linking with the GIS represented a valuable tool for identifying the vulnerable areas within the watershed.

  11. Environmental assessment of water and soil contamination in Rajakhali Canal of Karnaphuli River (Bangladesh) impacted by anthropogenic influences: a preliminary case study

    NASA Astrophysics Data System (ADS)

    Islam, M. Rafiqul; Das, N. G.; Barua, Prabal; Hossain, M. Belal; Venkatramanan, S.; Chung, S. Y.

    2017-05-01

    Soil and water quality determines the health of an aquatic ecosystem. Rajakhali Canal, a tributary of Karnaphuli River estuary, flowing through Chittagong City (the commercial capital of Bangladesh) receives a huge amount of domestic and industrial wastes and sewages. Monitoring the environmental status of Karnaphuli River and its tributaries is very important for their ecological and economical services provided to city areas. This study evaluated some environmental characteristics of water and soil in the Rajakhali Canal as it affected the environment, and ultimately the life and human beings of Chittagong City. The mean concentrations of physico-chemical parameters were pH (8.5), DO (0.1 mg/L), TA (47.6 mg/L), TDS (631.8 mg/L), TSS (280 mg/L), SO4-S (2.3 mg/L), NH3 (1.1 mg/L), NO3-N (0.2 mg/L) and PO4-P (0.1 mg/L) in the dry season. During the rainy season, the mean concentrations of physico-chemical parameters were pH (7.01), DO (0.55 mg/L), TA (65.9 mg/L), TDS (653.6 mg/L), TSS (300.3 mg/L), SO4-S (1 mg/L), NH3 - (0.6 mg/L), (NO3-N (0.3 mg/L) and PO4-P (0.5 mg/L) in water. In case of soil, the mean concentration of physico-chemical parameters in dry and rainy seasons was represented respectively as follows: pH (6.8), OM (4.5 %), sand (71.7 %), silt (3.1 %), clay (25.2 %), organic nitrogen (45.4 ppm) and phosphorus (9.6 ppm); and pH (6.7), OM (4.5 %), sand (74.4 %), silt (2.4 %), clay (23.2 %), organic nitrogen (35.3 ppm) and phosphorus (7.6 ppm). The result revealed that water and soil quality of this canal became deteriorated and that the total environment of the water body became polluted due to the anthropogenic activities such as industrial, domestic and irrigation effluents. Statistical analyses also supported that water and soil parameters were strongly correlated (1-tailed 0.05 level and 0.01 level significant) with each other at all stations during all seasons. The result of this study will be useful for management and planning for water quality monitoring in this estuary. To protect this vital estuarine region, the government agencies, private agencies and scientists should work with proper attention.

  12. Effects of surface applications of biosolids on soil, crops, ground water, and streambed sediment near Deer Trail, Colorado, 1999-2003

    USGS Publications Warehouse

    Yager, Tracy J.B.; Smith, David B.; Crock, James G.

    2004-01-01

    The U.S. Geological Survey, in cooperation with Metro Wastewater Reclamation District and North Kiowa Bijou Groundwater Management District, studied natural geochemical effects and the effects of biosolids applications to the Metro Wastewater Reclamation District properties near Deer Trail, Colorado, during 1999 through 2003 because of public concern about potential contamination of soil, crops, ground water, and surface water from biosolids applications. Parameters analyzed for each monitoring component included arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc (the nine trace elements regulated by Colorado for biosolids), gross alpha and gross beta radioactivity, and plutonium, as well as other parameters. Concentrations of the nine regulated trace elements in biosolids were relatively uniform and did not exceed applicable regulatory standards. All plutonium concentrations in biosolids were below the minimum detectable level and were near zero. The most soluble elements in biosolids were arsenic, molybdenum, nickel, phosphorus, and selenium. Elevated concentrations of bismuth, mercury, phosphorus, and silver would be the most likely inorganic biosolids signature to indicate that soil or streambed sediment has been affected by biosolids. Molybdenum and tungsten, and to a lesser degree antimony, cadmium, cobalt, copper, mercury, nickel, phosphorus, and selenium, would be the most likely inorganic 'biosolids signature' to indicate ground water or surface water has been affected by biosolids. Soil data indicate that biosolids have had no measurable effect on the concentration of the constituents monitored. Arsenic concentrations in soil of both Arapahoe and Elbert County monitoring sites (like soil from all parts of Colorado) exceed the Colorado soil remediation objectives and soil cleanup standards, which were determined by back-calculating a soil concentration equivalent to a one-in-a-million cumulative cancer risk. Lead concentrations in soil slightly exceed the U.S. Environmental Protection Agency toxicity-derived ecological soil-screening levels for avian wildlife. Plutonium concentration in the soil was near zero. Wheat-grain data were insufficient to determine any measurable effects from biosolids. Comparison with similar data from other parts of North America where biosolids were not applied indicates similar concentrations. However, the Deer Trail study area had higher nickel concentrations in wheat from both the biosolids-applied fields and the control fields. Plutonium content of the wheat was near zero. Ground-water levels generally declined at most wells during 1999 through 2003. Ground-water quality did not correlate with ground-water levels. Vertical ground-water gradients during 1999 through 2003 indicate that bedrock ground-water resources downgradient from the biosolids-applied areas are not likely to be contaminated by biosolids applications unless the gradients change as a result of pumping. Ground-water quality throughout the study area varied over time at each site and from site to site at the same time, but plutonium concentrations in the ground water always were near zero. Inorganic concentrations at well D6 were relatively high compared to other ground-water sites studied. Ground-water pH and concentrations of fluoride, nitrite, aluminum, arsenic, barium, chromium, cobalt, copper, lead, mercury, nickel, silver, zinc, and plutonium in the ground water of the study area met Colorado standards. Concentrations of chloride, sulfate, nitrate, boron, iron, manganese, and selenium exceeded Colorado ground-water standards at one or more wells. Nitrate concentrations at well D6 significantly (alpha = 0.05) exceeded the Colorado regulatory standard. Concentrations of arsenic, cadmium, chromium, lead, mercury, nickel, and zinc in ground water had no significant (alpha = 0.05) upward trends. During 1999-2003, concentrations of nitrate, copper, molybdenum, and selenium

  13. Risk evaluation of available phosphorus loss in agricultural land based on remote sensing and GIS

    NASA Astrophysics Data System (ADS)

    Ding, Xiaodong; Zhou, Bin; Xu, Junfeng; Liu, Ting; Xie, Bin

    2010-09-01

    The surplus of phosphorus leads to water eutrophication. Huge input of fertilizers in agricultural activities enriches nutrition in soil. The superfluous nutrient moves easily to riparian water by rainfall and surface runoff; leads to water eutrophication of riparian wetlands and downstream water; and consequently affects ecological balance. Thus it is significant to investigate the risk of phosphorus loss in agricultural land, to identify high concentration areas and guide the management of nutrition loss. This study was implemented mainly in the area of agricultural use in southern Western Australia, where a three-year period preliminary monitoring of water quality showed that the concentration of different forms of phosphorus in water had far exceeded the standard. Due to the large scale surface runoff caused by occasional storms in Western Australia, soil erosion was selected as the main driving factor for the loss of phosphorus. Remote sensing and ground truth data were used to reflect the seasonal changes of plants. The spatial distribution of available phosphorus was then predicted and combined with the evaluation matrix to evaluate the loss risk of phosphorus. This evaluation was based on quantitative rather than qualitative data to make better precision. It could help making decision support for monitoring water quality of rivers and riparian wetlands.

  14. Evaluation of soil quality indicators in paddy soils under different crop rotation systems

    NASA Astrophysics Data System (ADS)

    Nadimi-Goki, Mandana; Bini, Claudio; Haefele, Stephan; Abooei, Monireh

    2013-04-01

    Evaluation of soil quality indicators in paddy soils under different crop rotation systems Soil quality, by definition, reflects the capacity to sustain plant and animal productivity, maintain or enhance water and air quality, and promote plant and animal health. Soil quality assessment is an essential issue in soil management for agriculture and natural resource protection. This study was conducted to detect the effects of four crop rotation systems (rice-rice-rice, soya-rice-rice, fallow-rice and pea-soya-rice) on soil quality indicators (soil moisture, porosity, bulk density, water-filled pore space, pH, extractable P, CEC, OC, OM, microbial respiration, active carbon) in paddy soils of Verona area, Northern Italy. Four adjacent plots which managed almost similarly, over five years were selected. Surface soil samples were collected from each four rotation systems in four times, during growing season. Each soil sample was a composite of sub-samples taken from 3 points within 350 m2 of agricultural land. A total of 48 samples were air-dried and passed through 2mm sieve, for some chemical, biological, and physical measurements. Statistical analysis was done using SPSS. Statistical results revealed that frequency distribution of most data was normal. The lowest CV% was related to pH. Analysis of variance (ANOVA) and comparison test showed that there are significant differences in soil quality indicators among crop rotation systems and sampling times. Results of multivariable regression analysis revealed that soil respiration had positively correlation coefficient with soil organic matter, soil moisture and cation exchange capacity. Overall results indicated that the rice rotation with legumes such as bean and soybean improved soil quality over a long time in comparison to rice-fallow rotation, and this is reflected in rice yield. Keywords: Soil quality, Crop Rotation System, Paddy Soils, Italy

  15. Crop yield monitoring in the Sahel using root zone soil moisture anomalies derived from SMOS soil moisture data assimilation

    NASA Astrophysics Data System (ADS)

    Gibon, François; Pellarin, Thierry; Alhassane, Agali; Traoré, Seydou; Baron, Christian

    2017-04-01

    West Africa is greatly vulnerable, especially in terms of food sustainability. Mainly based on rainfed agriculture, the high variability of the rainy season strongly impacts the crop production driven by the soil water availability in the soil. To monitor this water availability, classical methods are based on daily precipitation measurements. However, the raingauge network suffers from the poor network density in Africa (1/10000km2). Alternatively, real-time satellite-derived precipitations can be used, but they are known to suffer from large uncertainties which produce significant error on crop yield estimations. The present study proposes to use root soil moisture rather than precipitation to evaluate crop yield variations. First, a local analysis of the spatiotemporal impact of water deficit on millet crop production in Niger was done, from in-situ soil moisture measurements (AMMA-CATCH/OZCAR (French Critical Zone exploration network)) and in-situ millet yield survey. Crop yield measurements were obtained for 10 villages located in the Niamey region from 2005 to 2012. The mean production (over 8 years) is 690 kg/ha, and ranges from 381 to 872 kg/ha during this period. Various statistical relationships based on soil moisture estimates were tested, and the most promising one (R>0.9) linked the 30-cm soil moisture anomalies from mid-August to mid-September (grain filling period) to the crop yield anomalies. Based on this local study, it was proposed to derive regional statistical relationships using 30-cm soil moisture maps over West Africa. The selected approach was to use a simple hydrological model, the Antecedent Precipitation Index (API), forced by real-time satellite-based precipitation (CMORPH, PERSIANN, TRMM3B42). To reduce uncertainties related to the quality of real-time rainfall satellite products, SMOS soil moisture measurements were assimilated into the API model through a Particular Filter algorithm. Then, obtained soil moisture anomalies were compared to 17 years of crop yield estimates from the FAOSTAT database (1998-2014). Results showed that the 30-cm soil moisture anomalies explained 89% of the crop yield variation in Niger, 72% in Burkina Faso, 82% in Mali and 84% in Senegal.

  16. Fallout radionuclide-based techniques for assessing the impact of soil conservation measures on erosion control and soil quality: an overview of the main lessons learnt under an FAO/IAEA Coordinated Research Project.

    PubMed

    Dercon, G; Mabit, L; Hancock, G; Nguyen, M L; Dornhofer, P; Bacchi, O O S; Benmansour, M; Bernard, C; Froehlich, W; Golosov, V N; Haciyakupoglu, S; Hai, P S; Klik, A; Li, Y; Lobb, D A; Onda, Y; Popa, N; Rafiq, M; Ritchie, J C; Schuller, P; Shakhashiro, A; Wallbrink, P; Walling, D E; Zapata, F; Zhang, X

    2012-05-01

    This paper summarizes key findings and identifies the main lessons learnt from a 5-year (2002-2008) coordinated research project (CRP) on "Assessing the effectiveness of soil conservation measures for sustainable watershed management and crop production using fallout radionuclides" (D1.50.08), organized and funded by the International Atomic Energy Agency through the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. The project brought together nineteen participants, from Australia, Austria, Brazil, Canada, Chile, China, Japan, Morocco, Pakistan, Poland, Romania, Russian Federation, Turkey, United Kingdom, United States of America and Vietnam, involved in the use of nuclear techniques and, more particularly, fallout radionuclides (FRN) to assess the relative impacts of different soil conservation measures on soil erosion and land productivity. The overall objective of the CRP was to develop improved land use and management strategies for sustainable watershed management through effective soil erosion control practices, by the use of ¹³⁷Cs (half-life of 30.2 years), ²¹⁰Pb(ex) (half-life of 22.3 years) and ⁷Be (half-life of 53.4 days) for measuring soil erosion over several spatial and temporal scales. The environmental conditions under which the different research teams applied the tools based on the use of fallout radionuclides varied considerably--a variety of climates, soils, topographies and land uses. Nevertheless, the achievements of the CRP, as reflected in this overview paper, demonstrate that fallout radionuclide-based techniques are powerful tools to assess soil erosion/deposition at several spatial and temporal scales in a wide range of environments, and offer potential to monitor soil quality. The success of the CRP has stimulated an interest in many IAEA Member States in the use of these methodologies to identify factors and practices that can enhance sustainable agriculture and minimize land degradation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Sediment dynamics in restored riparian forest with agricultural surroundings

    NASA Astrophysics Data System (ADS)

    Stucchi Boschi, Raquel; Cooper, Miguel; Alencar de Matos, Vitor; Ortega Gomes, Matheus; Ribeiro Rodrigues, Ricardo

    2017-04-01

    The riparian forests are considered Permanent Preservation Areas due to the ecological services provided by these forests. One of these services is the interception of the sediments before they reach the water bodies, which is essential to preserve water quality. The maintenance and restoration of riparian forests are mandatory, and the extent of these areas is defined based on water body width, following the Brazilian Forest Code. The method used to define the size of riparian forest areas elucidates the lack of accurate scientific data of the influence of the riparian forest in maintaining their ecological functions, particularly regarding the retention of sediments. In this study, we investigate the dynamics of erosion and sedimentation in restored riparian forests of a Semideciduous Tropical Forest situated in agricultural areas inserted in sugarcane landscapes in the state of São Paulo, Brazil. We defined two sites with soils of contrasting texture to monitor the dynamics and amount of deposited sediments. Site A is in the municipality of Araras and the soil is mainly clay. Site B is in the municipality of São Manuel and is dominated by sandy soils. In both areas, we defined plots to install graded metal stakes that were partially buried to monitor the dynamics of sediments. In site A, we defined eight plots and installed 27 metal stakes in each one. Three of the plots presented 30 m of riparian forest, two presented 15 m of riparian forest and three, 15 m of pasture followed by 15 m of forest. The design of the metal stakes was similar for all plots and was defined based on the type of erosion observed in site A. In site B, we defined seven points to monitor the sediments inside the reforested areas. Here, we observed erosive processes of great magnitude inside the forests, which results in a different design for the metal stakes. A total of nearly 150 metal stakes were installed to monitor these processes and also to verify the deposition in areas not yet affected by erosive processes of great magnitude. The monitoring of the metal stakes started in January of 2016. The data of intensity and frequency of rainfall were collected from rain gauges installed in the areas. The results show great deposition in site B, dominated by sandy soil whereas in site A, a sheet erosion process is dominant. Site A is dominated by clay soils that are not susceptible to erosion processes. In site B, a small amount of deposition was observed inside a gully, which means that the sediments may be being carried to the water bodies. A large amount of sediment was observed in areas which present a spontaneous vegetation followed by a small track of forest. Strong events were responsible for generating most of the sediments. The results will be important to support the discussion about an ideal width of riparian vegetation to ensure the retention of sediments and quality of water bodies.

  18. [Monitoring and SWOT analysis of Ascaris eggs pollution in soil of rural China].

    PubMed

    Zhu, Hui-hui; Zhou, Chang-hai; Zang, Wei; Zhang, Xue-qiang; Chen, Ying-dan

    2014-06-01

    To understand the status of Ascaris eggs pollution in soil at national monitoring spots of soil-transmitted nematodiasis, so as to provide the evidence for making countermeasures and evaluating the control effect. Ten households were selected from each of the 22 national monitoring spots annually according to the National Surveillance Program of Soil-Transmitted Nematodiasis (Trial), and the soil samples from vegetable gardens, toilet periphery, courtyards and kitchens were collected and examined by using the modified floatation test with saturated sodium nitrate. Fertilized or unfertilized eggs as well as live or dead fertilized eggs were discriminated and identified. In addition, a SWOT analysis of monitoring of Ascaris eggs pollution in the soil of rural China was carried out. A total of 1 090 households were monitored in 22 monitoring spots from 2006 to 2010. The total detection rate of Ascaris eggs in the soil was 30.73%, and the detection rates of fertilized, unfertilized and live fertilized eggs were 13.21%, 26.42% and 20.28%, respectively. The total detection rates of Ascaris eggs in the vegetable garden, toilet periphery, courtyard and kitchen were 16.51%, 13.49%, 14.22% and 10.73% respectively. The SWOT analysis demonstrated that the monitoring work had both advantages and disadvantages, and was faced with opportunities as well as threats. The pollution status of Ascaris eggs in the soil is still quite severe at some national monitoring spots, and the counter-measures such as implementing hazard-free treatment of stool, improving water supply and sanitation and reforming environment should be taken to protect people from being infected.

  19. Nitrogen release from forest soils containing sulfide-bearing sediments

    NASA Astrophysics Data System (ADS)

    Maileena Nieminen, Tiina; Merilä, Päivi; Ukonmaanaho, Liisa

    2014-05-01

    Soils containing sediments dominated by metal sulfides cause high acidity and release of heavy metals, when excavated or drained, as the aeration of these sediments causes formation of sulfuric acid. Consequent leaching of acidity and heavy metals can kill tree seedlings and animals such as fish, contaminate water, and corrode concrete and steel. These types of soils are called acid sulfate soils. Their metamorphic equivalents, such as sulfide rich black shales, pose a very similar risk of acidity and metal release to the environment. Until today the main focus in treatment of the acid sulfate soils has been to prevent acidification and metal toxicity to agricultural crop plants, and only limited attention has been paid to the environmental threat caused by the release of acidity and heavy metals to the surrounding water courses. Even less attention is paid on release of major nutrients, such as nitrogen, although these sediments are extremely rich in carbon and nitrogen and present a potentially high microbiological activity. In Europe, the largest cover of acid sulfate soils is found in coastal lowlands of Finland. Estimates of acid sulfate soils in agricultural use range from 1 300 to 3 000 km2, but the area in other land use classes, such as managed peatland forests, is presumably larger. In Finland, 49 500 km2 of peatlands have been drained for forestry, and most of these peatland forests will be at the regeneration stage within 10 to 30 years. As ditch network maintenance is often a prerequisite for a successful establishment of the following tree generation, the effects of maintenance operations on the quality of drainage water should be under special control in peatlands underlain by sulfide-bearing sediments. Therefore, identification of risk areas and effective prevention of acidity and metal release during drain maintenance related soil excavating are great challenges for forestry on coastal lowlands of Finland. The organic and inorganic nitrogen concentrations in drainage water from forested peatland catchments underlain by black shale bedrock have been monitored during a 5-year-period, and they show higher values compared to control areas. In addition, soil solution from seven spruce dominated forests belonging to the Finnish permanent monitoring programme of the EU-Forest Focus-FutMon / pan-European ICP forests Level II network was monitored over a 10-year-period. At one of the sites the chemical properties of the soil reflect the formation of an acid sulfate soil presenting clearly higher nitrogen concentration compared to other sites.

  20. Soil compaction monitoring of the Pool Timber Sale, Rio Grande National Forest, Colorado, 16 years after logging

    Treesearch

    John J. Rawinski; Deborah S. Page-Dumroese

    2008-01-01

    We conducted a soil monitoring project in 1992 after a shelterwood harvest. One year after harvesting, we determined that 21.32 percent of the area in Unit 5 of the Pool Timber Sale was considered to have detrimental soil compaction. In 2007, we conducted another monitoring project on the same stand by the same person to determine the degree of soil compaction recovery...

  1. Forest Soil Disturbance Monitoring Protocol: Volume II: Supplementary methods, statistics, and data collection

    Treesearch

    Deborah S. Page-Dumroese; Ann M. Abbott; Thomas M. Rice

    2009-01-01

    Volume I and volume II of the Forest Soil Disturbance Monitoring Protocol (FSDMP) provide information for a wide range of users, including technicians, field crew leaders, private landowners, land managers, forest professionals, and researchers. Volume I: Rapid Assessment includes the basic methods for establishing forest soil monitoring transects and consistently...

  2. Coupling of phenological information and simulated vegetation index time series: Limitations and potentials for the assessment and monitoring of soil erosion risk

    USDA-ARS?s Scientific Manuscript database

    Monitoring of agricultural used soils at frequent intervals is needed to get a sufficient understanding of soil erosion processes. This is crucial to support decision making and refining soil policies especially in the context of climate change. Along with rainfall erosivity, soil coverage by vegeta...

  3. Phosphogypsum capping depth affects revegetation and hydrology in Western Canada.

    PubMed

    Jackson, Mallory E; Naeth, M Anne; Chanasyk, David S; Nichol, Connie K

    2011-01-01

    Phosphogypsum (PG), a byproduct of phosphate fertilizer manufacturing, is commonly stacked and capped with soil at decommissioning. Shallow (0, 8, 15, and 30 cm) and thick (46 and 91 cm) sandy loam caps on a PG stack near Fort Saskatchewan, Alberta, Canada, were studied in relation to vegetation establishment and hydrologic properties. Plant response was evaluated over two growing seasons for redtop ( L.), slender wheatgrass ( (Link) Malte ex H.F. Lewis), tufted hairgrass ( (L.) P. Beauv.), and sheep fescue ( L.) and for a mix of these grasses with alsike clover ( L.). Water content below the soil-PG interface was monitored with time-domain reflectometry probes, and leachate water quantity and quality at a depth of 30 cm was measured using lysimeters. Vegetation responded positively to all cap depths relative to bare PG, with few significant differences among cap depths. Slender wheatgrass performed best, and tufted hairgrass performed poorly. Soil caps <1 m required by regulation were sufficient for early revegetation. Soil water fluctuated more in shallow than in thick caps, and water content was generally between field capacity and wilting point regardless of cap depth. Water quality was not affected by cap depths ≤30 cm. Leachate volumes at 30 cm from distinct rainfall events were independent of precipitation amount and cap depth. The study period had lower precipitation than normal, yet soil caps were hospitable for plant growth in the first 2 yr of establishment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Methods of Soil Resampling to Monitor Changes in the Chemical Concentrations of Forest Soils.

    PubMed

    Lawrence, Gregory B; Fernandez, Ivan J; Hazlett, Paul W; Bailey, Scott W; Ross, Donald S; Villars, Thomas R; Quintana, Angelica; Ouimet, Rock; McHale, Michael R; Johnson, Chris E; Briggs, Russell D; Colter, Robert A; Siemion, Jason; Bartlett, Olivia L; Vargas, Olga; Antidormi, Michael R; Koppers, Mary M

    2016-11-25

    Recent soils research has shown that important chemical soil characteristics can change in less than a decade, often the result of broad environmental changes. Repeated sampling to monitor these changes in forest soils is a relatively new practice that is not well documented in the literature and has only recently been broadly embraced by the scientific community. The objective of this protocol is therefore to synthesize the latest information on methods of soil resampling in a format that can be used to design and implement a soil monitoring program. Successful monitoring of forest soils requires that a study unit be defined within an area of forested land that can be characterized with replicate sampling locations. A resampling interval of 5 years is recommended, but if monitoring is done to evaluate a specific environmental driver, the rate of change expected in that driver should be taken into consideration. Here, we show that the sampling of the profile can be done by horizon where boundaries can be clearly identified and horizons are sufficiently thick to remove soil without contamination from horizons above or below. Otherwise, sampling can be done by depth interval. Archiving of sample for future reanalysis is a key step in avoiding analytical bias and providing the opportunity for additional analyses as new questions arise.

  5. Methods of Soil Resampling to Monitor Changes in the Chemical Concentrations of Forest Soils

    PubMed Central

    Lawrence, Gregory B.; Fernandez, Ivan J.; Hazlett, Paul W.; Bailey, Scott W.; Ross, Donald S.; Villars, Thomas R.; Quintana, Angelica; Ouimet, Rock; McHale, Michael R.; Johnson, Chris E.; Briggs, Russell D.; Colter, Robert A.; Siemion, Jason; Bartlett, Olivia L.; Vargas, Olga; Antidormi, Michael R.; Koppers, Mary M.

    2016-01-01

    Recent soils research has shown that important chemical soil characteristics can change in less than a decade, often the result of broad environmental changes. Repeated sampling to monitor these changes in forest soils is a relatively new practice that is not well documented in the literature and has only recently been broadly embraced by the scientific community. The objective of this protocol is therefore to synthesize the latest information on methods of soil resampling in a format that can be used to design and implement a soil monitoring program. Successful monitoring of forest soils requires that a study unit be defined within an area of forested land that can be characterized with replicate sampling locations. A resampling interval of 5 years is recommended, but if monitoring is done to evaluate a specific environmental driver, the rate of change expected in that driver should be taken into consideration. Here, we show that the sampling of the profile can be done by horizon where boundaries can be clearly identified and horizons are sufficiently thick to remove soil without contamination from horizons above or below. Otherwise, sampling can be done by depth interval. Archiving of sample for future reanalysis is a key step in avoiding analytical bias and providing the opportunity for additional analyses as new questions arise. PMID:27911419

  6. Methods of soil resampling to monitor changes in the chemical concentrations of forest soils

    USGS Publications Warehouse

    Lawrence, Gregory B.; Fernandez, Ivan J.; Hazlett, Paul W.; Bailey, Scott W.; Ross, Donald S.; Villars, Thomas R.; Quintana, Angelica; Ouimet, Rock; McHale, Michael; Johnson, Chris E.; Briggs, Russell D.; Colter, Robert A.; Siemion, Jason; Bartlett, Olivia L.; Vargas, Olga; Antidormi, Michael; Koppers, Mary Margaret

    2016-01-01

    Recent soils research has shown that important chemical soil characteristics can change in less than a decade, often the result of broad environmental changes. Repeated sampling to monitor these changes in forest soils is a relatively new practice that is not well documented in the literature and has only recently been broadly embraced by the scientific community. The objective of this protocol is therefore to synthesize the latest information on methods of soil resampling in a format that can be used to design and implement a soil monitoring program. Successful monitoring of forest soils requires that a study unit be defined within an area of forested land that can be characterized with replicate sampling locations. A resampling interval of 5 years is recommended, but if monitoring is done to evaluate a specific environmental driver, the rate of change expected in that driver should be taken into consideration. Here, we show that the sampling of the profile can be done by horizon where boundaries can be clearly identified and horizons are sufficiently thick to remove soil without contamination from horizons above or below. Otherwise, sampling can be done by depth interval. Archiving of sample for future reanalysis is a key step in avoiding analytical bias and providing the opportunity for additional analyses as new questions arise.

  7. Litter decomposition rate and soil organic matter quality in a patchwork heathland of Southern Norway

    NASA Astrophysics Data System (ADS)

    Certini, G.; Vestgarden, L. S.; Forte, C.; Tau Strand, L.

    2014-07-01

    Norwegian heathland soils, although scant and shallow, are major reservoirs of carbon (C). We aimed at assessing whether vegetation cover and, indirectly, its driving factor soil drainage are good proxies for soil organic matter (SOM) composition and dynamics in a typical heathland area of Southern Norway consisting in a patchwork of three different types of vegetation, dominated by Calluna, Molinia, or Sphagnum. Such vegetation covers were clearly associated to microtopographic differences, which in turn dictated differences in soil moisture regime, Calluna growing in the driest sites, Sphagnum in the wettest, and Molinia in sites with intermediate moisture. Litter decomposition was followed over a period of 1 year, by placing litterbags filled with biomass from each dominant species under each type of vegetation cover. The composition of the living biomass, the bulk SOM and some extractable fractions of SOM were investigated by chemical methods and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Litter decomposition was faster for Molinia and Calluna, irrespective of the vegetation cover of the site where they were placed. Sphagnum litter decomposed very slowly, especially under Calluna, where the soil environment is by far more oxidising than under itself. In terms of SOM quality, Calluna covered areas showed the greatest differences from the others, in particular a much higher contribution from lipids and aliphatic biopolymers, apparently related to biomass composition. Our findings showed that in the studied environment litter decomposition rate and SOM composition are actually dependent on vegetation cover and/or soil drainage. On this basis, monitoring changes in the patchwork of vegetation types in boreal heathlands could be a reliable cost-effective way to account for modifications in the SOM potential to last induced by climate change.

  8. The growth of pines germinated from woodchip mulch in restored soils from semiarid SE Spain quarries is enhanced by organic amendments

    NASA Astrophysics Data System (ADS)

    Luna Ramos, Lourdes; Miralles, Isabel; Lázaro-Suau, Roberto; Solé-Benet, Albert

    2017-04-01

    The use of pine woodchips in soil restoration in calcareous quarries is a relatively low-cost mulching technique to improve soil water conservation and decrease soil erosion, contributing to improve soil quality. Besides these two important effects, woodchip mulch is also a potential source of seeds which can germinate if environmental conditions during earlier stages are adequate. Pine germination has been observed in experimental plots treated with pine woodchips used as mulch in one of the driest regions in Europe (SE Spain). This side-effect provided an interesting opportunity to analyse the influence of topsoil and two organic wastes (compost from domestic organic waste and sewage sludge from urban water treatment plant) in mine soils on the germinated pines (Pinus halepensis Mill.) and the plant cover (revegetated native plants and spontaneous vegetation). Number, height and basal diameter of pines and the total plant cover were measured 6 years after the applications of topsoil and organic amendments. Results showed that organic wastes increased the pine growth and the total plant cover which could favour in turn the physico-chemical soil properties and its quality in the medium-long term. However, organic amendments negatively influencing the number of germinated pines. The likely growth of pine seedlings derived from the pine cones which come with pine woodchips used as mulch, when enhanced by organic amendments, adds a positive value in quarry restoration even under very dry climatic conditions. However, it is necessary to continue monitoring the development of vegetation to form a more precise idea about whether the development of the pines is globally beneficial, since the pines could outcompete the local native plants.

  9. Simplifying field-scale assessment of spatiotemporal changes of soil salinity

    USDA-ARS?s Scientific Manuscript database

    Monitoring soil salinity (ECe) is important to properly plan agronomic and irrigation practices. Salinity can be readily measured through soil sampling directed by geospatial measurements of apparent soil electrical conductivity (ECa). Using data from a long-term (1999-2012) monitoring study at a 32...

  10. A novel in-situ method for real-time monitoring of gas transport in soil

    NASA Astrophysics Data System (ADS)

    Laemmel, Thomas; Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike

    2017-04-01

    Gas exchange between soil and atmosphere is important for the biogeochemistry of soils. Gas transport in soil is commonly assumed to be governed by molecular diffusion and is usually described by the soil gas diffusion coefficient DS characterizing the ability of the soil to "transport passively" gas through the soil. One way to determine DS is sampling soil cores in the field and measuring DS in the lab. Unfortunately this method is destructive and laborious. Moreover, a few previous field studies identified other gas transport processes in soil to significantly enhance the diffusive gas transport. However, until now, no method is available to measure gas transport in situ in the soil. We developed a novel method to monitor gas transport in soil in situ. The method includes a custom made gas sampling device, the continuous injection of an inert tracer gas and inverse gas transport modelling in the soil. The gas sampling device has several sampling depths and can be easily installed into a vertical hole drilled by an auger, which allows for fast installation of the system. Helium (He) as inert tracer gas was injected continuously at the lower end of the device. The resulting steady state distribution of He was used to deduce the depth profile of DS. Gas transport in the soil surrounding the gas-sampling-device/soil system was modeled using the Finite Element Modeling program COMSOL . We tested our new method both in the lab and during two short field studies and compared the results with a reference method using soil cores. DS profiles obtained by our in-situ method were consistent with DS profiles determined based on soil core analyses. During a longer monitoring field campaign, typical soil-moisture effects upon gas diffusivity such as an increase during a drying period or a decrease after rain could be observed consistently. Under windy conditions we additionally measured for the first time the direct enhancement of gas transport in soil due to wind-induced pressure-pumping which could increase the effective DS up to 30% in the topsoil. Our novel monitoring method can be quickly and easily installed and allows for monitoring continuously soil gas transport over a long time. It allows monitoring physical modifications of soil gas diffusivity due to rain events or evaporation but it also allows studying non-diffusive gas transport processes in the soil.

  11. Simulated terrestrial runoff triggered a phytoplankton succession and changed seston stoichiometry in coastal lagoon mesocosms.

    PubMed

    Deininger, A; Faithfull, C L; Lange, K; Bayer, T; Vidussi, F; Liess, A

    2016-08-01

    Climate change scenarios predict intensified terrestrial storm runoff, providing coastal ecosystems with large nutrient pulses and increased turbidity, with unknown consequences for the phytoplankton community. We conducted a 12-day mesocosm experiment in the Mediterranean Thau Lagoon (France), adding soil (simulated runoff) and fish (different food webs) in a 2 × 2 full factorial design and monitored phytoplankton composition, shade adaptation and stoichiometry. Diatoms (Chaetoceros) increased four-fold immediately after soil addition, prymnesiophytes and dinoflagellates peaked after six- and 12 days, respectively. Soil induced no phytoplankton shade adaptation. Fish reduced the positive soil effect on dinoflagellates (Scripsiella, Glenodinium), and diatom abundance in general. Phytoplankton community composition drove seston stoichiometry. In conclusion, pulsed terrestrial runoff can cause rapid, low quality (high carbon: nutrient) diatom blooms. However, bloom duration may be short and reduced in magnitude by fish. Thus, climate change may shift shallow coastal ecosystems towards famine or feast dynamics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The South Fork Experimental Watershed: Soil moisture and precipitation network for satellite validation

    NASA Astrophysics Data System (ADS)

    Cosh, M. H.; Prueger, J. H.; McKee, L.; Bindlish, R.

    2013-12-01

    A recently deployed long term network for the study of soil moisture and precipitation was deployed in north central iowa, in cooperation between USDA and NASA. This site will be a joint calibration/validation network for the Soil Moisture Active Passive (SMAP) and Global Precipitation Measurement (GPM) missions. At total of 20 dual gauge precipitation gages were established across a watershed landscape with an area of approximately 600 km2. In addition, four soil moisture probes were installed in profile at 5, 10, 20, and 50 cm. The network was installed in April of 2013, at the initiation of the Iowa Flood Study (IFloodS) which was a six week intensive ground based radar observation period, conducted in coordination with NASA and the University of Iowa. This site is a member watershed of the Group on Earth Observations Joint Experiments on Crop Assessment and Monitoring (GEO-JECAM) program. A variety of quality control procedures are examined and spatial and temporal stability aspects of the network are examined. Initial comparisons of the watershed to soil moisture estimates from satellites are also conducted.

  13. Assessing and Understanding Trail Degradation: Results from Big South Fork National River and Recreational Area

    USGS Publications Warehouse

    Marion, J.L.; Olive, N.

    2006-01-01

    This report describes results from a comprehensive assessment of resource conditions on a large (24%) sample of the trail system within Big South Fork National River and Recreational Area (BSF). Components include research to develop state-of-knowledge trail impact assessment and monitoring methods, application of survey methods to BSF trails, analysis and summary of results, and recommendations for trail management decision making and future monitoring. Findings reveal a trail system with some substantial degradation, particularly soil erosion, which additionally threatens water quality in areas adjacent to streams and rivers. Factors that contribute to or influence these problems are analyzed and described. Principal among these are trail design factors (trail topographic position, soil texture, grade and slope alignment angle), use-related factors (type and amount of use), and maintenance factors (water drainage). Recommendations are offered to assist managers in improving the sustainability of the trails system to accommodate visitation while enhancing natural resource protection.

  14. High-resolution monitoring of stormwater quality in an urbanising catchment in the United Kingdom during the 2013/2014 winter storms

    NASA Astrophysics Data System (ADS)

    McGrane, S. J.; Hutchins, M. G.; Kjeldsen, T. R.; Miller, J. D.; Bussi, G.; Loewenthal, M.

    2015-12-01

    Urban areas are widely recognised as a key source of contaminants entering our freshwater systems, yet in spite of this, our understanding of stormwater quality dynamics remains limited. The development of in-situ, high-resolution monitoring equipment has revolutionised our capability to capture flow and water quality data at a sub-hourly resolution, enabling us to potentially enhance our understanding of hydrochemical variations from contrasting landscapes during storm events. During the winter of 2013/2014, the United Kingdom experienced a succession of intense storm events, where the south of the country experienced 200% of the average rainfall, resulting in widespread flooding across the Thames basin. We applied high-frequency (15 minute resolution) water quality monitoring across ten contrasting subcatchments (including rural, urban and mixed land-use catchments), seeking to classify the disparity in water quality conditions both within- and between events. Rural catchments increasingly behave like "urban" catchments as soils wet up and become increasingly responsive to subsequent events, however water quality response during the winter months remains limited. By contrast, increasingly urban catchments yield greater contaminant loads during events, and pre-event baseline chemistry highlights a resupply source in dense urban catchments. Wastewater treatment plants were shown to dominate baseline chemistry during low-flow events but also yield a considerable impact on stormwater outputs during peak-flow events, as hydraulic push results in the outflow of untreated solid wastes into the river system. Results are discussed in the context of water quality policy; urban growth scenarios and BMP for stormwater runoff in contrasting landscapes.

  15. Assessment of groundwater quality by unsaturated zone study due to migration of leachate from Abloradjei waste disposal site, Ghana

    NASA Astrophysics Data System (ADS)

    Egbi, Courage Davidson; Akiti, Tetteh Thomas; Osae, Shiloh; Dampare, Samuel Boakye; Abass, Gibrilla; Adomako, Dickson

    2017-05-01

    Leachate generated by open solid waste disposal sites contains substances likely to contaminate groundwater. The impact of potential contaminants migrating from leachate on groundwater can be quantified by monitoring their concentration and soil properties at specific points in the unsaturated zone. In this study, physical and chemical analyses were carried out on leachate, soil and water samples within the vicinity of the municipal solid waste disposal site at Abloradjei, a suburb of Accra, Ghana. The area has seen a massive increase in population and the residents depend on groundwater as the main source of water supply. Results obtained indicate alkaline pH for leachate and acidic conditions for unsaturated zone water. High EC values were recorded for leachate and unsaturated zone water. Major ions (Ca2+, Na+, Mg2+, K+, NO3 -, SO4 2-, Cl-, PO4 3- were analysed in leachate, unsaturated zone water, soil solution and groundwater while trace metals (Al, Fe, Cu, Zn, Pb) were analysed in both soil and extracted soil solution. Concentrations of major ions were high in all samples indicating possible anthropogenic origin. Mean % gravel, % sand, % clay, bulk density, volumetric water content and porosity were 28.8, 63.93, 6.6, 1 g cm-3, 35 and 62.7 %, respectively. Distribution of trace elements showed Kd variation of Al > Cu > Fe > Pb > Zn in the order of sequential increasing solubility. It was observed that the quality of groundwater is not suitable for drinking.

  16. Heterogeneity of carbon loss and its temperature sensitivity in East-European subarctic tundra soils.

    PubMed

    Diáková, Kateřina; Čapek, Petr; Kohoutová, Iva; Mpamah, Promise A; Bárta, Jiří; Biasi, Christina; Martikainen, Pertti J; Šantrůčková, Hana

    2016-09-01

    Arctic peatlands store large stocks of organic carbon which are vulnerable to the climate change but their fate is uncertain. There is increasing evidence that a part of it will be lost as a result of faster microbial mineralization. We studied the vulnerability of 3500-5900 years old bare peat uplifted from permafrost layers by cryogenic processes to the surface of an arctic peat plateau. We aimed to find biotic and abiotic drivers of CLOSS from old peat and compare them with those of adjacent, young vegetated soils of the peat plateau and mineral tundra. The soils were incubated in laboratory at three temperatures (4°C, 12°C and 20°C) and two oxygen levels (aerobic, anaerobic). CLOSS was monitored and soil parameters (organic carbon quality, nutrient availability, microbial activity, biomass and stoichiometry, and extracellular oxidative and hydrolytic enzyme pools) were determined. We found that CLOSS from the old peat was constrained by low microbial biomass representing only 0.22% of organic carbon. CLOSS was only slightly reduced by the absence of oxygen and exponentially increased with temperature, showing the same temperature sensitivity under both aerobic and anaerobic conditions. We conclude that carbon in the old bare peat is stabilized by a combination of physical, chemical and biological controls including soil compaction, organic carbon quality, low microbial biomass and the absence of plants. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. A data management and publication workflow for a large-scale, heterogeneous sensor network.

    PubMed

    Jones, Amber Spackman; Horsburgh, Jeffery S; Reeder, Stephanie L; Ramírez, Maurier; Caraballo, Juan

    2015-06-01

    It is common for hydrology researchers to collect data using in situ sensors at high frequencies, for extended durations, and with spatial distributions that produce data volumes requiring infrastructure for data storage, management, and sharing. The availability and utility of these data in addressing scientific questions related to water availability, water quality, and natural disasters relies on effective cyberinfrastructure that facilitates transformation of raw sensor data into usable data products. It also depends on the ability of researchers to share and access the data in useable formats. In this paper, we describe a data management and publication workflow and software tools for research groups and sites conducting long-term monitoring using in situ sensors. Functionality includes the ability to track monitoring equipment inventory and events related to field maintenance. Linking this information to the observational data is imperative in ensuring the quality of sensor-based data products. We present these tools in the context of a case study for the innovative Urban Transitions and Aridregion Hydrosustainability (iUTAH) sensor network. The iUTAH monitoring network includes sensors at aquatic and terrestrial sites for continuous monitoring of common meteorological variables, snow accumulation and melt, soil moisture, surface water flow, and surface water quality. We present the overall workflow we have developed for effectively transferring data from field monitoring sites to ultimate end-users and describe the software tools we have deployed for storing, managing, and sharing the sensor data. These tools are all open source and available for others to use.

  18. Detection and monitoring of volatile and semivolatile pollutants in soil through different sensing strategies

    NASA Astrophysics Data System (ADS)

    De Cesare, Fabrizio; Macagnano, Antonella

    2013-04-01

    Pollutants in environments are more and more threatening the maintenance of health of habitats and their inhabitants. A proper evaluation of the impact of contaminants from several different potential sources on soil quality and health and then on organisms living therein, and the possible and sometime probable related risk of transfer of pollutants, with their toxic effects, to organisms living in different environmental compartments, through the trophic chain up to humans is strongly required by decision makers, in order to promptly take adequate actions to prevent environmental and health damages and monitor the exposure rate of individuals to toxicants. Then, a reliable detection of pollutants in environments and the monitoring of dynamics and fate of contaminants therein are of utmost importance to achieve this goal. In soil, chemical and physical techniques to detect pollutants have been well known for decades, but can often drive to both over- and underestimations of the actual bioavailable (and then toxic) fraction of contaminants, and then of the real risk for organisms, deriving from their presence therein. The use of bioindicators (both living organisms and enzyme activities somehow derived from them) can supply more reliable information about the quantification of the bioavailable fraction of soil pollutants. In the last decades, a physicochemical technique, such as SPME (solid phase microextraction) followed by GC-MS analysis, has been demonstrated to provide similar results to those obtained from some pedofaunal populations, used as bioindicators, as concerns the bioavailable pollutant quantification in soil. More recently, we have applied a sensing technology, namely electronic nose (EN), which comprises several unspecific sensors arranged in an array and that is capable of providing more qualitative than quantitative information about complex air samples, to the study of soils contaminated with semivolatile (SVOCs) pollutants, such as polycyclic aromatic hydrocarbons (PAHs). The EN device set up on purpose involved suitable sensors and it was demonstrated to be capable of supplying information related to the whole soil environment as well as to the presence of contaminants and their dynamics, such as their biodegradation by soil microorganisms and the contemporary increase of CO2 release. These results were also somehow related to those obtained through SPME-GC/MS analyses, since a list of substances could be identified to be responsible for the different classification of contaminated and uncontaminated soil samples obtained through EN. Presently, we also have got evidences that more complex sensing devices can be used for in situ monitoring of contaminated soils. We have designed and fabricated a multi-parametric hybrid sensing system, based on the assembly of several different sensors and sensing systems (i.e. single sensors and a sensor array), some of which are commercially available, while some others were created by design in laboratory and tested for their specificity. The main target of such a hybrid sensing device was to be capable of measuring various soil parameters and volatile pollutants (VOCs) in soil, such as BTEX (benzene, toluene, ethylbenzene and xylene), in order to relate the quantification and behaviour of contaminants in soil (e.g. solubility, volatility, phase partitioning, adsorption and desorption, etc.) to the relative environmental conditions, by measuring physical (temperature and moisture) and chemical (pH) parameters, which can affect such processes. Furthermore, a suitable procedure was set up on purpose to provide VOCs quantifications actually related to the bioavailable fraction of pollutants (passive vs. active sampling). That sensing system was also set up for a wireless communication of the recorded values to a data-collecting centre. Such a tool was designed to be used as a proper probe to insert into soil for in situ monitoring of contaminated sites in order to provide semi-continuous information about soil pollution conditions and evolutions, suitable for unskilled employees, on the basis of three different levels of contaminations and alarms. That probe might be then a suitable tool for decision makers about environmental risk assessment. Finally, an EN device has also been recently applied to detect microbial activity and biomass in soil. Then, the described sensing strategies might be successfully used to both monitor the presence of pollutants and their dynamics during and after remediation processes, in order to validate the effectiveness of the specific techniques applied in contaminated sites, and evaluate the recovery of soil metabolic activities and active microbial biomass.

  19. Laboratory evaluation of dual-frequency multisensor capacitance probes to monitor soil water and salinity

    USDA-ARS?s Scientific Manuscript database

    Real-time information on salinity levels and transport of fertilizers are generally missing from soil profile knowledge bases. A dual-frequency multisensor capacitance probe (MCP) is now commercially available for sandy soils that simultaneously monitor volumetric soil water content (VWC, ') and sa...

  20. Challenges in Bulk Soil Sampling and Analysis for Vapor Intrusion Screening of Soil

    EPA Science Inventory

    This draft Engineering Issue Paper discusses technical issues with monitoring soil excavations for VOCs and describes options for such monitoring as part of a VI pathway assessment at sites where soil excavation is being considered or used as part of the remedy for VOC-contaminat...

  1. Wireless sensor network for monitoring soil moisture and weather conditions

    USDA-ARS?s Scientific Manuscript database

    A wireless sensor network (WSN) was developed and deployed in three fields to monitor soil water status and collect weather data for irrigation scheduling. The WSN consists of soil-water sensors, weather sensors, wireless data loggers, and a wireless modem. Soil-water sensors were installed at three...

  2. Preferential flows and soil moistures on a Benggang slope: Determined by the water and temperature co-monitoring

    NASA Astrophysics Data System (ADS)

    Tao, Yu; He, Yangbo; Duan, Xiaoqian; Zou, Ziqiang; Lin, Lirong; Chen, Jiazhou

    2017-10-01

    Soil preferential flow (PF) has important effects on rainfall infiltration, moisture distribution, and hydrological and ecological process; but it is very difficult to monitor and characterize on a slope. In this paper, soil water and soil temperature at 20, 40, 60, 80 cm depths in six positions were simultaneously monitored at high frequency to confirm the occurrence of PF at a typical Benggang slope underlain granite residual deposits, and to determine the interaction of soil moisture distribution and Benggang erosion. In the presence of PF, the soil temperature was first (half to one hour) governed by the rainwater temperature, then (more than one hour) governed by the upper soil temperature; in the absence of PF (only matrix flow, MF), the soil temperature was initially governed by the upper soil temperature, then by the rainwater temperature. The results confirmed the water replacement phenomenon in MF, thus it can be distinguished from PF by additional temperature monitoring. It indicates that high frequency moisture and temperature monitoring can determine the occurrence of PF and reveal the soil water movement. The distribution of soil water content and PF on the different positions of the slope showed that a higher frequency of PF resulted in a higher variation of average of water content. The frequency of PF at the lower position can be three times as that of the upper position, therefore, the variation coefficient of soil water content increased from 4.67% to 12.68% at the upper position to 8.18%-33.12% at the lower position, where the Benggang erosion (soil collapse) was more possible. The results suggest strong relationships between PF, soil water variation, and collapse activation near the Benggang wall.

  3. Use of Cometabolic Air Sparging to Remediate Chloroethene-Contaminated Groundwater Aquifers

    DTIC Science & Technology

    2001-07-31

    sampling event, the temperature, dew point , and relative humidity of the soil gas were analyzed using a Control Company Digital Hygrometer/Thermometer...4.2.1.3 Groundwater and Soil- Gas Multi-Level Monitoring Points .................... 20 4.2.1.4 Groundwater Monitoring Wells...C-1 APPENDIX D: SOIL- GAS MONITORING POINT DATA........................................................D-1 APPENDIX E: HISTORICAL

  4. Evidence supporting the need for a common soil monitoring protocol

    Treesearch

    Derrick A. Reeves; Mark D. Coleman; Deborah S. Page-Dumroese

    2013-01-01

    Many public land management agencies monitor forest soils for levels of disturbance related to management activities. Although several soil disturbance monitoring protocols based on visual observation have been developed to assess the amount and types of disturbance caused by forest management, no common method is currently used on National Forest lands in the United...

  5. Soil vital signs: A new Soil Quality Index (SQI) for assessing forest soil health

    Treesearch

    Michael C. Amacher; Katherine P. O' Neil; Charles H. Perry

    2007-01-01

    The Forest Inventory and Analysis (FIA) program measures a number of chemical and physical properties of soils to address specific questions about forest soil quality or health. We developed a new index of forest soil health, the soil quality index (SQI), that integrates 19 measured physical and chemical properties of forest soils into a single number that serves as...

  6. Pollution of soils in urban areas in Serbia

    NASA Astrophysics Data System (ADS)

    Grujic, Gordana; Crnkovic, Dragan; Cerdà, Artemi

    2017-04-01

    Soil pollution is a world-wide problems that affect rural and urban areas of all the continents (Hu et al., 2015; Mao et al., 2016; Trujillo-González et al., 2016; Elkhatib et al., 2016; Roy and McDonad, 2015; Mahmoud and Abd El-Kader, 2015; Adamcová et al., 2016). There is a need to develop a program to achieve the sustainability of the soil system as the soils offers goods, services and resources to the humankind (Keesstra et al., 2012; Brevik et al., 2015; Keesstra et al., 2016). The program of systematic monitoring of soil pollution in Belgrade is aimed at testing the concentration of hazardous and harmful substances in soil at urban areas, interpretation of the results in accordance with current legislation, soil characteristics and geology and terrain, proposal of preventive and remedial measures in the wider territory of Belgrade. The paper gives an overview of the results of systematic monitoring of soil pollution in Belgrade in the period from 2009 to 2013. In accordance with the objectives of the investigation during the period from 2009-2013, while having in mind the purpose and manner of land use, the program of monitoring of soil pollution in the territory of Belgrade is oriented to the following areas: 1 - Land in the zone of the sanitary protection of the Belgrade water supply system, 2- Land in zone nearby the main roads, 3 - Land within the communal areas (public areas and agricultural land in the wider vicinity of Belgrade). On the basis of the conducted soil monitoring in the wider area of Belgrade, a large number of sites is contaminated with higher concentrations of hazardous and harmful substances that are exceeding the maximum allowed prescribed legal norms. The causes of soil contamination are both, anthropogenic and natural. Taking into account the all results, the most common deviation is referred to the increased nickel content in soil. A number of soil samples showed increase in concentrations of pollutants including Cu, Zn, Pb, Cd, As, Cr, Hg and organic pollutants. A special surveillance of soil pollution is related to the determination of the contents of hazardous and harmful substances in the soil surrounding public fountains with drinking water. The results indicated an increased content of Pb, Cd, Zn, Cu and pesticide residues that could lead to deterioration of the quality of drinking water of these springs and to endanger the health of the population that use this water. Investigation included determination of the level of radioactive elements in soil such are Cs, Sr and U. The presence of the registered harmful and hazardous substances in the soil on the territory of Belgrade requires continued monitoring the content of these pollutants including an assessment of potential adverse effects on the human health and the environment, as well as undertaking the necessary prevention and protection measures. Acknowledgements. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603498 (RECARE project) References Adamcová, D., Vaverková, M.D., Bartoň, S., Havlíček, Z., Břou\\vsková, E. 2016. Soil contamination in landfills: A case study of a landfill in Czech Republic. Solid Earth, 7 (1), pp. 239-247. DOI: http://dx.doi.org/10.5194/se-7-239-2016 Brevik, E. C., Cerdà, A., Mataix-Solera, J., Pereg, L., Quinton, J. N., Six, J., and Van Oost, K. 2015. The interdisciplinary nature of SOIL, SOIL, 1, 117-129, doi:10.5194/soil-1-117-2015, Elkhatib, E., M. Moharem, A. Mahdy, and M. Mesalem. 2016. Sorption, Release and Forms of Mercury in Contaminated Soils Stabilized with Water Treatment Residual Nanoparticles. Land Degradation and Development. doi:10.1002/ldr.2559. Hu, Y. -L, Z. -X Niu, D. -H Zeng, and C. -Y Wang. 2015. Soil Amendment Improves Tree Growth and Soil Carbon and Nitrogen Pools in Mongolian Pine Plantations on Post-Mining Land in Northeast China. Land Degradation and Development 26 (8): 807-812. doi:10.1002/ldr.2386. Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J. N., Pachepsky, Y., van der Putten, W. H., Bardgett, R. D., Moolenaar, S., Mol, G., Jansen, B., and Fresco, L. O.: The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals, SOIL, 2, 111-128, doi:10.5194/soil-2-111-2016, 2016. Keesstra, S.D., Geissen, V., van Schaik, L., Mosse., K., Piiranen, S., 2012. Soil as a filter for groundwater quality. Current Opinions in Environmental Sustainability 4, 507-516. doi:10.1016/j.cosust.2012.10.007 Mahmoud, E. and N. Abd El-Kader. 2015. Heavy Metal Immobilization in Contaminated Soils using Phosphogypsum and Rice Straw Compost. Land Degradation and Development 26 (8): 819-824. doi:10.1002/ldr.2288. Mao, W., S. Kang, Y. Wan, Y. Sun, X. Li, and Y. Wang. 2016. Yellow River Sediment as a Soil Amendment for Amelioration of Saline Land in the Yellow River Delta. Land Degradation and Development 27 (6): 1595-1602. doi:10.1002/ldr.2323. Roy, M. and L. M. Mcdonald. 2015. Metal Uptake in Plants and Health Risk Assessments in Metal-Contaminated Smelter Soils. Land Degradation and Development 26 (8): 785-792. doi:10.1002/ldr.2237. Trujillo-González, J.M., Torres-Mora, M.A., Keesstra, S., Brevik, E.C., Jiménez-Ballesta, R. 2016. Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Science of the Total Environment, 553, pp. 636-642. DOI: 10.1016/j.scitotenv.2016.02.101

  7. Possibilities of using the German Federal States' permanent soil monitoring program for the monitoring of potential effects of genetically modified organisms (GMO).

    PubMed

    Toschki, Andreas; Jänsch, Stephan; Roß-Nickoll, Martina; Römbke, Jörg; Züghart, Wiebke

    2015-01-01

    In the Directive 2001/18/EC on the deliberate release of genetically modified organisms (GMO) into the environment, a monitoring of potential risks is prescribed after their deliberate release or placing on the market. Experience and data of already existing monitoring networks should be included. The present paper summarizes the major findings of a project funded by the Federal Agency for Nature Conservation (Nutzungsmöglichkeiten der Boden-Dauerbeobachtung der Länder für das Monitoring der Umweltwirkungen gentechnisch veränderter Pflanzen. BfN Skripten, Bonn-Bad Godesberg 369, 2014). The full report in german language can be accessed on http://www.bfn.de and is available as Additional file 1. The aim of the project was to check if it is possible to use the German permanent soil monitoring program (PSM) for the monitoring of GMO. Soil organism communities are highly diverse and relevant with respect to the sustainability of soil functions. They are exposed to GMO material directly by feeding or indirectly through food chain interactions. Other impacts are possible due to their close association to soil particles. The PSM program can be considered as representative with regard to different soil types and ecoregions in Germany, but not for all habitat types relevant for soil organisms. Nevertheless, it is suitable as a basic grid for monitoring the potential effects of GMO on soil invertebrates. PSM sites should be used to derive reference values, i.e. range of abundance and presence of different relevant species of soil organisms. Based on these references, it is possible to derive threshold values to define the limit of acceptable change or impact. Therefore, a minimum set of sites and minimum set of standardized methods are needed, i.e. characterization of each site, sampling of selected soil organism groups, adequate adaptation of methods for the purpose of monitoring of potential effects of GMO. Finally, and probably most demanding, it is needed to develop a harmonized evaluation concept.

  8. QA/QC requirements for physical properties sampling and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Innis, B.E.

    1993-07-21

    This report presents results of an assessment of the available information concerning US Environmental Protection Agency (EPA) quality assurance/quality control (QA/QC) requirements and guidance applicable to sampling, handling, and analyzing physical parameter samples at Comprehensive Environmental Restoration, Compensation, and Liability Act (CERCLA) investigation sites. Geotechnical testing laboratories measure the following physical properties of soil and sediment samples collected during CERCLA remedial investigations (RI) at the Hanford Site: moisture content, grain size by sieve, grain size by hydrometer, specific gravity, bulk density/porosity, saturated hydraulic conductivity, moisture retention, unsaturated hydraulic conductivity, and permeability of rocks by flowing air. Geotechnical testing laboratories alsomore » measure the following chemical parameters of soil and sediment samples collected during Hanford Site CERCLA RI: calcium carbonate and saturated column leach testing. Physical parameter data are used for (1) characterization of vadose and saturated zone geology and hydrogeology, (2) selection of monitoring well screen sizes, (3) to support modeling and analysis of the vadose and saturated zones, and (4) for engineering design. The objectives of this report are to determine the QA/QC levels accepted in the EPA Region 10 for the sampling, handling, and analysis of soil samples for physical parameters during CERCLA RI.« less

  9. Risks and benefits of gardening in urban soil; heavy metals and nutrient content in Los Angeles Community Gardens

    NASA Astrophysics Data System (ADS)

    Clarke, L. W.; Jenerette, D.; Bain, D. J.

    2012-12-01

    The availability of soil nutrients and heavy metals in urban community gardens can influence health of crops and participants. Interactions between garden history, management, and soils are understudied in cities. In July 2011, we collected soil samples from 45 plots at 6 Los Angeles community gardens. For comparison, 3 samples were collected from uncultivated garden soils and 3 more from outside soils. Samples were then tested for major nutrients- Nitrogen(N), Potassium (K), and Phosphorous (P)- and organic matter (SOM). We also measured concentrations of 29 metals in 3 gardens using Inductively Coupled Plasma- Atomic Emission Spectroscopy. Potassium and phosphorus exceeded optimum levels in all plots, with some over twice the maximum recommended levels. Over-fertilized soils may contribute to local watershed pollution and crop micronutrient deficiencies. Low soil SOM was observed in gardens in impoverished neighborhoods, possibly due to low quality amendments. Our metals analysis showed dangerous levels of lead (Pb)-- up to 1700 ppm in outside soils and 150 ppm in garden soils-- near older gardens, indicating lead deposition legacies. California lead safety standards indicate that children should not play near soils with Pb above 200 ppm, indicating need for long term monitoring of lead contaminated gardens. Arsenic (As) levels exceeded federal risk levels (0.3 ppm) and average CA background levels (2 ppm) in all areas, with some gardens exceeding 10 ppm. Heavy metal legacies in gardens may pose risks to participants with prolonged exposure and remediation of soils may be necessary.

  10. Assessment of soil quality index for wheat and sugar beet cropping systems on an entisol in Central Anatolia.

    PubMed

    Şeker, Cevdet; Özaytekin, Hasan Hüseyin; Negiş, Hamza; Gümüş, İlknur; Dedeoğlu, Mert; Atmaca, Emel; Karaca, Ümmühan

    2017-04-01

    The sustainable use of agricultural lands is significantly affected by the implemented management and land processing methods. In sugar beet and wheat cropping, because the agronomic characteristics of plants are different, the tillage methods applied also exhibit significant variability. Soil quality concept is used, as a holistic approach to determining the effects of these applications on the sustainable use of soil. Agricultural soil quality evaluation is essential for economic success and environmental stability in rapidly developing regions. At present, a variety of methods are used to evaluate soil quality using different indicators. This study was conducted in one of the most important irrigated agriculture areas of Çumra plain in Central Anatolia, Turkey. In the soil under sugar beet and wheat cultivation, 12 soil quality indicators (aggregate stability (AS), available water capacity (AWC), surface penetration resistance (PR 0-20 ), subsurface penetration resistance (PR 20-40 ), organic matter (OM), active carbon (AC), potentially mineralizable nitrogen (PMN), root health value (RHV), pH, available phosphorus (AP), potassium (K), and macro-micro elements (ME) (Mg, Fe, Mn, and Zn)) were measured and scored according to the Cornell Soil Health Assessment (CSHA) and the Soil Management Assessment Framework (SMAF). The differences among 8 (AS, AWC, PR 0-20 , PR 20-40 , AC, PMN, AP, and ME) of these 12 soil quality characteristics measured in two different plant cultivation were found statistically significant. The result of the soil quality evaluation with scoring function in the examined area revealed a soil quality score of 61.46 in the wheat area and of 51.20 in the sugar beet area, which can be classified as medium and low, respectively. Low soil quality scores especially depend on physical and biological soil properties. Therefore, improvement of soil physical and biological properties with sustainable management is necessary to enhance the soil quality in the study area soils.

  11. Impacts of agricultural management practices on soil quality in Europe and China - an assessment within the framework of the EU iSQAPER project

    NASA Astrophysics Data System (ADS)

    Alaoui, Abdallah; Schwilch, Gudrun; Barão, Lúcia; Basch, Gottlieb; Sukkel, Wijnand; Lemesle, Julie; Ferreira, Carla; Garcia-Orenes, Fuensanta; Morugan, Alicia; Mataix, Jorge; Kosmas, Costas; Glavan, Matjaž; Tóth, Brigitta; Petrutza Gate, Olga; Lipiec, Jerzy; Reintam, Endla; Xu, Minggang; Di, Jiaying; Fan, Hongzhu; Geissen, Violette

    2017-04-01

    Agricultural soils are under a wide variety of pressures, including from increasing global demand for food associated with population growth, changing diets, land degradation, and associated productivity reductions potentially exacerbated by climate change. To manage the use of agricultural soils well, decision-makers need science-based, easily applicable, and cost-effective tools for assessing soil quality and soil functions. Since a practical assessment of soil quality requires the integrated consideration of key soil properties and their variations in space and time, providing such tools remains a challenging task. This study aims to assess the impact of innovative agricultural management practices on soil quality in 14 study sites across Europe (10) and China (4), covering the major pedo-climatic zones. The study is part of the European H2020 project iSQAPER, which involves 25 partners across Europe and China and is coordinated by Wageningen University, The Netherlands. iSQAPER is aimed at interactive soil quality assessment in Europe and China for agricultural productivity and environmental resilience. The study began with a thorough literature analysis to inform the selection of indicators for the assessment of soil structure and soil functions. A manual was then developed in order to standardize and facilitate the task of inventorying soil quality and management practices at the case study sites. The manual provides clear and precise instructions on how to assess the 11 selected soil quality indicators based on a visual soil assessment methodology. A newly developed infiltrometer was used to easily assess the soil infiltration capacity in the field and investigate hydrodynamic flow processes. Based on consistent calibration, the infiltrometer enables reliable prediction of key soil hydraulic properties. The main aim of this inventory is to link agricultural management practices to the soil quality status at the case study sites, and to identify innovative practices that have improved soil quality. The inventory and the scoring of soil quality are done together with land users at each study site. The idea is to compare the soil quality on a farm where management practices have changed 3 or more years ago with that on a control farm where practices have not changed, with both farms located in the same pedo-climatic zone and having comparable soil conditions. The case study partners were requested to identify at least 3 newly adopted management practices (or combinations thereof) and 3 related control farms. First results show that among 88 sets of paired plots, 60 pairs (68 %) show a positive impact of innovative agricultural management practices on soil quality. 18 pairs (21 %) do not show any difference in soil quality between soils under innovative practices and soils in the control plots, and the remaining 10 plots (11 %) show an inverse effect. The non-detectable effect of the innovative practices on soil quality are due to type of tillage management, soil type and fertility that mask the effect of management practices on soil and also due to time of the assessment. This assessment will be repeated in the coming years, with the aim of providing sound data on soil quality and its improvement through innovative management practices across Europe and China.

  12. Characterization of dominant hydrologic events: the role of spatial, temporal and climatic forces in generating the greatest sediment loads

    NASA Astrophysics Data System (ADS)

    Squires, A. L.; Boll, J.; Brooks, E. S.

    2013-12-01

    Soil erosion and the ensuing elevated sediment loads in surface water bodies result in impaired water quality and unsuitable habitat for salmonid species and other cold water biota. Increased sediment loads also relate to high nutrient levels in streams at downstream locations. Identification of the most sensitive factors leading to major sediment loads is useful in selection and placement of agricultural best management practices (BMPs), especially those that are management oriented such as nutrient management plans and the timing of tillage. Many BMPs work well for average storms but do not achieve desired results during the large storms, when hydrologically sensitive areas contribute the greatest amount of runoff and erosion. Research has shown that the majority of sediment loads in streams and rivers occur during a small proportion of the year, specifically during a few large storm events. In this research, we look beyond the conclusion that large events contribute the majority of sediment loads by investigating the driving forces behind each event. Long-term monitoring data were used from two monitoring stations in a small, mixed land use watershed in northern Idaho. The upper monitoring station is below mostly agricultural land use, and the lower monitoring station is below mostly urban land use. The watershed in question, Paradise Creek in Idaho, is the subject of a sediment TMDL which has not yet been consistently achieved and is currently up for review by the Idaho Department of Environmental Quality. We statistically analyzed the influence of multiple interacting variables on the magnitude of sediment loads during hydrologic events from 2002 to 2012. Spatial (i.e., above and below monitoring station data), temporal (i.e., seasonality), and climatic effects (i.e., precipitation, snowfall and snow melt) were examined, as well as the presence of frozen soils and the timing of events relative to each other. We hypothesized that (1) the events with the greatest sediment loads are flow-limited but occur after mass-limited events, (2) an event that is of long duration and is slow to peak, especially during frozen soil conditions, will contribute the greatest sediment load in a given year, and (3) urban land use generates greater sediment loads than rural land use. Multivariate analysis determined which factors lead to major sediment loads. Our presentation will focus on synthesizing the interacting variables and conditions that tend to result in dominant hydrologic events and suggestions for watershed management. This research will contribute to a more accurate assessment of the hydrology and water quality in the watershed to aid in improvement of the TMDL.

  13. A new detailed map of total phosphorus stocks in Australian soil.

    PubMed

    Viscarra Rossel, Raphael A; Bui, Elisabeth N

    2016-01-15

    Accurate data are needed to effectively monitor environmental condition, and develop sound policies to plan for the future. Globally, current estimates of soil total phosphorus (P) stocks are very uncertain because they are derived from sparse data, with large gaps over many areas of the Earth. Here, we derive spatially explicit estimates, and their uncertainty, of the distribution and stock of total P in Australian soil. Data from several sources were harmonized to produce the most comprehensive inventory of total P in soil of the continent. They were used to produce fine spatial resolution continental maps of total P in six depth layers by combining the bootstrap, a decision tree with piecewise regression on environmental variables and geostatistical modelling of residuals. Values of percent total P were predicted at the nodes of a 3-arcsecond (approximately 90 m) grid and mapped together with their uncertainties. We combined these predictions with those for bulk density and mapped the total soil P stock in the 0-30 cm layer over the whole of Australia. The average amount of P in Australian topsoil is estimated to be 0.98 t ha(-1) with 90% confidence limits of 0.2 and 4.2 t ha(-1). The total stock of P in the 0-30 cm layer of soil for the continent is 0.91 Gt with 90% confidence limits of 0.19 and 3.9 Gt. The estimates are the most reliable approximation of the stock of total P in Australian soil to date. They could help improve ecological models, guide the formulation of policy around food and water security, biodiversity and conservation, inform future sampling for inventory, guide the design of monitoring networks, and provide a benchmark against which to assess the impact of changes in land cover, land use and management and climate on soil P stocks and water quality in Australia. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  14. Application of soil quality indices to assess the status of agricultural soils irrigated with treated wastewaters

    NASA Astrophysics Data System (ADS)

    Morugán-Coronado, A.; Arcenegui, V.; García-Orenes, F.; Mataix-Solera, J.; Mataix-Beneyto, J.

    2012-12-01

    The supply of water is limited in some parts of the Mediterranean region, such as southeastern Spain. The use of treated wastewater for the irrigation of agricultural soils is an alternative to using better-quality water, especially in semi-arid regions. On the other hand, this practice can modify some soil properties, change their relationships, the equilibrium reached and influence soil quality. In this work two soil quality indices were used to evaluate the effects of irrigation with treated wastewater in soils. The indices were developed studying different soil properties in undisturbed soils in SE Spain, and the relationships between soil parameters were established using multiple linear regressions. This study was carried out in three areas of Alicante Province (SE Spain) irrigated with wastewater, including four study sites. The results showed slight changes in some soil properties as a consequence of irrigation with wastewater, the obtained levels not being dangerous for agricultural soils, and in some cases they could be considered as positive from an agronomical point of view. In one of the study sites, and as a consequence of the low quality wastewater used, a relevant increase in soil organic matter content was observed, as well as modifications in most of the soil properties. The application of soil quality indices indicated that all the soils of study sites are in a state of disequilibrium regarding the relationships between properties independent of the type of water used. However, there were no relevant differences in the soil quality indices between soils irrigated with wastewater with respect to their control sites for all except one of the sites, which corresponds to the site where low quality wastewater was used.

  15. Soil organic matter as sole indicator of soil degradation.

    PubMed

    Obalum, S E; Chibuike, G U; Peth, S; Ouyang, Y

    2017-04-01

    Soil organic matter (SOM) is known to play vital roles in the maintenance and improvement of many soil properties and processes. These roles, which largely influence soil functions, are a pool of specific contributions of different components of SOM. The soil functions, in turn, normally define the level of soil degradation, viewed as quantifiable temporal changes in a soil that impairs its quality. This paper aims at providing a generalized assessment of the current state of knowledge on the usefulness of SOM in monitoring soil degradation, based on its influence on the physical, chemical and biological properties and processes of soils. Emphasis is placed particularly on the effect of SOM on soil structure and availability of plant nutrients. Although these properties are discussed separately, the soil system is of dynamic and interactive nature, and changes in one property will likely affect other soil properties as well. Thus, functions of SOM almost always affect various soil properties and processes and engage in multiple reactions. In view of its role in soil aggregation and erosion control, in availability of plant nutrients and in ameliorating other forms of soil degradation than erosion, SOM has proven to be an important indicator of soil degradation. It has been suggested, however, that rather than the absolute amount, temporal change and potential amount of SOM be considered in its use as indicator of soil degradation, and that SOM may not be an all-purpose indicator. Whilst SOM remains a candidate without substitute as long as a one-parameter indicator of soil degradation is needed, narrowing down to the use of its labile and microbial components could be more appropriate, since early detection is important in the control and management of soil degradation.

  16. Study on a pattern classification method of soil quality based on simplified learning sample dataset

    USGS Publications Warehouse

    Zhang, Jiahua; Liu, S.; Hu, Y.; Tian, Y.

    2011-01-01

    Based on the massive soil information in current soil quality grade evaluation, this paper constructed an intelligent classification approach of soil quality grade depending on classical sampling techniques and disordered multiclassification Logistic regression model. As a case study to determine the learning sample capacity under certain confidence level and estimation accuracy, and use c-means algorithm to automatically extract the simplified learning sample dataset from the cultivated soil quality grade evaluation database for the study area, Long chuan county in Guangdong province, a disordered Logistic classifier model was then built and the calculation analysis steps of soil quality grade intelligent classification were given. The result indicated that the soil quality grade can be effectively learned and predicted by the extracted simplified dataset through this method, which changed the traditional method for soil quality grade evaluation. ?? 2011 IEEE.

  17. Effects of non-native earthworms on on below- and aboveground processes in the Mid-Atlantic region

    NASA Astrophysics Data System (ADS)

    Szlavecz, K. A.; McCormick, M. K.; Xia, L.; Pitz, S.; O'Neill, J.; Bernard, M.; Chang, C.; Whigham, D. F.

    2011-12-01

    Many biotic and abiotic disturbances have shaped the structure of the deciduous forests in the Mid-Atlantic region. One major anthropogenic factor is land use history. Agricultural practices in the past undoubtedly facilitated non-native earthworm colonization and establishment. Today most secondary forests are dominated by European lumbricid earthworms, although native species also occur in some habitats. To investigate how earthworm community composition and abundance affect belowground processes and tree seedling growth we set up a field manipulation experiment at the Smithsonian Environmental Research Center in Edgewater, MD. A total of 66 experimental plots were set up in successional (70 yrs) and mature (150 yrs) Tulip-poplar-Oak associations. We manipulated earthworm abundance and leaf litter input, and planted seedlings of Tulip poplar, Red maple, Red oak, and American beech. The experiment lasted for two years during which we regularly monitored density, biomass and species composition of earthworm assemblages and measured soil respiration. Soil moisture, temperature and air temperature were also continuously monitored using a wireless sensor network. At harvest, soil bulk density, pH, N pools, C:N ratio, potential N-mineralization rates, and enzyme activity were determined. We used quantitative PCR to assess the community composition of soil fungi. We also determined the extent of mycorrhizal colonization and biomass of roots, shoots and leaves. We conducted likelihood ratio tests for random and fixed effects based on mixed model analyses of variance. Differences between soil depths and among sites and plots accounted for a large portion of the variation in many soil properties. Litter quality affected soil pH and N mineralization. Earthworm densities affected bulk density, inorganic N content, and N mineralization. Both mycorrhizal groups were more abundant in mature than in successional forests. Both ectomycorrhizal (ECM) and arbuscular (AM) fungi were less abundant in the earthworm removal plots. There was a significant positive earthworm effect on the rate and thermal sensitivity of soil respiration. Soil respiration was consistently higher in plots with tulip poplar litter than those with beech litter, indicating a strong influence of plant residue quality. However, the differences were smaller in the second year than in the first one indicating an adaptation of the soil system. Oak and beech seedlings were smaller in high density earthworm plots, while the reverse was true for maple and tulip poplar seedlings. Non-native earthworms affect below- and aboveground processes, however, these effects depend on forest type and land use history. The earthworm effects also appear to be dynamic, as witnessed by a recent invasion of an Asian earthworm species in one of our forest stands.

  18. Environmental Monitoring Networks Optimization Using Advanced Active Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Kanevski, Mikhail; Volpi, Michele; Copa, Loris

    2010-05-01

    The problem of environmental monitoring networks optimization (MNO) belongs to one of the basic and fundamental tasks in spatio-temporal data collection, analysis, and modeling. There are several approaches to this problem, which can be considered as a design or redesign of monitoring network by applying some optimization criteria. The most developed and widespread methods are based on geostatistics (family of kriging models, conditional stochastic simulations). In geostatistics the variance is mainly used as an optimization criterion which has some advantages and drawbacks. In the present research we study an application of advanced techniques following from the statistical learning theory (SLT) - support vector machines (SVM) and the optimization of monitoring networks when dealing with a classification problem (data are discrete values/classes: hydrogeological units, soil types, pollution decision levels, etc.) is considered. SVM is a universal nonlinear modeling tool for classification problems in high dimensional spaces. The SVM solution is maximizing the decision boundary between classes and has a good generalization property for noisy data. The sparse solution of SVM is based on support vectors - data which contribute to the solution with nonzero weights. Fundamentally the MNO for classification problems can be considered as a task of selecting new measurement points which increase the quality of spatial classification and reduce the testing error (error on new independent measurements). In SLT this is a typical problem of active learning - a selection of the new unlabelled points which efficiently reduce the testing error. A classical approach (margin sampling) to active learning is to sample the points closest to the classification boundary. This solution is suboptimal when points (or generally the dataset) are redundant for the same class. In the present research we propose and study two new advanced methods of active learning adapted to the solution of MNO problem: 1) hierarchical top-down clustering in an input space in order to remove redundancy when data are clustered, and 2) a general method (independent on classifier) which gives posterior probabilities that can be used to define the classifier confidence and corresponding proposals for new measurement points. The basic ideas and procedures are explained by applying simulated data sets. The real case study deals with the analysis and mapping of soil types, which is a multi-class classification problem. Maps of soil types are important for the analysis and 3D modeling of heavy metals migration in soil and prediction risk mapping. The results obtained demonstrate the high quality of SVM mapping and efficiency of monitoring network optimization by using active learning approaches. The research was partly supported by SNSF projects No. 200021-126505 and 200020-121835.

  19. Identifying and closing gaps in environmental monitoring by means of metadata, ecological regionalization and geostatistics using the UNESCO biosphere reserve Rhoen (Germany) as an example.

    PubMed

    Schröder, Winfried; Pesch, Roland; Schmidt, Gunther

    2006-03-01

    In Germany, environmental monitoring is intended to provide a holistic view of the environmental condition. To this end the monitoring operated by the federal states must use harmonized, resp., standardized methods. In addition, the monitoring sites should cover the ecoregions without any geographical gaps, the monitoring design should have no gaps in terms of ecologically relevant measurement parameters, and the sample data should be spatially without any gaps. This article outlines the extent to which the Rhoen Biosphere Reserve, occupying a part of the German federal states of Bavaria, Hesse and Thuringia, fulfills the listed requirements. The investigation considered collection, data banking and analysis of monitoring data and metadata, ecological regionalization and geostatistics. Metadata on the monitoring networks were collected by questionnaires and provided a complete inventory and description of the monitoring activities in the reserve and its surroundings. The analysis of these metadata reveals that most of the monitoring methods are harmonized across the boundaries of the three federal states the Rhoen is part of. The monitoring networks that measure precipitation, surface water levels, and groundwater quality are particularly overrepresented in the central ecoregions of the biosphere reserve. Soil monitoring sites are more equally distributed within the ecoregions of the Rhoen. The number of sites for the monitoring of air pollutants is not sufficient to draw spatially valid conclusions. To fill these spatial gaps, additional data on the annual average values of the concentrations of air pollutants from monitoring sites outside of the biosphere reserve had therefore been subject to geostatistical analysis and estimation. This yields valid information on the spatial patterns and temporal trends of air quality. The approach illustrated is applicable to similar cases, as, for example, the harmonization of international monitoring networks.

  20. An alternative tensiometer design for deep vadose zone monitoring

    NASA Astrophysics Data System (ADS)

    Moradi, A. B.; Kandelous, M. M.; Hopmans, J. W.

    2015-12-01

    The conventional tensiometer is among the most accurate devices for soil water matric potential measurements, as well as for estimations of soil water flux from soil water potential gradients. Uncertainties associated with conventional tensiometers such as caused by ambient temperature effects and the draining of the tensiometer tube, as well as their limitation for deep soil monitoring has prevented their widespread use for vadose zone monitoring, despite their superior accuracy, in general. We introduce an alternative tensiometer design that offers the accuracy of the conventional tensiometer, while minimizing afore-mentioned uncertainties and limitations. The proposed alternative tensiometer largely eliminates temperature-induced diurnal fluctuations and uncertainties associated with the draining of the tensiometer tube, and removes the limitation in installation depth. In addition, the manufacturing costs of this alternative tensiometer design is close to that of the conventional tensiometer, while it is especially suited for monitoring of soil water potential gradients as required for soil water flux measurements.

  1. Methods of soil resampling to monitor changes in the chemical concentrations of forest soils

    Treesearch

    Gregory B. Lawrence; Ivan J. Fernandez; Paul W. Hazlett; Scott W. Bailey; Donald S. Ross; Thomas R. Villars; Angelica Quintana; Rock Ouimet; Michael R. McHale; Chris E. Johnson; Russell D. Briggs; Robert A. Colter; Jason Siemion; Olivia L. Bartlett; Olga Vargas; Michael R. Antidormi; Mary M. Koppers

    2016-01-01

    Recent soils research has shown that important chemical soil characteristics can change in less than a decade, often the result of broad environmental changes. Repeated sampling to monitor these changes in forest soils is a relatively new practice that is not well documented in the literature and has only recently been broadly embraced by the scientific community. The...

  2. Review and Future Research Directions about Major Monitoring Method of Soil Erosion

    NASA Astrophysics Data System (ADS)

    LI, Yue; Bai, Xiaoyong; Tian, Yichao; Luo, Guangjie

    2017-05-01

    Soil erosion is a highly serious ecological problem that occurs worldwide. Hence,scientific methods for accurate monitoring are needed to obtain soil erosion data. At present,numerous methods on soil erosion monitoring are being used internationally. In this paper, wepresent a systematic classification of these methods based on the date of establishment andtype of approach. This classification comprises five categories: runoff plot method, erosion pinmethod, radionuclide tracer method, model estimation, and 3S technology combined method.The backgrounds of their establishment are briefly introduced, the history of their developmentis reviewed, and the conditions for their application are enumerated. Their respectiveadvantages and disadvantages are compared and analysed, and future prospects regarding theirdevelopment are discussed. We conclude that the methods of soil erosion monitoring in the past 100 years of their development constantly considered the needs of the time. According to the progress of soil erosion monitoring technology throughout its history, we predict that the future trend in this field would move toward the development of quantitative, precise, and composite methods. This report serves as a valuable reference for scientific and technological workers globally, especially those engaged in soil erosion research.

  3. Spatial distribution analysis of chemical and biochemical properties across Koiliaris CZO

    NASA Astrophysics Data System (ADS)

    Tsiknia, Myrto; Varouchakis, Emmanouil A.; Paranychianakis, Nikolaos V.; Nikolaidis, Nikolaos P.

    2015-04-01

    Arid and semi-arid ecosystems cover approximately 47% of the Earth's surface. Soils in these climatic zones are often severely degraded and poor in organic carbon and nutrients. Anthropogenic activities like overgrazing and intensive agricultural practices further exacerbate the quality of the soils making them more vulnerable to erosion and accelerating losses of nutrients which might end up to surface waterways degrading their quality. Data of the geospatial distribution of nutrient availability as well as on the involved processes at watershed level might help us to identify areas which will potentially act as sources of nutrients and probably will allow us to adopt appropriate management practices to mitigate environmental impacts. In the present study we have performed an extensive sampling campaign (50 points) across a typical Mediterranean watershed, the Koiliaris Critical Zone Observatory (CZO), organized in such a way to effectively capture the complex variability (climatic, soil properties, hydrology, land use) of the watershed. Analyses of soil physico-chemical properties (texture, pH, EC, TOC, TN, NO3--N, and NH4+-N) and biochemical assays (potential nitrification rate, nitrogen mineralization rate, enzymes activities) were carried out. Geostatistical analysis and more specifically the kriging interpolation method was employed to generate distribution maps of the distribution of nitrogen forms and of the related biochemical assays. Such maps could provide an important tool for effective ecosystem management and monitoring decisions.

  4. Miniaturized redox potential probe for in situ environmental monitoring.

    PubMed

    Jang, Am; Lee, Jin-Hwan; Bhadri, Prashant R; Kumar, Suresh A; Timmons, William; Beyette, Fred R; Papautsky, Ian; Bishop, Paul L

    2005-08-15

    The need for accurate, robust in situ microscale monitoring of oxidation-reduction potentials (ORP) is required for continuous soil pore water quality monitoring. We are developing a suite of self-contained microelectrodes that can be used in the environment, such as at Superfund sites, to monitor ORP in contaminated soils and sediments. This paper presents details on our development of microelectrode sensor arrays for ORP measurements. The electrochemical performance of these ORP electrodes was fully characterized by measuring redox potentials in standard solutions. It found that the newly developed integrated ORP microelectrodes produced a very stable voltage response (the corresponding rate of the integrated microelectrode potential change was in the range of 0.6-1.1 mV/min), even when the measurement was carried out outside of a Faraday cage where signals from most conventional microelectrodes are usually inhibited by external electrical nose. These new microelectrodes were easier to fabricate and were more robust than conventional microelectrodes. The tip size of the integrated ORP microelectrode was approximately 200 nm square, with a taper angle of approximately 20 degrees and a length of 57 microm. The integrated ORP microelectrode exhibited better signal stability and substantially shorter response times (from less than a few milliseconds to 30 s, depending on the standard solution used) than the commercial millielectrode (a few minutes). Compared with the slope of the commercial millelectrode, the slope of the integrated microelectrode (61.5 mV/pH) was closerto the ideal slope against quinhydrone calibration solutions. Therefore, it is to be expected that the newly developed ORP microelectrode may have wider applications in contaminated soils, biofilms, and sediments.

  5. The influence of climate change on wine production - the case of the Touriga Nacional grape variety (Quinta dos Termos, Portugal)

    NASA Astrophysics Data System (ADS)

    Fonseca, João

    2017-04-01

    The regional and local climate, heavily influenced by global climate change, has strong implications for agriculture. Wine production which has specific characteristics in terms of climate and soil is undoubtedly one of the economic activities strongly influenced by climate change. Quinta dos Termos located in Beira Interior (Belmonte, Portugal) is the largest wine producer in the DOC Beira Interior region, producing premium to hiper premium wines of excellence, marketed at both national and international levels, and cultivates the vineyards according to the rules of Integrated Crop Management. Moreover, grapes are free from herbicides, pesticides or any other chemicals that can be harmful to the environment and health. These factors have contributed to the socio-economic development of the region, creating wealth, favoring employment and promoting tourism. The quality of the wines produced by Quinta dos Termos result from its terroir, given its granite region, the sun exposure, the wind protection, the atmospheric humidity and temperature, the soil water content, the mineralogical/organic composition and soil porosity. These factors favor unique conditions for the cultivation of Touriga Nacional grape variety, which is recognized by its extremely complex color and aroma, which allows the production of wines with great balance and a good ageing potential. Touriga Nacional, a red grape variety of Portuguese origin with high qualitative excellence and reputation and much appreciated worldwide, is versatile to several types of soils and resistant to high thermal amplitudes. Nevertheless, the climatic changes that has been gradually verified, the type of crop management, and in particular the reputation of Touriga Nacional grape variety, may be compromised in the long term, given that these characteristics are strongly influenced by the climate and soil. Aware of that, Quinta dos Termos has been performing a monitoring of the vineyards in terms of pedological treatment, disease control and water stress. With the present essay we intend to present the results achieved by the monitoring of the main influencing factors in grape production and therefore the quality of wines produced, over the years, by Quinta dos Termos.

  6. Pilot studies for the North American Soil Geochemical Landscapes Project - Site selection, sampling protocols, analytical methods, and quality control protocols

    USGS Publications Warehouse

    Smith, D.B.; Woodruff, L.G.; O'Leary, R. M.; Cannon, W.F.; Garrett, R.G.; Kilburn, J.E.; Goldhaber, M.B.

    2009-01-01

    In 2004, the US Geological Survey (USGS) and the Geological Survey of Canada sampled and chemically analyzed soils along two transects across Canada and the USA in preparation for a planned soil geochemical survey of North America. This effort was a pilot study to test and refine sampling protocols, analytical methods, quality control protocols, and field logistics for the continental survey. A total of 220 sample sites were selected at approximately 40-km intervals along the two transects. The ideal sampling protocol at each site called for a sample from a depth of 0-5 cm and a composite of each of the O, A, and C horizons. The <2-mm fraction of each sample was analyzed for Al, Ca, Fe, K, Mg, Na, S, Ti, Ag, As, Ba, Be, Bi, Cd, Ce, Co, Cr, Cs, Cu, Ga, In, La, Li, Mn, Mo, Nb, Ni, P, Pb, Rb, Sb, Sc, Sn, Sr, Te, Th, Tl, U, V, W, Y, and Zn by inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry following a near-total digestion in a mixture of HCl, HNO3, HClO4, and HF. Separate methods were used for Hg, Se, total C, and carbonate-C on this same size fraction. Only Ag, In, and Te had a large percentage of concentrations below the detection limit. Quality control (QC) of the analyses was monitored at three levels: the laboratory performing the analysis, the USGS QC officer, and the principal investigator for the study. This level of review resulted in an average of one QC sample for every 20 field samples, which proved to be minimally adequate for such a large-scale survey. Additional QC samples should be added to monitor within-batch quality to the extent that no more than 10 samples are analyzed between a QC sample. Only Cr (77%), Y (82%), and Sb (80%) fell outside the acceptable limits of accuracy (% recovery between 85 and 115%) because of likely residence in mineral phases resistant to the acid digestion. A separate sample of 0-5-cm material was collected at each site for determination of organic compounds. A subset of 73 of these samples was analyzed for a suite of 19 organochlorine pesticides by gas chromatography. Only three of these samples had detectable pesticide concentrations. A separate sample of A-horizon soil was collected for microbial characterization by phospholipid fatty acid analysis (PLFA), soil enzyme assays, and determination of selected human and agricultural pathogens. Collection, preservation and analysis of samples for both organic compounds and microbial characterization add a great degree of complication to the sampling and preservation protocols and a significant increase to the cost for a continental-scale survey. Both these issues must be considered carefully prior to adopting these parameters as part of the soil geochemical survey of North America.

  7. IASMHYN: A web tool for mapping Soil Water Budget and agro-hydrological assessment trough the integration of monitoring and remote sensing data

    NASA Astrophysics Data System (ADS)

    Bagli, Stefano; Pistocchi, Alberto; Mazzoli, Paolo; Borga, Marco; Bertoldi, Giacomo; Brenner, Johannes; Luzzi, Valerio

    2016-04-01

    Climate change, increasing pressure on farmland to satisfy the growing demand, and need to ensure environmental quality for agriculture in order to be competitive require an increasing capacity of water management. In this context, web-based for forecasting and monitoring the hydrological conditions of topsoil can be an effective means to save water, maximize crop protection and reduce soil loss and the leaching of pollutants. Such tools need to be targeted to the users and be accessible in a simple way in order to allow adequate take up in the practice. IASMHYN "Improved management of Agricultural Systems by Monitoring and Hydrological evaluation" is a web mapping service designed to provide and update on a daily basis the main water budget variables for farmland management. A beta version of the tool is available at www.gecosistema.com/iasmhyn . IASMHYN is an instrument for "second level monitoring" that takes into account accurate hydro-meteorological information's from ground stations and remote sensing sources, and turns them into practically usable decision variables for precision farming, making use of geostatistical analysis and hydrological models The main routines embedded in IASMYHN exclusively use open source libraries (R packages and Python), to perform following operations: (1) Automatic acquisition of observed data, both from ground stations and remote sensing, concerning precipitation (RADAR) and temperature (MODIS-LST) available from various sources; (2) Interpolation of acquisitions through regression kriging in order to spatially map the meteorological data; (3) Run of hydrological models to obtain spatial information of hydrological soil variables of immediate interest in agriculture. The real time results that are produced are available trough a web interface and provide the user with spatial maps and time series of the following variables, supporting decision on irrigation, soil protection from erosion, pollution risk of groundwater and streams: - Daily precipitation and its characteristics (rain, snow or hail, rain erosiveness); - Maximum, minimum and average daily temperature; - Soil Water Content (SWC); - Infiltration into the deep layers of the soil and surface runoff; - Potential loss of soil due to erosion - Residence time of a possible chemical (pesticides, fertilizers) applied to the soil. Thematic real time maps are produced give the user support decision on irrigation, soil management and pesticide/fertilizer application. The ongoing project will also lead to validation and improvement of estimates of hydrological variables from satellite imagery and radar data. The tool has been cross-validated with estimates of evapotranspiration and soil water content in agricultural sites in South Tyrol (Italy) in the framework of MONALISA project (http://www.monalisa-project.eu). A comparison with physical based models, satellite imagery and radar data will allow further generalization of the product. The ultimate goal of the tool is to make available on the market a service that is generally applicable in Europe , using commonly available data, to provide single farmers and organizations effective and up to date information for planning and programming their activities.

  8. Mapping and predictive variations of soil bacterial richness across France

    PubMed Central

    Dequietd, Samuel; Saby, Nicolas P. A.; Lelièvre, Mélanie; Nowak, Virginie; Tripied, Julie; Régnier, Tiffanie; Jolivet, Claudy; Arrouays, Dominique; Wincker, Patrick; Cruaud, Corinne; Karimi, Battle; Bispo, Antonio; Maron, Pierre Alain; Chemidlin Prévost-Bouré, Nicolas; Ranjard, Lionel

    2017-01-01

    Although numerous studies have demonstrated the key role of bacterial diversity in soil functions and ecosystem services, little is known about the variations and determinants of such diversity on a nationwide scale. The overall objectives of this study were i) to describe the bacterial taxonomic richness variations across France, ii) to identify the ecological processes (i.e. selection by the environment and dispersal limitation) influencing this distribution, and iii) to develop a statistical predictive model of soil bacterial richness. We used the French Soil Quality Monitoring Network (RMQS), which covers all of France with 2,173 sites. The soil bacterial richness (i.e. OTU number) was determined by pyrosequencing 16S rRNA genes and related to the soil characteristics, climatic conditions, geomorphology, land use and space. Mapping of bacterial richness revealed a heterogeneous spatial distribution, structured into patches of about 111km, where the main drivers were the soil physico-chemical properties (18% of explained variance), the spatial descriptors (5.25%, 1.89% and 1.02% for the fine, medium and coarse scales, respectively), and the land use (1.4%). Based on these drivers, a predictive model was developed, which allows a good prediction of the bacterial richness (R2adj of 0.56) and provides a reference value for a given pedoclimatic condition. PMID:29059218

  9. Current status and associated human health risk of vanadium in soil in China.

    PubMed

    Yang, Jie; Teng, Yanguo; Wu, Jin; Chen, Haiyang; Wang, Guoqiang; Song, Liuting; Yue, Weifeng; Zuo, Rui; Zhai, Yuanzheng

    2017-03-01

    A detailed assessment of vanadium contamination characteristics in China was conducted based on the first national soil pollution survey. The map overlay analysis was used to evaluate the contamination level of vanadium and the non-carcinogenic risk assessment model was calculated to quantify the vanadium exposure risks to human health. The results showed that, due to the drastically increased mining and smelting activities, 26.49% of soils were contaminated by vanadium scattered in southwest of China. According to Canadian soil quality guidelines, about 8.6% of the national soil pollution survey samples were polluted, and pose high non-carcinogenic risks to the public, especially to children living in the vicinity of heavily polluted mining areas. We propose the area near the boundary of Yunnan, Guizhou, Guangxi, and Sichuan provinces as priority control areas due to their higher geochemical background or higher health risks posed to the public. Finally, recommendations for management are proposed, including minimization of contaminant inputs, establishing stringent monitoring program, using phytoremediation, and strengthening the enforcement of relevant laws. Therefore, this study provides a comprehensive assessment of soil vanadium contamination in China, and the results will provide valuable information for China's soil vanadium management and risk avoidance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Mapping and predictive variations of soil bacterial richness across France.

    PubMed

    Terrat, Sébastien; Horrigue, Walid; Dequiedt, Samuel; Saby, Nicolas P A; Lelièvre, Mélanie; Nowak, Virginie; Tripied, Julie; Régnier, Tiffanie; Jolivet, Claudy; Arrouays, Dominique; Wincker, Patrick; Cruaud, Corinne; Karimi, Battle; Bispo, Antonio; Maron, Pierre Alain; Chemidlin Prévost-Bouré, Nicolas; Ranjard, Lionel

    2017-01-01

    Although numerous studies have demonstrated the key role of bacterial diversity in soil functions and ecosystem services, little is known about the variations and determinants of such diversity on a nationwide scale. The overall objectives of this study were i) to describe the bacterial taxonomic richness variations across France, ii) to identify the ecological processes (i.e. selection by the environment and dispersal limitation) influencing this distribution, and iii) to develop a statistical predictive model of soil bacterial richness. We used the French Soil Quality Monitoring Network (RMQS), which covers all of France with 2,173 sites. The soil bacterial richness (i.e. OTU number) was determined by pyrosequencing 16S rRNA genes and related to the soil characteristics, climatic conditions, geomorphology, land use and space. Mapping of bacterial richness revealed a heterogeneous spatial distribution, structured into patches of about 111km, where the main drivers were the soil physico-chemical properties (18% of explained variance), the spatial descriptors (5.25%, 1.89% and 1.02% for the fine, medium and coarse scales, respectively), and the land use (1.4%). Based on these drivers, a predictive model was developed, which allows a good prediction of the bacterial richness (R2adj of 0.56) and provides a reference value for a given pedoclimatic condition.

  11. Biological indices of soil quality: an ecosystem case study of their use

    Treesearch

    Jennifer D. Knoepp; David C. Coleman; D.A. Crossley; James S. Clark

    2000-01-01

    Soil quality indices can help ensure that site productivity and soil function are maintained. Biological indices yield evidence of how a soil functions and interacts with the plants, animals, and climate that comprise an ecosystem. Soil scientists can identify and quantify both chemical and biological soil-quality indicators for ecosystems with a single main function,...

  12. Using Color, Texture and Object-Based Image Analysis of Multi-Temporal Camera Data to Monitor Soil Aggregate Breakdown

    PubMed Central

    Ymeti, Irena; van der Werff, Harald; Shrestha, Dhruba Pikha; Jetten, Victor G.; Lievens, Caroline; van der Meer, Freek

    2017-01-01

    Remote sensing has shown its potential to assess soil properties and is a fast and non-destructive method for monitoring soil surface changes. In this paper, we monitor soil aggregate breakdown under natural conditions. From November 2014 to February 2015, images and weather data were collected on a daily basis from five soils susceptible to detachment (Silty Loam with various organic matter content, Loam and Sandy Loam). Three techniques that vary in image processing complexity and user interaction were tested for the ability of monitoring aggregate breakdown. Considering that the soil surface roughness causes shadow cast, the blue/red band ratio is utilized to observe the soil aggregate changes. Dealing with images with high spatial resolution, image texture entropy, which reflects the process of soil aggregate breakdown, is used. In addition, the Huang thresholding technique, which allows estimation of the image area occupied by soil aggregate, is performed. Our results show that all three techniques indicate soil aggregate breakdown over time. The shadow ratio shows a gradual change over time with no details related to weather conditions. Both the entropy and the Huang thresholding technique show variations of soil aggregate breakdown responding to weather conditions. Using data obtained with a regular camera, we found that freezing–thawing cycles are the cause of soil aggregate breakdown. PMID:28556803

  13. Determining the frequency, depth and velocity of preferential flow by high frequency soil moisture monitoring

    NASA Astrophysics Data System (ADS)

    Hardie, Marcus; Lisson, Shaun; Doyle, Richard; Cotching, William

    2013-01-01

    Preferential flow in agricultural soils has been demonstrated to result in agrochemical mobilisation to shallow ground water. Land managers and environmental regulators need simple cost effective techniques for identifying soil - land use combinations in which preferential flow occurs. Existing techniques for identifying preferential flow have a range of limitations including; often being destructive, non in situ, small sampling volumes, or are subject to artificial boundary conditions. This study demonstrated that high frequency soil moisture monitoring using a multi-sensory capacitance probe mounted within a vertically rammed access tube, was able to determine the occurrence, depth, and wetting front velocity of preferential flow events following rainfall. Occurrence of preferential flow was not related to either rainfall intensity or rainfall amount, rather preferential flow occurred when antecedent soil moisture content was below 226 mm soil moisture storage (0-70 cm). Results indicate that high temporal frequency soil moisture monitoring may be used to identify soil type - land use combinations in which the presence of preferential flow increases the risk of shallow groundwater contamination by rapid transport of agrochemicals through the soil profile. However use of high frequency based soil moisture monitoring to determine agrochemical mobilisation risk may be limited by, inability to determine the volume of preferential flow, difficulty observing macropore flow at high antecedent soil moisture content, and creation of artificial voids during installation of access tubes in stony soils.

  14. Using Color, Texture and Object-Based Image Analysis of Multi-Temporal Camera Data to Monitor Soil Aggregate Breakdown.

    PubMed

    Ymeti, Irena; van der Werff, Harald; Shrestha, Dhruba Pikha; Jetten, Victor G; Lievens, Caroline; van der Meer, Freek

    2017-05-30

    Remote sensing has shown its potential to assess soil properties and is a fast and non-destructive method for monitoring soil surface changes. In this paper, we monitor soil aggregate breakdown under natural conditions. From November 2014 to February 2015, images and weather data were collected on a daily basis from five soils susceptible to detachment (Silty Loam with various organic matter content, Loam and Sandy Loam). Three techniques that vary in image processing complexity and user interaction were tested for the ability of monitoring aggregate breakdown. Considering that the soil surface roughness causes shadow cast, the blue/red band ratio is utilized to observe the soil aggregate changes. Dealing with images with high spatial resolution, image texture entropy, which reflects the process of soil aggregate breakdown, is used. In addition, the Huang thresholding technique, which allows estimation of the image area occupied by soil aggregate, is performed. Our results show that all three techniques indicate soil aggregate breakdown over time. The shadow ratio shows a gradual change over time with no details related to weather conditions. Both the entropy and the Huang thresholding technique show variations of soil aggregate breakdown responding to weather conditions. Using data obtained with a regular camera, we found that freezing-thawing cycles are the cause of soil aggregate breakdown.

  15. Soil pollution in the railway junction Niš (Serbia) and possibility of bioremediation of hydrocarbon-contaminated soil

    NASA Astrophysics Data System (ADS)

    Jovanovic, Larisa; Aleksic, Gorica; Radosavljevic, Milan; Onjia, Antonije

    2015-04-01

    Mineral oil leaking from vehicles or released during accidents is an important source of soil and ground water pollution. In the railway junction Niš (Serbia) total 90 soil samples polluted with mineral oil derivatives were investigated. Field work at the railway Niš sites included the opening of soil profiles and soil sampling. The aim of this work is the determination of petroleum hydrocarbons concentration in the soil samples and the investigation of the bioremediation technique for treatment heavily contaminated soil. For determination of petroleum hydrocarbons in the soil samples method of gas-chromatography was carried out. On the basis of measured concentrations of petroleum hydrocarbons in the soil it can be concluded that: Obtained concentrations of petroleum hydrocarbons in 60% of soil samples exceed the permissible values (5000 mg/kg). The heavily contaminated soils, according the Regulation on the program of systematic monitoring of soil quality indicators for assessing the risk of soil degradation and methodology for development of remediation programs, Annex 3 (Official Gazette of RS, No.88 / 2010), must be treated using some of remediation technologies. Between many types of phytoremediation of soil contaminated with mineral oils and their derivatives, the most suitable are phytovolatalisation and phytostimulation. During phytovolatalisation plants (poplar, willow, aspen, sorgum, and rye) absorb organic pollutants through the root, and then transported them to the leaves where the reduced pollutants are released into the atmosphere. In the case of phytostimulation plants (mulberry, apple, rye, Bermuda) secrete from the roots enzymes that stimulates the growth of bacteria in the soil. The increase in microbial activity in soil promotes the degradation of pollutants. Bioremediation is performed by composting the contaminated soil with addition of composting materials (straw, manure, sawdust, and shavings), moisture components, oligotrophs and heterotrophs bacteria.

  16. Spatially explicit rangeland erosion monitoring using high-resolution digital aerial imagery

    USGS Publications Warehouse

    Gillan, Jeffrey K.; Karl, Jason W.; Barger, Nichole N.; Elaksher, Ahmed; Duniway, Michael C.

    2016-01-01

    Nearly all of the ecosystem services supported by rangelands, including production of livestock forage, carbon sequestration, and provisioning of clean water, are negatively impacted by soil erosion. Accordingly, monitoring the severity, spatial extent, and rate of soil erosion is essential for long-term sustainable management. Traditional field-based methods of monitoring erosion (sediment traps, erosion pins, and bridges) can be labor intensive and therefore are generally limited in spatial intensity and/or extent. There is a growing effort to monitor natural resources at broad scales, which is driving the need for new soil erosion monitoring tools. One remote-sensing technique that can be used to monitor soil movement is a time series of digital elevation models (DEMs) created using aerial photogrammetry methods. By geographically coregistering the DEMs and subtracting one surface from the other, an estimate of soil elevation change can be created. Such analysis enables spatially explicit quantification and visualization of net soil movement including erosion, deposition, and redistribution. We constructed DEMs (12-cm ground sampling distance) on the basis of aerial photography immediately before and 1 year after a vegetation removal treatment on a 31-ha Piñon-Juniper woodland in southeastern Utah to evaluate the use of aerial photography in detecting soil surface change. On average, we were able to detect surface elevation change of ± 8−9cm and greater, which was sufficient for the large amount of soil movement exhibited on the study area. Detecting more subtle soil erosion could be achieved using the same technique with higher-resolution imagery from lower-flying aircraft such as unmanned aerial vehicles. DEM differencing and process-focused field methods provided complementary information and a more complete assessment of soil loss and movement than any single technique alone. Photogrammetric DEM differencing could be used as a technique to quantitatively monitor surface change over time relative to management activities.

  17. [Evolvement of soil quality in salt marshes and reclaimed farmlands in Yancheng coastal wetland].

    PubMed

    Mao, Zhi-Gang; Gu, Xiao-Hong; Liu, Jin-E; Ren, Li-Juan; Wang, Guo-Xiang

    2010-08-01

    Through vegetation investigation and soil analysis, this paper studied the evolvement of soil quality during natural vegetation succession and after farmland reclamation in the Yancheng coastal wetland of Jiangsu Province. Along with the process of vegetation succession, the soil physical, chemical, and biological properties in the wetland improved, which was manifested in the improvement of soil physical properties and the increase of soil nutrient contents, microbial biomass, and enzyme activities. Different vegetation type induced the differences in soil properties. Comparing with those in salt marshes, the soil salt content in reclaimed farmlands decreased to 0.01 - 0.04%, the soil microbial biomass and enzyme activities increased, and the soil quality improved obviously. The soil quality index (SQI) in the wetland was in the order of mudflat (0.194) < Suaeda salsa flat (0.233) < Imperata cylindrica flat (0.278) < Spartina alterniflora flat (0.446) < maize field (0.532) < cotton field (0.674) < soybean field (0.826), suggesting that positive vegetation succession would be an effective approach in improving soil quality.

  18. Soil quality indicator responses to row crop, grazed pasture, and agroforestry buffer management

    USDA-ARS?s Scientific Manuscript database

    Incorporation of trees and establishment of grass buffers within agroecosystems are management practices shown to enhance soil quality. Soil enzyme activities and water stable aggregates (WSA) have been identified as sensitive soil quality indicators to evaluate early responses to soil management. ...

  19. Soil indigenous knowledge in North Central Namibia

    NASA Astrophysics Data System (ADS)

    Prudat, Brice; Bloemertz, Lena; Kuhn, Nikolaus J.

    2016-04-01

    Mapping and classifying soils is part of an important learning process to improve soil management practices, soil quality and increase productivity. In order to assess soil quality improvement related to an ongoing land reform in North-Central Namibia, the characteristics that determine soil quality in the local land use context were determined in this study. To do so, we collated the indigenous soil knowledge in North-Central Namibia where the Ovakwanyama cultivate pearl millet for centuries. Local soil groups are defined mostly based on their productivity potential, which varies depending on the rainfall pattern. The morphological criteria used by the farmers to differentiate the soil groups (colour, consistence) were supported by a conventional analysis of soil physical and chemical properties. Now, they can be used to develop a soil quality assessment toolbox adapted to the regional use. The characteristics of the tool box do not directly indicate soil quality, but refer to local soils groups. The quality of these groups is relatively homogenous at the local scale. Our results show that understanding of indigenous soil knowledge has great potential to improve soil quality assessment with regards to land use. The integration of this knowledge with the conventional soil analysis improves the local meaning of such a "scientific" assessment and thus facilitates dialog between farmers and agronomists, but also scientists working in different regions of the world, but in similar conditions. Overall, the integration of indigenous knowledge in international classification systems (e.g. WRB) as attempted in this study has thus a major potential to improve soil mapping in the local context.

  20. The dissolved organic matter as a potential soil quality indicator in arable soils of Hungary.

    PubMed

    Filep, Tibor; Draskovits, Eszter; Szabó, József; Koós, Sándor; László, Péter; Szalai, Zoltán

    2015-07-01

    Although several authors have suggested that the labile fraction of soils could be a potential soil quality indicator, the possibilities and limitations of using the dissolved organic matter (DOM) fraction for this purpose have not yet been investigated. The objective of this study was to evaluate the hypothesis that DOM is an adequate indicator of soil quality. To test this, the soil quality indices (SQI) of 190 arable soils from a Hungarian dataset were estimated, and these values were compared to DOM parameters (DOC and SUVA254). A clear difference in soil quality was found between the soil types, with low soil quality for arenosols (average SQI 0.5) and significantly higher values for gleysols, vertisols, regosols, solonetzes and chernozems. The SQI-DOC relationship could be described by non-linear regression, while a linear connection was observed between SQI and SUVA. The regression equations obtained for the dataset showed only one relatively weak significant correlation between the variables, for DOC (R (2) = 0.157(***); n = 190), while non-significant relationships were found for the DOC and SUVA254 values. However, an envelope curve operated with the datasets showed the robust potential of DOC to indicate soil quality changes, with a high R (2) value for the envelope curve regression equation. The limitations to using the DOM fraction of soils as a quality indicator are due to the contradictory processes which take place in soils in many cases.

  1. DOI/GTN-P climate and active-layer data acquired in the National Petroleum Reserve-Alaska and the Arctic National Wildlife Refuge

    USGS Publications Warehouse

    Urban, Frank E.; Clow, Gary D.

    2014-01-01

    This report provides data collected by the climate monitoring array of the U.S. Department of the Interior on Federal lands in Arctic Alaska over the period August 1998 to July 2013; this array is part of the Global Terrestrial Network for Permafrost, (DOI/GTN-P). In addition to presenting data, this report also describes monitoring, data collection, and quality-control methods. This array of 16 monitoring stations spans lat 68.5°N. to 70.5°N. and long 142.5°W. to 161°W., an area of approximately 150,000 square kilometers. Climate summaries are presented along with quality-controlled data. Data collection is ongoing and includes the following climate- and permafrost-related variables: air temperature, wind speed and direction, ground temperature, soil moisture, snow depth, rainfall totals, up- and downwelling shortwave radiation, and atmospheric pressure. These data were collected by the U.S. Geological Survey in close collaboration with the Bureau of Land Management and the U.S. Fish and Wildlife Service.

  2. DOI/GTN-P Climate and active-layer data acquired in the National Petroleum Reserve–Alaska and the Arctic National Wildlife Refuge, 1998–2014

    USGS Publications Warehouse

    Urban, Frank E.; Clow, Gary D.

    2016-03-04

    This report provides data collected by the climate monitoring array of the U.S. Department of the Interior on Federal lands in Arctic Alaska over the period August 1998 to July 2014; this array is part of the Global Terrestrial Network for Permafrost (DOI/GTN-P). In addition to presenting data, this report also describes monitoring, data collection, and quality-control methods. The array of 16 monitoring stations spans lat 68.5°N. to 70.5°N. and long 142.5°W. to 161°W., an area of approximately 150,000 square kilometers. Climate summaries are presented along with quality-controlled data. Data collection is ongoing and includes the following climate- and permafrost-related variables: air temperature, wind speed and direction, ground temperature, soil moisture, snow depth, rainfall totals, up- and downwelling shortwave radiation, and atmospheric pressure. These data were collected by the U.S. Geological Survey in close collaboration with the Bureau of Land Management and the U.S. Fish and Wildlife Service.

  3. DOI/GTN-P Climate and active-layer data acquired in the National Petroleum Reserve–Alaska and the Arctic National Wildlife Refuge, 1998–2015

    USGS Publications Warehouse

    Urban, Frank E.; Clow, Gary D.

    2017-02-06

    This report provides data collected by the climate monitoring array of the U.S. Department of the Interior on Federal lands in Arctic Alaska over the period August 1998 to July 2015; this array is part of the Global Terrestrial Network for Permafrost (DOI/GTN-P). In addition to presenting data, this report also describes monitoring, data collection, and quality-control methods. The array of 16 monitoring stations spans lat 68.5°N. to 70.5°N. and long 142.5°W. to 161°W., an area of approximately 150,000 square kilometers. Climate summaries are presented along with quality-controlled data. Data collection is ongoing and includes the following climate- and permafrost-related variables: air temperature, wind speed and direction, ground temperature, soil moisture, snow depth, rainfall totals, up- and downwelling shortwave radiation, and atmospheric pressure. These data were collected by the U.S. Geological Survey in close collaboration with the Bureau of Land Management and the U.S. Fish and Wildlife Service.

  4. DOI/GTN-P climate and active-layer data acquired in the National Petroleum Reserve: Alaska and the Arctic National Wildlife Refuge, 1998-2011

    USGS Publications Warehouse

    Urban, Frank E.; Clow, Gary D.

    2014-01-01

    This report provides data collected by the climate monitoring array of the U.S. Department of the Interior on Federal lands in Arctic Alaska over the period August 1998 to July 2011; this array is part of the Global Terrestrial Network for Permafrost, (DOI/GTN-P). In addition to presenting data, this report also describes monitoring, data collection, and quality-control methodology. This array of 16 monitoring stations spans lat 68.5°N. to 70.5°N. and long 142.5°W. to 161°W., an area of approximately 150,000 square kilometers. Climate summaries are presented along with quality-controlled data. Data collection is ongoing and includes the following climate- and permafrost-related variables: air temperature, wind speed and direction, ground temperature and soil moisture, snow depth, rainfall, up- and downwelling shortwave radiation, and atmospheric pressure. These data were collected by the U.S. Geological Survey in close collaboration with the Bureau of Land Management and the U.S. Fish and Wildlife Service.

  5. Air temperature, wind speed, and wind direction in the National Petroleum Reserve—Alaska and the Arctic National Wildlife Refuge, 1998–2011

    USGS Publications Warehouse

    Urban, Frank E.; Clow, Gary D.

    2013-01-01

    This report provides air temperature, wind speed, and wind direction data collected on Federal lands in Arctic Alaska over the period August 1998 to July 2011 by the U.S. Department of the Interior's climate monitoring array, part of the Global Terrestrial Network for Permafrost. In addition to presenting data, this report also describes monitoring, data collection, and quality control methodology. This array of 16 monitoring stations spans 68.5°N to 70.5°N and 142.5°W to 161°W, an area of roughly 150,000 square kilometers. Climate summaries are presented along with provisional quality-controlled data. Data collection is ongoing and includes several additional climate variables to be released in subsequent reports, including ground temperature and soil moisture, snow depth, rainfall, up- and downwelling shortwave radiation, and atmospheric pressure. These data were collected by the U.S. Geological Survey in close collaboration with the Bureau of Land Management and the U.S. Fish and Wildlife Service.

  6. Co-composting of eggshell waste in self-heating reactors: monitoring and end product quality.

    PubMed

    Soares, Micaela A R; Quina, Margarida M J; Quinta-Ferreira, Rosa M

    2013-11-01

    Industrial eggshell waste (ES) is classified as an animal by-product not intended to human consumption. For reducing pathogen spreading risk due to soil incorporation of ES, sanitation by composting is a pre-treatment option. This work aims to evaluate eggshell waste recycling in self-heating composting reactors and investigate ES effect on process evolution and end product quality. Potato peel, grass clippings and rice husks were the starting organic materials considered. The incorporation of 30% (w/w) ES in a composting mixture did not affect mixture biodegradability, nor its capacity to reach sanitizing temperatures. After 25 days of composting, ES addition caused a nitrogen loss of about 10 g N kg(-1) of initial volatile solids, thus reducing nitrogen nutritional potential of the finished compost. This study showed that a composting mixture with a significant proportion of ES (30% w/w) may be converted into calcium-rich marketable compost to neutralize soil acidity and/or calcium deficiencies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Evaluating new SMAP soil moisture for drought monitoring in the rangelands of the US High Plains

    USGS Publications Warehouse

    Velpuri, Naga Manohar; Senay, Gabriel B.; Morisette, Jeffrey T.

    2016-01-01

    Level 3 soil moisture datasets from the recently launched Soil Moisture Active Passive (SMAP) satellite are evaluated for drought monitoring in rangelands.Validation of SMAP soil moisture (SSM) with in situ and modeled estimates showed high level of agreement.SSM showed the highest correlation with surface soil moisture (0-5 cm) and a strong correlation to depths up to 20 cm.SSM showed a reliable and expected response of capturing seasonal dynamics in relation to precipitation, land surface temperature, and evapotranspiration.Further evaluation using multi-year SMAP datasets is necessary to quantify the full benefits and limitations for drought monitoring in rangelands.

  8. Soil quality parameters for row-crop and grazed pasture systems with agroforestry buffers

    USDA-ARS?s Scientific Manuscript database

    Incorporation of trees and establishment of buffers are practices that can improve soil quality. Soil enzyme activities and water stable aggregates are sensitive indices for assessing soil quality by detecting early changes in soil management. However, studies comparing grazed pasture and row crop...

  9. On the temporal and spatial variability of near-surface soil moisture for the identification of representative in situ soil moisture monitoring stations

    USDA-ARS?s Scientific Manuscript database

    The high spatio-temporal variability of soil moisture complicates the validation of remotely sensed soil moisture products using in-situ monitoring stations. Therefore, a standard methodology for selecting the most repre- sentative stations for the purpose of validating satellites and land surface ...

  10. Integrated monitoring and assessment of soil restoration treatments in the Lake Tahoe Basin.

    PubMed

    Grismer, M E; Schnurrenberger, C; Arst, R; Hogan, M P

    2009-03-01

    Revegetation and soil restoration efforts, often associated with erosion control measures on disturbed soils, are rarely monitored or otherwise evaluated in terms of improved hydrologic, much less, ecologic function and longer term sustainability. As in many watersheds, sediment is a key parameter of concern in the Tahoe Basin, particularly fine sediments less than about ten microns. Numerous erosion control measures deployed in the Basin during the past several decades have under-performed, or simply failed after a few years and new soil restoration methods of erosion control are under investigation. We outline a comprehensive, integrated field-based evaluation and assessment of the hydrologic function associated with these soil restoration methods with the hypothesis that restoration of sustainable function will result in longer term erosion control benefits than that currently achieved with more commonly used surface treatment methods (e.g. straw/mulch covers and hydroseeding). The monitoring includes cover-point and ocular assessments of plant cover, species type and diversity; soil sampling for nutrient status; rainfall simulation measurement of infiltration and runoff rates; cone penetrometer measurements of soil compaction and thickness of mulch layer depths. Through multi-year hydrologic and vegetation monitoring at ten sites and 120 plots, we illustrate the results obtained from the integrated monitoring program and describe how it might guide future restoration efforts and monitoring assessments.

  11. Effects of mining-associated lead and zinc soil contamination on native floristic quality.

    PubMed

    Struckhoff, Matthew A; Stroh, Esther D; Grabner, Keith W

    2013-04-15

    We assessed the quality of plant communities across a range of lead (Pb) and zinc (Zn) soil concentrations at a variety of sites associated with Pb mining in southeast Missouri, USA. In a novel application, two standard floristic quality measures, Mean Coefficient of Conservatism (Mean C) and Floristic Quality Index (FQI), were examined in relation to concentrations of Pb and Zn, soil nutrients, and other soil characteristics. Nonmetric Multidimensional Scaling and Regression Tree Analyses identified soil Pb and Zn concentrations as primary explanatory variables for plant community composition and indicated negative relationships between soil metals concentrations and both Mean C and FQI. Univariate regression also demonstrated significant negative relationships between metals concentrations and floristic quality. The negative effects of metals in native soils with otherwise relatively undisturbed conditions indicate that elevated soil metals concentrations adversely affect native floristic quality where no other human disturbance is evident. Published by Elsevier Ltd.

  12. Effects of mining-associated lead and zinc soil contamination on native floristic quality

    USGS Publications Warehouse

    Struckhoff, Matthew A.; Stroh, Esther D.; Grabner, Keith W.

    2013-01-01

    We assessed the quality of plant communities across a range of lead (Pb) and zinc (Zn) soil concentrations at a variety of sites associated with Pb mining in southeast Missouri, USA. In a novel application, two standard floristic quality measures, Mean Coefficient of Conservatism (Mean C) and Floristic Quality Index (FQI), were examined in relation to concentrations of Pb and Zn, soil nutrients, and other soil characteristics. Nonmetric Multidimensional Scaling and Regression Tree Analyses identified soil Pb and Zn concentrations as primary explanatory variables for plant community composition and indicated negative relationships between soil metals concentrations and both Mean C and FQI. Univariate regression also demonstrated significant negative relationships between metals concentrations and floristic quality. The negative effects of metals in native soils with otherwise relatively undisturbed conditions indicate that elevated soil metals concentrations adversely affect native floristic quality where no other human disturbance is evident.

  13. Advanced multivariate analysis to assess remediation of hydrocarbons in soils.

    PubMed

    Lin, Deborah S; Taylor, Peter; Tibbett, Mark

    2014-10-01

    Accurate monitoring of degradation levels in soils is essential in order to understand and achieve complete degradation of petroleum hydrocarbons in contaminated soils. We aimed to develop the use of multivariate methods for the monitoring of biodegradation of diesel in soils and to determine if diesel contaminated soils could be remediated to a chemical composition similar to that of an uncontaminated soil. An incubation experiment was set up with three contrasting soil types. Each soil was exposed to diesel at varying stages of degradation and then analysed for key hydrocarbons throughout 161 days of incubation. Hydrocarbon distributions were analysed by Principal Coordinate Analysis and similar samples grouped by cluster analysis. Variation and differences between samples were determined using permutational multivariate analysis of variance. It was found that all soils followed trajectories approaching the chemical composition of the unpolluted soil. Some contaminated soils were no longer significantly different to that of uncontaminated soil after 161 days of incubation. The use of cluster analysis allows the assignment of a percentage chemical similarity of a diesel contaminated soil to an uncontaminated soil sample. This will aid in the monitoring of hydrocarbon contaminated sites and the establishment of potential endpoints for successful remediation.

  14. A Holistic Approach to the Evaluation of the Montado Ecosystem Using Proximal Sensors

    PubMed Central

    Shahidian, Shakib; Marques da Silva, José; de Carvalho, Mário

    2018-01-01

    The Montado is a silvo-pastoral system characterized by open canopy woodlands with natural or cultivated grassland in the undercover and grazing animals. The aims of this study were to present several proximal sensors with potential to monitor relevant variables in the complex montado ecosystem and demonstrate their application in a case study designed to evaluate the effect of trees on the pasture. This work uses data collected between March and June 2016, at peak of dryland pasture production under typical Mediterranean conditions, in twenty four sampling points, half under tree canopy (UTC) and half outside tree canopy (OTC). Correlations were established between pasture biomass and capacitance measured by a commercial probe and between pasture quality and normalized difference vegetation index (NDVI) measured by a commercial active optical sensor. The interest of altimetric and apparent soil electrical conductivity maps as the first step in the implementation of precision agriculture projects was demonstrated. The use of proximal sensors to monitor soil moisture content, pasture photosynthetically active radiation and temperature helped to explain the influence of trees on pasture productivity and quality. The significant and strong correlations obtained between capacitance and pasture biomass and between NDVI and pasture nutritive value (in terms of crude protein, CP and neutral detergent fibre, NDF) can make an important contribution to determination of key components of pasture productivity and quality and implementation of site-specific pasture management. Animal tracking demonstrated its potential to be an important tool for understanding the interaction between various factors and components that interrelate in the montado ecosystem and to support grazing management decisions. PMID:29438319

  15. Three Dimensional Modeling of Agricultural Contamination of Groundwater: a Case Study in the Nebraska Management Systems Evaluation Area (MSEA) Site

    NASA Astrophysics Data System (ADS)

    Akbariyeh, S.; Snow, D. D.; Bartelt-Hunt, S.; Li, X.; Li, Y.

    2015-12-01

    Contamination of groundwater from nitrogen fertilizers and pesticides in agricultural lands is an important environmental and water quality management issue. It is well recognized that in agriculturally intensive areas, fertilizers and pesticides may leach through the vadose zone and eventually reach groundwater, impacting future uses of this limited resource. While numerical models are commonly used to simulate fate and transport of agricultural contaminants, few models have been validated based on realistic three dimensional soil lithology, hydrological conditions, and historical changes in groundwater quality. In this work, contamination of groundwater in the Nebraska Management Systems Evaluation Area (MSEA) site was simulated based on extensive field data including (1) lithology from 69 wells and 11 test holes; (2) surface soil type, land use, and surface elevations; (3) 5-year groundwater level and flow velocity; (4) daily meteorological monitoring; (5) 5-year seasonal irrigation records; (6) 5-years of spatially intensive contaminant concentration in 40 multilevel monitoring wells; and (7) detailed cultivation records. Using this data, a three-dimensional vadose zone lithological framework was developed using a commercial software tool (RockworksTM). Based on the interpolated lithology, a hydrological model was developed using HYDRUS-3D to simulate water flow and contaminant transport. The model was validated through comparison of simulated atrazine and nitrate concentration with historical data from 40 wells and multilevel samplers. The validated model will be used to predict potential changes in ground water quality due to agricultural contamination under future climate scenarios in the High Plain Aquifer system.

  16. Assessing the impact of preload on pyrite-rich sediment and groundwater quality.

    PubMed

    Karikari-Yeboah, Ohene; Addai-Mensah, Jonas

    2017-02-01

    Pyrite-rich sediments would, invariably, undergo redox reactions which would lead to acidic aqueous environment containing solubilized toxic metal species. When such sediments are subjected to preload, a technique employed by geotechnical engineers to improve the load-bearing capacity of highly compressible formation, transient flow of pore water, accompanied by acidity transfer, would occur as a response. Despite the concomitant environmental and socio-economic significance, to date, there has been limited interdisciplinary research on the underpinning geotechnical engineering and geo-environmental science issues for pyrite-rich sediments under preload. In this study, we investigate the effect of pyrite-rich sediment pore water transfer under preload surcharge on the receiving environment and the impact on the groundwater speciation and quality. Sediment samples were obtained at close depth intervals from boreholes established within pristine areas and those subjected to the preload application. Soil and pore water samples were subjected to solid/solution speciation, moisture contents, soil pH and the Atterberg Limits' analyses using standard analytical techniques and methods. Standpipes were also installed in the boreholes for groundwater sampling and in situ monitoring of water quality parameters. It is shown that the imposition of preload surcharge over pyritic sediment created a reducing environment rich in SO 4 2- , iron oxide minerals and organic matter. This reducing environment fostered organic carbon catabolism to generate excess pyrite and bicarbonate alkalinity, which would invariably impact adversely on soil quality and plant growth. These were accompanied by increase in pH, dissolved Al, Ca, Mg and K species beneath the surcharge.

  17. Forest Soil Disturbance Monitoring Protocol: Volume I: Rapid assessment

    Treesearch

    Deborah S. Page-Dumroese; Ann M. Abbott; Thomas M. Rice

    2009-01-01

    This volume of the Forest Soil Disturbance Monitoring Protocol (FSDMP) describes how to monitor forest sites before and after ground disturbing management activities for physical attributes that could influence site resilience and long-term sustainability. The attributes describe surface conditions that affect site sustainability and hydrologic function. Monitoring the...

  18. Degradation and resilience of soils

    PubMed Central

    Lal, R.

    1997-01-01

    Debate on global soil degradation, its extent and agronomic impact, can only be resolved through understanding of the processes and factors leading to establishment of the cause-effect relationships for major soils, ecoregions, and land uses. Systematic evaluation through long-term experimentation is needed for establishing quantitative criteria of (i) soil quality in relation to specific functions; (ii) soil degradation in relation to critical limits of key soil properties and processes; and (iii) soil resilience in relation to the ease of restoration through judicious management and discriminate use of essential input. Quantitative assessment of soil degradation can be obtained by evaluating its impact on productivity for different land uses and management systems. Interdisciplinary research is needed to quantify soil degradation effects on decrease in productivity, reduction in biomass, and decline in environment quality throught pollution and eutrophication of natural waters and emission of radiatively-active gases from terrestrial ecosystems to the atmosphere. Data from long-term field experiments in principal ecoregions are specifically needed to (i) establish relationships between soil quality versus soil degradation and soil quality versus soil resilience; (ii) identify indicators of soil quality and soil resilience; and (iii) establish critical limits of important properties for soil degradation and soil resilience. There is a need to develop and standardize techniques for measuring soil resilience.

  19. Patterns and processes of nutrient transfers from land to water: a catchment approach to evaluate Good Agricultural Practice in Ireland

    NASA Astrophysics Data System (ADS)

    Mellander, P.-E.; Melland, A. R.; Shortle, G.; Wall, D.; Mechan, S.; Buckley, C.; Fealy, R.; Jordan, P.

    2009-04-01

    Eutrophication of fresh, transitional and coastal waters by excessive nutrient inputs is one of the most widespread water quality problems in developed countries. Sources of nutrient nitrogen (N) and phosphorus (P) can come from a multiplicity of sources and be dependent on numerous hydrological controls from catchments with both urban and agricultural landuses. Aquatic impacts are widely reported as a result of excessive nutrient transfers from land to water and include changes in ecological integrity and loss of amenity. In the European Union, the Water Framework Directive (WFD) and associated Directives are the key structures with which member states must develop national and often trans-national polices to deal with issues of water resources management. The linked Nitrates Directive is particularly concerned with integrating sustainable agriculture and good water quality objectives and is written into national polices. In Ireland this policy is the Nitrates Directive National Action Programme (NAP), Statutory Instruction 378, Good Agricultural Practise regulation, and amongst other things, sets targets and limits on the use of organic and inorganic fertilisers, soil fertility and slurry/fertiliser spreading and cultivation times. To evaluate the effectiveness of this policy, Teagasc, the Irish Agriculture and Food Development Authority, is undertaking a catchment scale audit on sources, sinks, and changes in nutrient use and export over several years. The Agricultural Catchments Programme is based on a science-stakeholder-management partnership to generate knowledge and specifically to protect water quality from nitrogen and phosphorus transfers within the constraints of the requirements of modern Irish agricultural practises. Eight catchments of 5-12 km2 have been selected for the programme to represent a range of agricultural intensities and vulnerabilities to nitrogen and phosphorus loss including catchments that are situated on permeable and impermeable grassland soils; areas where arable production represents a significant landuse; and catchments on productive and unproductive aquifers. The catchments were identified using a GIS-based multicriteria decision analysis with objective criteria that included landuse data (including agricultural and settlement statistics) combined with soils and geology data to evaluate the risk of P and N loss. Shortlisted catchments were then finalised using practical criteria based on the potential for hydrometry and hydrochemistry research. In each catchment, a conceptual model approach is being used to hypothesize the sources, seasonal mobilisation and pathways of nutrients and water through the soil/subsoil system and transfer into surface and ground water systems to stratify each catchment experimental design. Knowledge of the nutrient management of each catchment farm and resulting soil fertility will be used to monitor the sources of agricultural N and P. Environmental soil nutrient tests will provide baselines and checks on the potential for mobilisation. Areas of high soil fertility that are coincident with high surface or sub-surface hydrological connectivity will be monitored for subsequent nutrient transfer. Other potential nutrient source loads within the catchments, such as rural waste-water treatment plants and domestic septic systems, will be factored in as non-agricultural sources. Similarly, the potential for farmyard transfers will also be assessed. The net balance of nutrient transfer at the catchment outlets will be monitored using a high resolution method that is coincident with hydrometric measurements to ensure that there is a full understanding of the inter-dependence between point and diffuse nutrient transfers and hydrodynamics. This source to transfer approach is highly appropriate and a move towards inductive understanding of nutrient use and export in river catchments - the scale at which policies for water resources management will be assessed under the WFD. The data are also highly conducive to constraining catchment scale, distributed models for predicting chemical transfers in runoff. As the Programme is aiming to integrate the often perceived contentious objectives of water quality management with those of sustainable agriculture, farm economics will also be monitored at the same time and an assessment made of farmer attitudes. An advisory programme is also a major component and dedicated farm advisors will ensure that farmers are fully appraised of obligations and opportunities in the National Action Programme.

  20. Development of Technosols in abandoned mine lands to reduce hazards to ecosystems and human health

    NASA Astrophysics Data System (ADS)

    Zornoza, Raúl; Martínez-Martínez, Silvia; Acosta, Jose A.; Ángeles Muñoz, M.; Gómez-Garrido, Melisa; Gabarrón, Maria; Gómez-López, Maria Dolores; Faz, Ángel

    2017-04-01

    Mine tailings and residues dumped into the environment owing to mine ore processing activities have numerous restrictions affecting their development into natural soils, such as strong acidity, high concentrations and mobility of metals and metalloids, high salinity and extremely low organic matter content, which hinders the development of vegetation. This leads to the presence of bare surfaces which act as sources of water pollution and metal containing dusts, affecting natural ecosystems and populated areas in the surroundings. Therefore, there is a need to develop strategies to reduce the impact of tailings and mine residues spread on mine landscapes to reduce environmental and public health hazards and guarantee true land reclamation. One effective remediation option is the creation of Technosols by use of different materials, wastes and amendments derived from anthropogenic activities. For this purpose, the proper selection of materials is critical to convert metals to forms less soluble, mobile and toxic, so microorganisms, vegetation and animals can grow, and erosion rates are minimized so that metals do not reach populated areas. This goal can be achieved by applying materials with metal stabilization potential, to transform bioavailable metal species into geochemically stable forms. For this purpose, we have created Technosols in different mine tailings ponds located in SE Spain by use of different materials such as pig manure, pig slurry and marble waste. After 6 months of Technosol creation in field, seedlings from different native plant species were manually introduced for afforestation of the area. To monitor the evolution of soil quality and vegetation cover, four plots (10 m x 10 m) were established in each tailings pond, which were monitored every 6 months for 3 years. Results indicated that the created Technosol was efficient at significantly decreasing metal mobility by 90-99% depending on the metal. In addition, soil quality, fertility and structure increased, associated to increased microbial biomass and activity and development of vegetation. Vegetation cover at the end of the study was 65% of the total surface, with appearance of second generation individuals, suggesting the self-sustainability of the new ecosystem. Owing to the creation of a soil, metals are immobilized and soil particles are retained by increased soil aggregate stability and vegetation cover; so, the dispersion of metals to the surroundings by erosion and leaching is minimized, decreasing the hazards for human health and the environment.

  1. Real-time GIS data model and sensor web service platform for environmental data management.

    PubMed

    Gong, Jianya; Geng, Jing; Chen, Zeqiang

    2015-01-09

    Effective environmental data management is meaningful for human health. In the past, environmental data management involved developing a specific environmental data management system, but this method often lacks real-time data retrieving and sharing/interoperating capability. With the development of information technology, a Geospatial Service Web method is proposed that can be employed for environmental data management. The purpose of this study is to determine a method to realize environmental data management under the Geospatial Service Web framework. A real-time GIS (Geographic Information System) data model and a Sensor Web service platform to realize environmental data management under the Geospatial Service Web framework are proposed in this study. The real-time GIS data model manages real-time data. The Sensor Web service platform is applied to support the realization of the real-time GIS data model based on the Sensor Web technologies. To support the realization of the proposed real-time GIS data model, a Sensor Web service platform is implemented. Real-time environmental data, such as meteorological data, air quality data, soil moisture data, soil temperature data, and landslide data, are managed in the Sensor Web service platform. In addition, two use cases of real-time air quality monitoring and real-time soil moisture monitoring based on the real-time GIS data model in the Sensor Web service platform are realized and demonstrated. The total time efficiency of the two experiments is 3.7 s and 9.2 s. The experimental results show that the method integrating real-time GIS data model and Sensor Web Service Platform is an effective way to manage environmental data under the Geospatial Service Web framework.

  2. The influence of farmland pollution on the quality and safety of agricultural products

    NASA Astrophysics Data System (ADS)

    Ma, Z. L.; Li, L. Y.; Ye, C.; Lin, X. Y.; B, C.; Wei

    2018-02-01

    The quality and safety of agricultural products is not only a major livelihood issues for people’s health, but also the main barriers to international trade of agricultural products nowadays. The soil is the foundation to the production of agricultural products and the guarantee of agricultural development. The farmland soil quality is directly related to the quality and safety of agricultural products. Our country’s soil has been polluted by a series of pollution, Such as the excessive discharge of industrial wastes, the encroachment of household waste, and the unreasonable use of pesticides and fertilizers. Soil degradation is a serious threat to the quality and safety of agricultural products, so eliminating soil degradation is the fundamental way out for quality and safety of agricultural products. By analyzing problems of the quality and safety of agricultural products in our country, and exploring the farmland soil influence on the quality and safety of agricultural products. This article provides a reference for improving the control level of quality and safety of agricultural products and the farmland soil quality.

  3. Reliability of electromagnetic induction data in near surface application

    NASA Astrophysics Data System (ADS)

    Nüsch, A.; Werban, U.; Sauer, U.; Dietrich, P.

    2012-12-01

    Use of the Electromagnetic Induction method for measuring electrical conductivities is widespread in applied geosciences, since the method is easy to perform and influenced by soil parameters. The vast amount of different applications of EMI measurements for different spatial resolutions as well as for the derivation of different soil parameters necessitates a unified handling of EMI data. So the requirements to the method have been changed from a qualitative overview to a quantitative use of data. A quantitative treatment of the data however is limited by the available instruments, which were made only for qualitative use. Nevertheless the limitations of the method can be expanded by considering a few conditions. In this study, we introduce possibilities for enhancing the quality of EMI data with regards to large scale investigations. In a set of systematic investigations, we show which aspects have to be taken into account when using a commercially available instrument, related to long term stability, comparability and repeatability. In-depth knowledge of the instruments used concerning aspects such as their calibration procedure, long term stability, battery life and thermal behaviour is an essential pre-requisite before starting the measurement process. A further aspect highlighted is quality control during measurements and if necessary a subsequent data correction which is pre-requisite for a quantitative analysis of the data. Quality control during the measurement process is crucial. Before a measurement starts, it is recommended that a short term test is carried out on-site to check environmental noise. Signal to noise ratio is a decisive influencing factor of whether or not the method is applicable at the chosen field site. A measurement needs to be monitored according to possible drifts. This can be achieved with different accuracies and starting from a quality check, with the help of reference lines up to a quantitative control with reference points. Further global reference lines are necessary if measurements take place at the landscape scale. In some cases, it is possible to eliminate drifts that may occur by using a data correction based on binding lines. The suggested procedure can raise the explanatory power of the data enormously and artefacts caused by drifts or inadequate handling are minimized. This work was supported by iSOIL - Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping, which is a Collaborative Project (Grant Agreement number 211386) co-funded by the Research DG of the European Commission within the RTD activities of the FP7 Thematic Priority Environment; iSOIL is one member of the SOIL TECHNOLOGY CLUSTER of Research Projects funded by the EC.

  4. Crop, tillage, and landscape effects on near-surface soil quality indices in Indiana

    USDA-ARS?s Scientific Manuscript database

    Soil quality is considered a link between land management and the quality of adjacent water bodies. We conducted a soil quality assessment within the Cedar Creek Watershed, a part of the larger St. Joseph River Watershed that drains into the Western Lake Erie Basin in northwestern Indiana. The Soil ...

  5. Spatial and temporal variation of water quality of a segment of Marikina River using multivariate statistical methods.

    PubMed

    Chounlamany, Vanseng; Tanchuling, Maria Antonia; Inoue, Takanobu

    2017-09-01

    Payatas landfill in Quezon City, Philippines, releases leachate to the Marikina River through a creek. Multivariate statistical techniques were applied to study temporal and spatial variations in water quality of a segment of the Marikina River. The data set included 12 physico-chemical parameters for five monitoring stations over a year. Cluster analysis grouped the monitoring stations into four clusters and identified January-May as dry season and June-September as wet season. Principal components analysis showed that three latent factors are responsible for the data set explaining 83% of its total variance. The chemical oxygen demand, biochemical oxygen demand, total dissolved solids, Cl - and PO 4 3- are influenced by anthropogenic impact/eutrophication pollution from point sources. Total suspended solids, turbidity and SO 4 2- are influenced by rain and soil erosion. The highest state of pollution is at the Payatas creek outfall from March to May, whereas at downstream stations it is in May. The current study indicates that the river monitoring requires only four stations, nine water quality parameters and testing over three specific months of the year. The findings of this study imply that Payatas landfill requires a proper leachate collection and treatment system to reduce its impact on the Marikina River.

  6. Ultra-Low Level Plutonium Isotopes in the NIST SRM 4355A (Peruvian Soil-1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inn, Kenneth G.; LaRosa, Jerome; Nour, Svetlana

    2009-05-31

    For more than 20 years, countries and their agencies which monitor discharge sites and storage facilities have relied on the National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 4355 Peruvian Soil reference material. Its low fallout contamination makes it an ideal soil blank for measurements associated with terrestrial pathway to man studies. Presently, SRM 4355 is out of stock, and a new batch of the Peruvian soil is currently under development as future NIST SRM 4355A. Both environmental radioanalytical laboratories and mass spectrometry communities will benefit from this SRM. The former must assess their laboratory contamination andmore » measurement detection limits by measurement of blank sample material. The Peruvian Soil is so low in anthropogenic radionuclides that it is a suitable virtual blank. On the other hand, mass spectrometric laboratories have high sensitivity instruments that are capable of quantitative isotopic measurements at low plutonium levels of the SRM 4355 (first Peruvian Soil SRM) that provided the mass spectrometric community with the calibration, quality control, and testing material needed for methods development, and legal defensibility. The quantification of the ultra-low plutonium content in the SRM 4355A was a considerable challenge for the mass spectrometric laboratories. Careful blank control and correction, isobaric interferences, instrument stability, peak assessment, and detection assessment were necessary. Furthermore, a systematic statistical evaluation of the measurement results and considerable discussions with the mass spectroscopy metrologists were needed to derive the certified values and uncertainties. SRM 4355A will provide the mass spectrometric community with the quality control and testing material needed for higher sensitivity methods development, and legal defensibility.« less

  7. Water quality transformations during soil aquifer treatment at the Mesa Northwest Water Reclamation Plant, USA.

    PubMed

    Fox, P; Narayanaswamy, K; Genz, A; Drewes, J E

    2001-01-01

    Water quality transformations during soil aquifer treatment at the Mesa Northwest Water Reclamation Plant (NWWRP) were evaluated by sampling a network of groundwater monitoring wells located within the reclaimed water plume. The Mesa Northwest Water Reclamation Plant has used soil aquifer treatment (SAT) since it began operation in 1990 and the recovery of reclaimed water from the impacted groundwater has been minimal. Groundwater samples obtained represent travel times from several days to greater than five years. Samples were analyzed for a wide range of organic and inorganic constituents. Sulfate was used as a tracer to estimate travel times and define reclaimed water plume movement. Dissolved organic carbon concentrations were reduced to approximately 1 mg/L after 12 to 24 months of soil aquifer treatment with an applied DOC concentration from the NWWRP of 5 to 7 mg/L. The specific ultraviolet absorbance (SUVA) increased during initial soil aquifer treatment on a time-scale of days and then decreased as longer term soil aquifer treatment removed UV absorbing compounds. The trihalomethane formation potential (THMFP) was a function of the dissolved organic carbon concentration and ranged from 50 to 65 micrograms THMFP/mg DOC. Analysis of trace organics revealed that the majority of trace organics were removed as DOC was removed with the exception of organic iodine. The majority of nitrogen was applied as nitrate-nitrogen and the reclaimed water plume had lower nitrate-nitrogen concentrations as compared to the background groundwater. The average dissolved organic carbon concentrations in the reclaimed water plume were less than 50% of the drinking water dissolved organic concentrations from which the reclaimed water originated.

  8. Sorption and mineralization of S-metolachlor and its ionic metabolites in soils and vadose zone solids: consequences on groundwater quality in an alluvial aquifer (Ain Plain, France).

    PubMed

    Baran, Nicole; Gourcy, Laurence

    2013-11-01

    This study characterizes the transfer of S-metolachlor (SMOC) and its metabolites, metolachlor ethane sulfonic acid (MESA) and metolachlor oxanilic acid (MOXA) to the alluvial aquifer. Sorption and mineralization of SMOC and its two ionic metabolites were characterized for cultivated soils and solids from the vadose (unsaturated) zone in the Ain Plain (France). Under sterile soil conditions, the absence of mineralization confirms the importance of biotic processes in SMOC degradation. There is some adsorption and mineralization of the parent molecule and its metabolites in the unsaturated zone, though less than in soils. For soils, the MESA adsorption constant is statistically higher than that of MOXA and the sorption constants of the two metabolites are significantly lower than that of SMOC. After 246 days, for soils, maximums of 26% of the SMOC, 30% of the MESA and 38% of the MOXA were mineralized. This partly explains the presence of these metabolites in the groundwater at concentrations generally higher than those of the parent molecule for MESA, although there is no statistical difference in the mineralization of the 3 molecules. The laboratory results make it possible to explain the field observations made during 27 months of groundwater quality monitoring (monthly sampling frequency). The evolution of both metabolite concentrations in the groundwater is directly related to recharge dynamics; there is a positive correlation between concentrations and the groundwater level. The observed lag of several months between the signals of the parent molecule and those of the metabolites is probably due to greater sorption of the parent molecule than of its metabolites and/or to degradation kinetics. © 2013.

  9. Holistic information evaluation of divergence of soil's properties by using of legacy data of large scale monitoring surveys

    NASA Astrophysics Data System (ADS)

    Mikheeva, Irina

    2017-04-01

    Identification of tendencies of soil's transformations is very important for adequate ecological and economical assessment of degradation of soils. But monitoring of conditions of soils, and other natural objects, bring up a number of important methodological questions, including the probabilistic and statistical analysis of the accumulated legacy data and their use for verification of quantitative estimates of natural processes. Owing to considerable natural variability there is a problem of a reliable assessment of contemporary soil evolution under the influence of environmental management and climate changes. When studying dynamics of soil quality it is necessary to consider soil as open complex system with parameters which significantly vary in space. The analysis of probabilistic distributions of attributes of studied system is informative for the characteristic of holistic state and behavior of the system. Therefore earlier we had offered the method of evaluation of alterations of soils by analysis of changes of pdf of their properties and their statistical entropy. The executed analysis of dynamics of pdf showed that often opposite tendencies to decrease and to increase of property can be shown at the same time. However to give an adequate quantitative evaluation of changes of soil properties it is necessary to characterize them in general. We proposed that it is reasonable to name processes of modern changes in soil properties concerning their start meaning by the term "divergence" and investigate it quantitatively. For this purpose we suggested to use value of information divergence which is defined as a measure of distinctions of pdf in compared objects or in various time. As the measure of dissimilarity, divergence should satisfy come conditions, the most important is scale-invariance property. Information divergence was used by us for evaluation of distinctions of soils according heterogeneity of factors of soil formation and with course of natural and anthropogenous processes. This characteristic allowed to allocate the most changed and vulnerable kinds and layers of soils, and also to range natural changes and anthropogenous impacts in size of their influence on properties of the soil. Case study was conducted on considerable part of the Priirtyshskaya plain in South of Western Siberia. Climate here is sharply continental and droughty. Soils were formed from ancient lake and alluvial deposits. It determined their mainly easy particle size distribution and spatial diversity of the texture. It is possible to judge rates and extent of manifestation of processes of degradation on alteration of properties of the main types of soils here: chestnut soils and Haplic Chernozems.

  10. Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility.

    PubMed

    Bolan, N S; Kunhikrishnan, A; Choppala, G K; Thangarajan, R; Chung, J W

    2012-05-01

    There have been increasing interests in the conversion of organic residues into biochars in order to reduce the rate of decomposition, thereby enhancing carbon (C) sequestration in soils. However energy is required to initiate the pyrolysis process during biochar production which can also lead to the release of greenhouse gasses. Alternative methods can be used to stabilize C in composts and other organic residues without impacting their quality. The objectives of this study include: (i) to compare the rate of decomposition among various organic amendments and (ii) to examine the effect of clay materials on the stabilization of C in organic amendments. The decomposition of a number of organic amendments (composts and biochars) was examined by monitoring the release of carbon-dioxide using respiration experiments. The results indicated that the rate of decomposition as measured by half life (t(1/2)) varied between the organic amendments and was higher in sandy soil than in clay soil. The half life value ranged from 139 days in the sandy soil and 187 days in the clay soil for poultry manure compost to 9989 days for green waste biochar. Addition of clay materials to compost decreased the rate of decomposition, thereby increasing the stabilization of C. The half life value for poultry manure compost increased from 139 days to 620, 806 and 474 days with the addition of goethite, gibbsite and allophane, respectively. The increase in the stabilization of C with the addition of clay materials may be attributed to the immobilization of C, thereby preventing it from microbial decomposition. Stabilization of C in compost using clay materials did not impact negatively the value of composts in improving soil quality as measured by potentially mineralizable nitrogen and microbial biomass carbon in soil. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Production of biochar out of organic urban waste to amend salt affected soils in the basin of Mexico

    NASA Astrophysics Data System (ADS)

    Chavez Garcia, Elizabeth; Siebe, Christina

    2016-04-01

    Biochar is widely recognized as an efficient tool for carbon sequestration and soil fertility. The understanding of its chemical and physical properties, strongly related to the biomass and production conditions, is central to identify the most suitable application of biochar. On the other hand, salt affected soils reduce the value and productivity of extensive areas worldwide. One feasible option to recover them is to add organic amendments, which improve water holding capacity and increase sorption sites for cations as sodium. The former lake Texcoco in the basin of Mexico has been a key area for the control of surface run-off and air quality of Mexico City. However, the high concentrations of soluble salts in their soils do not allow the development of a vegetation cover that protects the soil from wind erosion, being the latter the main cause of poor air quality in the metropolitan area during the dry season. On the other hand, the population of the city produces daily 2000 t of organic urban wastes, which are currently composted. Thus, we tested if either compost or biochar made out of urban organic waste can improve the salt affected soils of former lake Texcoco to grow grass and avoid wind erosion. We examined the physico-chemical properties of biochar produced from urban organic waste under pyrolysis conditions. We also set up a field experiment to evaluate the addition of these amendments into the saline soils of Texcoco. Our preliminary analyses show biochar yield was ca. 40%, it was mainly alkaline (pH: 8-10), with a moderate salt content (electrical conductivity: 0.5-3 mS/cm). We show also results of the initial phase of the field experiment in which we monitor the electrical conductivity, pH, water content, water tension and soil GHG fluxes on small plots amended with either biochar or compost in three different doses.

  12. Silicification of holocene soils in northern Monitor Valley, Nevada

    NASA Astrophysics Data System (ADS)

    Chadwick, O. A.; Hendricks, D. M.; Nettleton, W. D.

    1989-02-01

    Chemical, physical, and microscopic data for three soils in the northern Monitor Valley are analyzed. The soils ranked in order of increasing age are: Mule, Rotinom, and Nayped. The procedures and techniques used to obtain and study that data are described. It is observed that: (1) redistribution of carbonate is detectable in all soils; (2) clay illuviation is insignificant in the Mule soil, weak but identifiable in the Rotinom soil, and significant in the Nayped soil; and (3) the maximum sodium adsorption ratio (SAR) and electrical conductivity (EC) for the Mule soil is between 64-89 cm, for the Rotinom soil the values are below 100 cm, and for Nayped the maximum SAR values range from 51-117 cm and maximum EC values are between 117-152 cm. The relationship between volcanic glass weathering and the amount of silica cementation in the soils is studied. It is noted that silicification of Monitor Valley holocene soils is due to there being enough moisture to release silica from volcanic glass, but not enough to leach the weathering products from the profile.

  13. Silicification of holocene soils in northern Monitor Valley, Nevada

    NASA Technical Reports Server (NTRS)

    Chadwick, O. A.; Hendricks, D. M.; Nettleton, W. D.

    1989-01-01

    Chemical, physical, and microscopic data for three soils in the northern Monitor Valley are analyzed. The soils ranked in order of increasing age are: Mule, Rotinom, and Nayped. The procedures and techniques used to obtain and study that data are described. It is observed that: (1) redistribution of carbonate is detectable in all soils; (2) clay illuviation is insignificant in the Mule soil, weak but identifiable in the Rotinom soil, and significant in the Nayped soil; and (3) the maximum sodium adsorption ratio (SAR) and electrical conductivity (EC) for the Mule soil is between 64-89 cm, for the Rotinom soil the values are below 100 cm, and for Nayped the maximum SAR values range from 51-117 cm and maximum EC values are between 117-152 cm. The relationship between volcanic glass weathering and the amount of silica cementation in the soils is studied. It is noted that silicification of Monitor Valley holocene soils is due to there being enough moisture to release silica from volcanic glass, but not enough to leach the weathering products from the profile.

  14. Estimation of soil organic carbon in forests of the United States

    NASA Astrophysics Data System (ADS)

    Domke, G. M.; Perry, C. H.; Walters, B. F.; Woodall, C. W.; Nave, L. E.; Swanston, C.

    2015-12-01

    Soil organic carbon (SOC) is the largest terrestrial carbon (C) sink on earth and management of this pool is a critical component of global efforts to mitigate atmospheric C concentrations. Soil organic carbon is also a key indicator of soil quality as it affects essential biological, chemical, and physical soil functions such as nutrient cycling, water retention, and soil structure maintenance. Much of the SOC on earth is found in forest ecosystems and is thought to be relatively stable. That said, there is growing evidence that SOC may be sensitive to disturbance and global change drivers. In the United States (US), SOC in forests is monitored by the national forest inventory (NFI) conducted by the Forest Inventory and Analysis (FIA) program within the US Department of Agriculture, Forest Service. The FIA program currently uses SOC predictions based on SSURGO/STATSGO data to populate the NFI. Most of estimates of SOC in forests from the SSURGO/STATSGO data are based primarily upon expert opinion and lack systematic field observations. The FIA program has been consistently measuring soil attributes as part of the NFI since 2001 and has amassed an extensive inventory of SOC in forests in the conterminous US and coastal Alaska. Here we present estimates of SOC obtained using data from the NFI and International Soil Carbon Network and describe the modeling framework used to compile estimates for United Nations Framework Convention on Climate Change reporting.

  15. Evaluation of radiocaesium wash-off by soil erosion from various land uses using USLE plots.

    PubMed

    Yoshimura, Kazuya; Onda, Yuichi; Kato, Hiroaki

    2015-01-01

    Radiocaesium wash-off associated with soil erosion in different land use was monitored using USLE plots in Kawamata, Fukushima Prefecture, Japan after the Fukushima Dai-ichi Nuclear Power Plant accident. Parameters and factors relating to soil erosion and (137)Cs concentration in the eroded soil were evaluated based on the field monitoring and presented. The erosion of fine soil, which is defined as the fraction of soil overflowed along with discharged water from a sediment-trap tank, constituted a large proportion of the discharged radiocaesium. This indicated that the quantitative monitoring of fine soil erosion is greatly important for the accurate evaluation of radiocaesium wash-off. An exponential relationship was found between vegetation cover and the amount of eroded soil. Moreover, the radiocaesium concentrations in the discharged soil were greatly affected by the land use. These results indicate that radiocaesium wash-off related to vegetation cover and land use is crucially important in modelling radiocaesium migration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Monitoring water stress and fruit quality in an orange orchard under regulated deficit irrigation using narrow-band structural and physiological remote sensing indices

    NASA Astrophysics Data System (ADS)

    Stagakis, S.; González-Dugo, V.; Cid, P.; Guillén-Climent, M. L.; Zarco-Tejada, P. J.

    2012-07-01

    This paper deals with the monitoring of water status and the assessment of the effect of stress on citrus fruit quality using structural and physiological remote sensing indices. Four flights were conducted over a citrus orchard in 2009 using an unmanned aerial vehicle (UAV) carrying a multispectral camera with six narrow spectral bands in the visible and near infrared. Physiological indices such as the Photochemical Reflectance Index (PRI570), a new structurally robust PRI formulation that uses the 515 nm as the reference band (PRI515), and a chlorophyll ratio (R700/R670) were compared against the Normalized Difference Vegetation Index (NDVI), Renormalized Difference Vegetation Index (RDVI) and Modified Triangular Vegetation Index (MTVI) canopy structural indices for their performance in tracking water status and the effects of sustained water stress on fruit quality at harvest. The irrigation setup in the commercial orchard was compared against a treatment scheduled to satisfy full requirements (based on estimated crop evapotranspiration) using two regulated deficit irrigation (RDI) strategies. The water status of the trees throughout the experiment was monitored with frequent field measurements of stem water potential (Ψx), while titratable acidity (TA) and total soluble solids (TSS) were measured at harvest on selected trees from each irrigation treatment. The high spatial resolution of the multispectral imagery (30 cm pixel size) enabled identification of pure tree crown components, extracting the tree reflectance from shaded, sunlit and aggregated pixels. The physiological and structural indices were then calculated from each tree at the following levels: (i) pure sunlit tree crown, (ii) entire crown, aggregating the within-crown shadows, and (iii) simulating a lower resolution pixel, including tree crown, sunlit and shaded soil pixels. The resulting analysis demonstrated that both PRI formulations were able to track water status, except when water stress altered canopy structure. In such cases, PRI570 was more affected than PRI515 by the structural changes caused by sustained water stress throughout the season. Both PRI formulations were proven to serve as pre-visual water stress indicators linked to fruit quality TSS and TA parameters (r2 = 0.69 for PRI515 vs TSS; r2 = 0.58 vs TA). In contrast, the chlorophyll (R700/R670) and structural indices (NDVI, RDVI, MTVI) showed poor relationships with fruit quality and water status levels (r2 = 0.04 for NDVI vs TSS; r2 = 0.19 vs TA). The two PRI formulations showed strong relationships with the field-measured fruit quality parameters in September, the beginning of stage III, which appeared to be the period most sensitive to water stress and the most critical for assessing fruit quality in citrus. Both PRI515 and PRI570 showed similar performance for the two scales assessed (sunlit crown and entire crown), demonstrating that within-crown component separation is not needed in citrus tree crowns where the shaded vegetation component is small. However, the simulation conducted through spatial resampling on tree + soil aggregated pixels revealed that the physiological indices were highly affected by soil reflectance and between-tree shadows, showing that for TSS vs PRI515 the relationship dropped from r2 = 0.69 to r2 = 0.38 when aggregating soil + crown components. This work confirms a previous study that demonstrated the link between PRI570, water stress, and fruit quality, while also making progress in assessing the new PRI formulation (PRI515), the within-crown shadow effects on the physiological indices, and the need for high resolution imagery to target individual tree crowns for the purpose of evaluating the effects of water stress on fruit quality in citrus.

  17. Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng-Songyuan area, Jilin Province, Northeast China.

    PubMed

    Chai, Yuan; Guo, Jia; Chai, Sheli; Cai, Jing; Xue, Linfu; Zhang, Qingwei

    2015-09-01

    The characterization of the concentration, chemical speciation and source of heavy metals in soils is an imperative for pollution monitoring and the potential risk assessment of the metals to animal and human health. A total of 154 surface horizons and 53 underlying horizons of grassland soil were collected from the Baicheng-Songyuan area in Jilin Province, Northeast China, in which the concentrations and chemical fractionations of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn were investigated. The mean concentrations of heavy metals in grassland topsoil were 7.2, 0.072, 35, 16.7, 0.014, 15.2, 18.3 and 35 mg kg(-)(1) for As, Cd, Cr, Cu, Hg, Ni, Pb and Zn, respectively, and those averaged contents were lower than their China Environmental Quality Standard values for the Soils, implying that heavy metal concentrations in the studied soils were of the safety levels. The mobility sequence of the heavy metals based on the sum of the soluble, exchangeable, carbonate-bound and humic acid-bound fractions among the seven fractions decreased in the order of Cd 50.4%)>Hg (39.8%)>Cu (26.5%)>As (19.9%)>Zn (19.1%)>Ni (15.9%)>Pb (14.1%)>Cr (4.3%), suggesting Cd and Hg may pose more potential risk of soil contamination than other metals. Multivariate statistical analysis suggested that As, Cr, Cu, Ni, Pb, Zn, Cd and Hg had the similar lithogenic sources, however, Cd and Hg were more relevant to organic matter than other heavy metals, which was confirmed by the chemical speciation analysis of the metals. The study provides a base for local authority in the studied area to monitor the long term accession of heavy metals into grassland soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Soil moisture monitoring for crop management

    NASA Astrophysics Data System (ADS)

    Boyd, Dale

    2015-07-01

    The 'Risk management through soil moisture monitoring' project has demonstrated the capability of current technology to remotely monitor and communicate real time soil moisture data. The project investigated whether capacitance probes would assist making informed pre- and in-crop decisions. Crop potential and cropping inputs are increasingly being subject to greater instability and uncertainty due to seasonal variability. In a targeted survey of those who received regular correspondence from the Department of Primary Industries it was found that i) 50% of the audience found the information generated relevant for them and less than 10% indicted with was not relevant; ii) 85% have improved their knowledge/ability to assess soil moisture compared to prior to the project, with the most used indicator of soil moisture still being rain fall records; and iii) 100% have indicated they will continue to use some form of the technology to monitor soil moisture levels in the future. It is hoped that continued access to this information will assist informed input decisions. This will minimise inputs in low decile years with a low soil moisture base and maximise yield potential in more favourable conditions based on soil moisture and positive seasonal forecasts

  19. Automated Quality Control of in Situ Soil Moisture from the North American Soil Moisture Database Using NLDAS-2 Products

    NASA Astrophysics Data System (ADS)

    Ek, M. B.; Xia, Y.; Ford, T.; Wu, Y.; Quiring, S. M.

    2015-12-01

    The North American Soil Moisture Database (NASMD) was initiated in 2011 to provide support for developing climate forecasting tools, calibrating land surface models and validating satellite-derived soil moisture algorithms. The NASMD has collected data from over 30 soil moisture observation networks providing millions of in situ soil moisture observations in all 50 states as well as Canada and Mexico. It is recognized that the quality of measured soil moisture in NASMD is highly variable due to the diversity of climatological conditions, land cover, soil texture, and topographies of the stations and differences in measurement devices (e.g., sensors) and installation. It is also recognized that error, inaccuracy and imprecision in the data set can have significant impacts on practical operations and scientific studies. Therefore, developing an appropriate quality control procedure is essential to ensure the data is of the best quality. In this study, an automated quality control approach is developed using the North American Land Data Assimilation System phase 2 (NLDAS-2) Noah soil porosity, soil temperature, and fraction of liquid and total soil moisture to flag erroneous and/or spurious measurements. Overall results show that this approach is able to flag unreasonable values when the soil is partially frozen. A validation example using NLDAS-2 multiple model soil moisture products at the 20 cm soil layer showed that the quality control procedure had a significant positive impact in Alabama, North Carolina, and West Texas. It had a greater impact in colder regions, particularly during spring and autumn. Over 433 NASMD stations have been quality controlled using the methodology proposed in this study, and the algorithm will be implemented to control data quality from the other ~1,200 NASMD stations in the near future.

  20. An overview of the recent approaches to terroir functional modelling, footprinting and zoning

    NASA Astrophysics Data System (ADS)

    Vaudour, E.; Costantini, E.; Jones, G. V.; Mocali, S.

    2015-03-01

    Notions of terroir and their conceptualization through agro-environmental sciences have become popular in many parts of world. Originally developed for wine, terroir now encompasses many other crops including fruits, vegetables, cheese, olive oil, coffee, cacao and other crops, linking the uniqueness and quality of both beverages and foods to the environment where they are produced, giving the consumer a sense of place. Climate, geology, geomorphology and soil are the main environmental factors which make up the terroir effect on different scales. Often considered immutable culturally, the natural components of terroir are actually a set of processes, which together create a delicate equilibrium and regulation of its effect on products in both space and time. Due to both a greater need to better understand regional-to-site variations in crop production and the growth in spatial analytic technologies, the study of terroir has shifted from a largely descriptive regional science to a more applied, technical research field. Furthermore, the explosion of spatial data availability and sensing technologies has made the within-field scale of study more valuable to the individual grower. The result has been greater adoption of these technologies but also issues associated with both the spatial and temporal scales required for practical applications, as well as the relevant approaches for data synthesis. Moreover, as soil microbial communities are known to be of vital importance for terrestrial processes by driving the major soil geochemical cycles and supporting healthy plant growth, an intensive investigation of the microbial organization and their function is also required. Our objective is to present an overview of existing data and modelling approaches for terroir functional modelling, footprinting and zoning on local and regional scales. This review will focus on two main areas of recent terroir research: (1) using new tools to unravel the biogeochemical cycles of both macro- and micronutrients, the biological and chemical signatures of terroirs (i.e. the metagenomic approach and regional fingerprinting); (2) terroir zoning on different scales: mapping terroirs and using remote- and proxy-sensing technologies to monitor soil quality and manage the crop system for better food quality. Both implementations of terroir chemical and biological footprinting and geospatial technologies are promising for the management of terroir units, particularly the remote and proxy data in conjunction with spatial statistics. Indeed, the managed zones will be updatable and the effects of viticultural and/or soil management practices might be easier to control. The prospect of facilitated terroir spatial monitoring makes it possible to address another great challenge in the years to come: the issue of terroir sustainability and the construction of efficient soil/viticultural management strategies that can be assessed and applied across numerous scales.

  1. Precipitation-runoff relations and water-quality characteristics at edge-of-field stations, Discovery Farms and Pioneer Farm, Wisconsin, 2003-8

    USGS Publications Warehouse

    Stuntebeck, Todd D.; Komiskey, Matthew J.; Peppler, Marie C.; Owens, David W.; Frame, Dennis R.

    2011-01-01

    A cooperative study between the U.S. Geological Survey, the University of Wisconsin (UW)-Madison Discovery Farms program (Discovery Farms), and the UW-Platteville Pioneer Farm program (Pioneer Farm) was developed to identify typical ranges and magnitudes, temporal distributions, and principal factors affecting concentrations and yields of sediment, nutrients, and other selected constituents in runoff from agricultural fields. Hydrologic and water-quality data were collected year-round at 23 edge-of-field monitoring stations on 5 privately owned Discovery Farms and on Pioneer Farm during water years 2003-8. The studied farms represented landscapes, soils, and farming systems typical of livestock farms throughout southern Wisconsin. Each farm employed a variety of soil, nutrient, and water-conservation practices to help minimize sediment and nutrient losses from fields and to improve crop productivity. This report summarizes the precipitation-runoff relations and water-quality characteristics measured in edge-of-field runoff for 26 "farm years" (aggregate years of averaged station data from all 6 farms for varying monitoring periods). A relatively wide range of constituents typically found in agricultural runoff were measured: suspended sediment, phosphorus (total, particulate, dissolved reactive, and total dissolved), and nitrogen (total, nitrate plus nitrite, organic, ammonium, total Kjeldahl and total Kjeldahl-dissolved), chloride, total solids, total suspended solids, total volatile suspended solids, and total dissolved solids. Mean annual precipitation was 32.8 inches for the study period, about 3 percent less than the 30-year mean. Overall mean annual runoff was 2.55 inches per year (about 8 percent of precipitation) and the distribution was nearly equal between periods of frozen ground (54 percent) and unfrozen ground (46 percent). Mean monthly runoff was highest during two periods: February to March and May to June. Ninety percent of annual runoff occurred between January and the end of June. Event mean concentrations of suspended sediment in runoff during unfrozen-ground periods were significantly higher (p2= 0.92), indicating that the sources of nitrogen and phosphorus in runoff were likely similar. Analysis of runoff, concentration, and yield data on annual, monthly, and seasonal time scales, when combined with precipitation, soil moisture, soil temperature, and on-farm field-activity information, revealed conditions in which runoff was most likely. The analysis also revealed the effects that field conditions and the timing of field-management activities-most notably, manure applications and tillage-had on the quantity and quality of surface runoff from agricultural fields.

  2. Evaluating the Effect of Three Water Management Techniques on Tomato Crop.

    PubMed

    Elnesr, Mohammad Nabil; Alazba, Abdurrahman Ali; Zein El-Abedein, Assem Ibrahim; El-Adl, Mahmoud Maher

    2015-01-01

    The effects of three water management techniques were evaluated on subsurface drip irrigated tomatoes. The three techniques were the intermittent flow (3 pulses), the dual-lateral drip system (two lateral lines per row, at 15 and 25 cm below soil surface), and the physical barrier (buried at 30 cm below soil surface). Field experiments were established for two successive seasons. Water movement in soil was monitored using continuously logging capacitance probes up to 60 cm depth. The results showed that the dual lateral technique positively increased the yield up to 50%, water use efficiency up to 54%, while the intermittent application improved some of the quality measures (fruit size, TSS, and Vitamin C), not the quantity of the yield that decreased in one season, and not affected in the other. The physical barrier has no significant effect on any of the important growth measures. The soil water patterns showed that the dual lateral method lead to uniform wetting pattern with depth up to 45 cm, the physical barrier appeared to increase lateral and upward water movement, while the intermittent application kept the wetting pattern at higher moisture level for longer time. The cost analysis showed also that the economic treatments were the dual lateral followed by the intermittent technique, while the physical barrier is not economical. The study recommends researching the effect of the dual lateral method on the root growth and performance. The intermittent application may be recommended to improve tomato quality but not quantity. The physical barrier is not recommended unless in high permeable soils.

  3. Microstrip Ring Resonator for Soil Moisture Measurements

    NASA Technical Reports Server (NTRS)

    Sarabandi, Kamal; Li, Eric S.

    1993-01-01

    Accurate determination of spatial soil moisture distribution and monitoring its temporal variation have a significant impact on the outcomes of hydrologic, ecologic, and climatic models. Development of a successful remote sensing instrument for soil moisture relies on the accurate knowledge of the soil dielectric constant (epsilon(sub soil)) to its moisture content. Two existing methods for measurement of dielectric constant of soil at low and high frequencies are, respectively, the time domain reflectometry and the reflection coefficient measurement using an open-ended coaxial probe. The major shortcoming of these methods is the lack of accurate determination of the imaginary part of epsilon(sub soil). In this paper a microstrip ring resonator is proposed for the accurate measurement of soil dielectric constant. In this technique the microstrip ring resonator is placed in contact with soil medium and the real and imaginary parts of epsilon(sub soil) are determined from the changes in the resonant frequency and the quality factor of the resonator respectively. The solution of the electromagnetic problem is obtained using a hybrid approach based on the method of moments solution of the quasi-static formulation in conjunction with experimental data obtained from reference dielectric samples. Also a simple inversion algorithm for epsilon(sub soil) = epsilon'(sub r) + j(epsilon"(sub r)) based on regression analysis is obtained. It is shown that the wide dynamic range of the measured quantities provides excellent accuracy in the dielectric constant measurement. A prototype microstrip ring resonator at L-band is designed and measurements of soil with different moisture contents are presented and compared with other approaches.

  4. Land application of domestic wastewater in Florida--statewide assessment of impact on ground-water quality

    USGS Publications Warehouse

    Franks, Bernard J.

    1981-01-01

    In Florida domestic waste water is being applied to the land for disposal and reuse. State and Federal regulations favor land-application methods over other advanced waste water treatment practices. Despite the increasing use of this alternative technology, little is known about localized effects on groundwater quality. This report documents the extent of land-application practices in Florida and summarizes case study information on some of the more adequately monitored site throughout the State. More than 2,500 sites in Florida are permitted by the Department of Environmental Regulation for applying domestic waste water to the land. The majority (more than 1,700 sites), classified as infiltration ponds, are concentrated in central and southern Florida. More than 560 sites classified as drainfields, and more than 250 sites classified as irrigation sites, are located primarily in central Florida. An estimated 150 million gallons per day of domestic waste water, after required secondary treatment, are applied to Florida soils. Despite the large numbers of sites and the considerable volume of waste water utilized, little is known about potential impact on groundwater quality. At the few sites where observation wells have been drilled and local groundwater quality monitored, no significant deterioration of water quality has been detected. (USGS)

  5. An example of treated waste water use for soil irrigation in the SAFIR project.

    NASA Astrophysics Data System (ADS)

    Cary, L.; Jovanovic, Z.; Stikic, R.; Blagojevic, S.; Kloppmann, W.

    2009-04-01

    The safe use of treated domestic wastewater for irrigation needs to address the risks for humans (workers, exposed via contact with irrigation water, soil, crops and food, consumers, exposed via ingestion of fresh and processed food), for animals (via ingestion of crops on soil), for the crops and agricultural productivity (via salinity and trace element uptake), for soil (via accumulation or release of pollutants) as well as for surface, groundwaters and the associated ecosystems (via runoff and infiltration, Kass et al., 2005, Bouwer, 2000). In this context, the European FP6 SAFIR project (Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management) investigates the geochemical quality of the root zone soil, knowing it is the main transit and storage compartment for pollutants. The type of reaction (sorption, co-precipitation…) and the reactive mineral phases also determine the availability of trace elements for the plant and determine the passage towards crops and products. Reactions of the infiltrating water with the soil solid phase are important for the solute cycling, temporary fixation and remobilisation of trace pollutants. Therefore the soil water quality was directly or indirectly assessed. Direct measurements of soil water were made through porous cups. The experiments were carried out during the growing season of 2006, 2007 and 2008 in a vegetable commercial farm, located at 10 km north of Belgrade. The soil is silty clayey, and developed on alluvial deposits. It was classified as humogley according to USDA Soil Classification. The climate of the field side is a continental type with hot and dry summers and cold and rainy winters. As in the rest of Serbia, farm suffers from water deficits during the main growing season. The initial soil quality was assessed through a sampling campaign before the onset of first year irrigation; the soil quality was then monitored throughout three years. Soil sampling focused on the fully irrigated plots because the potential impact of irrigation water quality on soil and plant quality are expected higher for fully irrigated soils compared to other irrigation strategies. Samples were taken within the soil volume of potential influence around each of the drip emitters. Potato (Solanum tuberosum) variety Liseta was used for investigation. The seeds tubers were planted in the similar period in all three seasons (middle of Spring) at the depth of 10 cm. Two irrigation methods were used in all three seasons: drip and furrow systems. Water for irrigation was supplied from a channel which is located 100m away from the experimental field. For all experiments, three sampling campaigns were foreseen for each of the three irrigation seasons: at pre-planting, at the end of irrigation, and at harvest. After three campaigns, the results show a variability of the elements concentrations in water and soil between the three years. The soil appears significantly depleted in CaO (a mean of -40 %), MgO (-20%), Na (-30%), and Sr (-10%) and Pb (-12%). On the contrary, concentrations of Mn, Ni, V and Li slightly increase (+15 to 20%) whereas SiO2, Al2O3, Fe2O3, Cu and Cr do not significantly increase (a mean of + 10%). Knowing that potatoes do need between 40 to 50 kg per ha of CaO and 15 to 30 kg per ha of MgO (Soltner, 1999), potato absorption of Ca and Mg may be the main sink for both elements. A statistical analysis (ACP) shows precisely a Ca-Mg-Sr pole which explains more than 90 % of the second component; the first component being explained by Al2O3, SiO2, Fe2O3 and TiO2 at the same percentage. Antonious, G.F. and Snyder, J.C., 2007. Accumulation of heavy metals in plants and potential phytoremediation of lead by potato, Solanum tuberosum L. Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering, 42(6): 811-816. Bouwer, H., 2000. Groundwater problems caused by irrigation with sewage effluent. Journal of Environmental Health 63, 17-20. Kass, A. Gavrieli, I. Yechieli, Y. Vengosh A.and Starinsky, A., 2005. The impact of freshwater and wastewater irrigation on the chemistry of shallow groundwater: a case study from the Israeli Coastal Aquifer, Journal of Hydrology, 300, 314-331. Soltner, D., 1999. Les grandes productions végétales. Sciences et Techniques agricoles, 19ème édition.

  6. Hydrologic characterization of desert soils with varying degrees of pedogenesis: 1. field experiments evaluating plant-relevant soil water behavior

    USGS Publications Warehouse

    Nimmo, J.R.; Perkins, K.S.; Schmidt, K.M.; Miller, D.M.; Stock, J.D.; Singha, K.

    2009-01-01

    To assess the eff ect of pedogenesis on the soil moisture dynamics infl uencing the character and quality of ecological habitat, we conducted infi ltration and redistribution experiments on three alluvial deposits in the Mojave National Preserve: (i) recently deposited active wash sediments, (ii) a soil of early Holocene age, and (iii) a highly developed soil of late Pleistocene age. At each, we ponded water in a 1-m-diameter infi ltration ring for 2.3 h and monitored soil water content and matric pressure during and atier infi ltration, using probes and electrical resistivity imaging (ERI). Infi ltration and downward fl ow rates were greater in younger material, favoring deep-rooted species. Deep-rooted species tend to colonize the margins of washes, where they are unaff ected by sediment transport that inhibits colonization. The ERI results support important generalizations, for example that shallower than 0.5 m, infi ltrated water persists longer in highly developed soil, favoring shallow-rooted species. Soil moisture data for the two youngest soils suggested that saturation overshoot, which may have signifi cant but unexplored hydroecologic and pedogenic eff ects, occurred at the horizontally advancing weting front. Spatial heterogeneity of soil properties generally increased with pedogenic development. Evidence suggested that some early-stage developmental processes may promote uniformity; the intermediate- age soil appeared to have the least heterogeneity in terms of textural variation with depth, and also the least anisotropy. Lateral heterogeneity was pronounced in older soil, having a multitude of eff ects on the distribution and retention of soil water, and may facilitate certain water-conserving strategies of plants over what would be possible in a laterally homogeneous soil. ?? Soil Science Society of America.

  7. Vermicompost Improves Tomato Yield and Quality and the Biochemical Properties of Soils with Different Tomato Planting History in a Greenhouse Study

    PubMed Central

    Wang, Xin-Xin; Zhao, Fengyan; Zhang, Guoxian; Zhang, Yongyong; Yang, Lijuan

    2017-01-01

    A greenhouse pot test was conducted to study the impacts of replacing mineral fertilizer with organic fertilizers for one full growing period on soil fertility, tomato yield and quality using soils with different tomato planting history. Four types of fertilization regimes were compared: (1) conventional fertilizer with urea, (2) chicken manure compost, (3) vermicompost, and (4) no fertilizer. The effects on plant growth, yield and fruit quality and soil properties (including microbial biomass carbon and nitrogen, NH4+-N, NO3--N, soil water-soluble organic carbon, soil pH and electrical conductivity) were investigated in samples collected from the experimental soils at different tomato growth stages. The main results showed that: (1) vermicompost and chicken manure compost more effectively promoted plant growth, including stem diameter and plant height compared with other fertilizer treatments, in all three types of soil; (2) vermicompost improved fruit quality in each type of soil, and increased the sugar/acid ratio, and decreased nitrate concentration in fresh fruit compared with the CK treatment; (3) vermicompost led to greater improvements in fruit yield (74%), vitamin C (47%), and soluble sugar (71%) in soils with no tomato planting history compared with those in soils with long tomato planting history; and (4) vermicompost led to greater improvements in soil quality than chicken manure compost, including higher pH (averaged 7.37 vs. averaged 7.23) and lower soil electrical conductivity (averaged 204.1 vs. averaged 234.6 μS/cm) at the end of experiment in each type of soil. We conclude that vermicompost can be recommended as a fertilizer to improve tomato fruit quality and yield and soil quality, particularly for soils with no tomato planting history. PMID:29209343

  8. Vermicompost Improves Tomato Yield and Quality and the Biochemical Properties of Soils with Different Tomato Planting History in a Greenhouse Study.

    PubMed

    Wang, Xin-Xin; Zhao, Fengyan; Zhang, Guoxian; Zhang, Yongyong; Yang, Lijuan

    2017-01-01

    A greenhouse pot test was conducted to study the impacts of replacing mineral fertilizer with organic fertilizers for one full growing period on soil fertility, tomato yield and quality using soils with different tomato planting history. Four types of fertilization regimes were compared: (1) conventional fertilizer with urea, (2) chicken manure compost, (3) vermicompost, and (4) no fertilizer. The effects on plant growth, yield and fruit quality and soil properties (including microbial biomass carbon and nitrogen, [Formula: see text]-N, [Formula: see text]-N, soil water-soluble organic carbon, soil pH and electrical conductivity) were investigated in samples collected from the experimental soils at different tomato growth stages. The main results showed that: (1) vermicompost and chicken manure compost more effectively promoted plant growth, including stem diameter and plant height compared with other fertilizer treatments, in all three types of soil; (2) vermicompost improved fruit quality in each type of soil, and increased the sugar/acid ratio, and decreased nitrate concentration in fresh fruit compared with the CK treatment; (3) vermicompost led to greater improvements in fruit yield (74%), vitamin C (47%), and soluble sugar (71%) in soils with no tomato planting history compared with those in soils with long tomato planting history; and (4) vermicompost led to greater improvements in soil quality than chicken manure compost, including higher pH (averaged 7.37 vs. averaged 7.23) and lower soil electrical conductivity (averaged 204.1 vs. averaged 234.6 μS/cm) at the end of experiment in each type of soil. We conclude that vermicompost can be recommended as a fertilizer to improve tomato fruit quality and yield and soil quality, particularly for soils with no tomato planting history.

  9. A simple evaluation of soil quality of waterlogged purple paddy soils with different productivities.

    PubMed

    Liu, Zhanjun; Zhou, Wei; Lv, Jialong; He, Ping; Liang, Guoqing; Jin, Hui

    2015-01-01

    Evaluation of soil quality can be crucial for designing efficient farming systems and ensuring sustainable agriculture. The present study aimed at evaluating the quality of waterlogged purple paddy soils with different productivities in Sichuan Basin. The approach involved comprehensive analyses of soil physical and chemical properties, as well as enzyme activities and microbial community structure measured by phospholipid fatty acid analysis (PLFA). A total of 36 soil samples were collected from four typical locations, with 12 samples representing high productivity purple paddy soil (HPPS), medium productivity purple paddy soil (MPPS) and low productivity purple paddy soil (LPPS), respectively. Most measured soil properties showed significant differences (P ≤ 0.05) among HPPS, MPPS and LPPS. Pearson correlation analysis and principal component analysis were used to identify appropriate soil quality indicators. A minimum data set (MDS) including total nitrogen (TN), available phosphorus (AP), acid phosphatase (ACP), total bacteria (TB) and arbuscular mycorrhizal fungi was established and accounted for 82.1% of the quality variation among soils. A soil quality index (SQI) was developed based on the MDS method, whilst HPPS, MPPS and LPPS received mean SQI scores of 0.725, 0.536 and 0.425, respectively, with a ranking of HPPS > MPPS > LPPS. HPPS showed relatively good soil quality characterized by optimal nutrient availability, enzymatic and microbial activities, but the opposite was true of LPPS. Low levels of TN, AP and soil microbial activities were considered to be the major constraints limiting the productivity in LPPS. All soil samples collected were rich in available N, K, Si and Zn, but deficient in available P, which may be the major constraint for the studied regions. Managers in our study area should employ more appropriate management in the LPPS to improve its rice productivity, and particularly to any potential limiting factor.

  10. Effect of Humic Acids and pesticides on Agricultural Soil Structure and Stability and Its Implication on Soil Quality

    NASA Astrophysics Data System (ADS)

    Gaonkar, O. D.; Nambi, I. M.; G, S. K.

    2016-12-01

    The functional and morphological aspects of soil structure determine the soil quality. The dispersion of colloidal soil particles, especially the clay fraction and rupture of soil aggregates, both of which play an important role in soil structure development, lead to degradation of soil quality. The main objective of this work was to determine the effect of behaviour of soil colloids on the agricultural soil structure and quality. The effect of commercial humic acid, organophosphate pesticides and soil natural organic matter on the electrical and structural properties of the soil colloids was also studied. Agricultural soil, belonging to the sandy loam texture class from northern part of India was considered in this study. In order to understand the changes in the soil quality in the presence and absence of humic acids, the soil fabric and structure was analyzed by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy and Scanning Electron Microscopy (SEM). Electrical properties of natural soil colloids in aqueous suspensions were assessed by zeta potential measurements at varying pH values with and without the presence of humic acids and pesticides. The influence of natural organic matter was analyzed by oxidizing the natural soil organic matter with hydrogen peroxide. The zeta potential of the soil colloids was found to be negative in the pH range studied. The results indicated that hydrogen peroxide treatment lead to deflocculation of colloidal soil particles. In addition, the humic acids undergoes effective adsorption onto the soil surface imparting more negative zeta potential to the colloidal soil particles. The soil hydrophilicity decreased in the presence of humic acids which was confirmed by surface free energy determination. Thus, it can be concluded that the presence of humic acids altered the soil fabric and structure, thereby affecting the soil quality. This study assumes significance in understanding the soil aggregation and the interactions at soil solid-liquid interface.

  11. Soil cover patterns and dynamics impact on GHG fluxes in RF native and man-changed ecosystems

    NASA Astrophysics Data System (ADS)

    Vasenev, Ivan; Nesterova, Olga

    2017-04-01

    The increased soil spatial-temporal variability is mutual feature for most mature natural and particularly man-changed terrestrial ecosystems in Central and Far-East regions of Russia with soil cover strongly pronounced bioclimatic zoning and landscape-geomorphologic differentiation. Soil cover patterns (SCP) detailed morphogenetic analysis and typification is useful tool for soil forming and degradation processes quantitative evaluation, land ecological state and functional quality quantitative assessment. Quantitative analysis and functional-ecological interpretation of representative SCP spatial variability is especially important for environmentally friendly and demand-driven land-use planning and decision making. The carried out 33-years region- and local-scale researches of the wide zonal-provincial set of representative ecosystems and SCP with different types and history of land-use (forest, meadow-steppe, agricultural and recreational ones) give us the interregional multi-factorial matrix of elementary soil cover patterns (ESCP) with different land-use practices and history, soil-geomorphologic features, environmental and microclimate conditions. Succession process-based analysis of modern evolution of man-changed and natural soils and ESCP essentially increases accuracy of quantitative assessments of dominant soil forming and degradation processes rate and potential, their influence on land and soil cover quality and ecosystem services. Their results allow developing the regional and landscape adapted versions of automated land evaluation systems and land-use DSS. The validation and ranging of the limiting factors of ESCP regulation and develop¬ment, ecosystem principal services (with especial attention on greenhouse gases emissions, soil carbon dynamics and sequestration potential, biodiversity and productivity, hydrological regimes and geomorphologic stabilization), land functional qualities and agroecological state have been done for dominating and most dynamical components of ESCP regional-typological forms - with application of regional/local GIS, ESCP mapping, kriging, correlation tree models and adapted to region DSS. Key-site monitoring results and regional generalized data showed 1-1.5 % Corg lost during last 50 years period, active processes of CO2, CH4 and N2O emission (2-4-time variability in frame of one farm and of one vegetation season) and humus redistribution throw soil profile and soil cover patterns. Forest-steppe Chernozem ecosystems are usually characterized by more stable SCP than forest or steppe ones. The ratio between erosive and biological losses in humus supplies is estimated as fifty-fifty with strong spatial varia¬bility due to slope and land-use parameters. These problem agroecological situations can be essentially improved by climate-smart agriculture practice development with DSS-based landscape-adaptive land-use systems and organic farming stimulation with environmentally friendly technologies, adapted to conditions of concrete agrolandscapes in Central and Far-East Russia.

  12. Soil Monitor: an open source web application for real-time soil sealing monitoring and assessment

    NASA Astrophysics Data System (ADS)

    Langella, Giuliano; Basile, Angelo; Giannecchini, Simone; Iamarino, Michela; Munafò, Michele; Terribile, Fabio

    2016-04-01

    Soil sealing is one of the most important causes of land degradation and desertification. In Europe, soil covered by impermeable materials has increased by about 80% from the Second World War till nowadays, while population has only grown by one third. There is an increasing concern at the high political levels about the need to attenuate imperviousness itself and its effects on soil functions. European Commission promulgated a roadmap (COM(2011) 571) by which the net land take would be zero by 2050. Furthermore, European Commission also published a report in 2011 providing best practices and guidelines for limiting soil sealing and imperviousness. In this scenario, we developed an open source and an open source based Soil Sealing Geospatial Cyber Infrastructure (SS-GCI) named as "Soil Monitor". This tool merges a webGIS with parallel geospatial computation in a fast and dynamic fashion in order to provide real-time assessments of soil sealing at high spatial resolution (20 meters and below) over the whole Italy. Common open source webGIS packages are used to implement both the data management and visualization infrastructures, such as GeoServer and MapStore. The high-speed geospatial computation is ensured by a GPU parallelism using the CUDA (Computing Unified Device Architecture) framework by NVIDIA®. This kind of parallelism required the writing - from scratch - all codes needed to fulfil the geospatial computation built behind the soil sealing toolbox. The combination of GPU computing with webGIS infrastructures is relatively novel and required particular attention at the Java-CUDA programming interface. As a result, Soil Monitor is smart because it can perform very high time-consuming calculations (querying for instance an Italian administrative region as area of interest) in less than one minute. The web application is embedded in a web browser and nothing must be installed before using it. Potentially everybody can use it, but the main targets are the stakeholders dealing with sealing, such as policy makers, land owners and asphalt/cement companies. As a matter of fact, Soil Monitor can be used to improve the spatial planning therefore limiting the progression of disordered soil sealing which causes both the direct loss of soils due to imperviousness but also the indirect loss caused by fragmentation of soils (which has different negative effects on the durability of soil functions, such as habitat corridors). Further, in a future version, Soil Monitor would estimate the best location for a new building or help compensating soil losses by actions in other areas to offset drawbacks at zero. The presented SS-GCI dealing with soil sealing - if opportunely scaled - would aid the implementation of best practices for limiting soil sealing or mitigating its effects on soil functions.

  13. Geophysical methods for monitoring soil stabilization processes

    NASA Astrophysics Data System (ADS)

    Saneiyan, Sina; Ntarlagiannis, Dimitrios; Werkema, D. Dale; Ustra, Andréa

    2018-01-01

    Soil stabilization involves methods used to turn unconsolidated and unstable soil into a stiffer, consolidated medium that could support engineered structures, alter permeability, change subsurface flow, or immobilize contamination through mineral precipitation. Among the variety of available methods carbonate precipitation is a very promising one, especially when it is being induced through common soil borne microbes (MICP - microbial induced carbonate precipitation). Such microbial mediated precipitation has the added benefit of not harming the environment as other methods can be environmentally detrimental. Carbonate precipitation, typically in the form of calcite, is a naturally occurring process that can be manipulated to deliver the expected soil strengthening results or permeability changes. This study investigates the ability of spectral induced polarization and shear-wave velocity for monitoring calcite driven soil strengthening processes. The results support the use of these geophysical methods as soil strengthening characterization and long term monitoring tools, which is a requirement for viable soil stabilization projects. Both tested methods are sensitive to calcite precipitation, with SIP offering additional information related to long term stability of precipitated carbonate. Carbonate precipitation has been confirmed with direct methods, such as direct sampling and scanning electron microscopy (SEM). This study advances our understanding of soil strengthening processes and permeability alterations, and is a crucial step for the use of geophysical methods as monitoring tools in microbial induced soil alterations through carbonate precipitation.

  14. Relative skills of soil moisture and vegetation optical depth retrievals for agricultural drought monitoring

    USDA-ARS?s Scientific Manuscript database

    Soil moisture condition is an important indicator for agricultural drought monitoring. Through the Land Parameter Retrieval Model (LPRM), vegetation optical depth (VOD) as well as surface soil moisture (SM) can be retrieved simultaneously from brightness temperature observations from the Advanced Mi...

  15. Prediction and inter-dependence of stock and change of soil quality, function and diversity at a national scale and implications for ecosystem services

    NASA Astrophysics Data System (ADS)

    Reynolds, B.; Emmett, B.; Spurgeon, D.; Rowe, E. C.; Mills, R.; Griffiths, R.; Jones, D.; Simfukwe, P.

    2011-12-01

    A soils monitoring programme which uses an ecosystem approach has been in place in Great Britain for 30 years.The findings from the latest survey in 2007 has been interpreted within a natural capital and ecosystem services context to assess the outcome of a range of policies to protect the natural environment and increase sustainability. Issues of interest included the impacts of declines in atmospheric deposition of acidity, nitrogen and metals, the benefits of agri-environment schemes and climate change on carbon storage in soils and soil biodiversity, and reduced fertiliser applications on eutrophication of soils and waters. Topsoil samples (0-15cm) were taken within 600 1km squares across the country stratified to cover all major habitat types. At the same time botanical surveys in permanent vegetation plots were recorded together with change in land use and management and stream and pond water quality and ecology. These data are used together with satellite images, digital cartography, and ancillary datasets to assess change in landcover for all of GB and upscaling of change data from the samples squares. Changes in topsoil were assessed in 1978, 1998 and again in 2007. An increase in pH but no change in soil carbon was observed between 1978 and 2007. Additional measures added in 1998 enabled a decline in Olsen-P,increase in C:N, decline in soil mesofauna diversity and decline in many metal concentrations to be identified over the last 10 years. In 2007, futher measurements were added to include carbon substrate utilisation, nitrogen mineralisation and bacterial diversity (fungi is in progress)enabling national maps to be created for the first time for these important soil parameters. Multi-variate statistics were used to explore the relationship between the different soil measures, the predictive capability of soil and vegetation type, and drivers of change to be identified. In addition, assigning measurements to specific functions which underpinned individual supporting and regulation services provided a method for assessing direction of change of a range of ecosystem services at national scale for the first time.

  16. Assessing the quality of soil carbon using mid-infrared spectroscopy

    EPA Science Inventory

    With an increasing focus on carbon sequestration in soils to help offset anthropogenic greenhouse gas emissions, there is a growing need for standardized methods of assessing the quality (i.e., residence time) of soil organic carbon. Information on soil carbon quality is critica...

  17. Change in soil quality due to grazing and oak tree removal in California blue oak woodlands

    Treesearch

    Trina J. Camping; Randy A. Dahlgren; Kenneth W. Tate; William R. Horwath

    2002-01-01

    The effects of grazing and oak tree removal on soil quality and fertility were examined in a blue oak (Quercus douglasii) woodland in the northern Sierra Nevada foothills. Low to moderate grazing intensity has little affect on soil quality; however, oak tree removal resulted in a decrease in most soil quality parameters investigated (carbon, nitrogen...

  18. Soil quality in a cropland soil treated with wood ash containing charcoal

    NASA Astrophysics Data System (ADS)

    Omil, Beatriz; Balboa, Miguel A.; Fonturbel, M. Teresa; Gartzia-Bengoetxea, Nahia; Arias-González, Ander; Vega, Jose A.; Merino, Agustin

    2014-05-01

    The strategy of the European Union "Europe 2020" states that by 2020, 20% of final energy consumption must come from renewables. In this scenario, there is an increasing use of biomass utilization for energy production. Indeed, it is expected that the production of wood-ash will increase in coming years. Wood ash, a mixture of ash and charcoal, generated as a by-product of biomass combustion in power plants, can be applied to soil to improve the soil quality and crop production. Since the residue contains significant content of charcoal, the application of mixed wood ash may also improve the SOM content and soil quality in the long term, in soils degraded as a consequence of intensive management. The objective of this study was asses the changes in SOM quality and soil properties in a degraded soils treated with wood ash containing charcoal. The study was carried out in a field devoted to cereal crops during the last decades. The soil was acidic (pH 4.5) with a low SOC content (3 %) and fine texture. The experiment was based on a randomised block design with four replicates. Each block included the following four treatments: Control, 16 Mg fly wood ash ha-1, 16 Mg mixed wood ash ha-1 (16 Mg) and 32 Mg mixed wood ash ha-1 (32 Mg). The application was carried out once. The ash used in the study was obtained from a thermal power plant and was mainly derived from the combustion of Pinus radiata bark and branches. The wood ash is highly alkaline (pH= 10), contains 10 % of highly condensed black carbon (atomic H/C ratio < 0.5 and T50 en DSC= 500 ºC). The evolution of SOM properties were monitored over three years by solid state 13C CPMAS NMR and Differential Scanning Calorimetry (DSC). These techniques were applied in bulk samples and aggregates of different sizes. The changes in microbial activity were studied by analysis of microbial biomass C and basal respiration. The soil bacterial community was studied by the Biolog method. Several physical properties, such soil aggregate distribution, hydraulic conductivity and available water contente were also determined. Three years after applications the SOM content increased lightly in the treatment receiving more than 16 Mg ha-1 of wood ash. SOM in the treated soils displayed a higher degree of aromaticity than in the untreated soils, indicating a gain in more stable SOM compounds probably as a consequence of the charcoal application. However, both methods also revealed increases in labile C compounds, probably due to the carbohydrates added through root system. Microbial biomass-C and soil respiration increased significantly. The treatments also led to increases in the functional diversity indices. The amended soils showed greater utilization of substrates and the ability of soil bacteria to utilize different C resources was also greatly altered. The application of mixed wood ash did not lead to any difference in MWD, which was around 6 mm in all cases. The application of 16 Mg fly wood ash ha-1 increased significantly the hydraulic conductivity (4.07 cmh-1) when compared with in control plots (1.3 cmh-1) and mixed ash plots (1.52 and 2.45 cmh-1, 16 Mg and 32 Mg respectively). However, air-filled porosity was not higher in 16 Mg fly ash plots. AWC was not improved by wood ash application.

  19. Precision, accuracy, and efficiency of four tools for measuring soil bulk density or strength.

    Treesearch

    Richard E. Miller; John Hazard; Steven Howes

    2001-01-01

    Monitoring soil compaction is time consuming. A desire for speed and lower costs, however, must be balanced with the appropriate precision and accuracy required of the monitoring task. We compared three core samplers and a cone penetrometer for measuring soil compaction after clearcut harvest on a stone-free and a stony soil. Precision (i.e., consistency) of each tool...

  20. Effectiveness of SWAT in characterizing the watershed hydrology in the snowy-mountainous Lower Bear Malad River (LBMR) watershed in Box Elder County, Utah

    NASA Astrophysics Data System (ADS)

    Salha, A. A.; Stevens, D. K.

    2015-12-01

    Distributed watershed models are essential for quantifying sediment and nutrient loads that originate from point and nonpoint sources. Such models are primary means towards generating pollutant estimates in ungaged watersheds and respond well at watershed scales by capturing the variability in soils, climatic conditions, land uses/covers and management conditions over extended periods of time. This effort evaluates the performance of the Soil and Water Assessment Tool (SWAT) model as a watershed level tool to investigate, manage, and characterize the transport and fate of nutrients in Lower Bear Malad River (LBMR) watershed (Subbasin HUC 16010204) in Utah. Water quality concerns have been documented and are primarily attributed to high phosphorus and total suspended sediment concentrations caused by agricultural and farming practices along with identified point sources (WWTPs). Input data such as Digital Elevation Model (DEM), land use/Land cover (LULC), soils, and climate data for 10 years (2000-2010) is utilized to quantify the LBMR streamflow. Such modeling is useful in developing the required water quality regulations such as Total Maximum Daily Loads (TMDL). Measured concentrations of nutrients were closely captured by simulated monthly nutrient concentrations based on the R2 and Nash- Sutcliffe fitness criteria. The model is expected to be able to identify contaminant non-point sources, identify areas of high pollution risk, locate optimal monitoring sites, and evaluate best management practices to cost-effectively reduce pollution and improve water quality as required by the LBMR watershed's TMDL.

  1. Challenges in Ecohydrological Monitoring at Soil-Vegetation Interfaces: Exploiting the Potential for Fibre Optic Technologies

    NASA Astrophysics Data System (ADS)

    Chalari, A.; Ciocca, F.; Krause, S.; Hannah, D. M.; Blaen, P.; Coleman, T. I.; Mondanos, M.

    2015-12-01

    The Birmingham Institute of Forestry Research (BIFoR) is using Free-Air Carbon Enrichment (FACE) experiments to quantify the long-term impact and resilience of forests into rising atmospheric CO2 concentrations. The FACE campaign critically relies on a successful monitoring and understanding of the large variety of ecohydrological processes occurring across many interfaces, from deep soil to above the tree canopy. At the land-atmosphere interface, soil moisture and temperature are key variables to determine the heat and water exchanges, crucial to the vegetation dynamics as well as to groundwater recharge. Traditional solutions for monitoring soil moisture and temperature such as remote techniques and point sensors show limitations in fast acquisition rates and spatial coverage, respectively. Hence, spatial patterns and temporal dynamics of heat and water fluxes at this interface can only be monitored to a certain degree, limiting deeper knowledge in dynamically evolving systems (e.g. in impact of growing vegetation). Fibre optics Distributed Temperature Sensors (DTS) can measure soil temperatures at high spatiotemporal resolutions and accuracy, along kilometers of optical cable buried in the soil. Heat pulse methods applied to electrical elements embedded in the optical cable can be used to obtain the soil moisture. In July 2015 a monitoring system based on DTS has been installed in a recently forested hillslope at BIFoR in order to quantify high-resolution spatial patterns and high-frequency temporal dynamics of soil heat fluxes and soil moisture conditions. Therefore, 1500m of optical cables have been carefully deployed in three overlapped loops at 0.05m, 0.25m and 0.4m from the soil surface and an electrical system to send heat pulses along the optical cable has been developed. This paper discussed both, installation and design details along with first results of the soil moisture and temperature monitoring carried out since July 2015. Moreover, interpretations of the collected data to investigate the impact on soil moisture dynamics of i) forest evolution (long timescale), (ii) seasonality and, (iii) high-frequency forcing, are discussed.

  2. Three Soil Quality Demonstrations for Educating Extension Clientele

    ERIC Educational Resources Information Center

    Hoorman, James J.

    2014-01-01

    There is a renewed interest in educating youth, Master Gardeners, and agricultural producers about soil quality. Three soil demonstrations show how soil organic matter increases water holding capacity, improves soil structure, and increases nutrient retention. Exercise one uses clay bricks and sponges to represent mineral soils and soil organic…

  3. [Assessment of farmland soil quality under different utilization intensity in arid area].

    PubMed

    Gui, Dong-Wei; Mu, Gui-Jin; Lei, Jia-Qiang; Zeng, Fan-Jiang; Wang, Hui

    2009-04-01

    Based on the 2005-2007 experimental data in Cele oasis in the southern margin of Tarim Basin of Xinjiang, the soil quality of four typical types of farmland with different utilization intensity, i.e., farmland with high input, farmland with normal input, newly reclaimed farmland, and farmland in oasis' interior, was analyzed and assessed by using sustainable yield index, soil improvement index, and soil quality synthesis index. Among the farmlands, there were significant differences in the contents of soil organic matter, available nitrogen, and available phosphorus. Newly reclaimed farmland had the lowest level of soil quality, while the farmland in oasis' interior had relatively higher soil quality. This study could help the reasonable exploitation and utilization of farmlands in Cele oasis, and the protection of local farmland eco-environment.

  4. Integrated evaluation of aerogenic pollution by air-transported heavy metals (Pb, Cd, Ni, Zn, Mn and Cu) in the analysis of the main deposit media.

    PubMed

    Baltrėnaitė, Edita; Baltrėnas, Pranas; Lietuvninkas, Arvydas; Serevičienė, Vaida; Zuokaitė, Eglė

    2014-01-01

    The composition of the ambient air is constantly changing; therefore, the monitoring of ambient air quality to detect the changes caused by aerogenic pollutants makes the essential part of general environmental monitoring. To achieve more effective improvement of the ambient air quality, the Directive 2008/50/EC on 'Ambient Air Quality and Cleaner Air for Europe' was adopted by the European Parliament and the European Council. It informed the public and enterprises about a negative effect of pollution on humans, animals and plants, as well as about the need for monitoring aerogenic pollutants not only at the continuous monitoring stations but also by using indicator methods, i.e. by analysing natural deposit media. The problem of determining the relationship between the accumulation level of pollutants by a deposit medium and the level of air pollution and its risks is constantly growing in importance. The paper presents a comprehensive analysis of the response of the main four deposit media, i.e. snow cover, soil, pine bark and epigeic mosses, to the long-term pollution by aerogenic pollutants which can be observed in the area of oil refinery influence. Based on the quantitative expressions of the amounts of the accumulated pollutants in the deposit media, the territory of the oil refinery investigated in this paper has been referred to the areas of mild or moderate pollution.

  5. An experimental investigation to characterise soil macroporosity under different land use and land covers of northeast India

    NASA Astrophysics Data System (ADS)

    Shougrakpam, Sangeeta; Sarkar, Rupak; Dutta, Subashisa

    2010-10-01

    Saturated macropore flow is the dominant hydrological process in tropical and subtropical hilly watersheds of northeast India. The process of infiltration into saturated macroporous soils is primarily controlled by size, network, density, connectivity, saturation of surrounding soil matrix, and depthwise distribution of macropores. To understand the effects of local land use, land cover and management practices on soil macroporosity, colour dye infiltration experiments were conducted with ten soil columns (25 × 25 × 50 cm) collected from different watersheds of the region under similar soil and agro-climatic zones. The sampling sites included two undisturbed forested hillslopes, two conventionally cultivated paddy fields, two forest lands abandoned after Jhum cultivation, and two paddy fields, one pineapple plot and one banana plot presently under active cultivation stage of the Jhum cycle. Digital image analyses of the obtained dye patterns showed that the infiltration patterns differed significantly for different sites with varying land use, land cover, and cultivation practices. Undisturbed forest soils showed high degree of soil macroporosity throughout the soil profile, paddy fields revealed sealing of macropores at the topsoil due to hard pan formation, and Jhum cultivated plots showed disconnected subsoil macropores. The important parameters related to soil macropores such as maximum and average size of macropores, number of active macropores, and depthwise distribution of macropores were estimated to characterise the soil macroporosity for the sites. These experimentally derived quantitative data of soil macroporosity can have wide range of applications in the region such as water quality monitoring and groundwater pollution assessment due to preferential leaching of solutes and pesticides, study of soil structural properties and infiltration behaviour of soils, investigation of flash floods in rivers, and hydrological modelling of the watersheds.

  6. Restoration of a Mediterranean forest after a fire: bioremediation and rhizoremediation field-scale trial

    PubMed Central

    Pizarro-Tobías, Paloma; Fernández, Matilde; Niqui, José Luis; Solano, Jennifer; Duque, Estrella; Ramos, Juan-Luis; Roca, Amalia

    2015-01-01

    Forest fires pose a serious threat to countries in the Mediterranean basin, often razing large areas of land each year. After fires, soils are more likely to erode and resilience is inhibited in part by the toxic aromatic hydrocarbons produced during the combustion of cellulose and lignins. In this study, we explored the use of bioremediation and rhizoremediation techniques for soil restoration in a field-scale trial in a protected Mediterranean ecosystem after a controlled fire. Our bioremediation strategy combined the use of Pseudomonas putida strains, indigenous culturable microbes and annual grasses. After 8 months of monitoring soil quality parameters, including the removal of monoaromatic and polycyclic aromatic hydrocarbons as well as vegetation cover, we found that the site had returned to pre-fire status. Microbial population analysis revealed that fires induced changes in the indigenous microbiota and that rhizoremediation favours the recovery of soil microbiota in time. The results obtained in this study indicate that the rhizoremediation strategy could be presented as a viable and cost-effective alternative for the treatment of ecosystems affected by fires. PMID:25079309

  7. Disposal and improvement of contaminated by waste extraction of copper mining in chile

    NASA Astrophysics Data System (ADS)

    Naranjo Lamilla, Pedro; Blanco Fernández, David; Díaz González, Marcos; Robles Castillo, Marcelo; Decinti Weiss, Alejandra; Tapia Alvarez, Carolina; Pardo Fabregat, Francisco; Vidal, Manuel Miguel Jordan; Bech, Jaume; Roca, Nuria

    2016-04-01

    This project originated from the need of a mining company, which mines and processes copper ore. High purity copper is produced with an annual production of 1,113,928 tons of concentrate to a law of 32%. This mining company has generated several illegal landfills and has been forced by the government to make a management center Industrial Solid Waste (ISW). The forecast volume of waste generated is 20,000 tons / year. Chemical analysis established that the studied soil has a high copper content, caused by nature or from the spread of contaminants from mining activities. Moreover, in some sectors, soil contamination by mercury, hydrocarbons and oils and fats were detected, likely associated with the accumulation of waste. The waters are also impacted by mining industrial tasks, specifically copper ores, molybdenum, manganese, sulfates and have an acidic pH. The ISW management center dispels the pollution of soil and water and concentrating all activities in a technically suitable place. In this center the necessary guidelines for the treatment and disposal of soil contamination caused by uncontrolled landfills are given, also generating a leachate collection system and a network of fluid monitoring physicochemical water quality and soil environment. Keywords: Industrial solid waste, soil contamination, Mining waste

  8. Effect of chemical amendments on remediation of potentially toxic trace elements (PTEs) and soil quality improvement in paddy fields.

    PubMed

    Kim, Sung Chul; Hong, Young Kyu; Oh, Se Jin; Oh, Seung Min; Lee, Sang Phil; Kim, Do Hyung; Yang, Jae E

    2017-04-01

    Remediation of potentially toxic trace elements (PTEs) in paddy fields is fundamental for crop safety. In situ application of chemical amendments has been widely adapted because of its cost-effectiveness and environmental safety. The main purpose of this research was to (1) evaluate the reduction in dissolved concentrations of cadmium (Cd) and arsenic (As) with the application of chemical amendments and (2) monitor microbial activity in the soil to determine the remediation efficiency. Three different chemical amendments, lime stone, steel slag, and acid mine drainage sludge, were applied to paddy fields, and rice (Oryza sativa L. Milyang 23) was cultivated. The application of chemical amendments immobilized both Cd and As in soil. Between the two PTEs, As reduction was significant (p < 0.05) with the addition of chemical amendments, whereas no significant reduction was observed for Cd than that for the control. Among six soil-related variables, PTE concentration showed a negative correlation with soil pH (r = -0.70 for As and r = -0.54 for Cd) and soil respiration (SR) (r = -0.88 for As and r = -0.45 for Cd). This result indicated that immobilization of PTEs in soil is dependent on soil pH and reduces PTE toxicity. Overall, the application of chemical amendments could be utilized for decreasing PTE (As and Cd) bioavailability and increasing microbial activity in the soil.

  9. Monitoring changes in soil organic carbon pools, nitrogen, phosphorus, and sulfur under different agricultural management practices in the tropics.

    PubMed

    Verma, Bibhash C; Datta, Siba Prasad; Rattan, Raj K; Singh, Anil K

    2010-12-01

    Soil organic matter not only affects sustainability of agricultural ecosystems, but also extremely important in maintaining overall quality of environment as soil contains a significant part of global carbon stock. Hence, we attempted to assess the influence of different tillage and nutrient management practices on various stabilized and active soil organic carbon pools, and their contribution to the extractable nitrogen phosphorus and sulfur. Our study confined to the assessment of impact of agricultural management practices on the soil organic carbon pools and extractable nutrients under three important cropping systems, viz. soybean-wheat, maize-wheat, and rice-wheat. Results indicated that there was marginal improvement in Walkley and Black content in soil under integrated and organic nutrient management treatments in soybean-wheat, maize-wheat, and rice-wheat after completion of four cropping cycles. Improvement in stabilized pools of soil organic carbon (SOC) was not proportional to the applied amount of organic manures. While, labile pools of SOC were increased with the increase in amount of added manures. Apparently, green manure (Sesbania) was more effective in enhancing the lability of SOC as compared to farmyard manure and crop residues. The KMnO(4)-oxidizable SOC proved to be more sensitive and consistent as an index of labile pool of SOC compared to microbial biomass carbon. Under different cropping sequences, labile fractions of soil organic carbon exerted consistent positive effect on the extractable nitrogen, phosphorus, and sulfur in soil.

  10. From Vineyard Soil to Wine Fermentation: Microbiome Approximations to Explain the “terroir” Concept

    PubMed Central

    Belda, Ignacio; Zarraonaindia, Iratxe; Perisin, Matthew; Palacios, Antonio; Acedo, Alberto

    2017-01-01

    Wine originally emerged as a serendipitous mix of chemistry and biology, where microorganisms played a decisive role. From these ancient fermentations to the current monitored industrial processes, winegrowers and winemakers have been continuously changing their practices according to scientific knowledge and advances. A new enology direction is emerging and aiming to blend the complexity of spontaneous fermentations with industrial safety of monitored fermentations. In this context, wines with distinctive autochthonous peculiarities have a great acceptance among consumers, causing important economic returns. The concept of terroir, far from being a rural term, conceals a wide range of analytical parameters that are the basis of the knowledge-based enology trend. In this sense, the biological aspect of soils has been underestimated for years, when actually it contains a great microbial diversity. This soil-associated microbiota has been described as determinant, not only for the chemistry and nutritional properties of soils, but also for health, yield, and quality of the grapevine. Additionally, recent works describe the soil microbiome as the reservoir of the grapevine associated microbiota, and as a contributor to the final sensory properties of wines. To understand the crucial roles of microorganisms on the entire wine making process, we must understand their ecological niches, population dynamics, and relationships between ‘microbiome- vine health’ and ‘microbiome-wine metabolome.’ These are critical steps for designing precision enology practices. For that purpose, current metagenomic techniques are expanding from laboratories, to the food industry. This review focuses on the current knowledge about vine and wine microbiomes, with emphasis on their biological roles and the technical basis of next-generation sequencing pipelines. An overview of molecular and informatics tools is included and new directions are proposed, highlighting the importance of –omics technologies in wine research and industry. PMID:28533770

  11. Differences in soil quality between organic and conventional farming over a maize crop season

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla; Veiga, Adelcia; Puga, João; Kikuchi, Ryunosuke; Ferreira, António

    2017-04-01

    Land degradation in agricultural areas is a major concern. The large number of mechanical interventions and the amount of inputs used to assure high crop productivity, such as fertilizers and pesticides, have negative impacts on soil quality and threaten crop productivity and environmental sustainability. Organic farming is an alternative agriculture system, based on organic fertilizers, biological pest control and crop rotation, in order to mitigate soil degradation. Maize is the third most important cereal worldwide, with 2008 million tons produced in 2013 (IGN, 2016). In Portugal, 120000 ha of arable land is devoted to maize production, leading to annual yields of about 930000 ton (INE, 2015). This study investigates soil quality differences in maize farms under organic and conventional systems. The study was carried out in Coimbra Agrarian Technical School (ESAC), in central region of Portugal. ESAC campus comprises maize fields managed under conventional farming - Vagem Grande (32 ha), and organic fields - Caldeirão (12 ha), distancing 2.8 km. Vagem Grande has been intensively used for grain maize production for more than 20 years, whereas Caldeirão was converted to organic farming in 2008, and is being used to select regional maize varieties. The region has a Mediterranean climate. The maize fields have Eutric Fluvisols, with gentle slopes (<3%). In order to assess soil quality, three plots per farm were installed in May 2006, immediately after sowing, and monitored until October 2016, before harvesting, in order to cover all the crop season. Each plot comprises 5 plant lines (˜4 m width) with 20 m length. In order to assure the comparison between both farms, the same maize variety was used (Pigarro) in both fields, with the same compass. Soil samples were collected immediately after sowing. In Vagem Grande distinct soil samples were taken: (i) within plant lines, and (ii) between plant lines, since mineral fertilizers were spread over the field before sowing, and addition fertilizer was applied together with seeds, in plant lines. In Caldeirão, since fertilization was not performed due to weather constrains, soil samples were collected randomly within the plots. Additional soil samples were collected before harvest, in plant lines and between plant lines, in both farms. Surface (0-15 cm) and subsurface (15-30 cm) soil samples were taken. Soil samples were used for texture, pH, organic carbon, Kjeldhal nitrogen, nitrates, ammonia nitrogen, plant available phosphorus and potassium, and exchangeable cations (Ca2+, Mg2+, K+, Na+) analyses. Additional soil samples were also collected with soil ring samplers (137 cm3) for bulk density analyses after sowing. Surface water infiltration was also measured with tension infiltrometer (membrane of 20cm), using different tensions (0 cm, -3cm, -6 cm e -15cm). Decomposition rate and litter stabilisation was assessed over a 3-month period through the Tea Bag Index (Keuskamp et al., 2013). The number and diversity of earthworms were also measured at the surface (0-20cm), through extraction, and at the subsurface (>20cm), using mustard solution.

  12. An adaptive management process for forest soil conservation.

    Treesearch

    Michael P. Curran; Douglas G. Maynard; Ronald L. Heninger; Thomas A. Terry; Steven W. Howes; Douglas M. Stone; Thomas Niemann; Richard E. Miller; Robert F. Powers

    2005-01-01

    Soil disturbance guidelines should be based on comparable disturbance categories adapted to specific local soil conditions, validated by monitoring and research. Guidelines, standards, and practices should be continually improved based on an adaptive management process, which is presented in this paper. Core components of this process include: reliable monitoring...

  13. Impacts of swine manure pits on groundwater quality

    USGS Publications Warehouse

    Krapac, I.G.; Dey, W.S.; Roy, W.R.; Smyth, C.A.; Storment, E.; Sargent, S.L.; Steele, J.D.

    2002-01-01

    Manure deep-pits are commonly used to store manure at confined animal feeding operations. However, previous to this study little information had been collected on the impacts of deep-pits on groundwater quality to provide science-based guidance in formulating regulations and waste management strategies that address risks to human health and the environment. Groundwater quality has been monitored since January 1999 at two hog finishing facilities in Illinois that use deep-pit systems for manure storage. Groundwater samples were collected on a monthly basis and analyzed for inorganic and bacteriological constituent concentrations. The two sites are located in areas with geologic environments representing different vulnerabilities for local groundwater contamination. One site is underlain by more than 6 m of clayey silt, and 7-36 m of shale. Concentrations of chloride, ammonium, phosphate, and potassium indicated that local groundwater quality had not been significantly impacted by pit leakage from this facility. Nitrate concentrations were elevated near the pit, often exceeding the 10 mg N/l drinking water standard. Isotopic nitrate signatures suggested that the nitrate was likely derived from soil organic matter and fertilizer applied to adjacent crop fields. At the other site, sandstone is located 4.6-6.1 m below land surface. Chloride concentrations and ??15N and ??18O values of dissolved nitrate indicated that this facility may have limited and localized impacts on groundwater. Other constituents, including ammonia, potassium, phosphate, and sodium were generally at or less than background concentrations. Trace- and heavy-metal concentrations in groundwater samples collected from both facilities were at concentrations less than drinking water standards. The concentration of inorganic constituents in the groundwater would not likely impact human health. Fecal streptococcus bacteria were detected at least once in groundwater from all monitoring wells at both sites. Fecal streptococcus was more common and at greater concentrations than fecal coliform. The microbiological data suggest that filtration of bacteria by soils may not be as effective as commonly assumed. The presence of fecal bacteria in the shallow groundwater may pose a significant threat to human health if the ground water is used for drinking. Both facilities are less than 4 years old and the short-term impacts of these manure storage facilities on groundwater quality have been limited. Continued monitoring of these facilities will determine if they have a long-term impact on groundwater resources. ?? 2002 Elsevier Science Ltd. All rights reserved.

  14. Automated general temperature correction method for dielectric soil moisture sensors

    NASA Astrophysics Data System (ADS)

    Kapilaratne, R. G. C. Jeewantinie; Lu, Minjiao

    2017-08-01

    An effective temperature correction method for dielectric sensors is important to ensure the accuracy of soil water content (SWC) measurements of local to regional-scale soil moisture monitoring networks. These networks are extensively using highly temperature sensitive dielectric sensors due to their low cost, ease of use and less power consumption. Yet there is no general temperature correction method for dielectric sensors, instead sensor or site dependent correction algorithms are employed. Such methods become ineffective at soil moisture monitoring networks with different sensor setups and those that cover diverse climatic conditions and soil types. This study attempted to develop a general temperature correction method for dielectric sensors which can be commonly used regardless of the differences in sensor type, climatic conditions and soil type without rainfall data. In this work an automated general temperature correction method was developed by adopting previously developed temperature correction algorithms using time domain reflectometry (TDR) measurements to ThetaProbe ML2X, Stevens Hydra probe II and Decagon Devices EC-TM sensor measurements. The rainy day effects removal procedure from SWC data was automated by incorporating a statistical inference technique with temperature correction algorithms. The temperature correction method was evaluated using 34 stations from the International Soil Moisture Monitoring Network and another nine stations from a local soil moisture monitoring network in Mongolia. Soil moisture monitoring networks used in this study cover four major climates and six major soil types. Results indicated that the automated temperature correction algorithms developed in this study can eliminate temperature effects from dielectric sensor measurements successfully even without on-site rainfall data. Furthermore, it has been found that actual daily average of SWC has been changed due to temperature effects of dielectric sensors with a significant error factor comparable to ±1% manufacturer's accuracy.

  15. [Current situation of soil-transmitted nematodiasis monitoring in China and working keys in future].

    PubMed

    Chen, Ying-dan; Zang, Wei

    2015-04-01

    Soil-transmitted nematodiasis is widely epidemic in rural areas in China. It was showed that the infection rate of soil-transmitted nematodes was 19.56% while the overall number of persons infected was 129,000,000, which was supported by the results of the National Survey of Current Situation of Major Human Parasitic Diseases in China in 2005 published by former Ministry of Health. Therefore, soil-transmitted nematodiasis was included in the national infectious diseases and pathogenic media monitoring system by Chinese Center for Disease Control and Prevention in 2006, and subsequently 22 monitoring spots were established nationwide. From 2006 to 2013, the human infection rate of intestinal nematodes in national monitoring spots decreased from 20.88% to 3.12%, which showed a declining trend year by year. Meanwhile, the infection rates of Ascaris lumbricoides, Trichuris trichiura, hookworm, Enterobius vermicularis decreased from 10.10%, 5.88%, 8.88%, 10.00% in 2006 to 0.76%, 0.42%, 2.04%, 6.78% in 2013 respectively. In this paper, the current situation of soil-transmitted nematodiasis is overviewed based on a summary of the 8 years' monitoring work, as well as the experiences, challenges and key of monitoring work in the future.

  16. Development and application of the microbial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

    NASA Astrophysics Data System (ADS)

    Hong, E.; Park, Y.; Muirhead, R.; Jeong, J.; Pachepsky, Y. A.

    2017-12-01

    Pathogenic microorganisms in recreational and irrigation waters remain the subject of concern. Water quality models are used to estimate microbial quality of water sources, to evaluate microbial contamination-related risks, to guide the microbial water quality monitoring, and to evaluate the effect of agricultural management on the microbial water quality. The Agricultural Policy/Environmental eXtender (APEX) is the watershed-scale water quality model that includes highly detailed representation of agricultural management. The APEX currently does not have microbial fate and transport simulation capabilities. The objective of this work was to develop the first APEX microbial fate and transport module that could use the APEX conceptual model of manure removal together with recently introduced conceptualizations of the in-stream microbial fate and transport. The module utilizes manure erosion rates found in the APEX. Bacteria survival in soil-manure mixing layer was simulated with the two-stage survival model. Individual survival patterns were simulated for each manure application date. Simulated in-stream microbial fate and transport processes included the reach-scale passive release of bacteria with resuspended bottom sediment during high flow events, the transport of bacteria from bottom sediment due to the hyporheic exchange during low flow periods, the deposition with settling sediment, and the two-stage survival. Default parameter values were available from recently published databases. The APEX model with the newly developed microbial fate and transport module was applied to simulate seven years of monitoring data for the Toenepi watershed in New Zealand. Based on calibration and testing results, the APEX with the microbe module reproduced well the monitored pattern of E. coli concentrations at the watershed outlet. The APEX with the microbial fate and transport module will be utilized for predicting microbial quality of water under various agricultural practices, evaluating monitoring protocols, and supporting the selection of management practices based on regulations that rely on fecal indicator bacteria concentrations.

  17. Vadose zone processes delay groundwater nitrate reduction response to BMP implementation as observed in paired cultivated vs. uncultivated potato rotation fields

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Nyiraneza, J.; Murray, B. J.; Chapman, S.; Malenica, A.; Parker, B.

    2017-12-01

    Nitrate leaching from crop production contributes to groundwater contamination and subsequent eutrophication of the receiving surface water. A study was conducted in a 7-ha potato-grain-forages rotation field in Prince Edward Island (PEI), Canada during 2011-2016 to link potato rotation practices and groundwater quality. The field consists of fine sandy loam soil and is underlain by 7-9 m of glacial till, which overlies the regional fractured ;red-bed; sandstone aquifer. The water table is generally located in overburden close to the bedrock interface. Field treatments included one field zone taken out of production in 2011 with the remaining zones kept under a conventional potato rotation. Agronomy data including crop tissue, soil, and tile-drain water quality were collected. Hydrogeology data including multilevel monitoring of groundwater nitrate and hydraulic head and data from rock coring for nitrate distribution in overburden and bedrock matrix were also collected. A significant amount of nitrate leached below the soil profile after potato plant kill (referred to as topkill) in 2011, most of it from fertilizer N. A high level of nitrate was also detected in the till vadose zone through coring in December 2012 and through multilevel groundwater sampling from January to May 2014 in both cultivated and uncultivated field zones. Groundwater nitrate concentrations increased for about 2.5 years after the overlying potato field was removed from production. Pressure-driven uniform flow processes dominate water and nitrate transport in the vadose zone, producing an apparently instant water table response but a delayed groundwater quality response to nitrate leaching events. These data suggest that the uniform flow dominated vadose zone in agricultural landscapes can cause the accumulation of a significant amount of nitrate originated from previous farming activities, and the long travel time of this legacy nitrate in the vadose zone can result in substantially delayed responses of groundwater quality to field management adjustments. The delayed effects should also apply to the transport of other contaminants. This study also suggests that management practices should be optimized to reduce soil nitrate build-up during the non-growing season (when plant N uptake is diminishing and the soil contains excessive moisture, for example, after the potato harvest period in PEI) in order to protect groundwater quality.

  18. Assessment and Monitoring of Nutrient Management in Irrigated Agriculture for Groundwater Quality Protection

    NASA Astrophysics Data System (ADS)

    Harter, T.; Davis, R.; Smart, D. R.; Brown, P. H.; Dzurella, K.; Bell, A.; Kourakos, G.

    2017-12-01

    Nutrient fluxes to groundwater have been subject to regulatory assessment and control only in a limited number of countries, including those in the European Union, where the Water Framework Directive requires member countries to manage groundwater basis toward achieving "good status", and California, where irrigated lands will be subject to permitting, stringent nutrient monitoring requirements, and development of practices that are protective of groundwater. However, research activities to rigorously assess agricultural practices for their impact on groundwater have been limited and instead focused on surface water protection. For groundwater-related assessment of agricultural practices, a wide range of modeling tools has been employed: vulnerability studies, nitrogen mass balance assessments, crop-soil-system models, and various statistical tools. These tools are predominantly used to identify high risk regions, practices, or crops. Here we present the development of a field site for rigorous in-situ evaluation of water and nutrient management practices in an irrigated agricultural setting. Integrating groundwater monitoring into agricultural practice assessment requires large research plots (on the order of 10s to 100s of hectares) and multi-year research time-frames - much larger than typical agricultural field research plots. Almonds are among the most common crops in California with intensive use of nitrogen fertilizer and were selected for their high water quality improvement potential. Availability of an orchard site with relatively vulnerable groundwater conditions (sandy soils, water table depth less than 10 m) was also important in site selection. Initial results show that shallow groundwater concentrations are commensurate with nitrogen leaching estimates obtained by considering historical, long-term field nitrogen mass balance and groundwater dynamics.

  19. Irrigation Trials for ET Estimation and Water Management in California Specialty Crops

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Cahn, M.; Martin, F.; Lund, C.; Melton, F. S.

    2012-12-01

    Accurate estimation of crop evapotranspiration (ETc) can support efficient irrigation water management, which in turn brings benefits including surface water conservation, mitigation of groundwater depletion/degradation, energy savings, and crop quality assurance. Past research in California has revealed strong relationships between canopy fractional cover (Fc) and ETc of certain specialty crops, while additional research has shown the potential of monitoring Fc by satellite remote sensing. California's Central Coast is the leading region of cool season vegetable production in the U.S. Monterey County alone produces more than 80,000 ha of lettuce and broccoli (about half of U.S. production), valued at $1.5 billion in 2009. Under this study, we are conducting ongoing irrigation trials on these crops at the USDA Agricultural Research Station (Salinas) to compare irrigation scheduling via plant-based ETc approaches, by way of Fc, with current industry standard-practice. The following two monitoring approaches are being evaluated - 1) a remote sensing model employed by NASA's prototype Satellite Irrigation Management System, and 2) an online irrigation scheduling tool, CropManage, recently developed by U.C. Cooperative Extension. Both approaches utilize daily grass-reference ETo data as provided by the California Irrigation Management Irrigation System (CIMIS). A sensor network is deployed to monitor applied irrigation, volumetric soil water content, soil water potential, deep drainage, and standard meteorologic variables in order to derive ETc by a water balance approach. Evaluations of crop yield and crop quality are performed by the research team and by commercial growers. Initial results to-date indicate that applied water reductions based on Fc measurements are possible with little-to-no impact on yield of crisphead lettuce (Lactuca sativa). Additional results for both lettuce and broccoli trials, conducted during summer-fall 2012, are presented with respect to nutrient management and crop viability.

  20. Soil quality changes after topsoil addition to eroded land

    USDA-ARS?s Scientific Manuscript database

    Soil-landscape rehabilitation within eroded fields can be accomplished by moving topsoil from depositional to eroded landscape positions. The purpose is to improve soil quality and productivity of the upper root zone in eroded areas of the field. Changes in soil quality may be estimated through chan...

  1. Corrective Action Management Unit Report of Post-Closure Care Activities Calendar Year 2017.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziock, Robert; Little, Bonnie Colleen

    The Corrective Action Management Unit (CAMU) at Sandia National Laboratories, New Mexico (SNL/NM) consists of a containment cell and ancillary systems that underwent regulatory closure in 2003 in accordance with the Closure Plan in Appendix D of the Class 3 Permit Modification (SNL/NM September 1997). The containment cell was closed with wastes in place. On January 27, 2015, the New Mexico Environment Department (NMED) issued the Hazardous Waste Facility Operating Permit (Permit) for Sandia National Laboratories (NMED January 2015). The Permit became effective February 26, 2015. The CAMU is undergoing post-closure care in accordance with the Permit, as revised andmore » updated. This CAMU Report of Post-Closure Care Activities documents all activities and results for Calendar Year (CY) 2017 as required by the Permit. The CAMU containment cell consists of engineered barriers including a cover system, a bottom liner with a leachate collection and removal system (LCRS), and a vadose zone monitoring system (VZMS). The VZMS provides information on soil conditions under the cell for early leak detection. The VZMS consists of three monitoring subsystems, which include the primary subliner (PSL), a vertical sensor array (VSA), and the Chemical Waste Landfill (CWL) sanitary sewer (CSS) line. The PSL, VSA, and CSS monitoring subsystems are monitored quarterly for soil moisture concentration, the VSA is monitored quarterly for soil temperature, and the VSA and CSS monitoring subsystems are monitored annually for volatile organic compound (VOC) concentrations in the soil vapor at various depths. Baseline data for the soil moisture, soil temperature, and soil vapor were established between October 2003 and September 2004.« less

  2. Characterization of a new fertilizer during field trials by hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Serranti, Silvia; Trella, Agata; Garcia Izquierdo, Carlos

    2016-05-01

    This work was carried out in the framework of the LIFE RESAFE Project (LIFE12 ENV/IT/000356) "Innovative fertilizer from urban waste, bio-char and farm residues as substitute of chemical fertilizers". The aim of RESAFE project is the production of a new fertilizer from waste for agricultural practices. The new fertilizer was tested on 5 different crops during field trials carried out in Spain: barley, corn, tomato, potato and melon. For each crop six different treatments were applied and compared to verify the quality of RESAFE fertilizer. Soil samples were collected at the beginning and at the end of the experiment. The possibility to apply hyperspectral imaging (HSI) to perform soil evolution monitoring and characterization in respect to the fertilizer utilization and quality of the resulting crops was investigated. Soil samples were acquired by HSI in the near infrared field (1000-1700 nm) and on the same samples classical chemical analyses were carried out with reference to total nitrogen, total organic carbon, C/N ratio, total organic matter. Hyperspectral data were analyzed adopting a chemometric approach through application of Principal Component Analysis (PCA) for exploratory purposes and Partial Least Squares Analysis (PLS) for estimation of chemical parameters. The results showed as the proposed hardware and software integrated architecture allows to implement low cost and easy to use analytical procedures able to quantitatively assess soil chemical-physical attributes according to different fertilization strategies, in respect of different environmental conditions and selected crops.

  3. Soil organic carbon quality in forested mineral wetlands at different mean annual temperature.

    Treesearch

    Cinzia Fissore; Christian P. Giardina; Randall K. Kolka; Carl C. Trettin

    2009-01-01

    Forested mineral soil wetlands (FMSW) store large stocks of soil organic carbon (SOC), but little is known on: (i) whether the quality of SOC stored in these soils (proportion of active versus more resistant SOC compounds) differs from SOC in upland soils; (ii) how the quality of SOC in FMSW varies with mean annual temperature (MAT); and (iii) whether SOC decomposition...

  4. Application of municipal biosolids to dry-land wheat fields - A monitoring program near Deer Trail, Colorado (USA). A presentation for an international conference: "The Future of Agriculture: Science, Stewardship, and Sustainability", August 7-9, 2006, Sacramento, CA

    USGS Publications Warehouse

    Crock, James G.; Smith, David B.; Yager, Tracy J.B.

    2006-01-01

    Since late 1993, Metro Wastewater Reclamation District of Denver (Metro District), a large wastewater treatment plant in Denver, Colorado, has applied Grade I, Class B biosolids to about 52,000 acres of non-irrigated farmland and rangeland near Deer Trail, Colorado. In cooperation with the Metro District in 1993, the U.S. Geological Survey (USGS) began monitoring ground water at part of this site. In 1999, the USGS began a more comprehensive study of the entire site to address stakeholder concerns about the chemical effects of biosolids applications. This more comprehensive monitoring program has recently been extended through 2010. Monitoring components of the more comprehensive study included biosolids collected at the wastewater treatment plant, soil, crops, dust, alluvial and bedrock ground water, and stream bed sediment. Streams at the site are dry most of the year, so samples of stream bed sediment deposited after rain were used to indicate surface-water effects. This presentation will only address biosolids, soil, and crops. More information about these and the other monitoring components are presented in the literature (e.g., Yager and others, 2004a, b, c, d) and at the USGS Web site for the Deer Trail area studies at http://co.water.usgs.gov/projects/CO406/CO406.html. Priority parameters identified by the stakeholders for all monitoring components, included the total concentrations of nine trace elements (arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc), plutonium isotopes, and gross alpha and beta activity, regulated by Colorado for biosolids to be used as an agricultural soil amendment. Nitrogen and chromium also were priority parameters for ground water and sediment components. In general, the objective of each component of the study was to determine whether concentrations of priority parameters (1) were higher than regulatory limits, (2) were increasing with time, or (3) were significantly higher in biosolids-applied areas than in a similar farmed area where biosolids were not applied. Where sufficient samples could be collected, statistical methods were used to evaluate effects. Rigorous quality assurance was included in all aspects of the study. The roles of hydrology and geology also were considered in the design, data collection, and interpretation phases of the study. Study results indicate that the chemistry of the biosolids from the Denver plant was consistent during 1999-2005, and total concentrations of regulated trace elements were consistently lower than the regulatory limits. Plutonium isotopes were not detected in the biosolids. Leach tests using deionized water to simulate natural precipitation indicate arsenic, molybdenum, and nickel were the most soluble priority parameters in the biosolids. Study results show no significant difference in concentrations of priority parameters between biosolids-applied soils and unamended soils where no biosolids were applied. However, biosolids were applied only twice during 1999-2003. The next soil sampling is not scheduled until 2010. To date concentrations of most of the priority parameters were not much greater in the biosolids than in natural soil from the sites. Therefore, many more biosolids applications would need to occur before biosolids effects on the soil priority constituents can be quantified. Leach tests using deionized water to simulate precipitation indicate that molybdenum and selenium were the priority parameters that were most soluble in both biosolids-applied soil and natural or unamended soil. Study results do not indicate significant differences in concentrations of priority parameters between crops grown in biosolids-applied areas and crops grown where no biosolids were applied. However, crops were grown only twice during 1999-2003, so only two crop samples could be collected. The wheat-grain elemental data collected during 1999-2003 for both biosolids-applied areas and unamended areas are similar

  5. Inversion of Farmland Soil Moisture in Large Region Based on Modified Vegetation Index

    NASA Astrophysics Data System (ADS)

    Wang, J. X.; Yu, B. S.; Zhang, G. Z.; Zhao, G. C.; He, S. D.; Luo, W. R.; Zhang, C. C.

    2018-04-01

    Soil moisture is an important parameter for agricultural production. Efficient and accurate monitoring of soil moisture is an important link to ensure the safety of agricultural production. Remote sensing technology has been widely used in agricultural moisture monitoring because of its timeliness, cyclicality, dynamic tracking of changes in things, easy access to data, and extensive monitoring. Vegetation index and surface temperature are important parameters for moisture monitoring. Based on NDVI, this paper introduces land surface temperature and average temperature for optimization. This article takes the soil moisture in winter wheat growing area in Henan Province as the research object, dividing Henan Province into three main regions producing winter wheat and dividing the growth period of winter wheat into the early, middle and late stages on the basis of phenological characteristics and regional characteristics. Introducing appropriate correction factor during the corresponding growth period of winter wheat, correcting the vegetation index in the corresponding area, this paper establishes regression models of soil moisture on NDVI and soil moisture on modified NDVI based on correlation analysis and compare models. It shows that modified NDVI is more suitable as a indicator of soil moisture because of the better correlation between soil moisture and modified NDVI and the higher prediction accuracy of the regression model of soil moisture on modified NDVI. The research in this paper has certain reference value for winter wheat farmland management and decision-making.

  6. Land quality evaluation based on sustainable development for gully erosion control and land consolidation project of Yan’ an, China

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Han, Jichang; Zhang, Yang; Du, Yichun; Bai, Qingjun

    2018-01-01

    Based on the three land consolidation projects in Yan’an region, the differentiation of the soil capacity, texture, available nutrients, pH etc before and after land consolidation were analyzed, and a comprehensive evaluation of soil quality before and after consolidation was done in this study. The results show that: (1) After the gully-land consolidation, the soil capacity, nitrogen, available P, available K and conductivity are increased, while the organic matter and pH are decreased. With one-year’s cultivation, the soil capacity decreased and the organic matter increased. After the slope-land consolidation, the soil physical and chemical properties have similar trends with the gullies, but the change is more significant. (2)No matter for gully or slope, the soil quality declines where the land just get consolidated, and the slope has more significant declining. With one-year’s cultivation, the soil quality of the gully has more rapid recovery with one grade uplift. (3) The correlation coefficient method was used to give a comprehensive evaluation of the soil quality, to considerate of the changes of the coefficients of the factors and the evaluation object. The evaluation can well reflect the actual situation of the soil quality, give reference to the soil quality evaluation for consolidated land, and the results may provide basis for the performance evaluation of the Yan’an land consolidation projects.

  7. Biotic and Abiotic Soil Properties Influence Survival of Listeria monocytogenes in Soil

    PubMed Central

    Locatelli, Aude; Spor, Aymé; Jolivet, Claudy; Piveteau, Pascal; Hartmann, Alain

    2013-01-01

    Listeria monocytogenes is a food-borne pathogen responsible for the potentially fatal disease listeriosis and terrestrial ecosystems have been hypothesized to be its natural reservoir. Therefore, identifying the key edaphic factors that influence its survival in soil is critical. We measured the survival of L. monocytogenes in a set of 100 soil samples belonging to the French Soil Quality Monitoring Network. This soil collection is meant to be representative of the pedology and land use of the whole French territory. The population of L. monocytogenes in inoculated microcosms was enumerated by plate count after 7, 14 and 84 days of incubation. Analysis of survival profiles showed that L. monocytogenes was able to survive up to 84 days in 71% of the soils tested, in the other soils (29%) only a short-term survival (up to 7 to 14 days) was observed. Using variance partitioning techniques, we showed that about 65% of the short-term survival ratio of L. monocytogenes in soils was explained by the soil chemical properties, amongst which the basic cation saturation ratio seems to be the main driver. On the other hand, while explaining a lower amount of survival ratio variance (11%), soil texture and especially clay content was the main driver of long-term survival of L. monocytogenes in soils. In order to assess the effect of the endogenous soils microbiota on L. monocytogenes survival, sterilized versus non-sterilized soils microcosms were compared in a subset of 9 soils. We found that the endogenous soil microbiota could limit L. monocytogenes survival especially when soil pH was greater than 7, whereas in acidic soils, survival ratios in sterilized and unsterilized microcosms were not statistically different. These results point out the critical role played by both the endogenous microbiota and the soil physic-chemical properties in determining the survival of L. monocytogenes in soils. PMID:24116083

  8. U.S. Geological Survey ground-water studies in Missouri

    USGS Publications Warehouse

    Smith, B.J.

    1993-01-01

    The activities of the USGS Water Resources Division in Missouri are conducted by scientists, technicians, and support staff in offices in Rolla, Olivette, and Independence. During 1992, the USGS had cooperative or cost-sharing agreements with about 30 Federal, State, and local agencies involving 20 hydrologic investigations in Missouri; 12 of these investigations included studies of groundwater quantity and quality. Several examples of groundwater studies by the USGS that address specific groundwater issues in Missouri include the occurrence of pesticides, groundwater flow and quality in the Missouri River alluvium near Kansas City, groundwater flow in claypan soils, radioactive- and nitroaromatic-compound contami- nation at Weldon Spring, and hydrologic monitoring of a wetland complex. (USGS)

  9. Long-term monitoring of temperature in the subsoil using Fiber Optic Distributed Sensing

    NASA Astrophysics Data System (ADS)

    Susanto, Kusnahadi; Malet, Jean-Philippe; Gance, Julien; Marc, Vincent

    2017-04-01

    Monitoring changes in soil water content in the vadose zone of soils is a great importance for various hydrological, agronomical, ecological and environmental studies. By using soil temperature measurements with Fiber-Optic Distributed Temperature Sensing (FO-DTS), we can indirectly document soil water changes at high spatial and temporal frequency. In this research, we installed an observatory of soil temperature on a representative black marl slope of the long-term Draix-Bléone hydrological observatory (South French Alps, Réseau de Basins-Versants / RBV). A 350 m long reinforced fiber optic cable was buried at 0.05, 0.10 and 0.15 m of depths and installed at the soil surface. The total length of the monitored profile is 60 m, and it three different soil units consisting of argillaceous weathered black marls, silty colluvium under grass and silty colluvium under forest. Soil temperature is measured every 6 minutes at a spatial resolution of 0.50 m using a double-ended configuration. Both passive and active (heating of the FO) is used to document soil water changes. We present the analysis of a period of 6 months of temperature measurements (January-July 2016). Changes in soil temperature at various temporal scales (rainfall event, season) and for the three units are discussed. These changes indicate different processes of water infiltration at different velocities in relation to the presence of roots and the soil permeability. We further test several inversion strategies to estimate soil water content from the thermal diffusivity of the soils using simple and more complex thermal models. Some limitations of using this indirect technique for long-term monitoring are also presented. The work is supported by the research project HYDROSLIDE and the large infrastructure project CRITEX funded by the French Research Agency (ANR).

  10. Soil quality assessment using weighted fuzzy association rules

    USGS Publications Warehouse

    Xue, Yue-Ju; Liu, Shu-Guang; Hu, Yue-Ming; Yang, Jing-Feng

    2010-01-01

    Fuzzy association rules (FARs) can be powerful in assessing regional soil quality, a critical step prior to land planning and utilization; however, traditional FARs mined from soil quality database, ignoring the importance variability of the rules, can be redundant and far from optimal. In this study, we developed a method applying different weights to traditional FARs to improve accuracy of soil quality assessment. After the FARs for soil quality assessment were mined, redundant rules were eliminated according to whether the rules were significant or not in reducing the complexity of the soil quality assessment models and in improving the comprehensibility of FARs. The global weights, each representing the importance of a FAR in soil quality assessment, were then introduced and refined using a gradient descent optimization method. This method was applied to the assessment of soil resources conditions in Guangdong Province, China. The new approach had an accuracy of 87%, when 15 rules were mined, as compared with 76% from the traditional approach. The accuracy increased to 96% when 32 rules were mined, in contrast to 88% from the traditional approach. These results demonstrated an improved comprehensibility of FARs and a high accuracy of the proposed method.

  11. Design and field tests of a directly coupled waveguide-on-access-tube soil water sensor

    USDA-ARS?s Scientific Manuscript database

    Sensor systems capable of monitoring soil water content can provide a useful tool for irrigation control. Current systems are limited by installation depth, labor, accuracy, and cost. Time domain reflectometry (TDR) is an approach for monitoring soil water content that relates the travel time of an ...

  12. Upper Washita River experimental watersheds: Multiyear stability of soil water content profiles

    USDA-ARS?s Scientific Manuscript database

    Scaling in situ soil water content time series data to a large spatial domain is a key element of watershed environmental monitoring and modeling. The primary method of estimating and monitoring large-scale soil water content distributions is via in situ networks. It is critical to establish the s...

  13. Hydrologic and chemical-quality data from four rural basins in Guilford County, North Carolina, 1985-88

    USGS Publications Warehouse

    Hill, C.L.

    1989-01-01

    An investigation was begun in 1984 in Guilford County, North Carolina, to monitor water quality and soil erosion in basins with various land-management practices. Hydrologic and chemical-quality data were collected from four rural drainage basins, including two agricultural basins (7.4 and 4.8 acres) cultivated in tobacco and small grains, a mixed rural land-use basin (665 acres) currently under standard land-management practices, and a forested control basin (44 acres) characterizing background conditions. Mean concentrations of total nitrite plus nitrate were 1.0 milligrams per liter from the agricultural basin under standard land-management practices. This was nearly 10 times greater than concentrations from the forested basin. Records of streamflow discharge, chemical quality, ground-water levels, precipitation, and farming activities collected from October 1984 through September 1988 at one or more of the basins are also presented in this report.

  14. [Prediction of regional soil quality based on mutual information theory integrated with decision tree algorithm].

    PubMed

    Lin, Fen-Fang; Wang, Ke; Yang, Ning; Yan, Shi-Guang; Zheng, Xin-Yu

    2012-02-01

    In this paper, some main factors such as soil type, land use pattern, lithology type, topography, road, and industry type that affect soil quality were used to precisely obtain the spatial distribution characteristics of regional soil quality, mutual information theory was adopted to select the main environmental factors, and decision tree algorithm See 5.0 was applied to predict the grade of regional soil quality. The main factors affecting regional soil quality were soil type, land use, lithology type, distance to town, distance to water area, altitude, distance to road, and distance to industrial land. The prediction accuracy of the decision tree model with the variables selected by mutual information was obviously higher than that of the model with all variables, and, for the former model, whether of decision tree or of decision rule, its prediction accuracy was all higher than 80%. Based on the continuous and categorical data, the method of mutual information theory integrated with decision tree could not only reduce the number of input parameters for decision tree algorithm, but also predict and assess regional soil quality effectively.

  15. Urban and industrial land uses have a higher soil biological quality than expected from physicochemical quality.

    PubMed

    Joimel, Sophie; Schwartz, Christophe; Hedde, Mickaël; Kiyota, Sayuri; Krogh, Paul Henning; Nahmani, Johanne; Pérès, Guénola; Vergnes, Alan; Cortet, Jérôme

    2017-04-15

    Despite their importance both in soil functioning and as soil indicators, the response of microarthropods to various land uses is still unclear. The aim of this study is to assess the effect of land use on microarthropod diversity and determine whether a soil's biological quality follows the same physicochemical quality-based gradient from forest, agriculture-grassland, agriculture-arable land, vineyards, urban vegetable gardens to urban, industrial, traffic, mining and military areas. A database compiling the characteristics of 758 communities has been established. We calculated Collembola community indices including: species richness, Pielou's evenness index, collembolan life forms, the abundance of Collembola and of Acari, the Acari/Collembola abundance ratio, and the Collembolan ecomorphological index. Results show that agricultural land use was the most harmful for soil microarthropod biodiversity, whilst urban and industrial land uses give the same level of soil biological quality as forests do. Furthermore, differences between the proportions of Acari and ecomorphological groups were observed between land uses. This study, defining soil microarthropod diversity baselines for current land uses, should therefore help in managing and preserving soil microarthropod biodiversity, especially by supporting the preservation of soil quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Installation-restoration program. Phase 2. Confirmation/quantification. Stage 1 for Shaw Air Force Base, South Carolina. Final report, January 1984-October 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, W.J.; Liddle, S.K.

    1986-09-01

    The primary objectives of this project were to collect and analyze groundwater, surface water, and sediment samples and to perform an initial characterization of the hydrogeochemical regime at potential contamination sites on Shaw Air Force Base near Sumter, South Carolina. This study constituted Phase II of the U.S. Air Force Installation Restoration Program (IRP). Five potential sources of groundwater pollution were studied. The evaluation primarily included the drilling of soil test borings, the installation, development, and sampling of groundwater monitoring wells, and the analyses of soil, surface water, and groundwater samples. Also used in the study were field measurements ofmore » water quality, water-level measurements site observations, published hydrogeologic data and Shaw AFB documents.« less

  17. National ecosystem assessments supported by scientific and local knowledge

    USGS Publications Warehouse

    Herrick, Jeffrey E.; Lessard, Veronica C.; Spaeth, Kenneth E.; Shaver, Patrick L.; Dayton, Robert S.; Pyke, David A.; Jolley, Leonard; Goebel, J. Jeffery

    2010-01-01

    An understanding of the extent of land degradation and recovery is necessary to guide land-use policy and management, yet currently available land-quality assessments are widely known to be inadequate. Here, we present the results of the first statistically based application of a new approach to national assessments that integrates scientific and local knowledge. Qualitative observations completed at over 10 000 plots in the United States showed that while soil degradation remains an issue, loss of biotic integrity is more widespread. Quantitative soil and vegetation data collected at the same locations support the assessments and serve as a baseline for monitoring the effectiveness of policy and management initiatives, including responses to climate change. These results provide the information necessary to support strategic decisions by land managers and policy makers.

  18. Soil incubation studies with Cry1Ac protein indicate no adverse effect of Bt crops on soil microbial communities.

    PubMed

    Zhaolei, Li; Naishun, Bu; Xueping, Chen; Jun, Cui; Manqiu, Xiao; Zhiping, Song; Ming, Nie; Changming, Fang

    2018-05-15

    Bt crops that are transgenic crops engineered to produce Bt toxins which occur naturally with Bacillus thuringiensis (Bt) have been widely planted and its environmental risk assessment has been heavily debated. The effects of Bt crops on soil microbial communities are possible through changing the quantity and quality of C inputs and potential toxic activity of Bt protein on soil organisms. To date, the direct effects of Bt protein on soil microorganisms is unclear. Here we added Cry1Ac, one of the most commonly used Bt protein in Bt crops, to the soil and monitored changes in soil bacterial, fungal and archaeal diversities and community structures using ribosomal DNA-fingerprinting method, as well as their population sizes by real-time PCR over a 100-day period. Despite the fact that variations were observed in the indices of evenness, diversity and population sizes of bacteria, fungi and archaea with different Cry1Ac addition rates up to 100ngg -1 soil, the indices of soil microbial diversities and evennesses did not significantly shift with Cry1Ac protein addition, nor did population sizes change over time. The diversities of the dominant bacteria, fungi and archaea were not significantly changed, given Cry1Ac protein addition rates over a period of 100 days. These results suggested that Bt protein derived by cultivations of transgenic Bt crops is unlikely to cause transient or even persisting significant changes in soil microorganisms in field. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Genotypic Diversity of Escherichia coli in the Water and Soil of Tropical Watersheds in Hawaii ▿

    PubMed Central

    Goto, Dustin K.; Yan, Tao

    2011-01-01

    High levels of Escherichia coli were frequently detected in tropical soils in Hawaii, which present important environmental sources of E. coli to water bodies. This study systematically examined E. coli isolates from water and soil of several watersheds in Hawaii and observed high overall genotypic diversity (35.5% unique genotypes). In the Manoa watershed, fewer than 9.3% of the observed E. coli genotypes in water and 6.6% in soil were shared between different sampling sites, suggesting the lack of dominant fecal sources in the watershed. High temporal variability of E. coli genotypes in soil was also observed, which suggests a dynamic E. coli population corresponding with the frequently observed high concentrations in tropical soils. When E. coli genotypes detected from the same sampling events were compared, limited sharing between the soil and water samples was observed in the majority of comparisons (73.5%). However, several comparisons reported up to 33.3% overlap of E. coli genotypes between soil and water, illustrating the potential for soil-water interactions under favorable environmental conditions. In addition, genotype accumulation curves for E. coli from water and soil indicated that the sampling efforts in the Manoa watershed could not exhaust the overall genotypic diversity. Comparisons of E. coli genotypes from other watersheds on Oahu, Hawaii, identified no apparent grouping according to sampling locations. The results of the present study demonstrate the complexity of using E. coli as a fecal indicator bacterium in tropical watersheds and highlight the need to differentiate environmental sources of E. coli from fecal sources in water quality monitoring. PMID:21515724

  20. Soil Quality Indexing Strategies for Evaluating Sugarcane Expansion in Brazil

    PubMed Central

    Cherubin, Maurício R.; Karlen, Douglas L.; Cerri, Carlos E. P.; Franco, André L. C.; Tormena, Cássio A.; Davies, Christian A.; Cerri, Carlos C.

    2016-01-01

    Increasing demand for biofuel has intensified land-use change (LUC) for sugarcane (Saccharum officinarum) expansion in Brazil. Assessments of soil quality (SQ) response to this LUC are essential for quantifying and monitoring sustainability of sugarcane production over time. Since there is not a universal methodology for assessing SQ, we conducted a field-study at three sites within the largest sugarcane-producing region of Brazil to develop a SQ index (SQI). The most common LUC scenario (i.e., native vegetation to pasture to sugarcane) was evaluated using six SQI strategies with varying complexities. Thirty eight soil indicators were included in the total dataset. Two minimum datasets were selected: one using principal component analysis (7 indicators) and the other based on expert opinion (5 indicators). Non-linear scoring curves were used to interpret the indicator values. Weighted and non-weighted additive methods were used to combine individual indicator scores into an overall SQI. Long-term conversion from native vegetation to extensive pasture significantly decreased overall SQ. In contrast, conversion from pasture to sugarcane had no significant impact on overall SQ at the regional scale, but site-specific responses were found. In general, sugarcane production improved chemical attributes (i.e., higher macronutrient levels and lower soil acidity); however it has negative effects on physical and biological attributes (i.e., higher soil compaction and structural degradation as well as lower soil organic carbon (SOC), abundance and diversity of macrofauna and microbial activity). Overall, we found that simple, user-friendly strategies were as effective as more complex ones for identifying SQ changes. Therefore, as a protocol for SQ assessments in Brazilian sugarcane areas, we recommend using a small number of indicators (e.g., pH, P, K, Visual Evaluation of Soil Structure -VESS scores and SOC concentration) and proportional weighting to reflect chemical, physical and biological processes within the soil. Our SQ evaluations also suggest that current approaches for expanding Brazilian sugarcane production by converting degraded pasture land to cropland can be a sustainable strategy for meeting increasing biofuel demand. However, management practices that alleviate negative impacts on soil physical and biological indicators must be prioritized within sugarcane producing areas to prevent unintentional SQ degradation over time. PMID:26938642

  1. Soil Quality Indexing Strategies for Evaluating Sugarcane Expansion in Brazil.

    PubMed

    Cherubin, Maurício R; Karlen, Douglas L; Cerri, Carlos E P; Franco, André L C; Tormena, Cássio A; Davies, Christian A; Cerri, Carlos C

    2016-01-01

    Increasing demand for biofuel has intensified land-use change (LUC) for sugarcane (Saccharum officinarum) expansion in Brazil. Assessments of soil quality (SQ) response to this LUC are essential for quantifying and monitoring sustainability of sugarcane production over time. Since there is not a universal methodology for assessing SQ, we conducted a field-study at three sites within the largest sugarcane-producing region of Brazil to develop a SQ index (SQI). The most common LUC scenario (i.e., native vegetation to pasture to sugarcane) was evaluated using six SQI strategies with varying complexities. Thirty eight soil indicators were included in the total dataset. Two minimum datasets were selected: one using principal component analysis (7 indicators) and the other based on expert opinion (5 indicators). Non-linear scoring curves were used to interpret the indicator values. Weighted and non-weighted additive methods were used to combine individual indicator scores into an overall SQI. Long-term conversion from native vegetation to extensive pasture significantly decreased overall SQ. In contrast, conversion from pasture to sugarcane had no significant impact on overall SQ at the regional scale, but site-specific responses were found. In general, sugarcane production improved chemical attributes (i.e., higher macronutrient levels and lower soil acidity); however it has negative effects on physical and biological attributes (i.e., higher soil compaction and structural degradation as well as lower soil organic carbon (SOC), abundance and diversity of macrofauna and microbial activity). Overall, we found that simple, user-friendly strategies were as effective as more complex ones for identifying SQ changes. Therefore, as a protocol for SQ assessments in Brazilian sugarcane areas, we recommend using a small number of indicators (e.g., pH, P, K, Visual Evaluation of Soil Structure -VESS scores and SOC concentration) and proportional weighting to reflect chemical, physical and biological processes within the soil. Our SQ evaluations also suggest that current approaches for expanding Brazilian sugarcane production by converting degraded pasture land to cropland can be a sustainable strategy for meeting increasing biofuel demand. However, management practices that alleviate negative impacts on soil physical and biological indicators must be prioritized within sugarcane producing areas to prevent unintentional SQ degradation over time.

  2. Monitoring Soil Bacteria with Community-Level Physiological Profiles Using Biolog™ ECO-Plates in the Republic of Tatarstan (Russia)

    NASA Astrophysics Data System (ADS)

    Galieva, G. Sh; Gilmutdinova, I. M.; Fomin, V. P.; Selivanovskaya, S. Yu; Galitskaya, P. Yu

    2018-01-01

    Conservation of soil fertility is one of the most important tasks of the present time. As microorganisms are among the key factors in forming soil fertility, monitoring their state in natural and anthropogenically changed soils is an important component of compulsory environmental monitoring. Modern methods make it possible to evaluate the diversity and the functions of soil microorganisms, however, unfortunately, not all the soils are analyzed with their help up to the present moment. The present investigation is aimed to evaluate the functional diversity of five natural soil samples in the Republic of Tatarstan (belonging to sod-podzol, sod-carbonate, alluvial, and gray types) using the method of Biolog EcoPlate according to the index of average well color development, alpha-biodiversiry Shannon index (H), amount of substrates consumed ®, and strategy of consumption of various carbon substrate groups. It was shown that the highest AWCD index was found in sample No 3 - alluvial soil type (3.159±0.460), the lowest one - in sample No 5 - gray soil type (0.572±0.230). Correlation of biological activity of microorganisms with organic matter content in soil was shown.

  3. Drought monitoring with soil moisture active passive (SMAP) measurements

    NASA Astrophysics Data System (ADS)

    Mishra, Ashok; Vu, Tue; Veettil, Anoop Valiya; Entekhabi, Dara

    2017-09-01

    Recent launch of space-borne systems to estimate surface soil moisture may expand the capability to map soil moisture deficit and drought with global coverage. In this study, we use Soil Moisture Active Passive (SMAP) soil moisture geophysical retrieval products from passive L-band radiometer to evaluate its applicability to forming agricultural drought indices. Agricultural drought is quantified using the Soil Water Deficit Index (SWDI) based on SMAP and soil properties (field capacity and available water content) information. The soil properties are computed using pedo-transfer function with soil characteristics derived from Harmonized World Soil Database. The SMAP soil moisture product needs to be rescaled to be compatible with the soil parameters derived from the in situ stations. In most locations, the rescaled SMAP information captured the dynamics of in situ soil moisture well and shows the expected lag between accumulations of precipitation and delayed increased in surface soil moisture. However, the SMAP soil moisture itself does not reveal the drought information. Therefore, the SMAP based SWDI (SMAP_SWDI) was computed to improve agriculture drought monitoring by using the latest soil moisture retrieval satellite technology. The formulation of SWDI does not depend on longer data and it will overcome the limited (short) length of SMAP data for agricultural drought studies. The SMAP_SWDI is further compared with in situ Atmospheric Water Deficit (AWD) Index. The comparison shows close agreement between SMAP_SWDI and AWD in drought monitoring over Contiguous United States (CONUS), especially in terms of drought characteristics. The SMAP_SWDI was used to construct drought maps for CONUS and compared with well-known drought indices, such as, AWD, Palmer Z-Index, sc-PDSI and SPEI. Overall the SMAP_SWDI is an effective agricultural drought indicator and it provides continuity and introduces new spatial mapping capability for drought monitoring. As an agricultural drought index, SMAP_SWDI has potential to capture short term moisture information similar to AWD and related drought indices.

  4. Testing the Visual Soil Assessment tool on Estonian farm fields

    NASA Astrophysics Data System (ADS)

    Reintam, Endla; Are, Mihkel; Selge, Are

    2017-04-01

    Soil quality estimation plays important role in decision making on farm as well on policy level. Sustaining the production ability and good health of the soil the chemical, physical and biological indicators should be taken into account. The system to use soil chemical parameters is usually quite well established in most European counties, including Estonia. However, measuring soil physical properties, such bulk density, porosity, penetration resistance, structural stability ect is time consuming, needs special tools and is highly weather dependent. In that reason these parameters are excluded from controllable quality parameters in policy in Estonia. Within the project "Interactive Soil Quality Assessment in Europe and China for Agricultural Productivity and Environmental Resilience" (iSQAPER) the visual soil assessment (VSA) tool was developed for easy detection of soil quality as well the different soil friendly agricultural management practices (AMP) were detected. The aim of current study was to test the VSA tool on Estonian farm fields under different management practices and compare the results with laboratory measurements. The main focus was set on soil physical parameters. Next to the VSA, the undisturbed soil samples were collected from the depth of 5-10 cm and 25-30 cm. The study revealed that results of a visually assessed soil physical parameters, such a soil structure, soil structural stability, soil porosity, presence of tillage pan, were confirmed by laboratory measurements in most cases. Soil water stable structure measurement on field (on 1 cm2 net in one 1 l box with 4-6 cm air dry clods for 5-10 min) underestimated very well structured soil on grassland and overestimated the structure aggregates stability of compacted soil. The slightly better soil quality was detected under no-tillage compared to ploughed soils. However, the ploughed soil got higher quality points compared with minimum tillage. The slurry application (organic manuring) had controversial impact - it increased the number of earthworms but decreased soil structural stability. Even the manuring with slurry increases organic matter amount in the soil, the compaction due to the use of heavy machinery during the application, especially on wet soil, reduces the positive effect of slurry.

  5. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes

    PubMed Central

    García-Palacios, Pablo; Maestre, Fernando T.; Kattge, Jens; Wall, Diana H.

    2015-01-01

    Climate and litter quality have been identified as major drivers of litter decomposition at large spatial scales. However, the role played by soil fauna remains largely unknown, despite its importance for litter fragmentation and microbial activity. We synthesized litterbag studies to quantify the effect sizes of soil fauna on litter decomposition rates at the global and biome scales, and to assess how climate, litter quality and soil fauna interact to determine such rates. Soil fauna consistently enhanced litter decomposition at both global and biome scales (average increment ~27%). However, climate and litter quality differently modulated the effects of soil fauna on decomposition rates between biomes, from climate-driven biomes to those where climate effects were mediated by changes in litter quality. Our results advocate for the inclusion of biome-specific soil fauna effects on litter decomposition as a mean to reduce the unexplained variation in large-scale decomposition models. PMID:23763716

  6. Assessing the production and economic benefits from preventing cows grazing on wet soils in New Zealand.

    PubMed

    Laurenson, Seth; Houlbrooke, David J; Beukes, Pierre C

    2016-10-01

    Intensive grazing by cattle on wet pasture can have a negative effect on soil physical quality and future pasture production. On a North Otago dairy farm in New Zealand, experimental plots were monitored for four years to assess whether preventing cow grazing of wet pastures during the milking season would improve soil structure and pasture production compared with unrestricted access to pastures. The DairyNZ Whole Farm Model was used to scale up results to a farm system level and ascertain the cost benefit of deferred grazing management. Soils under deferred grazing management had significantly higher total porosity, yet no significant improvement in macroporosity (values ranging between 0.112 and 0.146 m(3)  m(-3) ). Annual pasture production did not differ between the control and deferred grazing treatments, averaging 17.0 ± 3.8 and 17.9 ± 4.1 t DM ha(-1) year(-1) respectively (P > 0.05). Furthermore, whole farm modelling indicated that farm operating profit was reduced by NZ$1683 ha(-1) year(-1) (four-year average) under deferred grazing management. Deferring dairy cow grazing from wet Pallic soils in North Otago was effective in improving soil structure (measured as total soil porosity), yet did not lead to a significant increase in pasture production. Whole farm modelling indicated no economic benefit of removing cows from wet soils during the milking season. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Radon monitoring and hazard prediction in Ireland

    NASA Astrophysics Data System (ADS)

    Elio, Javier; Crowley, Quentin; Scanlon, Ray; Hodgson, Jim; Cooper, Mark; Long, Stephanie

    2016-04-01

    Radon is a naturally occurring radioactive gas which forms as a decay product from uranium. It is the largest source of natural ionizing radiation affecting the global population. When radon is inhaled, its short-lived decay products can interact with lung tissue leading to DNA damage and development of lung cancer. Ireland has among the highest levels of radon in Europe and eighth highest of an OECD survey of 29 countries. Every year some two hundred and fifty cases of lung cancer in Ireland are linked to radon exposure. This new research project will build upon previous efforts of radon monitoring in Ireland to construct a high-resolution radon hazard map. This will be achieved using recently available high-resolution airborne gamma-ray spectrometry (radiometric) and soil geochemistry data (http://www.tellus.ie/), indoor radon concentrations (http://www.epa.ie/radiation), and new direct measurement of soil radon. In this regard, legacy indoor radon concentrations will be correlated with soil U and Th concentrations and other geogenic data. This is a new approach since the vast majority of countries with a national radon monitoring programme rely on indoor radon measurements, or have a spatially limited dataset of soil radon measurements. Careful attention will be given to areas where an indicative high radon hazard based on geogenic factors does not match high indoor radon concentrations. Where such areas exist, it may imply that some parameter(s) in the predictive model does not match that of the environment. These areas will be subjected to measurement of radon soil gas using a combination of time averaged (passive) and time dependant (active) measurements in order to better understand factors affecting production, transport and accumulation of radon in the natural environment. Such mapping of radon-prone areas will ultimately help to inform when prevention and remediation measures are necessary, reducing the radon exposure of the population. Therefore, given that an estimated 250,000 people in Ireland are exposed to high radon levels, the findings of this research stand to make a considerable positive impact in enhancing the quality of life and long-term health for a significant proportion of inhabitants.

  8. Metal enrichment of soils following the April 2012-2013 eruptive activity of the Popocatépetl volcano, Puebla, Mexico.

    PubMed

    Rodriguez-Espinosa, P F; Jonathan, M P; Morales-García, S S; Villegas, Lorena Elizabeth Campos; Martínez-Tavera, E; Muñoz-Sevilla, N P; Cardona, Miguel Alvarado

    2015-11-01

    We analyzed the total (Zn, Pb, Ni, Hg, Cr, Cd, Cu, As) and partially leachable metals (PLMs) in 25 ash and soil samples from recent (2012-2013) eruptions of the Popocatépetl Volcano in Central Mexico. More recent ash and soil samples from volcanic activity in 2012-2013 had higher metal concentrations than older samples from eruptions in 1997 suggesting that the naturally highly volatile and mobile metals leach into nearby fresh water sources. The higher proportions of As (74.72%), Zn (44.64%), Cu (42.50%), and Hg (32.86%) reflect not only their considerable mobility but also the fact that they are dissolved and accumulated quickly following an eruption. Comparison of our concentration patterns with sediment quality guidelines indicates that the Cu, Cd, Cr, Hg, Ni, and Pb concentrations are higher than permissible limits; this situation must be monitored closely as these concentrations may reach lethal levels in the future.

  9. Environmental monitoring handbook for coal conversion facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salk, M.S.; DeCicco, S.G.

    1978-05-01

    The primary objectives of the Department of Energy's (DOE) coal conversion program are to demonstrate the environmental acceptability, technical feasibility, and economic viability of various technologies for gaseous, liquid, and solid fuels from coal. The Environmental Monitoring Handbook for Coal Conversion Facilities will help accomplish the objective of environmental acceptability by guiding the planning and execution of socioeconomic and environmental monitoring programs for demonstration facilities. These programs will provide information adequate to (1) predict, insofar as is possible, the potential impacts of construction and operation of a coal conversion plant, (2) verify the occurrence of these or any other impactsmore » during construction and operation, (3) determine the adequacy of mitigating measures to protect the environment, (4) develop effluent source terms for process discharges, and (5) determine the effectiveness of pollution control equipment. Although useful in a variety of areas, the handbook is intended primarily for contractors who, as industrial partners with DOE, are building coal conversion plants. For the contractor it is a practical guide on (1) the methodology for developing site- and process-specific environmental monitoring programs, (2) state-of-the-art sampling and analytical techniques, and (3) impact analyses.To correspond to the phases of project activity, the subject matter is divided into four stages of monitoring: (1) a reconnaissance or synoptic survey, (2) preconstruction or baseline, (3) construction, and (4) operation, including process monitoring (prepared by Radian Corp., McLean, Va.). For each stage of monitoring, guidelines are given on socioeconomics, aquatic and terrestrial ecology, air quality and meteorology, surface and groundwater quality, geohydrology and soil survey, and surface water hydrology.« less

  10. CAOS: the nested catchment soil-vegetation-atmosphere observation platform

    NASA Astrophysics Data System (ADS)

    Weiler, Markus; Blume, Theresa

    2016-04-01

    Most catchment based observations linking hydrometeorology, ecohydrology, soil hydrology and hydrogeology are typically not integrated with each other and lack a consistent and appropriate spatial-temporal resolution. Within the research network CAOS (Catchments As Organized Systems), we have initiated and developed a novel and integrated observation platform in several catchments in Luxembourg. In 20 nested catchments covering three distinct geologies the subscale processes at the bedrock-soil-vegetation-atmosphere interface are being monitored at 46 sensor cluster locations. Each sensor cluster is designed to observe a variety of different fluxes and state variables above and below ground, in the saturated and unsaturated zone. The numbers of sensors are chosen to capture the spatial variability as well the average dynamics. At each of these sensor clusters three soil moisture profiles with sensors at different depths, four soil temperature profiles as well as matric potential, air temperature, relative humidity, global radiation, rainfall/throughfall, sapflow and shallow groundwater and stream water levels are measured continuously. In addition, most sensors also measure temperature (water, soil, atmosphere) and electrical conductivity. This setup allows us to determine the local water and energy balance at each of these sites. The discharge gauging sites in the nested catchments are also equipped with automatic water samplers to monitor water quality and water stable isotopes continuously. Furthermore, water temperature and electrical conductivity observations are extended to over 120 locations distributed across the entire stream network to capture the energy exchange between the groundwater, stream water and atmosphere. The measurements at the sensor clusters are complemented by hydrometeorological observations (rain radar, network of distrometers and dense network of precipitation gauges) and linked with high resolution meteorological models. In this presentation, we will highlight the potential of this integrated observation platform to estimate energy and water exchange between the terrestrial and aquatic systems and the atmosphere, to trace water flow pathways in the unsaturated and saturated zone, and to understand the organization of processes and fluxes and thus runoff generation at different temporal and spatial scales.

  11. How grazing affects soil quality of soils formed in the glaciated northeastern United States.

    PubMed

    Cox, Alissa H; Amador, José A

    2018-02-21

    Historically, much of the New England landscape was converted to pasture for grazing animals and harvesting hay. Both consumer demand for local sustainably produced food, and the number of small farms is increasing in RI, highlighting the importance of characterizing the effects livestock have on the quality of pasture soils. To assess how livestock affect pasture on Charlton and Canton soils series in RI, we examined soil quality in farms raising beef cattle (Bos taurus), sheep (Ovis aries), and horses (Equus ferus caballus), using hayed pastures as a control. We sampled three pastures per livestock type and three control hayed pastures in May, August, and October 2012. Hay fields and pastures grazed by sheep had statistically significant (P < 0.001) better soil quality than pastures grazed by beef cattle or horses. This was driven by parameters including penetration resistance, bulk density, aggregate stability, and infiltration rate. Hayfields also showed higher soil quality measures than grazed pastures for organic matter content and active C. In addition, significant differences in nitrate and phosphate concentrations were observed among livestock types. Respiration and infiltration rates, pH, and ammonium concentrations, on the other hand, did not differ significantly among pasture types. When all soil quality indicators in this study were weighed equally, soil quality scores followed the order: hay > sheep > beef cattle > horses. The results of our study provide baseline data on the effect different types of livestock have on pasture soil quality in RI, which may be useful in making sound land use and agricultural management decisions.

  12. Near infrared spectra are more sensitive to land use changes than physical, chemical and biological soil properties

    NASA Astrophysics Data System (ADS)

    Guerrero, C.; Zornoza, R.; Mataix-Solera, J.; Mataix-Beneyto, J.; Scow, K.

    2009-04-01

    We studied the sensibility of the near infrared spectra (NIR) of soils to the changes caused by land use, and we compared with the sensibility of different sets of physical, chemical and biological soil properties. For this purpose, we selected three land uses, constituted by forest, almond trees orchards, and orchards abandoned between 10 and 15 years previously to sampling. Sampling was carried out in four different locations from the province of Alicante (SE Spain). We used discriminant analysis (DA) using different sets of soil properties. The different sets tested in this study using DA were: (1) physical and chemical properties (organic carbon, total nitrogen, available phosphorus, pH, electrical conductivity, cation exchange capacity, aggregate stability, water holding capacity, and available Ca, Mg, K and Na), (2) biochemical properties (microbial biomass carbon, basal respiration and urease, phosphatase and β-glucosidase activities), (3) phospholipids fatty acids (PLFAs), (4) physical, chemical and biochemical properties (all properties of the previous sets), and (5) the NIR spectra of soils (scores of the principal components). In general, all sets of properties were sensible to land use. This was observed in the DAs by the separation (more or less clear) of samples in groups defined by land use (irrespective of site). The worst results were obtained using soil physical and chemical properties. The combination of physical, chemical and biological properties enhanced the separation of samples in groups, indicating higher sensibility. It is accepted than combination of properties of different nature is more effective to evaluate the soil quality. The microbial community structure (PLFAs) was highly sensible to the land use, grouping correctly the 100% of the samples according with the land use. The NIR spectra were also sensitive to land use. The scores of the first 5 components, which explained 99.97% of the variance, grouped correctly the 85% of the soil samples by land use, but were unable to group correctly the 100% of the samples. Surprisingly, when the scarce variance presents in components 5 to 40 was also used, the 100% of the samples were grouped by land use, as it was observed with PLFAs. But PLFAs analysis is expensive and time-consuming (some weeks). In contrast, only some minutes are needed for the obtainment of the NIR spectra. Additionally, no chemicals are need, decreasing the costs. The NIR spectrum of a soil contains relevant information about physical, chemical and biochemical properties. NIR spectrum could be considered as an integrated vision of soil quality, and as consequence offers an integrated vision of perturbations. Thus, NIR spectroscopy could be used as tool to monitoring soil quality in large areas. Acknowledgements: Authors acknowledge to "Bancaja-UMH" for the financial support of the project "NIRPRO"

  13. Soil microbial diversity and activity linked to crop yield and quality in a dryland organic wheat production system

    USDA-ARS?s Scientific Manuscript database

    One of the primary goals of organic agriculture is increasing soil quality through the enhancement of soil biological diversity and activity. Greater soil microbial activity and diversity increase soil organic matter turnover and contribute to soil fertility, one of the main challenges associated wi...

  14. Impacts of biofuel expansion on soil quality and carbon dynamics in a central Iowa watershed

    USDA-ARS?s Scientific Manuscript database

    Crop residues (plant litter) on the soil surface helps decrease soil erosion, increase water infiltration, increase soil organic matter, and improve soil quality. Thus, management of crop residues is an integral part of most conservation tillage systems. Crop residue cover is used to classify soil t...

  15. Recovery of microbial community structure and functioning after wildfire in semi-arid environments: optimising methods for monitoring and assessment

    NASA Astrophysics Data System (ADS)

    Muñoz-Rojas, Miriam; Martini, Dylan; Erickson, Todd; Merritt, David; Dixon, Kingsley

    2015-04-01

    Introduction In semi-arid areas such as northern Western Australia, wildfires are a natural part of the environment and many ecosystems in these landscapes have evolved and developed a strong relationship with fire. Soil microbial communities play a crucial role in ecosystem processes by regulating the cycling of nutrients via decomposition, mineralization, and immobilization processes. Thus, the structure (e.g. soil microbial biomass) and functioning (e.g. soil microbial activity) of microbial communities, as well as their changes after ecosystem disturbance, can be useful indicators of soil quality and health recovery. In this research, we assess the impacts of fire on soil microbial communities and their recovery in a biodiverse semi-arid environment of Western Australia (Pilbara region). New methods for determining soil microbial respiration as an indicator of microbial activity and soil health are also tested. Methodology Soil samples were collected from 10 similar ecosystems in the Pilbara with analogous native vegetation, but differing levels of post-fire disturbance (i.e. 3 months, 1 year, 5, 7 and 14 years after wildfire). Soil microbial activity was measured with the Solvita test which determines soil microbial respiration rate based on the measurement of the CO2 burst of a dry soil after it is moistened. Soils were dried and re-wetted and a CO2 probe was inserted before incubation at constant conditions of 25°C during 24 h. Measurements were taken with a digital mini spectrometer. Microbial (bacteria and fungi) biomass and community composition were measured by phospholipid fatty acid analysis (PLFA). Results Immediately after the fire (i.e. 3 months), soil microbial activity and microbial biomass are similar to 14 years 'undisturbed' levels (53.18±3.68 ppm CO2-CO and 14.07±0.65 mg kg-1, respectively). However, after the first year post-fire, with larger plant productivity, microbial biomass and microbial activity increase rapidly, peaking after 5-7 years post fire (70.70±8.94 ppm CO2-CO and 21.67±2.62 mg kg-1, respectively). Microbial activity measured with the Solvita test was significantly correlated (R Pearson > 0.7; P < 0.001) with microbial parameters analysed with PLFA such as microbial biomass, bacteria biomass or mycorrhizhal fungi. This method has proven to be reliable, fast and easy to interpret for assessment of soil microbial activity in the recovery of soil quality during the recovery after fire. Keywords Pilbara region, biodiverse ecosystems, microbial biomass, microbial respiration, Solvita test, CO2 burst.

  16. Soil quality: Some basic considerations and case studies

    Treesearch

    Dale W. Johnson

    2010-01-01

    Some fundamental properties of soils that pertain to the concept of soil quality are discussed including a discussion of what can and cannot be changed with management.Case studies showing the effects of N-fixing vegetation and N-enrichment effects on invasive species are provided to illustrate the complications that may arise from applying one soil quality standard to...

  17. An ensemble-based algorithm for optimizing the configuration of an in situ soil moisture monitoring network

    NASA Astrophysics Data System (ADS)

    De Vleeschouwer, Niels; Verhoest, Niko E. C.; Gobeyn, Sacha; De Baets, Bernard; Verwaeren, Jan; Pauwels, Valentijn R. N.

    2015-04-01

    The continuous monitoring of soil moisture in a permanent network can yield an interesting data product for use in hydrological modeling. Major advantages of in situ observations compared to remote sensing products are the potential vertical extent of the measurements, the smaller temporal resolution of the observation time series, the smaller impact of land cover variability on the observation bias, etc. However, two major disadvantages are the typically small integration volume of in situ measurements, and the often large spacing between monitoring locations. This causes only a small part of the modeling domain to be directly observed. Furthermore, the spatial configuration of the monitoring network is typically non-dynamic in time. Generally, e.g. when applying data assimilation, maximizing the observed information under given circumstances will lead to a better qualitative and quantitative insight of the hydrological system. It is therefore advisable to perform a prior analysis in order to select those monitoring locations which are most predictive for the unobserved modeling domain. This research focuses on optimizing the configuration of a soil moisture monitoring network in the catchment of the Bellebeek, situated in Belgium. A recursive algorithm, strongly linked to the equations of the Ensemble Kalman Filter, has been developed to select the most predictive locations in the catchment. The basic idea behind the algorithm is twofold. On the one hand a minimization of the modeled soil moisture ensemble error covariance between the different monitoring locations is intended. This causes the monitoring locations to be as independent as possible regarding the modeled soil moisture dynamics. On the other hand, the modeled soil moisture ensemble error covariance between the monitoring locations and the unobserved modeling domain is maximized. The latter causes a selection of monitoring locations which are more predictive towards unobserved locations. The main factors that will influence the outcome of the algorithm are the following: the choice of the hydrological model, the uncertainty model applied for ensemble generation, the general wetness of the catchment during which the error covariance is computed, etc. In this research the influence of the latter two is examined more in-depth. Furthermore, the optimal network configuration resulting from the newly developed algorithm is compared to network configurations obtained by two other algorithms. The first algorithm is based on a temporal stability analysis of the modeled soil moisture in order to identify catchment representative monitoring locations with regard to average conditions. The second algorithm involves the clustering of available spatially distributed data (e.g. land cover and soil maps) that is not obtained by hydrological modeling.

  18. Primary factors affecting water quality and quantity in four watersheds in Eastern Puerto Rico

    USGS Publications Warehouse

    Murphy, Sheila F.; Stallard, Robert F.

    2009-01-01

    As part of the U.S. Geological Survey (USGS) Water, Energy, and Biogeochemical Budgets (WEBB) program, four small watersheds in eastern Puerto Rico were monitored to identify and evaluate the effects of geology, landcover, atmospheric deposition, and other factors on stream water quality and quantity. Two catchments are located on coarse-grained granitic plutonic rocks, which weather to quartz- and clay-rich, sandy soils, and two are located on fine-grained volcanic rocks and volcaniclastic sediments, which weather to quartz-poor, fine-grained soils. These differing soil materials result in different hydrologic regimes. Soils on the granitic rocks have greater permeability than those developed on the volcaniclastic rocks, allowing more water infiltration and potentially greater landslide erosion rates. For each bedrock type, one catchment was covered with mature rainforest, and the other catchment was affected by agricultural practices typical of eastern Puerto Rico. These practices led to the erosion of much of the original surface soil in the agricultural watersheds, which introduced large quantities of sediment to stream channels. The agricultural watersheds are undergoing natural reforestation, like much of Puerto Rico. Eastern Puerto Rico receives large atmospheric inputs of marine salts, pollutants from the Northern Hemisphere, and Saharan Desert dust. Marine salts contribute over 80 percent of the ionic charge in precipitation, with peak inputs in January. Intense storms, mostly hurricanes, are associated with exceptionally high chloride concentrations in stream waters. Temperate pollution contributes nitrate, ammonia, and sulfate, with maximum inputs during northern cold fronts in January, April, and May. Pollution inputs have increased through time. Desert dust peaks in June and July, during times of maximum dust transport from the Saharan Desert across the Atlantic Ocean.

  19. Effects of Grazing and Fire Frequency on Floristic Quality and its Relationship to Indicators of Soil Quality in Tallgrass Prairie

    NASA Astrophysics Data System (ADS)

    Manning, George C.; Baer, Sara G.; Blair, John M.

    2017-12-01

    Fire and grazing are widely used to manage grasslands for conservation purposes, but few studies have evaluated the effects of these drivers on the conservation value of plant communities measured by the floristic quality index (FQI). Further, the influence of fire and grazing on soil properties and functions are difficult for land managers and restoration practitioners to assess. The objectives of this study were to: (1) quantify the independent and interactive effects of grazing and fire frequency on floristic quality in native tallgrass prairie to provide potential benchmarks for community assessment, and (2) to explore whether floristic quality can serve as an indicator of soil structure and function for more holistic ecosystem assessments. A factorial combination of fire frequencies (1-2, 4, and 20 years return intervals) and grazing (by bison or ungrazed) treatments were sampled for plant species composition, and for several indicators of soil quality in lowland tallgrass prairie. Floristic quality, diversity, and richness were higher in grazed than ungrazed prairie over all fire frequencies ( P < 0.05). Available inorganic N, microbial biomass N, total N, and soil bulk density were also higher in grazed prairie soil over all fire frequencies ( P < 0.05). Microbial biomass C, total organic C, and total soil N were positively correlated with FQI ( P < 0.05). This study shows that floristic quality and soil N pools are more strongly influenced by grazing than fire and that floristic quality can be an indicator of total soil C and N stocks in never cultivated lowland prairie.

  20. Effects of Grazing and Fire Frequency on Floristic Quality and its Relationship to Indicators of Soil Quality in Tallgrass Prairie.

    PubMed

    Manning, George C; Baer, Sara G; Blair, John M

    2017-12-01

    Fire and grazing are widely used to manage grasslands for conservation purposes, but few studies have evaluated the effects of these drivers on the conservation value of plant communities measured by the floristic quality index (FQI). Further, the influence of fire and grazing on soil properties and functions are difficult for land managers and restoration practitioners to assess. The objectives of this study were to: (1) quantify the independent and interactive effects of grazing and fire frequency on floristic quality in native tallgrass prairie to provide potential benchmarks for community assessment, and (2) to explore whether floristic quality can serve as an indicator of soil structure and function for more holistic ecosystem assessments. A factorial combination of fire frequencies (1-2, 4, and 20 years return intervals) and grazing (by bison or ungrazed) treatments were sampled for plant species composition, and for several indicators of soil quality in lowland tallgrass prairie. Floristic quality, diversity, and richness were higher in grazed than ungrazed prairie over all fire frequencies (P < 0.05). Available inorganic N, microbial biomass N, total N, and soil bulk density were also higher in grazed prairie soil over all fire frequencies (P < 0.05). Microbial biomass C, total organic C, and total soil N were positively correlated with FQI (P < 0.05). This study shows that floristic quality and soil N pools are more strongly influenced by grazing than fire and that floristic quality can be an indicator of total soil C and N stocks in never cultivated lowland prairie.

  1. Questionable Specificity of Genetic Total Faecal Pollution Markers for Integrated Water Quality Monitoring and Source Tracking

    NASA Astrophysics Data System (ADS)

    Vierheilig, Julia; Reischer, Georg H.; Farnleitner, Andreas H.

    2010-05-01

    Characterisation of microbial faecal hazards in water is a fundamental aspect for target-orientated water resources management to achieve appropriate water quality for various purposes like water supply or agriculture and thus to minimize related health risks. Nowadays the management of water resources increasingly demands detailed knowledge on the extent and the origin of microbial pollution. Cultivation of standard faecal indicator bacteria, which has been used for over a century to test the microbiological water quality, cannot sufficiently meet these challenges. The abundant intestinal bacterial populations are very promising alternative targets for modern faecal indication systems. Numerous assays for the detection of genetic markers targeting source-specific populations of the phylum Bacteroidetes have been developed in recent years. In some cases markers for total faecal pollution were also proposed in order to relate source-specific marker concentrations to general faecal pollution levels. However, microbial populations in intestinal and non-intestinal systems exhibit a dazzling array of diversity and molecular analysis of microbial faecal pollution has been based on a fragmentary puzzle of very limited sequence information. The aim of this study was to test the available qPCR-based methods detecting genetic Bacteroidetes markers for total faecal pollution in terms of their value and specificity as indicators of faecal pollution. We applied the AllBac (Layton et al., 2006) the BacUni (Kildare et al., 2007) and the Bacteroidetes (Dick and Field, 2004) assays on soil DNA samples. Samples were collected in well characterised karst spring catchments in Austria's Eastern Calcareous Alps. They were at various levels of altitude between 800 and 1800 meters above sea level and from several different habitats (woodland, alpine pastures, krummholz). In addition we tried to choose sampling sites representing a presumptive gradient of faecal pollution levels. For example sites with obvious faecal influence (e.g. right next to a cowpat) were included as well as more pristine sites without faecal influence from large animals (e.g. fenced areas). Surprisingly, results from investigations with the AllBac assay showed concentrations of the total faecal marker in soil in the range of 106 to 109 Marker Equivalents per g of soil, which is equal or only slightly lower than the concentrations of this particular marker in faeces or raw sewage. Preliminary results from the other tested assays seem to confirm that the targeted markers are also highly abundant in soils. In addition, the markers were present in comparable concentrations in soils from pristine locations as well as in soils under the potential influence of faeces giving a strong indication that these methods also target non-intestinal, autochthonous soil populations. In contrast, source-specific markers (ruminant-specific BacR and human-specific BacH, Reischer et al., 2007, 2006) could only be detected in 30 to 50% of the soil samples at concentrations close to the detection limit, which is at least four orders of magnitude lower than in faecal samples of the respective target sources, ruminant animals and humans. The achieved results call the applicability of the proposed qPCR-based assays for total faecal pollution into question. In fact the assays do not seem to be specific for intestinal Bacteroidetes populations at all and the respective marker concentration levels in pristine soils negate their applicability in the investigated areas. This study also emphasizes the need to test the specificity and sensitivity of qPCR-based assays for total faecal pollution on the local level and especially against non-intestinal environmental samples, which might contribute to marker levels in the aquatic compartment. In conclusion there is a strong demand for marker-based detection techniques for total faecal pollution in water quality monitoring and risk assessment but currently none of the tested assays seems to meet the methodical requirements.

  2. Long-term Effect of Pig Slurry Application on Soil Carbon Storage, Quality and Yield Sustainability in Murcia Region, Spain

    NASA Astrophysics Data System (ADS)

    Büyükkılıç Yanardaǧ, Asuman

    2013-04-01

    Sustainability of agriculture is now a major global concern, especially since the 1980s. Soil organic matter is very important in the proper functions of the soil, which is also a good indicator of soil quality. This is due to its influence on many of the chemical, physical, and biological processes that control the capacity of a soil to perform properly. Understanding of nutrient supply through organic matter mineralization in agricultural systems is essential for maintaining long-term quality and productivity. The composition of pig manure will have a profound impact on soil properties, quality and crop yield when used in agriculture. We studied the effects of pig slurry (PS) application as an organic fertilizer, trying to determine the optimum amount that can be added to the soil, and the effect on soil properties, quality, and productivity. We applied 3 different doses on silty loam soils: Single (D1), Double (D2), Triple (D3) and unfertilized plots (C) served as controls. Samples were collected at two different levels, surface (0-30 cm) and subsurface (30-60 cm). D1 application dose, which is the agronomic rate of N-requirement (170 kg N/ha/yr) (European Directive 91/676/CEE), is very appropriate in term of sustainable agriculture and also can improve physical, chemical and biological soil properties. Therefore that the long-term use of PS with low dose may necessarily enhance soil quality in the long term. There are many factors to be considered when attempting to assess the overall net impact of a management practice on productivity. Additions of pig manure to soils at agronomic rates (170 kg N ha-1 yr-1) to match crop nutrient requirements are expected to have a positive impact on soil productivity. Therefore, the benefits from the use of application depend on the management of PS, carbon and environmental quality. However, PS have high micronutrient contents, and for this reason the application of high doses can pollute soils and damage human, animal and plant health, which is not suitable in term of sustainable agriculture. Keywords: Management, Pig slurry, Productivity, Quality, Soil.

  3. Diagnosing soil moisture anomalies and neglected soil moisture source/sink processes via a thermal infrared-based two-source energy balance model

    USDA-ARS?s Scientific Manuscript database

    Atmospheric processes, especially those that occur in the surface and boundary layer, are significantly impacted by soil moisture (SM). Due to the observational gaps in the ground-based monitoring of SM, methodologies have been developed to monitor SM from satellite platforms. While many have focuse...

  4. Application of Terrestrial Microwave Remote Sensing to Agricultural Drought Monitoring

    NASA Astrophysics Data System (ADS)

    Crow, W. T.; Bolten, J. D.

    2014-12-01

    Root-zone soil moisture information is a valuable diagnostic for detecting the onset and severity of agricultural drought. Current attempts to globally monitor root-zone soil moisture are generally based on the application of soil water balance models driven by observed meteorological variables. Such systems, however, are prone to random error associated with: incorrect process model physics, poor parameter choices and noisy meteorological inputs. The presentation will describe attempts to remediate these sources of error via the assimilation of remotely-sensed surface soil moisture retrievals from satellite-based passive microwave sensors into a global soil water balance model. Results demonstrate the ability of satellite-based soil moisture retrieval products to significantly improve the global characterization of root-zone soil moisture - particularly in data-poor regions lacking adequate ground-based rain gage instrumentation. This success has lead to an on-going effort to implement an operational land data assimilation system at the United States Department of Agriculture's Foreign Agricultural Service (USDA FAS) to globally monitor variations in root-zone soil moisture availability via the integration of satellite-based precipitation and soil moisture information. Prospects for improving the performance of the USDA FAS system via the simultaneous assimilation of both passive and active-based soil moisture retrievals derived from the upcoming NASA Soil Moisture Active/Passive mission will also be discussed.

  5. Rapid in situ assessment for predicting soil quality using an algae-soaked disc seeding assay.

    PubMed

    Nam, Sun-Hwa; Moon, Jongmin; Kim, Shin Woong; Kim, Hakyeong; Jeong, Seung-Woo; An, Youn-Joo

    2017-11-16

    The soil quality of remediated land is altered and this land consequently exerts unexpected biological effects on terrestrial organisms. Therefore, field evaluation of such land should be conducted using biological indicators. Algae are a promising new biological indicator since they are a food source for organisms in higher soil trophic levels and easily sampled from the soil. Field evaluation of soil characteristics is preferred to be testing in laboratory conditions because many biological effects cannot be duplicated during laboratory evaluations. Herein, we describe a convenient and rapid algae-soaked disc seeding assay for assessing soil quality in the field based on soil algae. The collection of algae is easy and rapid and the method predicts the short-term quality of contaminated, remediated, and amended farm and paddy soils. The algae-soaked disc seeding assay is yet to be extensively evaluated, and the method cannot be applied to loamy sand soil in in situ evaluations. The algae-soaked disc seeding assay is recommended for prediction of soil quality in in situ evaluations because it reflects all variations in the environment. The algae-soaked disc seeding assay will help to develop management strategies for in situ evaluation.

  6. Spectroscopy as a diagnostic tool for urban soil contaminants

    NASA Astrophysics Data System (ADS)

    Brook, Anna; Kopel, Daniella

    2014-05-01

    Urbanization has become one of the major forces of change around the globe. Land use transformation, especially urbanization has the most profound influences of human activities because it affects so many of the planet's physical and biological systems. Land use changes directly impact the ability of the earth to continue to provide ecological services to human society and the other occupants of the ecosystems. The urban process gradually degrades and transforms agricultural and natural ecosystems into built environments. The urban environment includes cities, suburbs, peri-urban areas and towns. Urban ecosystems are highly heterogeneous due to the variety of land covers and land purposes. Thus, the choices on managing the extent and arranging the land cover patches (e.g., lawns) assist to shape the emergent structure and function of the urban ecosystems. As a result of ecological conditions and current management status the urban soils show substantial spatial heterogeneity. Whereas, adverse effects of pollutants on ecosystems have been demonstrated, one important need for environmental impact assessment have been defined as maintenance of long-term monitoring systems, which can enable to improve monitoring, modelling and assessment of various stressors in agriculture environment. Diffuse reflectance spectroscopy and diffuse reflectance Fourier-transform infrared (FTIR) spectroscopy across visible-near- short- mid- and long- wave infrared (0.4-14μm) has the potential to meet this demand. Relationships between spectral reflectance and soil properties, such as grain size distribution, moisture, iron oxides, carbonate content, and organic matter, have already been established in many studies (Krishnan et al. 1980, Ben-Dor and Banin 1995, Jarmer et al. 2008, Richter et al. 2009). The aims of this study are to develop diagnostic tool for heavy metals, polycyclic aromatic hydrocarbons, asbestos and other anthropogenic contaminants in urban soil using spectroscopy across 0.4-14μm spectral range. To examine the potential of the above-mentioned technique on contaminated and uncontaminated urban areas in Northern Israel, we propose to use both portable field spectrometers across 0.4-2.5μm and laboratory FTIR system across 3-14μm testing selected bare soil samples and integrate the obtained knowledge into the expert prototype system. The significances and contributions of the proposed work are expected in: 1) estimate morphological and biochemical characteristics of urban soils, 2) examine the possibility to detect early soil response to stress before damage occurs, 3) study the concentration of pollution on urban soils, 4) design and develop the methodology for a near real-time expert monitoring system. The present research will focus on spectral identification and characterization of urban soils toward quality assessment of the urban ecosystem.

  7. Effects of stormwater infiltration on quality of groundwater beneath retention and detention basins

    USGS Publications Warehouse

    Fischer, D.; Charles, E.G.; Baehr, A.L.

    2003-01-01

    Infiltration of storm water through detention and retention basins may increase the risk of groundwater contamination, especially in areas where the soil is sandy and the water table shallow, and contaminants may not have a chance to degrade or sorb onto soil particles before reaching the saturated zone. Groundwater from 16 monitoring wells installed in basins in southern New Jersey was compared to the quality of shallow groundwater from 30 wells in areas of new-urban land use. Basin groundwater contained much lower levels of dissolved oxygen, which affected concentrations of major ions. Patterns of volatile organic compound and pesticide occurrence in basin groundwater reflected the land use in the drainage areas served by the basins, and differed from patterns in background samples, exhibiting a greater occurrence of petroleum hydrocarbons and certain pesticides. Dilution effects and volatilization likely decrease the concentration and detection frequency of certain compounds commonly found in background groundwater. High recharge rates in storm water basins may cause loading factors to be substantial even when constituent concentrations in infiltrating storm water are relatively low.

  8. Quality and Trace Element Profile of Tunisian Olive Oils Obtained from Plants Irrigated with Treated Wastewater

    PubMed Central

    Benincasa, Cinzia; Gharsallaoui, Mariem; Perri, Enzo; Briccoli Bati, Caterina; Ayadi, Mohamed; Khlif, Moncen; Gabsi, Slimane

    2012-01-01

    In the present work the use of treated wastewater (TWW) to irrigate olive plants was monitored. This type of water is characterized by high salinity and retains a substantial amount of trace elements, organic and metallic compounds that can be transferred into the soil and into the plants and fruits. In order to evaluate the impact of TWW on the overall quality of the oils, the time of contact of the olives with the soil has been taken into account. Multi-element data were obtained using ICP-MS. Nineteen elements (Li, B, Na, Mg, Al, K, Ca, Sc, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Mo, Ba and La) were submitted for statistical analysis. Using analysis of variance, linear discriminant analysis and principal component analysis it was possible to differentiate between oils produced from different batches of olives whose plants received different types of water. Also, the results showed that there was correlation between the elemental and mineral composition of the water used to irrigate the olive plots and the elemental and mineral composition of the oils. PMID:22654625

  9. Land use impact on soil quality in eastern Himalayan region of India.

    PubMed

    Singh, A K; Bordoloi, L J; Kumar, Manoj; Hazarika, S; Parmar, Brajendra

    2014-04-01

    Quantitative assessment of soil quality is required to determine the sustainability of land uses in terms of environmental quality and plant productivity. Our objective was to identify the most appropriate soil quality indicators and to evaluate the impact of six most prevalent land use types (natural forestland, cultivated lowland, cultivated upland terrace, shifting cultivation, plantation land, and grassland) on soil quality in eastern Himalayan region of India. We collected 120 soil samples (20 cm depth) and analyzed them for 29 physical, chemical, and biological soil attributes. For selection of soil quality indicators, principal component analysis (PCA) was performed on the measured attributes, which provided four principal components (PC) with eigenvalues >1 and explaining at least 5% of the variance in dataset. The four PCs together explained 92.6% of the total variance. Based on rotated factor loadings of soil attributes, selected indicators were: soil organic carbon (SOC) from PC-1, exchangeable Al from PC-2, silt content from PC-3, and available P and Mn from PC-4. Indicators were transformed into scores (linear scoring method) and soil quality index (SQI) was determined, on a scale of 0-1, using the weighting factors obtained from PCA. SQI rating was the highest for the least-disturbed sites, i.e., natural forestland (0.93) and grassland (0.87), and the lowest for the most intensively cultivated site, i.e., cultivated upland terrace (0.44). Ratings for the other land uses were shifting cultivation (0.60) > cultivated low land (0.57) > plantation land (0.54). Overall contribution (in percent) of the indicators in determination of SQI was in the order: SOC (58%) > exch. Al (17.1%) > available P (8.9%) > available Mn (8.2%) > silt content (7.8%). Results of this study suggest SOC and exch. Al as the two most powerful indicators of soil quality in study area. Thus, organic C and soil acidity management holds the key to improve soil quality under many exploitatively cultivated land use systems in eastern Himalayan region of India.

  10. Monitoring water stable isotopic composition in soils using gas-permeable tubing and infrared laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Rothfuss, Youri; Vereecken, Harry; Brüggemann, Nicolas

    2013-06-01

    In soils, the isotopic composition of water (δ2H and δ18O) provides qualitative (e.g., location of the evaporation front) and quantitative (e.g., evaporation flux and root water uptake depths) information. However, the main disadvantage of the isotope methodology is that contrary to other soil state variables that can be monitored over long time periods, δ2H and δ18O are typically analyzed following destructive sampling. Here we present a nondestructive method for monitoring soil liquid water δ2H and δ18O over a wide range of water availability conditions and temperatures by sampling water vapor equilibrated with soil water using gas-permeable polypropylene tubing and a cavity ring-down laser absorption spectrometer. By analyzing water vapor δ2H and δ18O sampled with the tubing from a fine sand for temperatures ranging between 8°C and 24°C, we demonstrate that our new method is capable of monitoring δ2H and δ18O in soils online with high precision and after calibration, also with high accuracy. Our sampling protocol enabled detecting changes of δ2H and δ18O following nonfractionating addition and removal of liquid water and water vapor of different isotopic compositions. Finally, the time needed for the tubing to monitor these changes is compatible with the observed variations of δ2H and δ18O in soils under natural conditions.

  11. Microbiological indicators for assessing ecosystem soil quality and changes in it at degraded sites treated with compost

    NASA Astrophysics Data System (ADS)

    Ancona, Valeria; Barra Caracciolo, Anna; Grenni, Paola; Di Lenola, Martina; Calabrese, Angelantonio; Campanale, Claudia; Felice Uricchio, Vito

    2014-05-01

    Soil quality is defined as the capacity of a soil to function as a vital system, within natural or managed ecosystem boundaries, sustain plant and animal health and productivity, maintain or enhance air and water environment quality and support human health and habitation. Soil organisms are extremely diverse and contribute to a wide range of ecosystem services that are essential to the sustainable functioning of natural and managed ecosystems. In particular, microbial communities provide several ecosystem services, which ensure soil quality and fertility. In fact, they adapt promptly to environmental changes by varying their activity and by increasing the reproduction of populations that have favourable skills. The structure (e.g. cell abundance) and functioning (e.g. viability and activity) of natural microbial communities and changes in them under different environmental conditions can be considered useful indicators of soil quality state. In this work we studied the quality state of three different soils, located in Taranto Province (Southern Italy), affected by land degradation processes, such as organic matter depletion, desertification and contamination (PCB and metals). Moreover, compost, produced from selected organic waste, was added to the soils studied in order to improve their quality state. Soil samples were collected before and after compost addition and both microbial and chemical analyses were performed in order to evaluate the soil quality state at each site at different times. For this purpose, the microbiological indicators evaluated were bacterial abundance (DAPI counts), cell viability (Live/Dead method), dehydrogenase activity (DHA) and soil respiration. At the same time, the main physico-chemical soil characteristics (organic carbon, available phosphorous, total nitrogen, carbonate and water content, texture and pH) were also measured. Moreover, in the contaminated soil samples PCB and inorganic (e.g. Pb, Se, Sn, Zn) contaminants were analysed respectively by GC-MS and ICP-MS. The overall results showed that the bacterial structure and functioning were affected in different ways by the organic carbon availability and quality, and contaminant occurrence (organic or inorganic compounds). The compost treatment contributed to improve soil fertility and to increase cell number and activity after 7 months in the two low organic carbon content soils. At the polluted site a general increase in bacterial activity after compost addition was also observed and this might be related to a decrease in inorganic and organic contamination levels.

  12. Farm-scale variation of soil quality indices and association with edaphic properties

    USDA-ARS?s Scientific Manuscript database

    Soil organisms are indicators of dynamic soil quality because their community structure and population density are sensitive to management changes. However, edaphic properties can also affect soil organisms and high spatial variability can confound their utility for soil evaluation. In the present...

  13. Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil.

    PubMed

    Liu, Zhanjun; Rong, Qinlei; Zhou, Wei; Liang, Guoqing

    2017-01-01

    Understanding the effects of external organic and inorganic components on soil fertility and quality is essential for improving low-yielding soils. We conducted a field study over two consecutive rice growing seasons to investigate the effect of applying chemical fertilizer (NPK), NPK plus green manure (NPKG), NPK plus pig manure (NPKM), and NPK plus straw (NPKS) on the soil nutrient status, enzyme activities involved in C, N, P, and S cycling, microbial community and rice yields of yellow clayey soil. Results showed that the fertilized treatments significantly improved rice yields over the first three experimental seasons. Compared with the NPK treatment, organic amendments produced more favorable effects on soil productivity. Notably, the NPKM treatment exhibited the highest levels of nutrient availability, microbial biomass carbon (MBC), activities of most enzymes and the microbial community. This resulted in the highest soil quality index (SQI) and rice yield, indicating better soil fertility and quality. Significant differences in enzyme activities and the microbial community were observed among the treatments, and redundancy analysis showed that MBC and available N were the key determinants affecting the soil enzyme activities and microbial community. The SQI score of the non-fertilized control (0.72) was comparable to that of the NPK (0.77), NPKG (0.81) and NPKS (0.79) treatments but significantly lower compared with NPKM (0.85). The significant correlation between rice yield and SQI suggests that SQI can be a useful to quantify soil quality changes caused by different agricultural management practices. The results indicate that application of NPK plus pig manure is the preferred option to enhance SOC accumulation, improve soil fertility and quality, and increase rice yield in yellow clayey soil.

  14. Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil

    PubMed Central

    Liu, Zhanjun; Rong, Qinlei; Zhou, Wei; Liang, Guoqing

    2017-01-01

    Understanding the effects of external organic and inorganic components on soil fertility and quality is essential for improving low-yielding soils. We conducted a field study over two consecutive rice growing seasons to investigate the effect of applying chemical fertilizer (NPK), NPK plus green manure (NPKG), NPK plus pig manure (NPKM), and NPK plus straw (NPKS) on the soil nutrient status, enzyme activities involved in C, N, P, and S cycling, microbial community and rice yields of yellow clayey soil. Results showed that the fertilized treatments significantly improved rice yields over the first three experimental seasons. Compared with the NPK treatment, organic amendments produced more favorable effects on soil productivity. Notably, the NPKM treatment exhibited the highest levels of nutrient availability, microbial biomass carbon (MBC), activities of most enzymes and the microbial community. This resulted in the highest soil quality index (SQI) and rice yield, indicating better soil fertility and quality. Significant differences in enzyme activities and the microbial community were observed among the treatments, and redundancy analysis showed that MBC and available N were the key determinants affecting the soil enzyme activities and microbial community. The SQI score of the non-fertilized control (0.72) was comparable to that of the NPK (0.77), NPKG (0.81) and NPKS (0.79) treatments but significantly lower compared with NPKM (0.85). The significant correlation between rice yield and SQI suggests that SQI can be a useful to quantify soil quality changes caused by different agricultural management practices. The results indicate that application of NPK plus pig manure is the preferred option to enhance SOC accumulation, improve soil fertility and quality, and increase rice yield in yellow clayey soil. PMID:28263999

  15. Effect of soil in nutrient cycle assessment at dairy farms

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Maricke; de Boer, Imke; van Dam, Jos; van Middelaar, Corina; Stoof, Cathelijne

    2016-04-01

    Annual farm nutrient cycle assessments give valuable insight in the nutrient cycles and nutrient losses at dairy farms. It describes nutrient use efficiencies for the entire farm and for the underlying components cattle, manure, crops and soil. In many modelling studies, soil is kept as a constant factor, while soil quality is vital for soil functioning of the ecosystem. Improving soil quality will improve the nutrient cycle, and will also have positive effect on the soil functions crop production, water cycling and greenhouse gas mitigation. Spatial variation of soil properties within a farm, however, are not included in annual nutrient cycle assessments. Therefore it is impossible to identify fields where most profit can be gained by improving farm management at field level, and it is not possible to identify and to quantify nutrient flow path ways. The aim of this study is to develop a framework to improve the annual nutrient cycle assessment at Dutch dairy farms, by including soil properties and their spatial variation within farms. Soil type and soil quality will be described by visual soil assessment of soil quality characteristics. The visual observations will be linked to the nutrient cycle assessment, using soil-hydrological model SWAP. We will demonstrate how soil quality at field level can impact on crop production, eutrophication potential and greenhouse gas potential at farm level. Also, we will show how this framework can be used by farmers to improve their farm management. This new approach is focusing on annual nutrient cycle assessment, but could also be used in life cycle assessment. It will improve understanding of soil functioning and dairy farm management.

  16. [Soil quality assessment of forest stand in different plantation esosystems].

    PubMed

    Huang, Yu; Wang, Silong; Feng, Zongwei; Gao, Hong; Wang, Qingkui; Hu, Yalin; Yan, Shaokui

    2004-12-01

    After a clear-cutting of the first generation Cunninghamia lanceolata plantation in 1982, three plantation ecosystems, pure Michelia macclurei stand (PMS), pure Chinese-fir stand (PCS) and their mixed stand, were established in spring 1983, and their effects on soil characteristics were evaluated by measuring some soil physical, chemical, microbiological and biochemical parameters. After 20 years' plantation, all test indices showed differences among different forest management models. Both PMS and MCM had a favorable effect on soil fertility maintenance. Soil quality assessment showed that some soil functions, e.g., water availability, nutrient availability, root suitability and soil quality index were all in a moderate level under the mixed and pure PMS stands, whereas in a relatively lower level under successive PCS stand. The results also showed that there existed close correlations between soil total organic C (TOC), cation exchange capacity (CEC), microbial biomass-C (Cmic) and other soil physical, chemical and biological indices. Therefore, TOC, CEC and Cmic could be used as the indicators in assessing soil quality in this study area. In addition, there were also positive correlations between soil microbial biomass-C and TOC, soil microbial biomass-N and total N, and soil microbial biomass-P and total P in the present study.

  17. Detection of Viable Cryptosporidium parvum in Soil by Reverse Transcription–Real-Time PCR Targeting hsp70 mRNA ▿

    PubMed Central

    Liang, Zhanbei; Keeley, Ann

    2011-01-01

    Extraction of high-quality mRNA from Cryptosporidium parvum is a key step in PCR detection of viable oocysts in environmental samples. Current methods for monitoring oocysts are limited to water samples; therefore, the goal of this study was to develop a rapid and sensitive procedure for Cryptosporidium detection in soil samples. The efficiencies of five RNA extraction methods were compared (mRNA extraction with the Dynabeads mRNA Direct kit after chemical and physical sample treatments, and total RNA extraction methods using the FastRNA Pro Soil-Direct, PowerSoil Total RNA, E.Z.N.A. soil RNA, and Norgen soil RNA purification kits) for the direct detection of Cryptosporidium with oocyst-spiked sandy, loamy, and clay soils by using TaqMan reverse transcription-PCR. The study also evaluated the presence of inhibitors by synthesis and incorporation of an internal positive control (IPC) RNA into reverse transcription amplifications, used different facilitators (bovine serum albumin, yeast RNA, salmon DNA, skim milk powder, casein, polyvinylpyrrolidone, sodium hexametaphosphate, and Salmonella enterica serovar Typhi) to mitigate RNA binding on soil components, and applied various treatments (β-mercaptoethanol and bead beating) to inactivate RNase and ensure the complete lysis of oocysts. The results of spiking studies showed that Salmonella cells most efficiently relieved binding of RNA. With the inclusion of Salmonella during extraction, the most efficient mRNA method was Dynabeads, with a detection limit of 6 × 102 oocysts g−1 of sandy soil. The most efficient total RNA method was PowerSoil, with detection limits of 1.5 × 102, 1.5 × 103, and 1.5 × 104 C. parvum oocysts g−1 soil for sandy, loamy, and clay samples, respectively. PMID:21803904

  18. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept.

    PubMed

    Castellano, Michael J; Mueller, Kevin E; Olk, Daniel C; Sawyer, John E; Six, Johan

    2015-09-01

    Labile, 'high-quality', plant litters are hypothesized to promote soil organic matter (SOM) stabilization in mineral soil fractions that are physicochemically protected from rapid mineralization. However, the effect of litter quality on SOM stabilization is inconsistent. High-quality litters, characterized by high N concentrations, low C/N ratios, and low phenol/lignin concentrations, are not consistently stabilized in SOM with greater efficiency than 'low-quality' litters characterized by low N concentrations, high C/N ratios, and high phenol/lignin concentrations. Here, we attempt to resolve these inconsistent results by developing a new conceptual model that links litter quality to the soil C saturation concept. Our model builds on the Microbial Efficiency-Matrix Stabilization framework (Cotrufo et al., 2013) by suggesting the effect of litter quality on SOM stabilization is modulated by the extent of soil C saturation such that high-quality litters are not always stabilized in SOM with greater efficiency than low-quality litters. © 2015 John Wiley & Sons Ltd.

  19. Impacts of crop growth dynamics on soil quality at the regional scale

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2014-05-01

    Agricultural land use and in particular crop growth dynamics can greatly affect soil quality. Both the amount of soil lost from erosion by water and soil organic matter are key indicators for soil quality. The aim was to develop a modelling framework for quantifying the impacts of crop growth dynamics on soil quality at the regional scale with test case Flanders. A framework for modelling the impacts of crop growth on soil erosion and soil organic matter was developed by coupling the dynamic crop cover model REGCROP (Gobin, 2010) to the PESERA soil erosion model (Kirkby et al., 2009) and to the RothC carbon model (Coleman and Jenkinson, 1999). All three models are process-based, spatially distributed and intended as a regional diagnostic tool. A geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System). Crop allometric models were developed from variety trials to calculate crop residues for common crops in Flanders and subsequently derive stable organic matter fluxes to the soil. Results indicate that crop growth dynamics and crop rotations influence soil quality for a very large percentage. soil erosion mainly occurs in the southern part of Flanders, where silty to loamy soils and a hilly topography are responsible for soil loss rates of up to 40 t/ha. Parcels under maize, sugar beet and potatoes are most vulnerable to soil erosion. Crop residues of grain maize and winter wheat followed by catch crops contribute most to the total carbon sequestered in agricultural soils. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. This implies that agricultural policies that impact on agricultural land management influence soil quality for a large percentage. The coupled REGCROP-PESERA-ROTHC model allows for quantifying the impact of seasonal and year-to-year crop growth dynamics on soil quality. When coupled to a multi-annual crop rotation database both spatial and temporal analysis becomes possible and allows for decision support at both farm and regional level. The framework is therefore suited for further scenario analysis and impact assessment. The research is funded by the Belgian Science Policy Organisation (Belspo) under contract nr SD/RI/03A.

  20. Understanding natural capital

    USGS Publications Warehouse

    Stallard, Robert F.; Hall, Jefferson S.; Kirn, Vanessa; Yanguas-Fernandez, Estrella

    2015-01-01

    This chapter serves to introduce the geophysics of Neotropical steeplands. Topics are covered in a general manner with hyperlinks to active research and monitoring sites (such as the National Hurricane Center and US Geological Survey publication). Topics covered include ‘tropical climate and weather,’ ‘climate variations and trends,’ Neotropical ‘geology, and soils,’ ‘hillslopes and erosion,’ ‘lakes and reservoirs,’ and ‘effects of land cover on water quality and quantity.’ Obviously, this is a lot of information to cover in a short chapter, hence the use of hyperlinks. The last theme ‘effects of land cover on water quality and quantity’ is covered by case studies, in all of which I have been centrally involved. These studies were chosen because they are among the few studies with sufficient data of high enough quality to reach definitive conclusions.

  1. SBIR Phase II Final Report: Low cost Autonomous NMR and Multi-sensor Soil Monitoring Instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, David O.

    In this 32-month SBIR Phase 2 program, Vista Clara designed, assembled and successfully tested four new NMR instruments for soil moisture measurement and monitoring: An enhanced performance man-portable Dart NMR logging probe and control unit for rapid, mobile measurement in core holes and 2” PVC access wells; A prototype 4-level Dart NMR monitoring probe and prototype multi-sensor soil monitoring control unit for long-term unattended monitoring of soil moisture and other measurements in-situ; A non-invasive 1m x 1m Discus NMR soil moisture sensor with surface based magnet/coil array for rapid measurement of soil moisture in the top 50 cm of themore » subsurface; A non-invasive, ultra-lightweight Earth’s field surface NMR instrument for non-invasive measurement and mapping of soil moisture in the top 3 meters of the subsurface. The Phase 2 research and development achieved most, but not all of our technical objectives. The single-coil Dart in-situ sensor and control unit were fully developed, demonstrated and successfully commercialized within the Phase 2 period of performance. The multi-level version of the Dart probe was designed, assembled and demonstrated in Phase 2, but its final assembly and testing were delayed until close to the end of the Phase 2 performance period, which limited our opportunities for demonstration in field settings. Likewise, the multi-sensor version of the Dart control unit was designed and assembled, but not in time for it to be deployed for any long-term monitoring demonstrations. The prototype ultra-lightweight surface NMR instrument was developed and demonstrated, and this result will be carried forward into the development of a new flexible surface NMR instrument and commercial product in 2018.« less

  2. Effects of Forest Harvesting on Ecosystem Health in the Headwaters of the New York City Water Supply, Catskill Mountains, New York

    USGS Publications Warehouse

    McHale, Michael R.; Murdoch, Peter S.; Burns, Douglas A.; Baldigo, Barry P.

    2008-01-01

    The effects of forest clearcutting and selective harvesting on forest soils, soil and stream water chemistry, forest regrowth, and aquatic communities were studied in four small headwater catchments. This research was conducted to identify the sensitivity of forested ecosystems to forest disturbance in the northeastern United States. The study area was in the headwaters of the Neversink Reservoir watershed, part of the New York City water supply system, in the Catskill Mountains of southeastern New York. Two sub-catchments of the Shelter Creek watershed were selectively harvested, one in its northern half and one more heavily in its southern half in 1995?96, the Dry Creek watershed was clearcut in the winter of 1996?97, and the Clear Creek watershed was left undisturbed and monitored as a control site. Monitoring was conducted from 4 years before the harvests until 4 years after the harvests. Clearcutting caused a large release of nitrate (NO3-) from watershed soils and a concurrent release of inorganic monomeric aluminum (Alim), which is toxic to some aquatic biota. The increased soil NO3- concentrations measured after the harvest could be completely accounted for by the decrease in nitrogen (N) uptake by watershed trees, rather than an increase in N mineralization and nitrification. The large increase in stream water NO3- and Alim concentrations caused 100-percent mortality of caged brook trout (Salvelinus fontinalis) during the first year after the clearcut and adversely affected macroinvertebrate communities for 2 years after the harvest. Nutrient uptake and biomass accumulation increased in uncut mature trees after the two selective harvests. There was no increase in stream-water NO3- or Alim concentrations, and so there were no adverse affects on macroinvertebrate or trout communities. The amount of tree biomass that can be removed without causing a sharp increase in stream-water NO3- and Alim stream-water concentrations is unknown, but probably depends on the history of forest-disturbance and acid deposition and the level of soil acidification. Results of this study indicate that macroinvertebrate and brook trout communities were sensitive to clearcutting and that deer browsing may affect water quality by suppressing forest regeneration and nutrient uptake. Further studies of selective harvests could identify the harvesting threshold below which changes in water quality and soil chemistry are minimized, and nutrient retention is maximized, thus reducing the damage that logging can inflict on stream and aquatic communities.

  3. Value of Available Global Soil Moisture Products for Agricultural Monitoring

    NASA Astrophysics Data System (ADS)

    Mladenova, Iliana; Bolten, John; Crow, Wade; de Jeu, Richard

    2016-04-01

    The first operationally derived and publicly distributed global soil moil moisture product was initiated with the launch of the Advanced Scanning Microwave Mission on the NASA's Earth Observing System Aqua satellite (AMSR-E). AMSR-E failed in late 2011, but its legacy is continued by AMSR2, launched in 2012 on the JAXA Global Change Observation Mission-Water (GCOM-W) mission. AMSR is a multi-frequency dual-polarization instrument, where the lowest two frequencies (C- and X-band) were used for soil moisture retrieval. Theoretical research and small-/field-scale airborne campaigns, however, have demonstrated that soil moisture would be best monitored using L-band-based observations. This consequently led to the development and launch of the first L-band-based mission-the ESA's Soil Moisture Ocean Salinity (SMOS) mission (2009). In early 2015 NASA launched the second L-band-based mission, the Soil Moisture Active Passive (SMAP). These satellite-based soil moisture products have been demonstrated to be invaluable sources of information for mapping water stress areas, crop monitoring and yield forecasting. Thus, a number of agricultural agencies routinely utilize and rely on global soil moisture products for improving their decision making activities, determining global crop production and crop prices, identifying food restricted areas, etc. The basic premise of applying soil moisture observations for vegetation monitoring is that the change in soil moisture conditions will precede the change in vegetation status, suggesting that soil moisture can be used as an early indicator of expected crop condition change. Here this relationship was evaluated across multiple microwave frequencies by examining the lag rank cross-correlation coefficient between the soil moisture observations and the Normalized Difference Vegetation Index (NDVI). A main goal of our analysis is to evaluate and inter-compare the value of the different soil moisture products derived using L-band (SMOS) versus C-/X-band (AMSR2) observations. The soil moisture products analyzed here were derived using the Land Parameter Retrieval Model.

  4. Soil aggregation and glomalin in a soil quality management study in a cold, semi-arid region

    USDA-ARS?s Scientific Manuscript database

    Global food insecurity and rapidly diminishing water, soil, and energy resources are putting pressure on agroecosystems to efficiently produce more food while maintaining or enhancing soil quality, particularly soil aggregation. A field study established in 1993 near Mandan, ND sought to evaluate im...

  5. Remotely monitoring evaporation rate and soil water status using thermal imaging and "three-temperatures model (3T Model)" under field-scale conditions.

    PubMed

    Qiu, Guo Yu; Zhao, Ming

    2010-03-01

    Remote monitoring of soil evaporation and soil water status is necessary for water resource and environment management. Ground based remote sensing can be the bridge between satellite remote sensing and ground-based point measurement. The primary object of this study is to provide an algorithm to estimate evaporation and soil water status by remote sensing and to verify its accuracy. Observations were carried out in a flat field with varied soil water content. High-resolution thermal images were taken with a thermal camera; soil evaporation was measured with a weighing lysimeter; weather data were recorded at a nearby meteorological station. Based on the thermal imaging and the three-temperatures model (3T model), we developed an algorithm to estimate soil evaporation and soil water status. The required parameters of the proposed method were soil surface temperature, air temperature, and solar radiation. By using the proposed method, daily variation in soil evaporation was estimated. Meanwhile, soil water status was remotely monitored by using the soil evaporation transfer coefficient. Results showed that the daily variation trends of measured and estimated evaporation agreed with each other, with a regression line of y = 0.92x and coefficient of determination R(2) = 0.69. The simplicity of the proposed method makes the 3T model a potentially valuable tool for remote sensing.

  6. Introducing litter quality to the ecosystem model LPJ-GUESS: Effects on short- and long-term soil carbon dynamics

    NASA Astrophysics Data System (ADS)

    Portner, Hanspeter; Wolf, Annett; Rühr, Nadine; Bugmann, Harald

    2010-05-01

    Many biogeochemical models have been applied to study the response of the carbon cycle to changes in climate, whereby the process of carbon uptake (photosynthesis) has usually gained more attention than the equally important process of carbon release by respiration. The decomposition of soil organic matter is driven by a combination of factors like soil temperature, soil moisture and litter quality. We have introduced dependence on litter substrate quality to heterotrophic soil respiration in the ecosystem model LPJ-GUESS [Smith et al.(2001)]. We were interested in differences in model projections before and after the inclusion of the dependency both in respect to short- and long-term soil carbon dynamics. The standard implementation of heterotrophic soil respiration in LPJ-GUESS is a simple carbon three-pool model whose decay rates are dependent on soil temperature and soil moisture. We have added dependence on litter quality by coupling LPJ-GUESS to the soil carbon model Yasso07 [Tuomi et al.(2008)]. The Yasso07 model is based on an extensive number of measurements of litter decomposition of forest soils. Apart from the dependence on soil temperature and soil moisture, the Yasso07 model uses carbon soil pools representing different substrate qualities: acid hydrolyzable, water soluble, ethanol soluble, lignin compounds and humus. Additionally Yasso07 differentiates between woody and non-woody litter. In contrary to the reference implementation of LPJ-GUESS, in the new model implementation, the litter now is divided according to its specific quality and added to the corresponding soil carbon pool. The litter quality thereby differs between litter source (leaves, roots, stems) and plant functional type (broadleaved, needleleaved, grass). The two contrasting model implementations were compared and validated at one specific CarboEuropeIP site (Lägern, Switzerland) and on a broader scale all over Switzerland. Our focus lay on the soil respiration for the years 2006 and 2007 [Rühr(2009)] and present soil carbon stocks [Heim et al.(2009)]. Our Results show, that for short-term soil carbon dynamics, e.g. estimates of heterotrophic soil respiration on an annual basis, the inclusion of the dependency on litter quality is not necessary, as the differences are minor only. However, when considering long-term soil carbon dynamics, e.g. simulated estimates of present soil carbon content, the dependency on litter quality shows effect, as there are correlations with specific site factors such as site location and forest type. The inclusion of the dependence on litter quality therefore may be of importance for the projection of future soil carbon dynamics, as forest types may well be altered due to climatic change. References [Heim et al.(2009)] A. Heim, L. Wehrli, W. Eugster, and M.W.I. Schmidt. Effects of sampling design on the probability to detect soil carbon stock changes at the swiss CarboEurope site Lägeren. Geoderma, 149(3-4):347-354, 2009. [Rühr(2009)] Nadine Katrin Rühr. Soil respiration in a mixed mountain forest : environmental drivers and partitioning of component fluxes. PhD thesis, ETH, 2009. [Smith et al.(2001)] Benjamin Smith, I. Colin Prentice, and Martin T. Sykes. Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within european climate space. Global Ecology and Biogeography, 10(6):621-637, 2001. [Tuomi et al.(2008)] Mikko Tuomi, Pekka Vanhala, Kristiina Karhu, Hannu Fritze, and Jari Liski. Heterotrophic soil respiration-Comparison of different models describing its temperature dependence. Ecological Modelling, 211(1-2): 182-190, 2008.

  7. Influence of deficit irrigation on strawberry (Fragaria × ananassa Duch.) fruit quality.

    PubMed

    Weber, Nika; Zupanc, Vesna; Jakopic, Jerneja; Veberic, Robert; Mikulic-Petkovsek, Maja; Stampar, Franci

    2017-02-01

    Three different irrigation regimes - upper limit of field capacity (UFC), -12 kPa); lower limit of field capacity (LFC), -33 kPa; and deficit irrigation (DI), -70 kPa) were established on silty-loam soil and monitored with tensiometers. Yield and fruit quality of 'Flamenco' and 'Eva's Delight' ever-bearing strawberry cultivars were monitored. The aim of the study was to evaluate the effect of different irrigation regimes on the content of sugars, organic acids and phenolic compounds using high-performance liquid chromatography-mass spectrometry HPLC/HPLC-MS. Deficit irrigation significantly increased the content of sugars (from 1.1- to 1.3 fold), organic acids (from 1.1- to 1.3-fold), their ratio (from 1.1- to 1.2-fold) and the content of most identified phenolics in cv. 'Flamenco'. Conversely, higher amounts of total sugars and organic acids (1.7- to 1.8-fold) were detected in 'Eva's Delight' strawberries at UFC and LFC irrigation. Deficit irrigation generally decreased strawberry yield of cv. 'Eva's Delight'. The results suggest superior fruit quality and taste of strawberries grown under minor deficit irrigation for cv. 'Flamenco'. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Interpolation Approaches for Characterizing Spatial Variability of Soil Properties in Tuz Lake Basin of Turkey

    NASA Astrophysics Data System (ADS)

    Gorji, Taha; Sertel, Elif; Tanik, Aysegul

    2017-12-01

    Soil management is an essential concern in protecting soil properties, in enhancing appropriate soil quality for plant growth and agricultural productivity, and in preventing soil erosion. Soil scientists and decision makers require accurate and well-distributed spatially continuous soil data across a region for risk assessment and for effectively monitoring and managing soils. Recently, spatial interpolation approaches have been utilized in various disciplines including soil sciences for analysing, predicting and mapping distribution and surface modelling of environmental factors such as soil properties. The study area selected in this research is Tuz Lake Basin in Turkey bearing ecological and economic importance. Fertile soil plays a significant role in agricultural activities, which is one of the main industries having great impact on economy of the region. Loss of trees and bushes due to intense agricultural activities in some parts of the basin lead to soil erosion. Besides, soil salinization due to both human-induced activities and natural factors has exacerbated its condition regarding agricultural land development. This study aims to compare capability of Local Polynomial Interpolation (LPI) and Radial Basis Functions (RBF) as two interpolation methods for mapping spatial pattern of soil properties including organic matter, phosphorus, lime and boron. Both LPI and RBF methods demonstrated promising results for predicting lime, organic matter, phosphorous and boron. Soil samples collected in the field were used for interpolation analysis in which approximately 80% of data was used for interpolation modelling whereas the remaining for validation of the predicted results. Relationship between validation points and their corresponding estimated values in the same location is examined by conducting linear regression analysis. Eight prediction maps generated from two different interpolation methods for soil organic matter, phosphorus, lime and boron parameters were examined based on R2 and RMSE values. The outcomes indicate that RBF performance in predicting lime, organic matter and boron put forth better results than LPI. However, LPI shows better results for predicting phosphorus.

  9. Soil management practice in Croatian vineyard affect CO2 fluxes and soil degradation in trafficking zones. First results

    NASA Astrophysics Data System (ADS)

    Bogunovic, Igor; Bilandzija, Darija; Andabaka, Zeljko; Stupic, Domagoj; Cacic, Marija; Brezinscak, Luka; Maletic, Edi; Pereira, Paulo; Kisic, Ivica

    2017-04-01

    Vineyards represent one of the most degradation prone types of intensively managed land on Earth. Steep slopes encourage grape producers to adopt environmental friendly soil management like mulching or continuous no-tillage. In this context, producers have concerns about efficient fertilisation practices and water competitions between vine and grasses in continuous no-tillage inter rows. Vineyards in semi-humid areas like Continental Croatia mostly not suffer from water deficit during growth. Nevertheless, lack of research of different soil management practices open dilemma about soil compaction concerns in intensively trafficked soils in vineyard of semi-humid areas. Soil compaction, determined by bulk density (BD), soil water content (SWC) and CO2 fluxes from trafficked inter row positions were recorded in 2016 in an experiment in which four different soil management systems were compared in a vineyard raised on a silty clay loam soil, near Zagreb, Croatia: No-tillage (NT) system, continuous tillage (CT) and yearly inversed grass covered (INV-GC) and tillage managed (INV-T) inter rows are subjected to intensive traffic. Grape yield and must quality of grape variety Chardonnay was also monitored. Tractor traffic increased the soil BD at 0-10 and 10-20 cm, but especially at the 0-10 cm depth. CT treatment record lowest compaction at 0-10 cm because of tillage. Soil water content showed better conservation possibilities of INV-GC in drier period. In wet period SWC possibilities are similar between treatments. The results of soil compaction under different management indicate that vineyard soil differently response to traffic intensity and impact on microfauna activity and CO2 emissions. INV-GC and NT managed soils record lower CO2 fluxes from vineyard soil compared to CT and INV-T treatments. Management treatments did not statistically influenced on grape yields. Several years of investigation is needed to confirm the overall impact of different management treatments on the proportion of degradation process and their response to proportion of tractor circulation impacts.

  10. High-Resolution Monitoring of Soil Water Dynamics in a Vegetated Hillslope by Active Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Ciocca, F.; Krause, S.; Blaen, P.; Hannah, D. M.; Chalari, A.; Mondanos, M.; Abesser, C.

    2016-12-01

    Water and thermal conditions in the shallow vadose zone can be very complex and dynamic across a range of spatiotemporal scales. The efficient analysis of such dynamics requires technologies capable of precise and high-resolution monitoring of soil temperature and moisture across multiple scales. Optical fibre distributed temperature sensors (DTS) allows for precise temperature measurements at high spatio-temporal resolution, over several kilometres of optical fibre cable. In addition to passive temperature monitoring, hybrid optical cables with embedded metal conductors can be electrically heated and allow for distributed heat pulses. Such Active-DTS technique involves the analysis of temperatures during both heating and cooling phases of an optical fibre cable buried in the soil in order to provide distributed soil moisture estimates. In summer 2015, three loops of a 500m hybrid-optical cable have been deployed at 10cm, 25cm and 40cm depths along a hillslope with juvenile forest. Active-DTS surveys have been conducted with the aim to: (i) monitor the post-installation soil settling around the cable; (ii) analyse different heating strategies (intensity, duration) of the cable; (iii) establish a method for inferring soil moisture from Active-DTS results and validate with independent soil moisture readings from point probes; (iv) monitor the soil moisture response to short forcing events such as storms and artificial irrigation. Results from the surveys will be presented, and first assumptions on how the obtained soil water dynamics can be associated to specific triggers such as precipitation, evapotranspiration, soil inclination, will be discussed. This research is part of the British National Environmental Research Council (NERC) funded Distributed intelligent Heat Pulse System (DiHPS) project and is realised in the context of the Free Air Carbon Enrichment (FACE) experiment, in collaboration with the Birmingham Institute of Forest Research (BIFoR).

  11. Short-term effects of different organic amendments on soil chemical, biochemical and biological indicators

    NASA Astrophysics Data System (ADS)

    Mondelli, Donato; Aly, Adel; Yirga Dagnachew, Ababu; Piscitelli, Lea; Dumontet, Stefano; Miano, Teodoro

    2014-05-01

    The limited availability of animal manure and the high cost of good quality compost lead to difficult soil quality management under organic agriculture. Therefore, it is important to find out alternative organic soil amendments and more flexible strategies that are able to sustain crop productivity and maintain and enhance soil quality. A three years study was carried out in the experimental fields of the Mediterranean Agronomic Institute of Bari located in Valenzano, Italy. The main objective of this research is to investigate the effects of different fertility management strategies on soil quality in order to estimate the role of innovative matrices for their use in organic farming. The experiment consists of seven treatments applied to a common crop rotation. The treatments include alternative organic amendments (1- olive mill wastewater OMW, 2- residues of mushroom cultivation MUS, 3- coffee chaff COF), common soil amendments (4- compost COM, 5- faba bean intercropping LEG, 6- cow manure - MAN) and as a reference treatment (7- mineral fertilizer COV). The soil quality was assessed before and after the application of the treatments, through biological (microbial biomass carbon and nitrogen, soil respiration and metabolic quotient), biochemical (soil enzymatic activities: β-glucosidase, alkaline phospatase, urease, fluorescein diacetate (FDA) hydrolysis), and chemical (pH, soil organic carbon, soil organic matter, total nitrogen, available phosphorous, exchangeable potassium, dissolved organic carbon and total dissolved nitrogen) indicators. Based on the results obtained after the second year, all treatments were able to improve various soil chemical parameters as compared to mineral fertilizer. The incorporation of COF and OMW seemed to be more effective in improving soil total N and exchangeable K, while MAN significantly increased available P. All the amendments enhance dissolved organic C, soil respiration, microbial biomass and metabolic quotient as compared to control soil. Results concerning biochemical indicators revealed that phosphatase and β-glycosidase were significantly reduced, while activities of urease and FDA were improved in all amended plots in comparison to the control, regardless of amendment type. Data demonstrated the efficiency, the high sensitivity and a quick response of the biochemical indicators in assessing soil quality changes. As a conclusion, it is possible to emphasize that alternative and common soil organic amendments behave similarly in enhancing the chemical, biochemical and biological properties. The alternative soil organic amendments could, then, be candidates for substituting some commonly used one which are currently showing shortage in their supply and a lowering in their quality. Keywords: Organic agriculture, Soil quality, Enzymatic activities, Olive mill wastewater, Residues of mushroom cultivation, Coffee chaff.

  12. Multi-gauge Calibration for modeling the Semi-Arid Santa Cruz Watershed in Arizona-Mexico Border Area Using SWAT

    USGS Publications Warehouse

    Niraula, Rewati; Norman, Laura A.; Meixner, Thomas; Callegary, James B.

    2012-01-01

    In most watershed-modeling studies, flow is calibrated at one monitoring site, usually at the watershed outlet. Like many arid and semi-arid watersheds, the main reach of the Santa Cruz watershed, located on the Arizona-Mexico border, is discontinuous for most of the year except during large flood events, and therefore the flow characteristics at the outlet do not represent the entire watershed. Calibration is required at multiple locations along the Santa Cruz River to improve model reliability. The objective of this study was to best portray surface water flow in this semiarid watershed and evaluate the effect of multi-gage calibration on flow predictions. In this study, the Soil and Water Assessment Tool (SWAT) was calibrated at seven monitoring stations, which improved model performance and increased the reliability of flow, in the Santa Cruz watershed. The most sensitive parameters to affect flow were found to be curve number (CN2), soil evaporation and compensation coefficient (ESCO), threshold water depth in shallow aquifer for return flow to occur (GWQMN), base flow alpha factor (Alpha_Bf), and effective hydraulic conductivity of the soil layer (Ch_K2). In comparison, when the model was established with a single calibration at the watershed outlet, flow predictions at other monitoring gages were inaccurate. This study emphasizes the importance of multi-gage calibration to develop a reliable watershed model in arid and semiarid environments. The developed model, with further calibration of water quality parameters will be an integral part of the Santa Cruz Watershed Ecosystem Portfolio Model (SCWEPM), an online decision support tool, to assess the impacts of climate change and urban growth in the Santa Cruz watershed.

  13. IMPROVING BIOMASS LOGISTICS COST WITHIN AGRONOMIC SUSTAINABILITY CONSTRAINTS AND BIOMASS QUALITY TARGETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Richard Hess; Kevin L. Kenney; Christopher T. Wright

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements inmore » quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.« less

  14. From shifting cultivation to teak plantation: effect on overland flow and sediment yield in a montane tropical catchment.

    PubMed

    Ribolzi, Olivier; Evrard, Olivier; Huon, Sylvain; de Rouw, Anneke; Silvera, Norbert; Latsachack, Keo Oudone; Soulileuth, Bounsamai; Lefèvre, Irène; Pierret, Alain; Lacombe, Guillaume; Sengtaheuanghoung, Oloth; Valentin, Christian

    2017-06-21

    Soil erosion supplies large quantities of sediments to rivers of Southeastern Asia. It reduces soil fertility of agro-ecosystems located on hillslopes, and it degrades, downstream, water resource quality and leads to the siltation of reservoirs. An increase in the surface area covered with commercial perennial monocultures such as teak plantations is currently observed at the expanse of traditional slash-and-burn cultivation systems in steep montane environments of these regions. The impacts of land-use change on the hydrological response and sediment yields have been investigated in a representative catchment of Laos monitored for 13 years. After the gradual conversion of rice-based shifting cultivation to teak plantation-based systems, overland flow contribution to stream flow increased from 16 to 31% and sediment yield raised from 98 to 609 Mg km -2 . This result is explained by the higher kinetic energy of raindrops falling from the canopy, the virtual absence of understorey vegetation cover to dissipate drop energy and the formation of an impermeable surface crust accelerating the formation and concentration of overland flow. The 25-to-50% lower 137 Cs activities measured in soils collected under mature teak plantations compared to soils under other land uses illustrate the severity of soil erosion processes occurring in teak plantations.

  15. Monosilicic acid potential in phytoremediation of the contaminated areas.

    PubMed

    Ji, Xionghui; Liu, Saihua; Huang, Juan; Bocharnikova, Elena; Matichenkov, Vladimir

    2016-08-01

    The contamination of agricultural areas by heavy metals has a negative influence on food quality and human health. Various remediation techniques have been developed for the removal and/or immobilization of heavy metals (HM) in contaminated soils. Phytoremediation is innovative technology, which has advantages (low cost, easy monitoring, high selectivity) and limitations, including long time for procedure and negative impact of contaminants on used plants. Greenhouse investigations have shown that monosilicic acid can be used for regulation of the HM (Cd, Cr, Pb and Zn) mobility in the soil-plant system. If the concentration of monosilicic acid in soil was increased from 0 to 20 mg L(-1) of Si in soil solution, the HM bioavailability was increased by 30-150%. However, the negative influence on the barley by HM was reduced under monosilicic acid application. If the concentration of monosilicic acid was increased more than 20 mg L(-1), the HM mobility in the soil was decreased by 40-300% and heavy metal uptake by plants was reduced 2-3 times. The using of the monosilicic acid may increase the phytoremediation efficiency. However the technique adaptation will be necessary for phytoremediation on certain areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Assessing the use of treated waste water for irrigation agricultural lands by using soil quality indices

    NASA Astrophysics Data System (ADS)

    Arcenegui, V.; Morugán, A.; García-Orenes, F.; Zornoza, R.; Mataix-Solera, J.; Navarro, M. A.; Guerrero, C.; Mataix-Beneyto, J.

    2009-04-01

    The use of treated wastewater for the irrigation of agricultural soils is an alternative to utilizing better-quality water, especially in semiarid regions where water shortage is a very serious problem. However, this practise can modify the soil equilibrium and affect its quality. In this work two soil quality indices (models) are used to evaluate the effects of long-term irrigation with treated wastewater in soil. The models were developed studying different soil properties in undisturbed forest soils in SE Spain, and the relationships between soil parameters were established using multiple linear regressions. Model 1, that explained 92% of the variance in soil organic carbon (SOC) showed that the SOC can be calculated by the linear combination of 6 physical, chemical and biochemical properties (acid phosphatase, water holding capacity (WHC), electrical conductivity (EC), available phosphorus (P), cation exchange capacity (CEC) and aggregate stability (AS)). Model 2 explains 89% of the SOC variance, which can be calculated by means of 7 chemical and biochemical properties (urease, phosphatase, and

  17. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region

    PubMed Central

    Oikawa, P. Y.; Ge, C.; Wang, J.; Eberwein, J. R.; Liang, L. L.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-01-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality. PMID:26556236

  18. Long-term assessment of natural attenuation: statistical approach on soils with aged PAH contamination.

    PubMed

    Ouvrard, Stéphanie; Chenot, Elodie-Denise; Masfaraud, Jean-François; Schwartz, Christophe

    2013-07-01

    Natural attenuation processes valorization for PAH-contaminated soil remediation has gained increasing interest from site owners. A misunderstanding of this method and a small amount of data available does not encourage its development. However, monitored natural attenuation (MNA) offers a valuable, cheaper and environmentally friendly alternative to more classical options such as physico-chemical treatments (e.g., chemical oxidation, thermal desorption). The present work proposes the results obtained during a long-term natural attenuation assessment of historically contaminated industrial soils under real climatic conditions. This study was performed after a 10 year natural attenuation period on 60 off-ground lysimeters filled with contaminated soils from different former industrial sites (coking industry, manufactured gas plants) whose initial concentration of PAH varied between 380 and 2,077 mg kg(-1). The analysed parameters included leached water characterization, soil PAH concentrations, evaluation of vegetation cover quality and quantity. Results showed a good efficiency of the PAH dissipation and limited transfer of contaminants to the environment. It also highlighted the importance of the fine soil fractions in controlling PAH reactivity. PAH dissipation through water leaching was limited and did not present a significant risk for the environment. This PAH water concentration appeared however as a good indicator of overall dissipation rate, thereby illustrating the importance of pollutant availability in predicting its degradation potential.

  19. Changes in soil nitrogen cycling under Norway spruce logging residues on a clear-cut

    NASA Astrophysics Data System (ADS)

    Smolander, Aino; Lindroos, Antti-Jussi; Kitunen, Veikko

    2016-04-01

    In Europe, forest biomass is increasingly being used as a source of energy to replace fossil fuels. In practice, this means that logging residues, consisting of green branches and stem tops, are more commonly harvested. In 2012 logging residues were harvested from about one third of clear-cuts in Finland. Our aim was to study how logging residues affect soil organic matter quality, in particular soil N cycling processes and composition of certain groups of plant secondary compounds, tannins and terpenes. Compounds in these groups were of interest because they are abundant in logging residues, and they have been shown to control soil N cycling. In connection with clear-cutting a Norway spruce stand in southern Finland, we established a controlled field experiment by building logging residue piles (40 kg/m2) on study plots. The piles consisted of fresh spruce branches and tops with green foliage. Control plots with no residues were included (0 kg/m2). Changes in soil organic matter properties have now been monitored for three growing seasons. Logging residues affected organic layer properties strongly. For example, they increased net nitrification and nitrate concentrations. There were also increases in the concentrations of certain terpenes and condensed tannins due to the residues. The significance of logging residues on soil processes and properties will be shown.

  20. Quantification of BMPs Selection and Spatial Placement Impact on Water Quality Controlling Plans in Lower Bear River Watershed, Utah

    NASA Astrophysics Data System (ADS)

    Salha, A. A.; Stevens, D. K.

    2016-12-01

    The aim of the watershed-management program in Box Elder County, Utah set by Utah Division of Water Quality (UDEQ) is to evaluate the effectiveness and spatial placement of the implemented best-management practices (BMP) for controlling nonpoint-source contamination at watershed scale. The need to evaluate the performance of BMPs would help future policy and program decisions making as desired end results. The environmental and costs benefits of BMPs in Lower Bear River watershed have seldom been measured beyond field experiments. Yet, implemented practices have rarely been evaluated at the watershed scale where the combined effects of variable soils, climatic conditions, topography and land use/covers and management conditions may significantly change anticipated results and reductions loads. Such evaluation requires distributed watershed models that are necessary for quantifying and reproducing the movement of water, sediments and nutrients. Soil and Water Assessment Tool (SWAT) model is selected as a watershed level tool to identify contaminant nonpoint sources (critical zones) and areas of high pollution risks. Water quality concerns have been documented and are primarily attributed to high phosphorus and total suspended sediment concentrations caused by agricultural and farming practices (required load is 460 kg/day of total phosphorus based on 0.075 mg/l and an average of total suspended solids of 90 mg/l). Input data such as digital elevation model (DEM), land use/Land cover (LULC), soils, and climate data for 10 years (2000-2010) is utilized along with observed water quality at the watershed outlet (USGS) and some discrete monitoring points within the watershed. Statistical and spatial analysis of scenarios of management practices (BMP's) are not implemented (before implementation), during implementation, and after BMP's have been studied to determine whether water quality of the two main water bodies has improved as required by the LBMR watershed's TMDL and if the BMPs are cost-effectively targeting the critical zones.

Top