Science.gov

Sample records for soil remediation demonstration

  1. Review of the Vortec soil remediation demonstration program

    SciTech Connect

    Patten, J.S.

    1994-12-31

    The principal objective of the METC/Vortec program is to develop and demonstrate the effectiveness of the Vortec CMS in remediating soils contaminated with hazardous materials and/or low levels of radionuclides. To convincingly demonstrate the CMS`s capability, a Demonstration Plant will be constructed and operated at a DOE site that has a need for the remediation of contamination soil. The following objectives will be met during the program: (1) establish the glass chemistry requirements to achieve vitrification of contaminated soils found at the selected DOE site; (2) complete the design of a fully integrated soil vitrification demonstration plant with a capacity to process 25 TPD of soil; (3) establish the cost of a fully integrated soil demonstration plant with a capacity to process 25 TPD of soil; (4) construct and operate a fully integrated demonstration plant; (5) analyze all influent and effluent streams to establish the partitioning of contaminants and to demonstrate compliance with all applicable health, safety, and environmental requirements; (6) demonstrate that the CMS technology has the capability to produce a vitrified product that will immobilize the hazardous and radionuclide materials consistent with the needs of the specific DOE waste repositories.

  2. SITE Technology Capsule. Demonstration of Rocky Mountain Remediation Services Soil Amendment

    EPA Science Inventory

    This report briefly summarizes the Rocky Mountain Remediation Services treatment technology demonstration of a soil amendment process for lead contaminated soil at Roseville, OH. The evaluation included leaching, bioavailability, geotechnical, and geochemical methods.

  3. [Field scale demonstration of fungi-bacteria augmented remediation of petroleum-contaminated soil].

    PubMed

    Han, Hui-long; Chen, Zhen; Yang, Jian-min; Miao, Chang-chun; Zhang, Kun; Jin, Wen-biao; Liu, Zheng

    2008-02-01

    Pilot demonstration of the fungal-bacterial augmented in situ remediation of petroleum contaminated soil was carried out in Zhongyuan Oilfield, Henan, using artificially prepared soil, newly and aged contaminated soil as sample, respectively. For the first run of the experiment started from Nov. 5, 2004 and lasted for 122 days, the removal of contaminate was 61.0%, 48.3% and 38.3% for diesel, lube and crude oil, respectively. For the second run started from May 18, 2005 and lasted for 161 days, the removal of TPH was 75% for the artificially contaminated soil sample while 46.0% and 56.6% for the fresh and aged contaminated soil. The removal of high concentration salt was involved in the remediation of the freshly and aged contaminated soil. The changes of the petroleum composition was monitored during the remediation process, which confirmed the effective degradation of alkanes, aromatic hydrocarbons and non-hydrocarbon compounds by the fungi-bacteria consortia, as compared to that obtained without the inoculation of the consortia. To further demonstrate the remediation, wheat was planted in above reclaimed soil. While wheat production in the reclaimed artificially contaminated soil yielded nearly as much as that obtained in the normal farmland, the output of wheat in the reclaimed refresh and aged contaminated soil was 57.2% and 70.3% of the averaged output of the normal farmland. The above results further confirmed the workability of fungal-bacterial augmented in situ remediation of petroleum contaminated soil and its application potential as well.

  4. Remediating munitions contaminated soils

    SciTech Connect

    Shea, P.J.; Comfort, S.D.

    1995-10-01

    The former Nebraska Ordnance Plant (NOP) at Mead, NE was a military loading, assembling, and packing facility that produced bombs, boosters and shells during World War II and the Korean War (1942-1945, 1950-1956). Ordnances were loaded with 2,4,6-trinitrotoluene (TNT), amatol (TNT and NH{sub 4}NO{sub 3}), tritonal (TNT and Al) and Composition B (hexahydro-1,3,5-trinitro-1,3,5-triazine [RDX] and TNT). Process waste waters were discharged into wash pits and drainage ditches. Soils within and surrounding these areas are contaminated with TNT, RDX and related compounds. A continuous core to 300 cm depth obtained from an NOP drainage ditch revealed high concentrations of TNT in the soil profile and substantial amounts of monoamino reduction products, 4-amino-2,6-dinitrotoluene (4ADNT) and 2-amino-4,6-dinitrotoluene (2ADNT). Surface soil contained TNT in excess of 5000 mg kg{sup -1} and is believed to contain solid phase TNT. This is supported by measuring soil solution concentrations at various soil to solution ratios (1:2 to 1:9) and obtaining similar TNT concentrations (43 and 80 mg L{sup -1}). Remediating munitions-contaminated soil at the NOP and elsewhere is of vital interest since many of the contaminants are carcinogenic, mutagenic or otherwise toxic to humans and the environment. Incineration, the most demonstrated remediation technology for munitions-containing soils, is costly and often unacceptable to the public. Chemical and biological remediation offer potentially cost-effective and more environmentally acceptable alternatives. Our research objectives are to: (a) characterize the processes affecting the transport and fate of munitions in highly contaminated soil; (b) identify effective chemical and biological treatments to degrade and detoxify residues; and (c) integrate these approaches for effective and practical remediation of soil contaminated with TNT, RDX, and other munitions residues.

  5. Field demonstration of pervaporation for the separation of volatile organic compounds from a surfactant-based soil remediation fluid.

    PubMed

    Vane, L M; Hitchens, L; Alvarez, F R; Giroux, E L

    2001-01-29

    As part of a Department of Defense project, the US Environmental Protection Agency was responsible for designing, building and field operating a pilot-scale pervaporation unit. The field site was an active dry cleaning facility on the grounds of Marine Corps Base Camp Lejeune in Jacksonville, NC. The overall goal of the project was to remove tetrachloroethylene (PCE) from the soil beneath the dry cleaning shop using a surfactant-based soil remediation fluid and to recycle/reuse the surfactant. In order to reinject the recovered surfactant, the pervaporation unit was required to achieve an average 95% removal of contaminants from the extracted fluid over the duration of the test period. PCE removal averaged 95.8% during peak surfactant levels and exceeded 99.9% in the absence of surfactant, thereby meeting the reinjection requirement. Removal of a group of secondary contaminants at the site, termed Varsol compounds, was monitored via concentrations of three Varsol marker compounds: decane, undecane and 1,3,5-trimethylbenzene. The pervaporation system processed 100,000 gal of groundwater and surfactant solution over a period of 70 days. In order to evaluate and validate process performance, a variety of process variables and properties were monitored over the course of the demonstration. Pervaporation costs are projected to be on the order of $20 per 1000 gal of surfactant solution treated for a moderate size system (10 gpm).

  6. Laboratory Experiment on Electrokinetic Remediation of Soil

    ERIC Educational Resources Information Center

    Elsayed-Ali, Alya H.; Abdel-Fattah, Tarek; Elsayed-Ali, Hani E.

    2011-01-01

    Electrokinetic remediation is a method of decontaminating soil containing heavy metals and polar organic contaminants by passing a direct current through the soil. An undergraduate chemistry laboratory is described to demonstrate electrokinetic remediation of soil contaminated with copper. A 30 cm electrokinetic cell with an applied voltage of 30…

  7. REMOVAL OF ISOPROPHYL ALCOHOL FROM A SURFACTANT-BASED SOIL REMEDIATION FLUID BY PERVAPORATION: PILOT SCALE FIELD DEMONSTRATION

    EPA Science Inventory

    The USEPA, NRMRL participated in a field demonstration of a surfactant enhanced aquifer remediation (SEAR) process. The main purpose of this field demonstration was to combine and optimize the subsurface extraction of a dense non-aqueous phase liquid with the above ground deconta...

  8. ELECTROCHEMICAL REMEDIATION TECHNOLOGIES (ECRTS) DEMONSTRATION BULLETIN

    EPA Science Inventory

    The ElectroChemical Remediation Technologies (ECRTs) process was developed by P2-Soil Remediation, Inc. P-2 Soil Remediation, Inc. formed a partnership with Weiss Associates and ElectroPetroleum, Inc. to apply the technology to contaminated sites. The ECRTs process was evaluated ...

  9. Soil Remediation Test

    SciTech Connect

    Manlapig, D. M.; Williamsws

    2002-04-01

    Soils contaminated with petroleum by-products can now be effectively remediated using a variety of technologies. Among these are in-situ bioremediation, land farming, and landfill/replacing of soil. The range of efficiencies and cost effectiveness of these technologies has been well documented. Exsorbet Plus is showing promise as an in-situ bioremediation agent. It is made of naturally grown Spaghnum Peat Moss which has been activated for encapsulation and blended with nitrogen-rich fertilizer. In its initial field test in Caracas, Venezuela, it was able to remediate crude oil-contaminated soil in 90 days at less than half of the cost of competing technologies. Waste Solutions, Corp and the US Department of Energy signed a Cooperative Research and Development Agreement to test Exsorbet Plus at the Rocky Mountain Oilfield Testing Center near Casper, Wyoming. As part of the test, soil contaminated with crude oil was treated with Exsorbet Plus to aid the in-situ bioremediation process. Quantitative total petroleum hydrocarbon (TPH) measurements were acquired comparing the performance of Exsorbet Plus with an adjacent plot undergoing unaided in-situ bioremediation.

  10. Water as a Reagent for Soil Remediation

    SciTech Connect

    Jayaweera, Indira S.; Marti-Perez, Montserrat; Diaz-Ferrero, Jordi; Sanjurjo, Angel

    2003-03-06

    SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, for remediating petroleum-contaminated soils. The bench-scale demonstration of the process has shown great promise, and the implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and provide a standalone technology for removal of both volatile and heavy components from contaminated soil.

  11. Saxton soil remediation project

    SciTech Connect

    Holmes, R.D.

    1995-12-31

    The Saxton Nuclear Experimental Facility (SNEF) consists of a 23-MW(thermal) pressurized light water thermal reactor located in south central Pennsylvania. The Saxton Nuclear Experimental Corporation (SNEC), a wholly owned subsidiary of the General Public Utilities (GPU) Corporation, is the licensee for the SNEF. Maintenance and decommissioning activities at the site are conducted by GPU Nuclear, also a GPU subsidiary and operator of the Three Mile Island and Oyster Creek nuclear facilities. The remediation and radioactive waste management of contaminated soils is described.

  12. Remediation of contaminated soils

    SciTech Connect

    Radhakrishnan, R.; Ariza, C.H.

    1997-07-01

    At least three types of zones of contamination exist whenever there is a chemical release. The impact of Non-Aqueous-Phase Liquids (NAPL) on soils and groundwater, together with the ultimate transport and migration of constituent chemicals in their dissolved or sorbed states, had led environmentalists to develop several techniques for cleaning a contaminated soil. Zone 1 represents the unsaturated zone which could be contaminated to retention capacity by both Dense Non-Aqueous-Phase Liquids (DNAPL) and Light Non-Aqueous-Phase Liquids (LNAPL). Zone 2 represents residual DNAPL or LNAPL contamination found below the groundwater table in the saturated zone. Zone 3 is represented by either the presence of NAPL dissolved in the aqueous phase, volatilized in the unsaturated zone or sorbed to either saturated or unsaturated soils. Cleanup of petroleum contaminated soils is presented in this paper. Among several techniques developed for this purpose, in-situ biological remediation is discussed in detail as a technique that does not involve excavation, thus, the costs and disruption of excavating soil are eliminated.

  13. Managing soil remediation problems.

    PubMed

    Okx, J P; Hordijk, L; Stein, A

    1996-12-01

    Soil remediation has only a short history but the problem addressed is a significant one. Cost estimates for the clean-up of contaminated sites in the European Union and the United States are in the order of magnitude of 1,400 billion ECU. Such an enormous operation deserves the best management it can get. Reliable cost estimations per contaminated site are an important prerequisite. This paper addresses the problems related to site-wise estimations.When solving soil remediation problems, we have to deal with a large number of scientific disciplines. Too often solutions are presented from the viewpoint of only one discipline. In order to benefit from the combined disciplinary knowledge and experience, we think that it is necessary to describe the interrelations between these disciplines. This can be realized by developing an adequate model of the desired process which enables to consider and evaluate the essential factors as interdependent components of the total system.The resulting model provides a binding paradigm to the contributing disciplines which will result in improved efficiency and effectivity of the decision and the cost estimation process. In the near future, we will release the "Biosparging and Bioventing Expert Support System", an expert support system for problem owners, consultants and authorities dealing with the design and operation of a biosparging and/or a bioventing system.

  14. DEMONSTRATION OF ELECTROCHEMICAL REMEDIATION TECHNOLOGIES-INDUCED COMPLEXATION

    SciTech Connect

    Barry L. Burks

    2002-12-01

    The Project Team is submitting this Topical Report on the results of its bench-scale demonstration of ElectroChemical Remediation Technologies (ECRTs) and in particular the Induced Complexation (ECRTs-IC) process for remediation of mercury contaminated soils at DOE Complex sites. ECRTs is an innovative, in-situ, geophysically based soil remediation technology with over 50 successful commercial site applications involving remediation of over two million metric tons of contaminated soils. ECRTs-IC has been successfully used to remediate 220 cu m of mercury-contaminated sediments in the Union Canal, Scotland. In that operation, ECRTs-IC reduced sediment total mercury levels from an average of 243 mg/kg to 6 mg/kg in 26 days of operation. The clean up objective was to achieve an average total mercury level in the sediment of 20 mg/kg.

  15. X-231A demonstration of in-situ remediation of DNAPL compounds in low permeability media by soil fracturing with thermally enhanced mass recovery or reactive barrier destruction

    SciTech Connect

    Siegrist, R.L. |; Lowe, K.S.; Murdoch, L.D. |; Slack, W.W.; Houk, T.C.

    1998-03-01

    The overall goal of the program of activities is to demonstrate robust and cost-effective technologies for in situ remediation of DNAPL compounds in low permeability media (LPM), including adaptations and enhancements of conventional technologies to achieve improved performance for DNAPLs in LPM. The technologies sought should be potential for application at simple, small sites (e.g., gasoline underground storage tanks) as well as at complex, larger sites (e.g., DOE land treatment units). The technologies involved in the X-231A demonstration at Portsmouth Gaseous Diffusion Plant (PORTS) utilized subsurface manipulation of the LPM through soil fracturing with thermally enhanced mass recovery or horizontal barrier in place destruction. To enable field evaluation of these approaches, a set of four test cells was established at the X-231A land treatment unit at the DOE PORTS plant in August 1996 and a series of demonstration field activities occurred through December 1997. The principal objectives of the PORTS X-231A demonstration were to: determine and compare the operational features of hydraulic fractures as an enabling technology for steam and hot air enhanced soil vapor extraction and mass recovery, in situ interception and reductive destruction by zero valent iron, and in situ interception and oxidative destruction by potassium permanganate; determine the interaction of the delivered agents with the LPM matrix adjacent to the fracture and within the fractured zone and assess the beneficial modifications to the transport and/or reaction properties of the LPM deposit; and determine the remediation efficiency achieved by each of the technology strategies.

  16. Innovative vitrification for soil remediation

    SciTech Connect

    Jetta, N.W.; Patten, J.S.; Hart, J.G.

    1995-12-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project. During Phase 2, the basic nitrification process design was modified to meet the specific needs of the new waste streams available at Paducah. The system design developed for Paducah has significantly enhanced the processing capabilities of the Vortec vitrification process. The overall system design now includes the capability to shred entire drums and drum packs containing mud, concrete, plastics and PCB`s as well as bulk waste materials. This enhanced processing capability will substantially expand the total DOE waste remediation applications of the technology.

  17. Innovative vitrification for soil remediation

    SciTech Connect

    Jetta, N.W.; Patten, J.S.; Hnat, J.G.

    1995-10-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase I consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project.

  18. Radio frequency heating for soil remediation

    SciTech Connect

    Price, S.L.; Kasevich, R.S.; Marley, M.C.

    1997-12-31

    Radio frequency heating (RFH) for soil remediation brings controlled heating to the subsurface, increasing the rate of removal of contaminants from the soil. RFH alone does not remove contaminants; it eases contaminant removal by enhancing the performance of other technologies such as Soil Vapor Extraction (SVE), Groundwater Venting (Air Sparging), Groundwater Pump and Treat, and Bioremediation. In general, heating soils and groundwater makes the physical, chemical and biological properties of the soil, groundwater and contaminants more amenable to remediation efforts, reducing time on-site. RFH technology for environmental remediation by KAI Technologies Inc. (KAI) began in the early 1990s when an RFH system was deployed to an East Coast Naval Shipyard and tested on a {number_sign}2 fuel oil spill. RFH was then employed by KAI at the Department of Energy`s Savannah River Site (SRS) in 1993 and at Kelly Air Force Base in 1994. This paper discusses the spring 1996 RFH demonstration conducted with DAHL and Associates of St. Paul, Minnesota which employed SVE and Groundwater Venting at the site of a former gasoline station near St. Paul, Minnesota. Currently, RFH is assisting SVE at a jet fuel spill within Kirtland Air Force Base in Albuquerque, New Mexico. This paper provides a general overview of RFH technology for soil remediation by reviewing the theory and computer modeling of RFH and presenting results on the efficacy of RFH with SVE for soil remediation from a bench-scale study and the field demonstration mentioned previously. The bench-scale study evaluated effectiveness of RFH for enhancing SVE removal of tetrachloroethylene from a Burlington, Massachusetts site. Data from Finite-Difference Time Domain (FDTD) computer modeling of the field demonstration provides insight into the shape of the subsurface heating pattern.

  19. ENHANCED REMEDIATION DEMONSTRATIONS AT HILL AFB: INTRODUCTION

    EPA Science Inventory

    Nine enhanced aquifer remediation technologies were demonstrated side-by-side at a Hill Air Force Base Chemical Disposal Pit/Fire Training Area site. The demonstrations were performed inside 3 x 5 m cells isolated from the surrounding shallow aquifer by steel piling. The site w...

  20. Lasagna{trademark} soil remediation

    SciTech Connect

    1996-04-01

    Lasagna{trademark} is an integrated, in situ remediation technology being developed which remediates soils and soil pore water contaminated with soluble organic compounds. Lasagna{trademark} is especially suited to sites with low permeability soils where electroosmosis can move water faster and more uniformly than hydraulic methods, with very low power consumption. The process uses electrokinetics to move contaminants in soil pore water into treatment zones where the contaminants can be captured and decomposed. Initial focus is on trichloroethylene (TCE), a major contaminant at many DOE and industrial sites. Both vertical and horizontal configurations have been conceptualized, but fieldwork to date is more advanced for the vertical configuration. Major features of the technology are electrodes energized by direct current, which causes water and soluble contaminants to move into or through the treatment layers and also heats the soil; treatment zones containing reagents that decompose the soluble organic contaminants or adsorb contaminants for immobilization or subsequent removal and disposal; and a water management system that recycles the water that accumulates at the cathode (high pH) back to the anode (low pH) for acid-base neutralization. Alternatively, electrode polarity can be reversed periodically to reverse electroosmotic flow and neutralize pH.

  1. Lasagna{trademark} soil remediation

    SciTech Connect

    1996-04-01

    Lasagna{trademark} is an integrated, in situ remediation technology being developed by an industrial consortium consisting of Monsanto, E. I. DuPont de Nemours & Co., Inc. (DuPont), and General Electric, with participation from the Department of Energy (DOE) Office of Environmental Management, Office of Science and Technology (EM-50), and the Environmental Protection Agency (EPA) Office of Research and Development (Figure 1). Lasagna{trademark} remediates soils and soil pore water contaminated with soluble organic compounds. Lasagna{trademark} is especially suited to sites with low permeability soils where electroosmosis can move water faster and more uniformly than hydraulic methods, with very low power consumption. The process uses electrokinetics to move contaminants in soil pore water into treatment zones where the contaminants can be captured or decomposed. Initial focus is on trichloroethylene (TCE), a major contaminant at many DOE and industrial sites. Both vertical and horizontal configurations have been conceptualized, but fieldwork to date is more advanced for the vertical configuration.

  2. Electrokinetic remediation of oil-contaminated soils.

    PubMed

    Korolev, Vladimir A; Romanyukha, Olga V; Abyzova, Anna M

    2008-07-01

    This investigation was undertaken to determine the factors influencing electrokinetic remediation of soils from petroleum pollutants. The remediation method was applied in two versions: (i) static and (ii) flowing, when a sample was washed with leaching solution. It was found that all the soils studied can be purified using this technique. It was also observed that the mineral and grain-size composition of soils, their properties, and other parameters affect the remediation efficiency. The static and flowing versions of the remediation method removed 25-75% and 90-95% of the petroleum pollutants, respectively from the soils under study.

  3. WATER AS A REAGENT FOR SOIL REMEDIATION

    SciTech Connect

    Indira S. Jayaweera; Montserrat Marti-Perez; Jordi Diaz-Ferrero; Angel Sanjurjo

    2001-11-12

    SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, to separate petroleum-related contaminants and other hazardous pollutants from soil and sediments. In this process, water with added electrolytes (inexpensive and environmentally friendly) is used as the extracting solvent under subcritical conditions (150-300 C). The use of electrolytes allows us to operate reactors under mild conditions and to obtain high separation efficiencies that were hitherto impossible. Unlike common organic solvents, water under subcritical conditions dissolves both organics and inorganics, thus allowing opportunities for separation of both organic and inorganic material from soil. In developing this technology, our systematic approach was to (1) establish fundamental solubility data, (2) conduct treatability studies with industrial soils, and (3) perform a bench-scale demonstration using a highly contaminated soil. The bench-scale demonstration of the process has shown great promise. The next step of the development process is the successful pilot demonstration of this technology. Once pilot tested, this technology can be implemented quite easily, since most of the basic components are readily available from mature technologies (e.g., steam stripping, soil washing, thermal desorption). The implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and will provide a stand-alone technology for removal of both volatile and heavy components from contaminated soil.

  4. EDTA retention and emissions from remediated soil.

    PubMed

    Jez, Erika; Lestan, Domen

    2016-05-01

    EDTA-based remediation is reaching maturity but little information is available on the state of chelant in remediated soil. EDTA soil retention was examined after extracting 20 soil samples from Pb contaminated areas in Slovenia, Austria, Czech Republic and USA with 120 mM kg(-1) Na2H2EDTA, CaNa2EDTA and H4EDTA for 2 and 24 h. On average, 73% of Pb was removed from acidic and 71% from calcareous soils (24 h extractions). On average, 15% and up to 64% of applied EDTA was after remediation retained in acidic soils. Much less; in average 1% and up to the 22% of EDTA was retained in calcareous soils. The secondary emissions of EDTA retained in selected remediated soil increased with the acidity of the media: the TCLP (Toxicity Characteristic Leaching Procedure) solution (average pH end point 3.6) released up to 36% of EDTA applied in the soil (28.1 mmol kg(-1)). Extraction with deionised water (pH > 6.0) did not produce measurable EDTA emissions. Exposing soil to model abiotic (thawing/freezing cycles) and biotic (ingestion by earthworms Lumbricus rubellus) ageing factors did not induce additional secondary emissions of EDTA retained in remediated soil. PMID:26943741

  5. Electrokinetic soil remediation--critical overview.

    PubMed

    Virkutyt, Jurate; Sillanpää, Mika; Latostenmaa, Petri

    2002-04-22

    In recent years, there has been increasing interest in finding new and innovative solutions for the efficient removal of contaminants from soils to solve groundwater, as well as soil, pollution. The objective of this review is to examine several alternative soil-remediating technologies, with respect to heavy metal remediation, pointing out their strengths and drawbacks and placing an emphasis on electrokinetic soil remediation technology. In addition, the review presents detailed theoretical aspects, design and operational considerations of electrokinetic soil-remediation variables, which are most important in efficient process application, as well as the advantages over other technologies and obstacles to overcome. The review discusses possibilities of removing selected heavy metal contaminants from clay and sandy soils, both saturated and unsaturated. It also gives selected efficiency rates for heavy metal removal, the dependence of these rates on soil variables, and operational conditions, as well as a cost-benefit analysis. Finally, several emerging in situ electrokinetic soil remediation technologies, such as Lasagna, Elektro-Klean, electrobioremediation, etc., are reviewed, and their advantages, disadvantages and possibilities in full-scale commercial applications are examined. PMID:12049409

  6. Electrokinetic soil remediation--critical overview.

    PubMed

    Virkutyt, Jurate; Sillanpää, Mika; Latostenmaa, Petri

    2002-04-22

    In recent years, there has been increasing interest in finding new and innovative solutions for the efficient removal of contaminants from soils to solve groundwater, as well as soil, pollution. The objective of this review is to examine several alternative soil-remediating technologies, with respect to heavy metal remediation, pointing out their strengths and drawbacks and placing an emphasis on electrokinetic soil remediation technology. In addition, the review presents detailed theoretical aspects, design and operational considerations of electrokinetic soil-remediation variables, which are most important in efficient process application, as well as the advantages over other technologies and obstacles to overcome. The review discusses possibilities of removing selected heavy metal contaminants from clay and sandy soils, both saturated and unsaturated. It also gives selected efficiency rates for heavy metal removal, the dependence of these rates on soil variables, and operational conditions, as well as a cost-benefit analysis. Finally, several emerging in situ electrokinetic soil remediation technologies, such as Lasagna, Elektro-Klean, electrobioremediation, etc., are reviewed, and their advantages, disadvantages and possibilities in full-scale commercial applications are examined.

  7. Uranium soils integrated demonstration, 1993 status

    SciTech Connect

    Nuhfer, K.

    1994-08-01

    The Fernald Environmental Management Project (FEMP), operated by the Fernald Environmental Restoration Management Corporation (FERMCO) for the DOE, was selected as the host site for the Uranium Soils Integrated Demonstration. The Uranium Soils ID was established to develop and demonstrate innovative remediation methods which address the cradle to grave elements involved in the remediation of soils contaminated with radionuclides, principally uranium. The participants in the ID are from FERMCO as well as over 15 other organizations from DOE, private industry and universities. Some of the organizations are technology providers while others are members of the technical support groups which were formed to provide technical reviews, recommendations and labor. The following six Technical Support Groups (TSGs) were formed to focus on the objective of the ID: Characterization, Excavation, Decontamination, Waste Treatment/Disposal, Regulatory, and Performance Assessment. This paper will discuss the technical achievements made to date in the program as well as the future program plans. The focus will be on the realtime analysis devices being developed and demonstrated, the approach used to characterize the physical/chemical properties of the uranium waste form in the soil and lab scale studies on methods to remove the uranium from the soil.

  8. Contaminated soil stabilization demonstration

    SciTech Connect

    Kemp, C.J.; Sackschewsky, M.R.; Sampson, A.E.; Phillips, S.J.

    1991-10-01

    Long-term herbicide control along with a shotcrete cover was constructed at the Hanford Site in May 1991. The cover system allows for maintenance-free containment of contaminants by preventing wind and water transport of contaminants from the soil surface, preventing plant uptake of contaminants, and minimizing water infiltration through the soil column. The cover is composed of two parts: a commercial nonwoven geotextile material impregnated with trifluralin, and a >5-centimeter top cover of shotcrete containing polyethylene fibers. The herbicide-impregnated geotextile functions to prevent plant root growth into contaminated soil if any holes or cracks develop in the shotcrete layer. The herbicide component, trifluralin, is mixed into polymer nodules that degrade slowly over many years, thus releasing trifluralin slowly over time. The shotcrete topcover was sprayed using a sludge pump and air compressor to form a hard, impenetrable surface that prevents wind erosion and reduces water infiltration through the contaminated materials underneath. The benefits of the cover system are expected to last 20 to 30 years. 2 refs., 4 figs.

  9. Remediation of contaminated soils and sediments using Daramend bioremediation

    SciTech Connect

    Burwell, S.W.; Bucens, P.G.; Seech, A.G.

    1996-05-01

    Soils and sediments containing polyaromatic hydrocarbons (PAH), petroleum hydrocarbons, heavy oils, chlorinated phenols, pesticides, herbicides and phthalates, either individually or in combination, have been difficult to remediate in the past. Not only the species of contaminant, but contaminant concentrations were roadblocks to successful use of bioremediation. Daramend{sup Tm} remediation has removed many of these obstacles through extensive research. Bench-scale, pilot-scale and full-scale demonstrations have been conducted at a variety of industrial sites. At a manufactured gas site, 295 days of Daramend remediation reduced concentrations of chrysene and fluoranthene from 38.9 mg/kg to 5.9 mg/kg and 84.6 mg/kg to 7.8 mg/kg respectively. Elsewhere, the total PAH concentration in a silty soil was reduced from 1,442 mg/kg to 36 mg/kg. Concentrations of even the most refractory PAHs (e.g. pyrene, benzo(a)pyrene) were reduced to below the established clean-up guidelines. Total petroleum hydrocarbons (diesel fuel) have also been reduced from 8,700 mg/kg to 34 mg/kg after 182 days of treatment. Similarly, in a clay soil contaminated by crude oil processing, the concentrations of high molecular weight aliphatic hydrocarbons were rapidly reduced (138 days) to below the remediation criteria. Demonstrations with wood treatment site soils have proven Daramend remediation effective in enhancing the target compound degradation rates. Soils containing 2170 mg PCP/kg were shown to contain only 11 mg PCP/kg after 280 days of Darmend remediation. The issue of toxicity of soil containing increased amounts of pentachlorophenols was solved. Performance data collected during these projects indicate that Daramend remediation provides a cost effective method for clean-up of soils and sediments containing a variety of organic compounds.

  10. Some aspects of remediation of contaminated soils

    NASA Astrophysics Data System (ADS)

    Bech, Jaume; Korobova, Elena; Abreu, Manuela; Bini, Claudio; Chon, Hyo-Taek; Pérez-Sirvent, Carmen; Roca, Núria

    2014-05-01

    Soils are essential components of the environment, a limited precious and fragile resource, the quality of which should be preserved. The concentration, chemical form and distribution of potential harmful elements in soils depends on parent rocks, weathering, soil type and soil use. However, their concentration can be altered by mismanagement of industrial and mining activities, energy generation, traffic increase, overuse of agrochemicals, sewage sludge and waste disposal, causing contamination, environmental problems and health concerns. Heavy metals, some metalloids and radionuclides are persistent in the environment. This persistence hampers the cost/efficiency of remediation technologies. The choice of the most appropriate soil remediation techniques depends of many factors and essentially of the specific site. This contribution aims to offer an overview of the main remediation methods in contaminated soils. There are two main groups of technologies: the first group dealing with containment and confinement, minimizing their toxicity, mobility and bioavailability. Containment measures include covering, sealing, encapsulation and immobilization and stabilization. The second group, remediation with decontamination, is based on the remotion, clean up and/or destruction of contaminants. This group includes mechanical procedures, physical separations, chemical technologies such as soil washing with leaching or precipitation of harmful elements, soil flushing, thermal treatments and electrokinetic technologies. There are also two approaches of biological nature: bioremediation and phytoremediation. Case studies from Chile, Ecuador, Italy, Korea, Peru, Portugal, Russia and Spain, will be discussed in accordance with the time available.

  11. In situ soil remediation speeds site closure

    SciTech Connect

    Not Available

    1994-03-01

    An automotive parts manufacturing site in Madison, Wisconsin contaminated primarily with 1,1,1-trichloroethane (TCA) achieved closure in 15 months using an in situ soil remediation technology that improved soil conditions nearly a thousand fold. TCA concentrations were as high as 19,600 ppb. However, TCA levels dropped to 20 ppb after one year of system operation, prompting the state agency to grant closure for the remediation project in late 1992, following 15 months of operation. The groundwater remediation system is a packed-to-wet air stripper. It includes two groundwater extraction wells, each pumping 30 gallons per minute, and three soil vadose zone wells with a total design capacity of 100 cubic feet per minute. The soil-vapor extraction system included two 15-foot-deep wells and a 40-foot-deep well connected to a blower with condensate-recovery equipment.

  12. Encapsulation as a passive soil remediation alternative

    SciTech Connect

    Mario, B.R. De

    1996-12-31

    By implementing institutional and engineering controls, a passive, cost-effective, remedial alternative has allowed redevelopment of an abandoned, industrial, site located in Newark, New Jersey. Soil and groundwater contaminants at the site include volatile and semi-volatile organic compounds and metals. The New Jersey Department of Environmental Protection (NJDEP) recognized the impracticality of requiring an aggressive, localized, remedial action to clean up contaminated soil and groundwater in a region that has historically used fill to create land along the state`s waterways. By placing an institutional control, known as a Declaration of Environmental Restriction (DER), on the property, the NJDEP allowed contaminated fill to remain on site and approved encapsulation as the remedial action for the soil. The approved engineering control, encapsulation, consisted of the design and placement of an asphalt pavement cap that covered the affected areas of concern. The asphalt pavement cap prevents direct human contact to contaminated soil and leaching of contaminants in the soil into the groundwater by surface water infiltration. This paper focuses on the subsurface soil investigation and establishment of the DER. The benefits of this remedial alternative are: (1) the urban redevelopment of contaminated land while simultaneously ensuring protection to human health and the environment; (2) costs savings of not having to clean up a regional problem as if it were local; and (3) the facilitation of a property transfer transaction without the risk of future liability for an historical problem.

  13. Remediation of soils combining soil vapor extraction and bioremediation: benzene.

    PubMed

    Soares, António Alves; Albergaria, José Tomás; Domingues, Valentina Fernandes; Alvim-Ferraz, Maria da Conceição M; Delerue-Matos, Cristina

    2010-08-01

    This work reports the study of the combination of soil vapor extraction (SVE) with bioremediation (BR) to remediate soils contaminated with benzene. Soils contaminated with benzene with different water and natural organic matter contents were studied. The main goals were: (i) evaluate the performance of SVE regarding the remediation time and the process efficiency; (ii) study the combination of both technologies in order to identify the best option capable to achieve the legal clean up goals; and (iii) evaluate the influence of soil water content (SWC) and natural organic matter (NOM) on SVE and BR. The remediation experiments performed in soils contaminated with benzene allowed concluding that: (i) SVE presented (a) efficiencies above 92% for sandy soils and above 78% for humic soils; (b) and remediation times from 2 to 45 h, depending on the soil; (ii) BR showed to be an efficient technology to complement SVE; (iii) (a) SWC showed minimum impact on SVE when high airflow rates were used and led to higher remediation times for lower flow rates; (b) NOM as source of microorganisms and nutrients enhanced BR but hindered the SVE due the limitation on the mass transfer of benzene from the soil to the gas phase.

  14. Remediation of Mercury Contaminated Soils at the Miramas Site - 12243

    SciTech Connect

    Potier, G.; Chambon, F.

    2012-07-01

    Beneficial 'new' use of the Miramas Site is the remediation objective for a former light isotope manufacturing facility. Remediation operations will remove contaminated soils and materials and deconstruct facilities. The remediation objective is faced with project challenges and regulatory requirements that dictate/influence the outcome. The operation consists of the remediation of approximately 100,000 cubic meters of soil and the decommissioning of facilities. The types and ranges of waste are the result of historical processing activities (chemical facilities, pyrotechnic components storage, mining component treatment and light isotope manufacturing activities). Mercury is the primary component of the waste, but metals and organic compounds are also possible waste components. A thermal desorption process is used to remove Mercury from the polluted soil while a biological treatment is considered to the organic nitrate compound removal. A focus is done on the technologies used to remediate the Mercury contaminated soil. After few months of operation, the first results confirm that the technology choices were relevant and the soil remediation project is a success. The first successful month of operation at an industrial scale demonstrate that the Thermal Desorption is an efficient and relevant process to remediate large quantity of mercury contaminated soils. The project is on cost and the mercury removal should be end by 2014. The scrubbing is a good way to limit the volume of material to be treated with the Thermal Desorption Unit. The biological treatment is a promising process for the organic nitrate compound removal and testing at a pilot scale will be done in 2012. (authors)

  15. In situ RF/microwave remediation of soil experiment overview

    SciTech Connect

    Regan, A.H.; Palomares, M.E.; Polston, C.; Rees, D.E.; Roybal, W.T.; Ross, T.J.

    1995-09-01

    Contaminant plumes are significant waste problems that require remediation in both the government and private sectors. The authors are developing an in situ process that uses RF/microwave stimulation to remove pollutants from contaminated soils. This process is more efficient than existing technologies, creates less secondary pollution, and is applicable to situations that are not amenable to treatment by existing technologies. Currently, the most commonly used process is soil vapor extraction. However, even when it is successful, this technology is energy inefficient. The authors objective is to combine RF/microwave energy application with soil vapor extraction to help mobilize and efficiently remove the soil contaminants, specifically demonstrating the viability of RF/microwave induced, in situ, soil remediation of light and dense non-aqueous phase liquids (LNAPL, DNAPL) contaminants.

  16. SYNOPSES OF FEDERAL DEMONSTRATIONS OF INNOVATIVE REMEDIATION TECHNOLOGIES

    EPA Science Inventory

    This collection of abstracts, compiled by the Federal Remediation Technology Roundtable, describes field demonstrations of innovative technologies to treat hazardous waste. The collection is intended to be an information resource for hazardous waste site project managers for asse...

  17. Microbial Remediation of Metals in Soils

    NASA Astrophysics Data System (ADS)

    Hietala, K. A.; Roane, T. M.

    Of metal-contaminated systems, metal-contaminated soils present the greatest challenge to remediation efforts because of the structural, physical, chemical, and biological heterogeneities encountered in soils. One of the confounding issues surrounding metal remediation is that metals can be readily re-mobilized, requiring constant monitoring of metal toxicity in sites where metals are not removed. Excessive metal content in soils can impact air, surface water, and groundwater quality. However, our understanding of how metals affect organisms, from bacteria to plants and animals, and our ability to negate the toxicity of metals are in their infancies. The ubiquity of metal contamination in developing and industrialized areas of the world make remediation of soils via removal, containment, and/or detoxification of metals a primary concern. Recent examples of the health and environmental consequences of metal contamination include arsenic in drinking water (Wang and Wai 2004), mercury levels in fish (Jewett and Duffy 2007), and metal uptake by agricultural crops (Howe et al. 2005). The goal of this chapter is to summarize the traditional approaches and recent developments using microorganisms and microbial products to address metal toxicity and remediation.

  18. Electrokinetic remediation and microbial community shift of β-cyclodextrin-dissolved petroleum hydrocarbon-contaminated soil.

    PubMed

    Wan, Chunli; Du, Maoan; Lee, Duu-Jong; Yang, Xue; Ma, Wencheng; Zheng, Lina

    2011-03-01

    Electrokinetic (EK) migration of β-cyclodextrin (β-CD), which is inclusive of total petroleum hydrocarbon (TPH), is an economically beneficial and environmentally friendly remediation process for oil-contaminated soils. Remediation studies of oil-contaminated soils generally prepared samples using particular TPHs. This study investigates the removal of TPHs from, and electromigration of microbial cells in field samples via EK remediation. Both TPH content and soil respiration declined after the EK remediation process. The strains in the original soil sample included Bacillus sp., Sporosarcina sp., Beta proteobacterium, Streptomyces sp., Pontibacter sp., Azorhizobium sp., Taxeobacter sp., and Williamsia sp. Electromigration of microbial cells reduced the biodiversity of the microbial community in soil following EK remediation. At 200 V m(-1) for 10 days, 36% TPH was removed, with a small population of microbial cells flushed out, demonstrating that EK remediation is effective for the present oil-contaminated soils collected in field.

  19. Electrokinetic remediation and microbial community shift of β-cyclodextrin-dissolved petroleum hydrocarbon-contaminated soil.

    PubMed

    Wan, Chunli; Du, Maoan; Lee, Duu-Jong; Yang, Xue; Ma, Wencheng; Zheng, Lina

    2011-03-01

    Electrokinetic (EK) migration of β-cyclodextrin (β-CD), which is inclusive of total petroleum hydrocarbon (TPH), is an economically beneficial and environmentally friendly remediation process for oil-contaminated soils. Remediation studies of oil-contaminated soils generally prepared samples using particular TPHs. This study investigates the removal of TPHs from, and electromigration of microbial cells in field samples via EK remediation. Both TPH content and soil respiration declined after the EK remediation process. The strains in the original soil sample included Bacillus sp., Sporosarcina sp., Beta proteobacterium, Streptomyces sp., Pontibacter sp., Azorhizobium sp., Taxeobacter sp., and Williamsia sp. Electromigration of microbial cells reduced the biodiversity of the microbial community in soil following EK remediation. At 200 V m(-1) for 10 days, 36% TPH was removed, with a small population of microbial cells flushed out, demonstrating that EK remediation is effective for the present oil-contaminated soils collected in field. PMID:21052991

  20. Uranium soils integrated demonstration: Soil characterization project report

    SciTech Connect

    Cunnane, J.C.; Gill, V.R.; Lee, S.Y.; Morris, D.E.; Nickelson, M.D.; Perry, D.L.; Tidwell, V.C.

    1993-08-01

    An Integrated Demonstration Program, hosted by the Fernald Environmental Management Project (FEMP), has been established for investigating technologies applicable to the characterization and remediation of soils contaminated with uranium. Critical to the design of relevant treatment technologies is detailed information on the chemical and physical characteristics of the uranium waste-form. To address this need a soil sampling and characterization program was initiated which makes use of a variety of standard analytical techniques coupled with state-of-the-art microscopy and spectroscopy techniques. Sample representativeness is evaluated through the development of conceptual models in an effort to identify and understand those geochemical processes governing the behavior of uranium in FEMP soils. Many of the initial results have significant implications for the design of soil treatment technologies for application at the FEMP.

  1. DEMONSTRATION BULLETIN STEAM ENHANCED REMEDIATION STEAM TECH ENVIRONMENTAL SERVICES, INC.

    EPA Science Inventory

    Steam Enhanced Remediation is a process in which steam is injected into the subsurface to recover volatile and semivolatile organic contaminants. It has been applied successfully to recover contaminants from soil and aquifers and at a fractured granite site. This SITE demonstra...

  2. Soil remediation method and apparatus

    SciTech Connect

    McCrossan, C.

    1992-02-11

    This patent describes a method for removing volatile organic compounds (VOC's) from soil. It comprises: heating the soil in a burner-heated drum to vaporize at least a substantial portion of the VOC's, some of which may be combusted; ducting the vaporized VOC's to an air scrubber and absorbing a substantial portion of the vaporized VOC's into the scrubber water; conducting the VOC-laden scrubber water to a settling basin to permit any soil particulate to settle out of the water; withdrawing the VOC-laden water which is substantially free of soil particulates from the basin and removing the VOC's from such water by vaporizing them in an air stripper; conducting the vaporized VOC's to the burner and burning them to help heat the drum; and returning the water from which the VOC's have been stripped to the air scrubber for use in absorbing VOC's coming from the drum.

  3. Remediation to improve infiltration into compact soils.

    PubMed

    Olson, Nicholas C; Gulliver, John S; Nieber, John L; Kayhanian, Masoud

    2013-03-15

    Urban development usually involves soil compaction through converting large pervious land into developed land. This change typically increases runoff during runoff events and consequently may add to flooding and additional volume of runoff. The wash off of pollutants may also create numerous water quality and environmental problems for receiving waters. To alleviate this problem many municipalities are considering low impact development. One technique to reduce runoff in an urban area is to improve the soil infiltration. This study is specifically undertaken to investigate tilling and compost addition to improve infiltration rate, and to investigate measurement tools to assess the effectiveness of remediated soil. Soil remediation was performed at three sites in an urban area metropolitan area. Each site was divided into three plots: tilled, tilled with compost addition, and a control plot with no treatment. The infiltration effectiveness within each plot was assessed by measuring saturated hydraulic conductivity (K(sat)) using the modified Philip Dunne (MPD) infiltrometer during pre- and post-treatment. In addition, the use of soil bulk density and soil strength as surrogate parameters for K(sat) was investigated. Results showed that deep tillage was effective at reducing the level of soil strength. Soil strength was approximately half that of the control plot in the first six inches of soil. At two of the sites, tilling was also ineffective at improving the infiltration capacity of the soil. The geometric mean of K(sat) was 0.5-2.3 times that of the control plot, indicating little overall improvement. Compost addition was more effective than tilling by reducing the soil strength and compaction and increasing soil infiltration. The geometric mean of K(sat) on the compost plots was 2.7-5.7 times that of the control plot. No strong correlations were observed before remediation between either soil bulk density or soil strength and K(sat). Simulation results showed

  4. EVALUATION OF REMEDIATION TECHNOLOGIES FOR PLUTONIUM CONTAMINATED SOIL

    SciTech Connect

    Hoeffner, S. L.; Navratil, J. D.; Torrao, G.; Smalley, R.

    2002-02-25

    Soils contaminated with radionuclides are an environmental concern at most Department of Energy (DOE) sites. Clean up efforts at many of these sites are ongoing using conventional remediation techniques. These remediation techniques are often expensive and may not achieve desired soil volume reduction. Several studies using alternative remediation techniques have been performed on plutonium-contaminated soils from the Nevada Test Site. Results to date exhibit less than encouraging results, but these processes were often not fully optimized, and other approaches are possible. Clemson University and teaming partner Waste Policy Institute, through a cooperative agreement with the National Environmental Technologies Laboratory, are assisting the Nevada Test Site (NTS) in re-evaluating technologies that have the potential of reducing the volume of plutonium contaminated soil. This efforts includes (1) a through literature review and summary of (a) NTS soil characterization and (b) volume reduction treatment technologies applied to plutonium-contaminated NTS soils, (2) an interactive workshop for vendors, representatives from DOE sites and end-users, and (3) bench scale demonstration of applicable vendor technologies at the Clemson Environmental Technologies Laboratory.

  5. In situ soil remediation using electrokinetics

    SciTech Connect

    Buehler, M.F.; Surma, J.E.; Virden, J.W.

    1994-11-01

    Electrokinetics is emerging as a promising technology for in situ soil remediation. This technique is especially attractive for Superfund sites and government operations which contain large volumes of contaminated soil. The approach uses an applied electric field to induce transport of both radioactive and hazardous waste ions in soil. The transport mechanisms include electroosmosis, electromigration, and electrophoresis. The feasibility of using electrokinetics to move radioactive {sup 137}Cs and {sup 60}Co at the Hanford Site in Richland, Washington, is discussed. A closed cell is used to provide in situ measurements of {sup 137}Cs and {sup 60}Co movement in Hanford soil. Preliminary results of ionic movement, along with the corresponding current response, are presented.

  6. Demonstration of optimization techniques for groundwater plume remediation

    SciTech Connect

    Finsterle, Stefan

    2000-09-01

    We examined the potential use of standard optimization algorithms for the solution of aquifer remediation problems. Costs for the removal of dissolved or free-phase contaminants depend on aquifer properties, the chosen remediation technology, and operational parameters (such as number of wells drilled and pumping rates). A cost function must be formulated that may include actual costs and hypothetical penalty costs for incomplete cleanup; the total cost function is therefore a measure of the overall effectiveness and efficiency of the proposed remediation scenario. In this study, the cost function is minimized by automatically adjusting certain operational parameters. The impact of these operational parameters on remediation is evaluated using a state-of-the-art three-phase, three-component flow and transport simulator, which is linked to nonlinear optimization routines. The report demonstrates that methods developed for automatic model calibration are capable of minimizing arbitrary cost functions. Two illustrative examples are presented. While hypothetical, these examples demonstrate that remediation costs can be substantially lowered by combining simulation and optimization techniques. The second example on co-injection of air and steam also make evident the need for coupling optimization routines with an accurate state-of-the-art process simulator. Simplified models are likely to miss significant system behaviors such as increased downward mobilization due to recondensation of contaminants during steam flooding, which can be partly suppressed by the co-injection of air.

  7. WATER AS A REAGENT FOR SOIL REMEDIATION

    SciTech Connect

    Indira S. Jayaweera; Jordi Diaz-Ferraro

    2000-02-28

    SRI International is conducting experiments to develop and evaluate hydrothermal extraction technology for remediating petroleum-contaminated soils. Most current remediation practices generally fail (or are cost prohibitive) to remove the polycyclic aromatic hydrocarbons (PAHs) found in petroleum-contaminated sites or they require the use of organic solvents to achieve removal, at the expense of additional contamination and with the added cost of recycling solvents. Hydrothermal extraction offers the promise of efficiently extracting PAHs and other kinds of organics from contaminated soils at moderate temperatures and pressures, using only water and inorganic salts such as carbonate. Initial work is being conducted at SRI to measure the solubility and rate of solubilization of selected PAHs (anthracene, fluoranthene, pyrene, and chrysene) in water, using SRI's hydrothermal optical cell with the addition of varying amounts of sodium carbonate to evaluate the efficiency of the technology for removing PAHs from the soil. Preliminary results with pyrene and fluoranthene in water clearly indicate a significant enhancement of solubility with increase in temperature. During this quarter, we conducted experiments with pyrene in the temperature range 200 to 300 C and observed a great enhancement in solubility with an increase in temperature. We also started experiments with real-world soil samples purchased from the subcontractor.

  8. Evaluation of electrokinetic remediation of arsenic-contaminated soils.

    PubMed

    Kim, Soon-Oh; Kim, Won-Seok; Kim, Kyoung-Woong

    2005-09-01

    The potential of electrokinetic (EK) remediation technology has been successfully demonstrated for the remediation of heavy metal-contaminated fine-grained soils through laboratory scale and field application studies. Arsenic contamination in soil is a serious problem affecting both site use and groundwater quality. The EK technology was evaluated for the removal of arsenic from two soil samples; a kaolinite soil artificially contaminated with arsenic and an arsenic-bearing tailing-soil taken from the Myungbong (MB) gold mine area. The effectiveness of enhancing agents was investigated using three different types of cathodic electrolytes; deionized water (DIW), potassium phosphate (KH(2)PO(4)) and sodium hydroxide (NaOH). The results of the experiments on the kaolinite show that the potassium phosphate was the most effective in extracting arsenic, probably due to anion exchange of arsenic species by phosphate. On the other hand, the sodium hydroxide seemed to be the most efficient in removing arsenic from the tailing-soil. This result may be explained by the fact that the sodium hydroxide increased the soil pH and accelerated ionic migration of arsenic species through the desorption of arsenic species as well as the dissolution of arsenic-bearing minerals. PMID:16237600

  9. In situ RF/microwave remediation of soil experiment overview

    SciTech Connect

    Regan, A.H.; Roybal, W.T.; Ortega, R.; Palomares, M.; Rees, D.E.; Tischler, D.

    1996-06-01

    Contaminant plumes are significant waste problems that require remediation in both the government and private sectors. The authors have developed an in situ process that uses RF/microwave stimulation to remove pollutants from contaminated soils. This process is more efficient than existing technologies, creates less secondary pollution, and is applicable to situations that are not amenable to treatment by existing technologies. Currently the most commonly used process is soil vapor extraction. However, even when it is successful, this technology is energy inefficient. The objective is to combine RF/microwave energy application with soil vapor extraction to help mobilize and efficiently remove the soil contaminants, specifically demonstrating the viability of RF/microwave induced, in situ, soil remediation of light and dense non-aqueous phase liquids (LNAPL, DNAPL) contaminants. The authors have conducted a number of benchtop experiments involving RF/microwave energy deposition and vapor extraction on controlled contaminated soil samples with successful removal of the contaminants. This paper will describe the experimental hardware utilized, the experiments performed, the chemical analysis performed pre- and post-energy application, and results. In the experiments, two different halogenated liquids were used to contaminate the soil: carbon tetrachloride and 1,1,1-trichloroethane.

  10. Evaluation of electrokinetic remediation of arsenic-contaminated soils.

    PubMed

    Kim, Soon-Oh; Kim, Won-Seok; Kim, Kyoung-Woong

    2005-09-01

    The potential of electrokinetic (EK) remediation technology has been successfully demonstrated for the remediation of heavy metal-contaminated fine-grained soils through laboratory scale and field application studies. Arsenic contamination in soil is a serious problem affecting both site use and groundwater quality. The EK technology was evaluated for the removal of arsenic from two soil samples; a kaolinite soil artificially contaminated with arsenic and an arsenic-bearing tailing-soil taken from the Myungbong (MB) gold mine area. The effectiveness of enhancing agents was investigated using three different types of cathodic electrolytes; deionized water (DIW), potassium phosphate (KH(2)PO(4)) and sodium hydroxide (NaOH). The results of the experiments on the kaolinite show that the potassium phosphate was the most effective in extracting arsenic, probably due to anion exchange of arsenic species by phosphate. On the other hand, the sodium hydroxide seemed to be the most efficient in removing arsenic from the tailing-soil. This result may be explained by the fact that the sodium hydroxide increased the soil pH and accelerated ionic migration of arsenic species through the desorption of arsenic species as well as the dissolution of arsenic-bearing minerals.

  11. In situ soil remediation: Bacteria or fungi?

    SciTech Connect

    Cutright, T.J.; Lee, S.

    1995-07-01

    Contamination of the environment is not a new problem. For most of recorded history, the unwanted byproducts of industrial and residential processes have been dumped into unlined pits or nearby streams. Although disposal techniques have greatly improved, significant quantities of hazardous materials are still being released to the environment via accidental spills and leaking underground storage tanks. One particular group of contaminants of critical environmental concern is polycyclic aromatic hydrocarbons (PAHs). PAH-contaminated sites typically cover large areas; therefore, the development of in situ remediation techniques such as bioremediation is strongly emphasized. In situations when inherent microorganisms are not capable of degrading the contaminants, foreign strains must be used. Bioremediation experiments were conducted to compare the remediation efficiencies of a bacteria and a fungus for an industrially PAH contaminated soil. Specifically, the use of three supplemental nutrient solutions were investigated in conjunction with the bacteria Achromobacter sp. and fungus Cunninghamella echinulata var. elegans.

  12. Microwave remediation of soil contaminated with hexachlorobenzene.

    PubMed

    Yuan, Songhu; Tian, Meng; Lu, Xiaohua

    2006-09-21

    This study describes the remediation of hexachlorobenzene (HCB) contaminated soils by microwave (MW) radiation in a sealed vial. When powdered MnO2 was used as MW absorber, a complete removal of HCB was obtained with 10 min MW by the addition of H2SO4 (50%). But no significant decomposition was observed by the addition of NaOH (10 mol/L) or H2O in the same conditions. In contrast, when powdered Fe was used instead of MnO2, the difference of HCB removals between H2SO4 and NaOH were not obvious. It is noteworthy that more than 95% removal was achieved in any case when the sole aqueous solution of H2SO4, NaOH, H2O or Na2SO4 was added without MnO2 or Fe. As a result, it is possible that water itself contained in the damp soil may act as MW absorber and remediate the contaminated soil without addition of any other MW absorbers. Gas chromatograph/mass spectrum (GC/MS) analysis detected no intermediates in all the processes. The decomposition mechanism of HCB by MW radiation was suggested as the binding of HCB and soil. Whatever fragments formed from HCB by heat were tightly bound to the soil, making it impossible to extract them out. In the end, treatment of practical HCB contaminated soil by MW reduced HCB from 55.8 mg/kg to 0.91 mg/kg.

  13. [Vapor extraction technology in oil contaminated soil remediation].

    PubMed

    Li, Jinhui; Nie, Yongfeng; Ma, Haibin; Xia, Xin; Liang, Fuyan; Zhen, Xiaoyue

    2002-01-30

    In order to study the Vapor Extraction Technology that can be applied to China, on the basis of mechanism analysis of Vapor Extraction Technology for oil-contaminated soil, a simplified and practical contaminant removal model to simulate the soil remediation time was presented. With the typical unsaturated soils in North of China, the effects of the vapor flow rate, soil water content and quality on the remediation process were studied. The results showed that the best value of flow velocity was existed, and water content had different influence on different kinds of soil, for silty soil, the efficiency of remediation enhanced with water content increase, but there was a reverse result for clayey soil. Through one-dimension soil column experiments, the results showed that these factors had different effects on remediation time. The research using the soil column apparatus show that the predicted results were validated and the applied conditions of this model were qualified.

  14. Engineered polymeric nanoparticles for soil remediation.

    PubMed

    Tungittiplakorn, Warapong; Lion, Leonard W; Cohen, Claude; Kim, Ju-Young

    2004-03-01

    Hydrophobic organic groundwater contaminants, such as polynuclear aromatic hydrocarbons (PAHs), sorb strongly to soils and are difficult to remove. We report here on the synthesis of amphiphilic polyurethane (APU) nanoparticles for use in remediation of soil contaminated with PAHs. The particles are made of polyurethane acrylate anionomer (UAA) or poly(ethylene glycol)-modified urethane acrylate (PMUA) precursor chains that can be emulsified and cross-linked in water. The resulting particles are of colloidal size (17-97 nm as measured by dynamic light scattering). APU particles have the ability to enhance PAH desorption and transport in a manner comparable to that of surfactant micelles, but unlike the surface-active components of micelles, the individual cross-linked precursor chains in APU particles are not free to sorb to the soil surface. Thus, the APU particles are stable independent of their concentration in the aqueous phase. In this paper we show that APU particles can be engineered to achieve desired properties. Our experimental results show that the APU particles can be designed to have hydrophobic interior regions that confer a high affinity for phenanthrene (PHEN) and hydrophilic surfaces that promote particle mobility in soil. The affinity of APU particles for contaminants such as PHEN can be controlled by changing the size of the hydrophobic segment used in the chain synthesis. The mobility of colloidal APU suspensions in soil is controlled by the charge density or the size of the pendent water-soluble chains that reside on the particle surface. Exemplary results are provided illustrating the influence of alternative APU particle formulations with respect to their efficacy for contaminant removal. The ability to control particle properties offers the potential to produce different nanoparticles optimized for varying contaminant types and soil conditions.

  15. FEASIBILITY OF ELECTROKINETIC SOIL REMEDIATION IN HORIZONTAL LASAGNA CELLS

    EPA Science Inventory

    An integrated soil remediation technology called Lasagna has been developed that combines electrokinetics with treatment zones for use in low permeability soils where the rates of hydraulic and electrokinetic transport are too low to be useful for remediation of contaminants. The...

  16. Ferritization treatment of copper in soil by electrokinetic remediation.

    PubMed

    Kimura, Tomoyuki; Takase, Ken-Ichi; Terui, Norifumi; Tanaka, Shunitz

    2007-05-17

    The usefulness of the combined use of the electrokinetic (EK) remediation and a ferrite treatment zone (FTZ) was demonstrated for a treatment of the contaminated soil with heavy metal ions. Copper ions in contaminated soil were transferred into the FTZ by the EK technology and were ferritized in this system. The distribution of copper in a migration chamber after EK treatment with FTZ for 48h showed the large difference in the total and eluted concentration of copper. This indicated that copper ions transferred by EK into the FTZ were ferritized there with ferrite reagent in soil alkalified by EK process. The copper-ferrite compound, which was not dissolved with diluted acid, was retained in the FTZ and accumulated there. The ratio of the ferritized amount of copper against total copper was 92% in the EK process with FTZ after 48 h. PMID:17374444

  17. Use of manure to remediate eroded hill top soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soils damaged by the dustbowl years can still be found across the Western Central Great Plains. Most of these soils have lost top soil rich in organic matter. Our objective was to determine best management practices for remediating these soils using beef manure as an organic amendment. In a field ...

  18. Surface heating blanket for soil remediation

    SciTech Connect

    Van Egmond, C.F.; Carl, F.G. Jr.; Stegemeier, G.L.; Vinegar, H.J.

    1993-07-20

    A heater assembly is described for use in soil remediation comprising: a plurality of metallic support rods spaced parallel to each other; a continuous metallic strand spirally encircling adjacent ones of said support rods and forming rungs therearound, said rungs extending the length of said support rods, making low resistance contact therewith but being frictionally movable with respect thereto; an electric beater element located between and parallel to a selected pair of said support rods and between said rungs encircling said selected support rods, said heater being in low resistance frictional contact with said rungs along its length; a layer of insulation on top of said assembly; and an impermeable sheet placed on top of said insulation.

  19. WATER AS A REAGENT FOR SOIL REMEDIATION

    SciTech Connect

    Indira S. Jayaweera; Montserrat Marti-Perez; Jordi Diaz-Ferrero; Angel Sanjurjo

    2001-03-29

    SRI International is conducting experiments to develop and evaluate hydrothermal extraction technology or hot water extraction (HWE) technology for remediating petroleum-contaminated soils. Most current remediation practices either fail to remove the polycyclic aromatic hydrocarbons (PAHs) found in petroleum-contaminated sites, are too costly, or require the use of organic solvents at the expense of additional contamination and with the added cost of recycling solvents. Hydrothermal extraction offers the promise of efficiently extracting PAHs and other kinds of organics from contaminated soils at moderate temperatures and pressures, using only water and inorganic salts such as carbonate. SRI has conducted experiments to measure the solubility and rate of solubilization of selected PAHs (fluoranthene, pyrene, chrysene, 9,10-dimethylanthracene) in water using SRI's hydrothermal optical cell with the addition of varying amounts of sodium carbonate to evaluate the efficiency of the technology for removing PAHs from the soil. SRI data shows a very rapid increase in solubility of PAHs with increase in temperature in the range 25-275 C. SRI also measured the rate of solubilization, which is a key factor in determining the reactor parameters. SRI results for fluoranthene, pyrene, chrysene, and 9,10-dimethylanthracene show a linear relationship between rate of solubilization and equilibrium solubility. Also, we have found the rate of solubilization of pyrene at 275 C to be 6.5 ppm/s, indicating that the equilibrium solubilization will be reached in less than 3 min at 275 C; equilibrium solubility of pyrene at 275 C is 1000 ppm. Also, pyrene and fluoranthene appear to have higher solubilities in the presence of sodium carbonate. In addition to this study, SRI studied the rate of removal of selected PAHs from spiked samples under varying conditions (temperature, pore sizes, and pH). We have found a higher removal of PAHs in the presence of sodium carbonate in both sand and

  20. Incorporating the soil function concept into sustainability appraisal of remediation alternatives.

    PubMed

    Volchko, Yevheniya; Norrman, Jenny; Bergknut, Magnus; Rosén, Lars; Söderqvist, Tore

    2013-11-15

    Soil functions are critical for ecosystem survival and thus for an ecosystem's provision of services to humans. This is recognized in the proposed EU Soil Framework Directive from 2006, which lists seven important soil functions and services to be considered in a soil management practice. Emerging regulatory requirements demand a holistic view on soil evaluation in remediation projects. This paper presents a multi-scale, structured and transparent approach for incorporating the soil function concept into sustainability appraisal of remediation alternatives using a set of ecological, socio-cultural and economic criteria. The basis for the presented approach is a conceptualization of the linkages between soil functions and ecosystem services connected to with the sustainability paradigm. The approach suggests using (1) soil quality indicators (i.e. physical, chemical and biological soil properties) for exploring the performance of soil functions at the site level, and (2) soil service indicators (i.e. value-related measurements) for evaluating the performance of services resulting from soil functions across all levels of the spatial scale. The suggested approach is demonstrated by application in a Multi-Criteria Decision Analysis (MCDA) framework for sustainability appraisals of remediation alternatives. Further, the possibilities of using soil quality indicators for soil function evaluation are explored by reviewing existing literature on potential negative and positive effects of remediation technologies on the functionality of the treated soil. The suggested approach for including the soil function concept in remediation projects is believed to provide a basis for better informed decisions that will facilitate efficient management of contaminated land and to meet emerging regulatory requirements on soil protection.

  1. Using soil function evaluation in multi-criteria decision analysis for sustainability appraisal of remediation alternatives.

    PubMed

    Volchko, Yevheniya; Norrman, Jenny; Rosén, Lars; Bergknut, Magnus; Josefsson, Sarah; Söderqvist, Tore; Norberg, Tommy; Wiberg, Karin; Tysklind, Mats

    2014-07-01

    Soil contamination is one of the major threats constraining proper functioning of the soil and thus provision of ecosystem services. Remedial actions typically only address the chemical soil quality by reducing total contaminant concentrations to acceptable levels guided by land use. However, emerging regulatory requirements on soil protection demand a holistic view on soil assessment in remediation projects thus accounting for a variety of soil functions. Such a view would require not only that the contamination concentrations are assessed and attended to, but also that other aspects are taking into account, thus addressing also physical and biological as well as other chemical soil quality indicators (SQIs). This study outlines how soil function assessment can be a part of a holistic sustainability appraisal of remediation alternatives using multi-criteria decision analysis (MCDA). The paper presents a method for practitioners for evaluating the effects of remediation alternatives on selected ecological soil functions using a suggested minimum data set (MDS) containing physical, biological and chemical SQIs. The measured SQIs are transformed into sub-scores by the use of scoring curves, which allows interpretation and the integration of soil quality data into the MCDA framework. The method is demonstrated at a study site (Marieberg, Sweden) and the results give an example of how soil analyses using the suggested MDS can be used for soil function assessment and subsequent input to the MCDA framework.

  2. Using soil function evaluation in multi-criteria decision analysis for sustainability appraisal of remediation alternatives.

    PubMed

    Volchko, Yevheniya; Norrman, Jenny; Rosén, Lars; Bergknut, Magnus; Josefsson, Sarah; Söderqvist, Tore; Norberg, Tommy; Wiberg, Karin; Tysklind, Mats

    2014-07-01

    Soil contamination is one of the major threats constraining proper functioning of the soil and thus provision of ecosystem services. Remedial actions typically only address the chemical soil quality by reducing total contaminant concentrations to acceptable levels guided by land use. However, emerging regulatory requirements on soil protection demand a holistic view on soil assessment in remediation projects thus accounting for a variety of soil functions. Such a view would require not only that the contamination concentrations are assessed and attended to, but also that other aspects are taking into account, thus addressing also physical and biological as well as other chemical soil quality indicators (SQIs). This study outlines how soil function assessment can be a part of a holistic sustainability appraisal of remediation alternatives using multi-criteria decision analysis (MCDA). The paper presents a method for practitioners for evaluating the effects of remediation alternatives on selected ecological soil functions using a suggested minimum data set (MDS) containing physical, biological and chemical SQIs. The measured SQIs are transformed into sub-scores by the use of scoring curves, which allows interpretation and the integration of soil quality data into the MCDA framework. The method is demonstrated at a study site (Marieberg, Sweden) and the results give an example of how soil analyses using the suggested MDS can be used for soil function assessment and subsequent input to the MCDA framework. PMID:24529453

  3. REMEDIATION OF RADIUM FROM CONTAMINATED SOIL

    EPA Science Inventory

    The objective of this study was to demonstrate the application of a physico-chemical separation process for the removal of radium from a sample of contaminated soil at the Ottawa, Illinois, site near Chicago. The size/activity distribution analyzed among the particles coarser tha...

  4. A mechanistic study of arsenate removal from artificially contaminated clay soils by electrokinetic remediation.

    PubMed

    Suzuki, Tasuma; Moribe, Mai; Okabe, Yohhei; Niinae, Masakazu

    2013-06-15

    Batch desorption experiments and bench-scale electrokinetic experiments were performed to elucidate the electrokinetic remediation mechanisms of arsenate from artificially contaminated kaolinite. The electrokinetic experiments in which a constant voltage was applied demonstrated that high soil pH favored arsenate remediation with respect to both the remediation time and electricity consumption. It was also demonstrated that applying a pulse voltage (1 h ON, 1 h OFF) significantly improved the electricity consumption efficiency when the soil pH was maintained at the initial value during the experiments; this trend was not observed when the soil pH was gradually increased from the cathode side. These electrokinetic experimental results, with the support of arsenate desorption data obtained from batch experiments, indicate that the remediation rate-limiting step varied with soil pH. When the soil pH was maintained at the initial value of 7.2 during the experiments, arsenate desorption was the remediation rate-limiting step rather than the migration of dissolved arsenate toward the anode. Conversely, when the cathode pH was not controlled and the soil pH was correspondingly increased gradually from the cathode side, the migration of hydroxyl and desorbed arsenate ions toward the anode played a more important role in the control of the overall remediation efficiency. PMID:23643955

  5. Remediating pesticide contaminated soils using solvent extraction

    SciTech Connect

    Sahle-Demessie, E.; Meckes, M.C.; Richardson, T.L.

    1996-12-31

    Bench-scale solvent extraction studies were performed on soil samples obtained from a Superfund site contaminated with high levels of p,p{prime}-DDT, p,p{prime}-DDE and toxaphene. The effectiveness of the solvent extraction process was assessed using methanol and 2-propanol as solvents over a wide range of operating conditions. It was demonstrated that a six-stage methanol extraction using a solvent-to-soil ratio of 1.6 can decrease pesticide levels in the soil by more than 99% and reduce the volume of material requiring further treatment by 25 times or more. The high solubility of the pesticides in methanol resulted in rapid extraction rates, with the system reaching quasi-equilibrium state in 30 minutes. The extraction efficiency was influenced by the number of extraction stages, the solvent-to-soil ratio, and the soil moisture content. Various methods were investigated to regenerate and recycle the solvent. Evaporation and solvent stripping are low cost and reliable methods for removing high pesticide concentrations from the solvent. For low concentrations, GAC adsorption may be used. Precipitating and filtering pesticides by adding water to the methanol/pesticide solution was not successful when tested with soil extracts. 26 refs., 10 figs., 6 tabs.

  6. [Feasibility of applying ornamental plants in contaminated soil remediation].

    PubMed

    Liu, Jia-Nü; Zhou, Qi-Xing; Sun, Ting; Wang, Xiao-Fei

    2007-07-01

    Phytoremediation is one of the effective ways in resolving problems of contaminated soils, but limited hyperaccumulation plant species were reported and documented. This shortage could be offset if remediation plants can be screened out from various ornamental plants. In addition, such doing can beautify the environment while bring some economic effects. Starting from the importance of phytoremediation, this paper generalized the characters and standards of remediation plants. Through describing the resources of ornamental plants and their functions on environmental protection, particularizing their superiorities to other plants, and analyzing their endurance, accumulation traits and remediation types, the feasibility of applying ornamental plants in the practices of contaminated soil remediation was discussed. To screening out hyperaccumulators from ornamental plants would be an entirely new research area in the remediation of contaminated soils.

  7. Remediation of sandy soils using surfactant solutions and foams.

    PubMed

    Couto, Hudson J B; Massarani, Guilio; Biscaia, Evaristo C; Sant'Anna, Geraldo L

    2009-05-30

    Remediation of sandy soils contaminated with diesel oil was investigated in bench-scale experiments. Surfactant solution, regular foams and colloidal gas aphrons were used as remediation fluids. An experimental design technique was used to investigate the effect of relevant process variables on remediation efficiency. Soils prepared with different average particle sizes (0.04-0.12 cm) and contaminated with different diesel oil contents (40-80 g/kg) were used in experiments conducted with remediation fluids. A mathematical model was proposed allowing for the determination of oil removal rate-constant (k(v)) and oil content remaining in the soil after remediation (C(of)) as well as estimation of the percentage of oil removed. Oil removal efficiencies obtained under the central experimental design conditions were 96%, 88% and 35% for aphrons, regular foams and surfactant solutions, respectively. High removal efficiencies were obtained using regular foams and aphrons, demanding small amounts of surfactant.

  8. [Immobilization remediation of Cd and Pb contaminated soil: remediation potential and soil environmental quality].

    PubMed

    Sun, Yue-Bing; Wang, Peng-Chao; Xu, Ying-Ming; Sun, Yang; Qin, Xu; Zhao, Li-Jie; Wang, Lin; Liang, Xue-Feng

    2014-12-01

    A pot experiment was conducted to investigate the immobilization remediation effects of sepiolite on soils artificially combined contamination by Cd and Pb using a set of various pH and speciation of Cd and Pb in soil, heavy metal concentration in Oryza sativa L., and soil enzyme activity and microbial quantity. Results showed that the addition of sepiolite increased the soil pH, and the exchangeable fraction of heavy metals was converted into Fe-Mn oxide, organic and residual forms, the concentration of exchangeable form of Cd and Pb reduced by 1.4% - 72.9% and 11.8% - 51.4%, respectively, when compared with the control. The contents of heavy metals decreased with increasing sepiolite, with the maximal Cd reduction of 39.8%, 36.4%, 55.2% and 32.4%, respectively, and 22.1%, 54.6%, 43.5% and 17.8% for Pb, respectively, in the stems, leaves, brown rice and husk in contrast to CK. The addition of sepiolite could improve the soil environmental quality, the catalase and urease activities and the amount of bacteria and actinomycete were increased to some extents. Although the fungi number and invertase activity were inhibited compared with the control group, it was not significantly different (P > 0.05). The significant correlation between pH, available heavy metal content, urease and invertase activities and heavy metal concentration in the plants indicated that these parameters could be used to evaluate the effectiveness of stabilization remediation of heavy metal contaminated soil.

  9. [Immobilization remediation of Cd and Pb contaminated soil: remediation potential and soil environmental quality].

    PubMed

    Sun, Yue-Bing; Wang, Peng-Chao; Xu, Ying-Ming; Sun, Yang; Qin, Xu; Zhao, Li-Jie; Wang, Lin; Liang, Xue-Feng

    2014-12-01

    A pot experiment was conducted to investigate the immobilization remediation effects of sepiolite on soils artificially combined contamination by Cd and Pb using a set of various pH and speciation of Cd and Pb in soil, heavy metal concentration in Oryza sativa L., and soil enzyme activity and microbial quantity. Results showed that the addition of sepiolite increased the soil pH, and the exchangeable fraction of heavy metals was converted into Fe-Mn oxide, organic and residual forms, the concentration of exchangeable form of Cd and Pb reduced by 1.4% - 72.9% and 11.8% - 51.4%, respectively, when compared with the control. The contents of heavy metals decreased with increasing sepiolite, with the maximal Cd reduction of 39.8%, 36.4%, 55.2% and 32.4%, respectively, and 22.1%, 54.6%, 43.5% and 17.8% for Pb, respectively, in the stems, leaves, brown rice and husk in contrast to CK. The addition of sepiolite could improve the soil environmental quality, the catalase and urease activities and the amount of bacteria and actinomycete were increased to some extents. Although the fungi number and invertase activity were inhibited compared with the control group, it was not significantly different (P > 0.05). The significant correlation between pH, available heavy metal content, urease and invertase activities and heavy metal concentration in the plants indicated that these parameters could be used to evaluate the effectiveness of stabilization remediation of heavy metal contaminated soil. PMID:25826946

  10. Remediating soils: Designing biochars to meet the need

    EPA Science Inventory

    Biochar, the porous, carbon-rich product of pyrolysis, may provide an additional tool for remediating both metal and organic contaminated soils and for reducing other soil limitations. Soils contaminated with metals, organics or limited in some other way is a world-wide problem...

  11. Effects of aggressive remediation on soil properties and function

    NASA Astrophysics Data System (ADS)

    Switzer, Christine; Zihms, Stephanie; Pape, Andrew; Robson, Andrew; Knapp, Charles

    2013-04-01

    Aggressive remediation processes such as thermal desorption, smouldering, and chemical oxidiation remediation processes have significant promise to deliver substantial contaminant reduction in short periods of time, effecting as much as 95-99+% mass removal from non-aqueous phase liquid (NAPL) source zones. In situ thermal remediation exposes soils to temperatures of 100+°C for periods of weeks or months. In situ smouldering exposes soils to 600-1000+°C for hours to days. Chemical oxidation exposes soils to harsh oxidizing chemicals for weeks or months effecting reactive degradation of chemical contaminants but also surrounding soils. These processes have the potential to result in significant changes to the soil properties, particularly at the particle surface and grain interfaces. The dynamic effects of these changes have important implications in soil management practice. The mobilisation of soil nutrients may challenge rehabilitation or biological "polishing" after aggressive remediation. Plant germination and growth are inhibited and water dynamics are affected as well. Although permeability remains unaffected, infiltration is more rapid and capillary rise is reduced after smouldering remediation. Mobilisation of fines does not explain the change in infiltration and capillary rise; these effects persist after removal of the smaller half of the particle size distribution. Some separation of the soil column is observed in water infiltration after both thermal and smouldering remediation, indicating that erosion and subsidence are potential problems. These effects may be manifestations of subcritical water repellency. Based on the retention of capillary rise and lack of effects on other soil properties, the soil should be amenable to improvement measures. This presentation will place the effects of aggressive remediation into context within real soils and model materials.

  12. Soil hydrologic characterization for modeling large scale soil remediation protocols

    NASA Astrophysics Data System (ADS)

    Romano, Nunzio; Palladino, Mario; Di Fiore, Paola; Sica, Benedetto; Speranza, Giuseppe

    2014-05-01

    In Campania Region (Italy), the Ministry of Environment identified a National Interest Priority Sites (NIPS) with a surface of about 200,000 ha, characterized by different levels and sources of pollution. This area, called Litorale Domitio-Agro Aversano includes some polluted agricultural land, belonging to more than 61 municipalities in the Naples and Caserta provinces. In this area, a high level spotted soil contamination is moreover due to the legal and outlaw industrial and municipal wastes dumping, with hazardous consequences also on the quality of the water table. The EU-Life+ project ECOREMED (Implementation of eco-compatible protocols for agricultural soil remediation in Litorale Domizio-Agro Aversano NIPS) has the major aim of defining an operating protocol for agriculture-based bioremediation of contaminated agricultural soils, also including the use of crops extracting pollutants to be used as biomasses for renewable energy production. In the framework of this project, soil hydrologic characterization plays a key role and modeling water flow and solute transport has two main challenging points on which we focus on. A first question is related to the fate of contaminants infiltrated from stormwater runoff and the potential for groundwater contamination. Another question is the quantification of fluxes and spatial extent of root water uptake by the plant species employed to extract pollutants in the uppermost soil horizons. Given the high variability of spatial distribution of pollutants, we use soil characterization at different scales, from field scale when facing root water uptake process, to regional scale when simulating interaction between soil hydrology and groundwater fluxes.

  13. VOCs in Non-Arid Soils Integrated Demonstration: Technology summary

    SciTech Connect

    Not Available

    1994-02-01

    The Volatile Organic Compounds (VOCs) in Non-Arid Soils Integrated Demonstration (ID) was initiated in 1989. Objectives for the ID were to test the integrated demonstration concept, demonstrate and evaluate innovative technologies/systems for the remediation of VOC contamination in soils and groundwater, and to transfer technologies and systems to internal and external customers for use in fullscale remediation programs. The demonstration brought together technologies from DOE laboratories, other government agencies, and industry for demonstration at a single test bed. The Savannah River Site was chosen as the location for this ID as the result of having soil and groundwater contaminated with VOCS. The primary contaminants, trichlorethylene and tetrachloroethylene, originated from an underground process sewer line servicing a metal fabrication facility at the M-Area. Some of the major technical accomplishments for the ID include the successful demonstration of the following: In situ air stripping coupled with horizontal wells to remediate sites through air injection and vacuum extraction; Crosshole geophysical tomography for mapping moisture content and lithologic properties of the contaminated media; In situ radio frequency and ohmic heating to increase mobility, of the contaminants, thereby speeding recovery and the remedial process; High-energy corona destruction of VOCs in the off-gas of vapor recovery wells; Application of a Brayton cycle heat pump to regenerate carbon adsorption media used to trap VOCs from the offgas of recovery wells; In situ permeable flow sensors and the colloidal borescope to determine groundwater flow; Chemical sensors to rapidly quantify chlorinated solvent contamination in the subsurface; In situ bioremediation through methane/nutrient injection to enhance degradation of contaminants by methanotrophic bateria.

  14. GROUND WATER ISSUE: STEAM INJECTION FOR SOIL AND AQUIFER REMEDIATION

    EPA Science Inventory

    The purpose of this Issue Paper is to provide to those involved in assessing remediation technologies for specific sites basic technical information on the use of steam injection for the remediation of soils and aquifers that are contaminated by volatile or semivolatile organic c...

  15. Operable Unit 3-14, Tank Farm Soil and INTEC Groundwater Remedial Design/Remedial Action Scope of Work

    SciTech Connect

    D. E. Shanklin

    2007-07-25

    This Remedial Design/Remedial Action (RD/RA) Scope of Work pertains to OU 3-14 Idaho Nuclear Technology and Engineering Center and the Idaho National Laboratory and identifies the remediation strategy, project scope, schedule, and budget that implement the tank farm soil and groundwater remediation, in accordance with the May 2007 Record of Decision. Specifically, this RD/RA Scope of Work identifies and defines the remedial action approach and the plan for preparing the remedial design documents.

  16. Effective Classroom Demonstration of Soil Reinforcing Techniques.

    ERIC Educational Resources Information Center

    Williams, John Wharton; Fox, Dennis James

    1986-01-01

    Presents a model for demonstrating soil mass stabilization. Explains how this approach can assist students in understanding the various types of soil reinforcement techniques, their relative contribution to increased soil strength, and some of their limitations. A working drawing of the model and directives for construction are included. (ML)

  17. DEMONSTRATION BULLETIN: SOIL WASHING SYSTEM - BIOTROL, INC.

    EPA Science Inventory

    The three component technologies of the BioTrol Soil Washing System (BSWS). Tested in the SITE demonstration were a Soil Washer (SW), and Aqueous Treatment System (ATS), and a Slurry Bio-Reactor (SBR). The Soil Washer operates on the principle that a significant fraction of the...

  18. Soil Contamination and Remediation Strategies. Current research and future challenge

    NASA Astrophysics Data System (ADS)

    Petruzzelli, G.

    2012-04-01

    Soil contamination: the heritage of industrial development Contamination is only a part of a whole set of soil degradation processes, but it is one of paramount importance since soil pollution greatly influences the quality of water, food and human health. Soil contamination has been identified as an important issue for action in the European strategy for soil protection, it has been estimated that 3.5 million of sites are potentially contaminated in Europe. Contaminated soils have been essentially discovered in industrial sites landfills and energy production plants, but accumulation of heavy metals and organic compounds can be found also in agricultural land . Remediation strategies. from incineration to bioremediation The assessment of soil contamination is followed by remedial action. The remediation of contaminated soils started using consolidates technologies (incineration inertization etc.) previously employed in waste treatment,. This has contributed to consider a contaminated soil as an hazardous waste. This rough approximation was unfortunately transferred in many legislations and on this basis soil knowledge have been used only marginally in the clean up procedures. For many years soil quality has been identified by a value of concentration of a contaminant and excavation and landfill disposal of soil has been largely used. In the last years the knowledge of remediation technology has rapidly grown, at present many treatment processes appear to be really feasible at field scale, and soil remediation is now based on risk assessment procedures. Innovative technologies, largely dependent on soil properties, such as in situ chemical oxidation, electroremediation, bioventing, soil vapor extraction etc. have been successfully applied. Hazardous organic compounds are commonly treated by biological technologies, biorememdiation and phytoremediation, being the last partially applied also for metals. Technologies selection is no longer exclusively based on

  19. Laboratory Experiments on Electrochemical Remediation of the Environment Part 3: Microscale Electrokinetic Processing of Soils

    NASA Astrophysics Data System (ADS)

    Ibanez, Jorge G.; Singh, Mono M.; Pike, Ronald M.; Szafran, Zvi

    1998-05-01

    Electrochemical remediation of the environment is gaining widespread acceptance due to the mild conditions used, the cleanliness of the electron as a reagent, the easiness for automation, its versatility, etc. In this paper three phenomena are presented at the microscale level, originating from the application of an electric field to a simulated soil sample: a) Demonstration of metal ion migration, b) Demonstration of the creation and movement of an acidic and a basic front, and c) Demonstration of water movement through soil.

  20. In situ remediation technologies for mercury-contaminated soil

    DOE PAGES

    He, Feng; Gao, Jie; Pierce, Eric; Strong, P. J.; Wang, Hailong; Liang, Liyuan

    2015-04-09

    A pollutant that poses significant risks to humans and the environment is mercury from anthropogenic activities. In soils, mercury remediation can be technically challenging and costly, depending on the subsurface mercury distribution, the types of mercury species, and the regulatory requirements. Our paper introduces the chemistry of mercury and its implications for in situ mercury remediation, which is followed by a detailed discussion of several in situ Hg remediation technologies in terms of applicability, cost, advantages, and disadvantages. The effect of Hg speciation on remediation performance, as well as Hg transformation during different remediation processes, was detailed. Thermal desorption, electrokinetic,more » and soil flushing/washing treatments are removal technologies that mobilize and capture insoluble Hg species, while containment, solidification/stabilization, and vitrification immobilize Hg by converting it to less soluble forms. We also discussed two emerging technologies, phytoremediation and nanotechnology, in this review.« less

  1. In situ remediation technologies for mercury-contaminated soil

    SciTech Connect

    He, Feng; Gao, Jie; Pierce, Eric; Strong, P. J.; Wang, Hailong; Liang, Liyuan

    2015-04-09

    A pollutant that poses significant risks to humans and the environment is mercury from anthropogenic activities. In soils, mercury remediation can be technically challenging and costly, depending on the subsurface mercury distribution, the types of mercury species, and the regulatory requirements. Our paper introduces the chemistry of mercury and its implications for in situ mercury remediation, which is followed by a detailed discussion of several in situ Hg remediation technologies in terms of applicability, cost, advantages, and disadvantages. The effect of Hg speciation on remediation performance, as well as Hg transformation during different remediation processes, was detailed. Thermal desorption, electrokinetic, and soil flushing/washing treatments are removal technologies that mobilize and capture insoluble Hg species, while containment, solidification/stabilization, and vitrification immobilize Hg by converting it to less soluble forms. We also discussed two emerging technologies, phytoremediation and nanotechnology, in this review.

  2. In situ remediation technologies for mercury-contaminated soil.

    PubMed

    He, Feng; Gao, Jie; Pierce, Eric; Strong, P J; Wang, Hailong; Liang, Liyuan

    2015-06-01

    Mercury from anthropogenic activities is a pollutant that poses significant risks to humans and the environment. In soils, mercury remediation can be technically challenging and costly, depending on the subsurface mercury distribution, the types of mercury species, and the regulatory requirements. This paper introduces the chemistry of mercury and its implications for in situ mercury remediation, which is followed by a detailed discussion of several in situ Hg remediation technologies in terms of applicability, cost, advantages, and disadvantages. The effect of Hg speciation on remediation performance, as well as Hg transformation during different remediation processes, was detailed. Thermal desorption, electrokinetic, and soil flushing/washing treatments are removal technologies that mobilize and capture insoluble Hg species, while containment, solidification/stabilization, and vitrification immobilize Hg by converting it to less soluble forms. Two emerging technologies, phytoremediation and nanotechnology, are also discussed in this review. PMID:25850737

  3. Surfactant remediation field demonstration using a vertical circulation well

    SciTech Connect

    Knox, R.C.; Sabatini, D.A.; Harwell, J.H.; Brown, R.E.; West, C.C.; Blaha, F.; Griffin, C.

    1997-11-01

    A field demonstration of surfactant-enhanced solubilization was completed in a shallow unconfined aquifer located at a Coast Guard Station in Traverse City, Michigan. The primary objectives of the study were: (1) to assess the ability of the vertical circulation well (VCW) system for controlling chemical extractants added to the subsurface; and (2) to assess the behavior of the surfactant solution in the subsurface, with a goal of maximum surfactant recovery. A secondary objective was to demonstrate enhanced removal of PCE and recalcitrant components of a jet fuel. The analytical results showed that the surfactant increased the contaminant mass extracted by 40-fold and 90-fold for the PCE and jet fuel constituents, respectively. The surfactant solution demonstrated minimal sorption (retardation) and did not precipitate in the subsurface formation. In addition, the VCW system was able to capture in excess of 95% of the injected surfactant solution. Additional field testing and full-scale implementation of surfactant-enhanced subsurface remediation should be performed.

  4. Uranium in Soils Integrated Demonstration: Technology summary, March 1994

    SciTech Connect

    Not Available

    1994-03-01

    A recent Pacific Northwest Laboratory (PNL) study identified 59 waste sites at 14 DOE facilities across the nation that exhibit radionuclide contamination in excess of established limits. The rapid and efficient characterization of these sites, and the potentially contaminated regions that surround them represents a technological challenge with no existing solution. In particular, the past operations of uranium production and support facilities at several DOE sites have occasionally resulted in the local contamination of surface and subsurface soils. Such contamination commonly occurs within waste burial sites, cribs, pond bottom sediments and soils surrounding waste tanks or uranium scrap, ore, tailings, and slag heaps. The objective of the Uranium In Soils Integrated Demonstration is to develop optimal remediation methods for soils contaminated with radionuclides, principally uranium (U), at DOE sites. It is examining all phases involved in an actual cleanup, including all regulatory and permitting requirements, to expedite selection and implementation of the best technologies that show immediate and long-term effectiveness specific to the Fernald Environmental Management Project (FEMP) and applicable to other radionuclide contaminated DOE sites. The demonstration provides for technical performance evaluations and comparisons of different developmental technologies at FEMP sites, based on cost-effectiveness, risk-reduction effectiveness, technology effectiveness, and regulatory and public acceptability. Technology groups being evaluated include physical and chemical contaminant separations, in situ remediation, real-time characterization and monitoring, precise excavation, site restoration, secondary waste treatment, and soil waste stabilization.

  5. Spectral Characteristics of Salinized Soils during Microbial Remediation Processes.

    PubMed

    Ma, Chuang; Shen, Guang-rong; Zhi, Yue-e; Wang, Zi-jun; Zhu, Yun; Li, Xian-hua

    2015-09-01

    In this study, the spectral reflectance of saline soils, the associated soil salt content (SSC) and the concentrations of salt ions were measured and analysed by tracing the container microbial remediation experiments for saline soil (main salt is sodium chloride) of Dongying City, Shandong Province. The sensitive spectral reflectance bands of saline soils to SSC, Cl- and Na+ in the process of microbial remediation were analysed. The average-dimension reduction of these bands was conducted by using a combination of correlation coefficient and decision coefficient, and by gradually narrowing the sampling interval method. Results showed that the tendency and magnitude of the average spectral reflectance in all bands of saline soils during the total remediation processes were nearly consistent with SSC and with Cl- coocentration, respectively. The degree of salinity of the soil, including SSC and salt ion concentrations, had a significant positive correlation with the spectral reflectance of all bands, particularly in the near-infrared band. The optimal spectral bands of SSC were 1370 to 1445 nm and 1447 to 1608 nm, whereas the optimal spectral bands of Cl- and Na+ were 1336 to 1461 nm and 1471 to 1561 nm, respectively. The relationship model among SSC, soil salt ion concentrations (Cl- and Na+) and soil spectral reflectance of the corresponding optimal spectral band was established. The largest R2 of relationship model between SSC and the average reflectance of associated optimal band reached to 0.95, and RMSEC and RMSEP were 1.076 and 0.591, respectively. Significant statistical analysis of salt factors and soil reflectance for different microbial remediation processes indicated that the spectral response characteristics and sensitivity of SSC to soil reflectance, which implied the feasibility of high spectrum test on soil microbial remediation monitoring, also provided the basis for quick nondestructive monitoring soil bioremediation process by soil spectral

  6. Sources and remediation techniques for mercury contaminated soil.

    PubMed

    Xu, Jingying; Bravo, Andrea Garcia; Lagerkvist, Anders; Bertilsson, Stefan; Sjöblom, Rolf; Kumpiene, Jurate

    2015-01-01

    Mercury (Hg) in soils has increased by a factor of 3 to 10 in recent times mainly due to combustion of fossil fuels combined with long-range atmospheric transport processes. Other sources as chlor-alkali plants, gold mining and cement production can also be significant, at least locally. This paper summarizes the natural and anthropogenic sources that have contributed to the increase of Hg concentration in soil and reviews major remediation techniques and their applications to control soil Hg contamination. The focus is on soil washing, stabilisation/solidification, thermal treatment and biological techniques; but also the factors that influence Hg mobilisation in soil and therefore are crucial for evaluating and optimizing remediation techniques are discussed. Further research on bioremediation is encouraged and future study should focus on the implementation of different remediation techniques under field conditions. PMID:25454219

  7. Electrokinetic remediation of fluorine-contaminated soil: conditioning of anolyte.

    PubMed

    Kim, Do-Hyung; Jeon, Chil-Sung; Baek, Kitae; Ko, Sung-Hwan; Yang, Jung-Seok

    2009-01-15

    The feasibility of anolyte conditioning on electrokinetic remediation of fluorine-contaminated soil was investigated with a field soil. The initial concentration of fluorine, pH and water content in the soil were 414mg/kg, 8.91 and 15%, respectively. Because the extraction of fluorine generally increased with the soil pH, the pH of the anode compartment was controlled by circulating strong alkaline solution to enhance the extraction of fluorine during electrokinetic remediation. The removal of fluorine increased with the concentration of the alkaline solution and applied current density and fluorine removed up to 75.6% within 14 days. Additionally, anolyte conditioning sharply increased the electro-osmotic flow, which enhanced the removal of fluorine in this study. In many respects, anolyte conditioning in electrokinetic remediation of fluorine-contaminated soil will be a promising technology.

  8. Sustainable remediation of mercury contaminated soils by thermal desorption.

    PubMed

    Sierra, María J; Millán, Rocio; López, Félix A; Alguacil, Francisco J; Cañadas, Inmaculada

    2016-03-01

    Mercury soil contamination is an important environmental problem that needs the development of sustainable and efficient decontamination strategies. This work is focused on the application of a remediation technique that maintains soil ecological and environmental services to the extent possible as well as search for alternative sustainable land uses. Controlled thermal desorption using a solar furnace at pilot scale was applied to different types of soils, stablishing the temperature necessary to assure the functionality of these soils and avoid the Hg exchange to the other environmental compartments. Soil mercury content evolution (total, soluble, and exchangeable) as temperature increases and induced changes in selected soil quality indicators are studied and assessed. On total Hg, the temperature at which it is reduced until acceptable levels depends on the intended soil use and on how restrictive are the regulations. For commercial, residential, or industrial uses, soil samples should be heated to temperatures higher than 280 °C, at which more than 80 % of the total Hg is released, reaching the established legal total Hg level and avoiding eventual risks derived from high available Hg concentrations. For agricultural use or soil natural preservation, conversely, maintenance of acceptable levels of soil quality limit heating temperatures, and additional treatments must be considered to reduce available Hg. Besides total Hg concentration in soils, available Hg should be considered to make final decisions on remediation treatments and potential future uses. Graphical Abstract Solar energy use for remediation of soils affected by mercury.

  9. Microemulsion-enhanced remediation of soils contaminated with organochlorine pesticides.

    PubMed

    Zhang, Yanlin; Wong, Jonathan W C; Zhao, Zhenyong; Selvam, Ammaiyappan

    2011-12-01

    Soil contaminated by organic pollutants, especially chlorinated aromatic compounds such as DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane), is an environmental concern because of the strong sorption of organochlorine pesticide onto the soil matrix and persistence in the environment. The remediation of organochlorine pesticide contaminated soils through microemulsion is an innovative technology to expedite this process. The remediation efficiency was evaluated by batch experiments through studying the desorption of DDT and hexachlorocyclohexane (y-HCH) and sorption of microemulsion composed of Triton X-100, 1-pentanol and linseed oil in the soil-surfactant-water suspension system. The reduction of desorption efficiency caused by the sorption loss of microemulsion components onto the soil could be corrected by the appropriate adjustment of C/S (Cosurfactant/Surfactant) and O/S (Oil/Surfactant) ratio. The C/S and O/S ratios of 1:2 and 3:20 were suitable to desorb DDT and gamma-HCH from the studied soils because of the lower sorption of Triton X-100 onto the soil. Inorganic salts added in microemulsion increased the pesticides desorption efficiency of pesticides and calcium chloride has a stronger ability to enhance the desorption of DDT than sodium chloride. From the remediation perspective, the balance of surfactant or cosurfactant sorbed to soil and desorption efficiency should be taken into consideration to enhance the remediation of soils contaminated by organochlorine pesticides.

  10. In-situ demonstration of radio-frequency enhanced chlorinated hydrocarbon remediation

    SciTech Connect

    Kasevich, R.S.; Price, S.L.; Faust, D.L.; Jarosch, T.R.

    1994-06-01

    This paper discusses the results of a successful demonstration of radio frequency (RF) heating for enhanced chlorinated hydrocarbon remediation at the M-Area Seepage Basin of the Department of Energy`s Savannah River Site. RF heating was integrated with soil vapor extraction (SVE) to enhance the release of residual volatile chlorinated hydrocarbons which are concentrated in low permeable clay lenses in the unsaturated zone. Participants in this effort consisted of the Westinghouse Savannah River Technology Center; the Westinghouse Science and Technology Center (Pittsburgh, PA); and KAI Technologies, Inc. which provided the RF technology. Additionally, a better understanding of RF heating technology is gained through a description of the RF heating system.

  11. In-situ remediation system for groundwater and soils

    DOEpatents

    Corey, J.C.; Kaback, D.S.; Looney, B.B.

    1991-01-01

    The present invention relates to a system for in-situ remediation of contaminated groundwater and soil. In particular the present invention relates to stabilizing toxic metals in groundwater and soil. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  12. Clean-up criteria for remediation of contaminated soils

    SciTech Connect

    Nguyen, H.D.; Wilson, J.R.; Sato, Chikashi

    1997-08-01

    {open_quotes}How clean is clean?{close_quotes} is a question commonly raised in the remediation of contaminated soils. To help with the answer, criteria are proposed to serve as guidelines for remedial actions and to define a clean-up level such that the remaining contaminant residuals in the soil will not violate the Drinking Water Standards (DWS). The equations for computing those criteria are developed from the principle of conservation of mass and are functions of the maximum concentration level in the water (MCL) and the sorption coefficient. A multiplier, ranging from 10 to 1000, is also factored into the soil standard equation to reflect the effectiveness of various remediation techniques. Maximum allowable concentration in the soil (MSCL) is presented for several contaminants which are being regulated at the present time. Future modifications are recommended for better estimates of the MSCLs as additional transport mechanisms are incorporated to account for other potentially dominant effects.

  13. On site remediation of a fuel spill and soil reuse in Antarctica.

    PubMed

    McWatters, R S; Wilkins, D; Spedding, T; Hince, G; Raymond, B; Lagerewskij, G; Terry, D; Wise, L; Snape, I

    2016-11-15

    The first large-scale remediation of fuel contamination in Antarctica treated 10000L of diesel dispersed in 1700t of soil, and demonstrated the efficacy of on-site bioremediation. The project progressed through initial site assessment and natural attenuation, passive groundwater management, then active remediation and the managed reuse of soil. Monitoring natural attenuation for the first 12years showed contaminant levels in surface soil remained elevated, averaging 5000mg/kg. By contrast, in five years of active remediation (excavation and biopile treatment) contaminant levels decreased by a factor of four. Chemical indicators showed hydrocarbon loss was apportioned to both biodegradation and evaporative processes. Hydrocarbon degradation rates were assessed against biopile soil temperatures, showing a phase of rapid degradation (first 100days above soil temperature threshold of 0°C) followed by slower degradation (beyond 100days above threshold). The biopiles operated successfully within constraints typical of harsh climates and remote sites, including limitations on resources, no external energy inputs and short field seasons. Non-native microorganisms (e.g. inoculations) and other organic materials (e.g. bulking agents) are prohibited in Antarctica making this cold region more challenging for remediation than the Arctic. Biopile operations included an initial fertiliser application, biannual mechanical turning of the soil and minimal leachate recirculation. The biopiles are a practical approach to remediate large quantities of contaminated soil in the Antarctic and already 370t have been reused in a building foundation. The findings presented demonstrate that bioremediation is a viable strategy for Antarctica and other cold regions. Operators can potentially use the modelled relationship between days above 0°C (threshold temperature) and the change in degradation rates to estimate how long it would take to remediate other sites using the biopile technology

  14. On site remediation of a fuel spill and soil reuse in Antarctica.

    PubMed

    McWatters, R S; Wilkins, D; Spedding, T; Hince, G; Raymond, B; Lagerewskij, G; Terry, D; Wise, L; Snape, I

    2016-11-15

    The first large-scale remediation of fuel contamination in Antarctica treated 10000L of diesel dispersed in 1700t of soil, and demonstrated the efficacy of on-site bioremediation. The project progressed through initial site assessment and natural attenuation, passive groundwater management, then active remediation and the managed reuse of soil. Monitoring natural attenuation for the first 12years showed contaminant levels in surface soil remained elevated, averaging 5000mg/kg. By contrast, in five years of active remediation (excavation and biopile treatment) contaminant levels decreased by a factor of four. Chemical indicators showed hydrocarbon loss was apportioned to both biodegradation and evaporative processes. Hydrocarbon degradation rates were assessed against biopile soil temperatures, showing a phase of rapid degradation (first 100days above soil temperature threshold of 0°C) followed by slower degradation (beyond 100days above threshold). The biopiles operated successfully within constraints typical of harsh climates and remote sites, including limitations on resources, no external energy inputs and short field seasons. Non-native microorganisms (e.g. inoculations) and other organic materials (e.g. bulking agents) are prohibited in Antarctica making this cold region more challenging for remediation than the Arctic. Biopile operations included an initial fertiliser application, biannual mechanical turning of the soil and minimal leachate recirculation. The biopiles are a practical approach to remediate large quantities of contaminated soil in the Antarctic and already 370t have been reused in a building foundation. The findings presented demonstrate that bioremediation is a viable strategy for Antarctica and other cold regions. Operators can potentially use the modelled relationship between days above 0°C (threshold temperature) and the change in degradation rates to estimate how long it would take to remediate other sites using the biopile technology

  15. Soil quality demonstrations for building economically and environmentally sustainable soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil quality, soil health, and soil sustainability are widely used terms but are difficult to define and illustrate, especially to a non-technical audience. A packet of a dozen demonstrations for the field and classroom was compiled and titled ‘Building a Sustainable Soil’. In this packet, new meth...

  16. Overview of Green and Sustainable Remediation for Soil and Groundwater Remediation - 12545

    SciTech Connect

    Simpkin, Thomas J.; Favara, Paul

    2012-07-01

    Making remediation efforts more 'sustainable' or 'green' is a topic of great interest in the remediation community. It has been spurred on by Executive Orders from the White House, as well as Department of Energy (DOE) sustainability plans. In private industry, it is motivated by corporate sustainability goals and corporate social responsibility. It has spawned new organizations, areas of discussion, tools and practices, and guidance documents around sustainable remediation or green remediation. Green remediation can be thought of as a subset of sustainable remediation and is mostly focused on reducing the environmental footprint of cleanup efforts. Sustainable remediation includes both social and economic considerations, in addition to environmental. Application of both green and sustainable remediation (GSR) may involve two primary activities. The first is to develop technologies and alternatives that are greener or more sustainable. This can also include making existing remediation approaches greener or more sustainable. The second is to include GSR criteria in the evaluation of remediation alternatives and strategies. In other words, to include these GSR criteria in the evaluation of alternatives in a feasibility study. In some cases, regulatory frameworks allow the flexibility to include GSR criteria into the evaluation process (e.g., state cleanup programs). In other cases, regulations allow less flexibility to include the evaluation of GSR criteria (e.g., Comprehensive Environmental Response Compensation, and Liability Act (CERCLA)). New regulatory guidance and tools will be required to include these criteria in typical feasibility studies. GSR provides a number of challenges for remediation professionals performing soil and groundwater remediation projects. Probably the most significant is just trying to stay on top of the ever changing landscape of products, tools, and guidance documents coming out of various groups, the US EPA, and states. However, this

  17. DOE`s Innovative Treatment Remediation Demonstration Program accelerating the implementation of innovative technologies

    SciTech Connect

    Hightower, M.

    1995-08-01

    A program to help accelerate the adoption and implementation of new and innovative remediation technologies has been initiated by the Department of Energy`s (DOE) Environmental Restoration Program Office (EM40). Developed as a Public-Private Partnership program in cooperation with the US Environmental Protection Agency`s (EPA) Technology Innovation Office (TIO) and coordinated by Sandia National Laboratories, the Innovative Treatment Remediation Demonstration (ITRD) Program attempts to reduce many of the classic barriers to the use of new technologies by involving government, industry, and regulatory agencies in the assessment, implementation, and validation of innovative technologies. In this program, DOE facilities work cooperatively with EPA, industry, national laboratories, and state and federal regulatory agencies to establish remediation demonstrations using applicable innovative technologies at their sites. Selected innovative technologies are used to remediate small, one to two acre, sites to generate the full-scale and real-world operating, treatment performance, and cost data needed to validate these technologies and gain acceptance by industry and regulatory agencies, thus accelerating their use nationwide. Each ITRD project developed at a DOE site is designed to address a typical soil or groundwater contamination issue facing both DOE and industry. This includes sites with volatile organic compound (VOC), semi-VOC, heavy metal, explosive residue, and complex or multiple constituent contamination. Projects are presently underway at three DOE facilities, while additional projects are under consideration for initiation in FY96 at several additional DOE sites. A brief overview of the ITRD Program, program plans, and the status and progress of existing ITRD projects are reviewed in this paper.

  18. GROUNDWATER AND SOIL REMEDIATION USING ELECTRICAL FIELD

    EPA Science Inventory

    Enhancements of contaminants removal and degradation in low permeability soils by electrical fields are achieved by the processes of electrical heating, electrokinetics, and electrochemical reactions. Electrical heating increases soil temperature resulting in the increase of cont...

  19. Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil.

    PubMed

    García Frutos, F Javier; Escolano, Olga; García, Susana; Babín, Mar; Fernández, M Dolores

    2010-11-15

    The objectives of soil remediation processes are usually based on threshold levels of soil contaminants. However, during remediation processes, changes in bioavailability and metabolite production can occur, making it necessary to incorporate an ecotoxicity assessment to estimate the risk to ecological receptors. The evolution of contaminants and soil ecotoxicity of artificially phenanthrene-contaminated soil (1000 mg/kg soil) during soil treatment through bioventing was studied in this work. Bioventing was performed in glass columns containing 5.5 kg of phenanthrene-contaminated soil and uncontaminated natural soil over a period of 7 months. Optimum conditions of mineralisation (humidity=60% WHC; C/N/P=100:20:1) were determined in a previous work. The evolution of oxygen consumption, carbon dioxide production, phenanthrene concentration and soil toxicity were studied on sacrificed columns at periods of 0, 3 and 7 months. Toxicity to soil and aquatic organisms was determined using a multispecies system in the soil columns (MS-3). In the optimal bioventing treatability test, we obtained a reduction rate in phenanthrene concentration higher that 93% after 7 months of treatment. The residual toxicity obtained at the end of the treatment was not attributed to the low phenanthrene concentration, but to the ammonia used to restore the optimal C/N ratio.

  20. REMEDIATION OF CONTAMINATED SOILS BY SOLVENT FLUSHING

    EPA Science Inventory

    Solvent flushing is a potential technique for remediating a waste disposal/spill site contaminated with organic chemicals. This technique involves the injection of a solvent mixture (e.g., water plus alcohols) that enhances contaminant solubility, reduces the retardation factor, ...

  1. Test plan for the soils facility demonstration: A petroleum contaminated soil bioremediation facility

    SciTech Connect

    Lombard, K.H.

    1994-08-01

    The objectives of this test plan are to show the value added by using bioremediation as an effective and environmentally sound method to remediate petroleum contaminated soils (PCS) by: demonstrating bioremediation as a permanent method for remediating soils contaminated with petroleum products; establishing the best operating conditions for maximizing bioremediation and minimizing volatilization for SRS PCS during different seasons; determining the minimum set of analyses and sampling frequency to allow efficient and cost-effective operation; determining best use of existing site equipment and personnel to optimize facility operations and conserve SRS resources; and as an ancillary objective, demonstrating and optimizing new and innovative analytical techniques that will lower cost, decrease time, and decrease secondary waste streams for required PCS assays.

  2. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    SciTech Connect

    J. Hnat; L.M. Bartone; M. Pineda

    2001-07-13

    This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.

  3. Functioning of metal contaminated garden soil after remediation.

    PubMed

    Jelusic, Masa; Grcman, Helena; Vodnik, Dominik; Suhadolc, Metka; Lestan, Domen

    2013-03-01

    The effect of remediation using three EDTA doses (10, 30, 60 mmol kg(-1)) on soil functioning was assessed using column experiment and Brassica rapa. Soil washing removed up to 77, 29 and 72% of metals from soil contaminated with 1378, 578 and 8.5 mg kg(-1) of Pb, Zn and Cd, respectively. Sequential extraction indicated removal from the carbonate soil fraction. Metal oral-accessibility from the stomach phase was reduced by up to 75 and from the small intestine by up to 79% (Pb). Part of metals (up to 0.8% Cd) was lost due to leaching from columns. Remediation reduced toxic metal soil-root transfer by up to 61% but did not prevent metal accumulation in leaves. The fitness of plants grown on EDTA washed soils (gas exchange, fluorescence) was not compromised. Remediation initially reduced the soil DNA content (up to 29%, 30 mmol kg(-1) EDTA) and changed the structure of microbial population.

  4. Functioning of metal contaminated garden soil after remediation.

    PubMed

    Jelusic, Masa; Grcman, Helena; Vodnik, Dominik; Suhadolc, Metka; Lestan, Domen

    2013-03-01

    The effect of remediation using three EDTA doses (10, 30, 60 mmol kg(-1)) on soil functioning was assessed using column experiment and Brassica rapa. Soil washing removed up to 77, 29 and 72% of metals from soil contaminated with 1378, 578 and 8.5 mg kg(-1) of Pb, Zn and Cd, respectively. Sequential extraction indicated removal from the carbonate soil fraction. Metal oral-accessibility from the stomach phase was reduced by up to 75 and from the small intestine by up to 79% (Pb). Part of metals (up to 0.8% Cd) was lost due to leaching from columns. Remediation reduced toxic metal soil-root transfer by up to 61% but did not prevent metal accumulation in leaves. The fitness of plants grown on EDTA washed soils (gas exchange, fluorescence) was not compromised. Remediation initially reduced the soil DNA content (up to 29%, 30 mmol kg(-1) EDTA) and changed the structure of microbial population. PMID:23246748

  5. [Optimization of electrode configuration in soil electrokinetic remediation].

    PubMed

    Liu, Fang; Fu, Rong-Bing; Xu, Zhen

    2015-02-01

    Electric field distributions of several different electrode configurations in non-uniform electric field were simulated using MATLAB software, and the electrokinetic remediation device was constructed according to the best electrode configuration. The changes of soil pH and heavy metal residues in different parts of the device during the electrokinetic remediation were also studied. The results showed that, in terms of the effectiveness of the electric field strength, the square (1-D-1) and hexagonal (2-D-3) were the optimal electrode configurations for one-dimensional and two-dimensional respectively and the changes of soil pH, the removal of heavy metals and the distribution of electric field were closely related to one another. An acidic migration band, which could prevent premature precipitation of heavy metals to a certain extent and promote electrokinetic removal of heavy metals, was formed gradually along with the remediation in the whole hexagon device when the cathodic pH was controlled during the remediation of the four cationic metallic ions, Cd2+, Ni2+, Pb2+ and Cu2+. After 480-hour remediation, the total removals of Cd, Ni, Pb and Cu were 86.6%, 86.2%, 67.7% and 73.0%, respectively. Remediation duration and replacement frequency of the electrodes could be adjusted according to the repair target. PMID:26031098

  6. Uranium in soils integrated demonstration: 1992 update

    SciTech Connect

    Nuhfer, K.R.

    1992-04-01

    The Uranium in Soils Integrated Demonstration (ID) was initiated in 1991. The Fernald Environmental Management Project (FEMP), previously known as the Feed Materials Production Center (FMPC), was selected as the host site for the Uranium in Soils ID. The principle focus in 1991 was to establish the management structure and objectives for the ID. In 1992 the technical activities in support of the ID goals were initiated. The emphasis this year has been on the development and demonstration of improved field screening technologies, obtaining chemical and physical data on the uranium waste forms in the host site soils, and initiating the development of uranium/soil separation technologies. This document will discuss the established TSG charters, accomplishments to date, current activities and future activities in support of the 1992 emphasis and the long term goals of the ID.

  7. Electrokinetic remediation of fluorine-contaminated soil and its impact on soil fertility.

    PubMed

    Zhou, Ming; Wang, Hui; Zhu, Shufa; Liu, Yana; Xu, Jingming

    2015-11-01

    Compared to soil pollution by heavy metals and organic pollutants, soil pollution by fluorides is usually ignored in China. Actually, fluorine-contaminated soil has an unfavorable influence on human, animals, plants, and surrounding environment. This study reports on electrokinetic remediation of fluorine-contaminated soil and the effects of this remediation technology on soil fertility. Experimental results showed that electrokinetic remediation using NaOH as the anolyte was a considerable choice to eliminate fluorine in contaminated soils. Under the experimental conditions, the removal efficiency of fluorine by the electrokinetic remediation method was 70.35%. However, the electrokinetic remediation had a significant impact on the distribution and concentrations of soil native compounds. After the electrokinetic experiment, in the treated soil, the average value of available nitrogen was raised from 69.53 to 74.23 mg/kg, the average value of available phosphorus and potassium were reduced from 20.05 to 10.39 mg/kg and from 61.31 to 51.58 mg/kg, respectively. Meanwhile, the contents of soil available nitrogen and phosphorus in the anode regions were higher than those in the cathode regions, but the distribution of soil available potassium was just the opposite. In soil organic matter, there was no significant change. These experiment results suggested that some steps should be taken to offset the impacts, after electrokinetic treatment.

  8. Electrokinetic remediation of fluorine-contaminated soil and its impact on soil fertility.

    PubMed

    Zhou, Ming; Wang, Hui; Zhu, Shufa; Liu, Yana; Xu, Jingming

    2015-11-01

    Compared to soil pollution by heavy metals and organic pollutants, soil pollution by fluorides is usually ignored in China. Actually, fluorine-contaminated soil has an unfavorable influence on human, animals, plants, and surrounding environment. This study reports on electrokinetic remediation of fluorine-contaminated soil and the effects of this remediation technology on soil fertility. Experimental results showed that electrokinetic remediation using NaOH as the anolyte was a considerable choice to eliminate fluorine in contaminated soils. Under the experimental conditions, the removal efficiency of fluorine by the electrokinetic remediation method was 70.35%. However, the electrokinetic remediation had a significant impact on the distribution and concentrations of soil native compounds. After the electrokinetic experiment, in the treated soil, the average value of available nitrogen was raised from 69.53 to 74.23 mg/kg, the average value of available phosphorus and potassium were reduced from 20.05 to 10.39 mg/kg and from 61.31 to 51.58 mg/kg, respectively. Meanwhile, the contents of soil available nitrogen and phosphorus in the anode regions were higher than those in the cathode regions, but the distribution of soil available potassium was just the opposite. In soil organic matter, there was no significant change. These experiment results suggested that some steps should be taken to offset the impacts, after electrokinetic treatment. PMID:26109225

  9. FEASIBILITY OF HYDRAULIC FRACTURING OF SOILS TO IMPROVE REMEDIAL ACTIONS

    EPA Science Inventory

    Hydraulic fracturing, a technique commonly used to increase the yields of oil wells, could improve the effectiveness of several methods of in situ remediation. This project consisted of laboratory and field tests in which hydraulic fractures were created in soil. Laboratory te...

  10. Remediation of arsenic-contaminated soils and groundwaters

    DOEpatents

    Peters, Robert W.; Frank, James R.; Feng, Xiandong

    1998-01-01

    An in situ method for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal.

  11. Remediation of arsenic-contaminated soils and groundwaters

    DOEpatents

    Peters, R.W.; Frank, J.R.; Feng, X.

    1998-06-23

    An in situ method is described for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal. 8 figs.

  12. Testing amendments for remediation of military range contaminated soil.

    PubMed

    Siebielec, Grzegorz; Chaney, Rufus L

    2012-10-15

    Military range soils are often strongly contaminated with metals. Information on the effectiveness of remediation of these soils is scarce. We tested the effectiveness of compost and mineral treatments for remediation and revegetation of military range soil collected in Aberdeen, MD. The soil was barren due to zinc (Zn) phytotoxicity while lead (Pb) posed a substantial risk to soil biota, wildlife and humans through various pathways. Seven treatments were tested: untreated control, agricultural NPK fertilization, high phosphate fertilization plus agricultural rates of NK, CaCO(3), "Orgro" biosolid compost, "Orgro" + CaCO(3), "Orgro" + CaCO(3) + Mn sulfate. All compost treatments alleviated Zn phytotoxicity to tall fescue; however compost combined with liming reduced plant Zn content up to 158-162 mg kg(-1). Compost added with lime reduced Pb in-vitro bioaccessibility from 32.5 to 20.4% of total Pb and was the most effective among the tested treatments. The study revealed the effectiveness of biosolids compost and lime mixture in the rapid stabilization of metals and revegetation of military range contaminated soils. The persistence of the remediation needs to be, however, confirmed in the long-term field study.

  13. Electroosmosis remediation of DNAPLS in low permeability soils

    SciTech Connect

    Ho, S V.

    1996-08-01

    Electroosmosis is the movement of water through a soil matrix induced by a direct current (DC) electric field. The technique has been used since the 1930s for dewatering and stabilizing fine-grained soils. More recently, electroosmosis has been considered as an in-situ method for soil remediation in which water is injected into the soil at the anode region to flush the contaminants to the cathode side for further treatment or disposal. The major advantage of electroosmosis is its inherent ability to move water uniformly through clayey, silty soils at 100 to 1000 times faster than attainable by hydraulic means, and with very low energy usage. Drawbacks of electroosmosis as a stand-alone technology include slow speed, reliance on solubilizing the contaminants into the groundwater for removal, potentially an unstable process for long term operation, and necessary additional treatment and disposal of the collected liquid. Possible remediation applications of electroosmosis for DNAPLs would be primarily in the removal of residual DNAPLs in the soil pores by electroosmotic flushing. The future of electroosmosis as a broad remedial method lies in how well it can be coupled with complementary technologies. Examples include combining electroosmosis with vacuum extraction, with surfactant usage to deal with non-aqueous phase liquids (NAPLs) through enhanced solubilization or mobilization, with permeability enhancing methods (hydrofracturing, pneumatic fracturing, etc.) to create recovery zones, and with in-situ degradation zones to eliminate aboveground treatment. 33 refs., 1 fig., 1 tab.

  14. [Rhizosphere enhanced remediation of petroleum contaminated soil].

    PubMed

    Lu, Mang; Zhang, Zhong-zhi; Sun, Shan-shan; Qiao, Wei; Liu, Xiao

    2009-12-01

    The effects of growing tall fescue on the biodegradation of hydrocarbons was studied in laboratory scale pots. Degradation of hydrocarbons as well as microbial counts, soil fluorescein diacetate activity, catalase activity and dehydrogenase activity were determined. The results showed that, in the rhizosphere soil system, total petroleum hydrocarbons disappeared faster than that in unvegetated pots soil. After 10 weeks, 11.8% and 27.4% of spiked petroleum hydrocarbons disappeared from the bulk and rhizosphere soils respectively. Abiotic loss of petroleum hydrocarbons by evaporation was of minor significance in the test. The microbial plate counts and soil enzyme activities were significantly higher in the rhizosphere than in the bulk soil. Petroleum compounds had significant effect on fluorescein diacetate hydrolyzing activity. Vegetation resulted in significantly greater first-order decay constants compared to the unvegetated control. Oxygenated polycyclic aromatic hydrocarbons that were present in the soil were generally degraded more slowly than the parent compounds, suggesting that they were formed during the treatment or that they are more persistent. Four oxidation products of polycyclic aromatic hydrocarbons, 1-acenaphthenone, 9-fluorenone, anthraquinone, and benzfluorenone were found at significantly higher concentrations at the end of the study.

  15. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Remedial Design/Remedial Action Work Plan

    SciTech Connect

    D. E. Shanklin

    2006-06-01

    This Remedial Design/Remedial Action Work Plan provides the framework for defining the remedial design requirements, preparing the design documentation, and defining the remedial actions for Waste Area Group 3, Operable Unit 3-13, Group 3, Other Surface Soils, Remediation Sets 4-6 (Phase II) located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory. This plan details the design developed to support the remediation and disposal activities selected in the Final Operable Unit 3-13, Record of Decision.

  16. Surfactant-enhanced remediation of organic contaminated soil and water.

    PubMed

    Paria, Santanu

    2008-04-21

    Surfactant based remediation technologies for organic contaminated soil and water (groundwater or surface water) is of increasing importance recently. Surfactants are used to dramatically expedite the process, which in turn, may reduce the treatment time of a site compared to use of water alone. In fact, among the various available remediation technologies for organic contaminated sites, surfactant based process is one of the most innovative technologies. To enhance the application of surfactant based technologies for remediation of organic contaminated sites, it is very important to have a better understanding of the mechanisms involved in this process. This paper will provide an overview of the recent developments in the area of surfactant enhanced soil and groundwater remediation processes, focusing on (i) surfactant adsorption on soil, (ii) micellar solubilization of organic hydrocarbons, (iii) supersolubilization, (iv) density modified displacement, (v) degradation of organic hydrocarbon in presence surfactants, (vi) partitioning of surfactants onto soil and liquid organic phase, (vii) partitioning of contaminants onto soil, and (viii) removal of organics from soil in presence of surfactants. Surfactant adsorption on soil and/or sediment is an important step in this process as it results in surfactant loss reduced the availability of the surfactants for solubilization. At the same time, adsorbed surfactants will retained in the soil matrix, and may create other environmental problem. The biosurfactants are become promising in this application due to their environmentally friendly nature, nontoxic, low adsorption on to soil, and good solubilization efficiency. Effects of different parameters like the effect of electrolyte, pH, soil mineral and organic content, soil composition etc. on surfactant adsorption are discussed here. Micellar solubilization is also an important step for removal of organic contaminants from the soil matrix, especially for low aqueous

  17. Ammonium citrate as enhancement for electrodialytic soil remediation and investigation of soil solution during the process.

    PubMed

    Dias-Ferreira, Celia; Kirkelund, Gunvor M; Ottosen, Lisbeth M

    2015-01-01

    Seven electrodialytic experiments were conducted using ammonium citrate as enhancing agent to remediate copper and chromium-contaminated soil from a wood-preservation site. The purpose was to investigate the effect of current density (0.2, 1.0 and 1.5 mA cm(-2)), concentration of enhancing agent (0.25, 0.5 and 1.0 M) and remediation times (21, 42 and 117 d) for the removal of Cu and Cr from a calcareous soil. To gain insight on metal behavior, soil solution was periodically collected using suction cups. It was seen that current densities higher than 1.0 mA cm(-2) did not increase removal and thus using too high current densities can be a waste of energy. Desorption rate is important and both remediation time and ammonium citrate concentration are relevant parameters. It was possible to collect soil solution samples following an adaptation of the experimental set-up to ensure continuous supply of ammonium citrate to the soil in order to keep it saturated during the remediation. Monitoring soil solution gives valuable information on the evolution of remediation and helps deciding when the soil is remediated. Final concentrations in the soil ranged from 220 to 360 mg Cu kg(-1) (removals: 78-86%) and 440-590 mg Cr kg(-1) (removals: 35-51%), being within the 500 mg kg(-1) limit for a clean soil only for Cu. While further optimization is still required for Cr, the removal percentages are the highest achieved so far, for a real Cu and Cr-contaminated, calcareous soil. The results highlight EDR potential to remediate metal polluted soils at neutral to alkaline pH by choosing a good enhancement solution.

  18. Ammonium citrate as enhancement for electrodialytic soil remediation and investigation of soil solution during the process.

    PubMed

    Dias-Ferreira, Celia; Kirkelund, Gunvor M; Ottosen, Lisbeth M

    2015-01-01

    Seven electrodialytic experiments were conducted using ammonium citrate as enhancing agent to remediate copper and chromium-contaminated soil from a wood-preservation site. The purpose was to investigate the effect of current density (0.2, 1.0 and 1.5 mA cm(-2)), concentration of enhancing agent (0.25, 0.5 and 1.0 M) and remediation times (21, 42 and 117 d) for the removal of Cu and Cr from a calcareous soil. To gain insight on metal behavior, soil solution was periodically collected using suction cups. It was seen that current densities higher than 1.0 mA cm(-2) did not increase removal and thus using too high current densities can be a waste of energy. Desorption rate is important and both remediation time and ammonium citrate concentration are relevant parameters. It was possible to collect soil solution samples following an adaptation of the experimental set-up to ensure continuous supply of ammonium citrate to the soil in order to keep it saturated during the remediation. Monitoring soil solution gives valuable information on the evolution of remediation and helps deciding when the soil is remediated. Final concentrations in the soil ranged from 220 to 360 mg Cu kg(-1) (removals: 78-86%) and 440-590 mg Cr kg(-1) (removals: 35-51%), being within the 500 mg kg(-1) limit for a clean soil only for Cu. While further optimization is still required for Cr, the removal percentages are the highest achieved so far, for a real Cu and Cr-contaminated, calcareous soil. The results highlight EDR potential to remediate metal polluted soils at neutral to alkaline pH by choosing a good enhancement solution. PMID:25240953

  19. Characterization and remediation of soils contaminated with uranium.

    PubMed

    Gavrilescu, Maria; Pavel, Lucian Vasile; Cretescu, Igor

    2009-04-30

    Environmental contamination caused by radionuclides, in particular by uranium and its decay products is a serious problem worldwide. The development of nuclear science and technology has led to increasing nuclear waste containing uranium being released and disposed in the environment. The objective of this paper is to develop a better understanding of the techniques for the remediation of soils polluted with radionuclides (uranium in particular), considering: the chemical forms of uranium, including depleted uranium (DU) in soil and other environmental media, their characteristics and concentrations, and some of the effects on environmental and human health; research issues concerning the remediation process, the benefits and results; a better understanding of the range of uses and situations for which each is most appropriate. The paper addresses the main features of the following techniques for uranium remediation: natural attenuation, physical methods, chemical processes (chemical extraction methods from contaminated soils assisted by various suitable chelators (sodium bicarbonate, citric acid, two-stage acid leaching procedure), extraction using supercritical fluids such as solvents, permeable reactive barriers), biological processes (biomineralization and microbial reduction, phytoremediation, biosorption), and electrokinetic methods. In addition, factors affecting uranium removal from soils are furthermore reviewed including soil characteristics, pH and reagent concentration, retention time.

  20. Use of plant and earthworm bioassays to evaluate remediation of soil from a site contaminated with polychlorinated biphenyls

    SciTech Connect

    Meier, J.R.; Chang, L.W.; Meckes, M.C.; Smith, M.K.; Jacobs, S.; Torsella, J.

    1997-05-01

    Soil from a site heavily contaminated with polychlorinated biphenyls (PCBs) was treated with a pilot-scale, solvent extraction technology. Bioassays in earthworms and plants were used to examine the efficacy of the remediation process for reducing the toxicity of the soil. The earthworm toxicity bioassays were the 14-d survival test and 21-d reproduction test, using Lumbricus terrestris and Eisenia fetida andrei. The plant bioassays included phytotoxicity tests for seed germination and root elongation in lettuce and oats, and a genotoxicity test (anaphase aberrations) in Allium cepa (common onion). Although the PCB content of the soil was reduced by 99% (below the remediation goal), toxicity to earthworm reproduction remained essentially unchanged following remediation. Furthermore, phytotoxicity and genotoxicity were higher for the remediated soil compared to the untreated soil. The toxicity remaining after treatment appeared to be due to residual solvent introduced during the remediation process, and/or to heavy metals or other inorganic contaminants not removed by the treatment. Mixture studies involving isopropanol and known toxicants indicated possible synergistic effects of the extraction solvent and soil contaminants. The toxicity in plants was essentially eliminated by a postremediation, water-rinsing step. These results demonstrate a need for including toxicity measurements in the evaluation of technologies used in hazardous waste site remediations, and illustrate the potential value of such measurements for making modifications to remediation processes.

  1. Physicochemical and mineralogical characterization of transuranic contaminated soils for uranium soil integrated demonstration

    SciTech Connect

    Elless, M.P.; Lee, S.Y.

    1994-10-01

    DOE has initiated the Uranium Soils Integrated Demonstration (USID) project. The objective of the USID project is to develop a remediation strategy that can be adopted for use at other DOE sites requiring remediation. Four major task groups within the USID project were formed, namely the Characterization Task Group (CTG), the Treatability Task Group (TTG), the Secondary Waste Treatment and Disposal Task Group (SWTDTG), and the Risk and Performance Assessment Task Group (RPATG). The CTG is responsible for determining the nature of the uranium contamination in both untreated and treated soil. The TTG is responsible for the selective removal of uranium from these soils in such a manner that the leaching does not seriously degrade the soil`s physicochemical characteristics or generate a secondary waste form that is difficult to manage and/or dispose. The SWTDTG is responsible for developing strategies for the removal of uranium from all wastewaters generated by the TTGs. Finally the RPATG is responsible for developing the human health and environmental risk assessment of the untreated and treated soils. Because of the enormity of the work required to successfully remediate uranium-contaminated soils, an integrated approach was designed to avoid needless repetition of activities among the various participants in the USID project. Researchers from Oak Ridge National Laboratory (ORNL), Los Alamos National Laboratory (LANL), Argonne National Laboratory (ANL), and Idaho National Engineering Laboratory (INEL) were assigned characterization and/or treatability duties in their areas of specialization. All tasks groups are involved in the integrated approach; however, the thrust of this report concentrates on the utility of the integrated approach among the various members of the CTG. This report illustrates the use of the integrated approach for the overall CTG and to provide the results generated specifically by the CTG or ORNL from FY1993 to the present.

  2. Presumptive remedies for soils, sediments, and sludges at wood treater sites

    SciTech Connect

    1995-12-01

    The purpose of this directive is to provide guidance on selecting a presumptive remedy or combination of presumptive remedies for wood treater sites with contaminated soils, sediments, and sludges. Specifically, this guidance; describes the contaminants generally found at wood treater sites; presents the presumptive remedies for contaminated soils, sediments, and sludges at wood treater sites; describes the presumptive remedy process concerning the site characterization and technology screening steps; and outlines the data that should be used to select a presumptive remedy.

  3. Metallomics: lessons for metalliferous soil remediation.

    PubMed

    Haferburg, Götz; Kothe, Erika

    2010-07-01

    The term metallomics has been established for the investigation of transcriptome, proteome, and metabolome changes induced by metals. The mechanisms allowing the organisms to cope with metals in the environment, metal resistance factors, will in turn change biogeochemical cycles of metals in soil, coupling the metal pool with the root system of plants. This makes microorganisms key players in introducing metals into food webs, as well as for bioremediation strategies. Research on physiological and metabolic responses of microorganisms on metal stress in soil is thus essential for the selection of optimized consortia applicable in bioremediation strategies such as bioaugmentation or microbially enhanced phytoextraction. The results of metallomics studies will help to develop applications including identification of biomarkers for ecotoxicological studies, bioleaching, in situ soil regeneration, and microbially assisted phytoremediation of contaminated land. This review will therefore focus on the molecular understanding of metal resistance in bacteria and fungi, as can be derived from metallomics studies.

  4. REMEDIATING PESTICIDE CONTAMINATED SOILS USING SOLVENT EXTRACTION

    EPA Science Inventory

    Bench-scale solvent extraction studies were performed on soil samples obtained from a Superfund site contaminated with high levels of p,p'-DDT, p,p'-DDD,, p,p'-DDE and toxaphene. The effectiveness of the solvent extraction process was assessed using methanol and 2-propanol as sol...

  5. Remediation of Sucarnoochee soil by agglomeration with fine coal

    SciTech Connect

    Narayanan, P.S.; Arnold, D.W.; Rahnama, M.B. )

    1994-01-01

    Fine-sized Blue Creek coal was used to remove high molecular weight hydrocarbons from Sucarnoochee soil, a fine-sized high-organic soil. Fine coal in slurry form was blended with Sucarnoochee soil contaminated with 15.0% by wt of crude oil, and agglomerates were removed in a standard flotation cell. Crude oil in the remediated soil was reduced from the original 15.0% to less than a tenth of a wt% by a two-step process. Oil removal of approx. 99.3% was obtained. An added benefit was that the low-grade coal used in the process was simultaneously upgraded. The final level of cleaning was not affected by initial oil concentration. The process compared favorably with a hot water wash technique used to recovery oils from contaminated soil.

  6. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    SciTech Connect

    J. Hnat; L.M. Bartone; M. Pineda

    2001-10-31

    This Final Report summarizes the progress of Phases 3,3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the MH/C System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem. Because of USEPA policies and regulations that do not require treatment of low level or low-level/PCB contaminated wastes, DOE terminated the project because there is no purported need for this technology.

  7. Biochar and the remediation of soil micropollutants

    NASA Astrophysics Data System (ADS)

    Brennan, A.; Switzer, C.

    2012-04-01

    Persistent Organic Pollutants (POPs) present a globally significant problem in soil and water management due to their recalcitrance, tendency to bioaccumulate and their suspected or confirmed effects on human health. Biochar, defined as biomass pyrolysed in the absence of oxygen, has strong potential for the long-term sequestration of POPs that could otherwise be mobilised into ground and surface waters and contaminate soil and sediment matrices. The initial hypothesis is that biochar derived from green waste materials represents an effective means for sequestering these contaminants. The present work is investigating the potential of biochar to sequester POPs through adsorption isotherm sorption experiments, with current focuses being biochar material characterisation and contaminant behaviour. Contaminants of interest are polycyclic aromatic hydrocarbons (PAHs) as well as emerging contaminants of concern such as hormones and other micropollutants. Preliminary adsorption studies suggest that biochar shows significant promise for contaminant removal. Desorption studies address important questions that remain about long-term contaminant sequestration and potential remobilisation via fine particles and leachate from the biochar. The amounts of fine particles and leachate associated with each biochar are linked to the source material and pyrolysis process conditions used to create it. This work is attempting to establish a mass balance around the soil to determine the sequestration potential of a range of biochars. Analysis of contaminant concentrations is being carried out by GC-MS and HPLC. The ultimate aim of this work is to define the conditions where biochar and biochar-amended soils are able to effectively sequester trace levels of contaminants.

  8. Assessment of the Use of Natural Materials for the Remediation of Cadmium Soil Contamination

    PubMed Central

    de O. Pinto, Tatiana; García, Andrés C.; Guedes, Jair do N.; do A. Sobrinho, Nelson M. B.; Tavares, Orlando C. H.

    2016-01-01

    Rice plants accumulate cadmium (Cd2+) within the grain, increasing the danger of human exposure. Natural materials have been used in soil remediation, but few studies have examined the risks (based on the bioavailability of these metals to plants) of using these materials, so the practice remains controversial. In the present study, we evaluated the effectiveness of biochar produced from sugarcane bagasse, vermicompost (VC), vermicompost solid residue (VCR) and humin for remediation of Cd2+-contaminated soils. We characterized the interactions between these materials and Cd2+ and evaluated their capacity to alter Cd2+ availability to rice plants. Our results show that under the conditions in this study, biochar and humin were not effective for soil remediation. Although biochar had high Cd2+ retention, it was associated with high Cd2+ bioavailability and increased Cd2+ accumulation in rice plants. VC and VCR had high Cd2+ retention capacity as well as low Cd2+ availability to plants. These characteristics were especially notable for VCR, which was most effective for soil remediation. The results of our study demonstrate that in the tested materials, the bioavailability of Cd2+ to plants is related to their structural characteristics, which in turn determine their retention of Cd2+. PMID:27341440

  9. Assessment of the Use of Natural Materials for the Remediation of Cadmium Soil Contamination.

    PubMed

    de O Pinto, Tatiana; García, Andrés C; Guedes, Jair do N; do A Sobrinho, Nelson M B; Tavares, Orlando C H; Berbara, Ricardo L L

    2016-01-01

    Rice plants accumulate cadmium (Cd2+) within the grain, increasing the danger of human exposure. Natural materials have been used in soil remediation, but few studies have examined the risks (based on the bioavailability of these metals to plants) of using these materials, so the practice remains controversial. In the present study, we evaluated the effectiveness of biochar produced from sugarcane bagasse, vermicompost (VC), vermicompost solid residue (VCR) and humin for remediation of Cd2+-contaminated soils. We characterized the interactions between these materials and Cd2+ and evaluated their capacity to alter Cd2+ availability to rice plants. Our results show that under the conditions in this study, biochar and humin were not effective for soil remediation. Although biochar had high Cd2+ retention, it was associated with high Cd2+ bioavailability and increased Cd2+ accumulation in rice plants. VC and VCR had high Cd2+ retention capacity as well as low Cd2+ availability to plants. These characteristics were especially notable for VCR, which was most effective for soil remediation. The results of our study demonstrate that in the tested materials, the bioavailability of Cd2+ to plants is related to their structural characteristics, which in turn determine their retention of Cd2+. PMID:27341440

  10. Electrokinetic remediation of organochlorines in soil: enhancement techniques and integration with other remediation technologies.

    PubMed

    Gomes, Helena I; Dias-Ferreira, Celia; Ribeiro, Alexandra B

    2012-06-01

    Electrokinetic remediation has been increasingly used in soils and other matrices for numerous contaminants such as inorganic, organic, radionuclides, explosives and their mixtures. Several strategies were tested to improve this technology effectiveness, namely techniques to solubilize contaminants, control soil pH and also couple electrokinetics with other remediation technologies. This review focus in the experimental work carried out in organochlorines soil electroremediation, aiming to systemize useful information to researchers in this field. It is not possible to clearly state what technique is the best, since experimental approaches and targeted contaminants are different. Further research is needed in the application of some of the reviewed techniques. Also a number of technical and environmental issues will require evaluation for full-scale application. Removal efficiencies reported in real contaminated soils are much lower than the ones obtained with spiked kaolinite, showing the influence of other factors like aging of the contamination and adsorption to soil particles, resulting in important challenges when transferring technologies into the field. PMID:22386462

  11. Field study of in situ remediation of petroleum hydrocarbon contaminated soil on site using microwave energy.

    PubMed

    Chien, Yi-Chi

    2012-01-15

    Many laboratory-scale studies strongly suggested that remediation of petroleum hydrocarbon contaminated soil by microwave heating is very effective; however, little definitive field data existed to support the laboratory-scale observations. This study aimed to evaluate the performance of a field-scale microwave heating system to remediate petroleum hydrocarbon contaminated soil. A constant microwave power of 2 kW was installed directly in the contaminated area that applied in the decontamination process for 3.5h without water input. The C10-C40 hydrocarbons were destroyed, desorbed or co-evaporated with moisture from soil by microwave heating. The moisture may play an important role in the absorption of microwave and in the distribution of heat. The success of this study paved the way for the second and much larger field test in the remediation of petroleum hydrocarbon contaminated soil by microwave heating in place. Implemented in its full configuration for the first time at a real site, the microwave heating has demonstrated its robustness and cost-effectiveness in cleaning up petroleum hydrocarbon contaminated soil in place. Economically, the concept of the microwave energy supply to the soil would be a network of independent antennas which powered by an individual low power microwave generator. A microwave heating system with low power generators shows very flexible, low cost and imposes no restrictions on the number and arrangement of the antennas.

  12. [Anolyte enhanced electrokinetic remediation of fluorine-contaminated soils].

    PubMed

    Zhu, Shu-Fa; Yan, Chun-Li; Dong, Tie-You; Tang, Hong-Yan

    2009-07-15

    An experimental study was carried out in order to determine the characteristics of migration and its influencing factor of soil fluorine in the electrokinetic process under different applied voltage and concentration of anolyte. The feasibility of anolyte enhanced on electrokinetic remediation of fluorine-contaminated soil was analyzed. The results show that when deionized water is used as anolyte with the 1.0 V/cm voltage gradient, the cumulative mass of fluorine in catholyte and anolyte are 8.2 mg and 47.7 mg respectively and the removal rate of fluorine is only 8.8%. Anolyte enhanced electrokinetic process can promote effectively the migration of fluoride in soil. When 0.02 mol/L NaOH solutionis employed as the anolyte, the removal rates are 25.9%, 31.2% and 47.3% with 1.0, 1.5 and 2.0 V/cm voltage gradient respectively. As the concentration of anolyte increased to 0.1 mol/L, the removal rates are 55.4%, 61.1% and 73.0%. The electromigration is the main transport mechanism and the electroosmotic flow has an effect on the migration of fluorine in soil. The voltage gradient and the concentration of anolyte are the main factors influencing the removal rate of fluorine in soil. Appropriate anolyte enhanced electrokinetic method can be applied to remediate fluorine from contaminated soil.

  13. Sour gas plant remediation technology research and demonstration project, Task 7.53. Topical report, January--December 1993

    SciTech Connect

    Stepan, D.J.; Kuehnel, V.; Schmit, C.R.

    1994-02-01

    Recognizing the potential impacts of sour gas plant operations on the subsurface environment, the Canadian Association of Petroleum Producers (CAPP) and Environment Canada initiated a multiphase study focusing on research related to the development and demonstration of remedial technologies for soil and groundwater contamination at these facilities. Research performed under this project was designed to supplement and be coordinated with research activities being conducted at an operational sour gas plant located in Rocky Mountain House, Alberta, Canada. These research tasks included hydrogeological site characterization, subsurface contaminant characterization, ex situ treatment of groundwater, and subsurface remediation of residual contamination in the unsaturated zone. Ex situ treatment of groundwater included evaluations of air stripping, steam stripping, advanced oxidation, and biological treatment, as well as the development of an artificial freeze crystallization process. Soil vapor extraction was evaluated as a technique to address residual contamination in the unsaturated zone.

  14. Remediation of contaminated soils and sludges by green plants

    SciTech Connect

    Cunningham, S.D.; Berti, W.R.; Huang, J.W.

    1995-12-31

    The potential of green plants to remove, contain, or render harmless contaminants in soils and sludges is actively being explored in an increasing number of laboratories throughout the world. This approach, which has been termed phytoremediation, exploits plants, soil amendments, and plant-associated microbiota to remediate contaminated soils. As an in situ stabilization technique, soil amendment with fertilizers, biosolids, or certain industrial by-products alters the chemical and physical nature of the contaminant in the soil matrix, thus reducing its available to biological processes. The site is then vegetated with plants that can (1) grow in the resulting soil matrix; (2) reduce leaching through the soil profile by absorbing, sequestering, or degrading residual contaminants in the soil solution; and (3) minimize wind and rain erosion. The process is known as phytostabilization, or simply site stabilization, and borrows heavily on mine reclamation techniques. As a site decontamination technique, the soil is treated to increase the availability of the contaminant to biological processes and then planted with plants that (1) accumulate the contaminant and are harvested for further pollutant destruction, sequestration, or reclamation or (2) use plant or plant-associated microbial processes to destroy the pollutant in situ.

  15. [An approach to the establishment of remediation standards for contaminated soils].

    PubMed

    Chao, Lei; Zhou, Qixing; Chen, Su

    2006-02-01

    With the rapid development of remediation technology for contaminated soils in China, remediation standard has become a bottleneck in judging the effects of this technology. In this paper, some suggestions on the establishment of remediation standards for contaminated soils, e.g., choice of contaminants, methods of detection, classification of contaminated soils, protection of groundwater, and assessment of toxicological risks were put forward, based on the analysis of the disadvantages of Soil Environmental Quality Standard.

  16. Remediation of lead and cadmium-contaminated soils.

    PubMed

    Salama, Ahmed K; Osman, Khaled A; Gouda, Neama Abdel-Razeek

    2016-01-01

    The research was designated to study the ability of plants to bio-accumulate, translocate and remove the heavy metals, lead and cadmium from contaminated soil. The herbal plant ryegrass, Lolium multiflorum was investigated as a bio-accumulator plant for these metals. The translocation of these heavy metals in the herbal plant was compared considering root to shoot transport and redistribution of metals in the root and shoot system. The trace metal contents from root and shoot parts were determined using atomic absorption spectrometer. The results showed that the percent of lead and cadmium transferred to ryegrass plant were averaged as 51.39, and 74.57%, respectively, while those remained in the soil were averaged as 48.61 and 25.43% following 60 days of treatment. The soil-plant transfer index in root and shoot system of ryegrass was found to be 0.32 and 0.20 for lead, and 0.50 and 0.25 for cadmium. These findings indicated that the herbal plant ryegrass, Lolium multiflorum is a good accumulator for cadmium than lead. The soil-plant transfer factor (the conc. of heavy metal in plant to the conc. in soil) indicated that the mechanism of soil remedy using the investigated plant is phytoextraction where the amounts of heavy metals transferred by plant roots into the above ground portions were higher than that remained in the soil. The method offers green technology solution for the contamination problem since it is effective technology with minimal impact on the environment and can be easily used for soil remedy.

  17. Efficiency of modified chemical remediation techniques for soil contaminated by organochlorine pesticides

    NASA Astrophysics Data System (ADS)

    Correa-Torres, S. N.; Kopytko, M.; Avila, S.

    2016-07-01

    This study reports the optimization of innovation chemical techniques in order to improve the remediation of soils contaminated with organochloride pesticides. The techniques used for remediation were dehalogenation and chemical oxidation in soil contaminated by pesticides. These techniques were applied sequentially and combined to evaluate the design optimize the concentration and contact time variables. The soil of this study was collect in cotton crop zone in Agustin Codazzi municipality, Colombia, and its physical properties was measure. The modified dehalogenation technique of EPA was applied on the contaminated soil by adding Sodium Bicarbonate solution at different concentrations and rates during 4, 7 and 14 days, subsequently oxidation technique was implemented by applying a solution of KMnO4 at different concentration and reaction times. Organochlorine were detected by Gas Chromatography analysis coupled Mass Spectrometry and its removals were between 85.4- 90.0% of compounds such as 4, 4’-DDT, 4,4’-DDD, 4,4-DDE, trans-Clordane y Endrin. These results demonstrate that the technique of dehalogenation with oxidation chemistry can be used for remediation soils contaminated by organochloride pesticides.

  18. Investigating biochar as a tool for mine soil remediation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar is a cost-effective, carbon negative soil amendment that can lead to improved soil quality. Research has also demonstrated the efficacy of biochar to sorb heavy metals and agricultural chemicals from contaminated soils, thus effectively reducing the potential for metal and chemical contamin...

  19. SURFACTANT REMEDIATION FIELD DEMONSTRATION USING A VERTICAL CIRCULATION WELL

    EPA Science Inventory

    A field demonstration of surfactant-enhanced solubilization was completed in a shallow unconfined aquifer located at a Coast Guard Station in Traverse City, Michigan. The primary objectives of the study were: (1) to assess the ability of the vertical circulation well (VCW) system...

  20. Three Soil Quality Demonstrations for Educating Extension Clientele

    ERIC Educational Resources Information Center

    Hoorman, James J.

    2014-01-01

    There is a renewed interest in educating youth, Master Gardeners, and agricultural producers about soil quality. Three soil demonstrations show how soil organic matter increases water holding capacity, improves soil structure, and increases nutrient retention. Exercise one uses clay bricks and sponges to represent mineral soils and soil organic…

  1. [Bio-remediation techniques of crude oil contaminated soils].

    PubMed

    Li, Peijun; Guo, Shuhai; Sun, Tieheng; Tai, Peidong; Zhang, Chungui; Bai, Yuxing; Sun, Qiang; Sheng, Ping

    2002-11-01

    The bioremediation of soils contaminated by different types of petroleum were carried out with composting process in a prepared bed. By the measures of nutrient- and microbiological agent addition, and moisture- and pH control, an ideal environment for microbes were obtained. When total petroleum hydrocarbons, which consist of thin oil, high condensation oil, special viscous oil, and viscous oil, were in the range of 25.8-77.2 g.kg-1 dry soil, the petroleum removal rate could reach 38.37-56.74% by 2 months operation. The contents of aromatic hydrocarbon, asphaltum and resin were important factors controlling the degradation of petroleum. 6 fungi, 6 bacteria and 1 actinomyces were found to be the dominant strains for petroleum degradation. The results could provide theoretical bases for remediation of soil contaminated by petroleum.

  2. Ground water and soil remediation: In situ air stripping using horizontal wells

    SciTech Connect

    Kaback, D.S.; Looney, B.B.; Eddy, C.A.; Hazen, T.C.

    1990-12-31

    An innovative environmental restoration technology, in situ air stripping, has been demonstrated at the US Department of Energy (DOE) Savannah River Site (SRS) in South Carolina. This process, using horizontal wells, is designed to concurrently remediate unsaturated-zone soils and ground water containing Volatile Organic Compounds (VOC). In situ technologies have the potential to substantially reduce costs and time required for remediation as well as improve effectiveness of remediation. Horizontal wells were selected to deliver and extract fluids from the subsurface because their geometry can maximize the efficiency of a remediation system and they have great potential for remediating contaminant sources under existing facilities. The first demonstration of this new technology was conducted for a period of twenty weeks. A vacuum was first drawn on the vadose zone well until a steady-state removal of VOCs was obtained. Air was then injected at three different rates and at two different temperatures. An extensive characterization program was conducted at the site and an extensive monitoring network was installed prior to initiation of the test. Significant quantities of VOCs have been removed from the subsurface (equivalent to an eleven-well, 500-gpm, pump-and-treat system at the same site). Concentrations of VOCs in the ground water have been significantly reduced in a number of the monitoring wells.

  3. Ground water and soil remediation: In situ air stripping using horizontal wells

    SciTech Connect

    Kaback, D.S.; Looney, B.B.; Eddy, C.A.; Hazen, T.C.

    1990-01-01

    An innovative environmental restoration technology, in situ air stripping, has been demonstrated at the US Department of Energy (DOE) Savannah River Site (SRS) in South Carolina. This process, using horizontal wells, is designed to concurrently remediate unsaturated-zone soils and ground water containing Volatile Organic Compounds (VOC). In situ technologies have the potential to substantially reduce costs and time required for remediation as well as improve effectiveness of remediation. Horizontal wells were selected to deliver and extract fluids from the subsurface because their geometry can maximize the efficiency of a remediation system and they have great potential for remediating contaminant sources under existing facilities. The first demonstration of this new technology was conducted for a period of twenty weeks. A vacuum was first drawn on the vadose zone well until a steady-state removal of VOCs was obtained. Air was then injected at three different rates and at two different temperatures. An extensive characterization program was conducted at the site and an extensive monitoring network was installed prior to initiation of the test. Significant quantities of VOCs have been removed from the subsurface (equivalent to an eleven-well, 500-gpm, pump-and-treat system at the same site). Concentrations of VOCs in the ground water have been significantly reduced in a number of the monitoring wells.

  4. APPLICATION OF PLANT AND EARTHWORM BIOASSAYS TO EVALUATE REMEDIATION OF A LEAD-CONTAMINATED SOIL

    EPA Science Inventory

    Earthworm acute toxicity, plant seed germination/root elongation (SG/RE) and plant genotoxicity bioassays were employed to evaluate the remediation of a lead-contaminated soil. The remediation involved removal of heavy metals by a soil washing/soil leaching treatment process. A p...

  5. IMPROVED RISK ASSESSMENT AND REMEDIATION OF SOIL METALS BASED ON BIOAVAILABILITY MEASUREMENTS

    EPA Science Inventory

    Heavy metals in soils can comprise risk through plant uptake or soil ingestion. Recent research results and progress in understandings of risks and methods for soil metal remediation will be presented. Beneficial use of composts/bosolids plus limestone to remediate metal killed e...

  6. The Impact of Thermal Remediation on Soil Rehabilitation

    NASA Astrophysics Data System (ADS)

    Pape, Andrew; Switzer, Christine; Knapp, Charles

    2013-04-01

    In an effort to restore the social and economic value of brownfield sites contaminated by hazardous organic liquids, many new remediation techniques involving the use of elevated temperatures to desorb and extract or destroy these contaminants have been developed. These approaches are typically applied to heavily contaminated soils to effect substantial source removal from the subsurface. These processes operate over a range of temperatures from just above ambient to in excess of 1000˚C depending on technology choice and contaminant type. To facilitate the successful rehabilitation of treated soils for agriculture, biomass production, or habitat enrichment the effects of high temperatures on the ability of soil to support biological activity needs to be understood. Four soils were treated with high temperatures or artificially contaminated and subjected to a smouldering treatment (600-1100°C) in this investigation. Subsequent chemical analysis, plant growth trials and microbial analysis were used to characterise the impacts of these processes on soil geochemistry, plant health, and potential for recovery. Decreases were found in levels of carbon (>250˚C), nitrogen (>500˚C) and phosphorus (1000˚C) with intermediate temperatures having variable affects on bio-available levels. Macro and micro nutrients such as potassium, calcium, zinc and copper also showed changes with general trends towards reduced bioavailability at higher temperatures. Above 500°C, cation exchange capacity and phosphate adsorption were lowered indicating that nutrient retention will be a problem in some treated soils. In addition, these temperatures reduced the content of clay sized particles changing the texture of the soils. These changes had a statistically significant impact on plant growth with moderate growth reductions occurring at 250°C and 500°C. Above 750°C, growth was extremely limited and soils treated at these temperatures would need major restorative efforts. Microbial re

  7. Mathematical modeling of electrochemical remediation for soils under galvanostatic conditions.

    PubMed

    Teutli León, M M; Oropeza Guzmán, M T; González, I

    2001-01-01

    This work proposes a mathematical model for the electrochemical remediation of clayey soils based on the total volume concept for a two-phase system. The mathematical formulation was done including contributions from theories for: groundwater, membranes, porous electrodes and environmental soil chemistry. The resulting model accounts for: free and complexed species in the soil matrix and the pore solution; chemical reactions taking place on either phase and/or between phases; a dynamic soil surface charge affected by the ion content of the pore solution; and electroneutrality of the total volume. Soil surface charge was included in a modified Ohm's law (voltage gradient) and in a modified Schlög's law (convective movement). Numerical implementation was done using orthogonal collocation on finite elements for spatial derivatives, and forward finite differences for time derivatives. Visual Fortran supported by IMSL subroutines was used for computer simulation. Model predictions were successfully compared with reported experimental data. Also, an analysis of pH profiles through the soil is provided for conditions when parameters including hydrostatic head, applied current density and initial pH are modified.

  8. In-situ remediation system for groundwater and soils

    DOEpatents

    Corey, J.C.; Kaback, D.S.; Looney, B.B.

    1993-11-23

    A method and system are presented for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants. 4 figures.

  9. Sand amendment enhances bioelectrochemical remediation of petroleum hydrocarbon contaminated soil.

    PubMed

    Li, Xiaojing; Wang, Xin; Ren, Zhiyong Jason; Zhang, Yueyong; Li, Nan; Zhou, Qixing

    2015-12-01

    Bioelectrochemical system is an emerging technology for the remediation of soils contaminated by petroleum hydrocarbons. However, performance of such systems can be limited by the inefficient mass transport in soil. Here we report a new method of sand amendment, which significantly increases both oxygen and proton transports, resulting to increased soil porosity (from 44.5% to 51.3%), decreased Ohmic resistance (by 46%), and increased charge output (from 2.5 to 3.5Cg(-1)soil). The degradation rates of petroleum hydrocarbons increased by up to 268% in 135d. The degradation of n-alkanes and polycyclic aromatic hydrocarbons with high molecular weight was accelerated, and denaturing gradient gel electrophoresis showed that the microbial community close to the air-cathode was substantially stimulated by the induced current, especially the hydrocarbon degrading bacteria Alcanivorax. The bioelectrochemical stimulation imposed a selective pressure on the microbial community of anodes, including that far from the cathode. These results suggested that sand amendment can be an effective approach for soil conditioning that will enhances the bioelectrochemical removal of hydrocarbons in contaminated soils.

  10. In-situ remediation system for groundwater and soils

    DOEpatents

    Corey, John C.; Kaback, Dawn S.; Looney, Brian B.

    1993-01-01

    A method and system for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants.

  11. [Mixture Leaching Remediation Technology of Arsenic Contaminated Soil].

    PubMed

    Chen, Xun-feng; Li, Xiao-ming; Chen, Can; Yang, Qi; Deng, Lin-jing; Xie, Wei-qiang; Zhong, Yui; Huang, Bin; Yang, Wei-qiang; Zhang, Zhi-bei

    2016-03-15

    Soil contamination of arsenic pollution has become a severely environmental issue, while soil leaching is an efficient method for remediation of arsenic-contaminated soil. In this study, batch tests were primarily conducted to select optimal mixture leaching combination. Firstly, five conventional reagents were selected and combined with each other. Secondly, the fractions were analyzed before and after the tests. Finally, to explore the feasibility of mixed leaching, three soils with different arsenic pollution levels were used to compare the leaching effect. Comparing with one-step washing, the two-step sequential washing with different reagents increased the arsenic removal efficiency. These results showed that the mixture of 4 h 0.5 mol · L⁻¹ NaOH + 4 h 0.1 mol · L⁻¹ EDTA was found to be practicable, which could enhance the removal rate of arsenic from 66.67% to 91.83%, and the concentration of arsenic in soil was decreased from 186 mg · kg⁻¹ to 15.2 mg · kg⁻¹. Furthermore, the results indicated that the distribution of fractions of arsenic in soil changed apparently after mixture leaching. Leaching process could significantly reduce the available contents of arsenic in soil. Moreover, the mixture of 0.5 mol · L⁻¹ NaOH + 0.1 mol L⁻¹ EDTA could well decrease the arsenic concentration in aluminum-type soils, while the mixture of 0.5 mol · L⁻¹ OX + 0.5 mol · L⁻¹ NaOH could well decrease the arsenic concentration in iron-type soils. PMID:27337912

  12. [Mixture Leaching Remediation Technology of Arsenic Contaminated Soil].

    PubMed

    Chen, Xun-feng; Li, Xiao-ming; Chen, Can; Yang, Qi; Deng, Lin-jing; Xie, Wei-qiang; Zhong, Yui; Huang, Bin; Yang, Wei-qiang; Zhang, Zhi-bei

    2016-03-15

    Soil contamination of arsenic pollution has become a severely environmental issue, while soil leaching is an efficient method for remediation of arsenic-contaminated soil. In this study, batch tests were primarily conducted to select optimal mixture leaching combination. Firstly, five conventional reagents were selected and combined with each other. Secondly, the fractions were analyzed before and after the tests. Finally, to explore the feasibility of mixed leaching, three soils with different arsenic pollution levels were used to compare the leaching effect. Comparing with one-step washing, the two-step sequential washing with different reagents increased the arsenic removal efficiency. These results showed that the mixture of 4 h 0.5 mol · L⁻¹ NaOH + 4 h 0.1 mol · L⁻¹ EDTA was found to be practicable, which could enhance the removal rate of arsenic from 66.67% to 91.83%, and the concentration of arsenic in soil was decreased from 186 mg · kg⁻¹ to 15.2 mg · kg⁻¹. Furthermore, the results indicated that the distribution of fractions of arsenic in soil changed apparently after mixture leaching. Leaching process could significantly reduce the available contents of arsenic in soil. Moreover, the mixture of 0.5 mol · L⁻¹ NaOH + 0.1 mol L⁻¹ EDTA could well decrease the arsenic concentration in aluminum-type soils, while the mixture of 0.5 mol · L⁻¹ OX + 0.5 mol · L⁻¹ NaOH could well decrease the arsenic concentration in iron-type soils.

  13. Monitoring of Soil Remediation Process in the Metal Mining Area

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Woong; Ko, Myoung-Soo; Han, Hyeop-jo; Lee, Sang-Ho; Na, So-Young

    2016-04-01

    Stabilization using proper additives is an effective soil remediation technique to reduce As mobility in soil. Several researches have reported that Fe-containing materials such as amorphous Fe-oxides, goethite and hematite were effective in As immobilization and therefore acid mine drainage sludge (AMDS) may be potential material for As immobilization. The AMDS is the by-product from electrochemical treatment of acid mine drainage and mainly contains Fe-oxide. The Chungyang area in Korea is located in the vicinity of the huge abandoned Au-Ag Gubong mine which was closed in the 1970s. Large amounts of mine tailings have been remained without proper treatment and the mobilization of mine tailings can be manly occurred during the summer heavy rainfall season. Soil contamination from this mobilization may become an urgent issue because it can cause the contamination of groundwater and crop plants in sequence. In order to reduce the mobilization of the mine tailings, the pilot scale study of in-situ stabilization using AMDS was applied after the batch and column experiments in the lab. For the monitoring of stabilization process, we used to determine the As concentration in crop plants grown on the field site but it is not easily applicable because of time and cost. Therefore, we may need simple monitoring technique to measure the mobility or leachability which can be comparable with As concentration in crop plants. We compared several extraction methods to suggest the representative single extraction method for the monitoring of soil stabilization efficiency. Several selected extraction methods were examined and Mehlich 3 extraction method using the mixture of NH4F, EDTA, NH4NO3, CH3COOH and HNO3 was selected as the best predictor of the leachability or mobility of As in the soil remediation process.

  14. Electrokinetic remediation of six emerging organic contaminants from soil.

    PubMed

    Guedes, Paula; Mateus, Eduardo P; Couto, Nazaré; Rodríguez, Yadira; Ribeiro, Alexandra B

    2014-12-01

    Some organic contaminants can accumulate in organisms and cause irreversible damages in biological systems through direct or indirect toxic effects. In this study the feasibility of the electrokinetic (EK) process for the remediation of 17β-oestradiol (E2), 17α-ethinyloestradiol (EE2), bisphenol A (BPA), nonylphenol (NP), octylphenol (OP) and triclosan (TCS) in soils was studied in a stationary laboratory cell. The experiments were conducted using a silty loam soil (S2) at 0, 10 and 20mA and a sandy soil (S3) at 0 and 10 mA. A pH control in the anolyte reservoir (pH>13) at 10 mA was carried out using S2, too. Photo and electrodegradation experiments were also fulfilled. Results showed that EK is a viable method for the remediation of these contaminants, both through mobilization by electroosmotic flow (EOF) and electrodegradation. As EOF is very sensible to soil pH, the control in the anolyte increased EOF rate, consequently enhancing contaminants mobilization towards the cathode end. The extent of the mobilization towards the electrode end was mainly dependent on compounds solubility and octanol-water partition coefficient. In the last 24h of experiments, BPA presented the highest mobilization rate (ca. 4 μg min(-1)) with NP not being detected in the catholyte. At the end of all experiments the percentage of contaminants that remained in the soil ranged between 17 and 50 for S2, and between 27 and 48 for S3, with no statistical differences between treatments. The mass balance performed showed that the amount of contaminant not detected in the cell is similar to the quantity that potentially may suffer photo and electrodegradation.

  15. Electrokinetic remediation of six emerging organic contaminants from soil.

    PubMed

    Guedes, Paula; Mateus, Eduardo P; Couto, Nazaré; Rodríguez, Yadira; Ribeiro, Alexandra B

    2014-12-01

    Some organic contaminants can accumulate in organisms and cause irreversible damages in biological systems through direct or indirect toxic effects. In this study the feasibility of the electrokinetic (EK) process for the remediation of 17β-oestradiol (E2), 17α-ethinyloestradiol (EE2), bisphenol A (BPA), nonylphenol (NP), octylphenol (OP) and triclosan (TCS) in soils was studied in a stationary laboratory cell. The experiments were conducted using a silty loam soil (S2) at 0, 10 and 20mA and a sandy soil (S3) at 0 and 10 mA. A pH control in the anolyte reservoir (pH>13) at 10 mA was carried out using S2, too. Photo and electrodegradation experiments were also fulfilled. Results showed that EK is a viable method for the remediation of these contaminants, both through mobilization by electroosmotic flow (EOF) and electrodegradation. As EOF is very sensible to soil pH, the control in the anolyte increased EOF rate, consequently enhancing contaminants mobilization towards the cathode end. The extent of the mobilization towards the electrode end was mainly dependent on compounds solubility and octanol-water partition coefficient. In the last 24h of experiments, BPA presented the highest mobilization rate (ca. 4 μg min(-1)) with NP not being detected in the catholyte. At the end of all experiments the percentage of contaminants that remained in the soil ranged between 17 and 50 for S2, and between 27 and 48 for S3, with no statistical differences between treatments. The mass balance performed showed that the amount of contaminant not detected in the cell is similar to the quantity that potentially may suffer photo and electrodegradation. PMID:24997283

  16. Remediation of arsenic contaminated soil by coupling oxalate washing with subsequent ZVI/Air treatment.

    PubMed

    Cao, Menghua; Ye, Yuanyao; Chen, Jing; Lu, Xiaohua

    2016-02-01

    The application of a novel coupled process with oxalate washing and subsequent zero-valent iron (ZVI)/Air treatment for remediation of arsenic contaminated soil was investigated in the present study. Oxalate is biodegradable and widely present in the environment. With addition of 0.1 mol L(-1) oxalate under circumneutral condition, 83.7% and 52.6% of arsenic could be removed from a spiked kaolin and an actual contaminated soil respectively. Much more oxalate adsorption on the actual soil was attributed to the higher soil organic matter and clay content. Interestingly, oxalate retained in the washing effluent could act as an organic ligand to promote the oxidation efficiency of ZVI/Air at near neutral pH. Compared with the absence of oxalate, much more As(III) was oxidized. Arsenic was effectively adsorbed on iron (hydr)oxides as the consumption of oxalate and the increase of pH value. For the actual soil washing effluent, about 94.9% of total arsenic was removed after 120 min's treatment without pH adjustment. It has been demonstrated that As(V) was the dominant arsenic speciation adsorbed on iron (hydr)oxides. This study provides a promising alternative for remediation of arsenic contaminated soil in view of its low cost and environmental benign. PMID:26476769

  17. Remediation of arsenic contaminated soil by coupling oxalate washing with subsequent ZVI/Air treatment.

    PubMed

    Cao, Menghua; Ye, Yuanyao; Chen, Jing; Lu, Xiaohua

    2016-02-01

    The application of a novel coupled process with oxalate washing and subsequent zero-valent iron (ZVI)/Air treatment for remediation of arsenic contaminated soil was investigated in the present study. Oxalate is biodegradable and widely present in the environment. With addition of 0.1 mol L(-1) oxalate under circumneutral condition, 83.7% and 52.6% of arsenic could be removed from a spiked kaolin and an actual contaminated soil respectively. Much more oxalate adsorption on the actual soil was attributed to the higher soil organic matter and clay content. Interestingly, oxalate retained in the washing effluent could act as an organic ligand to promote the oxidation efficiency of ZVI/Air at near neutral pH. Compared with the absence of oxalate, much more As(III) was oxidized. Arsenic was effectively adsorbed on iron (hydr)oxides as the consumption of oxalate and the increase of pH value. For the actual soil washing effluent, about 94.9% of total arsenic was removed after 120 min's treatment without pH adjustment. It has been demonstrated that As(V) was the dominant arsenic speciation adsorbed on iron (hydr)oxides. This study provides a promising alternative for remediation of arsenic contaminated soil in view of its low cost and environmental benign.

  18. Accumulation of Hydrocarbons by Maize (Zea mays L.) in Remediation of Soils Contaminated with Crude Oil.

    PubMed

    Liao, Changjun; Xu, Wending; Lu, Guining; Liang, Xujun; Guo, Chuling; Yang, Chen; Dang, Zhi

    2015-01-01

    This study has investigated the use of screened maize for remediation of soil contaminated with crude oil. Pots experiment was carried out for 60 days by transplanting maize seedlings into spiked soils. The results showed that certain amount of crude oil in soil (≤2 147 mg·kg(-1)) could enhance the production of shoot biomass of maize. Higher concentration (6 373 mg·kg(-1)) did not significantly inhibit the growth of plant maize (including shoot and root). Analysis of plant shoot by GC-MS showed that low molecular weight polycyclic aromatic hydrocarbons (PAHs) were detected in maize tissues, but PAHs concentration in the plant did not increase with higher concentration of crude oil in soil. The reduction of total petroleum hydrocarbon in planted soil was up to 52.21-72.84%, while that of the corresponding controls was only 25.85-34.22% in two months. In addition, data from physiological and biochemical indexes demonstrated a favorable adaptability of maize to crude oil pollution stress. This study suggested that the use of maize (Zea mays L.) was a good choice for remediation of soil contaminated with petroleum within a certain range of concentrations.

  19. Natural remediation of an unremediated soil twelve years after a mine accident: trace element mobility and plant composition.

    PubMed

    Burgos, Pilar; Madejón, Paula; Madejón, Engracia; Girón, Ignacio; Cabrera, Francisco; Murillo, José Manuel

    2013-01-15

    The long-term influence of a mine spill in soil was studied 12 years after the Aznalcóllar accident. Soils where the pyritic sludge was not removed, a fenced plot established for research purposes (2000 m(2)) and soils where the process of remediation was accomplished successfully were sampled and studied in detail. Soils were characterized at different depths, down to 100 cm depth, determining chemical parameters and total concentrations of major and trace elements. Moreover plants colonizing remediated (RE) and non remediated (NRE) soils were also analysed attending their potential risk for herbivores. Strong acidification was observed in the NRE soil except in surface (0-10 cm). The progressive colonization of natural vegetation, more than 90% of the fenced plot covered by plants, could facilitate this increased pH values in the top soil (pH 6). In the NRE soil, the successive oxidation and hydrolysis of sulphide in the deposited sludge on the surface after the accident resulted in a re-dissolution of the most mobile element (Cd, Cu and Zn) and a penetration to deeper layers. Trace element concentrations in plants growing in the NRE soil showed normal contents for higher plants and tolerable for livestock. Nitrogen and mineral nutrients were of the same order in both soils, and also normal for high plants and adequate for animal nutrition. Despite of the natural remediation of the NRE soil, results demonstrate that the remediation tasks carried out in all the area, the Guadiamar Green Corridor at present, were necessary to avoid the leaching of the most mobile elements and minimize the risk of contamination of groundwater sources, many of them close to the Doñana National Park.

  20. Smouldering Combustion for Soil Remediation: Two-dimensional Experiments and Modelling

    NASA Astrophysics Data System (ADS)

    Hasan, T.; Gerhard, J. I.; Hadden, R.; Pironi, P.; Rein, G.

    2013-12-01

    Smouldering combustion is an innovative approach that has significant potential for the remediation of soils contaminated with Non-Aqueous Phase liquids (NAPLs). Sustaining Treatment for Active Remediation (STAR) is a novel technology which is based upon the concept of liquid smouldering, in which NAPLs embedded in a porous medium are progressively destroyed via an exothermic oxidation reaction which propagates in a self-sustaining manner through the contaminated material. The In Situ Smouldering Model (ISSM), developed to simulate the propagation of STAR as a function of NAPL content and local air velocity, was calibrated for a suite of one-dimensional experiments (MacPhee et al., 2010). However, STAR application at field sites involves propagation of a smouldering front in multiple directions simultaneously. This study presents the further development and validation of the model against experiments for two-dimensional (2D) smouldering propagation. 2D STAR experiments were conducted to explore the simultaneous vertical (upwards), lateral (horizontal) and opposed (downwards) front propagation rates and final extent of remediation as a function of air injection rate in coal tar-contaminated sand. The model was then calibrated to the base case experiment and predictive simulations demonstrated strong agreement with the remaining experiments. This work provides some of the first evidence of multidimensional smouldering under forced, complex air flow fields and provides confidence in a tool that will be useful for designing STAR soil remediation schemes at the field scale.

  1. DEMONSTRATION OF PILOT-SCALE PREVAPORATION SYSTEMS FOR VOLATILE ORGANIC COMPOUND REMOVAL FROM A SURFACTANT ENHANCED AQUIFER REMEDIATION FLUID. I. SPIRAL WOUND MEMBRANE MODULES

    EPA Science Inventory

    During the summer of 1996, a pilot-scale demonstration of a surfactant enhanced aquifer remediation (SEAR) process for removal of dense non-aqueous phase liquids (DNAPLs) from soils was conducted at Hill Air Force Base in Layton, Utah. Five thousand gallons of the extracted DNAP...

  2. Ecotoxicological impact of two soil remediation treatments in Lactuca sativa seeds.

    PubMed

    Rede, Diana; Santos, Lúcia H M L M; Ramos, Sandra; Oliva-Teles, Filipe; Antão, Cristina; Sousa, Susana R; Delerue-Matos, Cristina

    2016-09-01

    Pharmaceuticals have been identified as environmental emerging pollutants and are present in different compartments, including soils. Chemical remediation showed to be a good and suitable approach for soil remediation, though the knowledge in their impact for terrestrial organisms is still limited. Therefore, in this work, two different chemical remediation treatments (Fenton oxidation and nanoremediation) were applied to a soil contaminated with an environmental representative concentration of ibuprofen (3 ng g(-1)). The phytotoxic impact of a traditional soil remediation treatment (Fenton oxidation) and of a new and more sustainable approach for soil remediation (nanoremediation using green nano-scale zero-valent iron nanoparticles (nZVIs)) was evaluated in Lactuca sativa seeds. Percentage of seed germination, root elongation, shoot length and leaf length were considered as endpoints to assess the possible acute phytotoxicity of the soil remediation treatments as well as of the ibuprofen contaminated soil. Both chemical remediation treatments showed to have a negative impact in the germination and development of lettuce seeds, exhibiting a reduction up to 45% in the percentage of seed germination and a decrease around 80% in root elongation comparatively to the contaminated soil. These results indicate that chemical soil remediation treatments could be more prejudicial for terrestrial organisms than contaminated soils. PMID:27289206

  3. Remediation of trichloroethylene-contaminated soils by star technology using vegetable oil smoldering.

    PubMed

    Salman, Madiha; Gerhard, Jason I; Major, David W; Pironi, Paolo; Hadden, Rory

    2015-03-21

    Self-sustaining treatment for active remediation (STAR) is an innovative soil remediation approach based on smoldering combustion that has been demonstrated to effectively destroy complex hydrocarbon nonaqueous phase liquids (NAPLs) with minimal energy input. This is the first study to explore the smoldering remediation of sand contaminated by a volatile NAPL (trichloroethylene, TCE) and the first to consider utilizing vegetable oil as supplemental fuel for STAR. Thirty laboratory-scale experiments were conducted to evaluate the relationship between key outcomes (TCE destruction, rate of remediation) to initial conditions (vegetable oil type, oil: TCE mass ratio, neat versus emulsified oils). Several vegetable oils and emulsified vegetable oil formulations were shown to support remediation of TCE via self-sustaining smoldering. A minimum concentration of 14,000 mg/kg canola oil was found to treat sand exhibiting up to 80,000 mg/kg TCE. On average, 75% of the TCE mass was removed due to volatilization. This proof-of-concept study suggests that injection and smoldering of vegetable oil may provide a new alternative for driving volatile contaminants to traditional vapour extraction systems without supplying substantial external energy.

  4. Possible Applications of Soil Remediation Technologies in Latvia

    NASA Astrophysics Data System (ADS)

    Burlakovs, Juris; Vircavs, Magnuss

    2011-01-01

    Increasing public concern about deleterious effects of contamination on the environment and human health has led to legislative actions aimed at controlling and regulating the emission of potential contaminants into the environment, but there is still a plethora of territories historically contaminated with different contaminants within the territory of Latvia. The purpose of the present study is to give an overview of the formerly and presently contaminated areas and give some recommendations for remediation. 242 first category contaminated territories (the contamination exceeds the acceptable normative 10 times or more) are mentioned in the National Register of Contaminated Territories, a lot of them are known as contaminated with hazardous contaminants such as heavy metals, oil products, organic compounds and other contaminants in different amounts and concentrations. An overview of soil contamination in Latvia is provided, the planned and recommended research, as well as the planned remediation in pilot case studies, are described, giving a review of the historical contamination situation and of applications of the planned remediation technologies.

  5. Characterization and remediation of highly radioactive contaminated soil at Hanford

    SciTech Connect

    Buckmaster, M.A.; Erickson, J.K.

    1993-09-01

    The Hanford Site, Richland, Washington, contains over 1,500 identified waste sites and numerous groundwater plumes that will be characterized and remediated over the next 30 years. As a result of the Hanford Federal Facility Agreement and Consent Order, the US Department of Energy (DOE) has initiated a remedial investigation/feasibility study (RI/FS) at the 200-BP-1 operable unit. The 200-BP-1 RI/FS is the first Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) investigation on the Hanford Site that involves highly radioactive and chemically contaminated soils. The initial phase of site characterization was designed to assess the nature and extent of contamination associated with the source waste sites within the 200-BP-1 operable unit. Characterization activities consisted of drilling and sampling, chemical and physical analysis of samples, and development of a conceptual vadose zone model. These data were then used. to develop remedial alternatives during the FS evaluation. The preferred alternative resulting from the RI/FS process for the 200-BP-1 operable unit is to construct a surface isolation barrier. The multi-layered earthen barrier will be designed to prevent migration of contaminants resulting from water infiltration, biointrusion, and wind and water erosion.

  6. Avian Conservation Areas as a Proxy for Contaminated Soil Remediation

    PubMed Central

    Lin, Wei-Chih; Lin, Yu-Pin; Anthony, Johnathen; Ding, Tsun-Su

    2015-01-01

    Remediation prioritization frequently falls short of systematically evaluating the underlying ecological value of different sites. This study presents a novel approach to delineating sites that are both contaminated by any of eight heavy metals and have high habitat value to high-priority species. The conservation priority of each planning site herein was based on the projected distributions of eight protected bird species, simulated using 900 outputs of species distribution models (SDMs) and the subsequent application of a systematic conservation tool. The distributions of heavy metal concentrations were generated using a geostatistical joint-simulation approach. The uncertainties in the heavy metal distributions were quantified in terms of variability among 1000 realization sets. Finally, a novel remediation decision-making approach was presented for delineating contaminated sites in need of remediation based on the spatial uncertainties of multiple realizations and the priorities of conservation areas. The results thus obtained demonstrate that up to 42% of areas of high conservation priority are also contaminated by one or more of the heavy metal contaminants of interest. Moreover, as the proportion of the land for proposed remediated increased, the projected area of the pollution-free habitat also increased. Overall uncertainty, in terms of the false positive contamination rate, also increased. These results indicate that the proposed decision-making approach successfully accounted for the intrinsic trade-offs among a high number of pollution-free habitats, low false positive rates and robustness of expected decision outcomes. PMID:26193297

  7. Avian Conservation Areas as a Proxy for Contaminated Soil Remediation.

    PubMed

    Lin, Wei-Chih; Lin, Yu-Pin; Anthony, Johnathen; Ding, Tsun-Su

    2015-07-17

    Remediation prioritization frequently falls short of systematically evaluating the underlying ecological value of different sites. This study presents a novel approach to delineating sites that are both contaminated by any of eight heavy metals and have high habitat value to high-priority species. The conservation priority of each planning site herein was based on the projected distributions of eight protected bird species, simulated using 900 outputs of species distribution models (SDMs) and the subsequent application of a systematic conservation tool. The distributions of heavy metal concentrations were generated using a geostatistical joint-simulation approach. The uncertainties in the heavy metal distributions were quantified in terms of variability among 1000 realization sets. Finally, a novel remediation decision-making approach was presented for delineating contaminated sites in need of remediation based on the spatial uncertainties of multiple realizations and the priorities of conservation areas. The results thus obtained demonstrate that up to 42% of areas of high conservation priority are also contaminated by one or more of the heavy metal contaminants of interest. Moreover, as the proportion of the land for proposed remediated increased, the projected area of the pollution-free habitat also increased. Overall uncertainty, in terms of the false positive contamination rate, also increased. These results indicate that the proposed decision-making approach successfully accounted for the intrinsic trade-offs among a high number of pollution-free habitats, low false positive rates and robustness of expected decision outcomes.

  8. DEMONSTRATION BULLETIN: BIOGENESIS SOIL WASHING TECHNOLOGY - BIOGENESIS

    EPA Science Inventory

    The BioGenesisSM soil washing technology was developed by BioGenesis Enterprises, Inc. to remove organic compounds from soil. The technology uses a proprietary solution (BioGenesisSM cleaner) to transfer organic compounds from the soil matrix to a liquid phase. BioGenesis claims...

  9. Remediation and reclamation of soils heavily contaminated with toxic metals as a substrate for greening with ornamental plants and grasses.

    PubMed

    Jelusic, Masa; Lestan, Domen

    2015-11-01

    Soils highly contaminated with toxic metals are currently treated as waste despite their potential inherent fertility. We applied EDTA washing technology featuring chelant and process water recovery for remediation of soil with 4037, 2527, and 26 mg kg(-1) of Pb, Zn and Cd, respectively in a pilot scale. A high EDTA dose (120 mmol kg(-1) of soil) removed 70%, 15%, and 58% of Pb, Zn, and Cd, respectively, and reduced human oral bioaccessibility of Pb below the limit of quantification and that of Zn and Cd 3.4 and 3.2 times. In a lysimeters experiment, the contaminated and remediated soils were laid into two garden beds (4×1×0.15 m) equipped with lysimeters, and subjected to cultivation of ornamental plants: Impatiens walleriana, Tagetes erecta, Pelargonium×peltatum, and Verbena×hybrida and grasses: Dactylis glomerata, Lolium multiflorum, and Festuca pratensis. Plants grown on remediated soil demonstrated the same or greater biomass yield and reduced the uptake of Pb, Zn and Cd up to 10, 2.5 and 9.5 times, respectively, compared to plants cultivated on the original soil. The results suggest that EDTA remediation produced soil suitable for greening.

  10. ENGINEERING BULLETIN: SEPARATION/CONCENTRATION TECHNOLOGY ALTERNATIVES FOR THE REMEDIATION OF PESTICIDE-CONTAMINATED SOIL

    EPA Science Inventory

    Pesticide contamination includes a wide variety of compounds and may result from manufacturing improper storage, handling, disposal; or agricultural processes. It can occur in soil and can lead to secondary contamination of groundwater. Remediation of pesticide-contaminated soils...

  11. Efficient remediation of pentachlorophenol contaminated soil with tetrapolyphosphate washing and subsequent ZVI/Air treatment.

    PubMed

    Cao, Menghua; Wang, Li; Ai, Zhihui; Zhang, Lizhi

    2015-07-15

    In this study, we demonstrate that pentachlorophenol contaminated soil can be efficiently remediated with tetrapolyphosphate washing and subsequent zerovalent iron (ZVI)/Air treatment. 2 mmol L(-1) of tetrapolyphosphate could wash away 52.8% of pentachlorophenol (PCP) at pH 7.0 and 84.2% of pentachlorophenol at pH 11.0 from contaminated soil owing to the promotion effect of tetrapolyphosphate on the soil matrix dispersion and the subsequent solubilization of pentachlorophenol. More importantly, tetrapolyphosphate ions remained in the washing effluent could greatly enhance the molecular oxygen activation by ZVI to oxidize the desorbed PCP without any pH adjustment, and also avoid the competitive consumption of reactive oxygen species, as caused by the common organic surfactants in the washing effluent. Therefore, 85.1% of pentachlorophenol could be aerobically removed from the washing effluent by merely using 5 g L(-1) of ZVI. We also interestingly found that the dissolved iron ions released from the soil could enhance the oxidation of pentachlorophenol in the washing effluent, but the dissolved organic matter had the opposite effect. This study suggests the coupling tetrapolyphosphate washing and subsequent ZVI/Air treatment is an optional approach to remediate pentachlorophenol contaminated soil in view of its low cost and environmental benign.

  12. Green remediation: Using plants to clean the soil

    SciTech Connect

    Comis, D.

    1996-05-01

    Rufus Chaney has his eye on plants with a lusty appetite for toxic heavy materials. Chaney foresees a day when these remarkable plants will be used to clean contaminated soils at smelter and mining sites, landfills, nuclear waste dumps, farmland, or at any urban or rural site contaminated with lead, cadmium, zinc, nickel, or radioactive isotopes such as uranium or cobalt. The plants would take up the toxic metals or isotopes through their roots and transport them to stems or leaves where they could be easily removed by harvesting. A U.S. Department of AGriculture agronomist, Chaney says the cost of using plants to clean polluted soil {open_quotes}could be less than one-tenth the price tag for either digging up and trucking the soil to a hazardous waste landfill or making it into concrete.{close_quotes} Chaney, a heavy-metals expert at USDA`s Agricultural Research Service Environmental Chemistry Laboratory in Beltsville, Maryland, says the cost could be further offset by recovering heavy metals from the plants and selling them. The metal-scavenging plants, called hyperaccumultors, would be grown and harvested like hay, Chaney says. {open_quotes}Burning the hay allows recovery and recycling of the metals. The ash is similar to commercial ore and could be sold as {open_quote}Bio-Ore{close_quote}.{close_quotes} Chaney calls the process {open_quotes}green remediation.{close_quotes} He says that without intervention, heavy metals stay in soil for centuries.

  13. Review of remediation practices regarding cadmium-enriched farmland soil with particular reference to China.

    PubMed

    Tang, X; Li, Q; Wu, M; Lin, L; Scholz, M

    2016-10-01

    Cadmium-enrichment of farmland soil greatly threatens the sustainable use of soil resources and the safe cultivation of grain. This review paper briefly introduces the status of farmland soil as well as grain, which are both often polluted by cadmium (Cd) in China, and illustrates the major sources of Cd contaminants in farmland soil. In order to meet soil environmental quality standards and farmland environmental quality evaluation standards for edible agricultural products, Cd-enriched farmland soil is frequently remediated with the following prevailing techniques: dig and fill, electro-kinetic remediation, chemical elution, stabilisation and solidification, phytoremediation, field management and combined remediation. Most remediation techniques are still at the stage of small-scale trial experiments in China and few techniques are assessed in field trials. After comparing the technical and economical applicability among different Cd-enriched farmland soil remediation techniques, a novel ecological and hydraulic remediation technique has been proposed, which integrated the advantages of chemical elution, solidification and stabilisation, phytoremediation and field management. The ecological and hydraulic remediation concept is based on existing irrigation and drainage facilities, ecological ditches (ponds) and agronomic measures, which mainly detoxify the Cd-enriched soil during the interim period of crop cultivation, and guarantee the grain safety during its growth period. This technique may shift the challenge from soil to water treatment, and thus greatly enhances the remediation efficiency and shortens the remediation duration. Moreover, the proposed ecological and hydraulic remediation method matches well with the practical choice of cultivation while remediation for Cd-enriched soil in China, which has negligible impacts on the normal crop cultivation process, and thus shows great potential for large area applications. PMID:27562701

  14. Review of remediation practices regarding cadmium-enriched farmland soil with particular reference to China.

    PubMed

    Tang, X; Li, Q; Wu, M; Lin, L; Scholz, M

    2016-10-01

    Cadmium-enrichment of farmland soil greatly threatens the sustainable use of soil resources and the safe cultivation of grain. This review paper briefly introduces the status of farmland soil as well as grain, which are both often polluted by cadmium (Cd) in China, and illustrates the major sources of Cd contaminants in farmland soil. In order to meet soil environmental quality standards and farmland environmental quality evaluation standards for edible agricultural products, Cd-enriched farmland soil is frequently remediated with the following prevailing techniques: dig and fill, electro-kinetic remediation, chemical elution, stabilisation and solidification, phytoremediation, field management and combined remediation. Most remediation techniques are still at the stage of small-scale trial experiments in China and few techniques are assessed in field trials. After comparing the technical and economical applicability among different Cd-enriched farmland soil remediation techniques, a novel ecological and hydraulic remediation technique has been proposed, which integrated the advantages of chemical elution, solidification and stabilisation, phytoremediation and field management. The ecological and hydraulic remediation concept is based on existing irrigation and drainage facilities, ecological ditches (ponds) and agronomic measures, which mainly detoxify the Cd-enriched soil during the interim period of crop cultivation, and guarantee the grain safety during its growth period. This technique may shift the challenge from soil to water treatment, and thus greatly enhances the remediation efficiency and shortens the remediation duration. Moreover, the proposed ecological and hydraulic remediation method matches well with the practical choice of cultivation while remediation for Cd-enriched soil in China, which has negligible impacts on the normal crop cultivation process, and thus shows great potential for large area applications.

  15. The application of bioassays as indicators of petroleum-contaminated soil remediation.

    PubMed

    Płaza, Grazyna; Nałecz-Jawecki, Grzegorz; Ulfig, Krzysztof; Brigmon, Robin L

    2005-04-01

    Bioremediation has proven successful in numerous applications to petroleum contaminated soils. However, questions remain as to the efficiency of bioremediation in lowering long-term soil toxicity. In the present study, the bioassays Spirotox, Microtox, Ostracodtoxkit F, umu-test with S-9 activation, and plant assays were applied, and compared to evaluate bioremediation processes in heavily petroleum contaminated soils. Six higher plant species (Secale cereale L., Lactuca sativa L., Zea mays L., Lepidium sativum L., Triticum vulgare L., Brassica oleracea L.) were used for bioassay tests based on seed germination and root elongation. The ecotoxicological analyses were made in DMSO/H2O and DCM/DMSO soil extracts. Soils were tested from two biopiles at the Czechowice oil refinery, Poland, that have been subjected to different bioremediation applications. In biopile 1 the active or engineered bioremediation process lasted four years, while biopile 2 was treated passively or non-engineered for eight months. The test species demonstrated varying sensitivity to soils from both biopiles. The effects on test organisms exposed to biopile 2 soils were several times higher compared to those in biopile 1 soils, which correlated with the soil contaminants concentration. Soil hydrocarbon concentrations indeed decreased an average of 81% in biopile 1, whereas in biopile 2 TPH/TPOC concentrations only decreased by 30% after eight months of bioremediation. The bioassays were presented to be sensitive indicators of soil quality and can be used to evaluate the quality of bioremediated soil. The study encourages the need to combine the bioassays with chemical monitoring for evaluation of the bioremediation effectiveness and assessing of the contaminated/remediated soils.

  16. Transient behavior of heavy metals in soils during electrokinetic remediation.

    PubMed

    Al-Hamdan, Ashraf Z; Reddy, Krishna R

    2008-03-01

    This paper presents a systematic bench-scale laboratory study performed to assess the transient behavior of chromium, nickel, and cadmium in different soils during electrokinetic remediation. A series of laboratory electrokinetic experiments was conducted using two different clayey soils, kaolin and glacial till. For each type of soil, four electrokinetic experiments with 1, 2, 4, and 10 d of treatment time were performed. In all tests, the contaminants were Cr(VI), Ni(II), and Cd(II) combined in the soil. A geochemical assessment was performed using the geochemical model MINEQL(+) to determine the partitioning of the heavy metals in soils as precipitated, adsorbed, and aqueous forms. Results showed that in kaolin, the extent of Ni(II) and Cd(II) migration towards the cathode increased as the treatment time increased. Unlike kaolin, in glacial till treatment time had no effect on nickel and cadmium migration because of its high buffering capacity. In both kaolin and glacial till, the extent of Cr(VI) migration towards the anode increased as the treatment time increased. However, Cr(VI) migration was higher in glacial till as compared to kaolin because of the high pH conditions that existed in glacial till. In all tests, some Cr(VI) was reduced to Cr(III), and the Cr(VI) reduction rate to Cr(III) as well as the Cr(III) migration were significantly affected by the treatment time. Overall, this study showed that the electroosmotic flow as well as the direction and extent of contaminant migration and removal depend on the polarity of the contaminant, the type of soil, and the treatment duration. PMID:18155269

  17. Remediation of Cr(VI)-Contaminated Soil Using the Acidified Hydrazine Hydrate.

    PubMed

    Ma, Yameng; Li, Fangfang; Jiang, Yuling; Yang, Weihua; Lv, Lv; Xue, Haotian; Wang, Yangyang

    2016-09-01

    Acidified hydrazine hydrate was used to remediate Cr(VI)-contaminated soil. The content of water-soluble Cr(VI) in contaminated soil was 4977.53 mg/kg. The optimal initial pH of hydrazine hydrate solution, soil to solution ratio and molar ratio of Cr(VI) to hydrazine hydrate for remediation of Cr(VI)-contaminated soil were 5.0, 3:1 and 1:3, respectively. Over 99.50 % of water-soluble Cr(VI) in the contaminated soil was reduced at the optimal condition within 30 min. The remediated soil can keep stable within 4 months. Meanwhile the total phosphorus increased from 0.47 to 4.29 g/kg, indicating that using of acidified hydrazine hydrate is an effective method to remediate Cr(VI)-contaminated soil.

  18. Remediation of Cr(VI)-Contaminated Soil Using the Acidified Hydrazine Hydrate.

    PubMed

    Ma, Yameng; Li, Fangfang; Jiang, Yuling; Yang, Weihua; Lv, Lv; Xue, Haotian; Wang, Yangyang

    2016-09-01

    Acidified hydrazine hydrate was used to remediate Cr(VI)-contaminated soil. The content of water-soluble Cr(VI) in contaminated soil was 4977.53 mg/kg. The optimal initial pH of hydrazine hydrate solution, soil to solution ratio and molar ratio of Cr(VI) to hydrazine hydrate for remediation of Cr(VI)-contaminated soil were 5.0, 3:1 and 1:3, respectively. Over 99.50 % of water-soluble Cr(VI) in the contaminated soil was reduced at the optimal condition within 30 min. The remediated soil can keep stable within 4 months. Meanwhile the total phosphorus increased from 0.47 to 4.29 g/kg, indicating that using of acidified hydrazine hydrate is an effective method to remediate Cr(VI)-contaminated soil. PMID:27351195

  19. Bio-enhanced thin-spreading: A low cost soil remediation alternative

    SciTech Connect

    Wong, G.; Pfarrer, R. III

    1996-11-01

    Products manufactured at Kohler Company`s Kohler, Wisconsin plant include a variety of plumbing fixtures, including vitreous china toilets and sinks, cast iron enameled sinks and tubs, electroplated faucets, assorted plumbing fittings, and small engines. This paper focuses on a soil remediation project performed at the Kohler Company`s Kohler, Wisconsin facility. In order to implement this soil remediation project, close coordination and communication was required with many project entities including numerous company departments, contractors, regulatory agencies, and the general public. Using an innovative and cost-effective soil treatment method called bio-enhanced thin-spreading (BETS), over 5,000 cubic yards of kerosene-contaminated soils were successfully remediated. The purpose of this case study is: (1) to describe the technical aspects of the remediation project including the BETS soil treatment method; and (2) to discuss factors which can significantly influence the development, management, and implementation of environmental remediation projects at large manufacturing facilities.

  20. Bioavailability and ecotoxicity of arsenic species in solution culture and soil system: implications to remediation.

    PubMed

    Bolan, Nanthi; Mahimairaja, Santiago; Kunhikrishnan, Anitha; Seshadri, Balaji; Thangarajan, Ramya

    2015-06-01

    In this work, bioavailability and ecotoxicity of arsenite (As(III)) and arsenate (As(V)) species were compared between solution culture and soil system. Firstly, the adsorption of As(III) and As(V) was compared using a number of non-allophanic and allophanic soils. Secondly, the bioavailability and ecotoxicity were examined using germination, phytoavailability, earthworm, and soil microbial activity tests. Both As-spiked soils and As-contaminated sheep dip soils were used to test bioavailability and ecotoxicity. The sheep dip soil which contained predominantly As(V) species was subject to flooding to reduce As(V) to As(III) and then used along with the control treatment soil to compare the bioavailability between As species. Adsorption of As(V) was much higher than that of As(III), and the difference in adsorption between these two species was more pronounced in the allophanic than non-allophanic soils. In the solution culture, there was no significant difference in bioavailability and ecotoxicity, as measured by germination and phytoavailability tests, between these two As species. Whereas in the As-spiked soils, the bioavailability and ecotoxicity were higher for As(III) than As(V), and the difference was more pronounced in the allophanic than non-allophanic soils. Bioavailability of As increased with the flooding of the sheep dip soils which may be attributed to the reduction of As(V) to As(III) species. The results in this study have demonstrated that while in solution, the bioavailability and ecotoxicity do not vary between As(III) and As(V), in soils, the latter species is less bioavailable than the former species because As(V) is more strongly retained than As(III). Since the bioavailability and ecotoxicity of As depend on the nature of As species present in the environment, risk-based remediation approach should aim at controlling the dynamics of As transformation.

  1. Assessing phytotoxicity of heavy metals in remediated soil.

    PubMed

    Branzini, A; Zubillaga, M S

    2010-01-01

    Copper (Cu), zinc (Zn) and chromium (Cr) are pollutants that usually are accumulated in soils. Their toxicity can be decreased by applying amendments. We proposed to evaluate changes in Cu, Zn, and Cr availability, due to the application of amendments, through chemical analysis and phytotoxicity tests. The phytotoxicity test was carried out using species belonging to Sesbania genus; plant parameters were measured 48, 72, 96, and 168 hours after the start of incubation. The treatments included enriched soil, in addition to biosolid compost and triple superphosphate. Cu and Zn amounts were higher in treatments without amendments, indicating immobilization on the part of these. The amounts of Cr tended to decrease with amendments application. The amendments increased pH values and decreased EC; however, this had no impact on the results. No relationship was found among pH, EC, and plant parameters. Different behaviors were observed. S. virgata showed germination seed delay. In addition, while in S. virgata the IG increased during the assay, in S. punicea it diminished. The application of compost, fertilizer or both combined could be of interest for contaminated soils remediation. The use of chemical analysis and phytotoxicity tests allowed to estimate heavy metal availability and the effect on both Sesbania species. PMID:20734911

  2. Assessing phytotoxicity of heavy metals in remediated soil.

    PubMed

    Branzini, A; Zubillaga, M S

    2010-01-01

    Copper (Cu), zinc (Zn) and chromium (Cr) are pollutants that usually are accumulated in soils. Their toxicity can be decreased by applying amendments. We proposed to evaluate changes in Cu, Zn, and Cr availability, due to the application of amendments, through chemical analysis and phytotoxicity tests. The phytotoxicity test was carried out using species belonging to Sesbania genus; plant parameters were measured 48, 72, 96, and 168 hours after the start of incubation. The treatments included enriched soil, in addition to biosolid compost and triple superphosphate. Cu and Zn amounts were higher in treatments without amendments, indicating immobilization on the part of these. The amounts of Cr tended to decrease with amendments application. The amendments increased pH values and decreased EC; however, this had no impact on the results. No relationship was found among pH, EC, and plant parameters. Different behaviors were observed. S. virgata showed germination seed delay. In addition, while in S. virgata the IG increased during the assay, in S. punicea it diminished. The application of compost, fertilizer or both combined could be of interest for contaminated soils remediation. The use of chemical analysis and phytotoxicity tests allowed to estimate heavy metal availability and the effect on both Sesbania species.

  3. Soil biotransformation of thiodiglycol, the hydrolysis product of mustard gas: understanding the factors governing remediation of mustard gas contaminated soil.

    PubMed

    Li, Hong; Muir, Robert; McFarlane, Neil R; Soilleux, Richard J; Yu, Xiaohong; Thompson, Ian P; Jackman, Simon A

    2013-02-01

    Thiodiglycol (TDG) is both the precursor for chemical synthesis of mustard gas and the product of mustard gas hydrolysis. TDG can also react with intermediates of mustard gas degradation to form more toxic and/or persistent aggregates, or reverse the pathway of mustard gas degradation. The persistence of TDG have been observed in soils and in the groundwater at sites contaminated by mustard gas 60 years ago. The biotransformation of TDG has been demonstrated in three soils not previously exposed to the chemical. TDG biotransformation occurred via the oxidative pathway with an optimum rate at pH 8.25. In contrast with bacteria isolated from historically contaminated soil, which could degrade TDG individually, a consortium of three bacterial strains isolated from the soil never contaminated by mustard gas was able to grow on TDG in minimal medium and in hydrolysate derived from an historical mustard gas bomb. Exposure to TDG had little impacts on the soil microbial physiology or on community structure. Therefore, the persistency of TDG in soils historically contaminated by mustard gas might be attributed to the toxicity of mustard gas to microorganisms and the impact to soil chemistry during the hydrolysis. TDG biodegradation may form part of a remediation strategy for mustard gas contaminated sites, and may be enhanced by pH adjustment and aeration. PMID:22752796

  4. Soil biotransformation of thiodiglycol, the hydrolysis product of mustard gas: understanding the factors governing remediation of mustard gas contaminated soil.

    PubMed

    Li, Hong; Muir, Robert; McFarlane, Neil R; Soilleux, Richard J; Yu, Xiaohong; Thompson, Ian P; Jackman, Simon A

    2013-02-01

    Thiodiglycol (TDG) is both the precursor for chemical synthesis of mustard gas and the product of mustard gas hydrolysis. TDG can also react with intermediates of mustard gas degradation to form more toxic and/or persistent aggregates, or reverse the pathway of mustard gas degradation. The persistence of TDG have been observed in soils and in the groundwater at sites contaminated by mustard gas 60 years ago. The biotransformation of TDG has been demonstrated in three soils not previously exposed to the chemical. TDG biotransformation occurred via the oxidative pathway with an optimum rate at pH 8.25. In contrast with bacteria isolated from historically contaminated soil, which could degrade TDG individually, a consortium of three bacterial strains isolated from the soil never contaminated by mustard gas was able to grow on TDG in minimal medium and in hydrolysate derived from an historical mustard gas bomb. Exposure to TDG had little impacts on the soil microbial physiology or on community structure. Therefore, the persistency of TDG in soils historically contaminated by mustard gas might be attributed to the toxicity of mustard gas to microorganisms and the impact to soil chemistry during the hydrolysis. TDG biodegradation may form part of a remediation strategy for mustard gas contaminated sites, and may be enhanced by pH adjustment and aeration.

  5. Stabilization/Solidification Remediation Method for Contaminated Soil: A Review

    NASA Astrophysics Data System (ADS)

    Tajudin, S. A. A.; Azmi, M. A. M.; Nabila, A. T. A.

    2016-07-01

    Stabilization/Solidification (S/S) is typically a process that involves a mixing of waste with binders to reduce the volume of contaminant leachability by means of physical and chemical characteristics to convert waste in the environment that goes to landfill or others possibly channels. Stabilization is attempts to reduce the solubility or chemical reactivity of the waste by changing the physical and chemical properties. While, solidification attempt to convert the waste into easily handled solids with low hazardous level. These two processes are often discussed together since they have a similar purpose of improvement than containment of potential pollutants in treated wastes. The primary objective of this review is to investigate the materials used as a binder in Stabilization/Solidification (S/S) method as well as the ability of these binders to remediate the contaminated soils especially by heavy metals.

  6. Scientific Opportunity to Reduce Risk in Groundwater and Soil Remediation

    SciTech Connect

    Pierce, Eric M.; Freshley, Mark D.; Hubbard, Susan S.; Looney, Brian B.; Zachara, John M.; Liang, Liyuan; Lesmes, D.; Chamberlain, G. M.; Skubal, Karen L.; Adams, V.; Denham, Miles E.; Wellman, Dawn M.

    2009-08-25

    In this report, we start by examining previous efforts at linking science and DOE EM research with cleanup activities. Many of these efforts were initiated by creating science and technology roadmaps. A recurring feature of successfully implementing these roadmaps into EM applied research efforts and successful cleanup is the focus on integration. Such integration takes many forms, ranging from combining information generated by various scientific disciplines, to providing technical expertise to facilitate successful application of novel technology, to bringing the resources and creativity of many to address the common goal of moving EM cleanup forward. Successful projects identify and focus research efforts on addressing the problems and challenges that are causing “failure” in actual cleanup activities. In this way, basic and applied science resources are used strategically to address the particular unknowns that are barriers to cleanup. The brief descriptions of the Office of Science basic (Environmental Remediation Science Program [ERSP]) and EM’s applied (Groundwater and Soil Remediation Program) research programs in subsurface science provide context to the five “crosscutting” themes that have been developed in this strategic planning effort. To address these challenges and opportunities, a tiered systematic approach is proposed that leverages basic science investments with new applied research investments from the DOE Office of Engineering and Technology within the framework of the identified basic science and applied research crosscutting themes. These themes are evident in the initial portfolio of initiatives in the EM groundwater and soil cleanup multi-year program plan. As stated in a companion document for tank waste processing (Bredt et al. 2008), in addition to achieving its mission, DOE EM is experiencing a fundamental shift in philosophy from driving to closure to enabling the long-term needs of DOE and the nation.

  7. EPA site demonstration of the Biotrol Soil Washing Process

    SciTech Connect

    Stinson, M.K.; Skovronek, H.S.; Ellis, W.D.

    1992-01-01

    A pilot-scale soil washing process, patented by BioTrol, was demonstrated on soil that was contaminated by wood treating waste. The BioTrol Soil Washing was demonstrated in a treatment train sequence with two other pilot-scale units of BioTrol technologies for treatment of waste streams from the soil washer. The three technologies of the treatment train were: The BioTrol Soil Washer (BSW), the BioTrol Aqueous Treatment System (BATS), and the Slurry Bioreactor (SBR). The BioTrol processes were evaluated on pentachlorophenol (PCP) and polynuclear aromatic hydrocarbons (PAHs), which were the primary soil contaminants at the site. The sandy site soil, consisting of less than 10% of fines, was well suited for treatment by soil washing. The BSW successfully separated the feed soil (100% by weight) into 83% of washed soil, 10% of woody residues, and 7% of fines. The soil washer achieved up to 89% removal of PCP and PAHs, based on the difference between their levels in the feed soil and in the washed soil. The BATS degraded up to 94% of PCP in the process water from soil washing. The SBR achieved over 90% removals of PCP and 70-90% removals of PAHs, respectively from the soil washing. Cost of a commercial-scale soil washing, assuming use of all three technologies, was estimated to be $168 per ton of treated soil.

  8. Agronomic Practices for Improving Gentle Remediation of Trace Element-Contaminated Soils.

    PubMed

    Kidd, Petra; Mench, Michel; Álvarez-López, Vanessa; Bert, Valérie; Dimitriou, Ioannis; Friesl-Hanl, Wolfgang; Herzig, Rolf; Janssen, Jolien Olga; Kolbas, Aliaksandr; Müller, Ingo; Neu, Silke; Renella, Giancarlo; Ruttens, Ann; Vangronsveld, Jaco; Puschenreiter, Markus

    2015-01-01

    The last few decades have seen the rise of Gentle soil Remediation Options (GRO), which notably include in situ contaminant stabilization ("inactivation") and plant-based (generally termed "phytoremediation") options. For trace element (TE)-contaminated sites, GRO aim to either decrease their labile pool and/or total content in the soil, thereby reducing related pollutant linkages. Much research has been dedicated to the screening and selection of TE-tolerant plant species and genotypes for application in GRO. However, the number of field trials demonstrating successful GRO remains well below the number of studies carried out at a greenhouse level. The move from greenhouse to field conditions requires incorporating agronomical knowledge into the remediation process and the ecological restoration of ecosystem services. This review summarizes agronomic practices against their demonstrated or potential positive effect on GRO performance, including plant selection, soil management practices, crop rotation, short rotation coppice, intercropping/row cropping, planting methods and plant densities, harvest and fertilization management, pest and weed control and irrigation management. Potentially negative effects of GRO, e.g., the introduction of potentially invasive species, are also discussed. Lessons learnt from long-term European field case sites are given for aiding the choice of appropriate management practices and plant species.

  9. Remediation of Nitrobenzene Contaminated Soil by Combining Surfactant Enhanced Soil Washing and Effluent Oxidation with Persulfate

    PubMed Central

    Yan, Jingchun; Gao, Weiguo; Qian, Linbo; Han, Lu; Chen, Yun; Chen, Mengfang

    2015-01-01

    The combination of surfactant enhanced soil washing and degradation of nitrobenzene (NB) in effluent with persulfate was investigated to remediate NB contaminated soil. Aqueous solution of sodium dodecylbenzenesulfonate (SDBS, 24.0 mmol L-1) was used at a given mass ratio of solution to soil (20:1) to extract NB contaminated soil (47.3 mg kg-1), resulting in NB desorption removal efficient of 76.8%. The washing effluent was treated in Fe2+/persulfate and Fe2+/H2O2 systems successively. The degradation removal of NB was 97.9%, being much higher than that of SDBS (51.6%) with addition of 40.0 mmol L-1 Fe2+ and 40.0 mmol L-1 persulfate after 15 min reaction. The preferential degradation was related to the lone pair electron of generated SO4•−, which preferably removes electrons from aromatic parts of NB over long alkyl chains of SDBS through hydrogen abstraction reactions. No preferential degradation was observed in •OH based oxidation because of its hydrogen abstraction or addition mechanism. The sustained SDBS could be reused for washing the contaminated soil. The combination of the effective surfactant-enhanced washing and the preferential degradation of NB with Fe2+/persulfate provide a useful option to remediate NB contaminated soil. PMID:26266532

  10. [Roles of rhizosphere in remediation of contaminated soils and its mechanisms].

    PubMed

    Wei, Shuhe; Zhou, Qixing; Zhang, Kaisong; Liang, Jidong

    2003-01-01

    Rhizosphere is a special 'ecological remediation unit' to treat contaminated soils, which contains a great quantity of microorganisms such as fungi and rhizobacteria living with plant roots. Thus, physiological and ecological roles of plant roots to remedy contaminated soils, to accumulate and to solidify heavy metals, to absorb and degrade organic pollutants in rhizosphere were illustrated, and the function of mycorrhizospheric fungi to absorb, barrier and chelate heavy metals, to degrade organic pollutants through their metabolism activities, the action of rhizobacteria to absorb and solidify heavy metals, to degrade organic pollutants in rhizosphere through their active living activities, and the combined remediation of fungi and bacteria to pollutants in rhizosphere and their relevant mechanisms were explained. It was suggested that the remediation role of rhizosphere was the main part of phytoremediation, and one of the main basic theories to remedy contaminated soils by the activity of green plants and other organisms. The use of hyperaccumulative plants in remedying soils contaminated by some heavy metals would be prospective. It would be one of the important approach to contaminated soils remediation by organic pollutants through the mechanism of screening some special plants whose roots had strong secreting ability to absorb and accumulate dissolvent organic pollutants on the basis of inoculating specific or non-specific fungi and bacteria from the rhizosphere. This will be a developing trend of research on the remediation of contaminated soils by organic pollutants.

  11. Approaches to the Assessment of the Efficiency of Remediation of Oil-Polluted Soils

    NASA Astrophysics Data System (ADS)

    Anchugova, E. M.; Melekhina, E. N.; Markarova, M. Yu.; Shchemelinina, T. N.

    2016-02-01

    Indices characterizing the enzymatic activity of soils and the contents of aliphatic and polycyclic aromatic hydrocarbons have been applied for estimating the efficiency of remediation of oil-polluted soils in the north of European Russia. Oil-polluted test plots treated with the Universal and Roder biopreparations and subjected to the agrochemical reclamation have been examined. The suggested indices can be used to diagnose and monitor the oil-polluted soils and to assess the efficiency of their remediation.

  12. Use of surfactants for the remediation of contaminated soils: a review.

    PubMed

    Mao, Xuhui; Jiang, Rui; Xiao, Wei; Yu, Jiaguo

    2015-03-21

    Due to the great harm caused by soil contamination, there is an increasing interest to apply surfactants to the remediation of a variety of contaminated soils worldwide. This review article summarizes the findings of recent literatures regarding remediation of contaminated soils/sites using surfactants as an enhancing agent. For the surfactant-based remedial technologies, the adsorption behaviors of surfactants onto soil, the solubilizing capability of surfactants, and the toxicity and biocompatibility of surfactants are important considerations. Surfactants can enhance desorption of pollutants from soil, and promote bioremediation of organics by increasing bioavailability of pollutants. The removal of heavy metals and radionuclides from soils involves the mechanisms of dissolution, surfactant-associated complexation, and ionic exchange. In addition to the conventional ionic and nonionic surfactants, gemini surfactants and biosurfactants are also applied to soil remediation due to their benign features like lower critical micelle concentration (CMC) values and better biocompatibility. Mixed surfactant systems and combined use of surfactants with other additives are often adopted to improve the overall performance of soil washing solution for decontamination. Worldwide the field studies and full-scale remediation using surfactant-based technologies are yet limited, however, the already known cases reveal the good prospect of applying surfactant-based technologies to soil remediation.

  13. Remediation of lead contaminated soil by biochar-supported nano-hydroxyapatite.

    PubMed

    Yang, Zhangmei; Fang, Zhanqiang; Zheng, Liuchun; Cheng, Wen; Tsang, Pokeung Eric; Fang, Jianzhang; Zhao, Dongye

    2016-10-01

    In this study, a high efficiency and low cost biochar-supported nano-hydroxyapatite (nHAP@BC) material was used in the remediation of lead (Pb)-contaminated soil. The remediation effect of nHAP@BC on Pb-contaminated soil was evaluated through batch experiments. The stability, bioaccessibility of Pb in the soil and the change in soil characteristics are discussed. Furthermore, the effects of the amendments on the growth of cabbage mustard seedlings and the accumulation of Pb were studied. The results showed that the immobilization rates of Pb in the soil were 71.9% and 56.8%, respectively, after a 28 day remediation using 8% nHAP and nHAP@BC materials, and the unit immobilization amount of nHAP@BC was 5.6 times that of nHAP, indicating that nHAP@BC can greatly reduce the cost of remediation of Pb in soil. After the nHAP@BC remediation, the residual fraction Pb increased by 61.4%, which greatly reduced the bioaccessibility of Pb in the soil. Moreover, nHAP@BC could effectively reduce the accumulation of Pb in plants by 31.4%. Overall, nHAP@BC can effectively remediate Pb-contaminated soil and accelerate the recovery of soil fertility.

  14. Remediation of Contaminated Soils By Supercritical Carbon Dioxide Extraction

    NASA Astrophysics Data System (ADS)

    Ferri, A.; Zanetti, M. C.; Banchero, M.; Fiore, S.; Manna, L.

    The contaminants that can be found in soils are many, inorganic, like heavy metals, as well as organic. Among the organic contaminants, oil and coal refineries are responsi- ble for several cases of soil contamination with PAHs (Polycyclic Aromatic Hydrocar- bons). Polynuclear aromatic hydrocarbons (PAHs) have toxic, carcinogenic and mu- tagenic effects. Limits have been set on the concentration of most contaminants, and growing concern is focusing on soil contamination issues. USA regulations set the maximum acceptable level of contamination by PAHs equal to 40 ppm at residential sites and 270 ppm at industrial sites. Stricter values are usually adopted in European Countries. Supercritical carbon dioxide extraction is a possible alternative technology to remove volatile organic compounds from contaminated soils. Supercritical fluid extraction (SFE) offers many advantages over conventional solvent extraction. Super- critical fluids combine gaseous properties as a high diffusion coefficient, and liquid properties as a high solvent power. The solvent power is strongly pressure-dependent near supercritical conditions: selective extractions are possible without changing the solvent. Solute can be separate from the solvent depressurising the system; therefore, it is possible to recycle the solvent and recover the contaminant. Carbon dioxide is frequently used as supercritical fluid, because it has moderate critical conditions, it is inert and available in pure form. In this work, supercritical fluid extraction technology has been used to remove a polynuclear aromatic hydrocarbon from contaminated soils. The contaminant choice for the experiment has been naphthalene since several data are available in literature. G. A. Montero et al. [1] studied soil remediation with supercrit- ical carbon dioxide extraction technology; these Authors have found that there was a mass-transfer limitation. In the extraction vessel, the mass transfer coefficient in- creases with the

  15. Assessment of microbial respiratory activity of a manufactured gas plant soil after remediation using sunflower oil.

    PubMed

    Gong, Zongqiang; Alef, Kassem; Wilke, Berndt-Michael; Mai, Maike; Li, Peijun

    2005-09-30

    Microbial activity of a manufactured gas plant (MGP) soil, as well as remaining oil degradability, before and after remediation using sunflower oil was assessed. A sandy soil contaminated with polycyclic aromatic hydrocarbons (PAHs) was collected from an MGP site in Berlin, Germany. Column solubilizations of PAHs from the field-moist soil and air-dried soil using sunflower oil as an extractant at an oil/soil ratio of 2:1 (v/m) were carried out to compare PAH removals from the soil under these two conditions. After column solubilizations, portions of untreated soil (UTS), solubilized field-moist soil (SFMS), and solubilized air-dried soil (SADS) were amended with nutrients. Both nutrient amended and unamended soil samples were subjected to soil respiratory measurement. Soil respiration parameters, such as basal respiration rate, nutrient-induced respiration rate, lag time, exponential growth rate, respiratory activation quotient, peak maximum time, and cumulative CO2 evolution were calculated from the soil respiration curves. The parameters were compared using analysis of variance (ANOVA) and least-significance difference (LSD). Results showed that the impact of soil moisture on the PAH removals was quite significant, with the SADS showing higher PAH removals and the SFMS showing lower ones. There were significant differences between the respiration parameters with respect to the UTS, SFMS, and SADS. Basal respiration rate, nutrient-induced respiration rate, and exponential growth rate were lower for the SFMS and SADS relative to the UTS. Lag time and peak maximum time were higher for the SFMS and SADS relative to the UTS. Exponential growth rate was higher for the SFMS relative to the SADS. These parameters demonstrated that soil microbial activity was reduced at the onset of the test, because a lot of bioavailable materials for microbial growth were removed by sunflower oil. On the other hand, cumulative CO2 evolutions in the SFMS and SADS were higher than that in

  16. DEMONSTRATION BULLETIN: HYDRAULIC FRACTURING OF CONTAMINATED SOIL

    EPA Science Inventory

    Hydraulic fracturing is a physical process that creates fractures in silty clay soil to enhance its permeability. The technology, developed by the Risk Reduction Engineering Laboratory (RREL) and the University of Cincinnati, creates sand-filled horizontal fractures up to 1 in. i...

  17. Electro-osmotic infusion for joule heating soil remediation techniques

    DOEpatents

    Carrigan, Charles R.; Nitao, John J.

    1999-01-01

    Electro-osmotic infusion of ground water or chemically tailored electrolyte is used to enhance, maintain, or recondition electrical conductivity for the joule heating remediation technique. Induced flows can be used to infuse electrolyte with enhanced ionic conductivity into the vicinity of the electrodes, maintain the local saturation of near-electrode regions and resaturate a partially dried out zone with groundwater. Electro-osmotic infusion can also tailor the conductivity throughout the target layer by infusing chemically modified and/or heated electrolyte to improve conductivity contrast of the interior. Periodic polarity reversals will prevent large pH changes at the electrodes. Electro-osmotic infusion can be used to condition the electrical conductivity of the soil, particularly low permeability soil, before and during the heating operation. Electro-osmotic infusion is carried out by locating one or more electrodes adjacent the heating electrodes and applying a dc potential between two or more electrodes. Depending on the polarities of the electrodes, the induced flow will be toward the heating electrodes or away from the heating electrodes. In addition, electrodes carrying a dc potential may be located throughout the target area to tailor the conductivity of the target area.

  18. Air-Based Remediation Workshop - Section 2 Soil Vapor Extraction

    EPA Science Inventory

    Pursuant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sties," the USEPA Office of International Affairs Organized a Forced Air Remediation Workshop in Taipei to deliver expert training to the Environ...

  19. Air distribution and size changes in the remediated zone after air sparging for soil particle movement.

    PubMed

    Tsai, Yih-Jin

    2008-10-30

    In an unconsolidated porous medium, soil particles can be mobilized by physical perturbation. In model systems of fluids flowing over spherical particles attached to flat surfaces, the hydrodynamic shear force depends on the fluid viscosity, particle radius, and flow velocity. Soil particles can be reasonably expected to be transported by flowing water during air sparging when the particle-size distribution does not fit the densest possible particle arrangement. If soil particles are transported during air sparging, then the distribution of the porosity and reservoir permeability will change. The remediated zone changes because of the changes in soil characteristics. This study applied some mathematical models to elucidate the mobilization process of soil particles during in situ air sparging. The changes in the characteristics of the soil and the swept volume of injected air during air sparging were also investigated. The results demonstrated that particle movement reduced the radius of influence (ROI) and the swept volume of injected air. In this case study, the maximum reducing rates in ROI and the swept volume were 24% and 26% for the zone where the gas saturation exceeded 10%.

  20. Investigation on reusing water treatment residuals to remedy soil contaminated with multiple metals in Baiyin, China.

    PubMed

    Wang, Changhui; Zhao, Yuanyuan; Pei, Yuansheng

    2012-10-30

    In this work, the remediation of soils contaminated with multiple metals using ferric and alum water treatment residuals (FARs) in Baiyin, China, was investigated. The results of metals fractionation indicated that after the soil was treated with FARs, arsenic (As), lead (Pb), nickel (Ni), zinc (Zn) and copper (Cu) could be transformed into more stable forms, i.e., As bound in crystalline Fe/Al oxides and other metals in the oxidable and residual forms. However, the forms of chromium (Cr) and cadmium (Cd) were unaffected. Interestingly, due to the effect of FARs, barium (Ba) was predominantly transformed into more mobile forms. The bioaccessibility extraction test demonstrated that the FARs reduced the bioaccessibility of As by 25%, followed by Cu, Cr, Zn, Ni and Pb. The bioaccessibility of Cd and Ba were increased; in particular, there was an increase of 41% for Ba at the end of the test. In conclusion, the FARs can be used to remedy soil contaminated with multiple metals, but comprehensive studies are needed before practical applications of this work. PMID:22954606

  1. Effect of soil texture on surfactant-based remediation of hydrophobic organic-contaminated soil.

    PubMed

    Lee, Dal-Heui; Cody, Robert D; Kim, Dong-Ju; Choi, Sangil

    2002-03-01

    Surfactants may be used in remediation of subsoil and aquifer contaminated with hydrophobic compounds. The objectives of this study were to examine the effect of soil texture on hydrophobic organic contaminant (HOC; toluene, or 1,2,4-trichlorobenzene [TCB]) removal from six soils and to evaluate the optimal composition of soil texture for maximum HOC removal using aqueous surfactant solution. Selected surfactants were 4% (vol/vol) sodium diphenyl oxide disulfonate (DOSL) and 4% (wt/vol) sodium lauryl sulfate (LS). Toluene and TCB were selected as the lighter-than-water nonaqueous phase liquid (LNAPL) and denser-than-water nonaqueous phase liquid (DNAPL) model substances, respectively. Soil types used for this study were Ottawa sand and five Iowa soils (Fruitfield, Keomah, Crippin, Webster, and Galvar). The greatest recovery of toluene and TCB in batch tests was 73% and 84%, respectively, which was obtained with DOSL surfactant in Ottawa sand. The toluene removal of 95% in column tests has been achieved in the Ottawa sand and three Iowa soils (Fruitfield, Keomah, Crippin) with DOSL after effluent volume of 3750 ml (about 32 pore volume) passed. TCB removal of 98% in column tests has been achieved in Ottawa sand and three Iowa soils (Fruitfield, Keomah, Crippin) with DOSL after effluent volume of 2500 ml (about 21 pore volume) passed. These results were related with soil texture (clay content 30%), clay mineralogy (kaolinite and smectite), as a function of transported pore volume. PMID:11934118

  2. Effect of soil texture on surfactant-based remediation of hydrophobic organic-contaminated soil.

    PubMed

    Lee, Dal-Heui; Cody, Robert D; Kim, Dong-Ju; Choi, Sangil

    2002-03-01

    Surfactants may be used in remediation of subsoil and aquifer contaminated with hydrophobic compounds. The objectives of this study were to examine the effect of soil texture on hydrophobic organic contaminant (HOC; toluene, or 1,2,4-trichlorobenzene [TCB]) removal from six soils and to evaluate the optimal composition of soil texture for maximum HOC removal using aqueous surfactant solution. Selected surfactants were 4% (vol/vol) sodium diphenyl oxide disulfonate (DOSL) and 4% (wt/vol) sodium lauryl sulfate (LS). Toluene and TCB were selected as the lighter-than-water nonaqueous phase liquid (LNAPL) and denser-than-water nonaqueous phase liquid (DNAPL) model substances, respectively. Soil types used for this study were Ottawa sand and five Iowa soils (Fruitfield, Keomah, Crippin, Webster, and Galvar). The greatest recovery of toluene and TCB in batch tests was 73% and 84%, respectively, which was obtained with DOSL surfactant in Ottawa sand. The toluene removal of 95% in column tests has been achieved in the Ottawa sand and three Iowa soils (Fruitfield, Keomah, Crippin) with DOSL after effluent volume of 3750 ml (about 32 pore volume) passed. TCB removal of 98% in column tests has been achieved in Ottawa sand and three Iowa soils (Fruitfield, Keomah, Crippin) with DOSL after effluent volume of 2500 ml (about 21 pore volume) passed. These results were related with soil texture (clay content 30%), clay mineralogy (kaolinite and smectite), as a function of transported pore volume.

  3. EPA SITE DEMONSTRATION OF THE BIOTROL SOIL WASHING PROCESS

    EPA Science Inventory

    A pilot-scale soil washing process, patented by BioTrol, Inc., was demonstrate on soil contaminated by wood treating waste, primarily pentachlorophenol (PCP) and creosote-derived polynuclear aromatic hydrocarbons (PAHs). Although soil washing was the main object of this demonstra...

  4. Phosphorus Amendment Efficacy for In Situ Remediation of Soil Lead Depends on the Bioaccessible Method

    EPA Science Inventory

    A validated method is needed to measure reductions of in vitro bioaccessible (IVBA) Pb in urban soil remediated with amendments. This study evaluated the effect of in vitro extraction solution pH and glycine buffer on bioaccesible Pb in P-treated soils. Two Pb-contaminated soils...

  5. Experimental and Numerical Investigations of Soil Desiccation for Vadose Zone Remediation: Report for Fiscal Year 2007

    SciTech Connect

    Ward, Andy L.; Oostrom, Mart; Bacon, Diana H.

    2008-02-04

    Apart from source excavation, the options available for the remediation of vadose zone metal and radionuclide contaminants beyond the practical excavation depth (0 to 15 m) are quite limited. Of the available technologies, very few are applicable to the deep vadose zone with the top-ranked candidate being soil desiccation. An expert panel review of the work on infiltration control and supplemental technologies identified a number of knowledge gaps that would need to be overcome before soil desiccation could be deployed. The report documents some of the research conducted in the last year to fill these knowledge gaps. This work included 1) performing intermediate-scale laboratory flow cell experiments to demonstrate the desiccation process, 2) implementing a scalable version of Subsurface Transport Over Multiple Phases–Water-Air-Energy (STOMP-WAE), and 3) performing numerical experiments to identify the factors controlling the performance of a desiccation system.

  6. Remediation of Heavy Metal(loid)s Contaminated Soils – To Mobilize or To Immobilize?

    EPA Science Inventory

    Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time after their introduction. Bioavailability of metal(loid)s plays a vital role in the remediation of contaminated soils. In this review, the remediation of heavy ...

  7. ENGINEERING ISSUE: TECHNOLOGY ALTERNATIVES FOR THE REMEDIATION OF PCB-CONTAMINATED SOIL AND SEDIMENT

    EPA Science Inventory

    Because of the increased need for Superfund decision-makers to have a working knowledge of the remedial capabilities available to treat soil and sediment contaminated with polychlorinated biphenyls (PCBs), the Superfund Engineering Forum has identified remediation of PCB-contamin...

  8. Application of plant and earthworm bioassays to evaluate remediation of a lead-contaminated soil.

    PubMed

    Chang, L W; Meier, J R; Smith, M K

    1997-02-01

    Earthworm acute toxicity, plant seed germination/rootelongation (SG/RE) and plant genotoxicity bioassays were employed to evaluatethe remediation of a lead-contaminated soil. The remediation involved removalof heavy metals by a soil washing/soil leaching treatment process. A portionof the soil after remediation was rinsed with water in order to simulateexposure to rainfall. The bioassay results showed that the soils beforetreatment (BT) and after treatment plus water rinsing (RT) were not toxic toearthworms in a 14-day exposure, while after treatment (AT) showedsignificant toxicity. The LC50 values for Eisenia fetida andLumbricus terrestris were 44.04 and 28.83 (as % AT soilsupplemented in artificial soil), respectively. The phytotoxicity dataindicated that all three test soils significantly inhibited lettuce SG/RE ina dose-related manner, with AT being the most phytotoxic. In oats, RT had noeffect on SG/RE and AT was more toxic than BT. For the two local site grassseeds tested (blue grama and sideoat grama), the AT soil was the mostphytotoxic followed by BT and RT. In Allium cepa (common onion), BTand AT induced similar levels of genetic damage to root tip cells, whereas RTwas not genotoxic. High salt levels generated during the remediation processappeared to be responsible for the increased toxicity of AT soil for bothplants and earthworms. The rinsing of the AT soil with water effectivelyremoved both acutely toxic and genotoxic components of the soil.

  9. 75 FR 984 - Draft Recommended Interim Preliminary Remediation Goals for Dioxin in Soil at CERCLA and RCRA Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-07

    ... AGENCY RIN 2050-ZA05 Draft Recommended Interim Preliminary Remediation Goals for Dioxin in Soil at CERCLA... announcing a 50-day public comment period for draft recommended interim preliminary remediation goals (PRGs) developed in the Draft Recommended Interim Preliminary Remediation Goals for Dioxin in Soil at...

  10. Potential Use of Halophytes to Remediate Saline Soils

    PubMed Central

    Hasanuzzaman, Mirza; Nahar, Kamrun; Alam, Md. Mahabub; Bhowmik, Prasanta C.; Hossain, Md. Amzad; Rahman, Motior M.; Prasad, Majeti Narasimha Vara; Ozturk, Munir; Fujita, Masayuki

    2014-01-01

    Salinity is one of the rising problems causing tremendous yield losses in many regions of the world especially in arid and semiarid regions. To maximize crop productivity, these areas should be brought under utilization where there are options for removing salinity or using the salt-tolerant crops. Use of salt-tolerant crops does not remove the salt and hence halophytes that have capacity to accumulate and exclude the salt can be an effective way. Methods for salt removal include agronomic practices or phytoremediation. The first is cost- and labor-intensive and needs some developmental strategies for implication; on the contrary, the phytoremediation by halophyte is more suitable as it can be executed very easily without those problems. Several halophyte species including grasses, shrubs, and trees can remove the salt from different kinds of salt-affected problematic soils through salt excluding, excreting, or accumulating by their morphological, anatomical, physiological adaptation in their organelle level and cellular level. Exploiting halophytes for reducing salinity can be good sources for meeting the basic needs of people in salt-affected areas as well. This review focuses on the special adaptive features of halophytic plants under saline condition and the possible ways to utilize these plants to remediate salinity. PMID:25110683

  11. Assessing Soil Vapor Extraction Remediation Performance and Closure: A Review

    SciTech Connect

    Truex, Michael J.; Carroll, Kenneth C.; Oostrom, Martinus

    2012-03-15

    Soil vapor extraction (SVE) is a baseline remediation approach for volatile contaminants. While SVE is generally effective for removal of contaminants from higher permeability portions of the vadose zone, contamination in low-permeability zones can persist due to mass transfer processes that limit the removal effectiveness. Thus, a diminishing rate of contaminant extraction over time is typically observed, yet contamination may remain in low-permeability zones. Under these conditions, SVE performance needs to be evaluated to determine whether the system should be optimized, terminated, or transitioned to another technology to replace or augment SVE. Methodologies have been developed to quantify SVE performance over time and to evaluate the impact of persistent vadose zone contamination sources on groundwater quality. Recently, these methods have applied mass flux/discharge concepts to quantify contaminant source strength. Methods include field measurement techniques using the SVE system to quantify source strength and predictive analyses with analytical and numerical models to evaluate the impact of the contaminant source on groundwater.

  12. Phosphate sources and their suitability for remediation of contaminated soils.

    PubMed

    Knox, A S; Kaplan, D I; Paller, M H

    2006-03-15

    Phosphate minerals and specifically apatite show promise for environmental cleanup because they can form stable compounds with a wide range of cationic contaminants. However, phosphate minerals naturally accumulate some heavy metals that may cause additional contamination of the environment if used improperly. Nine commercially available phosphate materials were evaluated for remediation of contaminated soil based on solubility, concentration of metal/metalloid impurities, and leachability of impurity metal/metalloids. The phosphate materials consisted of three groups: processed (i.e., fertilizers), mined (rock phosphates from different formations), and biogenic (ground fish bone). Processed and mined rock phosphates contained relatively high total concentrations of As, Co, Cr, and Cu but did not exceed the RCRA toxicity characteristic leaching procedure (TCLP) limits. Biogenic apatite contained much lower metal concentrations than processed and mined rock phosphate and was appreciably more soluble. By combining biogenic and mined phosphate it is possible to obtain a wide range of phosphate release rates, permitting rapid immobilization of contaminants while providing a slow release of phosphate for continued long-term treatment.

  13. Potential use of halophytes to remediate saline soils.

    PubMed

    Hasanuzzaman, Mirza; Nahar, Kamrun; Alam, Md Mahabub; Bhowmik, Prasanta C; Hossain, Md Amzad; Rahman, Motior M; Prasad, Majeti Narasimha Vara; Ozturk, Munir; Fujita, Masayuki

    2014-01-01

    Salinity is one of the rising problems causing tremendous yield losses in many regions of the world especially in arid and semiarid regions. To maximize crop productivity, these areas should be brought under utilization where there are options for removing salinity or using the salt-tolerant crops. Use of salt-tolerant crops does not remove the salt and hence halophytes that have capacity to accumulate and exclude the salt can be an effective way. Methods for salt removal include agronomic practices or phytoremediation. The first is cost- and labor-intensive and needs some developmental strategies for implication; on the contrary, the phytoremediation by halophyte is more suitable as it can be executed very easily without those problems. Several halophyte species including grasses, shrubs, and trees can remove the salt from different kinds of salt-affected problematic soils through salt excluding, excreting, or accumulating by their morphological, anatomical, physiological adaptation in their organelle level and cellular level. Exploiting halophytes for reducing salinity can be good sources for meeting the basic needs of people in salt-affected areas as well. This review focuses on the special adaptive features of halophytic plants under saline condition and the possible ways to utilize these plants to remediate salinity. PMID:25110683

  14. Is soil dressing a way once and for all in remediation of arsenic contaminated soils? A case study of arsenic re-accumulation in soils remediated by soil dressing in Hunan Province, China.

    PubMed

    Su, Shiming; Bai, Lingyu; Wei, Caibing; Gao, Xiang; Zhang, Tuo; Wang, Yanan; Li, Lianfang; Wang, Jinjin; Wu, Cuixia; Zeng, Xibai

    2015-07-01

    The investigation of arsenic (As) re-accumulation in an area previously remediated by soil dressing will help in sustainable controlling the risks of As to local ecosystems and should influence management decisions about remediation strategies. In this study, As content in an area remediated by soil dressing and the possible As accumulation risk in agricultural products were investigated. The results indicated that after 7 years of agricultural activities, the average As content (24.6 mg kg(-1)) in surface soil of the investigated area increased by 83.6% compared with that (13.4 mg kg(-1)) in clean soil. Of the surface soil samples (n = 88), 21.6% had As levels that exceeded the limits of the Environmental Quality Standard for Soils of China (GB 15618-1995) and 98.9% of the surface soil samples with As contents exceeding that in clean soil was observed. Soil dressing might be not a remediation method once and for all in some contaminated areas, even though no significant difference in available As content was found between clean (0.18 mg kg(-1)) and surface (0.22 mg kg(-1)) soils. The foreign As in surface soil of the investigated area mainly specifically sorbed with soil colloid or associated with hydrous oxides of Fe and Al, or existed in residual fraction. The upward movement of contaminated soil from the deeper layers and the atmospheric deposition of slag particles might be responsible for the re-accumulation of As in the investigated area. Decreases in soil pH in the investigated soils and the fact that no plant samples had As levels exceeding the limits of the National Food Safety Standards for Contaminants of China (GB 2762-2012) were also observed. PMID:25712882

  15. Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils.

    PubMed

    Habibul, Nuzahat; Hu, Yi; Sheng, Guo-Ping

    2016-11-15

    An investigation of the feasibility of in-situ electrokinetic remediation for toxic metal contaminated soil driven by microbial fuel cell (MFC) is presented. Results revealed that the weak electricity generated from MFC could power the electrokinetic remediation effectively. The metal removal efficiency and its influence on soil physiological properties were also investigated. With the electricity generated through the oxidation of organics in soils by microorganisms, the metals in the soils would mitigate from the anode to the cathode. The concentrations of Cd and Pb in the soils increased gradually through the anode to the cathode regions after remediation. After about 143days and 108 days' operation, the removal efficiencies of 31.0% and 44.1% for Cd and Pb at the anode region could be achieved, respectively. Soil properties such as pH and soil conductivity were also significantly redistributed from the anode to the cathode regions. The study shows that the MFC driving electrokinetic remediation technology is cost-effective and environmental friendly, with a promising application in soil remediation. PMID:27388419

  16. Tourmaline combined with Phanerochaete chrysosporium to remediate agricultural soil contaminated with PAHs and OCPs.

    PubMed

    Wang, Cuiping; Yu, Li; Zhang, Zhiyuan; Wang, Baolin; Sun, Hongwen

    2014-01-15

    The potential application on tourmaline was explored. The combination of tourmaline and Phanerochaete chrysosporium was conducted to remediate the field soil from the Dagu Drainage River bank of Tianjin in China. The total PAH and OCP concentrations in the soil were 6.4±0.05 and 145.9±1.9mg/kg, respectively. During the 60 day remediation program, the remediation degradation rates of all the 16 U.S. EPA priority PAHs and OCPs were 53.2±4.7% and 43.5±3.1%, respectively. The PAH and OCP removal rates were 31.9±2.9% and 26.4±1.8%, respectively, in soil with the addition of tourmaline, and the removal rates were 40.5±2.3% and 34.2±3.9%, respectively, in soil with the addition of P. chrysosporium. Thus, the combination of tourmaline and P. chrysosporium promoted the bioremediation rate of PAHs and OCPs in the soil, compared with the rates obtained using tourmaline or P. chrysosporium individually for the remediation of PAH and OCP degradation. In addition, tourmaline can promote the generation of soil hydrogen peroxidase and invertase enzyme, significantly increase the indigenous bacterial community and the number of PAH and OCP-degraders compared to those in the control, and reduce the soil humic acid content. Hence, the present study provides a potential alternative for the remediation of soils contaminated by PAHs and OCPs.

  17. Microwave thermal remediation of crude oil contaminated soil enhanced by carbon fiber.

    PubMed

    Li, Dawei; Zhang, Yaobin; Quan, Xie; Zhao, Yazhi

    2009-01-01

    Thermal remediation of the soil contaminated with crude oil using microwave heating enhanced by carbon fiber (CF) was explored. The contaminated soil was treated with 2.45 GHz microwave, and CF was added to improve the conversion of microwave energy into thermal energy to heat the soil. During microwave heating, the oil contaminant was removed from the soil matrix and recovered by a condensation system of ice-salt bath. The experimental results indicated that CF could efficiently enhance the microwave heating of soil even with relatively low-dose. With 0.1 wt.% CF, the soil could be heated to approximately 700 degrees C within 4 min using 800 W of microwave irradiation. Correspondingly, the contaminated soil could be highly cleaned up in a short time. Investigation of oil recovery showed that, during the remediation process, oil contaminant in the soil could be efficiently recovered without causing significant secondary pollution.

  18. Selection of surfactant in remediation of DDT-contaminated soil by comparison of surfactant effectiveness.

    PubMed

    Guo, Ping; Chen, Weiwei; Li, Yueming; Chen, Tao; Li, Linhui; Wang, Guanzhu

    2014-01-01

    With an aim to select the most appropriate surfactant for remediation of DDT-contaminated soil, the performance of nonionic surfactants Tween80, TX-100, and Brij35 and one anionic surfactant sodium dodecyl benzene sulfonate (SDBS) in enhancement of DDT water solubility and desorption of DDT from contaminated soil and their adsorption onto soil and ecotoxicities were investigated in this study. Tween80 had the highest solubilizing and soil-washing ability for DDT among the four experimental surfactants. The adsorption loss of surfactants onto soil followed the order of TX-100 > Tween80 > Brij35 > SDBS. The ecotoxicity of Tween80 to ryegrass (Lolium perenne L.) was lowest. The overall performance considering about the above four aspects suggested that Tween80 should be selected for the remediation of DDT-contaminated soil, because Tween80 had the greatest solubilizing and soil-washing ability for DDT, less adsorption loss onto soil, and the lowest ecotoxicity in this experiment.

  19. Electrokinetic-Enhanced Remediation of Phenanthrene-Contaminated Soil Combined with Sphingomonas sp. GY2B and Biosurfactant.

    PubMed

    Lin, Weijia; Guo, Chuling; Zhang, Hui; Liang, Xujun; Wei, Yanfu; Lu, Guining; Dang, Zhi

    2016-04-01

    Electrokinetic-microbial remediation (EMR) has emerged as a promising option for the removal of polycyclic aromatic hydrocarbons (PAHs) from contaminated soils. The aim of this study was to enhance degradation of phenanthrene (Phe)-contaminated soils using EMR combined with biosurfactants. The electrokinetic (EK) remediation, combined with Phe-degrading Sphingomonas sp. GY2B, and biosurfactant obtained by fermentation of Pseudomonas sp. MZ01, degraded Phe in the soil with an efficiency of up to 65.1 % at the anode, 49.9 % at the cathode after 5 days of the treatment. The presence of biosurfactants, electricity, and a neutral electrolyte stimulated the growth of the degrading bacteria as shown by a rapid increase in microbial biomass with time. The electrical conductivity and pH changed little during the course of the treatment, which benefitted the growth of microorganisms and the remediation of Phe-contaminated soil. The EMR system with the addition of biosurfactant had the highest Phe removal, demonstrating the biosurfactant may enhance the bioavailability of Phe and the interaction with the microorganism. This study suggests that the EMR combined with biosurfactants can be used to enhance in situ bioremediation of PAH-contaminated soils. PMID:26683200

  20. Enhanced electrokinetic remediation of lead-contaminated soil by complexing agents and approaching anodes.

    PubMed

    Zhang, Tao; Zou, Hua; Ji, Minhui; Li, Xiaolin; Li, Liqiao; Tang, Tang

    2014-02-01

    Optimizing process parameters that affect the remediation time and power consumption can improve the treatment efficiency of the electrokinetic remediation as well as determine the cost of a remediation action. Lab-scale electrokinetic remediation of Pb-contaminated soils was investigated for the effect of complexant ethylenediaminetetraacetic acid (EDTA) and acetic acid and approaching anode on the removal efficiency of Pb. When EDTA was added to the catholyte, EDTA dissolved insoluble Pb in soils to form soluble Pb-EDTA complexes, increasing Pb mobility and accordingly removal efficiency. The removal efficiency was enhanced from 47.8 to 61.5 % when the EDTA concentration was increased from 0.1 to 0.2 M, showing that EDTA played an important role in remediation. And the migration rate of Pb was increased to 72.3 % when both EDTA and acetic acid were used in the catholyte. The "approaching anode electrokinetic remediation" process in the presence of both EDTA and acetic acid had a higher Pb-removal efficiency with an average efficiency of 83.8 %. The efficiency of electrokinetic remediation was closely related to Pb speciation. Exchangeable and carbonate-bounded Pb were likely the forms which could be removed. All results indicate that the approaching anode method in the presence of EDTA and acetic acid is an advisable choice for electrokinetic remediation of Pb-contaminated soil. PMID:24203258

  1. Fiscal Year 2010 Program of the U.S. DOE Office of Groundwater and Soil Remediation

    SciTech Connect

    Chamberlain, G. M.; Skubal, Karen L.; Wellman, Dawn M.

    2011-03-07

    The mission of the Office of Groundwater and Soil Remediation (EM-32) is to perform assessments, establish technical criteria and promote cross-site integration. The Office provides guidance for the development and implementation of plans for remediation of groundwater and is responsible for development of technologies needed to reduce risk from groundwater contamination. It is also responsible for providing technical direction and/or assistance to sites in resolving difficult technical groundwater and soil remediation problems. This paper discusses the activities funded by EM-32 for FY-2010.

  2. The Office of Groundwater & Soil Remediation Fiscal Year 2011 Research & Development Program

    SciTech Connect

    Gerdes, Kurt D.; Chamberlain, Grover S.; Aylward, R. S.; Cercy, Mike; Seitz, Roger; Ramirez, Rosa; Skubal, Karen L.; Marble, Justin; Wellman, Dawn M.; Bunn, Amoret L.; Liang, Liyuan; Pierce, Eric M.

    2011-12-02

    The U.S. Department of Energy’s (DOE) Office of Groundwater and Soil Remediation supports applied research and technology development (AR&TD) for remediation of environments contaminated by legacy nuclear waste. The program centers on delivering advanced scientific approaches and technologies from highly-leveraged, strategic investments that maximize impact to reduce risk and life-cycle cleanup costs. The current groundwater and soil remediation program consists of four applied programmatic areas: • Deep Vadose Zone – Applied Field Research Initiative • Attenuation Based Remedies – Applied Field Research Initiative • Remediation of Mercury and Industrial Contaminants – Applied Field Research Initiative • Advanced Simulation Capability for Environmental Management. This paper provides an overview of the applied programmatic areas, fiscal year 11 accomplishments, and their near-term technical direction.

  3. Changes in soil organic carbon fractions after remediation of a coastal floodplain soil.

    PubMed

    Wong, V N L; McNaughton, C; Pearson, A

    2016-03-01

    Coastal floodplain soils and wetland sediments can store large amounts of soil organic carbon (SOC). These environments are also commonly underlain by sulfidic sediments which can oxidise to form coastal acid sulfate soils (CASS) and contain high concentrations of acidity and trace metals. CASS are found on every continent globally except Antarctica. When sulfidic sediments are oxidised, scalds can form, which are large bare patches without vegetation. However, SOC stocks and fractions have not been quantified in these coastal floodplain environments. We studied the changes in soil geochemistry and SOC stocks and fractions three years after remediation of a CASS scald. Remediation treatments included raising water levels, and addition of either lime (LO) or lime and mulch (LM) relative to a control (C) site. We found SOC concentrations in the remediated sites (LO and LM) were more than double than that found at site C, reflected in the higher SOC stocks to a depth of 1.6 m (426 Mg C/ha, 478 Mg C/ha and 473 Mg C/ha at sites C, LO and LM, respectively). The particulate organic C (POC) fraction was higher at sites LO and LM due to increased vegetation and biomass inputs, compared to site C. Reformation of acid volatile sulfide (AVS) occurred throughout the profile at site LM, whereas only limited AVS reformation occurred at sites LO and C. Higher AVS at site LM may be linked to the additional source of organic matter provided by the mulch. POC can also potentially contribute to decreasing acidity as a labile SOC source for Fe(3+) and SO4(2-) reduction. Therefore, coastal floodplains and wetlands are a large store of SOC and can potentially increase SOC following remediation due to i) reduced decomposition rates with higher water levels and waterlogging, and ii) high C inputs due to rapid revegetation of scalded areas and high rates of biomass production. These results highlight the importance of maintaining vegetation cover in coastal floodplains and wetlands for

  4. Changes in soil organic carbon fractions after remediation of a coastal floodplain soil.

    PubMed

    Wong, V N L; McNaughton, C; Pearson, A

    2016-03-01

    Coastal floodplain soils and wetland sediments can store large amounts of soil organic carbon (SOC). These environments are also commonly underlain by sulfidic sediments which can oxidise to form coastal acid sulfate soils (CASS) and contain high concentrations of acidity and trace metals. CASS are found on every continent globally except Antarctica. When sulfidic sediments are oxidised, scalds can form, which are large bare patches without vegetation. However, SOC stocks and fractions have not been quantified in these coastal floodplain environments. We studied the changes in soil geochemistry and SOC stocks and fractions three years after remediation of a CASS scald. Remediation treatments included raising water levels, and addition of either lime (LO) or lime and mulch (LM) relative to a control (C) site. We found SOC concentrations in the remediated sites (LO and LM) were more than double than that found at site C, reflected in the higher SOC stocks to a depth of 1.6 m (426 Mg C/ha, 478 Mg C/ha and 473 Mg C/ha at sites C, LO and LM, respectively). The particulate organic C (POC) fraction was higher at sites LO and LM due to increased vegetation and biomass inputs, compared to site C. Reformation of acid volatile sulfide (AVS) occurred throughout the profile at site LM, whereas only limited AVS reformation occurred at sites LO and C. Higher AVS at site LM may be linked to the additional source of organic matter provided by the mulch. POC can also potentially contribute to decreasing acidity as a labile SOC source for Fe(3+) and SO4(2-) reduction. Therefore, coastal floodplains and wetlands are a large store of SOC and can potentially increase SOC following remediation due to i) reduced decomposition rates with higher water levels and waterlogging, and ii) high C inputs due to rapid revegetation of scalded areas and high rates of biomass production. These results highlight the importance of maintaining vegetation cover in coastal floodplains and wetlands for

  5. Application of multiphase transport models to field remediation by air sparging and soil vapor extraction.

    PubMed

    Rahbeh, M E; Mohtar, R H

    2007-05-01

    The design and operation of air sparging and soil vapor extraction (AS/SVE) remediation systems remains in large an art due to the absence of reliable physically based models that can utilize the limited available field data. In this paper, a numerical model developed for the design and operation of air sparging and soil vapor extractions systems was used to simulate two field case studies. The first-order mass transfer kinetics were incorporated into the model to account for contaminant mass transfer between the water and air (stripping), NAPL and water (dissolution), NAPL and air (volatilization), and water and soil (sorption/desorption), the model also accounted for soil heterogeneity. Benzene, toluene, ethyl benzene and xylenes (BTEX) were the contaminants of concern in both case studies. In the second case study, the model was used to evaluate the effect of pulsed sparging on the removal rate of BTEX compounds. The pulsed sparging operation was approximated assuming uniform contaminant redistribution at the beginning of the shut-off period. The close comparison between the observed and simulated contaminant concentration in the aqueous phase showed that the approximation of the pulsed sparging operation yielded reasonable prediction of the removal process. Field heterogeneity was simulated using Monte Carlo analysis. The model predicted about 80-85% of the contaminant mass was removed by air-water mass transfer, which was similar to the average removal obtained by Monte Carlo analysis. The analysis of the removal/rebound cycles demonstrated that removal rate was controlled by the organic-aqueous distribution coefficient K(oc). Due to the lack of site-specific data, the aerobic first-order biodegradation coefficients (k(bio)) were obtained from a literature survey, therefore, uncertainty analysis of the k(bio) was conducted to evaluate the contribution of the aerobic biodegradation to total contaminant removal. Results of both case studies showed that

  6. Implications of Using Thermal Desorption to Remediate Contaminated Agricultural Soil: Physical Characteristics and Hydraulic Processes.

    PubMed

    O'Brien, Peter L; DeSutter, Thomas M; Casey, Francis X M; Derby, Nathan E; Wick, Abbey F

    2016-07-01

    Given the recent increase in crude oil production in regions with predominantly agricultural economies, the determination of methods that remediate oil contamination and allow for the land to return to crop production is increasingly relevant. Ex situ thermal desorption (TD) is a technique used to remediate crude oil pollution that allows for reuse of treated soil, but the properties of that treated soil are unknown. The objectives of this research were to characterize TD-treated soil and to describe implications in using TD to remediate agricultural soil. Native, noncontaminated topsoil and subsoil adjacent to an active remediation site were separately subjected to TD treatment at 350°C. Soil physical characteristics and hydraulic processes associated with agricultural productivity were assessed in the TD-treated samples and compared with untreated samples. Soil organic carbon decreased more than 25% in both the TD-treated topsoil and the subsoil, and total aggregation decreased by 20% in the topsoil but was unaffected in the subsoil. The alteration in these physical characteristics explains a 400% increase in saturated hydraulic conductivity in treated samples as well as a decrease in water retention at both field capacity and permanent wilting point. The changes in soil properties identified in this study suggest that TD-treated soils may still be suitable for sustaining vegetation, although likely at a slightly diminished capacity when directly compared with untreated soils. PMID:27380094

  7. Implications of Using Thermal Desorption to Remediate Contaminated Agricultural Soil: Physical Characteristics and Hydraulic Processes.

    PubMed

    O'Brien, Peter L; DeSutter, Thomas M; Casey, Francis X M; Derby, Nathan E; Wick, Abbey F

    2016-07-01

    Given the recent increase in crude oil production in regions with predominantly agricultural economies, the determination of methods that remediate oil contamination and allow for the land to return to crop production is increasingly relevant. Ex situ thermal desorption (TD) is a technique used to remediate crude oil pollution that allows for reuse of treated soil, but the properties of that treated soil are unknown. The objectives of this research were to characterize TD-treated soil and to describe implications in using TD to remediate agricultural soil. Native, noncontaminated topsoil and subsoil adjacent to an active remediation site were separately subjected to TD treatment at 350°C. Soil physical characteristics and hydraulic processes associated with agricultural productivity were assessed in the TD-treated samples and compared with untreated samples. Soil organic carbon decreased more than 25% in both the TD-treated topsoil and the subsoil, and total aggregation decreased by 20% in the topsoil but was unaffected in the subsoil. The alteration in these physical characteristics explains a 400% increase in saturated hydraulic conductivity in treated samples as well as a decrease in water retention at both field capacity and permanent wilting point. The changes in soil properties identified in this study suggest that TD-treated soils may still be suitable for sustaining vegetation, although likely at a slightly diminished capacity when directly compared with untreated soils.

  8. Effects of different remediation treatments on crude oil contaminated saline soil.

    PubMed

    Gao, Yong-Chao; Guo, Shu-Hai; Wang, Jia-Ning; Li, Dan; Wang, Hui; Zeng, De-Hui

    2014-12-01

    Remediation of the petroleum contaminated soil is essential to maintain the sustainable development of soil ecosystem. Bioremediation using microorganisms and plants is a promising method for the degradation of crude oil contaminants. The effects of different remediation treatments, including nitrogen addition, Suaeda salsa planting, and arbuscular mycorrhiza (AM) fungi inoculation individually or combined, on crude oil contaminated saline soil were assessed using a microcosm experiment. The results showed that different remediation treatments significantly affected the physicochemical properties, oil contaminant degradation and bacterial community structure of the oil contaminated saline soil. Nitrogen addition stimulated the degradation of total petroleum hydrocarbon significantly at the initial 30d of remediation. Coupling of different remediation techniques was more effective in degrading crude oil contaminants. Applications of nitrogen, AM fungi and their combination enhanced the phytoremediation efficiency of S. salsa significantly. The main bacterial community composition in the crude oil contaminated saline soil shifted with the remediation processes. γ-Proteobacteria, β-Proteobacteria, and Actinobacteria were the pioneer oil-degraders at the initial stage, and Firmicutes were considered to be able to degrade the recalcitrant components at the later stage.

  9. Phosphate-Based Mineralization of Arsenic in Contaminated Soil: A Potential Remediation Method for Soil and Groundwater

    NASA Astrophysics Data System (ADS)

    Neupane, G.; Donahoe, R. J.

    2009-12-01

    Soil arsenic contamination resulting from the use of arsenical compounds is a widespread environmental problem. A phosphate-based remediation method which has the potential to immobilize arsenic in both oxidizing and reducing subsurface systems is under laboratory investigation. Although phosphate treatments have been reported to be effective in removal of arsenic from contaminated water, its use in contaminated soils has not been tested. This study aims to (1) determine the competitive adsorption/desorption of arsenate and phosphate at surfaces of ferric hydroxide coated sand in the absence or presence of calcium ions, and (2) develop a method of arsenic fixation which involves phosphoric acid flushing of arsenic from contaminated soil and precipitation of arsenic as apatite-like phases. Ferric hydroxide is a significant arsenic sequestering constituent in soil. Phosphate competes with arsenate for adsorption sites on the ferric hydroxide surface. Batch adsorption experiments conducted using ferric hydroxide coated sand have indicated similar pH-controlled adsorption mechanisms for both arsenate and phosphate. The data obtained from the adsorption experiments is being used to guide the development of a phosphate-based method for soil and groundwater arsenic remediation. Batch experiments were performed using 3g of contaminated soil in contact with 45 ml of treatment fluid (a dilute phosphoric acid and calcium hydroxide solution). Solution samples were collected at 24, 72, 144, 312, and 384 hours, with continuous agitation at 200 rpm. Solution concentrations of phosphorus and calcium generally decreased with time and were primarily controlled by pH. It has been experimentally demonstrated that solution arsenic concentrations can be lowered by maintaining high pH with adequate calcium supply. A batch experiment conducted at pH > 11, using 1 kg of soil in contact with 1 liter of 0.25% H3PO4, precipitated a white material giving an XRD signature indicative of brushite

  10. Effect of electrokinetic remediation on indigenous microbial activity and community within diesel contaminated soil.

    PubMed

    Kim, Seong-Hye; Han, Hyo-Yeol; Lee, You-Jin; Kim, Chul Woong; Yang, Ji-Won

    2010-07-15

    Electrokinetic remediation has been successfully used to remove organic contaminants and heavy metals within soil. The electrokinetic process changes basic soil properties, but little is known about the impact of this remediation technology on indigenous soil microbial activities. This study reports on the effects of electrokinetic remediation on indigenous microbial activity and community within diesel contaminated soil. The main removal mechanism of diesel was electroosmosis and most of the bacteria were transported by electroosmosis. After 25 days of electrokinetic remediation (0.63 mA cm(-2)), soil pH developed from pH 3.5 near the anode to pH 10.8 near the cathode. The soil pH change by electrokinetics reduced microbial cell number and microbial diversity. Especially the number of culturable bacteria decreased significantly and only Bacillus and strains in Bacillales were found as culturable bacteria. The use of EDTA as an electrolyte seemed to have detrimental effects on the soil microbial activity, particularly in the soil near the cathode. On the other hand, the soil dehydrogenase activity was enhanced close to the anode and the analysis of microbial community structure showed the increase of several microbial populations after electrokinetics. It is thought that the main causes of changes in microbial activities were soil pH and direct electric current. The results described here suggest that the application of electrokinetics can be a promising soil remediation technology if soil parameters, electric current, and electrolyte are suitably controlled based on the understanding of interaction between electrokinetics, contaminants, and indigenous microbial community. PMID:20452646

  11. Demonstration designs for the remediation of space debris from the International Space Station

    NASA Astrophysics Data System (ADS)

    Ebisuzaki, Toshikazu; Quinn, Mark N.; Wada, Satoshi; Piotrowski, Lech Wiktor; Takizawa, Yoshiyuki; Casolino, Marco; Bertaina, Mario E.; Gorodetzky, Philippe; Parizot, Etienne; Tajima, Toshiki; Soulard, Rémi; Mourou, Gérard

    2015-07-01

    We present here designs for a staged implementation of an orbiting debris remediation system comprised of a super-wide field-of-view telescope (EUSO) and a novel high efficiency fibre-based laser system (CAN). Initial proof of concept stages will operate from the International Space Station (ISS) where the EUSO telescope has been designed for operation as a detector of ultra-high energy cosmic rays. Equipped with 2.5 m optics and a field of view of ±30°, the EUSO telescope can also be utilised for the detection of high velocity fragmentation debris in orbit near the ISS. Further tracking, characterisation and remediation are to be performed by a CAN laser system operating in tandem with the EUSO telescope. For full scale versions of both instruments, the range of the detection/removal operation can be as large as 100 km. Utilising a step-by-step approach of increasing scale we present an analysis of implementation of: 1) Proof of principle demonstration of the detection by a mini-EUSO and operation of 100-fibre CAN laser technology as an ISS based prototype, 2) Technical demonstrator of debris-removal that consists of the EUSO telescope for the detection and a 10,000 fibre CAN laser for tracking and impulse delivery for debris re-entry, and 3) A free-flyer mission dedicated to debris remediation in a polar orbit with the altitude near 800 km. The integration of the two novel technologies aboard the ISS amounts to a novel approach as an immediate response to the serious space debris problem with the existing platform of ISS.

  12. A halotolerant Alcanivorax sp. strain with potential application in saline soil remediation.

    PubMed

    Dastgheib, Seyed Mohammad Mehdi; Amoozegar, Mohamad Ali; Khajeh, Khosro; Ventosa, Antonio

    2011-04-01

    Biodegradation of petroleum compounds in saline environments seems intricate and needs more attention. In this study, tetracosane was used to enrich alkane-degrading bacteria from oil-contaminated saline soils. Among the isolates, strain Qtet3, with the highest 16s rRNA gene sequence similarity to Alcanivorax dieselolei B-5(T), was able to grow at a wide range of NaCl concentrations and was shown by GC analysis to degrade more than 90% of tetracosane in 10 days. This strain has at least two alkB genes and could grow on crude oil and diesel fuel, and utilize various pure aliphatic hydrocarbon substrates (from C(12) to C(34)). Highly hydrophobic cell surfaces and lack of significant surface tension reduction in the media suggest that the main mechanism of the cells for accessing substrate is to attach directly to hydrocarbon particles. Application of this strain for remediating crude oil-contaminated soils irrigated with defined saline water demonstrated that this halotolerant bacterium could survive and grow in saline soils irrigated with NaCl solutions up to 5% w/v, with the highest hydrocarbon degradation of 26.1% observed at 2.5% NaCl. This strain is promising for future industrial applications especially in bioremediation of saline soils and wastes.

  13. [Synergy between fungi and bacteria in fungi-bacteria augmented remediation of petroleum-contaminated soil].

    PubMed

    Han, Hui-Long; Tang, Jing; Jiang, Hao; Zhang, Min-Lian; Liu, Zheng

    2008-01-01

    A new bioaugmentation technique for petroleum contaminated soil utilizing the synergistic function between bacteria and fungi in both growth and metabolism of petroleum was proposed and investigated using E. cloacae and Cun. echinulata, both of which were isolated from Zhongyuan Oil Field, Henan, China. The maximum biomass of E. cloacae and Cun. echinulata obtained in the mixed slurry culture were 3- and 20-fold as much as their respective counterpart obtained in the pure cultures. The decrease of cell activity was considerably postponed, as compared to the pure cultures. The removal of total petroleum hydrocarbon (TPH) by the mixture was higher than the sum of the individual removal obtained in the pure culture, which could be further enhanced by repeated inoculation of fresh fungal and bacterial inocula. The optimal parameters of the in situ bioremediation of crude oil-contaminated soil sampled in Zhongyuan Oil Field were determined as follows: 25% (m/m) soil humidity, 6% (m/m) of wood scraps, 2.5 x 10(4) CFU/g of E. cloacae and 2.5 x 10(7) CFU/g dry soil of Cun. echinulata. It was demonstrated that the growth behavior of the inocula and the degradation of TPH were not inhibited by the indigenous microorganisms. The in situ remediation via inoculating the fungal-bacterial consortia removed 65% of TPH in 40 days while the control experiment with the indigenous microorganisms removed 16%.

  14. Microbial fuel cells demonstrate high coulombic efficiency applicable for water remediation.

    PubMed

    Devasahayam, Mercy; Masih, Sam A

    2012-06-01

    Microbial fuel cells (MFCs) convert biomass into electricity by the metabolic activity of microorganisms and are also used for remediation and water treatment. Power output was compared for a dual chambered membrane MFC using either E. coli or two Yamuna river samples, Yamuna (before the Sangam region)--slow flow (sample 1) and Sangam region--fast flow (sample 2). E. coli and the two river water samples 1 and 2 gave a maximum voltage of 779, 463 and 415 mV respectively. Using E. coli the maximum power density obtained with a 100 omega resistor was 220.66 mW/cm2 and the highest power generated 6068.41 mW. The results demonstrate E. coli, river sample 1 and river sample 2 have a comparable coulombic efficiency of 85.2, 71 and 77% respectively when using 0.4% sucrose as substrate. The decrease in chemical oxidative demand of all river water samples using MFC technology demonstrates efficient remediation of inland water. PMID:22734255

  15. Microbial fuel cells demonstrate high coulombic efficiency applicable for water remediation.

    PubMed

    Devasahayam, Mercy; Masih, Sam A

    2012-06-01

    Microbial fuel cells (MFCs) convert biomass into electricity by the metabolic activity of microorganisms and are also used for remediation and water treatment. Power output was compared for a dual chambered membrane MFC using either E. coli or two Yamuna river samples, Yamuna (before the Sangam region)--slow flow (sample 1) and Sangam region--fast flow (sample 2). E. coli and the two river water samples 1 and 2 gave a maximum voltage of 779, 463 and 415 mV respectively. Using E. coli the maximum power density obtained with a 100 omega resistor was 220.66 mW/cm2 and the highest power generated 6068.41 mW. The results demonstrate E. coli, river sample 1 and river sample 2 have a comparable coulombic efficiency of 85.2, 71 and 77% respectively when using 0.4% sucrose as substrate. The decrease in chemical oxidative demand of all river water samples using MFC technology demonstrates efficient remediation of inland water.

  16. SITE DEMONSTRATION OF THE TORONTO HARBOUR COMMISSIONERS SOIL RECYCLING PROJECT

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA), in cooperation with the Toronto Harbour Commissioners (THC), conducted a Superfund InnovativeTechnology Evaluation (SITE) demonstration of the THC Soil Recycle Treatment Train. The treatment train consists of three technologies op...

  17. Changes in chromium distribution during the electrodialytic remediation of a Cr (VI)-contaminated soil.

    PubMed

    Nieto Castillo, Ana M; Soriano, Juan José; García-Delgado, Rafael A

    2008-04-01

    A laboratory study has been carried out to determine the feasibility of in situ remediation of chromium (VI)-contaminated soil using electrodialysis in relation to its speciation in soil. This technique is best suited for low-permeability soils or sediments, which may be difficult to remediate by other means and implies the application of a low-intensity direct current to the soil, which is separated from the electrode compartments by ion-exchange membranes. A clayey soil was prepared for use in the experiments and was characterized before being mixed with a solution of potassium dichromate for several days to produce a final Cr content of 4,056 mg/kg of soil dry wt. Remediation tests were carried out under constant-voltage conditions for periods of 7-14 days and the evolution of applied current to the cell, pH, and conductivity of the electrolytes were recorded periodically. Fractionation of chromium was determined for soil samples before and after remediation using a standardized four-step sequential extraction procedure (SEP) with acetic acid, hydroxylamine, hydrogen peroxide, and aqua regia solutions. Results show that chromium is mobilized from the most labile phases (soluble/exchangeable/carbonate). In a 15 V test, SEP results show that the amount of chromium extracted in the first step drops from 80% to 9%, but also that changes in the total chromium distribution occur during the treatment with some transferred to other soil phases that are more difficult to mobilize.

  18. [Effects of Remedies on the Remediation of Typical Pb and Zn-contaminated soil in Huanjiang, Guangxi].

    PubMed

    Zeng, Wei-quan; Song, Bo; Yuan, Li-zhu; Huang, Yu-fei; Fu, Feng-yan

    2015-06-01

    Due to the collapse of the Pb/Zn tailing dam of Huanjiang, Guangxi, the farmland along Huanjiang River are strongly acidic and heavy metal-contaminated, resulting in the loss of agricultural production. To explore some remedies and the migration of heavy metals in heavy metal contaminated-soil of Huanjiang, this study investigated the effects of different types of amendments (lime, calcium magnesium phosphate, organic fertilizer, polypropylene amide) on tested soils through soil leaching test. The results showed that T1 soil was severely acidified, reducing the pH of the soil layer to clean contact, while T2, T3, T4, T5 could significantly improve the contaminated soil pH, ranging from 2.7 to 3.2, 1.6 to 2.7 respectively. Compared with T1, in the contaminated soil at 0-20 cm, T2, T3, T4, T5 could effectively activate Pb and immobilize Zn. Compared with T1, in 20-60 cm clean soil, there was no significant differences in the effect of different treatments on DTPA-Pb and DTPA-Zn (P < 0.05). Compared with T1, T4 and T5 could provide good growing conditions for plants, which might provide technical support for future measurements such as bioremediation. PMID:26387340

  19. Smoldering Remediation of Coal-Tar-Contaminated Soil: Pilot Field Tests of STAR.

    PubMed

    Scholes, Grant C; Gerhard, Jason I; Grant, Gavin P; Major, David W; Vidumsky, John E; Switzer, Christine; Torero, Jose L

    2015-12-15

    Self-sustaining treatment for active remediation (STAR) is an emerging, smoldering-based technology for nonaqueous-phase liquid (NAPL) remediation. This work presents the first in situ field evaluation of STAR. Pilot field tests were performed at 3.0 m (shallow test) and 7.9 m (deep test) below ground surface within distinct lithological units contaminated with coal tar at a former industrial facility. Self-sustained smoldering (i.e., after the in-well ignition heater was terminated) was demonstrated below the water table for the first time. The outward propagation of a NAPL smoldering front was mapped, and the NAPL destruction rate was quantified in real time. A total of 3700 kg of coal tar over 12 days in the shallow test and 860 kg over 11 days in the deep test was destroyed; less than 2% of total mass removed was volatilized. Self-sustaining propagation was relatively uniform radially outward in the deep test, achieving a radius of influence of 3.7 m; strong permeability contrasts and installed barriers influenced the front propagation geometry in the shallow test. Reductions in soil hydrocarbon concentrations of 99.3% and 97.3% were achieved in the shallow and deep tests, respectively. Overall, this provides the first field evaluation of STAR and demonstrates that it is effective in situ and under a variety of conditions and provides the information necessary for designing the full-scale site treatment.

  20. Smoldering Remediation of Coal-Tar-Contaminated Soil: Pilot Field Tests of STAR.

    PubMed

    Scholes, Grant C; Gerhard, Jason I; Grant, Gavin P; Major, David W; Vidumsky, John E; Switzer, Christine; Torero, Jose L

    2015-12-15

    Self-sustaining treatment for active remediation (STAR) is an emerging, smoldering-based technology for nonaqueous-phase liquid (NAPL) remediation. This work presents the first in situ field evaluation of STAR. Pilot field tests were performed at 3.0 m (shallow test) and 7.9 m (deep test) below ground surface within distinct lithological units contaminated with coal tar at a former industrial facility. Self-sustained smoldering (i.e., after the in-well ignition heater was terminated) was demonstrated below the water table for the first time. The outward propagation of a NAPL smoldering front was mapped, and the NAPL destruction rate was quantified in real time. A total of 3700 kg of coal tar over 12 days in the shallow test and 860 kg over 11 days in the deep test was destroyed; less than 2% of total mass removed was volatilized. Self-sustaining propagation was relatively uniform radially outward in the deep test, achieving a radius of influence of 3.7 m; strong permeability contrasts and installed barriers influenced the front propagation geometry in the shallow test. Reductions in soil hydrocarbon concentrations of 99.3% and 97.3% were achieved in the shallow and deep tests, respectively. Overall, this provides the first field evaluation of STAR and demonstrates that it is effective in situ and under a variety of conditions and provides the information necessary for designing the full-scale site treatment. PMID:26523324

  1. Biochar- and phosphate-induced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater.

    PubMed

    Liang, Yuan; Cao, Xinde; Zhao, Ling; Arellano, Eduardo

    2014-03-01

    Long-term wastewater irrigation or solid waste disposal has resulted in the heavy metal contamination in both soil and groundwater. It is often separately implemented for remediation of contaminated soil or groundwater at a specific site. The main objective of this study was to demonstrate the hypothesis of simultaneous remediation of both heavy metal contaminated soil and groundwater by integrating the chemical immobilization and pump-and-treat methods. To accomplish the objective, three experiments were conducted, i.e., an incubation experiment was first conducted to determine how dairy-manure-derived biochar and phosphate rock tailing induced immobilization of Cd in the Cd-contaminated soils; second, a batch sorption experiment was carried out to determine whether the pre-amended contaminated soil still had the ability to retain Pb, Zn and Cd from aqueous solution. BCR sequential extraction as well as XRD and SEM analysis were conducted to explore the possible retention mechanism; and last, a laboratory-scale model test was undertaken by leaching the Pb, Zn, and Cd contaminated groundwater through the pre-amended contaminated soils to demonstrate how the heavy metals in both contaminated soil and groundwater were simultaneously retained and immobilized. The incubation experiment showed that the phosphate biochar were effective in immobilizing soil Cd with Cd concentration in TCLP (toxicity characteristics leaching procedure) extract reduced by 19.6 % and 13.7 %, respectively. The batch sorption experiment revealed that the pre-amended soil still had ability to retain Pb, Zn, and Cd from aqueous solution. The phosphate-induced metal retention was mainly due to the metal-phosphate precipitation, while both sorption and precipitation were responsible for the metal stabilization in the biochar amendment. The laboratory-scale test demonstrated that the soil amended with phosphate removed groundwater Pb, Zn, and Cd by 96.4 %, 44.6 %, and 49.2 %, respectively, and the

  2. Biochar- and phosphate-induced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater.

    PubMed

    Liang, Yuan; Cao, Xinde; Zhao, Ling; Arellano, Eduardo

    2014-03-01

    Long-term wastewater irrigation or solid waste disposal has resulted in the heavy metal contamination in both soil and groundwater. It is often separately implemented for remediation of contaminated soil or groundwater at a specific site. The main objective of this study was to demonstrate the hypothesis of simultaneous remediation of both heavy metal contaminated soil and groundwater by integrating the chemical immobilization and pump-and-treat methods. To accomplish the objective, three experiments were conducted, i.e., an incubation experiment was first conducted to determine how dairy-manure-derived biochar and phosphate rock tailing induced immobilization of Cd in the Cd-contaminated soils; second, a batch sorption experiment was carried out to determine whether the pre-amended contaminated soil still had the ability to retain Pb, Zn and Cd from aqueous solution. BCR sequential extraction as well as XRD and SEM analysis were conducted to explore the possible retention mechanism; and last, a laboratory-scale model test was undertaken by leaching the Pb, Zn, and Cd contaminated groundwater through the pre-amended contaminated soils to demonstrate how the heavy metals in both contaminated soil and groundwater were simultaneously retained and immobilized. The incubation experiment showed that the phosphate biochar were effective in immobilizing soil Cd with Cd concentration in TCLP (toxicity characteristics leaching procedure) extract reduced by 19.6 % and 13.7 %, respectively. The batch sorption experiment revealed that the pre-amended soil still had ability to retain Pb, Zn, and Cd from aqueous solution. The phosphate-induced metal retention was mainly due to the metal-phosphate precipitation, while both sorption and precipitation were responsible for the metal stabilization in the biochar amendment. The laboratory-scale test demonstrated that the soil amended with phosphate removed groundwater Pb, Zn, and Cd by 96.4 %, 44.6 %, and 49.2 %, respectively, and the

  3. MEMBRANE TECHNOLOGIES FOR REMEDIATING CONTAMINATED SOILS: A CRITICAL REVIEW

    EPA Science Inventory

    Regulatory compliance requires the cleanup of soils contaminated with toxic organic and metallic compounds. Several chemical and thermal detoxification technologies have been tested on soils excavated from contaminated sites. Soil washing with aqueous solutions transfers the cont...

  4. Technology needs for remediation: Hanford and other DOE sites. Buried Waste Integrated Demonstration Program

    SciTech Connect

    Stapp, D.C.

    1993-01-01

    Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy`s (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL`s Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

  5. Demonstration testing and evaluation of in situ soil heating. Treatability study work plan, Revision 1

    SciTech Connect

    Sresty, G.C.

    1994-07-07

    A Treatability Study planned for the demonstration of the in situ electromagnetic (EM) heating process to remove organic solvents is described in this Work Plan. The treatability study will be conducted by heating subsurface vadose-zone soils in an organic plume adjacent to the Classified Burial Ground K-1070-D located at K-25 Site, Oak Ridge. The test is scheduled to start during the fourth quarter of FY94 and will be completed during the first quarter of FY95. The EM heating process for soil decontamination is based on volumetric heating technologies developed during the `70s for the recovery of fuels from shale and tar sands by IIT Research Institute (IITRI) under a co-operative program with the US Department of Energy (DOE). Additional modifications of the technology developed during the mid `80s are currently used for the production of heavy oil and waste treatment. Over the last nine years, a number of Government agencies (EPA, Army, AF, and DOE) and industries sponsored further development and testing of the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site under the proposed treatability study. Most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 to 95 C. The efficiency of the treatment will be determined by comparing the concentration of contaminants in soil samples. Samples will be obtained before and after the demonstration for a measurement of the concentration of contaminants of concern.

  6. Minimizing soil remediation volume through specification of excavation and materials handling procedures

    SciTech Connect

    Oresik, W.L.S.; Otten, M.T.; Nelson, M.D.

    1994-12-31

    The technologies currently available for treating soils contaminated with the explosives 2,4,6-trinitroluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazene (RDX) are both limited and expensive. Therefore, an important consideration in soils remediation is the preparation of construction specifications and contract drawings which limit the volume of soil that will be required to undergo treatment. Construction specifications and contract drawings were developed for the Contaminated Soil Remediation of the Explosives Washout Lagoons at Umatilla Depot Activity (UMDA) with the following primary objectives: (1) limit the volume of soil excavated from the Explosives Washout Lagoons and Explosives Washout Plant Areas, (2) minimize materials handling, and (3) reduce the excavated volume of soil which will undergo treatment.

  7. Effects of Soil Oxygen Conditions and Soil pH on Remediation of DDT-contaminated Soil by Laccase from White Rot Fungi

    PubMed Central

    Zhao, Yuechun; Yi, Xiaoyun

    2010-01-01

    High residues of DDT in agricultural soils are of concern because they present serious threats to food security and human health. This article focuses on remediation of DDT-contaminated soil using laccase under different soil oxygen and soil pH conditions. The laboratory experiment results showed significant effects of soil oxygen conditions and soil pH on remediation of DDT-contaminated soil by laccase at the end of a 25-d incubation period. This study found the positive correlation between the concentration of oxygen in soil and the degradation of DDT by laccase. The residue of DDTs in soil under the atmosphere of oxygen decreased by 28.1% compared with the atmosphere of nitrogen at the end of the incubation with laccase. A similar pattern was observed in the remediation of DDT-contaminated soil by laccase under different flooding conditions, the higher the concentrations of oxygen in soil, the lower the residues of four DDT components and DDTs in soils. The residue of DDTs in the nonflooding soil declined by 16.7% compared to the flooded soil at the end of the incubation. The residues of DDTs in soils treated with laccase were lower in the pH range 2.5–4.5. PMID:20617049

  8. Effects of soil oxygen conditions and soil pH on remediation of DDT-contaminated soil by laccase from white rot fungi.

    PubMed

    Zhao, Yuechun; Yi, Xiaoyun

    2010-04-01

    High residues of DDT in agricultural soils are of concern because they present serious threats to food security and human health. This article focuses on remediation of DDT-contaminated soil using laccase under different soil oxygen and soil pH conditions. The laboratory experiment results showed significant effects of soil oxygen conditions and soil pH on remediation of DDT-contaminated soil by laccase at the end of a 25-d incubation period. This study found the positive correlation between the concentration of oxygen in soil and the degradation of DDT by laccase. The residue of DDTs in soil under the atmosphere of oxygen decreased by 28.1% compared with the atmosphere of nitrogen at the end of the incubation with laccase. A similar pattern was observed in the remediation of DDT-contaminated soil by laccase under different flooding conditions, the higher the concentrations of oxygen in soil, the lower the residues of four DDT components and DDTs in soils. The residue of DDTs in the nonflooding soil declined by 16.7% compared to the flooded soil at the end of the incubation. The residues of DDTs in soils treated with laccase were lower in the pH range 2.5-4.5. PMID:20617049

  9. Design, installation and operational methods of implementing horizontal wells for in situ groundwater and soil remediation

    SciTech Connect

    Larson, R.B.

    1996-12-31

    The design and installation of horizontal wells is the primary factor in the efficiency of the remedial actions. Often, inadequacies in the design and installation of remediation systems are not identified until remedial actions have commenced, at which time, required modifications of operational methods can be costly. The parameters required for designing a horizontal well remediation system include spatial variations in contaminant concentrations and lithology, achievable injection and/or extraction rates, area of influence from injection and/or extraction processes, and limitations of installation methods. As with vertical wells, there are several different methods for the installation of horizontal wells. This paper will summarize four installation methods for horizontal wells, including four sites where horizontal wells have been utilized for in-situ groundwater and soil remediation.

  10. [Basic principle and impact factors of soil vapor extraction (SVE) technology for remediation of contaminated soils by volatile and semivolatile organics].

    PubMed

    Liu, Shao-Qing; Jiang, Lin; Huang, Zhe; Li, Yan-Xia; Lin, Chun-Ye

    2011-03-01

    Because soil vapor extraction (SVE) is an effective, economic, and environmentally benign technology to remediate soils contaminated by volatile and semivolatile organics, it has been widely used in the remediation of these soils. The objectives of this paper were to introduce the basic principle of SVE and general steps of constructing SVE engineering, discuss major impact factors on remediation efficiency of SVE technology, and describe three kinds of enhanced SVE technologies. Finally, study and application progress of SVE technologies in China was introduced.

  11. [Effect of different soil types on the remediation of copper-pyrene compound contaminated soils by EK-oxidation process].

    PubMed

    Fan, Guang-Ping; Cang, Long; Zhou, Dong-Mei; Zhou, Li-Xiang

    2011-11-01

    The effect of different soil types (red soil,yellow-brown soil and black soil) on the electrokinetic (EK)-oxidation remediation of heavy metals-organic pollutant contaminated soil was studied in laboratory-scale experiments. Copper and pyrene were chosen as model pollutant, and 12% H2O2, 10% hydroxypropyl-beta-cyclodextrin and 0.01 mol x L(-1) NaNO3 solution were added into the anode and cathode cell. The applied voltage was 1 V x cm(-1). After 15 days of EK remediation, the removal rate of pyrene and copper in red soil, yellow-brown soil and black soil were 38.5%, 46.8%, 51.3% for pyrene and 85.0%, 22.6%, 24.1% for Cu, respectively. The high pH of black soil produced high electroosmotic flow and increased the exposure of oxidants and pollutants, meanwhile the low clay content was also conducive to the desorption of pyrene. The low pH and organic matter of red soil affected the chemical species distribution of Cu and increased its removal rate. It is concluded that soil pH, clay content and heavy metal speciation in soil are the dominant factors affecting the migration and removal efficiency of pollutants. PMID:22295647

  12. Effect of Remediation Parameters on in-Air Ambient Dose Equivalent Rates When Remediating Open Sites with Radiocesium-contaminated Soil.

    PubMed

    Malins, Alex; Kurikami, Hiroshi; Kitamura, Akihiro; Machida, Masahiko

    2016-10-01

    Calculations are reported for ambient dose equivalent rates [H˙*(10)] at 1 m height above the ground surface before and after remediating radiocesium-contaminated soil at wide and open sites. The results establish how the change in H˙*(10) upon remediation depends on the initial depth distribution of radiocesium within the ground, on the size of the remediated area, and on the mass per unit area of remediated soil. The remediation strategies considered were topsoil removal (with and without recovering with a clean soil layer), interchanging a topsoil layer with a subsoil layer, and in situ mixing of the topsoil. The results show the ratio of the radiocesium components of H˙*(10) post-remediation relative to their initial values (residual dose factors). It is possible to use the residual dose factors to gauge absolute changes in H˙*(10) upon remediation. The dependency of the residual dose factors on the number of years elapsed after fallout deposition is analyzed when remediation parameters remain fixed and radiocesium undergoes typical downward migration within the soil column. PMID:27575348

  13. Effect of Remediation Parameters on in-Air Ambient Dose Equivalent Rates When Remediating Open Sites with Radiocesium-contaminated Soil.

    PubMed

    Malins, Alex; Kurikami, Hiroshi; Kitamura, Akihiro; Machida, Masahiko

    2016-10-01

    Calculations are reported for ambient dose equivalent rates [H˙*(10)] at 1 m height above the ground surface before and after remediating radiocesium-contaminated soil at wide and open sites. The results establish how the change in H˙*(10) upon remediation depends on the initial depth distribution of radiocesium within the ground, on the size of the remediated area, and on the mass per unit area of remediated soil. The remediation strategies considered were topsoil removal (with and without recovering with a clean soil layer), interchanging a topsoil layer with a subsoil layer, and in situ mixing of the topsoil. The results show the ratio of the radiocesium components of H˙*(10) post-remediation relative to their initial values (residual dose factors). It is possible to use the residual dose factors to gauge absolute changes in H˙*(10) upon remediation. The dependency of the residual dose factors on the number of years elapsed after fallout deposition is analyzed when remediation parameters remain fixed and radiocesium undergoes typical downward migration within the soil column.

  14. Operable Unit 3-13, Group 3, Other Surface Soils (Phase I) Remedial Action Report

    SciTech Connect

    L. Davison

    2007-07-31

    This Remedial Action Report summarizes activities undertaken to remediate the Operable Unit 3-13, Group 3, Other Surface Soils, Phase I sites at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The 10 sites addressed in this report were defined in the Operable Unit 3-13 Record of Decision and subsequent implementing documents. This report concludes that remediation requirements and cleanup goals established for these 10 sites have been accomplished and are hereafter considered No Action or No Further Action sites.

  15. Phytoremediation of dye contaminated soil by Leucaena leucocephala (subabul) seed and growth assessment of Vigna radiata in the remediated soil.

    PubMed

    Jayanthy, V; Geetha, R; Rajendran, R; Prabhavathi, P; Karthik Sundaram, S; Dinesh Kumar, S; Santhanam, P

    2014-09-01

    The present study was investigated for soil bioremediation through sababul plant biomass (Leucaena leucocephala). The soil contaminated with textile effluent was collected from Erode (chithode) area. Various physico-chemical characterizations like N, P, and K and electrical conductivity were assessed on both control and dye contaminated soils before and after remediation. Sababul (L. leucocephala) powder used as plant biomass for remediation was a tool for textile dye removal using basic synthetic dyes by column packing and eluting. The concentration of the dye eluted was compared with its original concentration of dye and were analyzed by using UV-vis spectrophotometer. Sababul plant biomass was analyzed for its physico-chemical properties and active compounds were detected by GC-MS, HPTLC and FTIR. Plant growth was assessed with green gram on the textile contaminated soil and sababul had the potential of adsorbing the dye as the contaminated soil and also check the growth of green gram. PMID:25183943

  16. Phytoremediation of dye contaminated soil by Leucaena leucocephala (subabul) seed and growth assessment of Vigna radiata in the remediated soil

    PubMed Central

    Jayanthy, V.; Geetha, R.; Rajendran, R.; Prabhavathi, P.; Karthik Sundaram, S.; Dinesh Kumar, S.; Santhanam, P.

    2013-01-01

    The present study was investigated for soil bioremediation through sababul plant biomass (Leucaena leucocephala). The soil contaminated with textile effluent was collected from Erode (chithode) area. Various physico-chemical characterizations like N, P, and K and electrical conductivity were assessed on both control and dye contaminated soils before and after remediation. Sababul (L. leucocephala) powder used as plant biomass for remediation was a tool for textile dye removal using basic synthetic dyes by column packing and eluting. The concentration of the dye eluted was compared with its original concentration of dye and were analyzed by using UV–vis spectrophotometer. Sababul plant biomass was analyzed for its physico-chemical properties and active compounds were detected by GC–MS, HPTLC and FTIR. Plant growth was assessed with green gram on the textile contaminated soil and sababul had the potential of adsorbing the dye as the contaminated soil and also check the growth of green gram. PMID:25183943

  17. [Research on the Screening Method of Soil Remediation Technology at Contaminated Sites and Its Application].

    PubMed

    Bai, Li-ping; Luo, Yun; Liu, Li; Zhou, You-ya; Yan, Zeng-guang; Li, Fa-sheng

    2015-11-01

    Soil remediation technology screening is an important procedure in the supervision of contaminated sites. The efficiency and costs of contaminated site remediation will be directly affected by the applicability of soil remediation technology. The influencing factors include characteristics of contaminants, site conditions, remediation time and costs should be considered to determine the most applicable remediation technology. The remediation technology screening was commonly evaluated by the experienced expert in China, which limited the promotion and application of the decision making method. Based on the supervision requirements of contaminated sites and the research status at home and abroad, the screening method includes preliminary screening and explicit evaluation was suggested in this paper. The screening index system was constructed, and the extension theory was used to divide the technology grade. The extension theory could solve the problem of human interference in the evaluation process and index value assignment. A chromium residue contaminated site in China was selected as the study area, and the applicable remediation technologies were suggested by the screening method. The research results could provide a scientific and technological support for the supervision and management of contaminated sites in China.

  18. An assessment of the effectiveness and impact of electrokinetic remediation for pyrene-contaminated soil.

    PubMed

    Xu, Sujuan; Guo, Shuhai; Wu, Bo; Li, Fengmei; Li, Tingting

    2014-11-01

    The effectiveness of electrokinetic remediation for pyrene-contaminated soil was investigated by an anode-cathode separated system using a salt bridge. The applied constant voltage was 24 V and the electrode gap was 24 cm. Two types of soil (sandy soil and loam soil) were selected because of their different conductive capabilities. The initial concentrations of pyrene in these soil samples were 261.3mg/kg sandy soil and 259.8 mg/kg loam soil. After treatment of the sandy soil and loam soil for seven days, 56.8% and 20.1% of the pyrene had been removed respectively. Under the same power supply voltage, the removal of the pollutant from the sandy soil was greater than that from the loam soil, due to the higher current and lower pH. Further analysis revealed that the effectiveness of electrokinetic remediation was affected by the energy expenditure, and was associated with changes in soil properties. PMID:25458684

  19. Laboratory and field evaluation of the gas treatment approach for insitu remediation of chromate-contaminated soils

    SciTech Connect

    Thornton, E.C.; Jackson, R.L.

    1994-04-01

    Laboratory scale soil treatment tests have been conducted as part of an effort to develop and implement an in situ chemical treatment approach to the remediation of chromate-contaminated soils through the use of reactive gases. These tests involved three different soil samples that were contaminated with Cr(VI) at the 200 ppM level. Treatment of the contaminated soils was performed by passing 100 ppM and 2000 ppM concentrations of hydrogen sulfide in nitrogen through soil columns until a S:Cr mole ratio of 10:1 was achieved. The treated soils were then leached with groundwater or deionized water and analyzed to assess the extent of chromium immobilization. Test results indicate >90% immobilization of chromium and demonstrate that the treatment process is irreversible. Ongoing developmental efforts are being directed towards the demonstration and evaluation of the gas treatment approach in a field test at a chromate-contaminated site. Major planned activities associated with this demonstration include laboratory testing of waste site soil samples, design of the treatment system and injection/extraction well network, geotechnical and geochemical characterization of the test site, and identification and resolution of regulatory and safety requirements.

  20. Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, J.; Lu, H.; Fu, S.; Méndez, A.; Gascó, G.

    2014-02-01

    Anthropogenic activities are resulting in an increase of the use and extraction of heavy metals. Heavy metals cannot be degraded and hence accumulate in the environment, having the potential to contaminate the food chain. This pollution threatens soil quality, plant survival and human health. The remediation of heavy metals deserves attention, but it is impaired by the cost of these processes. Phytoremediation and biochar are two sound environmental technologies which could be at the forefront to mitigate soil pollution. This review provides an overview of the state of the art of the scientific research on phytoremediation and biochar application to remediate heavy-metal-contaminated soils. Research to date has attempted only in a limited number of occasions to combine both techniques, however we discuss the potential advantages of combining both, and the potential mechanisms involved in the interaction between phytoremediators and biochar. We identified specific research needs to ensure a sustainable use of phytoremediation and biochar as remediation tools.

  1. Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles.

    PubMed

    Su, Huijie; Fang, Zhanqiang; Tsang, Pokeung Eric; Zheng, Liuchun; Cheng, Wen; Fang, Jianzhang; Zhao, Dongye

    2016-11-15

    In this study, a kind of high-efficiency and low-cost biochar-supported zero-valent iron nanoparticles (nZVI@BC) was synthesised and used in the remediation of Cr(VI)-contaminated soil. The remediation tests indicated that the immobilisation efficiency of Cr(VI) and Crtotal was 100% and 91.94%, respectively, by 8g nZVI@BC per kg soil for 15 d of remediation. Further investigations showed that exchangeable Cr was almost completely converted to Fe-Mn oxides and organic matter. Moreover, nZVI@BC could effectively improve soil fertility and reduce the leachability of Fe caused by nZVI. At the same time, the cabbage mustard growth experiments indicated that the phytotoxicity of Cr(VI) and Fe in the seedlings was effectively decreased by nZVI@BC treatment, and that the cabbage mustard growth was enhanced. PMID:27469041

  2. Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method.

    PubMed

    Ouhadi, V R; Yong, R N; Shariatmadari, N; Saeidijam, S; Goodarzi, A R; Safari-Zanjani, M

    2010-01-15

    While the feasibility of using electrokinetics to decontaminate soils has been studied by several authors, the effects of soil composition on the efficiency of this method of decontamination has yet to be fully studied. This study focuses its attention on the effect of "calcite or carbonate" (CaCO(3)) on removal efficiency in electrokinetic soil remediation. Bench scale experiments were conducted on two soils: kaolinite and natural-soil of a landfill in Hamedan, Iran. Prescribed quantities of carbonates were mixed with these soils which were subsequently contaminated with zinc nitrate. After that, electrokinetic experiments were conducted to determine the efficiency of electrokinetic remediation. The results showed that an increase in the quantity of carbonate caused a noticeable increase on the contaminant retention of soil and on the resistance of soil to the contaminant removal by electrokinetic method. Because the presence of carbonates in the soil increases its buffering capacity, acidification is reduced, resulting in a decrease in the rate of heavy metal removed from the contaminant soil. This conclusion was validated by the evaluation of efficiency of electrokinetic method on a soil sample from the liner of a waste disposal site, with 28% carbonates. PMID:19733966

  3. Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: II. Biological and ecotoxicological evaluation.

    PubMed

    Pardo, T; Clemente, R; Alvarenga, P; Bernal, M P

    2014-07-01

    The feasibility of two organic materials (pig slurry and compost) in combination with hydrated lime for the remediation of a highly acidic trace elements (TEs) contaminated mine soil was assessed in a mesocosm experiment. The effects of the amendments on soil biochemical and ecotoxicological properties were evaluated and related with the main physicochemical characteristics of soil and soil solution. The original soil showed impaired basic ecological functions due to the high availability of TEs, its acidic pH and high salinity. The three amendments slightly reduced the direct and indirect soil toxicity to plants, invertebrates and microorganisms as a consequence of the TEs' mobility decrease in topsoil, reducing therefore the soil associated risks. The organic amendments, especially compost, thanks to the supply of essential nutrients, were able to improve soil health, as they stimulated plant growth and significantly increased enzyme activities related with the key nutrients in soil. Therefore, the use of compost or pig slurry, in combination with hydrated lime, decreased soil ecotoxicity and seems to be a suitable management strategy for the remediation of highly acidic TEs contaminated soils. PMID:24875876

  4. EDTA and HCl leaching of calcareous and acidic soils polluted with potentially toxic metals: remediation efficiency and soil impact.

    PubMed

    Udovic, Metka; Lestan, Domen

    2012-07-01

    The environmental risk of potentially toxic metals (PTMs) in soil can be diminished by their removal. Among the available remediation techniques, soil leaching with various solutions is one of the most effective but data about the impact on soil chemical and biological properties are still scarce. We studied the effect of two common leaching agents, hydrochloric acid (HCl) and a chelating agent (EDTA) on Pb, Zn, Cd removal and accessibility and on physico-chemical and biological properties in one calcareous, pH neutral soil and one non-calcareous acidic soil. EDTA was a more efficient leachant compared to HCl: up to 133-times lower chelant concentration was needed for the same percentage (35%) of Pb removal. EDTA and HCl concentrations with similar PTM removal efficiency decreased PTM accessibility in both soils but had different impacts on soil properties. As expected, HCl significantly dissolved carbonates from calcareous soil, while EDTA leaching increased the pH of the acidic soil. Enzyme activity assays showed that leaching with HCl had a distinctly negative impact on soil microbial and enzyme activity, while leaching with EDTA had less impact. Our results emphasize the importance of considering the ecological impact of remediation processes on soil in addition to the capacity for PTM removal.

  5. Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: II. Biological and ecotoxicological evaluation.

    PubMed

    Pardo, T; Clemente, R; Alvarenga, P; Bernal, M P

    2014-07-01

    The feasibility of two organic materials (pig slurry and compost) in combination with hydrated lime for the remediation of a highly acidic trace elements (TEs) contaminated mine soil was assessed in a mesocosm experiment. The effects of the amendments on soil biochemical and ecotoxicological properties were evaluated and related with the main physicochemical characteristics of soil and soil solution. The original soil showed impaired basic ecological functions due to the high availability of TEs, its acidic pH and high salinity. The three amendments slightly reduced the direct and indirect soil toxicity to plants, invertebrates and microorganisms as a consequence of the TEs' mobility decrease in topsoil, reducing therefore the soil associated risks. The organic amendments, especially compost, thanks to the supply of essential nutrients, were able to improve soil health, as they stimulated plant growth and significantly increased enzyme activities related with the key nutrients in soil. Therefore, the use of compost or pig slurry, in combination with hydrated lime, decreased soil ecotoxicity and seems to be a suitable management strategy for the remediation of highly acidic TEs contaminated soils.

  6. Reducing the bioavailability of cadmium in contaminated soil by dithiocarbamate chitosan as a new remediation.

    PubMed

    Yin, Zheng; Cao, Jingjing; Li, Zhen; Qiu, Dong

    2015-07-01

    Dithiocarbamate chitosan (DTC-CTS) was used as a new amendment for remediation of cadmium (Cd)-contaminated soils to reduce the Cd bioavailability. Arabidopsis thaliana was chosen as a model plant to evaluate its efficiency. It was found that DTC-CTS could effectively improve the growth of A. thaliana. The amount of Cd up-taken by A. thaliana could be decreased by as much as 50% compared with that grown in untreated Cd-contaminated soil samples. The chlorophyll content and the aerial biomass of Arabidopsis also increased substantially and eventually returned to a level comparable to plants grown in non-contaminated soils, with the addition of DTC-CTS. These findings suggested that DTC-CTS amendment could be effective in immobilizing Cd and mitigating its accumulation in plants grown in Cd-contaminated soils, with potential application as an in situ remediation of Cd-polluted soils.

  7. Remediation of contaminated soils using supercritical fluid extraction: a review (1994-2004).

    PubMed

    Saldaña, M D A; Nagpal, V; Guigard, S E

    2005-09-01

    Considerable effort is being made to remediate soils contaminated with petroleum hydrocarbons, polyaromatic hydrocarbons, polychlorinated biphenyls, dioxins, heavy metals and other organic and inorganic compounds that have resulted from industrial activities, accidental spills and improper waste disposal practices. Current remediation technologies may be limited when treating certain types of contaminated soils and therefore new, efficient and cost effective technologies are being investigated. Supercritical fluid extraction is a potential remediation technology for contaminated soils. It is a simple, fast and selective solvent extraction process that uses a supercritical fluid as the solvent. A commonly used fluid is carbon dioxide at pressures and temperatures greater than 7.4 MPa and 31 degrees C, respectively. In supercritical fluid extraction, the extracted contaminants first dissolve into the supercritical solvent and then these contaminants are separated from the supercritical solvent via a simple change in pressure and temperature conditions or by using a separation process. This paper provides a review of supercritical fluid extraction and its application to the remediation of contaminated soils. This review focuses on the removal of organic contaminants (such as petroleum hydrocarbons, polyaromatic hydrocarbons, polychlorinated biphenyls and others) and inorganic contaminants (such as heavy metals and radioactive elements) from soils. Recent data (1994-2004) on the supercritical fluid extraction of spiked soils and field-contaminated soils were collected. The success of supercritical fluid extraction as a method for removing these contaminants from soils is highlighted and some of the future research needed to develop it as a commercial-scale economic remediation technology are discussed. PMID:16196410

  8. Tourmaline combined with Phanerochaete chrysosporium to remediate agricultural soil contaminated with PAHs and OCPs.

    PubMed

    Wang, Cuiping; Yu, Li; Zhang, Zhiyuan; Wang, Baolin; Sun, Hongwen

    2014-01-15

    The potential application on tourmaline was explored. The combination of tourmaline and Phanerochaete chrysosporium was conducted to remediate the field soil from the Dagu Drainage River bank of Tianjin in China. The total PAH and OCP concentrations in the soil were 6.4±0.05 and 145.9±1.9mg/kg, respectively. During the 60 day remediation program, the remediation degradation rates of all the 16 U.S. EPA priority PAHs and OCPs were 53.2±4.7% and 43.5±3.1%, respectively. The PAH and OCP removal rates were 31.9±2.9% and 26.4±1.8%, respectively, in soil with the addition of tourmaline, and the removal rates were 40.5±2.3% and 34.2±3.9%, respectively, in soil with the addition of P. chrysosporium. Thus, the combination of tourmaline and P. chrysosporium promoted the bioremediation rate of PAHs and OCPs in the soil, compared with the rates obtained using tourmaline or P. chrysosporium individually for the remediation of PAH and OCP degradation. In addition, tourmaline can promote the generation of soil hydrogen peroxidase and invertase enzyme, significantly increase the indigenous bacterial community and the number of PAH and OCP-degraders compared to those in the control, and reduce the soil humic acid content. Hence, the present study provides a potential alternative for the remediation of soils contaminated by PAHs and OCPs. PMID:24333677

  9. Acoustically enhanced remediation of contaminated soils and ground water. Volume 1

    SciTech Connect

    1995-10-01

    The Phase 1 laboratory bench-scale investigation results have shown that acoustically enhanced remediation (AER) technology can significantly accelerate the ground water remediation of non-aqueous phase liquids (NAPLs) in unconsolidated soils. The testing also determined some of the acoustic parameters which maximize fluid and contaminant extraction rates. A technology merit and trade analysis identified the conditions under which AER could be successfully deployed in the field, and an analysis of existing acoustical sources and varying methods for their deployment found that AER technology can be successfully deployed in-situ. Current estimates of deployability indicate that a NAPL plume 150 ft in diameter can be readily remediated. This program focused on unconsolidated soils because of the large number of remediation sites located in this type of hydrogeologic setting throughout the nation. It also focused on NAPLs and low permeability soil because of the inherent difficult in the remediation of NAPLs and the significant time and cost impact caused by contaminated low permeability soils. This overall program is recommended for Phase 2 which will address the technology scaling requirements for a field scale test.

  10. Effects of remediation train sequence on decontamination of heavy metal-contaminated soil containing mercury.

    PubMed

    Hseu, Zeng-Yei; Huang, Yu-Tuan; Hsi, Hsing-Cheng

    2014-09-01

    When a contaminated site contains pollutants including both nonvolatile metals and Hg, one single remediation technology may not satisfactorily remove all contaminants. Therefore, in this study, chemical extraction and thermal treatment were combined as a remediation train to remove heavy metals, including Hg, from contaminated soil. A 0.2 M solution of ethylenediamine tetraacetic acid (EDTA) was shown to be the most effective reagent for extraction of considerable amounts of Cu, Pb, and Zn (> 50%). Hg removal was ineffective using 0.2 M EDTA, but thermogravimetric analysis suggested that heating to 550 degrees C with a heating rate of 5 degrees C/min for a duration of 1 hr appeared to be an effective approach for Hg removal. With the employment of thermal treatment, up to 99% of Hg could be removed. However executing thermal treatment prior to chemical extraction reduced the effectiveness of the subsequent EDTA extraction because nonvolatile heavy metals were immobilized in soil aggregates after the 550 degrees C treatment. The remediation train of chemical extraction followed by thermal treatment appears to remediate soils that have been contaminated by many nonvolatile heavy metals and Hg. Implications: A remediation train conjoining two or more techniques has been initialized to remove multiple metals. Better understandings of the impacts of treatment sequences, namely, which technique should be employed first on the soil properties and the decontamination efficiency, are in high demand. This study provides a strategy to remove multiple heavy metals including Hg from a contaminated soil. The interactions between thermal treatment and chemical extraction on repartitioning of heavy metals was revealed. The obtained results could offer an integrating strategy to remediate the soil contaminated with both heavy metals and volatile contaminants. PMID:25282998

  11. Simultaneous removal of organic contaminants and heavy metals from kaolin using an upward electrokinetic soil remediation process.

    PubMed

    Wang, Jing-Yuan; Huang, Xiang-Jun; Kao, Jimmy C M; Stabnikova, Olena

    2007-06-01

    Kaolins contaminated with heavy metals, Cu and Pb, and organic compounds, p-xylene and phenanthrene, were treated with an upward electrokinetic soil remediation (UESR) process. The effects of current density, cathode chamber flushing fluid, treatment duration, reactor size, and the type of contaminants under the vertical non-uniform electric field of UESR on the simultaneous removal of the heavy metals and organic contaminants were studied. The removal efficiencies of p-xylene and phenanthrene were higher in the experiments with cells of smaller diameter or larger height, and with distilled water flow in the cathode chamber. The removal efficiency of Cu and Pb were higher in the experiments with smaller diameter or shorter height cells and 0.01M HNO(3) solution as cathode chamber flow. In spite of different conditions for removal of heavy metals and organics, it is possible to use the upward electrokinetic soil remediation process for their simultaneous removal. Thus, in the experiments with duration of 6 days removal efficiencies of phenanthrene, p-xylene, Cu and Pb were 67%, 93%, 62% and 35%, respectively. The experiment demonstrated the feasibility of simultaneous removal of organic contaminants and heavy metals from kaolin using the upward electrokinetic soil remediation process. PMID:17110023

  12. Remediation of saline-sodic soil with flue gas desulfurization gypsum in a reclaimed tidal flat of southeast China.

    PubMed

    Mao, Yumei; Li, Xiaping; Dick, Warren A; Chen, Liming

    2016-07-01

    Salinization and sodicity are obstacles for vegetation reconstruction of coastal tidal flat soils. A study was conducted with flue gas desulfurization (FGD)-gypsum applied at rates of 0, 15, 30, 45 and 60Mg/ha to remediate tidal flat soils of the Yangtze River estuary. Exchangeable sodium percentage (ESP), exchangeable sodium (ExNa), pH, soluble salt concentration, and composition of soluble salts were measured in 10cm increments from the surface to 30cm depth after 6 and 18months. The results indicated that the effect of FGD-gypsum is greatest in the 0-10cm mixing soil layer and 60Mg/ha was the optimal rate that can reduce the ESP to below 6% and decrease soil pH to neutral (7.0). The improvement effect was reached after 6months, and remained after 18months. The composition of soluble salts was transformed from sodic salt ions mainly containing Na(+), HCO3(-)+CO3(2-) and Cl(-) to neutral salt ions mainly containing Ca(2+) and SO4(2-). Non-halophyte plants were survived at 90%. The study demonstrates that the use of FGD-gypsum for remediating tidal flat soils is promising.

  13. REMEDIAL COSTS FOR MTBE IN SOIL AND GROUND WATER

    EPA Science Inventory

    Widespread contamination of methyl tert-butyl ether (MTBE) in ground water has raised concerns about the increased cost of remediation of MTBE releases compared to BTEX-only sites. To evaluate these costs, cost information for 311 sites was furnished by U.S. EPA Office of Underg...

  14. Bioremediation: An effective remedial alternative for petroleum hydrocarbon-contaminated soil

    SciTech Connect

    Autry, A.R.; Ellis, G.M. )

    1992-11-01

    Bioremediation technologies applied to contaminated soil usually mitigate environmental rate-limiting factors so that biodegradation rates are maximized for any given compound. A newer approach to soil bioremediation mitigates these environmental rate-limiting factors simultaneously, initially allowing biodegradation to proceed at a maximal rate without the need for additional action. This technology involves intensive mixing of contaminated soil in a ribbon blender, introduction of a protein-based, surfactant-containing nutrient additive to the soil while in the mixer, physical entrainment of oxygen-containing air into the soil, discharge of the mixed soil from the mixer, and placement of the mixed soil in curing piles, for curing, during which time biodegradation can occur. No additional treatment actions (e.g., tillage, fertilizer or water applications) are typically required. The remediation, using this approach, of a former distribution facility which possessed soil contaminated with gasoline, is summarized. 22 refs., 6 figs.

  15. Environmental features of two commercial surfactants widely used in soil remediation.

    PubMed

    Franzetti, Andrea; Di Gennaro, Patrizia; Bevilacqua, Alessandro; Papacchini, Maddalena; Bestetti, Giuseppina

    2006-03-01

    One of the main limitations for a wider application of surfactants in soil remediation is the lack of knowledge about environmental fate and toxicity of surfactant itself especially for in situ application. Sorption behaviour, biodegradability, toxicity of parent compound and its metabolites are important processes that affect environmental fate of surfactants in site remediation applications. Tween 80 (poly(oxyethylene)(20)-sorbitane monooleate) and Aerosol MA+80 (dihexyl sodium sulfosuccinate) are surfactants that have been tested in laboratory and field scale remediation of soil and groundwater. In this work, the sorption and biodegradability of these surfactants were assessed to provide conditions and limitations for their use. The soil used in this experimentation was analysed for organic carbon content, soil bacteria, and size fraction and resulted to be a good model because is characterised by mean values for almost all considered parameters. Tween 80 showed high degree of biodegradability but a high affinity for soil matrix. Results suggest that Tween 80 could find its best application in ex situ solid phase remediation like ex situ bioremediation; its high affinity to soil could limit in situ applications. Biodegradation tests for Aerosol MA+80 show low degree of biodegradability and mineralisation. Biodegradation experiments, coupled with analysis of toxicity, could support the hypothesis that degradation of Aerosol MA+80 is not complete and leads to an accumulation of intermediates with at least the same toxicity of the parental compound. Therefore, aquifer remediation application with Aerosol MA+80 has to be conducted with necessary precautions to avoid product loss and excess surfactant should be flushed from the soil.

  16. Characteristics of biochar and its application in remediation of contaminated soil.

    PubMed

    Tang, Jingchun; Zhu, Wenying; Kookana, Rai; Katayama, Arata

    2013-12-01

    Biochar is produced by thermal decomposition of biomass under oxygen-limited conditions (pyrolysis), and it has received attention in soil remediation and waste disposal in recent years. The characteristics of biochar are influenced mainly by the preparation temperature and biomass. Higher pyrolysis temperature often results in the increased surface area and carbonized fraction of biochar leading to high sorption capability for pollutants. Biochars derived from various source materials show different properties of surface area, porosity and the amount of functional groups which are important concerning on the effect of biochar. Biochar has been proved to be effective in improving soil properties and increasing crop biomass. It has also been suggested that it can even enhance crop resistance to disease. Biochar has recently been used to remediate soil with both heavy metal and organic pollutants. The mechanism is electrostatic interaction and precipitation in the case of heavy metal, and the surface adsorption, partition and sequestration in the case of organic contaminants. However, application of biochar in soil has been shown to result in decreased efficacy of pesticides, which indicates a trade-off between the potentially promising effect of biochar on pesticide remediation and its negative effect on pesticide efficacy. While arguments on the effectiveness of biochar appear sound, further research is needed prior to widespread application of biochar in soil remediation.

  17. Remediation of hydrocarbon-contaminated soils by ex situ microwave treatment: technical, energy and economic considerations.

    PubMed

    Falciglia, P P; Vagliasindi, F G A

    2014-01-01

    In this study, the remediation of diesel-polluted soils was investigated by simulating an ex situ microwave (MW) heating treatment under different conditions, including soil moisture, operating power and heating duration. Based on experimental data, a technical, energy and economic assessment for the optimization of full-scale remediation activities was carried out. Main results show that the operating power applied significantly influences the contaminant removal kinetics and the moisture content in soil has a major effect on the final temperature reachable during MW heating. The first-order kinetic model showed an excellent correlation (r2 > 0.976) with the experimental data for residual concentration at all operating powers and for all soil moistures tested. Excellent contaminant removal values up to 94.8% were observed for wet soils at power higher than 600 W for heating duration longer than 30 min. The use of MW heating with respect to a conventional ex situ thermal desorption treatment could significantly decrease the energy consumption needed for the removal of hydrocarbon contaminants from soils. Therefore, the MW treatment could represent a suitable cost-effective alternative to the conventional thermal treatment for the remediation of hydrocarbon-polluted soil.

  18. SRS Data Report for Lynntech Soil Ozone Treatment Demonstration Adjacent to the 321-M Solvent Storage Tank Pad

    SciTech Connect

    Vangelas, K.M.

    2000-08-29

    At large industrial sites like the A/M Area of the Savannah River Site (SRS), undissolved dense non-aqueous phase liquid (DNAPL) in soil and groundwater is the most significant barrier to successful clean up. DNAPL acts as a reservoir that will continue to generate contaminant levels far above remediation concentration goals well into the future. In an effort to achieve remediation goals and reduce future costs, the SRS DNAPL program is evaluating technologies that will recycle or destroy DNAPL. In situ oxidation is one class of DNAPL destruction technologies. A demonstration of this class of technologies was conducted at SRS in the winter of 1999 and spring of 2000 employing ozone as the oxidant. Lynntech Inc. through a Small Business Innovative Research grant partnered with the Savannah River Site to demonstrate their soil ozone treatment technology. The Savannah River Site provided the demonstration location and field support of the test. This demonstration involved treating a small vadose zone DNAPL plume in the A/M Area over a 29 day period. Approximately 2000 pounds of DNAPL (perchloroethylene [PCE] and trichloroethylene [TCE]) were removed through the soil vapor extraction unit (SVEU). Soil core data indicate that approximately 300 pounds of DNAPL were removed from the test site. This report documents the data collected by SRS personnel during the demonstration of Lynntech's Soil Ozone Treatment Technology.

  19. [Effects of strong reductive approach on remediation of degraded facility vegetable soil].

    PubMed

    Zhu, Tong-Bin; Meng, Tian-Zhu; Zhang, Jin-Bo; Cai, Zu-Cong

    2013-09-01

    High application rate of chemical fertilizers and unreasonable rotation in facility vegetable cultivation can easily induce the occurrence of soil acidification, salinization, and serious soil-borne diseases, while to quickly and effectively remediate the degraded facility vegetable soil can considerably increase vegetable yield and farmers' income. In this paper, a degraded facility vegetable soil was amended with 0, 3.75, 7.50, and 11.3 t C x hm(-2) of air-dried alfalfa and flooded for 31 days to establish a strong reductive environment, with the variations of soil physical and chemical properties and the cucumber yield studied. Under the reductive condition, soil Eh dropped quickly below 0 mV, accumulated soil NO3(-) was effectively eliminated, soil pH was significantly raised, and soil EC was lowered, being more evident in higher alfalfa input treatments. After treated with the strong reductive approach, the cucumber yield in the facility vegetable field reached 53.3-57.9 t x hm(-2), being significantly higher than that in un-treated facility vegetable field in last growth season (10.8 t x hm(-2)). It was suggested that strong reductive approach could effectively remediate the degraded facility vegetable soil in a short term.

  20. Risk assessment and remediation suggestion of impacted soil by produced water associated with oil production.

    PubMed

    Abdol Hamid, Hashim R; Kassim, Walid M S; El Hishir, Abdulah; El-Jawashi, Salem A S

    2008-10-01

    Produced water is water trapped in underground formations that is brought to the surface along with oil or gas production. Oilfield impacted soil is the most common environmental problem associated with oil production. The produced water associated with oil-production contaminates the soil and causes the outright death of plants, and the subsequent erosion of topsoil. Also, impacted soil serves to contaminate surface waters and shallow aquifers. This paper is intended to provide an approach for full characterization of contaminated soil by produced water, by means of analysis of both the produced water and the impacted soil using several recommended analytical techniques and then identify and assay the main constituents that cause contamination of the soil. Gialo-59 oilfield (29N, 21E), Libya, has been chosen as the case study of this work. The field has a long history of petroleum production since 1959, where about 300,000 bbl of produced water be discharged into open pit. Test samples of contaminated soil were collected from one of the disposal pits. Samples of produced water were collected from different points throughout the oil production process, and the analyses were carried out at the labs of Libyan Petroleum Institute, Tripoli, Libya. The results are compared with the local environmental limiting constituents in order to prepare for a plan of soil remediation. The results showed that the main constituents (pollutants) that impact the soil are salts and hydrocarbon compounds. Accordingly; an action of soil remediation has been proposed to remove the salts and degradation of hydrocarbons.

  1. The use of microbial gene abundance in the development of fuel remediation guidelines in polar soils.

    PubMed

    Richardson, Elizabeth L; King, Catherine K; Powell, Shane M

    2015-04-01

    Terrestrial fuel spills in Antarctica commonly occur on ice-free land around research stations as the result of human activities. Successful spill clean-ups require appropriate targets that confirm contaminated sites are no longer likely to pose environmental risk following remediation. These targets are based on knowledge of the impacts of contaminants on the soil ecosystem and on the response of native biota to contamination. Our work examined the response of soil microbial communities to fuel contamination by measuring the abundance of genes involved in critical soil processes, and assessed the use of this approach as an indicator of soil health in the presence of weathered and fresh fuels. Uncontaminated and contaminated soils were collected from the site of remediation treatment of an aged diesel spill at Casey Station, East Antarctica in December 2012. Uncontaminated soil was spiked with fresh Special Antarctic Blend (SAB) diesel to determine the response of the genes to fresh fuel. Partly remediated soil containing weathered SAB diesel was diluted with uncontaminated soil to simulate a range of concentrations of weathered fuel and used to determine the response of the genes to aged fuel. Quantitative PCR (qPCR) was used to measure the abundance of rpoB, alkB, cat23, and nosZ in soils containing SAB diesel. Differences were observed between the abundance of genes in control soils versus soils containing weathered and fresh fuels. Typical dose-response curves were generated for genes in response to the presence of fresh fuel. In contrast, the response of these genes to the range of weathered fuel appeared to be due to dilution, rather than to the effect of the fuel on the microbial community. Changes in microbial genes in response to fresh contamination have potential as a sensitive measure of soil health and for assessments of the effect of fuel spills in polar soils. This will contribute to the development of remediation guidelines to assist in management

  2. Biological Remediation of Soil: An Overview of Global Market and Available Technologies

    NASA Astrophysics Data System (ADS)

    Singh, Ajay; Kuhad, Ramesh C.; Ward, Owen P.

    Due to a wide range of industrial and agricultural activities, a high number of chemical contaminants is released into the environment, causing a significant concern regarding potential toxicity, carcinogenicity, and potential for bioaccumulation in living systems of various chemicals in soil. Although microbial activity in soil accounts for most of the degradation of organic contaminants, chemical and physical mechanisms can also provide significant transformation pathways for these compounds. The specific remediation processes that have been applied to clean up contaminated sites include natural attenuation, landfarming, biopiling or composting, contained slurry bioreactor, bioventing, soil vapor extraction, thermal desorption, incineration, soil washing and land filling (USEPA 2004).

  3. DESIGN OF A SURFACTANT REMEDIATION FIELD DEMONSTRATION BASED ON LABORATORY AND MODELINE STUDIES

    EPA Science Inventory

    Surfactant-enhanced subsurface remediation is being evaluated as an innovative technology for expediting ground-water remediation. This paper reports on laboratory and modeling studies conducted in preparation for a pilot-scale field test of surfactant-enhanced subsurface remedia...

  4. Remediation of Hydrocarbon-Contaminated Soil by Washing with Novel Chemically Modified Humic Substances.

    PubMed

    García-Díaz, César; Nebbioso, Antonio; Piccolo, Alessandro; Barrera-Cortés, Josefina; Martínez-Palou, Rafael

    2015-11-01

    In this work, humic (HA) and fulvic acid (FA) were chemically modified by esterification and etherification with alkanes under microwave (MW) irradiation to improve their surfactant properties for the remediation of total petroleum hydrocarbons (TPHs)-contaminated soil. Humic acid and FA were evaluated as surfactant for the remediation of soil by means of washing an aged highly TPH-contaminated soil (50,000 mg TPH kg) sampled from a Mexican petrochemical area. The efficiency of chemical modification of HA and FA was increased and accelerated under MW irradiation with respect to that of conventional heating. Results showed that modified HA and FA were able to considerably reduce the contamination of TPH-polluted soils. The best results were obtained with HA modified by esterification with -dodecanol and FA modified with -decanol, which increased the hydrocarbon removal by 24 and 18%, respectively, with respect to amounts removed by the unmodified derivatives.

  5. Use of immunoassay testing and landfarming to remediate pesticide - contaminated soil at agrichemical businesses

    SciTech Connect

    Frank, J.F.

    1994-12-31

    The recent combination of two new technologies - immunoassay and landfarming - now offers an efficient, effective and economical option in the remediation of pesticide-contaminated soil. Participation in 28 landfarming projects in Illinois - 20 with pesticide-contaminated soil and eight with fuel-contaminated soil - has convinced the author that the combination offers the best method of remediation for most agrichemical sites. The procedures are currently used in Illinois as well as several other states and are being considered in even more. This paper describes the legislative and regulatory background for landfarming; defines immunoassay testing; defines landfarming: (1) contaminated site sampling and analysis; (2) education of participants; (3) selection of cooperator and host farm; (4) soil spreading considerations; a. rates, b. techniques; host site sampling and analysis; and factors affecting cost.

  6. Modern approaches to remediation of heavy metal polluted soils: A review

    NASA Astrophysics Data System (ADS)

    Koptsik, G. N.

    2014-07-01

    The main principles and approaches to remediation of in situ polluted soils aimed at the removal or control of heavy metals (washing, stabilization, phytoremediation, and natural restoration) are analyzed. The prospects of gentle methods of stabilization oriented at the reduction of the mobility and biological availability of heavy metals due to the processes of adsorption, ionic exchange, and precipitation are emphasized. The use of sorbents and the traditional application of liming and phosphates to fix metal pollutants in soils is considered. The necessary conditions for successful soil remediation are the assessment of its economic efficiency, the analysis of the ecological risks, and confirming the achievement of the planned purposes related to the content of available metals in the soils.

  7. Risk-based assessment of soil and groundwater quality in The Netherlands: standards and remediation urgency.

    PubMed

    Swartjes, F A

    1999-12-01

    To assess soil and groundwater quality two generic (i.e. multifunctional) risk-based standards, Target and Intervention Value, have been developed, in the framework of the Dutch Soil Protection Act. These standards allow soil and groundwater to be classified as clean, slightly contaminated or seriously contaminated. The Target Value is based on potential risks to ecosystems, while the Intervention Value is based on potential risks to humans and ecosystems. In the case of serious soil contamination the site has, in principle, to be remediated, making it necessary to determine the remediation urgency on the basis of actual (i.e. site-specific) risks to humans and ecosystems and, besides, actual risks due to contaminant migration.

  8. Evaluation of the assimilation of As by vegetables in contaminated soils submitted to a remediation process

    NASA Astrophysics Data System (ADS)

    Pérez-Sirvent, Carmen; Martinez Sanchez, Maria Jose; Agudo, Ines; Belen Martinez, Lucia; Bech, Jaume

    2016-04-01

    A greenhouse trial was carried out to evaluate the assimilation of heavy metals by three types of plants (lettuce, onion and broccoli), different parts of which are destined for human and farm animals consumption (leaves, roots, fruits). The experiments were carried out to check the validity of the use of calcareous materials to recover soils contaminated with heavy metals. The aim of this work was to apply a technology for decontamination to ensure that As do not enter into the trophic chain at risky levels and analyze and to assess the risk pre and post operational of the different treatments proposed. The materials used was a soils to be remediated (mining soils) and the materials used for remediation were lime filler and Construction and Demolition Waste (CDW). The plants were cultivated in greenhouse with several types of soil. Five experiments were used, namely, Tc (contaminated soil), T1 (uncontaminated soil (blank soil)), T2 (50% T1 + 50% Tc), T3 (Tc + (25%) lime residues coming from quarries) and T4 (Tc + (25%) residues coming from demolition and construction activities). The entire project involves twenty experiments which were prepared from soils highly contaminated mixed with two types of calcareous materials. The total As content of the soils samples, rhizosphere and vegetable samples, were measured and the translocation factor (TF), which is defined as the ratio of metal concentration in the leaves or shoots to the roots, and the Bioconcentration factor (BCF), which is defined as the ratio of metal concentration in the roots to that in soil were calculated. The use of CDR is shown to be a suitable way for remediating soils contaminated by metals. The methodology permits a revalorization of CDW.

  9. Pb, Zn and Cd mobility, availability and fractionation in aged soil remediated by EDTA leaching.

    PubMed

    Udovic, Metka; Lestan, Domen

    2009-03-01

    Soil washing remediation techniques usually remove only the labile heavy metal (HM) species from the soil, leaving the residual ones in less available/mobile forms, thus disturbing the chemical equilibrium among different species of HM in the soil. Re-establishing such equilibrium and shifting HM back to more available/mobile chemical forms could occur after exposing the remediated soil to environmental abiotic (ageing) factors. Contaminated soil from a smelter site (Pb 4600 mg kg(-1), Zn 1800 mg kg(-1), Cd 30 mg kg(-1)) was leached with increasing EDTA concentrations (2.5, 5.0, 10.0, 20.0, 40.0 and 4-consecutive steps of 40.0 mmol EDTA kg(-1) of soil). A gradient of removed HM was reached: from 6% to 73% of initial Pb, from 3% to 23% of initial Zn and from 17% to 74% of initial Cd were removed. Repetitive temperature changes (105 degrees C and -20 degrees C) were used to mimic abiotic factors acting on residual HM after EDTA soil leaching in saturated soil at 10% and 90% of soil water holding capacity. Fractionation using sequential extractions, mobility, and phytoavailability of Pb, Zn and Cd and Pb oral bioavailability were determined for aged and non-aged soil. The ageing treatment consistently lowered HM phytoavailability in the original (non-leached) and all treated (chelant-leached) soils. However, Pb, Zn and Cd behaved differently from each other; Pb mobility increased, Cd mobility decreased, while Zn mobility did not change. The results indicate that abiotic (ageing) processes change the availability/mobility of residual HM in all leaching treatments and should thus be considered in final remediation effectivity evaluation.

  10. DEMONSTRATION BULLETIN: CYCLONE FURNACE SOIL VITRI- FICATION TECHNOLOGY - BABCOCK & WILCOX

    EPA Science Inventory

    Babcock and Wilcox's (B&W) cyclone furnace is an innovative thermal technology which may offer advantages in treating soils containing organics, heavy metals, and/or radionuclide contaminants. The furnace used in the SITE demonstration was a 4- to 6-million Btu/hr pilot system....

  11. Enhancing electrokinetic remediation of cadmium- contaminated soils with stepwise moving anode method.

    PubMed

    Chen, Xue J; Shen, Zhe M; Yuan, Tao; Zheng, Shen S; Ju, Bing X; Wang, Wen H

    2006-01-01

    This paper proposed an innovative approach by stepwise moving anode towards cathode to enhance the cadmium (Cd) removal from soil during the process of electrokinetic (EK) remediation. Fixed anode tests and moving anode tests were carried out for 60 hours to compare their performances. The anode-cathode spacing was 21 cm. Constant voltage grade of 1.0 V cm(-1) was applied in this study. The parameters included pH, electrical conductivity, current, Cd concentration and speciation distributions, energy consumptions, etc. It was found that the pH values in the moving anode tests were relatively lower than those of the fixed tests. In the moving anode test, the removal efficiency of Cd in the soils at the fraction of S4 was enhanced by 54.9% compared with that of the fixed anode tests. After 60 hours of treatment, approximately 80% of the spiked soils (100.63 mg x kg(-1) of Cd) in the system were successfully remedied in the moving anode tests; and the mean removal efficiency was 73% for actual field-contaminated soil (54.26 mg x kg(-1) of Cd). It is effective to remedy actual contaminated soils. In addition, the cumulative energy consumptions were 59.29 kWhm(-3) and 31.52 kWhm(-3) for the fixed and moving tests, respectively. The results revealed that the Cd removal efficiency was improved by the moving anode method. Moreover, less energy was consumed in the moving test. The proposed approach does not need to introduce extra chemicals nor adjust the pH in the system to enhance the Cd removal by EK remediation. The basic idea proposed in this paper provides a novel and environmental friendly method to enhance the EK remediation of heavy metals contaminated soils. PMID:17000543

  12. Low-concentration tailing and subsequent quicklime-enhanced remediation of volatile chlorinated hydrocarbon-contaminated soils by mechanical soil aeration.

    PubMed

    Ma, Yan; Du, Xiaoming; Shi, Yi; Xu, Zhu; Fang, Jidun; Li, Zheng; Li, Fasheng

    2015-02-01

    Mechanical soil aeration has long been regarded as an effective ex-situ remediation technique and as suitable for remediation of large-scale sites contaminated by volatile organic compounds (VOCs) at low cost. However, it has been reported that the removal efficiency of VOCs from soil is relatively low in the late stages of remediation, in association with tailing. Tailing may extend the remediation time required; moreover, it typically results in the presence of contaminants residues at levels far exceeding regulations. In this context, the present study aimed to discuss the tailing that occurs during the process of remediation of soils contaminated artificially with volatile chlorinated hydrocarbons (VCHs) and to assess possible quicklime-enhanced removal mechanisms. The results revealed the following conclusions. First, temperature and aeration rate can be important controls on both the timing of appearance of tailing and the levels of residual contaminants. Furthermore, the addition of quicklime to soil during tailing can reduce the residual concentrations rapidly to below the remedial target values required for site remediation. Finally, mechanical soil aeration can be enhanced using quicklime, which can improve the volatilization of VCHs via increasing soil temperature, reducing soil moisture, and enhancing soil permeability. Our findings give a basic understanding to the elimination of the tailing in the application of mechanical soil aeration, particularly for VOCs-contaminated soils.

  13. Remediation of PCB contaminated soils in the Canadian Arctic: excavation and surface PRB technology.

    PubMed

    Kalinovich, Indra; Rutter, Allison; Poland, John S; Cairns, Graham; Rowe, R Kerry

    2008-12-15

    The site BAF-5 is located on the summit of Resolution Island, Nunavut, just southeast of Baffin Island at 61 degrees 35'N and 60 degrees 40'W. The site was part of a North American military defense system established in the 1950s that became heavily contaminated with PCBs during and subsequent, its operational years. Remediation through excavation of the PCB contaminated soil at Resolution Island began in 1999 and at its completion in 2006 approximately 5 tonnes of pure PCBs in approximately 20,000 m3 of soil were remediated. Remediation strategies were based on both quantity of soil and level of contamination in the soil. Excavation removed 96% of the PCB contaminated soil on site. In 2003, a surface funnel-and-gate permeable reactive barrier was design and constructed to treat the remaining contamination left in rock crevices and inaccessible areas of the site. Excavation had destabilized contaminated soil in the area, enabling contaminant migration through erosion and runoff pathways. The barrier was designed to maximize sedimentation through settling ponds. This bulk removal enabled the treatment of highly contaminated fines and water through a permeable gate. The increased sediment loading during excavation required both modifications to the funnel and a shift to a more permeable, granular system. Granulated activated charcoal was chosen for its ability to both act as a particle retention filter and adsorptive filter. The reduction in mass of PCB and volume of soils trapped by the funnel of the barrier indicate that soils are re-stabilizing. In 2007, nonwoven geotextiles were re-introduced back into the filtration system as fine filtering could be achieved without clogging. Monitoring sites downstream indicate that the barrier system is effective. This paper describes the field progress of PCB remediation at Resolution Island.

  14. [Assessment of TVOC and odor in the remediation site of contaminated soil and groundwater using electronic nose].

    PubMed

    Tian, Xiu-Ying; Cai, Qiang; Liu, Rui; Zhang, Yong-Ming

    2013-02-01

    According to the conditions of a contaminated soil and groundwater remediation site in Shanghai, the self-built electronic nose was applied to detect VOCs and odor of previously remedied soil and groundwater, remedying soil and groundwater, and the air above and around the site. Combining the formula of TPI and OPI, the value of each point was got and was shown in figures. Results showed: 1. Comparing the determination results of previously remedied with remedying contaminated soil and groundwater, the concentration of TVOC and odor was overall declined. The result was consistent with the fact. The detection result of electronic nose was proved to be right; 2. In the remediation process of soil and groundwater, the volatilization of VOCs and odor was inflected by temperature and works of crushing, adding medicine and turning the soil on time. The concentration showed a trend of overall decline with stage rising, so the electronic noses can be used for dynamic monitoring of the whole remediation process; 3. Combined with the GIS, the electronic noses can preliminary assess space pollution situation caused by the remediation of contaminated soil and groundwater and the influence on the residence in the surrounding region. However, further study on the refined classification of the impact degree is needed.

  15. Response of winter birds to soil remediation along the Columbia River at the Hanford Site.

    PubMed

    Becker, J M; McKinstry, C A

    2004-01-01

    The Columbia River at the Hanford Site, located in south-central Washington State, U.S.A., is a regionally important refugium for overwintering birds. Some of the river shoreline has been designated by the U.S. Department of Energy for environmental clean-up following past production of materials for nuclear weapons. We evaluated the effects of soil remediation on winter birds at six inactive nuclear reactor areas. Remediation activities consisted of daily excavation and removal of approximately 1035 t of contaminated soil from previously herbicided and denuded areas located between 30 and 400 m and mostly in line-of-sight of the river shoreline. Remediation activities had no apparent effect on numbers of riverine or terrestrial birds using adjacent undisturbed shoreline and riparian habitat. PMID:15074620

  16. Response of winter birds to soil remediation along the Columbia River at the Hanford Site

    SciTech Connect

    Becker, James M.; McKinstry, Craig A.

    2004-04-01

    The Columbia River at the Hanford Site, located in south-central Washington State, USA, is a regionally important refugium for overwintering birds. Some of the river shoreline has been designated by the U.S. Department of Energy for environmental clean-up following past production of materials for nuclear weapons. We evaluated the effects of soil remediation on winter birds at six inactive nuclear reactor areas. Remediation activities consisted of daily excavation and removal of approximately 1,035 t of contaminated soil from previously herbicided and denuded areas located between 30 m and 400 m and mostly in line-of-sight of the river shoreline. Remediation activities had no apparent effect on numbers of riverine or terrestrial birds using adjacent undisturbed shoreline and riparian habitat.

  17. Response of winter birds to soil remediation along the Columbia River at the Hanford Site.

    PubMed

    Becker, J M; McKinstry, C A

    2004-01-01

    The Columbia River at the Hanford Site, located in south-central Washington State, U.S.A., is a regionally important refugium for overwintering birds. Some of the river shoreline has been designated by the U.S. Department of Energy for environmental clean-up following past production of materials for nuclear weapons. We evaluated the effects of soil remediation on winter birds at six inactive nuclear reactor areas. Remediation activities consisted of daily excavation and removal of approximately 1035 t of contaminated soil from previously herbicided and denuded areas located between 30 and 400 m and mostly in line-of-sight of the river shoreline. Remediation activities had no apparent effect on numbers of riverine or terrestrial birds using adjacent undisturbed shoreline and riparian habitat.

  18. Soil remediation by surface heating and vacuum extraction

    SciTech Connect

    Stegemeir, G.L.; Vinegar, H.J.

    1995-12-01

    A novel in-situ, thermal-vacuum method has been developed to remove contaminants from near-surface soils and pavements. Heat is supplied to the soil by downward conduction from a surface heater. Vaporized products are collected under an impermeable sheet into a vacuum system for further treatment or disposal.

  19. Remediation of degraded arable steppe soils in Moldova using vetch as green manure

    NASA Astrophysics Data System (ADS)

    Wiesmeier, M.; Lungu, M.; Hübner, R.; Cerbari, V.

    2015-01-01

    In the Republic of Moldova, non-sustainable arable farming led to severe degradation and erosion of fertile steppe soils (Chernozems). As a result, the Chernozems lost about 40% of their initial amounts of soil organic carbon (SOC). Aim of this study was to remediate degraded arable soils and promote carbon sequestration by implementation of cover cropping and green manuring in Moldova. Thereby, the suitability of the legume hairy vetch (Vicia sativa) as cover crop under the dry, continental climate of Moldova was examined. At two experimental sites, the effect of cover cropping on chemical and physical soil properties as well as on yields of subsequent main crops was determined. The results showed a significant increase of SOC after incorporation of hairy vetch due to a high above- and belowground biomass production that was related with a high input of carbon and nitrogen. A calculation of SOC stocks based on equivalent soil masses revealed a sequestration of around 3 t C ha-1 yr-1 as a result of hairy vetch cover cropping. The buildup of SOC was associated with an improvement of the soil structure as indicated by a distinct decrease of bulk density and a relative increase of macroaggregates at the expense of microaggregates and clods. As a result, yields of subsequent main crops increased by around 20%. Our results indicated that hairy vetch is a promising cover crop to remediate degraded steppe soils, control soil erosion and sequestrate substantial amounts of atmospheric C in arable soils of Moldova.

  20. [Combined remediation effects of arbuscular mycorrhizal fungi-legumes-rhizobium symbiosis on PCBs contaminated soils].

    PubMed

    Teng, Ying; Luo, Yong-Ming; Gao, Jun; Li, Zhen-Gao

    2008-10-01

    The combined remediation effects of dual inoculation with an arbuscular mycorrhizal fungus (AM) and rhizabium (Rhizobium meliloti) with a host plant (alfalfa) on PCBs contaminated soils was studied using pot experiments. The results showed that alfalfa had a clear role in PCBs removal in soils compared with treatments without alfalfa and inoculated microorganisms, PCBs concentration in lightly and heavily polluted soils decreased 15.8% and 23.5%, respectively. After planting alfalfa with single incubation of Glomus caledonium, PCBs concentration decreased 14.8% and 24.1% from lightly and heavily polluted soils, decreased 20.6% and 25.5% for single incubation of Rhizobium meliloti, respectively. After dual incubation with Glomus caledonium and Rhizobium meliloi, PCBs concentration in lightly and heavily polluted soils decreased 23.2% and 26.9%. We also observed that soil microbial communities in alfalfa rhizosphere soils had a higher carbon utilization rate, improving the functional diversity of the soil microbial community. The results suggest that dual incubation of Glomus caledonium and Rhizobium meliloti has great potential in remediation of PCBs contaminated soils.

  1. IS REMOVAL THE ONLY OPTION: IN SITU REMEDIATION OF METAL CONTAMINATED SOILS

    EPA Science Inventory

    The In-place Inactivation and Natural Ecological Restoration Technologies (IINERT) Soil-Metals Action Team was established in 11/95 as one of several Action Teams under the USEPA Remediation Technologies Development Forum (RTDF). Its primary goal was to examine in situ remediatio...

  2. CONTROL TECHNOLOGIES FOR REMEDIATION OF CONTAMINATED SOIL AND WASTE DEPOSITS AT SUPERFUND LEAD BATTERY RECYCLING SITES

    EPA Science Inventory

    This paper primarily addresses remediation of contaminated soils and waste deposits at defunct lead-acid battery recycling sites (LBRS) via immobilization and separation processes. A defunct LBRS is a facility at which battery breaking, secondary lead smelting, or both operations...

  3. [Effect of limestone and magnesite application on remediation of acidified forest soil in Chongqing, China].

    PubMed

    Yang, Yong-sen; Duan, Lei; Jin, Teng; Zhao, Da-wei; Zhang, Dong-bao; Hao, Ji-ming

    2006-09-01

    Effect of limestone and magnesite application on remediation of a typical acidified soil under a masson pine (Pinus massoniana) forest at Tieshanping, Chongqing in southwest China was studied through field experiments. The changes of soil water chemistry in different layers within one year after application of limestone or magnesite indicated that the remediation agents leaded to the recovery of acidified soil by significant increase of pH value and concentration of relative cation, i.e., Ca2+ or Mg2+, and notable decrease of inorganic monomeric aluminum (Ali). However, the accelerated leaching of NO3- and SO4(2-) might somewhat counteract the positive effects. Since the limestone powder applied was much finer and thus more soluble than the magnesite powder, it seemed that the addition of limestone was more effective than that of magnesite. However, the application of magnesite could probably improve the nutrient uptake and growth of plant, and thus limestone and magnesite should be used together. The change of soil water chemistry was much more notable in upper layer of soil than lower, which means that it will take long time to achieve the whole profile soil remediation.

  4. [Effect of limestone and magnesite application on remediation of acidified forest soil in Chongqing, China].

    PubMed

    Yang, Yong-sen; Duan, Lei; Jin, Teng; Zhao, Da-wei; Zhang, Dong-bao; Hao, Ji-ming

    2006-09-01

    Effect of limestone and magnesite application on remediation of a typical acidified soil under a masson pine (Pinus massoniana) forest at Tieshanping, Chongqing in southwest China was studied through field experiments. The changes of soil water chemistry in different layers within one year after application of limestone or magnesite indicated that the remediation agents leaded to the recovery of acidified soil by significant increase of pH value and concentration of relative cation, i.e., Ca2+ or Mg2+, and notable decrease of inorganic monomeric aluminum (Ali). However, the accelerated leaching of NO3- and SO4(2-) might somewhat counteract the positive effects. Since the limestone powder applied was much finer and thus more soluble than the magnesite powder, it seemed that the addition of limestone was more effective than that of magnesite. However, the application of magnesite could probably improve the nutrient uptake and growth of plant, and thus limestone and magnesite should be used together. The change of soil water chemistry was much more notable in upper layer of soil than lower, which means that it will take long time to achieve the whole profile soil remediation. PMID:17117649

  5. Kinetic constraints on theIn-situ remediation of soils contaminated with organic chemicals.

    PubMed

    Beck, A J; Jones, K C

    1995-07-01

    Cleanup of contaminated soils to comply with soil quality limits currently receives much interest.In-situ remediation of contaminated soils relies on the ability of the techniques employed to enhance the rate of release of contaminants from the soil-sorbed and nonaqueous phase liquid (NAPL) phases into the aqueous or gaseous phases from which they can be more readily removed and treated. Contaminant concentrations in these "environmentally mobile" forms usually decline over time so that the economic efficiency and the overall success of remediation technologies are subject to the "law of diminishing returns". In this paper we consider the "state of the art" in our understanding of NAPL dissolution and transport, desorption of soilsorbed contaminants and fluid flow in porous media. The extent to which these processes may constrain the success of bioremediation, pump-and-treat remediation and soil venting in relation to established soil quality limits is addressed. Finally, we suggest directions for future research and comment on legislative considerations. PMID:24234698

  6. Cosolubilization synergism occurrence in codesorption of PAH mixtures during surfactant-enhanced remediation of contaminated soil.

    PubMed

    Liang, Xujun; Guo, Chuling; Wei, Yanfu; Lin, Weijia; Yi, Xiaoyun; Lu, Guining; Dang, Zhi

    2016-02-01

    Surfactant-enhanced remediation (SER) has been widely applied in decontaminating PAH-polluted soil. Most researches focus on evaluating washing efficiency without considering pollutants' mutual interaction. This study aims to investigate cosolubilization effect between phenanthrene (Phe) and pyrene (Pyr) in nonionic surfactant Triton X-100 (TX100) solution on their codesorption performance from soil. Cosolubilization experiment showed that, when cosolubilized, solubility of Phe and Pyr in TX100 increased by 15.38% and 18.19%, respectively, as quantified by the deviation ratio of molar solubilization ratio in single and binary solute solubilization systems. The synergism may be due to the enlarged micelle volume caused by PAHs solubilized in the shell region of the micelle. The cosolubilization effect was further observed in the soil washing process. The strengthened TX100 solubilization capacity towards Phe and Pyr could increase the two PAHs' codesorption efficiency from soil, accompanied by synergistic extent of 6-15%. However, synergism in codesorption was weaker than that observed in the cosolubilization system, which may be related to surfactant loss to soil and PAH partition into soil organic matter and the sorbed surfactants. The improved remediation performance during codesorption of mixed PAHs implies the significance of combining PAHs' mutual interaction into evaluating SER, which may reduce the surfactant washing concentration and save remediation cost. PMID:26397474

  7. Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli.

    PubMed

    Achal, Varenyam; Pan, Xiangliang; Fu, Qinglong; Zhang, Daoyong

    2012-01-30

    Arsenic is a highly toxic metalloid and has posed high risk to the environment. As(III) is highly mobile in soil and leached easily into groundwater. The current remediation techniques are not sufficient to immobilize this toxic element. In the present study, an As(III) tolerant bacterium Sporosarcina ginsengisoli CR5 was isolated from As contaminated soil of Urumqi, China. We investigated the role of microbial calcite precipitated by this bacterium to remediate soil contaminated with As(III). The bacterium was able to grow at high As(III) concentration of 50mM. In order to obtain arsenic distribution pattern, five stage soil sequential extraction was carried out. Arsenic mobility was found to significantly decrease in the exchangeable fraction of soil and subsequently the arsenic concentration was markedly increased in carbonated fraction after bioremediation. Microbially induced calcite precipitation (MICP) process in bioremediation was further confirmed by ATR-FTIR and XRD analyses. XRD spectra showed presence of various biomineralization products such as calcite, gwihabaite, aragonite and vaterite in bioremediated soil samples. The results from this study have implications that MICP based bioremediation by S. ginsengisoli is a viable, environmental friendly technology for remediation of the arsenic contaminated sites.

  8. Conjunctive effect of CMC-zero-valent iron nanoparticles and FYM in the remediation of chromium-contaminated soils

    NASA Astrophysics Data System (ADS)

    Madhavi, Vemula; Prasad, Tollamadugu Naga Venkata Krishna Vara; Reddy, Balam Ravindra; Reddy, Ambavaram Vijay Bhaskar; Gajulapalle, Madhavi

    2014-04-01

    Chromium is an important industrial metal used in various products and processes but at the same time causing lethal environmental hazards. Remediation of Cr-contaminated soils poses both technological and economic challenges, as conventional methods are often too expensive and difficult to operate. Zero-valent iron particles at nanoscale are proposed to be one of the important reductants of Cr(VI), transforming the same into nontoxic Cr(III). In the present investigation, soils contaminated with Cr(VI) are allowed to react with the various loadings of zero-valent iron nanoparticles (Fe0) for a reaction period of 24 h. Fe0 nanoparticles were synthesized by the reduction of ferrous sulfate in the presence of sodium borohydride and stabilized with carboxy methyl cellulose and were characterized by scanning electron microscopy, energy dispersion spectroscopy, X-ray diffraction, UV-vis spectrophotometer, Fourier transform-infra red spectrophotometer, Raman spectroscopy, dynamic light scattering technique and zeta potential. Further, this work demonstrates the potential utilization of farm yard manure (FYM) and Fe0 nanoparticles in combination and individually for the effective remediation of Cr(VI)-contaminated soils. An increase in the reduction of Cr(VI) from 60 to 80 % was recorded with the increase in the loading of Fe0 nanoparticles from 0.1 to 0.3 mg/100 g individually and in combination with FYM ranging from 50 to 100 mg/100 g soil.

  9. Rhizosphere remediation of chlorpyrifos in mycorrhizospheric soil using ryegrass.

    PubMed

    Korade, Deepali L; Fulekar, M H

    2009-12-30

    The potential of ryegrass for rhizosphere bioremediation of chlorpyrifos in mycorrhizal soil was investigated by the green house pot culture experiments. The pot cultured soil amended at initial chlorpyrifos concentration of 10mg/kg was observed to be degraded completely within 7 days where the rest amended concentrations (25-100mg/kg) decreased rapidly under the influence of ryegrass mycorrhizosphere as the incubation progressed till 28 days. This bioremediation of chlorpyrifos in soil is attributed to the microorganisms associated with the roots in the ryegrass rhizosphere, therefore the microorganisms surviving in the rhizospheric soil spiked at highest concentration (100mg/kg) was assessed and used for isolation of chlorpyrifos degrading microorganisms. The potential degrader identified by 16s rDNA analysis using BLAST technique was Pseudomonas nitroreducens PS-2. Further, bioaugmentation for the enhanced chlorpyrifos biodegradation was performed using PS-2 as an inoculum in the experimental set up similar to the earlier. The heterotrophic bacteria and fungi were also enumerated from the inoculated and non-inoculated rhizospheric soils. In bioaugmentation experiments, the percentage dissipation of chlorpyrifos was 100% in the inoculated rhizospheric soil as compared to 76.24, 90.36 and 90.80% in the non-inoculated soil for initial concentrations of 25, 50 and 100mg/kg at the 14th, 21st and 28th day intervals respectively.

  10. Development of an ultrasonic process for soil remediation

    SciTech Connect

    Wu, J.M.; Huang, H.S.; Livengood, C.D.

    1995-06-01

    An ultrasonic process for the detoxification of carbon tetrachloride- (CCl{sub 4}{sup {minus}}) contaminated soil was investigated in the laboratory by using a batch irradiation reactor equipped with a 600-W ultrasonic power supply operated at a frequency of 20 kHz. Key parameters studied included soil characteristics, irradiation time, CCl{sub 4} concentration, steady-state operating temperature, applied ultrasonic-wave energy, and the ratio of soil to water in the system. The results of the experiments showed that (1) residual CCl{sub 4} concentrations could be decreased with longer irradiation periods and (2) detoxification efficiency was proportional to steady-state operating temperature and applied ultrasonic-wave energy. The characteristics of the contaminated soil were found to be an important factor in the design of an ultrasonic detoxification system. A soil-phase CCl{sub 4} concentration below 1 ppm (initial concentration of 56 ppm) was achieved through this process, indicating that the application of ultrasonic irradiation is feasible and effective in the detoxification of soil contaminated by organic compounds. On the basis of the experimental results, a schematic of a full-scale ultrasonic soil-detoxification system was developed. Improvements to this novel process are discussed.

  11. An experimental study on the bio-surfactant-assisted remediation of crude oil and salt contaminated soils.

    PubMed

    Zhang, Wen; Li, Jianbing; Huang, Guohe; Song, Weikun; Huang, Yuefei

    2011-01-01

    The effect of bio-surfactant (rhamnolipid) on the remediation of crude oil and salt contaminated soil was investigated in this study. The experimental results indicated that there was a distinct decline of total petroleum hydrocarbon (TPH) concentration within the soil when using rhamnolipid during a remediation period of 30 days, with maximum TPH reduction of 86.97%. The most effective remediation that was observed was with rhamnolipid at a concentration of 2 CMC in soil solution, and a first-order TPH degradation rate constant of 0.0866 d(-1). The results also illustrated that salts in soil had a negative impact on TPH reduction, and the degradation rate was negatively correlated with NaCl concentration in soil solution. The analysis of soil TPH fractions indicated that there was a significant reduction of C13-C30 during the remediation process when using bio-surfactant.

  12. Benefits of the Use of Sewage Sludge over EDTA to Remediate Soils Polluted with Heavy Metals.

    PubMed

    Hernández, Ana J; Gutiérrez-Ginés, María J; Pastor, Jesús

    2015-09-01

    Sewage sludges from urban wastewater treatment plants are often used to remediate degraded soils. However, the benefits of their use in metal-polluted soils remain unclear and need to be assessed in terms of factors besides soil fertility. This study examines the use of thermal-dried sewage sludge (TDS) as an amendment for heavy metal-polluted soil in terms of its effects on soil chemical properties, leachate composition, and the growth of native plant communities. To assess the response of the soil and its plant community to an increase in metal mobilization, the effects of TDS amendment were compared with those of the addition of a chelating agent (ethylenediaminetetraacetic acid [EDTA]). The experimental design was based on a real-case scenario in which soils from of an abandoned mine site were used in a greenhouse bioassay. Two doses of TDS and EDTA were applied to a soil containing high Pb, Zn, Cu, and Cd levels (4925, 5675, 404, and 25 mg kg, respectively). Soil pH was 6.4, and its organic matter content was 5.53%. The factors examined after soil amendment were soil fertility and heavy metal contents, leachate element losses, the plant community arising from the seed bank (plant cover, species richness and biodiversity, above/below ground biomass), and phytotoxic effects (chemical contents of abundant species). Thermal-dried sewage sludge emerged as a good phytostabilizer of Pb, Zn, Cu, and Cd given its capacity to reduce the plant uptake of metals and achieve rapid plant cover. This amendment also enhanced the retention of other elements in the plant root system and overall showed a better capacity to remediate soils polluted with several heavy metals. The addition of EDTA led to plant productivity losses and nutritional imbalances because it increased the mobility of several elements in the soil and its leachates.

  13. Benefits of the Use of Sewage Sludge over EDTA to Remediate Soils Polluted with Heavy Metals.

    PubMed

    Hernández, Ana J; Gutiérrez-Ginés, María J; Pastor, Jesús

    2015-09-01

    Sewage sludges from urban wastewater treatment plants are often used to remediate degraded soils. However, the benefits of their use in metal-polluted soils remain unclear and need to be assessed in terms of factors besides soil fertility. This study examines the use of thermal-dried sewage sludge (TDS) as an amendment for heavy metal-polluted soil in terms of its effects on soil chemical properties, leachate composition, and the growth of native plant communities. To assess the response of the soil and its plant community to an increase in metal mobilization, the effects of TDS amendment were compared with those of the addition of a chelating agent (ethylenediaminetetraacetic acid [EDTA]). The experimental design was based on a real-case scenario in which soils from of an abandoned mine site were used in a greenhouse bioassay. Two doses of TDS and EDTA were applied to a soil containing high Pb, Zn, Cu, and Cd levels (4925, 5675, 404, and 25 mg kg, respectively). Soil pH was 6.4, and its organic matter content was 5.53%. The factors examined after soil amendment were soil fertility and heavy metal contents, leachate element losses, the plant community arising from the seed bank (plant cover, species richness and biodiversity, above/below ground biomass), and phytotoxic effects (chemical contents of abundant species). Thermal-dried sewage sludge emerged as a good phytostabilizer of Pb, Zn, Cu, and Cd given its capacity to reduce the plant uptake of metals and achieve rapid plant cover. This amendment also enhanced the retention of other elements in the plant root system and overall showed a better capacity to remediate soils polluted with several heavy metals. The addition of EDTA led to plant productivity losses and nutritional imbalances because it increased the mobility of several elements in the soil and its leachates. PMID:26436275

  14. Biofilm treatment of soil for waste containment and remediation

    SciTech Connect

    Turner, J.P.; Dennis, M.L.; Osman, Y.A.; Chase, J.; Bulla, L.A.

    1997-12-31

    This paper examines the potential for creating low-permeability reactive barriers for waste treatment and containment by treating soils with Beijerinckia indica, a bacterium which produces an exopolysaccharide film. The biofilm adheres to soil particles and causes a decrease in soil hydraulic conductivity. In addition, B. Indica biodegrades a variety of polycyclic aromatic hydrocarbons and chemical carcinogens. The combination of low soil hydraulic conductivity and biodegradation capabilities creates the potential for constructing reactive biofilm barriers from soil and bacteria. A laboratory study was conducted to evaluate the effects of B. Indica on the hydraulic conductivity of a silty sand. Soil specimens were molded with a bacterial and nutrient solution, compacted at optimum moisture content, permeated with a nutrient solution, and tested for k{sub sat} using a flexible-wall permeameter. Saturated hydraulic conductivity (k{sub sat}) was reduced from 1 x 10{sup -5} cm/sec to 2 x 10{sup -8} cm/sec: by biofilm treatment. Permeation with saline, acidic, and basic solutions following formation of a biofilm was found to have negligible effect on the reduced k{sub sat}, for up to three pore volumes of flow. Applications of biofilm treatment for creating low-permeability reactive barriers are discussed, including compacted liners for bottom barriers and caps and creation of vertical barriers by in situ treatment.

  15. Citric acid facilitated thermal treatment: An innovative method for the remediation of mercury contaminated soil.

    PubMed

    Ma, Fujun; Peng, Changsheng; Hou, Deyi; Wu, Bin; Zhang, Qian; Li, Fasheng; Gu, Qingbao

    2015-12-30

    Thermal treatment is a promising technology for the remediation of mercury contaminated soils, but it often requires high energy input at heating temperatures above 600°C, and the treated soil is not suitable for agricultural reuse. The present study developed a novel method for the thermal treatment of mercury contaminated soils with the facilitation of citric acid (CA). A CA/Hg molar ratio of 15 was adopted as the optimum dosage. The mercury concentration in soils was successfully reduced from 134 mg/kg to 1.1mg/kg when treated at 400°C for 60 min and the treated soil retained most of its original soil physiochemical properties. During the treatment process, CA was found to provide an acidic environment which enhanced the volatilization of mercury. This method is expected to reduce energy input by 35% comparing to the traditional thermal treatment method, and lead to agricultural soil reuse, thus providing a greener and more sustainable remediation method for treating mercury contaminated soil in future engineering applications. PMID:26253234

  16. Ecopiling: a combined phytoremediation and passive biopiling system for remediating hydrocarbon impacted soils at field scale.

    PubMed

    Germaine, Kieran J; Byrne, John; Liu, Xuemei; Keohane, Jer; Culhane, John; Lally, Richard D; Kiwanuka, Samuel; Ryan, David; Dowling, David N

    2014-01-01

    Biopiling is an ex situ bioremediation technology that has been extensively used for remediating a wide range of petrochemical contaminants in soils. Biopiling involves the assembling of contaminated soils into piles and stimulating the biodegrading activity of microbial populations by creating near optimum growth conditions. Phytoremediation is another very successful bioremediation technique and involves the use of plants and their associated microbiomes to degrade, sequester or bio-accumulate pollutants from contaminated soil and water. The objective of this study was to investigate the effectiveness of a combined phytoremediation/biopiling system, termed Ecopiling, to remediate hydrocarbon impacted industrial soil. The large scale project was carried out on a sandy loam, petroleum impacted soil [1613 mg total petroleum hydrocarbons (TPHs) kg(-1) soil]. The contaminated soil was amended with chemical fertilizers, inoculated with TPH degrading bacterial consortia and then used to construct passive biopiles. Finally, a phyto-cap of perennial rye grass (Lolium perenne) and white clover (Trifolium repens) was sown on the soil surface to complete the Ecopile. Monitoring of important physico-chemical parameters was carried out at regular intervals throughout the trial. Two years after construction the TPH levels in the petroleum impacted Ecopiles were below detectable limits in all but one subsample (152 mg TPH kg(-1) soil). The Ecopile system is a multi-factorial bioremediation process involving bio-stimulation, bio-augmentation and phytoremediation. One of the key advantages to this system is the reduced costs of the remediation process, as once constructed, there is little additional cost in terms of labor and maintenance (although the longer process time may incur additional monitoring costs). The other major advantage is that many ecological functions are rapidly restored to the site and the process is esthetically pleasing. PMID:25601875

  17. Ecopiling: a combined phytoremediation and passive biopiling system for remediating hydrocarbon impacted soils at field scale

    PubMed Central

    Germaine, Kieran J.; Byrne, John; Liu, Xuemei; Keohane, Jer; Culhane, John; Lally, Richard D.; Kiwanuka, Samuel; Ryan, David; Dowling, David N.

    2015-01-01

    Biopiling is an ex situ bioremediation technology that has been extensively used for remediating a wide range of petrochemical contaminants in soils. Biopiling involves the assembling of contaminated soils into piles and stimulating the biodegrading activity of microbial populations by creating near optimum growth conditions. Phytoremediation is another very successful bioremediation technique and involves the use of plants and their associated microbiomes to degrade, sequester or bio-accumulate pollutants from contaminated soil and water. The objective of this study was to investigate the effectiveness of a combined phytoremediation/biopiling system, termed Ecopiling, to remediate hydrocarbon impacted industrial soil. The large scale project was carried out on a sandy loam, petroleum impacted soil [1613 mg total petroleum hydrocarbons (TPHs) kg-1 soil]. The contaminated soil was amended with chemical fertilizers, inoculated with TPH degrading bacterial consortia and then used to construct passive biopiles. Finally, a phyto-cap of perennial rye grass (Lolium perenne) and white clover (Trifolium repens) was sown on the soil surface to complete the Ecopile. Monitoring of important physico-chemical parameters was carried out at regular intervals throughout the trial. Two years after construction the TPH levels in the petroleum impacted Ecopiles were below detectable limits in all but one subsample (152 mg TPH kg-1 soil). The Ecopile system is a multi-factorial bioremediation process involving bio-stimulation, bio-augmentation and phytoremediation. One of the key advantages to this system is the reduced costs of the remediation process, as once constructed, there is little additional cost in terms of labor and maintenance (although the longer process time may incur additional monitoring costs). The other major advantage is that many ecological functions are rapidly restored to the site and the process is esthetically pleasing. PMID:25601875

  18. Ecopiling: a combined phytoremediation and passive biopiling system for remediating hydrocarbon impacted soils at field scale.

    PubMed

    Germaine, Kieran J; Byrne, John; Liu, Xuemei; Keohane, Jer; Culhane, John; Lally, Richard D; Kiwanuka, Samuel; Ryan, David; Dowling, David N

    2014-01-01

    Biopiling is an ex situ bioremediation technology that has been extensively used for remediating a wide range of petrochemical contaminants in soils. Biopiling involves the assembling of contaminated soils into piles and stimulating the biodegrading activity of microbial populations by creating near optimum growth conditions. Phytoremediation is another very successful bioremediation technique and involves the use of plants and their associated microbiomes to degrade, sequester or bio-accumulate pollutants from contaminated soil and water. The objective of this study was to investigate the effectiveness of a combined phytoremediation/biopiling system, termed Ecopiling, to remediate hydrocarbon impacted industrial soil. The large scale project was carried out on a sandy loam, petroleum impacted soil [1613 mg total petroleum hydrocarbons (TPHs) kg(-1) soil]. The contaminated soil was amended with chemical fertilizers, inoculated with TPH degrading bacterial consortia and then used to construct passive biopiles. Finally, a phyto-cap of perennial rye grass (Lolium perenne) and white clover (Trifolium repens) was sown on the soil surface to complete the Ecopile. Monitoring of important physico-chemical parameters was carried out at regular intervals throughout the trial. Two years after construction the TPH levels in the petroleum impacted Ecopiles were below detectable limits in all but one subsample (152 mg TPH kg(-1) soil). The Ecopile system is a multi-factorial bioremediation process involving bio-stimulation, bio-augmentation and phytoremediation. One of the key advantages to this system is the reduced costs of the remediation process, as once constructed, there is little additional cost in terms of labor and maintenance (although the longer process time may incur additional monitoring costs). The other major advantage is that many ecological functions are rapidly restored to the site and the process is esthetically pleasing.

  19. Geotechnical behaviour of low-permeability soils in surfactant-enhanced electrokinetic remediation.

    PubMed

    López-Vizcaíno, Rubén; Navarro, Vicente; Alonso, Juan; Yustres, Ángel; Cañizares, Pablo; Rodrigo, Manuel A; Sáez, Cristina

    2016-01-01

    Electrokinetic processes provide the basis of a range of very interesting techniques for the remediation of polluted soils. These techniques consist of the application of a current field in the soil that develops different transport mechanisms capable of mobilizing several types of pollutants. However, the use of these techniques could generate nondesirable effects related to the geomechanical behavior of the soil, reducing the effectiveness of the processes. In the case of the remediation of polluted soils with plasticity index higher than 35, an excessive shrinkage can be observed in remediation test. For this reason, the continued evaporation that takes place in the sample top can lead to the development of cracks, distorting the electrokinetic transport regime, and consequently, the development of the operation. On the other hand, when analyzing silty soils, in the surroundings of injection surfactant wells, high seepages can be generated that give rise to the development of piping processes. In this article methods are described to allow a reduction, or to even eliminate, both problems.

  20. [Remediation of chromium (VI) contaminated soils using permeable reactive composite electrodes technology].

    PubMed

    Fu, Rong-Bing; Liu, Fang; Ma, Jin; Zhang, Chang-Bo; He, Guo-Fu

    2012-01-01

    Electrokinetic transport processes have been shown to have potential for the effective removal of heavy metals from soils. However, pH changes near the anode and cathode limit their widespread application in the remediation of contaminated soils. Permeable reactive composite electrodes (PRCE) were made by attaching reactive materials such as Fe(0) and zeolite to the electrodes, and the effects of the composite electrodes on pH control, chromium removal efficiency and Cr speciation changes were studied in the electrokinetic remediation process of Cr( VI) contaminated soil. Composite electrodes consisting of permeable reactive materials gave better pH control and Cr removal efficiency compared to traditional electrodes, and a Fe(0) + zeolite reactive layer in the anode exhibited the best performance compared to zeolite or Fe(0) alone. After 5 days of electrokinetic remediation with a DC voltage of 2 V x cm(-1), the Fe(0) + zeolite reactive layer lowered the pH fluctuation, maintained the soil pH in the range of 5.5 to 8.5, raised the Cr(VI) removal efficiency up to 97% in any soil section, produced lower Cr(III) residues, enhanced the amount of Cr retention up to 8 and 1.8 times respectively, and transformed 98% of the Cr(VI) into lower toxicity Cr(III). This study provides a theoretical basis for the exploitation of permeable reactive composite electrodes which are a practical option for future applications. PMID:22452223

  1. [Remediation of chromium (VI) contaminated soils using permeable reactive composite electrodes technology].

    PubMed

    Fu, Rong-Bing; Liu, Fang; Ma, Jin; Zhang, Chang-Bo; He, Guo-Fu

    2012-01-01

    Electrokinetic transport processes have been shown to have potential for the effective removal of heavy metals from soils. However, pH changes near the anode and cathode limit their widespread application in the remediation of contaminated soils. Permeable reactive composite electrodes (PRCE) were made by attaching reactive materials such as Fe(0) and zeolite to the electrodes, and the effects of the composite electrodes on pH control, chromium removal efficiency and Cr speciation changes were studied in the electrokinetic remediation process of Cr( VI) contaminated soil. Composite electrodes consisting of permeable reactive materials gave better pH control and Cr removal efficiency compared to traditional electrodes, and a Fe(0) + zeolite reactive layer in the anode exhibited the best performance compared to zeolite or Fe(0) alone. After 5 days of electrokinetic remediation with a DC voltage of 2 V x cm(-1), the Fe(0) + zeolite reactive layer lowered the pH fluctuation, maintained the soil pH in the range of 5.5 to 8.5, raised the Cr(VI) removal efficiency up to 97% in any soil section, produced lower Cr(III) residues, enhanced the amount of Cr retention up to 8 and 1.8 times respectively, and transformed 98% of the Cr(VI) into lower toxicity Cr(III). This study provides a theoretical basis for the exploitation of permeable reactive composite electrodes which are a practical option for future applications.

  2. In situ remediation of soils contaminated with toxic metal ions using microwave energy.

    PubMed

    Abramovitch, Rudolph A; ChangQing, Lu; Hicks, Evan; Sinard, Joseph

    2003-12-01

    Following onto our work on the in situ remediation of soils contaminated with PAH's, PCB's and other polychlorinated organic compounds using microwave energy, we now report a preliminary investigation on the in situ remediation of soils contaminated with toxic metal ions: Cd(II), Mn(II), Th(IV), Cr(III) and mainly Cr(VI). The soil is partially vitrified in the process, and extraction with hot (70 degrees C) 35% nitric acid for 4.5 h leads to the recovery of very small amounts of the metals which had been spiked into the clean soil: Cd, Mn, and Cr(III) are completely immobilized (unextractable), Th is mostly unextractable, and Cr(VI) partially extractable at very high levels of spiking, but almost completely unextractable using the US EPA Toxicity Characteristic Leaching Procedure. This suggests that contaminated soils which are not going to be used for agricultural purposes can be remediated safely to preset depths without fear of the toxic metal ions leaching out for a long time. PMID:14512111

  3. Geotechnical behaviour of low-permeability soils in surfactant-enhanced electrokinetic remediation.

    PubMed

    López-Vizcaíno, Rubén; Navarro, Vicente; Alonso, Juan; Yustres, Ángel; Cañizares, Pablo; Rodrigo, Manuel A; Sáez, Cristina

    2016-01-01

    Electrokinetic processes provide the basis of a range of very interesting techniques for the remediation of polluted soils. These techniques consist of the application of a current field in the soil that develops different transport mechanisms capable of mobilizing several types of pollutants. However, the use of these techniques could generate nondesirable effects related to the geomechanical behavior of the soil, reducing the effectiveness of the processes. In the case of the remediation of polluted soils with plasticity index higher than 35, an excessive shrinkage can be observed in remediation test. For this reason, the continued evaporation that takes place in the sample top can lead to the development of cracks, distorting the electrokinetic transport regime, and consequently, the development of the operation. On the other hand, when analyzing silty soils, in the surroundings of injection surfactant wells, high seepages can be generated that give rise to the development of piping processes. In this article methods are described to allow a reduction, or to even eliminate, both problems. PMID:26488188

  4. The remediation of the lead-polluted garden soil by natural zeolite.

    PubMed

    Li, Hua; Shi, Wei-yu; Shao, Hong-bo; Shao, Ming-an

    2009-09-30

    The current study investigated the remediation effect of lead-polluted garden soil by natural zeolite in terms of soil properties, Pb fraction of sequential extraction in soil and distribution of Pb in different parts of rape. Natural zeolite was added to artificially polluted garden soil to immobilize and limit the uptake of lead by rape through changing soil physical and chemical properties in the pot experiment under greenhouse conditions. Results indicated that the addition of natural zeolite could increase soil pH, CEC, content of soil organic matter and promote formation of soil aggregate. The application of zeolite decreased the available fraction of Pb in the garden soil by adjusting soil pH rather than CEC, and restrained the Pb uptake by rape. Data obtained suggested that the application of a dose of zeolite was adequate (>or=10 g kg(-1)) to reduce soluble lead significantly, even if lead pollution is severe in garden soil (>or=1000 mg kg(-1)). An appropriate dose of zeolite (20 g kg(-1)) could reduce the Pb concentration in the edible part (shoots) of rape up to 30% of Pb in the seriously polluted soil (2000 mg kg(-1)).

  5. Feasibility Process for Remediation of the Crude Oil Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Keum, H.; Choi, H.; Heo, H.; Lee, S.; Kang, G.

    2015-12-01

    More than 600 oil wells were destroyed in Kuwait by Iraqi in 1991. During the war, over 300 oil lakes with depth of up to 2m at more than 500 different locations which has been over 49km2. Therefore, approximately 22 million m3was crude oil contaminated. As exposure of more than 20 years under atmospheric conditions of Kuwait, the crude oil has volatile hydrocarbons and covered heavy oily sludge under the crude oil lake. One of crude oil contaminated soil which located Burgan Oilfield area was collected by Kuwait Oil Company and got by H-plus Company. This contaminated soil has about 42% crude oil and could not biodegraded itself due to the extremely high toxicity. This contaminated soil was separated by 2mm sieve for removal oil sludge ball. Total petroleum hydrocarbons (TPH) was analysis by GC FID and initial TPH concentration was average 48,783 mg/kg. Ten grams of the contaminated soil replaced in two micro reactors with 20mL of bio surfactant produce microorganism. Reactor 1 was added 0.1g powder hemoglobin and other reactor was not added hemoglobin at time 0 day. Those reactors shake 120 rpm on the shaker for 7 days and CO2 produced about 150mg/L per day. After 7 days under the slurry systems, the rest days operated by hemoglobin as primary carbon source for enhanced biodegradation. The crude oil contaminated soil was degraded from 48,783mg/kg to 20,234mg/kg by slurry process and final TPH concentration degraded 11,324mg/kg for 21days. Therefore, highly contaminated soil by crude oil will be combined bio slurry process and biodegradation process with hemoglobin as bio catalytic source. Keywords: crude-oil contaminated soil, bio slurry, biodegradation, hemoglobin ACKOWLEDGEMENTS This project was supported by the Korea Ministry of Environment (MOE) GAIA Program

  6. Feasibility of supercritical CO{sub 2} extraction as a remediation technology for Hanford contaminated soils

    SciTech Connect

    Moody, T.E.; Krukonis, V.J.

    1994-12-31

    A technology used by the petroleum industry for separation and purification and the coffee industry for caffeine removal is being used by a Hanford scientist with the prospect of remediating organic contaminated Hanford soil. The process is known as Supercritical Fluid Extraction or SFE. Dr. Timothy Moody of the Westinghouse Hanford Company and the Phasex Corporation of Lawrence, Mass., have conducted successful bench-scale experiments at the 50g, 500g, and 5kg levels showing that SFE can remove various chemicals from large volumes of contaminated soil. The results indicate that organic contaminant removal from soil is much more efficient than the current industrial uses of SFE.

  7. Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, J.; Lu, H.; Fu, S.; Méndez, A.; Gascó, G.

    2013-11-01

    Anthropogenic activities are resulting in an increase on the use and extraction of heavy metals. Heavy metals cannot be degraded and hence accumulate in the environment having the potential to contaminate the food chain. This pollution threatens soil quality, plant survival and human health. The remediation of heavy metals deserves attention, but it is impaired by the cost of these processes. Phytoremediation and biochar are two sound environmental technologies which could be at the forefront to mitigate soil pollution. This review provides an overview of the current state of knowledge phytoremediation and biochar application to remediate heavy metal contaminated soils, discussing the advantages and disadvantages of both individual approaches. Research to date has attempted only in a limited number of occasions to combine both techniques, however we discuss the potential advantages of combining both remediation techniques and the potential mechanisms involved in the interaction between phytoremediators and biochar. We identified specific research needs to ensure a sustainable use of phytoremediation and biochar as remediation tools.

  8. Biochemical parameters and bacterial species richness in soils contaminated by sludge-borne metals and remediated with inorganic soil amendments.

    PubMed

    Mench, Michel; Renella, Giancarlo; Gelsomino, Antonio; Landi, Loretta; Nannipieri, Paolo

    2006-11-01

    The effectiveness of two amendments for the in situ remediation of a Cd- and Ni-contaminated soil in the Louis Fargue long-term field experiment was assessed. In April 1995, one replicate plot (S1) was amended with 5% w/w of beringite (B), a coal fly ash (treatment S1+B), and a second plot with 1% w/w zerovalent-Fe iron grit (SS) (treatment S1+SS), with the aim of increasing metal sorption and attenuating metal impacts. Long-term responses of daily respiration rates, microbial biomass, bacterial species richness and the activities of key soil enzymes (acid and alkaline phosphatase, arylsulfatase, beta-glucosidase, urease and protease activities) were studied in relation to soil metal extractability. Seven years after initial amendments, the labile fractions of Cd and Ni in both the S1+B and S1+SS soils were reduced to various extents depending on the metal and fractions considered. The soil microbial biomass and respiration rate were not affected by metal contamination and amendments in the S1+B and S1+SS soils, whereas the activity of different soil enzymes was restored. The SS treatment was more effective in reducing labile pools of Cd and Ni and led to a greater recovery of soil enzyme activities than the B treatment. Bacterial species richness in the S1 soil did not alter with either treatment. It was concluded that monitoring of the composition and activity of the soil microbial community is important in evaluating the effectiveness of soil remediation practices.

  9. Remediation and restoration of contaminated soils for plant growth and establishment

    NASA Astrophysics Data System (ADS)

    Wong, Vanessa

    2014-05-01

    Degradation and contamination of soils is a serious issue, affecting soil and water quality, human health, and plant health and productivity. Degradation of soils can result in the mobilisation of high concentrations of trace metals as a function of both anthropogenic activities which can also be exacerbated by natural processes. Sulfidic sediments frequently underlie coastal floodplains globally. Oxidation of sulfidic sediments can result in the formation of acid sulfate soils and acidification and mobilisation of associated trace metals in soils, sediments and water. The geochemical processes which occur in these environments can be similar to those in acid mine drainage environments. For example, oxidation of sulfides following surface mining for coal can also result in low pH and high concentrations of trace metals in waste material. Remediation and restoration of such sites for plant growth and establishment can be challenging due to the geochemical characteristics of the soils and sediments. Remediation of oxidised sulfidic sediments on coastal floodplains and mine sites both require an increase in soil pH via incorporation of alkaline materials, and addition of nutrients via organic amendments. This paper presents the findings from two case studies on the remediation of contaminated acidic environments on i) a coastal floodplain, and ii) a coal mine site. We found that addition of lime and organic material increased pH and decreased trace metal concentrations in the coastal floodplain sediments. Organic carbon increased due to the incorporation of additional organic material and increased plant growth. Similarly, pH decreased and trace metal concentrations in leachate also decreased following additions of alkaline wood chip waste and compost in the mine site rehabilitation trials. Plant growth increased with increasing volumes of compost addition. These results, and those presented in SSS8.3 highlight the importance of appropriate ameliorants in the

  10. Biological remediation of polynuclear aromatic hydrocarbon contaminated soils using Acinetobacter sp.

    SciTech Connect

    Joshi, M.M.; Lee, S.

    1996-03-01

    Soils contaminated with polynuclear aromatic hydrocarbons (PAHs) pose a hazard to life. The remediation of such sites has been attempted using various methods such as solvent washing, air stripping, incineration, composting, electrokinetic remediation, and supercritical extraction. However, applicability of these physical, chemical, and biological treatment methods or their combination is critically dependent on soil characteristics, nature and level of contamination, site specifications, and economic feasibility, to name a few. Present research is aimed at studying the applicability of biological treatment for decontamination of industrial soil containing PAHs. The current preliminary study included soil analysis, contaminant characterization, and soil treatment using Acinetobacter sp. The soil treatment over a 5-week period, with minimal supplemental nutrient addition, showed removal efficiencies of 80% and more. The effect of initial microbial population in soil on the removal efficiency over a 5-week treatment period was studied. Experiments were designed to compare the removal efficiencies occurring in packed beds versus continuously-stirred tank reactor (CSTR)-type fermentation conditions. This also estimated a conservative range of decontamination efficiencies achievable using minimal control.

  11. Remediation of Cu-contaminated soil using chelant and EAOP.

    PubMed

    Pociecha, Maja; Sircelj, Helena; Lestan, Domen

    2009-09-01

    An electrochemical advanced oxidation process (EAOP) was used for treatment of the washing solution obtained during leaching of Cu (364 +/- 2 mg kg(-1)) contaminated soil, with chelant S,S isomer of ethylenediamine disuccinate ([S,S]-EDDS). In the EAOP (constant current density 40 mA cm(-2)), a boron-doped diamond anode was used for the generation of hydroxyl radicals and oxidative decomposition of [S,S]-EDDS-metal complexes in the washing solution. The released Cu was mostly electro-deposited on the stainless-steel cathode. Three consecutive additions of 5 mmol kg(-1) [S,S]-EDDS removed 46% of the Cu from the soil, mostly from carbonate and oxide soil fractions (87 and 99% Cu reduction). The soil Cu oral availability in the simulated stomach and intestinal phases (in vitro physiologically based extraction test) was reduced by 5.5 and 4.6-times. Cu plant availability (in vitro diethylenetriamine pentaacetate test) was reduced by 3.6-times. The discharge solution was clear, almost colorless, with pH 8.4, 0.45 mg L(-1) Cu and 0.01 mM EDDS. PMID:19847704

  12. SURFACTANT ENHANCED REMEDIATION OF SOIL COLUMNS CONTAMINATED BY RESIDUAL TETRACHLOROETHYLENE

    EPA Science Inventory

    The ability of aqueous surfactant solutions to recover tetrachloroethylene (PCE) entrapped in Ottawa sand was evaluated in four column experiments. Residual PCE was emplaced by injecting 14C-labeled PCE into water-saturated soil columns and displacing the free product ...

  13. [Microwave thermal remediation of soil contaminated with crude oil enhanced by granular activated carbon].

    PubMed

    Li, Da-Wei; Zhang, Yao-Bin; Quan, Xie; Zhao, Ya-Zhi

    2009-02-15

    The advantage of rapid, selective and simultaneous heating of microwave heating technology was taken to remediate the crude oil-contaminated soil rapidly and to recover the oil contaminant efficiently. The contaminated soil was processed in the microwave field with addition of granular activated carbon (GAC), which was used as strong microwave absorber to enhance microwave heating of the soil mixture to remove the oil contaminant and recover it by a condensation system. The influences of some process parameters on the removal of the oil contaminant and the oil recovery in the remediation process were investigated. The results revealed that, under the condition of 10.0% GAC, 800 W microwave power, 0.08 MPa absolute pressure and 150 mL x min(-1) carrier gas (N2) flow-rate, more than 99% oil removal could be obtained within 15 min using this microwave thermal remediation enhanced by GAC; at the same time, about 91% of the oil contaminant could be recovered without significant changes in chemical composition. In addition, the experiment results showed that GAC can be reused in enhancing microwave heating of soil without changing its enhancement efficiency obviously.

  14. Application of in-situ gamma spectrometry in the remediation of radioactively contaminated soil

    SciTech Connect

    Sutton, C.; Yesso, J.D.; Danahy, R.J.; Cox, T.

    1999-06-01

    The Fernald Environmental Management Project (FEMP) is a US Department of Energy site that is undergoing total remediation and closure. Most of the remediation effort entails massive excavation of soil for disposal, both offsite and onsite, at an engineered disposal facility. In-situ gamma spectrometry is routinely used to support soil excavation operations to accurately and quickly identify soil areas as being above or below regulatory remediation criteria. Two different in-situ gamma spectrometry systems are used. The first is a sodium iodide (NaI) detector mounted either on a tractor or a jogging stroller, depending on the terrain to be measured. The NaI system allows the collection of a gamma energy spectrum which can be analyzed to identify and quantify radioactive isotopes which are present within the detector`s viewing area. Each energy spectrum is tagged by location coordinates provided by an on-board global positioning system (GPS) to precisely locate elevated contamination areas. The second is a tripod-mounted, high purity germanium detector (HPGe) gamma spectrometry system that is functionally similar to the NaI system. The principal advantage of the HPGe is its superior resolution, which allows much more accurate identification and quantification of radionuclide contaminants in soils. In order to effectively utilize the data quality objective process with these systems, three quality assurance (QA) elements had to be performed.

  15. Ricinus communis L. A Value Added Crop for Remediation of Cadmium Contaminated Soil.

    PubMed

    Bauddh, Kuldeep; Singh, Kripal; Singh, Rana P

    2016-02-01

    Heavy metal pollution of soil is a global environmental problem and therefore its remediation is of paramount importance. Cadmium (Cd) is a potential toxicant to living organisms and even at very low concentrations. This study was aimed to assess the effectiveness of Ricinus communis for remediation of Cd contaminated soils. For this, growth and biomass of R. communis and Cd accumulation, translocation and partitioning in different plant parts were investigated after 8 months of plant growth in Cd contaminated soil (17.50 mg Cd kg−1 soil). Eight months old plants stabilized 51 % Cd in its roots and rest of the metal was transferred to the stem and leaves. There were no significant differences in growth, biomass and yield between control and Cd treated plants, except fresh weight of shoots. The seed yield per plant was reduced only by 5 % of Cd contaminated plants than control. The amount of Cd translocated to the castor seeds was nominal i.e. 0.007 µg Cd g−1 seeds. The bioconcentration factor reduced significantly in shoots and seeds in comparison to roots. The data indicates that R. communis is highly tolerant to Cd contamination and can be used for remediation of heavy metal polluted sites.

  16. The Office of Groundwater & Soil Remediation Fiscal Year 2011 Research & Development Program

    SciTech Connect

    Gerdes, Kurt D.; Chamberlain, Skip; Aylward, R. S.; Cercy, Mike; Seitz, Roger; Ramirez, Rosa; Skubal, Karen L.; Marble, Justin; Wellman, Dawn M.; Bunn, Amoret L.; Liang, Liyuan; Pierce, Eric M.

    2011-03-02

    The U.S. Department of Energy's (DOE) Office of Groundwater and Soil Remediation supports technology development and technical assistance for the remediation of environments contaminated by legacy nuclear waste. The core of the program is centered on delivering proactive, responsive expertise and technologies with highly-leveraged, carefully selected investments that maximum impact on life-cycle cleanup costs and risks across the DOE complex. The program currently focuses on four main priorities: improved sampling and characterization strategies, advanced predictive capabilities, enhanced remediation methods, and improved long-term performance evaluation and monitoring. In FY 2010, the program developed a detailed research and development (R and D) plan in support of a larger initiative to integrate R and D efforts across EM. This paper provides an overview of the priority action areas and the program's near-term technical direction.

  17. The Office of Groundwater & Soil Remediation Fiscal Year 2011 Research & Development Program

    SciTech Connect

    Pierce, Eric M

    2011-01-01

    The U.S. Department of Energy s (DOE) Office of Groundwater and Soil Remediation supports technology development and technical assistance for the remediation of environments contaminated by legacy nuclear waste. The core of the program is centered on delivering proactive, responsive expertise and technologies with highly-leveraged, carefully selected investments that maximize impact on life-cycle cleanup costs and risks across the DOE complex. The program currently focuses on four main priorities: improved sampling and characterization strategies, advanced predictive capabilities, enhanced remediation methods, and improved long-term performance evaluation and monitoring. In FY 2010, the program developed a detailed research and development (R&D) plan in support of a larger initiative to integrate R&D efforts across EM. This paper provides an overview of the high priority action areas and the program s near-term technical direction.

  18. Incineration of explosive contaminated soil as a means of site remediation. Technical report

    SciTech Connect

    Major, M.A.; Amos, J.C.

    1992-11-24

    Large scale releases of explosive contaminated water have occurred in connection with manufacture of explosives, with load assembly and pack operations and at centers for the disassembly and recycle of munitions. The most serious contamination is at sites where explosive contaminated pink water was discarded in unlined evaporation lagoons. Sediments in pink water lagoons normally contain a high concentration of explosive and contamination of ground-water is usually the result. In an effort to remediate this hazard, the U.S. Army has chosen incineration of the contaminated soil as the best means of remediation. Although there is general agreement as to the superiority of incineration for this purpose, the process is complex and environmental, legal and financial questions remain.... Incineration, TNT, RDX, Lead, Mercury, Cadmium, RCRA, Remediation.

  19. Remediation of degraded arable steppe soils in Moldova using vetch as green manure

    NASA Astrophysics Data System (ADS)

    Wiesmeier, M.; Lungu, M.; Hübner, R.; Cerbari, V.

    2015-05-01

    In the Republic of Moldova, non-sustainable arable farming led to severe degradation and erosion of fertile steppe soils (Chernozems). As a result, the Chernozems lost about 40% of their initial amounts of soil organic carbon (SOC). The aim of this study was to remediate degraded arable soils and promote carbon sequestration by implementation of cover cropping and green manuring in Moldova. Thereby, the suitability of the legume hairy vetch (Vicia sativa) as cover crop under the dry continental climate of Moldova was examined. At two experimental sites, the effect of cover cropping on chemical and physical soil properties as well as on yields of subsequent main crops was determined. The results showed a significant increase of SOC after incorporation of hairy vetch mainly due to increases of aggregate-occluded and mineral-associated OC. This was related to a high above- and belowground biomass production of hairy vetch associated with a high input of carbon and nitrogen into arable soils. A calculation of SOC stocks based on equivalent soil masses revealed a sequestration of around 3 t C ha-1yr-1 as a result of hairy vetch cover cropping. The buildup of SOC was associated with an improvement of the soil structure as indicated by a distinct decrease of bulk density and a relative increase of macroaggregates at the expense of microaggregates and clods. As a result, yields of subsequent main crops increased by around 20%. Our results indicated that hairy vetch is a promising cover crop to remediate degraded steppe soils, control soil erosion and sequester substantial amounts of atmospheric C in arable soils of Moldova.

  20. Electrical Resistivity Tomography Monitoring of Soil Remediation for a Garbage Dump

    NASA Astrophysics Data System (ADS)

    shi, X.; Luo, Z.; Zhang, Y.; Fu, Q.; Xu, Z.

    2011-12-01

    Electrical resistivity tomography (ERT) survey was firstly used to investigate the distribution of contaminated soil in a garbage dump area, Wuhan city, China. The result shows that sulfated soil resistivity is about 4 to 7 ohm-m, which is relatively lower than normal soil resistivity of about 15 to 25 ohm-m. The distribution of contaminated soil was delineated using ERT images. Then, ERT survey was carried out in this area for monitoring of remediation of contaminated soil and groundwater. Werner measurements with 60 electrodes of 1 m spacing were taken during the 9-well oxygen injection and nutrition liquid injection period. The difference of apparent resistivity between before gas injection and after gas injection was used to delineate the channel of gas and the trace of gas migration in the porous garbage dump. The electrical resitivity changes between before and after nutrition liquid injection were used to analyze the liquid migration and distribution. The dynamic procedures of gas and water migration are outlined. The results suggest that ERT is a powerful technique for monitoring of soil remediation.

  1. Soil washing as a potential remediation technology for contaminated DOE sites

    SciTech Connect

    Devgun, J.S.; Beskid, N.J. ); Natsis, M.E. ); Walker, J.S. )

    1993-01-01

    Frequently detected contaminants at US Department of Energy (DOE) sites include radionuclides, heavy metals, and chlorinated hydrocarbons. Remediation of these sites requires application of several technologies used in concert with each other, because no single technology is universally applicable. Special situations, such as mixed waste, generally require innovative technology development. This paper, however, focuses on contaminated soils, for which soil washing and vitrification technologies appear to have wide ranging application potential. Because the volumes of contaminated soils around the DOE complex are so large, soil washing can offer a potentially inexpensive way to effect remediation or to attain waste volume reduction. As costs for disposal of low-level and mixed wastes continue to rise, it is likely that volume-reduction techniques and in-situ containment techniques will become increasingly important. This paper reviews the status of the soil washing technology, examines the systems that are currently available, and discusses the potential application of this technology to some DOE sites, with a focus on radionuclide contamination and, primarily, uranium-contaminated soils

  2. Soil washing as a potential remediation technology for contaminated DOE sites

    SciTech Connect

    Devgun, J.S.; Beskid, N.J.; Natsis, M.E.; Walker, J.S.

    1993-03-01

    Frequently detected contaminants at US Department of Energy (DOE) sites include radionuclides, heavy metals, and chlorinated hydrocarbons. Remediation of these sites requires application of several technologies used in concert with each other, because no single technology is universally applicable. Special situations, such as mixed waste, generally require innovative technology development. This paper, however, focuses on contaminated soils, for which soil washing and vitrification technologies appear to have wide ranging application potential. Because the volumes of contaminated soils around the DOE complex are so large, soil washing can offer a potentially inexpensive way to effect remediation or to attain waste volume reduction. As costs for disposal of low-level and mixed wastes continue to rise, it is likely that volume-reduction techniques and in-situ containment techniques will become increasingly important. This paper reviews the status of the soil washing technology, examines the systems that are currently available, and discusses the potential application of this technology to some DOE sites, with a focus on radionuclide contamination and, primarily, uranium-contaminated soils

  3. Activated carbon adsorption of PAHs from vegetable oil used in soil remediation.

    PubMed

    Gong, Zongqiang; Alef, Kassem; Wilke, Berndt-Michael; Li, Peijun

    2007-05-01

    Vegetable oil has been proven to be advantageous as a non-toxic, cost-effective and biodegradable solvent to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated soils for remediation purposes. The resulting vegetable oil contained PAHs and therefore required a method for subsequent removal of extracted PAHs and reuse of the oil in remediation processes. In this paper, activated carbon adsorption of PAHs from vegetable oil used in soil remediation was assessed to ascertain PAH contaminated oil regeneration. Vegetable oils, originating from lab scale remediation, with different PAH concentrations were examined to study the adsorption of PAHs on activated carbon. Batch adsorption tests were performed by shaking oil-activated carbon mixtures in flasks. Equilibrium data were fitted with the Langmuir and Freundlich isothermal models. Studies were also carried out using columns packed with activated carbon. In addition, the effects of initial PAH concentration and activated carbon dosage on sorption capacities were investigated. Results clearly revealed the effectiveness of using activated carbon as an adsorbent to remove PAHs from the vegetable oil. Adsorption equilibrium of PAHs on activated carbon from the vegetable oil was successfully evaluated by the Langmuir and Freundlich isotherms. The initial PAH concentrations and carbon dosage affected adsorption significantly. The results indicate that the reuse of vegetable oil was feasible.

  4. Evaluation of house-based remedial measures for limiting soil gas entry

    SciTech Connect

    Adomait, M.; Fugler, D.

    1997-12-31

    House-based remedial measures to prevent soil gas infiltration have been implemented on many buildings affected by intrusion of radon, water vapor, methane, and other volatile organics (VOCs). The success of these measures has been well documented for gases such as radon; however similar detailed documentation was not readily available for methane or other VOCs. The objective of this study was to evaluate the effectiveness of four different remedial measures installed on houses. The four different remedial measures which were evaluated included: a liner with a subslab passive vent system, an active venting system, a passive venting system, and a liner system only. None of the houses monitored were found to have significant methane indoors due to soil gas entry. Short-term tracer tests were carried out on one of the system to evaluate the integrity of the remedial measure. Based on a limited number of houses tested, the results suggested that the amount of gas potentially entering the house could be limited by as much as four orders of magnitude.

  5. A Critical View of Current State of Phytotechnologies to Remediate Soils: Still a Promising Tool?

    PubMed Central

    Conesa, Héctor M.; Evangelou, Michael W. H.; Robinson, Brett H.; Schulin, Rainer

    2012-01-01

    Phytotechnologies are often shown as an emerging tool to remediate contaminated soils. Research in this field has resulted in many important findings relating to plant and soil sciences. However, there have been scant private and public investments and little commercial success with this technology. Here, we investigate the barriers to the adoption of phytotechnologies and determine whether it is still a fertile area for future research. The terminology used in phytotechnologies includes a confusing mish-mash of terms relating to concepts and processes increasing the difficulty of developing a unique commercial image. We argue that the commercial success of phytotechnologies depends on the generation of valuable biomass on contaminated land, rather than a pure remediation technique that may not compare favourably with the costs of inaction or alternative technologies. Valuable biomass includes timber, bioenergy, feedstock for pyrolosis, biofortified products, or ecologically important species. PMID:22272168

  6. Biochemical remediation of a TNT contaminated soil. Doctoral thesis

    SciTech Connect

    Young, D.G.

    1995-06-01

    This research presents the first field evidence for the phytoremediation of a TNT contaminated soil by the emersed aquatic plant, Myriophyllum brasiliense. Commonly known as Parrotfeather, this plant features a nitroreductase enzyme capable of promoting the reduction of the nitro groups on TNT to the corresponding amino groups. The proposed reductive pathway takes the TNT through isomers of monoamino and diamino to the final triaminonitrotoluene (TNT) Once in the TAT form and in the presence of oxygen, the final oxidative step quickly yields ring opened products and complete phytoremediation of TNT.

  7. [Current situation and prospect on the remediation of soils contaminated by heavy metals].

    PubMed

    Long, Xinxian; Yang, Xiao'e; Ni, Wuzhong

    2002-06-01

    Physio-chemical techniques and phytoremediation are the important methods for solving heavy metal pollution of environment. According to the processes and mechanisms of reactions, physio-chemical techniques can be divided into chemical immobilization, soil washing and electrokinetic remediation, while phytoremediation includes phytostabilization, phyto-volatilization and phyto-extraction. The principles, advantages, disadvantages, feasibility and future research trends of the techniques were reviewed. PMID:12216411

  8. Modeling in situ ozonation for the remediation of nonvolatile PAH-contaminated unsaturated soils.

    PubMed

    Kim, Jeongkon; Choi, Heechul

    2002-04-01

    Mathematical models were developed to investigate the characteristics of gaseous ozone transport under various soil conditions and the feasibility of in situ ozone venting for the remediation of unsaturated soils contaminated with phenanthrene. On the basis of assumptions for the mass transfer and reactions of ozone, three approaches were considered: equilibrium, kinetic, and lump models. Water-saturation-dependent reactions of gaseous ozone with soil organic matter (SOM) and phenanthrene were employed. The models were solved numerically by using the finite-difference method, and the model parameters were determined by using the experimental data of Hsu [The use of gaseous ozone to remediate the organic contaminants in the unsaturated soils, PhD Thesis, Michigan State Univ., East Lansing, MI, 1995]. The transport of gas-phase ozone is significantly retarded by ozone consumption due to reactions with SOM and phenanthrene, in addition to dissolution. An operation time of 156 h was required to completely remove phenanthrene in a 5-m natural soil column. In actual situations, however, the operation time is likely to be longer than the ideal time because of unknown factors including heterogeneity of the porous medium and the distribution of SOM and contaminant. The ozone transport front length was found to be very limited (< 1 m). The sensitivity analysis indicated that SOM is the single most important factor affecting in situ ozonation for the remediation of unsaturated soil contaminated with phenanthrene. Models were found to be insensitive to the reaction mechanisms of phenathrene with either gas-phase ozone or dissolved ozone. More study is required to quantify the effect of OH* formation on the removal of contaminant and on ozone transport in the subsurface.

  9. Modeling in situ ozonation for the remediation of nonvolatile PAH-contaminated unsaturated soils.

    PubMed

    Kim, Jeongkon; Choi, Heechul

    2002-04-01

    Mathematical models were developed to investigate the characteristics of gaseous ozone transport under various soil conditions and the feasibility of in situ ozone venting for the remediation of unsaturated soils contaminated with phenanthrene. On the basis of assumptions for the mass transfer and reactions of ozone, three approaches were considered: equilibrium, kinetic, and lump models. Water-saturation-dependent reactions of gaseous ozone with soil organic matter (SOM) and phenanthrene were employed. The models were solved numerically by using the finite-difference method, and the model parameters were determined by using the experimental data of Hsu [The use of gaseous ozone to remediate the organic contaminants in the unsaturated soils, PhD Thesis, Michigan State Univ., East Lansing, MI, 1995]. The transport of gas-phase ozone is significantly retarded by ozone consumption due to reactions with SOM and phenanthrene, in addition to dissolution. An operation time of 156 h was required to completely remove phenanthrene in a 5-m natural soil column. In actual situations, however, the operation time is likely to be longer than the ideal time because of unknown factors including heterogeneity of the porous medium and the distribution of SOM and contaminant. The ozone transport front length was found to be very limited (< 1 m). The sensitivity analysis indicated that SOM is the single most important factor affecting in situ ozonation for the remediation of unsaturated soil contaminated with phenanthrene. Models were found to be insensitive to the reaction mechanisms of phenathrene with either gas-phase ozone or dissolved ozone. More study is required to quantify the effect of OH* formation on the removal of contaminant and on ozone transport in the subsurface. PMID:11999632

  10. Modeling in situ ozonation for the remediation of nonvolatile PAH-contaminated unsaturated soils.

    SciTech Connect

    Kim, J.; Choi, H.; Environmental Research; Kwangju Inst. of Science and Technology

    2002-04-01

    Mathematical models were developed to investigate the characteristics of gaseous ozone transport under various soil conditions and the feasibility of in situ ozone venting for the remediation of unsaturated soils contaminated with phenanthrene. On the basis of assumptions for the mass transfer and reactions of ozone, three approaches were considered: equilibrium, kinetic, and lump models. Water-saturation-dependent reactions of gaseous ozone with soil organic matter (SOM) and phenanthrene were employed. The models were solved numerically by using the finite-difference method, and the model parameters were determined by using the experimental data of Hsu [The use of gaseous ozone to remediate the organic contaminants in the unsaturated soils, PhD Thesis, Michigan State Univ., East Lansing, MI, 1995]. The transport of gas-phase ozone is significantly retarded by ozone consumption due to reactions with SOM and phenanthrene, in addition to dissolution. An operation time of 156 h was required to completely remove phenanthrene in a 5-m natural soil column. In actual situations, however, the operation time is likely to be longer than the ideal time because of unknown factors including heterogeneity of the porous medium and the distribution of SOM and contaminant. The ozone transport front length was found to be very limited (<1 m). The sensitivity analysis indicated that SOM is the single most important factor affecting in situ ozonation for the remediation of unsaturated soil contaminated with phenanthrene. Models were found to be insensitive to the reaction mechanisms of phenanthrene with either gas-phase ozone or dissolved ozone. More study is required to quantify the effect of OH{sup {sm_bullet}} formation on the removal of contaminant and on ozone transport in the subsurface.

  11. [Effect of flue gas desulfurization gypsum application on remediation of acidified forest soil].

    PubMed

    Luo, Yao; Kang, Rong-Hua; Yu, De-Xiang; Tan, Bing-Quan; Duan, Lei

    2012-06-01

    Effect of flue gas desulfurization gypsum (FGDG) application on remediation of a typical acidified forest soil was studied through field experiments at Tieshanping, Chongqing in southwest China for one year. To evaluate the effect and risk of FGDG application, pH value, major ions and heavy metal of soil water in different soil layers were observed dynamically, and heavy metal contained in soil and FGDG were measured. Results showed that Ca2+ and SO4(-2) concentration of soil water in FGDG plots increased with time, pH value was elevated slightly, and n(Ca)/n(Al) value of annual average increased from 2.16, 1.35 and 0.88 to 2.58, 1.52 and 1.12 compared with control plots. The concentration of As, Cu, Cr, Ni and Zn in soil water was not elevated significantly. However, slight enrichment of Cr, Ni and Zn in some upper soil layers was observed. Consequently, FGDG application can improve acidified forest soil, without obviously heavy metal increasing in soil water. However, risk for heavy metal enrichment still exists, which is need for further study. PMID:22946189

  12. [Effect of flue gas desulfurization gypsum application on remediation of acidified forest soil].

    PubMed

    Luo, Yao; Kang, Rong-Hua; Yu, De-Xiang; Tan, Bing-Quan; Duan, Lei

    2012-06-01

    Effect of flue gas desulfurization gypsum (FGDG) application on remediation of a typical acidified forest soil was studied through field experiments at Tieshanping, Chongqing in southwest China for one year. To evaluate the effect and risk of FGDG application, pH value, major ions and heavy metal of soil water in different soil layers were observed dynamically, and heavy metal contained in soil and FGDG were measured. Results showed that Ca2+ and SO4(-2) concentration of soil water in FGDG plots increased with time, pH value was elevated slightly, and n(Ca)/n(Al) value of annual average increased from 2.16, 1.35 and 0.88 to 2.58, 1.52 and 1.12 compared with control plots. The concentration of As, Cu, Cr, Ni and Zn in soil water was not elevated significantly. However, slight enrichment of Cr, Ni and Zn in some upper soil layers was observed. Consequently, FGDG application can improve acidified forest soil, without obviously heavy metal increasing in soil water. However, risk for heavy metal enrichment still exists, which is need for further study.

  13. Some Case Studies on Metal-Microbe Interactions to Remediate Heavy Metals- Contaminated Soils in Korea

    NASA Astrophysics Data System (ADS)

    Chon, Hyo-Taek

    2015-04-01

    Conventional physicochemical technologies to remediate heavy metals-contaminated soil have many problems such as low efficiency, high cost and occurrence of byproducts. Recently bioremediation technology is getting more and more attention. Bioremediation is defined as the use of biological methods to remediate and/or restore the contaminated land. The objectives of bioremediation are to degrade hazardous organic contaminants and to convert hazardous inorganic contaminants to less toxic compounds of safe levels. The use of bioremediation in the treatment of heavy metals in soils is a relatively new concept. Bioremediation using microbes has been developed to remove toxic heavy metals from contaminated soils in laboratory scale to the contaminated field sites. Recently the application of cost-effective and environment-friendly bioremediation technology to the heavy metals-contaminated sites has been gradually realized in Korea. The merits of bioremediation include low cost, natural process, minimal exposure to the contaminants, and minimum amount of equipment. The limitations of bioremediation are length of remediation, long monitoring time, and, sometimes, toxicity of byproducts for especially organic contaminants. From now on, it is necessary to prove applicability of the technologies to contaminated sites and to establish highly effective, low-cost and easy bioremediation technology. Four categories of metal-microbe interactions are generally biosorption, bioreduction, biomineralization and bioleaching. In this paper, some case studies of the above metal-microbe interactions in author's lab which were published recently in domestic and international journals will be introduced and summarized.

  14. Remediation of metal contaminated soil by EDTA incorporating electrochemical recovery of metal and EDTA

    SciTech Connect

    Allen, H.E.; Chen, P.H. )

    1993-11-01

    Removal of toxic heavy metals from a soil matrix by the addition of ethylenediamine tetraacetic acid (EDTA) is an effective means of remediation. The liquid stream containing the metal and chelating agent is amenable to further treatment by electrolysis in which the metal can be separated from the chelating agent. This provides a separated metal than can be removed for reuse or treated for final disposal by conventional technologies and a reclaimed EDTA stream that can be used again for treatment of contaminated soil. Under the diffusion controlled conditions of polarography or voltammetry, the authors observed reduction of cadmium, copper and lead ions and their protonated EDTA complexes (MHY[sup [minus

  15. Zeta potential of soils with surfactants and its relevance to electrokinetic remediation.

    PubMed

    Kaya, Abidin; Yukselen, Yeliz

    2005-04-11

    There are numerous studies on the application of electrokinetic decontamination technique to remediate heavy metal contaminated fine-grained soils. In recent studies, surfactants have been used to increase the efficiency of contaminant removal. However, there is limited data available on how physicochemical parameters such as zeta potential (zeta) of soils changes in the presence of surfactants. Understanding the zeta potential variations of soils with surfactant addition is important because it controls the direction and magnitude of electro-osmotic permeability, which plays important role on the efficiency of electrokinetic remediation. In this study, zeta potentials of kaolinite, montmorillonite and quartz powder with Li+, Ca+2, Cu+2, Pb+2 and Al+3 in the presence of anionic, cationic and non-ionic surfactants were determined. The results indicate that anionic surfactants produce negative zeta potentials. The other surfactants produce both positive and negative zeta potentials depending on soil type and ion present in the system. The results also indicate that the zeta potential of kaolinite and quartz powder with surfactants showed similar trends; however, the absolute magnitude of the zeta potential of quartz powder is higher than that of kaolinite. The zeta potential of montmorillonite commonly shows a different trend from those of kaolinite and quartz powder. Based on the test results, it is recommended that zeta potential of soils be determined before the electrokinetic decontamination in order to maximize the efficiency of the technique. PMID:15811672

  16. A Multilayered Box Model for Calculating Preliminary RemediationGoals in Soil Screening

    SciTech Connect

    Shan, Chao; Javandel, Iraj

    2004-05-21

    In the process of screening a soil against a certain contaminant, we define the health-risk based preliminary remediation goal (PRG) as the contaminant concentration above which some remedial action may be required. PRG is thus the first standard (or guidance) for judging a site. An over-estimated PRG (a too-large value) may cause us to miss some contaminated sites that can threaten human health and the environment. An under-estimated PRG (a too-small value), on the other hand, may lead to unnecessary cleanup and waste tremendous resources. The PRGs for soils are often calculated on the assumption that the contaminant concentration in soil does not change with time. However, that concentration usually decreases with time as a result of different chemical and transport mechanisms. The static assumption thus exaggerates the long-term exposure dose and results in a too-small PRG. We present a box model that considers all important transport processes and obeys the law of mass conservation. We can use the model as a tool to estimate the transient contaminant concentrations in air, soil and groundwater. Using these concentrations in conjunction with appropriate health risk parameters, we may estimate the PRGs for different contaminants. As an example, we calculated the tritium PRG for residential soils. The result is quite different from, but within the range of, the two versions of the corresponding PRG previously recommended by the U.S. EPA.

  17. Does ochre have the potential to be a remedial treatment for As-contaminated soils?

    PubMed

    Olimah, J A; Shaw, L J; Hodson, M E

    2015-11-01

    Ochre is an iron oxyhydroxide-rich waste that accumulates in water bodies associated with disused mines. Laboratory experiments were conducted to examine the potential of four different ochres to be used as remedial agents for As contaminated soils. The ochres removed As from solution (200 and 500 mg L(-1)) in adsorption experiments at pH 3 and 8 and, when added to As contaminated soil (5% w/w) significantly reduced As release to solution. In both these experiments the highest surface area ochres performed best. The impact of ochre amendments on uptake of As from soil by plants and humans and release of As to ground water was assessed in a year-long incubation study. Ochres increased soil pH and reduced CaCl2 extractable As but had no consistent effect on plant growth, plant As uptake or As extraction in physiologically-based extraction tests. Ochre may be better used for water treatment than soil remediation.

  18. A new approach to electrokinetic remediation of soils polluted by heavy metals

    NASA Astrophysics Data System (ADS)

    Li, Zhongming; Yu, Ji-Wei; Neretnieks, Ivars

    1996-04-01

    When the electrokinetic method is used to remove metals from soils, metals may precipitate as hydroxides in the region of the soil where pH is raised, which limits the remediation efficiency. The pH rise is caused by the generation of hydroxide ions as a result of electrolysis of water during the remediation. This paper proposes a new technique in which a conductive solution is inserted between the cathode and the soil to be treated. By this approach, the pH in the soil can be kept low so that no metal precipitation will occur. Thus metal ions may migrate out of the soil and precipitate in the inserted solution. Laboratory experiments have been carried out to remove copper and zinc from sand by the proposed technique. The experimental results show that metal removal efficiencies depend on the duration of the treatment and the content of electrolytes in the solution. Metal removal efficiencies of > 96% can be reached for both copper and zinc.

  19. Does ochre have the potential to be a remedial treatment for As-contaminated soils?

    PubMed

    Olimah, J A; Shaw, L J; Hodson, M E

    2015-11-01

    Ochre is an iron oxyhydroxide-rich waste that accumulates in water bodies associated with disused mines. Laboratory experiments were conducted to examine the potential of four different ochres to be used as remedial agents for As contaminated soils. The ochres removed As from solution (200 and 500 mg L(-1)) in adsorption experiments at pH 3 and 8 and, when added to As contaminated soil (5% w/w) significantly reduced As release to solution. In both these experiments the highest surface area ochres performed best. The impact of ochre amendments on uptake of As from soil by plants and humans and release of As to ground water was assessed in a year-long incubation study. Ochres increased soil pH and reduced CaCl2 extractable As but had no consistent effect on plant growth, plant As uptake or As extraction in physiologically-based extraction tests. Ochre may be better used for water treatment than soil remediation. PMID:26162334

  20. In Situ Uranium Stabilization through Polyphosphate Remediation: Development and Demonstration at the Hanford Site 300 Area, Washington State

    SciTech Connect

    Wellman, Dawn M.; Pierce, Eric M.; Vermeul, Vincent R.; Mattigod, Shas V.; Richards, Emily L.; Williams, Mark D.; Fruchter, Jonathan S.; Icenhower, Jonathan P.

    2008-06-27

    A site specific treatability test was conducted to optimize polyphosphate remediation technology for implementation through a field-scale technology demonstration to accelerate monitored natural attenuation of the uranium plume within the Hanford 300 Area aquifer. A focused application of polyphosphate was conducted in a source or “hot spot” area to reduce the inventory of available uranium that contributes to the groundwater plume through direct precipitation of uranyl-phosphate solids and secondary containment via precipitation of apatite acting as a long-term sorbent for uranium. The general treatability testing approach consisted of initial site characterization and setup, a polyphosphate injection test, and post-treatment performance assessment. Fundamental science studies were conducted with site specific sediment and groundwater to develop an effective remediation scheme for deployment of polyphosphate technology. In addition to remediating a portion of the plume, the data from this test provides valuable information for designing a full-scale remediation of uranium in the aquifer at the 300 Area of the Hanford Site. It will also provide a detailed understanding of the fundamental underpinnings necessary to evaluate the efficacy and potential utilization of polyphosphate technology at other sites with varying geochemical and hydrodynamic conditions.

  1. Remediation application strategies for depleted uranium contaminated soils at the US Army Yuma Proving Ground

    SciTech Connect

    Vandel, D.S.; Medina, S.M.; Weidner, J.R.

    1994-03-01

    The US Army Yuma Proving Ground (YPG), located in the southwest portion of Arizona conducts firing of projectiles into the Gunpoint (GP-20) firing range. The penetrators are composed of titanium and DU. The purpose of this project was to determine feasible cleanup technologies and disposal alternatives for the cleanup of the depleted uranium (DU) contaminated soils at YPG. The project was split up into several tasks that include (a) collecting and analyzing samples representative of the GP-20 soils, (b) evaluating the data results, (c) conducting a literature search of existing proven technologies for soil remediation, and (0) making final recommendations for implementation of this technology to the site. As a result of this study, several alternatives for the separation, treatment, and disposal procedures are identified that would result in meeting the cleanup levels defined by the Nuclear Regulatory Commission for unrestricted use of soils and would result in a significant cost savings over the life of the firing range.

  2. 300-FF-1 operable unit remedial investigation phase II report: Physical separation of soils treatability study

    SciTech Connect

    Not Available

    1994-04-01

    This report describes the approach and results of physical separations treatability tests conducted at the Hanford Site in the North Process Pond of the 300-FF-1 Operable Unit. Physical separation of soils was identified as a remediation alternative due to the potential to significantly reduce the amount of contaminated soils prior to disposal. Tests were conducted using a system developed at Hanford consisting of modified EPA equipment integrated with screens, hoppers, conveyors, tanks, and pumps from the Hanford Site. The treatability tests discussed in this report consisted of four parts, in which an estimated 84 tons of soil was processed: (1) a pre-test run to set up the system and adjust system parameters for soils to be processed; (2) a baseline run to establish the performance of the system - Test No. 1; (3) a final run in which the system was modified as a result of findings from the baseline run - Test No. 2; and (4) water treatment.

  3. On-site mercury-contaminated soils remediation by using thermal desorption technology.

    PubMed

    Chang, T C; Yen, J H

    2006-02-01

    In this study, the thermal desorption process was used to treat a mercury-contaminated soils in Taipei. A series of bench or pilot plant experiments were also performed the optimized operation condition. The results showed that the concentrations of residual mercury in all treated soils were below 2 mg/kg, some even lower than 0.05 mg/kg. The supernatant and exhaust gas stream of the condensed desorbed mercury vapor in the remediation site were also met with the effluent standard. The total fee was estimated to be US 3,557,000 dollars, when treating contaminated soil leading to a unit treatment cost of US 834 dollars/m3 of soil.

  4. THERMAL REMEDIATION

    EPA Science Inventory

    Thermal remediation is being proposed by Region I for remediation of the overburden soil and groundwater at the Solvent Recovery Services New England Superfund site. This presentation at the public meeting will acquaint area residents with thermal remediation. The two types of ...

  5. Field Validation of the NUFT Code for Subsurface Remediation by Soil Vapor Extraction

    SciTech Connect

    Nitao, J.J.

    2000-09-23

    Soil vapor extraction (SVE) is a widely-used method for remediation of contaminants in the unsaturated, or vadose, zone. SVE removes volatile contaminants by extracting gases from the subsurface. The pressure gradients necessary to drive gas flow are limited by at most one atmosphere of vacuum. Therefore, a common adjunct to SVE is the injection of fresh air into the subsurface at a distance from the extraction wells in order to increase overall gas pressure gradients, and, hence, flow rates. SVE has also been used for saturated zone remediation by first pumping the water table down to expose free phase contaminants. The selection of a vadose zone remediation method depends on a variety of site parameters. The type of contaminant is a major factor. Obviously, the selection of SVE as a method makes sense only for volatile contaminants since, otherwise, gas phase transport would be impossible. Bioventing is often a cost-effective candidate for contaminants that biodegrade easily in an aerobic environment, such as petroleum hydrocarbons. Bioventing shares some similarity to SVE, except that the flow rates are usually much lower. Whereas, the main goal of bioventing is to provide oxygen to the micro-organisms that break-down the contaminant; the main goal of SVE is physical removal. Biodegradation may be, for some contaminants, an important side benefit of SVE. However, bioventing and other forms of bioremediation are not considered to be effective for chlorinated vadose zone contaminants, such as trichloroethylene (TCE), which does not biodegrade readily in an aerobic environment. Soil excavation is a viable remediation method for the shallow spills where there are no existing important man-made structures. Otherwise, SVE is often the most appropriate and widely used remediation method for VOC's in the vadose zone.

  6. Upscaling Self-Sustaining Treatment for Active Remediation (STAR): Experimental Study of Scaling Relationships for Smouldering Combustion to Remediate Soil

    NASA Astrophysics Data System (ADS)

    Kinsman, L.; Gerhard, J.; Torero, J.; Scholes, G.; Murray, C.

    2013-12-01

    Self-sustaining Treatment for Active Remediation (STAR) is a relatively new remediation approach for soil contaminated with organic industrial liquids. This technology uses smouldering combustion, a controlled, self-sustaining burning reaction, to destroy nonaqueous phase liquids (NAPLs) and thereby render soil clean. While STAR has been proven at the bench scale, success at industrial scales requires the process to be scaled-up significantly. The objective of this study was to conduct an experimental investigation into how liquid smouldering combustion phenomena scale. A suite of detailed forward smouldering experiments were conducted in short (16 cm dia. x 22 cm high), intermediate (16 cm dia. x 127 cm high), and large (97 cm dia. x 300 cm high; a prototype ex-situ reactor) columns; this represents scaling of up to 530 times based on the volume treated. A range of fuels were investigated, with the majority of experiments conducted using crude oil sludge as well as canola oil as a non-toxic surrogate for hazardous contaminants. To provide directly comparable data sets and to isolate changes in the smouldering reaction which occurred solely due to scaling effects, sand grain size, contaminant type, contaminant concentration and air injection rates were controlled between the experimental scales. Several processes could not be controlled and were identified to be susceptible to changes in scale, including: mobility of the contaminant, heat losses, and buoyant flow effects. For each experiment, the propagation of the smouldering front was recorded using thermocouples and analyzed by way of temperature-time and temperature-distance plots. In combination with the measurement of continuous mass loss and gaseous emissions, these results were used to evaluate the fundamental differences in the way the reaction front propagates through the mixture of sand and fuel across the various scales. Key governing parameters were compared between the small, intermediate, and large

  7. Inorganic materials as ameliorants for soil remediation of metal toxicity to wild mustard (Sinapis arvensis L.).

    PubMed

    Ribeiro Filho, Mateus Rosas; Siqueira, José Oswaldo; Vangronsveld, Jaco; Soares, Cláudio Roberto Fonsêca Sousa; Curi, Nilton

    2011-01-01

    The ameliorating effects of different inorganic materials were investigated on a soil originating from a zinc smelter dumping site contaminated by toxic metals. Wild mustard (Sinapis arvensis L.) was used as a test plant. The soil was amended with different doses of mining sludge, Perferric Red Latosol (LVj), steel shots, cyclonic ash, silifertil, and superphosphate. The most effective amendments improved plant growth with 45% and reduced metal uptake by over 70% in comparison to untreated soil. Reductions in availability as estimated by BaCl2-extractable metals reached up to 90% for Zn and 65% for Cd as compared to unamended soil. These reductions were associated with lower shoot and root metal contents. Shoot Zn content was reduced from 1,369 microg g(-1) in plants grown on untreated soil to 377 microg g(-1) when grown on cyclonic ash amended soil while Cd decreased from 267 to 44 microg g(-1) in steel shots amended soil. Superphosphate addition had no ameliorating effect. On the contrary, it increased BaCl2-extractable amounts of Zn. Considering all parameters we determined, steel shots, cyclonic ash and silifertil are the most promising for remediating metal contaminated soil in the tropics. Further studies evaluating impacts, cost-effectiveness and durability of effects will be conducted. PMID:21598779

  8. A multi-species approach to toxicity assessment of a soil remediation technology

    SciTech Connect

    Gunderson, C.A.; Kostuck, J.M.; Gibbs, M.H.; Napolitano, G.E.; Wicker, L.F.; Richmond, J.E.; Stewart, A.J.

    1994-12-31

    A multi-species terrestrial test system was developed to test the biological effectiveness of composting as a soil-remediation technology. A suite of responses were evaluated across multiple scales to form a chain of evidence predictive of longer-term effects at higher levels. The authors compared responses of soil microorganisms, two soil invertebrates, and three plant species to two compost types (the final product from a US Army explosives composting study, and an uncontaminated reference compost). The authors evaluated plant growth and physiology (photosynthesis, root modulation and symbiotic N2-fixation), invertebrate growth and reproduction, and soil microbial populations. Compost from the contaminated soil inhibited several aspects of plant performance, but produced few adverse effects on invertebrates. An initial lag in invertebrate reproduction in the reference compost, however, suggested differences not associated with residual contamination and highlighted a difficulty inherent in soil toxicity assessment: finding an appropriate reference soil. Nevertheless, the results from this system and complementary shorter-term tests suggested some non-lethal adverse effects from the contaminated-soil compost, primarily to plants. This methodology can bridge the gap between traditional short-term toxicity testing and longer-term field assessments and provide information on ecological effects by explicitly including measurements at several levels of ecological organization.

  9. [Research on the effect and technique of remediation for multi-metal contaminated tailing soils].

    PubMed

    Zhu, Guang-xu; Guo, Qing-jun; Yang, Jun-xing; Zhang, Han-zhi; Wei, Rong-fei; Wang, Chun-yu; Marc, Peters

    2013-09-01

    Soil samples were collected from compound polluted tailings to analyze the contents of total heavy metals and their speciation in the soil. Laboratory batch tests were conducted to examine the effects of distilled water and different concentrations of oxalic acid, citric acid, acetic acid, HNO3 and EDTA on the removal of heavy metals from the polluted soils. The suitable eluent and its optimal conditions including liquid to soil ratio, reaction time and washing number were also optimized, and the total toxicity reduction index was proposed to evaluate the effect of the eluent on the remediation of polluted soil. The results showed that Cd and Pb were the most abundant heavy metals in the soil, reaching 52.2 mg x kg(-1) and 4836.5 m x kg(-1), respectively. There was significant difference in the removal efficiency for different heavy metals. Cr had a maximum removal efficiency of 2.7%, while the maximum Cd and Pb removal efficiency was both about 60%. Distilled water had little removal efficiency for heavy metals, with less than 0.1% removal rate; the heavy metal removal efficiency of oxalic acid and acetic acid was also quite low; EDTA in 0.1 mol x L(-1) was selected as the suitable eluent for the polluted soil. Evaluation of the total toxicity reduction index and the cost suggested that EDTA should be used with a liquid to soil ratio of 6:1, a reaction time of 3 h and 2 washings.

  10. Uranium removal from soils: An overview from the Uranium in Soils Integrated Demonstration program

    SciTech Connect

    Francis, C.W.; Brainard, J.R.; York, D.A.; Chaiko, D.J.; Matthern, G.

    1994-09-01

    An integrated approach to remove uranium from uranium-contaminated soils is being conducted by four of the US Department of Energy national laboratories. In this approach, managed through the Uranium in Soils Integrated Demonstration program at the Fernald Environmental Management Project, Fernald, Ohio, these laboratories are developing processes that selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics or generating waste that is difficult to manage or dispose of. These processes include traditional uranium extractions that use carbonate as well as some nontraditional extraction techniques that use citric acid and complex organic chelating agents such as naturally occurring microbial siderophores. A bench-scale engineering design for heap leaching; a process that uses carbonate leaching media shows that >90% of the uranium can be removed from the Fernald soils. Other work involves amending soils with cultures of sulfur and ferrous oxidizing microbes or cultures of fungi whose role is to generate mycorrhiza that excrete strong complexers for uranium. Aqueous biphasic extraction, a physical separation technology, is also being evaluated because of its ability to segregate fine particulate, a fundamental requirement for soils containing high levels of silt and clay. Interactions among participating scientists have produced some significant progress not only in evaluating the feasibility of uranium removal but also in understanding some important technical aspects of the task.

  11. Remediation of polluted soil by a two-stage treatment system: desorption of phenanthrene in soil and electrochemical treatment to recover the extraction agent.

    PubMed

    Gómez, J; Alcántara, M T; Pazos, M; Sanromán, M A

    2010-01-15

    In this study, the feasibility of a two-stage treatment process for the remediation of soil contaminated with phenanthrene as a model polycyclic aromatic hydrocarbon (PAH) has been assessed at laboratory scale. The initial stage of the process involved contacting contaminated soil with a solution of Tween 80 to enhance the desorption of phenanthrene from soil. In order to simulate a flushing process this initial stage was carried out in a washing packed-bed soil column. At the optimised conditions the total phenanthrene removal attained a value of almost 65% after 3 days. The second stage of the suggested treatment involved regeneration of the washing solution via phenanthrene degradation. The use of an electrochemical treatment was proposed for surfactant recovery and degradation of contaminants present in the solution collected. This oxidation was accomplished via an electrochemical cell by using graphite as electrode material. The phenanthrene was almost totally degraded in 3 days, reaching a degradation of about 96%. In addition, a test in which this regenerated solution was employed in the washing process was carried out in shake flask and washing column. The results demonstrate that selective degradation of pollutants by electrochemical treatment is potentially effective in reusing surfactant in another polluted soil treatment. PMID:19758751

  12. Evaluation of the potential of soil remediation by direct multi-channel pulsed corona discharge in soil.

    PubMed

    Wang, Tie Cheng; Qu, Guangzhou; Li, Jie; Liang, Dongli

    2014-01-15

    A novel approach, named multi-channel pulsed corona discharge in soil, was developed for remediating organic pollutants contaminated soil, with p-nitrophenol (PNP) as the model pollutant. The feasibility of PNP degradation in soil was explored by evaluating effects of pulse discharge voltage, air flow rate and soil moisture on PNP degradation. Based on roles of chemically active species and evolution of degradation intermediates, PNP degradation processes were discussed. Experimental results showed that about 89.4% of PNP was smoothly degraded within 60min of discharge treatment at pulse discharge voltage 27kV, soil moisture 5% and air flow rate 0.8Lmin(-1), and the degradation process fitted the first-order kinetic model. Increasing pulse discharge voltage was found to be favorable for PNP degradation, but not for energy yield. There existed appropriate air flow rate and soil moisture for obtaining gratifying PNP degradation efficacy. Roles of radical scavenger and measurement of active species suggested that ozone, H2O2, and OH radicals played very important roles in PNP degradation. CN bond in PNP molecule was cleaved, and the main intermediate products such as hydroquinone, benzoquinone, catechol, phenol, acetic acid, formic acid, oxalic acid, NO2(-) and NO3(-) were identified. Possible pathway of PNP degradation in soil in such a system was proposed.

  13. Application of iron electrode corrosion enhanced electrokinetic-Fenton oxidation to remediate diesel contaminated soils: A laboratory feasibility study

    NASA Astrophysics Data System (ADS)

    Tsai, Tzai-Tang; Sah, Jygau; Kao, Chih-Ming

    2010-01-01

    SummaryDiesel soil contamination on gas stations or refinery plants is a worldwide environmental problem. The main objectives of this study were to (1) evaluate the efficiency of electrokinetic (EK) by using different electrode materials (graphite and iron rods) and electrolytes (tap water, 0.01 M NaCl, and 0.1 M NaCl) on the remediation of diesel contaminated soils, and (2) evaluate the feasibility of total petroleum hydrocarbon-diesel (TPH-D) reducing in soils via EK-Fenton oxidation enhanced by corroded iron electrode. The EK and EK-Fenton experiments were conducted in batch and sand box experiments, respectively. Batch experiments reveal that the most appropriate electrolyte was 0.1 M NaCl when iron electrode was used in the EK system. Sand box experiments indicate that the TPH-D concentration dropped from 10,000 to 300 mg kg -1 when amorphous iron/total iron (Fe o/Fe t) ratio increased from 0.1 to 0.33, with the addition of 8% of H 2O 2 and 0.1 M NaCl after 60 days of EK-Fenton operation. Electrokinetically enhanced oxidation with the presence of both H 2O 2 and Fe 3O 4 (iron electrode corrosion) resulted in higher TPH-D removal efficiency (97%) compared to the efficiencies observed from EK (55%) or Fenton oxidation (27%) alone. This demonstrates that EK-Fenton oxidation catalyzed by iron electrode corrosion is a valuable direction to efficiently and effectively remediate diesel contaminated soils.

  14. Olive oil mill wastewater for remediation of slag contaminated soil.

    PubMed

    Ferrara, Luciano; Panzella, Lucia; Napolitano, Alessandra; Giudicianni, Italo; d'Ischia, Marco; Arienzo, Michele

    2013-12-01

    Two olive mill wastewaters (OMW) samples, OMWa and OMWb, containing different polyphenolic loads were used for decontaminating an unauthorized dump site in the Campania region, south Italy. In a bench-scale experiment, OMWa at pH 6.0 (OMWapH6.0) and 4.7 (OMWapH4.7), OMWb at pH 4.7 (OMWbpH4.7) and OMWa free of the polyphenolic moiety polyphenol-free OMWa (PF-OMWa) were added to the soil for a 96 h contact time. At 96 h, OMWapH4.7 was more effective than OMWapH6.0, with Cd, Cu, Pb and Zn removal percentages of 30.7-68.1. Cd and Pb levels were 6.0 and 915 mg kg(-1), respectively, decreasing below the regulatory limits for industrial and commercial areas (15.0 and 1 × 10(3) mg kg(-1), respectively). A threefold decrease in Zn levels was also observed from 13.5 × 10(3) to 4.3 × 10(3) mg kg(-1). The metal removal efficiency of PF-OMWa dropped from 30.7 % to 15.6 % for Cd and from 37.9 % to 1.3 % for Pb. OMWbpH4.7 at 96 h was more efficient than OMWapH4.7, with mean removal percentages of 32.5 versus 7.8, respectively.

  15. Operational strategy for soil concentration predictions of strontium/yttrium-90 and cesium-137 in surface soil at the West Valley Demonstration Project site

    SciTech Connect

    Myers, J.A.

    1995-06-05

    There are difficulties associated with the assessment of the interpretation of field measurements, determination of guideline protocols and control and disposal of low level radioactive contaminated soil in the environmental health physics field. Questions are raised among scientists and in public forums concerning the necessity and high costs of large area soil remediation versus the risks of low-dose radiation health effects. As a result, accurate soil activity assessments become imperative in decontamination situations. The West Valley Demonstration Project (WVDP), a US Department of Energy facility located in West Valley, New York is managed and operated by West Valley Nuclear Services Co., Inc. (WVNS). WVNS has identified contaminated on-site soil areas with a mixed variety of radionuclides (primarily fission product). Through the use of data obtained from a previous project performed during the summer of 1994 entitled ``Field Survey Correlation and Instrumentation Response for an In Situ Soil Measurement Program`` (Myers), the WVDP offers a unique research opportunity to investigate the possibility of soil concentration predictions based on exposure or count rate responses returned from a survey detector probe. In this study, correlations are developed between laboratory measured soil beta activity and survey probe response for the purposes of determining the optimal detector for field use and using these correlations to establish predictability of soil activity levels.

  16. Phosphorus Amendment Efficacy for In Situ Remediation of Soil Lead Depends on the Bioaccessible Method.

    PubMed

    Obrycki, John F; Basta, Nicholas T; Scheckel, Kirk; Stevens, Brooke N; Minca, Kristen K

    2016-01-01

    A validated method is needed to measure reductions of in vitro bioaccessible (IVBA) Pb in urban soil remediated with amendments. This study evaluated the effect of in vitro extraction solution pH and glycine buffer on bioaccessible Pb in P-treated soils. Two Pb-contaminated soils (790-1300 mg Pb kg), one from a garden and one from a city lot in Cleveland, OH, were incubated in a bench scale experiment for 1 yr. Six phosphate amendments, including bone meal, fish bone, poultry litter, monoammonium phosphate, diammonium phosphate, and triple superphosphate, were added to containers at two application rates. Lead IVBA was assessed using USEPA Method 1340 and three modified versions of this method. Modifications included using solutions with pH 1.5 and 2.5 as well as using solutions with and without 0.4 mol L glycine. Soil amendments were ineffective in reducing IVBA Pb in these soils as measured by pH 1.5 with glycine buffer. The greatest reductions in IVBA Pb, from 5 to 26%, were found using pH 2.5 extractions. Lead mineral results showed several soil amendments promoted Pb phosphate formation, an indicator of remediation success. A significant negative linear relationship between reduction in IVBA Pb and Pb-phosphate formation was found only for pH 2.5 without glycine extraction solution. A modified USEPA Method 1340 without glycine and using pH 2.5 has the potential to predict P soil treatment efficacy and reductions in bioavailable Pb. PMID:26828158

  17. Electrokinetic delivery of persulfate to remediate PCBs polluted soils: Effect of different activation methods.

    PubMed

    Fan, Guangping; Cang, Long; Gomes, Helena I; Zhou, Dongmei

    2016-02-01

    Persulfate-based in-situ chemical oxidation (ISCO) for the remediation of organic polluted soils has gained much interest in last decade. However, the transportation of persulfate in low-permeability soil is very low, which limits its efficiency in degrading soil pollutants. Additionally, the oxidation-reduction process of persulfate with organic contaminants takes place slowly, while, the reaction will be greatly accelerated by the production of more powerful radicals once it is activated. Electrokinetic remediation (EK) is a good way for transporting persulfate in low-permeability soil. In this study, different activation methods, using zero-valent iron, citric acid chelated Fe(2+), iron electrode, alkaline pH and peroxide, were evaluated to enhance the activity of persulfate delivered by EK. All the activators and the persulfate were added in the anolyte. The results indicated that zero-valent iron, alkaline, and peroxide enhanced the transportation of persulfate at the first stage of EK test, and the longest delivery distance reached sections S4 or S5 (near the cathode) on the 6th day. The addition of activators accelerated decomposition of persulfate, which resulted in the decreasing soil pH. The mass of persulfate delivered into the soil declined with the continuous decomposition of persulfate by activation. The removal efficiency of PCBs in soil followed the order of alkaline activation > peroxide activation > citric acid chelated Fe(2+) activation > zero-valent iron activation > without activation > iron electrode activation, and the values were 40.5%, 35.6%, 34.1%, 32.4%, 30.8% and 30.5%, respectively. The activation effect was highly dependent on the ratio of activator and persulfate.

  18. Electrokinetic delivery of persulfate to remediate PCBs polluted soils: Effect of different activation methods.

    PubMed

    Fan, Guangping; Cang, Long; Gomes, Helena I; Zhou, Dongmei

    2016-02-01

    Persulfate-based in-situ chemical oxidation (ISCO) for the remediation of organic polluted soils has gained much interest in last decade. However, the transportation of persulfate in low-permeability soil is very low, which limits its efficiency in degrading soil pollutants. Additionally, the oxidation-reduction process of persulfate with organic contaminants takes place slowly, while, the reaction will be greatly accelerated by the production of more powerful radicals once it is activated. Electrokinetic remediation (EK) is a good way for transporting persulfate in low-permeability soil. In this study, different activation methods, using zero-valent iron, citric acid chelated Fe(2+), iron electrode, alkaline pH and peroxide, were evaluated to enhance the activity of persulfate delivered by EK. All the activators and the persulfate were added in the anolyte. The results indicated that zero-valent iron, alkaline, and peroxide enhanced the transportation of persulfate at the first stage of EK test, and the longest delivery distance reached sections S4 or S5 (near the cathode) on the 6th day. The addition of activators accelerated decomposition of persulfate, which resulted in the decreasing soil pH. The mass of persulfate delivered into the soil declined with the continuous decomposition of persulfate by activation. The removal efficiency of PCBs in soil followed the order of alkaline activation > peroxide activation > citric acid chelated Fe(2+) activation > zero-valent iron activation > without activation > iron electrode activation, and the values were 40.5%, 35.6%, 34.1%, 32.4%, 30.8% and 30.5%, respectively. The activation effect was highly dependent on the ratio of activator and persulfate. PMID:26347936

  19. Characterization and remediation of soil prior to construction of an on-site disposal facility at Fernald

    SciTech Connect

    Hunt, A.; Jones, G.; Janke, R.; Nelson, K.

    1998-03-01

    During the production years at the Feed Materials Production Center (FMPC), the soil of the site and the surrounding areas was surficially impacted by airborne contamination. The volume of impacted soil is estimated at 2.2 million cubic yards. During site remediation, this contamination will be excavated, characterized, and disposed of. In 1986 the US Environmental Protection Agency (EPA) and the Department of Energy (DOE) entered into a Federal Facility Compliance Agreement (FFCA) covering environmental impacts associated with the FMPC. A site wide Remedial Investigation/Feasibility Study (RI/FS) was initiated pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended by the Superfund Amendments and Reauthorization Act (CERCLA). The DOE has completed the RI/FS process and has received approval of the final Records of Decision. The name of the facility was changed to the Fernald Environmental Management Project (FEMP) to emphasize the change in mission to environmental restoration. Remedial actions which address similar scopes of work or types of contaminated media have been grouped into remedial projects for the purpose of managing the remediation of the FEMP. The Soil Characterization and Excavation Project (SCEP) will address the remediation of FEMP soils, certain waste units, at- and below-grade material, and will certify attainment of the final remedial limits (FRLs) for the FEMP. The FEMP will be using an on-site facility for low level radioactive waste disposal. The facility will be an above-ground engineered structure constructed of geological material. The area designated for construction of the base of the on-site disposal facility (OSDF) is referred to as the footprint. Contaminated soil within the footprint must be identified and remediated. Excavation of Phase 1, the first of seven remediation areas, is complete.

  20. Quantification of the effects of spatially varying environmental contaminants into a cost model for soil remediation

    SciTech Connect

    Broos, M.J.; Stein, A.; Aarts, L.; Tooren, C.F. tan

    1999-06-01

    In this study the authors investigated the effects of spatial variability of soil contaminants on cost calculations for soil remediation. Most cost models only provide a single figure, whereas spatial variability is one of the sources to contribute to the uncertainty. A cost model is applied to a study site of 19 ha containing a former gasworks in the Rotterdam harbor. The site was contaminated by heavy metals, PAH and mineral oil. Two sets of environmental thresholds were applied, one for identifying the severeness of contamination and one to decide upon the future use of excavated soil. Three remediation scenarios were compared. Geostatistical simulations were applied, both on individual contaminants and on indicator variables derived from these. As it turns out, spatial uncertainty causes 2--5% uncertainty in the final cost estimates. Another source of uncertainty is the direction of application of the cost model: a least-case approach starts with the lowest threshold value, followed by increasingly higher values, whereas a worst-case approach starts with the highest threshold value followed by decreasing values. Using a worst-case approach yielded cost estimates that were 6--8% higher than cost estimates by a least-case approach. The authors concluded that 8--13% of the uncertainty in cost estimates could be explained by spatial variation of soil contaminants and lithology.

  1. Remediation of heavy metal(loid)s contaminated soils--to mobilize or to immobilize?

    PubMed

    Bolan, Nanthi; Kunhikrishnan, Anitha; Thangarajan, Ramya; Kumpiene, Jurate; Park, Jinhee; Makino, Tomoyuki; Kirkham, Mary Beth; Scheckel, Kirk

    2014-02-15

    Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time after their introduction. Bioavailability of metal(loid)s plays a vital role in the remediation of contaminated soils. In this review, the remediation of heavy metal(loid) contaminated soils through manipulating their bioavailability using a range of soil amendments will be presented. Mobilizing amendments such as chelating and desorbing agents increase the bioavailability and mobility of metal(loid)s. Immobilizing amendments such of precipitating agents and sorbent materials decrease the bioavailabilty and mobility of metal(loid)s. Mobilizing agents can be used to enhance the removal of heavy metal(loid)s though plant uptake and soil washing. Immobilizing agents can be used to reduce the transfer to metal(loid)s to food chain via plant uptake and leaching to groundwater. One of the major limitations of mobilizing technique is susceptibility to leaching of the mobilized heavy metal(loid)s in the absence of active plant uptake. Similarly, in the case of the immobilization technique the long-term stability of the immobilized heavy metal(loid)s needs to be monitored. PMID:24394669

  2. Remediation of heavy metal(loid)s contaminated soils--to mobilize or to immobilize?

    PubMed

    Bolan, Nanthi; Kunhikrishnan, Anitha; Thangarajan, Ramya; Kumpiene, Jurate; Park, Jinhee; Makino, Tomoyuki; Kirkham, Mary Beth; Scheckel, Kirk

    2014-02-15

    Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time after their introduction. Bioavailability of metal(loid)s plays a vital role in the remediation of contaminated soils. In this review, the remediation of heavy metal(loid) contaminated soils through manipulating their bioavailability using a range of soil amendments will be presented. Mobilizing amendments such as chelating and desorbing agents increase the bioavailability and mobility of metal(loid)s. Immobilizing amendments such of precipitating agents and sorbent materials decrease the bioavailabilty and mobility of metal(loid)s. Mobilizing agents can be used to enhance the removal of heavy metal(loid)s though plant uptake and soil washing. Immobilizing agents can be used to reduce the transfer to metal(loid)s to food chain via plant uptake and leaching to groundwater. One of the major limitations of mobilizing technique is susceptibility to leaching of the mobilized heavy metal(loid)s in the absence of active plant uptake. Similarly, in the case of the immobilization technique the long-term stability of the immobilized heavy metal(loid)s needs to be monitored.

  3. Reconnaissance soil geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont County, Wyoming

    USGS Publications Warehouse

    Smith, David B.; Sweat, Michael J.

    2012-01-01

    Soil samples were collected and chemically analyzed from the Riverton Uranium Mill Tailings Remedial Action Site, which lies within the Wind River Indian Reservation in Fremont County, Wyoming. Nineteen soil samples from a depth of 0 to 5 centimeters were collected in August 2011 from the site. The samples were sieved to less than 2 millimeters and analyzed for 44 major and trace elements following a near-total multi-acid extraction. Soil pH was also determined. The geochemical data were compared to a background dataset consisting of 160 soil samples previously collected from the same depth throughout the State of Wyoming as part of another ongoing study by the U.S. Geological Survey. Risk from potentially toxic elements in soil from the site to biologic receptors and humans was estimated by comparing the concentration of these elements with soil screening values established by the U.S. Environmental Protection Agency. All 19 samples exceeded the carcinogenic human health screening level for arsenic in residential soils of 0.39 milligrams per kilogram (mg/kg), which represents a one-in-one-million cancer risk (median arsenic concentration in the study area is 2.7 mg/kg). All 19 samples also exceeded the lead and vanadium screening levels for birds. Eighteen of the 19 samples exceeded the manganese screening level for plants, 13 of the 19 samples exceeded the antimony screening level for mammals, and 10 of 19 samples exceeded the zinc screening level for birds. However, these exceedances are also found in soils at most locations in the Wyoming Statewide soil database, and elevated concentrations alone are not necessarily cause for alarm. Uranium and thorium, two other elements of environmental concern, are elevated in soils at the site as compared to the Wyoming dataset, but no human or ecological soil screening levels have been established for these elements.

  4. From conceptual model to remediation: bioavailability, a key to clean up heavy metal contaminated soils.

    NASA Astrophysics Data System (ADS)

    Petruzzelli, Gianniantonio; Pedron, Francesca; Pezzarossa, Beatrice

    2013-04-01

    Processes of metal bioavailability in the soil To know the bioavailability processes at site specific levels is essential to understand in detail the risks associated with pollution, and to support the decision-making process, i.e. description of the conceptual model and choice of clean up technologies. It is particularly important to assess how chemical, physical and biological processes in the soil affect the reactions leading to adsorption, precipitation or release of contaminants. The measurement of bioavailability One of the main difficulties in the practical application of the bioavailability concept in soil remediation is the lack of consensus on the method to be used to measure bioavailability. The best strategy is to apply a series of tests to assess bioavailability, since no applicable method is universally valid under all conditions. As an example, bioavailability tests for phytotechnology application should consider two distinct aspects: a physico-chemical driven solubilization process and a physiologically driven uptake process. Soil and plant characteristics strongly influence bioavailability. Bioavailability as a tool in remediation strategies Bioavailability can be used at all stages in remediation strategies: development of the conceptual model, evaluation of risk assessment, and selection of the best technology, considering different scenarios and including different environmental objectives. Two different strategies can be followed: the reduction and the increase of bioavailability. Procedures that reduce bioavailability aim to prevent the movement of pollutants from the soil to the living organisms, essentially by: i) removal of the labile phase of the contaminant, i.e. the fraction which is intrinsic to the processes of bioavailability (phytostabilization); ii) conversion of the labile fraction into a stable fraction (precipitation or adsorption); iii) increase of the resistance to mass transfer of the contaminants (inertization). Procedures

  5. Characterization and Low-Cost Remediation of Soils Contaminated by Timbers in Community Gardens.

    PubMed

    Heiger-Bernays, W; Fraser, A; Burns, V; Diskin, K; Pierotti, D; Merchant-Borna, K; McClean, M; Brabander, D; Hynes, H P

    2009-01-01

    Urban community gardens worldwide provide significant health benefits to those gardening and consuming fresh produce from them. Urban gardens are most often placed in locations and on land in which soil contaminants reflect past practices and often contain elevated levels of metals and organic contaminants. Garden plot dividers made from either railroad ties or chromated copper arsenate (CCA) pressure treated lumber contribute to the soil contamination and provide a continuous source of contaminants. Elevated levels of polycyclic aromatic hydrocarbons (PAHs) derived from railroad ties and arsenic from CCA pressure treated lumber are present in the gardens studied. Using a representative garden, we 1) determined the nature and extent of urban community garden soil contaminated with PAHs and arsenic by garden timbers; 2) designed a remediation plan, based on our sampling results, with our community partner guided by public health criteria, local regulation, affordability, and replicability; 3) determined the safety and advisability of adding city compost to Boston community gardens as a soil amendment; and 4) made recommendations for community gardeners regarding healthful gardening practices. This is the first study of its kind that looks at contaminants other than lead in urban garden soil and that evaluates the effect on select soil contaminants of adding city compost to community garden soil. PMID:21804925

  6. Geophysical Monitoring of Hydrocarbon-Contaminated Soils Remediated with a Bioelectrochemical System.

    PubMed

    Mao, Deqiang; Lu, Lu; Revil, André; Zuo, Yi; Hinton, John; Ren, Zhiyong Jason

    2016-08-01

    Efficient noninvasive techniques are desired for monitoring the remediation process of contaminated soils. We applied the direct current resistivity technique to image conductivity changes in sandbox experiments where two sandy and clayey soils were initially contaminated with diesel hydrocarbon. The experiments were conducted over a 230 day period. The removal of hydrocarbon was enhanced by a bioelectrochemical system (BES) and the electrical potentials of the BES reactors were also monitored during the course of the experiment. We found that the variation in electrical conductivity shown in the tomograms correlate well with diesel removal from the sandy soil, but this is not the case with the clayey soil. The clayey soil is characterized by a larger specific surface area and therefore a larger surface conductivity. In sandy soil, the removal of the diesel and products from degradation leads to an increase in electrical conductivity during the first 69 days. This is expected since diesel is electrically insulating. For both soils, the activity of BES reactors is moderately imaged by the inverted conductivity tomogram of the reactor. An increase in current production by electrochemically active bacteria activity corresponds to an increase in conductivity of the reactor.

  7. Characterization and Low-Cost Remediation of Soils Contaminated by Timbers in Community Gardens

    PubMed Central

    Heiger-Bernays, W.; Fraser, A.; Burns, V.; Diskin, K.; Pierotti, D.; Merchant-Borna, K.; McClean, M.; Brabander, D.; Hynes, H. P.

    2011-01-01

    Urban community gardens worldwide provide significant health benefits to those gardening and consuming fresh produce from them. Urban gardens are most often placed in locations and on land in which soil contaminants reflect past practices and often contain elevated levels of metals and organic contaminants. Garden plot dividers made from either railroad ties or chromated copper arsenate (CCA) pressure treated lumber contribute to the soil contamination and provide a continuous source of contaminants. Elevated levels of polycyclic aromatic hydrocarbons (PAHs) derived from railroad ties and arsenic from CCA pressure treated lumber are present in the gardens studied. Using a representative garden, we 1) determined the nature and extent of urban community garden soil contaminated with PAHs and arsenic by garden timbers; 2) designed a remediation plan, based on our sampling results, with our community partner guided by public health criteria, local regulation, affordability, and replicability; 3) determined the safety and advisability of adding city compost to Boston community gardens as a soil amendment; and 4) made recommendations for community gardeners regarding healthful gardening practices. This is the first study of its kind that looks at contaminants other than lead in urban garden soil and that evaluates the effect on select soil contaminants of adding city compost to community garden soil. PMID:21804925

  8. Geophysical Monitoring of Hydrocarbon-Contaminated Soils Remediated with a Bioelectrochemical System.

    PubMed

    Mao, Deqiang; Lu, Lu; Revil, André; Zuo, Yi; Hinton, John; Ren, Zhiyong Jason

    2016-08-01

    Efficient noninvasive techniques are desired for monitoring the remediation process of contaminated soils. We applied the direct current resistivity technique to image conductivity changes in sandbox experiments where two sandy and clayey soils were initially contaminated with diesel hydrocarbon. The experiments were conducted over a 230 day period. The removal of hydrocarbon was enhanced by a bioelectrochemical system (BES) and the electrical potentials of the BES reactors were also monitored during the course of the experiment. We found that the variation in electrical conductivity shown in the tomograms correlate well with diesel removal from the sandy soil, but this is not the case with the clayey soil. The clayey soil is characterized by a larger specific surface area and therefore a larger surface conductivity. In sandy soil, the removal of the diesel and products from degradation leads to an increase in electrical conductivity during the first 69 days. This is expected since diesel is electrically insulating. For both soils, the activity of BES reactors is moderately imaged by the inverted conductivity tomogram of the reactor. An increase in current production by electrochemically active bacteria activity corresponds to an increase in conductivity of the reactor. PMID:27386889

  9. [Application of tiered approach to assess the impact of backfilling remediated soil on groundwater].

    PubMed

    Zhong, Mao-Sheng; Jiang, Lin; Yao, Jue-Jun; Fan, Yan-Ling; Xia, Tian-Xiang; Li, Ting-Ting; Tian, Mei-Ying

    2013-03-01

    The tiered approach for assessing the impact of backfilling treated contaminated soil on groundwater was presented in details with a case study. The soil was contaminated by 1,2-dicholorenthane and 9 other organic pollutants and had been remediated before backfilling to meet the pre-set remediation goals based on health risk assessment. The results from tiered I assessment indicate that the concentrations of 8 contaminants in the leachate of the backfilling soil layer would exceed the assessment standards probably leading to groundwater contamination. However, the results from tiered II assessment, in which the adsorption and retardation of vadose zone soil was taken into account and the concentrations of pollutants reaching the groundwater table were predicated, reveal that only the concentrations of 6 contaminants would exceed the assessment standards. Further, taking the dilution and mixing of the groundwater into consideration, tiered III assessment was adopted and the results reveal that only 4 contaminants were beyond the standards. Finally, tiered IV assessment, aiming at predicting the concentration at the target well downstream, was carried out by considering the retardation of contaminants in saturated layer, and the results indicate only 1 pollutant was above the assessment standard. Therefore, it can be seen that the predicted concentrations of the target pollutants at advanced assessment levels will be closer to those at the target drinking water well and the amount of contaminants whose initially-set remediation goals need to be modified will decrease correspondingly, indicating the reduction in pollution prevention cost, although more efforts should be made and more field data should be collected to implement the advance assessment level.

  10. Demonstration of aquifer remediation technology at a Superfund site in Florida

    SciTech Connect

    Knapp, J.D.; New, G.H.; Zimmerman, J.

    1994-12-31

    Ground water extraction or aquifer pump and treat technology, is being used to remediate ground water contaminated with Volatile Organic Compounds (VOCS) at a United States Environmental Protection Agency (USEPA) Superfund site in Fort Lauderdale, Florida. Operation of a former electronic parts manufacturing facility resulted in the release of trichloroethylene, cis(1,2)-dichloroethylene, and vinyl chloride. These VOCs are present in ground water at depths between 10 and 80 feet below land surface. Ground water extraction with conventional air stripping followed by reinjection of treated ground water into a lower aquifer zone was selected by the EPA in 1986 as the preferred remediation technology for the site. The treatment system consists of three extraction (or recovery) wells, each producing up to 150 gallons per minute (gpm). Extracted ground water is pumped into two air stripping towers for the removal of VOCS. Treated ground water is then reinjected to a lower portion of the aquifer through two injection wells. The system began operation in July 1992 and has treated over 190 million gallons of ground water.

  11. Biodegradation of aged diesel in diverse soil matrixes: impact of environmental conditions and bioavailability on microbial remediation capacity.

    PubMed

    Sutton, Nora B; van Gaans, Pauline; Langenhoff, Alette A M; Maphosa, Farai; Smidt, Hauke; Grotenhuis, Tim; Rijnaarts, Huub H M

    2013-07-01

    While bioremediation of total petroleum hydrocarbons (TPH) is in general a robust technique, heterogeneity in terms of contaminant and environmental characteristics can impact the extent of biodegradation. The current study investigates the implications of different soil matrix types (anthropogenic fill layer, peat, clay, and sand) and bioavailability on bioremediation of an aged diesel contamination from a heterogeneous site. In addition to an uncontaminated sample for each soil type, samples representing two levels of contamination (high and low) were also used; initial TPH concentrations varied between 1.6 and 26.6 g TPH/kg and bioavailability between 36 and 100 %. While significant biodegradation occurred during 100 days of incubation under biostimulating conditions (64.4-100 % remediation efficiency), low bioavailability restricted full biodegradation, yielding a residual TPH concentration. Respiration levels, as well as the abundance of alkB, encoding mono-oxygenases pivotal for hydrocarbon metabolism, were positively correlated with TPH degradation, demonstrating their usefulness as a proxy for hydrocarbon biodegradation. However, absolute respiration and alkB presence were dependent on soil matrix type, indicating the sensitivity of results to initial environmental conditions. Through investigating biodegradation potential across a heterogeneous site, this research illuminates the interplay between soil matrix type, bioavailability, and bioremediation and the implications of these parameters for the effectiveness of an in situ treatment.

  12. Independent Verification Survey of the Clean Coral Storage Pile at the Johnston Atoll Plutonium-Contaminated Soil Remediation Project

    SciTech Connect

    Wilson-Nichols, M.J.

    2000-12-07

    The Oak Ridge National Laboratory (ORNL) Environmental Technology Section conducted an independent verification (IV) survey of the clean storage pile at the Johnston Atoll Plutonium Contaminated Soil Remediation Project (JAPCSRP) from January 18-25, 1999. The goal of the JAPCSRP is to restore a 24-acre area that was contaminated with plutonium oxide particles during nuclear testing in the 1960s. The selected remedy was a soil sorting operation that combined radiological measurements and mining processes to identify and sequester plutonium-contaminated soil. The soil sorter operated from about 1990 to 1998. The remaining clean soil is stored on-site for planned beneficial use on Johnston Island. The clean storage pile currently consists of approximately 120,000 m{sup 3} of coral. ORNL conducted the survey according to a Sampling and Analysis Plan, which proposed to provide an IV of the clean pile by collecting a minimum number (99) of samples. The goal was to ascertain with 95% confidence whether 97% of the processed soil is less than or equal to the accepted guideline (500-Bq/kg or 13.5-pCi/g) total transuranic (TRU) activity. In previous IV tasks, ORNL has (1) evaluated and tested the soil sorter system software and hardware and (2) evaluated the quality control (QC) program used at the soil sorter plant. The IV has found that the soil sorter decontamination was effective and significantly reduced plutonium contamination in the soil processed at the JA site. The Field Command Defense Threat Reduction Agency currently plans to re-use soil from the clean pile as a cover to remaining contamination in portions of the radiological control area. Therefore, ORNL was requested to provide an IV. The survey team collected samples from 103 random locations within the top 4 ft of the clean storage pile. The samples were analyzed in the on-site radioanalytical counting laboratory with an American Nuclear Systems (ANS) field instrument used for the detection of low

  13. The Impacts of Thermal and Smouldering Remediation on Soil Properties Related to Rehabilitation and Plant Growth

    NASA Astrophysics Data System (ADS)

    Pape, A.; Knapp, C.; Switzer, C.

    2012-04-01

    Tens of thousands of sites worldwide are contaminated with toxic non-aqueous phase liquids (NAPLs) reducing their economic and environmental value. As a result a number of treatments involving heat and smouldering have been developed to desorb and extract or destroy these contaminants including; steam injection (<110°C), electrical heating (<110°C), microwave heating (ambient to 400°C),conductive heating (ambient to 800°C) and in-situ smouldering (800°C to 1200°C). Implemented correctly these treatments are efficient enough for the soil to be safe for use, but the heating may unintentionally reduce the capability of the soil to act as a growing media. To investigate the effects of elevated temperature soils samples were heated at fixed temperatures (ambient to 1000°C) for one hour or smouldered after artificial contamination. Temperatures up to 105°C resulted in very little change in soil properties but at 250°C nutrients became more available. At 500°C little organic matter or nitrogen remained in the soil and clay sized particles started to decompose and aggregate. By 1000°C total and available phosphorus were very low, cation exchange capacity had been reduced, pH had increased and the clay fraction had been completely lost. Similar changes were observed in smouldered soils with variations dependent upon remediation conditions. As a result the smouldered soils will require nutrient supplementation to facilitate plant growth. Nutrient addition will also improve the physical properties of the soil and serve to re-inoculate it with microbes, particularly if an organic source such as compost or sewage sludge is used. The soils may remain effective growing media during lower temperature treatments; however some sort of soil inoculant would also be beneficial as these temperatures are sufficient to sterilise the system, which may impact nutrient cycling. Further work involving months-long exposure to the elevated temperatures that are typical of thermal

  14. Hydraulic fracturing to enhance the remediation of DNAPL in low permeability soils

    SciTech Connect

    Murdoch, L.; Slack, B.

    1996-08-01

    Meager rates of fluid flow are a major obstacle to in situ remediation of low permeability soils. This paper describes methods designed to avoid that obstacle by creating fractures and filling them with sand to increase well discharge and change paths of fluid flow in soil. Gently dipping fractures 10 m in maximum dimension and 1 to 2 cm thick can be created in some contaminated soils at depths of a few in or greater. Hydraulic fractures can also be used to create electrically conductive layers or to deliver granules of chemically or biologically active compounds that will degrade contaminants in place. Benefits of applying hydraulic fractures to DNAPL recovery include rates of fluid recovery, enhancing upward gradients to improve hydrodynamic stabilization, forming flat-lying reactive curtains to intersect compounds moving downward, or improving the performance of electrokinetics intended to recover compounds dissolved in water. 30 refs., 7 figs., 1 tab.

  15. Electrokinetic delivery of persulfate to remediate PCBs polluted soils: effect of injection spot.

    PubMed

    Fan, Guangping; Cang, Long; Fang, Guodong; Qin, Wenxiu; Ge, Liqiang; Zhou, Dongmei

    2014-12-01

    Persulfate-based in situ chemical oxidation (ISCO) is a promising technique for the remediation of organic compounds contaminated soils. Electrokinetics (EK) provides an alternative method to deliver oxidants into the target zones especially in low permeable-soil. In this study, the flexibility of delivering persulfate by EK to remediate polychlorinated biphenyls (PCBs) polluted soil was investigated. 20% (w/w) of persulfate was injected at the anode, cathode and both electrodes to examine its transport behaviors under electrical field, and the effect of field inversion process was also evaluated. The results showed that high dosage of persulfate could be delivered into S4 section (near cathode) by electroosmosis when persulfate was injected from anode, 30.8% of PCBs was removed from the soil, and the formed hydroxyl precipitation near the cathode during EK process impeded the transportation of persulfate. In contrast, only 18.9% of PCBs was removed with the injection of persulfate from cathode, although the breakthrough of persulfate into the anode reservoir was observed. These results indicated that the electroosmotic flow is more effective for the transportation of persulfate into soil. The addition of persulfate from both electrodes did not significantly facilitate the PCBs oxidation as well as the treatment of electrical field reversion, the reinforced negative depolarization function occurring in the cathode at high current consumed most of the oxidant. Furthermore, it was found that strong acid condition near the anode favored the oxidation of PCBs by persulfate and the degradation of PCBs was in consistent with the oxidation of Soil TOC in EK/persulfate system.

  16. Remediation of Pb/Cr co-contaminated soil using electrokinetic process and approaching electrode technique.

    PubMed

    Ng, Yee-Sern; Sen Gupta, Bhaskar; Hashim, Mohd Ali

    2016-01-01

    Electrokinetic process has emerged as an important tool for remediating heavy metal-contaminated soil. The process can concentrate heavy metals into smaller soil volume even in the absence of hydraulic flow. This makes it an attractive soil pre-treatment method before other remediation techniques are applied such that the chemical consumption in the latter stage can be reduced. The present study evaluates the feasibility of electrokinetic process in concentrating lead (Pb) and chromium (Cr) in a co-contaminated soil using different types of wetting agents, namely 0.01 M NaNO3, 0.1 M citric acid and 0.1 M EDTA. The data obtained showed that NaNO3 and citric acid resulted in poor Pb electromigration in this study. As for Cr migration, these agents were also found to give lower electromigration rate especially at low pH region as a result of Cr(VI) adsorption and possible reduction into Cr(III). In contrast, EDTA emerged as the best wetting agent in this study as it formed water-soluble anionic complexes with both Pb and Cr. This provided effective one-way electromigration towards the anode for both ions, and they were accumulated into smaller soil volume with an enrichment ratio of 1.55-1.82. A further study on the application of approaching cathode in EDTA test showed that soil alkalisation was achieved, but this did not provide significant enhancement on electromigration for Pb and Cr. Nevertheless, the power consumption for electrokinetic process was decreased by 22.5%.

  17. Remediation of Pb/Cr co-contaminated soil using electrokinetic process and approaching electrode technique.

    PubMed

    Ng, Yee-Sern; Sen Gupta, Bhaskar; Hashim, Mohd Ali

    2016-01-01

    Electrokinetic process has emerged as an important tool for remediating heavy metal-contaminated soil. The process can concentrate heavy metals into smaller soil volume even in the absence of hydraulic flow. This makes it an attractive soil pre-treatment method before other remediation techniques are applied such that the chemical consumption in the latter stage can be reduced. The present study evaluates the feasibility of electrokinetic process in concentrating lead (Pb) and chromium (Cr) in a co-contaminated soil using different types of wetting agents, namely 0.01 M NaNO3, 0.1 M citric acid and 0.1 M EDTA. The data obtained showed that NaNO3 and citric acid resulted in poor Pb electromigration in this study. As for Cr migration, these agents were also found to give lower electromigration rate especially at low pH region as a result of Cr(VI) adsorption and possible reduction into Cr(III). In contrast, EDTA emerged as the best wetting agent in this study as it formed water-soluble anionic complexes with both Pb and Cr. This provided effective one-way electromigration towards the anode for both ions, and they were accumulated into smaller soil volume with an enrichment ratio of 1.55-1.82. A further study on the application of approaching cathode in EDTA test showed that soil alkalisation was achieved, but this did not provide significant enhancement on electromigration for Pb and Cr. Nevertheless, the power consumption for electrokinetic process was decreased by 22.5%. PMID:26330317

  18. [Recent advance in solidification/stabilization technology for the remediation of heavy metals-contaminated soil].

    PubMed

    Hao, Han-zhou; Chen, Tong-bin; Jin, Meng-gui; Lei, Mei; Liu, Cheng-wu; Zu, Wen-pu; Huang, Li-mi

    2011-03-01

    Remediation of heavy metals-contaminated soil is still a difficulty and a hotspot of international research projects. At present, the technologies commonly adopted for the remediation of contaminated sites mainly include excavation, solidification/stabilization (S/S), soil washing, soil vapor extraction (SVE), thermal treatment, and bioremediation. Based on the S/S technical guidelines of Unite State Environmental Protection Agency (EPA) and United Kingdom Environment Agency (EA) and the domestic and foreign patents, this paper introduced the concepts of S/S and its development status at home and abroad, and discussed its future development directions. Solidification refers to a process that binds contaminated media with a reagent, changing the media's physical properties via increasing its compressive strength, decreasing its permeability, and encapsulating the contaminants to form a solid material. Stabilization refers to the process that involves a chemical reaction which reduces the leachability of a waste, chemically immobilizes the waste and reduces its solubility, making the waste become less harmful or less mobile. S/S technology includes cement solidification, lime pozzolanic solidification, plastic materials stabilization, vitrification, and regent-based stabilization. Stabilization (or immobilization) treatment processes convert contaminants to less mobile forms through chemical or thermal interactions. In stabilization technology, the aim of adding agents is to change the soil physical and chemical properties through pH control technology, redox potential technology, precipitation techniques, adsorption technology, and ion-exchange technology that change the existing forms of heavy metals in soil, and thus, reduce the heavy metals bioavailability and mobility. This review also discussed the S/S evaluation methods, highlighted the need to enhance S/S technology in the molecular bonding, soil polymers, and formulation of China's S/S technical guidelines.

  19. Electrokinetic delivery of persulfate to remediate PCBs polluted soils: effect of injection spot.

    PubMed

    Fan, Guangping; Cang, Long; Fang, Guodong; Qin, Wenxiu; Ge, Liqiang; Zhou, Dongmei

    2014-12-01

    Persulfate-based in situ chemical oxidation (ISCO) is a promising technique for the remediation of organic compounds contaminated soils. Electrokinetics (EK) provides an alternative method to deliver oxidants into the target zones especially in low permeable-soil. In this study, the flexibility of delivering persulfate by EK to remediate polychlorinated biphenyls (PCBs) polluted soil was investigated. 20% (w/w) of persulfate was injected at the anode, cathode and both electrodes to examine its transport behaviors under electrical field, and the effect of field inversion process was also evaluated. The results showed that high dosage of persulfate could be delivered into S4 section (near cathode) by electroosmosis when persulfate was injected from anode, 30.8% of PCBs was removed from the soil, and the formed hydroxyl precipitation near the cathode during EK process impeded the transportation of persulfate. In contrast, only 18.9% of PCBs was removed with the injection of persulfate from cathode, although the breakthrough of persulfate into the anode reservoir was observed. These results indicated that the electroosmotic flow is more effective for the transportation of persulfate into soil. The addition of persulfate from both electrodes did not significantly facilitate the PCBs oxidation as well as the treatment of electrical field reversion, the reinforced negative depolarization function occurring in the cathode at high current consumed most of the oxidant. Furthermore, it was found that strong acid condition near the anode favored the oxidation of PCBs by persulfate and the degradation of PCBs was in consistent with the oxidation of Soil TOC in EK/persulfate system. PMID:25193794

  20. Remediation of copper contaminated soil by using different particle sizes of apatite: a field experiment.

    PubMed

    Xing, Jinfeng; Hu, Tiantian; Cang, Long; Zhou, Dongmei

    2016-01-01

    The particle size of apatite is one of the critical factors that influence the adsorption of heavy metals on apatite in the remediation of heavy metal contaminated soils using apatite. However, little research has been done evaluating the impact of different particle sizes of apatite on immobilization remediation of heavy metal polluted soils in field. In this study, the adsorption isothermal experiments of copper on three kinds of apatite was tested, and the field experiment by using different particle sizes apatite [nano-hydroxyapatite (NAP), micro-hydroxyapatite (MAP), ordinary particle apatite (OAP)] at a same dosage of 25.8 t/ha (1.16 %, W/W) was also conducted. Ryegrass was chosen as the test plant. The ryegrass biomass, the copper contents in ryegrass and the copper fractionations in soil were determined after field experiments. Results of adsorption experiments showed that the adsorption amounts of copper on OAP was the lowest among different particles. The adsorption amounts of copper on MAP was higher than NAP at high copper equilibrium concentration (>1 mmol L(-1)), an opposite trend was obtained at low copper concentration (<1 mmol L(-1)). In the field experiment, we found that the application of different apatites could effectively increase the soil pH, decrease the available copper concentration in soil, provide more nutrient phosphate and promote the growth of ryegrass. The ryegrass biomass and the copper accumulation in ryegrass were the highest in MAP among all treatments. The effective order of apatite in phytoremediation of copper contaminated field soil was MAP > NAP > OAP, which was attributed to the high adsorption capacity of copper and the strong releasing of phosphate by MAP. PMID:27512641

  1. USE OF PLANT AND EARTHWORM BIOASSYS TO EVALUATE REMEDIATION OF SOIL FROM A SITE CONTAMINATED WITH POLYCHLORINATED BIPHENYLS

    EPA Science Inventory

    Soil from a site heavily contaminated with polychlorinated biphenyls (PCBs) was treated with a pilot-scale, solvent extraction tehnology. Bioassays in earthworms and plants were used to examine the efficacy of the remediation process for reducing the toxicity of the soil. The ear...

  2. USE OF PLANT AND EARTHWORM BIOASSAYS TO EVALUATE REMEDIATION OF SOIL FROM A SITE CONTAMINATED WITH POLYCHLORINATED BIPHENYLS

    EPA Science Inventory

    Soil from a site heavily contaminated with polychlorinated biphenyls (PCBs) was treated with a pilot-scale, solvent extraction technology. Bioassays in earthworms and plants were used to examine the efficacy of the remediation process for reducing the toxicity of the soil. The ...

  3. USEPA'S RESEARCH PROGRAM ON REMEDIATION AND CONTAINMENT OF ARSENIC AND MERCURY IN SOILS, INDUSTRIAL WASTES, AND GROUNDWATER

    EPA Science Inventory

    In the U.S. and around the world, mercury and arsenic contaminated soils, industrial wastes, and groundwater are difficult to effectively and cheaply remediate and contain. Mercury is a serious health concern and has been identified as a contaminant in the air, soil, sediment, su...

  4. Caresoil: A multidisciplinar Project to characterize, remediate, monitor and evaluate the risk of contaminated soils in Madrid (Spain)

    NASA Astrophysics Data System (ADS)

    Muñoz-Martín, Alfonso; Antón, Loreto; Granja, Jose Luis; Villarroya, Fermín; Montero, Esperanza; Rodríguez, Vanesa

    2016-04-01

    Soil contamination can come from diffuse sources (air deposition, agriculture, etc.) or local sources, these last being related to anthropogenic activities that are potentially soil contaminating activities. According to data from the EU, in Spain, and particularly for the Autonomous Community of Madrid, it can be considered that heavy metals, toxic organic compounds (including Non Aqueous Phases Liquids, NAPLs) and combinations of both are the main problem of point sources of soil contamination in our community. The five aspects that will be applied in Caresoil Program (S2013/MAE-2739) in the analysis and remediation of a local soil contamination are: 1) the location of the source of contamination and characterization of soil and aquifer concerned, 2) evaluation of the dispersion of the plume, 3) application of effective remediation techniques, 4) monitoring the evolution of the contaminated soil and 5) risk analysis throughout this process. These aspects involve advanced technologies (hydrogeology, geophysics, geochemistry,...) that require new developing of knowledge, being necessary the contribution of several researching groups specialized in the fields previously cited, as they are those integrating CARESOIL Program. Actually two cases concerning hydrocarbon spills, as representative examples of soil local contamination in Madrid area, are being studied. The first is being remediated and we are monitoring this process to evaluate its effectiveness. In the second location we are defining the extent of contamination in soil and aquifer to define the most effective remediation technique.

  5. Integrated phytobial remediation for sustainable management of arsenic in soil and water.

    PubMed

    Roy, Madhumita; Giri, Ashok K; Dutta, Sourav; Mukherjee, Pritam

    2015-02-01

    Arsenic (As), cited as the most hazardous substance by the U.S. Agency for Toxic Substance and Disease Registry (ATSDR, 2005), is an ubiquitous metalloid which when ingested for prolonged periods cause extensive health effects leading to ultimate untimely death. Plants and microbes can help mitigate soil and groundwater As problem since they have evolved elaborate detoxification machineries against this toxic metalloid as a result of their coexistence with this since the origin of life on earth. Utilization of the phytoremediation and bioremediation potential of the plants and microbes, respectively, is now regarded as two innovative tools that encompass biology, geology, biotechnology and allied sciences with cutting edge applications for sustainable mitigation of As epidemic. Discovery of As hyperaccumulating plants that uptake and concentrate large amounts of this toxic metalloid in their shoots or roots offered new hope to As phytoremediation, solar power based nature's own green remediation. This review focuses on how phytoremediation and bioremediation can be merged together to form an integrated phytobial remediation which could synergistically achieve the goal of large scale removal of As from soil, sediment and groundwater and overcome the drawbacks of the either processes alone. The review also points to the feasibility of the introduction of transgenic plants and microbes that bring new hope for more efficient treatment of As. The review identifies one critical research gap on the importance of remediation of As contaminated groundwater not only for drinking purpose but also for irrigation purpose and stresses that more research should be conducted on the use of constructed wetland, one of the most suitable areas of application of phytobial remediation. Finally the review has narrowed down on different phytoinvestigation and phytodisposal methods, which constitute the most essential and the most difficult part of pilot scale and field scale applications

  6. Integrated phytobial remediation for sustainable management of arsenic in soil and water.

    PubMed

    Roy, Madhumita; Giri, Ashok K; Dutta, Sourav; Mukherjee, Pritam

    2015-02-01

    Arsenic (As), cited as the most hazardous substance by the U.S. Agency for Toxic Substance and Disease Registry (ATSDR, 2005), is an ubiquitous metalloid which when ingested for prolonged periods cause extensive health effects leading to ultimate untimely death. Plants and microbes can help mitigate soil and groundwater As problem since they have evolved elaborate detoxification machineries against this toxic metalloid as a result of their coexistence with this since the origin of life on earth. Utilization of the phytoremediation and bioremediation potential of the plants and microbes, respectively, is now regarded as two innovative tools that encompass biology, geology, biotechnology and allied sciences with cutting edge applications for sustainable mitigation of As epidemic. Discovery of As hyperaccumulating plants that uptake and concentrate large amounts of this toxic metalloid in their shoots or roots offered new hope to As phytoremediation, solar power based nature's own green remediation. This review focuses on how phytoremediation and bioremediation can be merged together to form an integrated phytobial remediation which could synergistically achieve the goal of large scale removal of As from soil, sediment and groundwater and overcome the drawbacks of the either processes alone. The review also points to the feasibility of the introduction of transgenic plants and microbes that bring new hope for more efficient treatment of As. The review identifies one critical research gap on the importance of remediation of As contaminated groundwater not only for drinking purpose but also for irrigation purpose and stresses that more research should be conducted on the use of constructed wetland, one of the most suitable areas of application of phytobial remediation. Finally the review has narrowed down on different phytoinvestigation and phytodisposal methods, which constitute the most essential and the most difficult part of pilot scale and field scale applications

  7. Combined remediation of Cd-phenanthrene co-contaminated soil by Pleurotus cornucopiae and Bacillus thuringiensis FQ1 and the antioxidant responses in Pleurotus cornucopiae.

    PubMed

    Jiang, Juan; Liu, Hongying; Li, Qiao; Gao, Ni; Yao, Yuan; Xu, Heng

    2015-10-01

    Remediation of soil co-contaminated with heavy metals and PAHs by mushroom and bacteria is a novel technique. In this study, the combined remediation effect of mushroom (Pleurotus cornucopiae) and bacteria (FQ1, Bacillus thuringiensis) on Cd and phenanthrene co-contaminated soil was investigated. The effect of bacteria (B. thuringiensis) on mushroom growth, Cd accumulation, phenanthrene degradation by P. cornucopiae and antioxidative responses of P. cornucopiae were studied. P. cornucopiae could adapt easily and grow well in Cd-phenanthrene co-contaminated soil. It was found that inoculation of FQ1 enhanced mushroom growth (biomass) and Cd accumulation with the increment of 26.68-43.58% and 14.29-97.67% respectively. Up to 100% and 95.07% of phenanthrene were removed in the bacteria-mushroom (B+M) treatment respectively spiked with 200mg/kg and 500mg/kg phenanthrene. In addition, bacterial inoculation alleviated oxidative stress caused by co-contamination with relative decreases in lipid peroxidation and enzyme activity, including malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). This study demonstrated that the integrated remediation strategy of bacteria and mushroom is an effective and promising method for Cd-phenanthrene co-contaminated soil bioremediation.

  8. Remediation of soils contaminated with polychlorinated biphenyls by microwave-irradiated manganese dioxide.

    PubMed

    Huang, Guan-yi; Zhao, Ling; Dong, Yuan-hua; Zhang, Qin

    2011-02-15

    The removal of polychlorinated biphenyls (PCBs) using microwave-irradiated manganese dioxide (MnO(2)) in PCB-contaminated soils under different conditions is investigated. The removal of PCB77 in two actual soil samples exhibits strong pH-dependent behavior, and the removal efficiency is higher in acidic soil (Ali-Perudic Ferrosols) than that in neutral soil (Udic Argosols). The removal kinetics of PCB77 using microwave-irradiated MnO(2) under different experimental conditions fits a pseudo-first-order kinetic model well. Both the removal efficiency and the kinetic constant (k) values of PCB77 in Ali-Perudic Ferrosols considerably increase, although in a nonlinear fashion, as the initial amount of MnO(2) is increased, as the treated soil mass is increased, and as the microwave power is increased. The reactivity of three PCBs (PCB28, PCB77, and PCB118) did not present as a function of the degree of chlorination in the reaction with microwave-irradiated MnO(2). The pronounced removal of three PCBs in contaminated soil (all above 95%) indicates that MnO(2) in combination with microwave irradiation is promising for technological applications that seek to remediate sites critically polluted with PCBs.

  9. Use of Tunable Whole-Cell Bioreporters to Assess Bioavailable Cadmium and Remediation Performance in Soils

    PubMed Central

    Yoon, Youngdae; Kim, Sunghoon; Chae, Yooeun; Kang, Yerin; Lee, Youngshim; Jeong, Seung-Woo; An, Youn-Joo

    2016-01-01

    It is important to have tools to measure the bioavailability to assess the risks of pollutants because the bioavailability is defined as the portions of pollutants showing the biological effects on living organisms. This study described the construction of tunable Escherichia coli whole-cell bioreporter (WCB) using the promoter region of zinc-inducible operon and its application on contaminated soils. It was verified that this WCB system showed specific and sensitive responses to cadmium rather than zinc in the experimental conditions. It was inferred that Cd(II) associates stronger with ZntR, a regulatory protein of zinc-inducible operon, than other metal ions. Moreover, the expression of reporter genes, egfp and mcherry, were proportional to the concentration of cadmium, thereby being a quantitative sensor to monitor bioavailable cadmium. The capability to determine bioavailable cadmium was verified with Cd(II) amended LUFA soils, and then the applicability on environmental systems was investigated with field soils collected from smelter area in Korea before and after soil-washing. The total amount of cadmium was decreased after soil washing, while the bioavailability was increased. Consequently, it would be valuable to have tools to assess bioavailability and the effectiveness of soil remediation should be evaluated in the aspect of bioavailability as well as removal efficiency. PMID:27171374

  10. Re-use of remediated soils for the bioremediation of waste oil sludge.

    PubMed

    Makadia, Tanvi H; Adetutu, Eric M; Simons, Keryn L; Jardine, Daniel; Sheppard, Petra J; Ball, Andrew S

    2011-03-01

    We investigated the possibility of re-using remediated soils for new bioremediation projects by spiking these soils with waste oil sludge in laboratory based microcosms. The level of Total Petroleum Hydrocarbon (TPH) reduction was high (>80%) in naturally attenuated microcosms and was not significantly improved by biostimulation, bioaugmentation and the combined treatment of bioaugmentation and biostimulation by week 12. This indicated that the observed TPH reduction might have been related to the soil's inherent hydrocarbon-degrading potential. Microbial community analysis (16S rDNA and ITS-based Denaturing Gradient Gel Electrophoresis fingerprints) confirmed the dominance of hydrocarbon degrading genera such as Alcanivorax and Scedosporium. Cluster and Shannon diversity analysis revealed similar but stable bacterial and fungal communities in naturally attenuated and amended microcosms indicating that rapid reduction in TPH may not always be accompanied by changes in soil microbial communities. This study has therefore shown that soils previously used for bioremediation can have an improved hydrocarbon degrading potential which was successfully re-harnessed for new projects. This ability to re-harness this potential is attractive because it substantially reduces operational costs as no additional bioremediation treatments are needed. It can also extend a landfill's lifespan as soils can be re-used again before landfill disposal. PMID:21115217

  11. Metal-contaminated soil remediation by means of paper mill sludges addition: chemical and ecotoxicological evaluation.

    PubMed

    Calace, N; Campisi, T; Iacondini, A; Leoni, M; Petronio, B M; Pietroletti, M

    2005-08-01

    Metal pollution of soils is a great environmental problem. The major risks due to metal pollution of soil consist of leaching to groundwater and potential toxicity to plants and/or animals. The objective of this study is to evaluate by means of chemical and ecotoxicological approach the effects of paper mill sludge addition on the mobile metal fraction of polluted metal soils. The study was carried out on acidic soil derived from mining activities and thus polluted with heavy metals, and on two paper mill sludges having different chemical features. The results obtained by leaching experiments showed that the addition of a paper mill sludge, consisting mainly of carbonates, silicates and organic matter, to a heavy-metal polluted soil produces a decrease of available metal forms. The carbonate content seems to play a key role in the chemical stabilisation of metals and consequently in a decrease of toxicity of soil. The leached solutions have a non-toxic effect. The mild remediation by addition of sludge has moreover a lasting effect.

  12. In Situ Remediation and Ecosystem Restoration on Toxic Mine and Smelter Contaminated Soils Using Soil Amendments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At many locations, dispersal of mine wastes or smelter emissions caused extensive contamination of soils with Zn, Cd, Pb, Ni, or Cu and associated elements. When contaminated soils are acidic (from pyrite in ores, or SO2 emissions, or native acidic soils), highly phytoavailable Zn or Ni caused seve...

  13. Evaluation of soil amendments as a remediation alternative for cadmium contaminated soils under cacao plantations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated plant-available cadmium (Cd) in soils results in contamination to cacao (Theobroma cacao L) beans. Effectiveness of vermicompost and zeolite in reducing available Cd in three cacao-growing soils was studied under laboratory conditions. Sorption-desorption experiments were conducted in soils...

  14. Secondary successions of biota in oil-polluted peat soil upon different biological remediation methods

    NASA Astrophysics Data System (ADS)

    Melekhina, E. N.; Markarova, M. Yu.; Shchemelinina, T. N.; Anchugova, E. M.; Kanev, V. A.

    2015-06-01

    The effects of different bioremediation methods on restoration of the oil-polluted peat soil (Histosol) in the northernmost taiga subzone of European Russia was studied. The population dynamics of microorganisms belonging to different trophic groups (hydrocarbon-oxidizing, ammonifying, nitrifying, and oligonitrophilic) were analyzed together with data on the soil enzyme (catalase and dehydrogenase) activities, population densities of soil microfauna groups, their structures, and states of phytocenoses during a sevenyear-long succession. The remediation with biopreparations Roder composed of oil-oxidizing microorganisms-Roder with Rhodococcus rubber and R. erythropolis and Universal with Rhodotorula glutinis and Rhodococcus sp.-was more efficient than the agrochemical and technical remediation. It was concluded that the biopreparations activate microbiological oil destruction, thereby accelerating restoration succession of phytocenosis and zoocenosis. The succession of dominant microfauna groups was observed: the dipteran larvae and Mesostigmata mites predominant at the early stages were replaced by collembolans at later stages. The pioneer oribatid mite species were Tectocepheus velatus, Oppiella nova, Liochthonius sellnicki, Oribatula tibialis, and Eupelops sp.

  15. Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils

    PubMed Central

    Teng, Ying; Wang, Xiaomi; Li, Lina; Li, Zhengao; Luo, Yongming

    2015-01-01

    Environmental pollutants have received considerable attention due to their serious effects on human health. There are physical, chemical, and biological means to remediate pollution; among them, bioremediation has become increasingly popular. The nitrogen-fixing rhizobia are widely distributed in the soil and root ecosystems and can increase legume growth and production by supplying nitrogen, resulting in the reduced need for fertilizer applications. Rhizobia also possess the biochemical and ecological capacity to degrade organic pollutants and are resistant to heavy metals, making them useful for rehabilitating contaminated soils. Moreover, rhizobia stimulate the survival and action of other biodegrading bacteria, thereby lowering the concentration of pollutants. The synergistic action of multiple rhizobial strains enhances both plant growth and the availability of pollutants ranging from heavy metals to persistent organic pollutants. Because phytoremediation has some restrictions, the beneficial interaction between plants and rhizobia provides a promising option for remediation. This review describes recent advances in the exploitation of rhizobia for the rehabilitation of contaminated soil and the biochemical and molecular mechanisms involved, thereby promoting further development of this novel bioremediation strategy into a widely accepted technique. PMID:25699064

  16. Hybrid life cycle assessment comparison of colloidal silica and cement grouted soil barrier remediation technologies.

    PubMed

    Gallagher, Patricia M; Spatari, Sabrina; Cucura, Jeffrey

    2013-04-15

    Site remediation involves balancing numerous costs and benefits but often neglects the environmental impacts over the entire project life cycle. Life cycle assessment (LCA) offers a framework for inclusion of global environmental "systems-level" decision metrics in combination with technological and cost analysis. We compare colloidal silica (CS) and cement grouted soil barrier remediation technologies for soils affected by low level radionuclides at a U.S. Superfund site using hybrid LCA methods. CS is a new, high performance grouting material installed using permeation grouting techniques. Cement, a more traditional grouting material, is typically installed using jet grouting techniques. Life cycle impacts were evaluated using the US EPA TRACI 2 model. Results show the highest life cycle environmental impacts for the CS barrier occur during materials production and transportation to the site. In general, the life cycle impacts for the cement barrier were dominated by materials production; however, in the extreme scenario the life cycle impacts were dominated by truck transportation of spoils to a distant, off-site radioactive waste facility. It is only in the extreme scenario tested in which soils are transported by truck (Option 2) that spoils waste transport dominates LCIA results. Life cycle environmental impacts for both grout barriers were most sensitive to resource input requirements for manufacturing volumes and transportation. Uncertainty associated with the efficacy of new technology such as CS over its required design life indicates that barrier replacement could increase its life cycle environmental impact above that of the cement barrier.

  17. Remediation of explosive-polluted soil in slurry phase by aerobic biostimulation

    NASA Astrophysics Data System (ADS)

    Xin, Baoping; Shen, Mengyue; Aslam, Hina; Wu, Feng

    2013-06-01

    There is a great volume of polluted soil by 2,4,6-trinitrotoluene (TNT) manufacturing wastewater containing dozen of nitrocompounds in China. In this study, biostimulation was used for remediating the explosive-polluted soil in aerobic bioslurry by monitoring the removal of total organic carbon (TOC). The results showed that the pulp density had almost no effect on TOC removal; whereas the acetone addition evidently improved remediation efficiency of the polluted soil by intrinsic microorganism, and the TOC removal increased from 25% to 38.4% when dose of acetone increased from 0% to 4% (v/v). The maximum TOC removal of 49.1% was achieved through further adjusting pH at 9.0 and temperature at 30 °C. The second order reaction fits well removal dynamics of TOC under the optimum conditions. With the average conditions, liquid phase TOC decreased from 3404 to 3144 mg/L and solid phase TOC dropped from 1022 to 104 mg/L, leading to toxicity decline by 35%; the optimum condition witnessed 48.9% of TOC removal from 4500 to 2300 mg/L in liquid phase, causing toxicity drop by 62%.

  18. [Leaching Remediation of Copper and Lead Contaminated Lou Soil by Saponin Under Different Conditions].

    PubMed

    Deng, Hong-xia; Yang, Ya-li; Li, Zhen; Xu, Yan; Li, Rong-hua; Meng, Zhao-fu; Yang, Ya-ti

    2015-04-01

    In order to investigate the leaching remediation effect of the eco-friendly biosurfactant saponin for Cu and Pb in contaminated Lou soil, batch tests method was used to study the leaching effect of saponin solution on single Cu, Pb contaminated Lou soil and mixed Cu and Pb contaminated Lou soil under different conditions such as reaction time, mass concentration of saponin, pH, concentration of background electrolyte and leaching times. The results showed that the maximum leaching removal effect of Cu and Pb in contaminated Lou soil was achieved by complexation of the heavy metals with saponin micelle, when the mass concentration of saponin solution was 50 g x L(-1), pH was 5.0, the reaction time was 240 min, and there was no background electrolyte. In single and mixed contaminated Lou soil, the leaching percentages of Cu were 29.02% and 25.09% after a single leaching with 50 g x L(-1) saponin under optimal condition, while the single leaching percentages of Pb were 31.56% and 28.03%, respectively. The result indicated the removal efficiency of Pb was more significant than that of Cu. After 4 times of leaching, the cumulative leaching percentages of Cu reached 58.92% and 53.11%, while the cumulative leaching percentages of Pb reached 77.69% and 65.32% for single and mixed contaminated Lou soil, respectively. The fractionation results of heavy metals in soil before and after a single leaching showed that the contents of adsorbed and exchangeable Cu and Pb increased in the contaminated soil, while the carbonate-bound, organic bound and sulfide residual Cu and Pb in the contaminated Lou soil could be effectively removed by saponin.

  19. Remediation of soil co-contaminated with petroleum and heavy metals by the integration of electrokinetics and biostimulation.

    PubMed

    Dong, Zhi-Yong; Huang, Wen-Hui; Xing, Ding-Feng; Zhang, Hong-Feng

    2013-09-15

    Successful remediation of soil co-contaminated with high levels of organics and heavy metals is a challenging task, because that metal pollutants in soil can partially or completely suppress normal heterotrophic microbial activity and thus hamper biodegradation of organics. In this study, the benefits of integrating electrokinetic (EK) remediation with biodegradation for decontaminating soil co-contaminated with crude oil and Pb were evaluated in laboratory-scale experiments lasting for 30 days. The treated soil contained 12,500 mg/kg of total petroleum hydrocarbons (TPH) and 450 mg/kg Pb. The amendments of EDTA and Tween 80, together with a regular refreshing of electrolyte showed the best performance to remediate this contaminated soil. An important function of EDTA-enhanced EK treatment was to eliminate heavy metal toxicity from the soil, thus activating microbial degradation of oil. Although Tween 80 reduced current, it could serve as a second substrate for enhancing microbial growth and biodegradation. It was found that oil biodegradation degree and microbial numbers increased toward the anode and cathode. Microbial metabolism was found to be beneficial to metal release from the soil matrix. Under the optimum conditions, the soil Pb and TPH removal percentages after 30 days of running reached 81.7% and 88.3%, respectively. After treatment, both the residual soil Pb and TPH concentrations met the requirement of the Chinese soil environmental quality standards.

  20. Remediation of soil co-contaminated with petroleum and heavy metals by the integration of electrokinetics and biostimulation.

    PubMed

    Dong, Zhi-Yong; Huang, Wen-Hui; Xing, Ding-Feng; Zhang, Hong-Feng

    2013-09-15

    Successful remediation of soil co-contaminated with high levels of organics and heavy metals is a challenging task, because that metal pollutants in soil can partially or completely suppress normal heterotrophic microbial activity and thus hamper biodegradation of organics. In this study, the benefits of integrating electrokinetic (EK) remediation with biodegradation for decontaminating soil co-contaminated with crude oil and Pb were evaluated in laboratory-scale experiments lasting for 30 days. The treated soil contained 12,500 mg/kg of total petroleum hydrocarbons (TPH) and 450 mg/kg Pb. The amendments of EDTA and Tween 80, together with a regular refreshing of electrolyte showed the best performance to remediate this contaminated soil. An important function of EDTA-enhanced EK treatment was to eliminate heavy metal toxicity from the soil, thus activating microbial degradation of oil. Although Tween 80 reduced current, it could serve as a second substrate for enhancing microbial growth and biodegradation. It was found that oil biodegradation degree and microbial numbers increased toward the anode and cathode. Microbial metabolism was found to be beneficial to metal release from the soil matrix. Under the optimum conditions, the soil Pb and TPH removal percentages after 30 days of running reached 81.7% and 88.3%, respectively. After treatment, both the residual soil Pb and TPH concentrations met the requirement of the Chinese soil environmental quality standards. PMID:23807474

  1. Bioaccumulation in Porcellio scaber (Crustacea, Isopoda) as a measure of the EDTA remediation efficiency of metal-polluted soil.

    PubMed

    Udovic, Metka; Drobne, Damjana; Lestan, Domen

    2009-10-01

    Leaching using EDTA applied to a Pb, Zn and Cd polluted soil significantly reduced soil metal concentrations and the pool of metals in labile soil fractions. Metal mobility (Toxicity Characteristic Leaching Procedure), phytoavailability (diethylenetriaminepentaacetic acid extraction) and human oral-bioavailability (Physiologically Based Extraction Test) were reduced by 85-92%, 68-91% and 88-95%, respectively. The metal accumulation capacity of the terrestrial isopod Porcellio scaber (Crustacea) was used as in vivo assay of metal bioavailability, before and after soil remediation. After feeding on metal contaminated soil for two weeks, P. scaber accumulated Pb, Zn and Cd in a concentration dependent manner. The amounts of accumulated metals were, however, higher than expected on the basis of extraction (in vitro) tests. The combined results of chemical extractions and the in vivo test with P. scaber provide a more relevant picture of the availability stripping of metals after soil remediation.

  2. RECARE - Preventing and Remediating Degradation of Soils in Europe through Landcare.

    NASA Astrophysics Data System (ADS)

    van den Elsen, Erik; Hessel, Rudi; Verzandvoort, Simone; Ritsema, Coen; Geissen, Violette

    2015-04-01

    Although there is a large body of knowledge available on soil threats in Europe, this knowledge is fragmented and incomplete, in particular regarding the complexity and functioning of soil systems and their interaction with human activities. The main aim of the RECARE project is to develop effective prevention, remediation and restoration measures using an innovative trans-disciplinary approach, actively integrating and advancing knowledge of stakeholders and scientists in 17 Case Studies, covering a range of soil threats in different bio-physical and socio-economic environments across Europe. Within these Case Study sites, i) the current state of degradation and conservation will be assessed using a new methodology, based on the WOCAT mapping procedure, ii) impacts of degradation and conservation on soil functions and ecosystem services will be quantified in a harmonized, spatially explicit way, accounting for costs and benefits, and possible trade-offs, iii) prevention, remediation and restoration measures selected and implemented by stakeholders in a participatory process will be evaluated regarding efficacy, and iv) the applicability and impact of these measures at the European level will be assessed using a new integrated bio-physical and socio-economic model, accounting for land use dynamics as a result of for instance economic development and policies. Existing national and EU policies will be reviewed and compared to identify potential incoherence, contradictions and synergies. Policy messages will be formulated based on the Case Study results and their integration at European level. A comprehensive dissemination and communication strategy, including the development of a web-based Dissemination and Communication Hub, will accompany the other activities to ensure that project results are disseminated to a variety of stakeholders at the right time and in the appropriate formats to stimulate renewed care for European soils.

  3. Remediation of soil from lead-contaminated kindergartens reduces the amount of lead adhering to children's hands.

    PubMed

    Nielsen, Jesper B; Kristiansen, Jesper

    2005-05-01

    Risk related to contaminated soil is based on the oral intake of soil and dust among children. This exposure is a consequence of mouthing behaviour, which exposes children to whatever adheres to their hands or toys. This project compared hand exposure of children to lead following outdoor playground activities before and after an intervention. The intervention consisted of replacement of contaminated top soil from the most intensively used playground areas and coverage of bare soil with wood chips or grass. We included children from three kindergartens: one with very low levels of lead in soil and two kindergartens with an average lead concentrations in soil of 100-200 mg/kg. Measurements of lead in soil 5-7 weeks after interventions in two kindergartens verified that the interventions had effectively reduced the potential exposure to lead from the most intensively used areas of the playgrounds. The average lead concentration in soil after intervention was below 10 mg/kg. We found a good agreement between the average concentration of lead in soil and the amount of lead on the hands of the children. Thus, the exposure marker worked and had the advantage compared to a blood sample, that we could evaluate the effect of the interventions shortly after they were accomplished using a noninvasive method. The amount of lead on the hands measured in one of the two kindergartens after the remediation (0.73 microg) was not significantly different from the control kindergarten (0.58 microg). Children from the second kindergarten still had higher median exposures to lead (1.29 microg), but a large overlap existed with several children having lower amounts of lead on their hands than some children from the control kindergarten. Large variations in the amount of lead on hands were observed. Variations may reflect true differences in concentrations of lead in soil, but may also reflect different behavior and playing patterns. Our study demonstrated, that it was possible in a cost

  4. NATO/CCMS pilot study on demonstration of remedial-action technologies for contaminated land and ground water: 1988 activities

    SciTech Connect

    Sanning, D.E.; Smith, M.A.; Bell, R.M.

    1988-01-01

    The paper describes the nature, structure and content of the NATO Committee on the Challenges of Modern Society (CCMS) Pilot Study Demonstration of Remedial Action Technologies for Contaminated Land and Groundwater and the associated CCMS Fellowship program. To date, twelve projects in six countries have been selected for inclusion in the program which will involve periodic expert review during the five years for which the project will run. The paper draws special attention to the work on microbial clean up techniques included in the program, and the outcome of the first international meeting held in Washington, D.C. in 1987.

  5. In situ remediation and phytotoxicity assessment of lead-contaminated soil by biochar-supported nHAP.

    PubMed

    Yang, Zhangmei; Fang, Zhanqiang; Tsang, Pokeung Eric; Fang, Jianzhang; Zhao, Dongye

    2016-11-01

    In this study, a kind of biochar-supported nano-hydroxyapatite (nHAP@BC) material was used in in-situ remediation of lead-contaminated soil. Column experiments were performed to compare the mobility of nHAP@BC and Bare-nHAP. The immobilization, accumulation and toxic effects of Pb in the after-amended soil were assessed by the in vitro toxicity tests and pot experiments. The column experiments showed a significant improvement in the mobility of nHAP@BC. The immobilization rate of Pb in the soil was 74.8% after nHAP@BC remediation. Sequential extraction procedures revealed that the residual fraction of Pb increased by 66.6% after nHAP@BC remediation, which greatly reduced the bioavailability of Pb in the soil. In addition, pot experiments indicated that nHAP@BC could effectively reduce the upward translocation capacity of Pb in a soil-plant system. The concentration of Pb in the aerial part of the cabbage mustard was 0.1 mg/kg, which is lower than the tolerance limit (0.3 mg/kg). nHAP@BC can remediate Pb-contaminated soil effectively, which can restore soil quality for planting.

  6. In situ remediation and phytotoxicity assessment of lead-contaminated soil by biochar-supported nHAP.

    PubMed

    Yang, Zhangmei; Fang, Zhanqiang; Tsang, Pokeung Eric; Fang, Jianzhang; Zhao, Dongye

    2016-11-01

    In this study, a kind of biochar-supported nano-hydroxyapatite (nHAP@BC) material was used in in-situ remediation of lead-contaminated soil. Column experiments were performed to compare the mobility of nHAP@BC and Bare-nHAP. The immobilization, accumulation and toxic effects of Pb in the after-amended soil were assessed by the in vitro toxicity tests and pot experiments. The column experiments showed a significant improvement in the mobility of nHAP@BC. The immobilization rate of Pb in the soil was 74.8% after nHAP@BC remediation. Sequential extraction procedures revealed that the residual fraction of Pb increased by 66.6% after nHAP@BC remediation, which greatly reduced the bioavailability of Pb in the soil. In addition, pot experiments indicated that nHAP@BC could effectively reduce the upward translocation capacity of Pb in a soil-plant system. The concentration of Pb in the aerial part of the cabbage mustard was 0.1 mg/kg, which is lower than the tolerance limit (0.3 mg/kg). nHAP@BC can remediate Pb-contaminated soil effectively, which can restore soil quality for planting. PMID:27479241

  7. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPOR EXTRACTION AND BIOVENTING OF ORGANIC CHEMICALS IN UNSATURATED GEOLOGICAL MATERIAL

    EPA Science Inventory

    Soil vapor extraction (SVE) and bioventing (BV) are proven strategies for remediation of unsaturated zone soils. Mathematical models are powerful tools that can be used to integrate and quantify the interaction of physical, chemical, and biological processes occurring in field sc...

  8. Remediation of hexachlorobenzene contaminated soils by rhamnolipid enhanced soil washing coupled with activated carbon selective adsorption.

    PubMed

    Wan, Jinzhong; Chai, Lina; Lu, Xiaohua; Lin, Yusuo; Zhang, Shengtian

    2011-05-15

    The present study investigates the selective adsorption of hexachlorobenzene (HCB) from rhamnolipid solution by a powdered activated carbon (PAC). A combined soil washing-PAC adsorption technique is further evaluated on the removal of HCB from two soils, a spiked kaolin and a contaminated real soil. PAC at a dosage of 10 g L(-1) could achieve a HCB removal of 80-99% with initial HCB and rhamnolipid concentrations of 1 mg L(-1) and 3.3-25 g L(-1), respectively. The corresponding adsorptive loss of rhamnolipid was 8-19%. Successive soil washing-PAC adsorption tests (new soil sample was subjected to washing for each cycle) showed encouraging leaching and adsorption performances for HCB. When 25 g L(-1) rhamnolipid solution was applied, HCB leaching from soils was 55-71% for three cycles of washing, and HCB removal by PAC was nearly 90%. An overall 86% and 88% removal of HCB were obtained for kaolin and real soil, respectively, by using the combined process to wash one soil sample for twice. Our investigation suggests that coupling AC adsorption with biosurfactant-enhanced soil washing is a promising alternative to remove hydrophobic organic compounds from soils. PMID:21397398

  9. Demonstration of Combined Zero-Valent Iron and Electrical Resistance Heating for In Situ Trichloroethene Remediation

    SciTech Connect

    Truex, Michael J.; Macbeth, Tamzen; Vermeul, Vincent R.; Fritz, Brad G.; Mendoza, Donaldo P.; Mackley, Rob D.; Wietsma, Thomas W.; Sandberg, Greg; Powell, Thomas; Powers, Jeff; Pitre, Emile; Michalsen, Mandy M.; Ballock-Dixon, Sage; Zhong, Lirong; Oostrom, Martinus

    2011-06-27

    The effectiveness of in situ treatment using zero-valent iron to remediate sites with non-aqueous phase or significant sediment-associated contaminant mass can be limited by relatively low rates of mass transfer to bring contaminants in contact with the reactive media. For a field test in a trichloroethene source area, combining moderate-temperature (maximum 50oC) subsurface electrical resistance heating with in situ ZVI treatment was shown to accelerate dechlorination and dissolution rates by a factor of 4 to 6 based on organic daughter products and a factor 8-16 using a chloride concentrations. A mass-discharge-based analysis was used to evaluate reaction, dissolution, and volatilization at ambient groundwater temperature (~10oC) and as temperature was increased up to about 50oC. Increased reaction and contaminant dissolution were observed with increased temperature, but volatilization was minimal during the test because in situ reactions maintained low aqueous-phase TCE concentrations.

  10. Surfactant-facilitated remediation of metal-contaminated soils: efficacy and toxicological consequences to earthworms.

    PubMed

    Slizovskiy, Ilya B; Kelsey, Jason W; Hatzinger, Paul B

    2011-01-01

    The effectiveness of surfactant formulations to remove aged metals from a field soil and their influence on soil toxicity was investigated. Batch studies were conducted to evaluate the efficacy of cationic (1-dodecylpyridinium chloride; DPC), nonionic (oleyl dimethyl benzyl ammonium chloride; trade name Ammonyx KP), and anionic (rhamnolipid biosurfactant blend; trade name JBR-425) surfactants for extracting Zn, Cu, Pb, and Cd from a soil subjected to more than 80 years of metal deposition. All three surfactants enhanced removal of the target metals. The anionic biosurfactant JBR-425 was most effective, reducing Zn, Cu, Pb, and Cd in the soil by 39, 56, 68, and 43%, respectively, compared with less than 6% removal by water alone. Progressive acidification of the surfactants with citric acid buffer or addition of ethylenediaminetetra-acetic acid (EDTA) further improved extraction efficiency, with more than 95% extraction of all four metals by surfactants acidified to pH 3.6 and generally greater than 90% removal of all metals with addition of 0.1 M EDTA. In two species of earthworm, Eisenia fetida and Lumbricus terrestris, metal bioaccumulation was reduced by approximately 30 to 80%, total biomass was enhanced by approximately threefold to sixfold, and survival was increased to greater than 75% in surfactant-remediated soil compared with untreated soil. The data indicate that surfactant washing may be a feasible approach to treat surface soils contaminated with a variety of metals, even if those metals have been present for nearly a century, and that the toxicity and potential for metal accumulation in biota from the treated soils may be significantly reduced. PMID:20853447

  11. Evaluation of a remediation process for lead contaminated soil by toxicity bioassays: Plants and earthworms

    SciTech Connect

    Chana, L.W.; Smith, K.

    1995-12-31

    Soil from a site contaminated with heavy metals (predominantly lead) was treated using the TERRAMET{reg_sign} lead extraction process. Earthworm acute toxicity and plant seed germination/root elongation (SG/RE) bioassays were used to evaluate the toxicity of the soil before treatment (BT), after treatment (AT) and after treatment, followed by rinsing with water, intended to simulate exposure to rainfall (RT). The results showed BT and RT were not toxic to earthworms in a 14-day exposure while AT showed significant toxicity. The LC{sub 50} values for Eisenia and Lumbricus were 44.04 and 28.83 (as % AT soil/test soil mixture), respectively. The phytotoxicity data indicated that all 3 test soils significantly inhibited lettuce SG/RE in a dose-related manner, with AT being the most phytotoxic. In oats, RT had no effect on SG/RE and AT was more toxic than BT. For the two local-site grass seeds tested (blue grama and sideoat grama), the AT soil was the most phytotoxic followed by BT and RT. The results suggest that the soil after this remediation process exerts significant toxicity on both plant and earthworm, but after a rain-simulating rinse, the toxicity is the same as, or less than, the toxicity before treatment. Further studies are in progress to confirm the assumption that the high salt concentrations generated by acidification during the leaching process, followed by neutralization are responsible for the increased toxicity of unrinsed soil in both plant and earthworm.

  12. Clay slurry and engineered soils as containment technologies for remediation of contaminated sites

    SciTech Connect

    Williams, J.R.; Dudka, S.; Miller, W.P.; Johnson, D.O.

    1997-12-31

    Clay Slurry and Engineered Soils are containment technologies for remediation of waste disposal sites where leaching, groundwater plumes and surface runoff of contaminants are serious ecological hazards to adjacent environments. This technology is a patent-pending process which involves the use of conditioned clay materials mixed with sand and water to form a readily pourable suspension, a clay slurry, which is either placed into a trench barrier system or allowed to de-water to create Engineered Soils. The Engineered Soil forms a layer impervious to water and air, therefore by inhibiting both water and oxygen from penetrating through the soil the material. This material can be installed in layers and as a vertical barrier to create a surface barrier containment system. The clay percentage in the clay slurry and Engineered Soils varies depending on site characteristics and desired performance standards. For example Engineered Soils with 1-2% of clay (dry wt.) had a hydraulic conductivity (K) of 10{sup -8} to 10{sup -1} cm/sec. Tests of tailing materials from a kyanite and pyrite mine showed that the clay slurry was effective not only in reducing the permeability of the treated tailings, but also in decreasing their acidity due to the inherent alkalinity of the clay. The untreated tailings had pH values in the range of 2.4 - 3.1; whereas, the effluent from clay and tailings mixtures had pH values in a slightly alkaline range (7.7-7.9). Pug-mills and high volume slurry pumps can be readily adapted for use in constructing and placing caps and creating Engineered Soils. Moreover, material on site or from a local sand supply can be used to create clay slurries and engineered soils. Clay materials used in cap construction are likewise readily available commercially. As a result, the clay slurry system is very cost effective compared to other capping systems, including the commonly used High Density Polyethylene (HDPE) liner systems.

  13. Investigating biochar as a tool for environmental remediation

    EPA Science Inventory

    Biochar is being proposed as a cost-effective, carbon negative soil amendment for environmental remediation. Research has demonstrated the efficacy of biochar to sorb heavy metals and agricultural chemicals from contaminated soils, thus effectively reducing the potential for met...

  14. Sustainability appraisal tools for soil and groundwater remediation: how is the choice of remediation alternative influenced by different sets of sustainability indicators and tool structures?

    PubMed

    Beames, Alistair; Broekx, Steven; Lookman, Richard; Touchant, Kaat; Seuntjens, Piet

    2014-02-01

    The state-of-the-science in sustainability assessment of soil and groundwater remediation is evaluated with the application of four decision support systems (DSSs) to a large-scale brownfield revitalization case study. The DSSs were used to perform sustainability appraisals of four technically feasible remediation alternatives proposed for the site. The first stage of the review compares the scope of each tool's sustainability indicators, how these indicators are measured and how the tools differ in terms of standardization and weighting procedures. The second stage of the review compares the outputs from the tools and determines the key factors that result in differing results between tools. The evaluation of indicator sets and tool structures explains why the tools generate differing results. Not all crucial impact areas, as identified by sustainable remediation forums, are thoroughly considered by the tools, particularly with regard to the social and economic aspects of sustainability. Variations in boundary conditions defined between technologies, produce distorted environmental impact results, especially when in-situ and ex-situ technologies are compared. The review draws attention to the need for end users to be aware of which aspects of sustainability are considered, how the aspects are measured and how all aspects are ultimately balanced in the evaluation of potential remediation strategies. Existing tools can be improved by considering different technologies within the same boundary conditions and by expanding indicator sets to include indicators deemed to be relevant by remediation forums.

  15. Influence of biosurfactant on the diesel oil remediation in soil-water system.

    PubMed

    Li, Yu-Ying; Zheng, Xi-Lai; Li, Bing

    2006-01-01

    There were six high diesel oil degrading bacteria strains isolated from the oil contaminated soil that collected from Linzi City. The strain Y1 was able to produce biosurfactant rhamnolipid when cultivated on diesel oil as carbon source. The critical micelle concentrations (CMC) of rhamnolipid in water and in the soil were measured respectively according to the correlation between the surface tension of the medium and the added rhamnolipid concentration. The results showed that the CMC of rhamnolipid in water was 65 mg/L, and was 185 mg/L in soil. The tests on diesel oil biodegradation were conducted with the addition of different concentrations of rhamnolipid in water and in soil respectively. When 0.01% rhamnolipid was added to water, the diesel oil degradation was enhanced. On the contrary, when the same concentration of rhamnolipid was added to the soil, the degradation of diesel oil was inhibited. The results suggested that the rhamnolipid could enhance the diesel oil biodegradation, indicating that the concentration of rhamnolipid was higher than the corresponding CMC in the medium. Kinetics parameters for the diesel oil biodegradation parameters such as biodegradation constant (lambda), coefficient of correlation (r) and half life (t1/2) in both tests were numerically analyzed in this paper, indicating that the moderate concentration of rhamnolipid in the medium could not only enhance the extent of diesel oil biodegradation but also shorten the time for oil remediation.

  16. Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90.

    PubMed

    Yang, Zhihui; Zhang, Zhi; Chai, Liyuan; Wang, Yong; Liu, Yi; Xiao, Ruiyang

    2016-01-15

    Bioleaching is an environment-friendly and economical technology to remove heavy metals from contaminated soils. In this study, a biosurfactant-producing strain with capacity of alkaline production was isolated from cafeteria sewer sludge and its capability for removing Zn, Pb, Mn, Cd, Cu, and As was investigated. Phylogenetic analysis using 16S rDNA gene sequences confirmed that the strain belonged to Burkholderia sp. and named as Z-90. The biosurfactant was glycolipid confirmed by thin layer chromatography and Fourier-transform infrared spectroscopy. Z-90 broth was then used for bioleaching remediation of heavy metal-contaminated soils. The removal efficiency was 44.0% for Zn, 32.5% for Pb, 52.2% for Mn, 37.7% for Cd, 24.1% for Cu and 31.6% for As, respectively. Mn, Zn and Cd were more easily removed from soil than Cu, Pb and As, which was attributed to the presence of high acid-soluble fraction of Mn, Zn and Cd and high residual fraction of Cu, Pb and As. The heavy metal removal in soils was contributed to the adhesion of heavy metal-contaminated soil minerals with strain Z-90 and the formation of a metal complex with biosurfactant.

  17. Feasibility of Using Phytoextraction to Remediate a Compost-Based Soil Contaminated with Cadmium.

    PubMed

    Parisien, Michele A; Rutter, Allison; Zeeb, Barbara A

    2015-01-01

    Greenhouse and in-situ field experiments were used to determine the potential for phytoextraction to remediate soil contaminated with Cd from municipal solid waste (MSW) and sewage sludge (SS) compost application at a Peterborough (Canada) site. For the greenhouse experiment, one native (Chenopodium album) and three naturalized (Poa compressa, Brassica juncea, Helianthus annuus) plant species were planted in soil containing no detectable Cd (<1.0 μg·g(-1)), and soil from the site containing low (5.0 ± 0.3 μg·g(-1) Cd), and high (16.5 ± 1.2 μg⋅g(-1) Cd) Cd concentrations. Plant uptake was low (root BAFs ≤0.5) for all species except P. compressa in the low Cd treatment (BAF 1.0). Only B. juncea accumulated Cd in its shoots, though uptake was low (BAF ≤0.3). For the field experiment, B. juncea was planted in-situ in areas of low and high Cd concentrations. Brassica juncea Cd uptake was low (root and shoot BAFs <0.2) in both treatments. Sequential extraction analysis indicated that Cd is retained primarily by low bioavailability soil fractions, and phytoextraction is therefore not feasible at this site. Though low Cd bioavailability has negative implications for Cd phytoextraction from MSW/SS compost-based soils, it may limit receptor exposure to Cd sufficiently to eliminate the potential for risk at this site. PMID:25848836

  18. Modeling and field experimental investigation of remediation by venting measures in the unsaturated soil zone

    SciTech Connect

    Lin, J.Y. ); Kinzelbach, W.K.H. )

    1993-10-01

    In the unsaturated soil zone, venting systems have proved to be an effective remediation method for contamination with volatile hydrocarbons. A new potential is opened up for this method by combining it with measures such as injection of hot gas or irrigation of the top soil to increase the radius of influence. A numerical 3-D model for air flow through variably saturated soil is presented which can serve as a design tool for locating and dimensioning of venting wells. It further allows rough estimates of the venting time and optimization of the technique. The user-friendly computer code AIR can be run on a fast PC. Two field applications are studied. In the first case, the measure consists of both injection and suction wells. The top soil is irrigated in order to reduce its conductivity. The efficiency of this measure in increasing the radius of influence is determined. In the second case, the functioning of a suction well is studied by using the natural radon gas in the soil as a tracer. The comparison of observations in the field with model computations offers a basis for the discussion of the limitations and design considerations of venting measures.

  19. The Lasagna technology for in situ soil remediation. 1: Small field test

    SciTech Connect

    Ho, S.V.; Athmer, C.; Sheridan, P.W.

    1999-04-01

    A novel, in situ remediation technology called Lasagna is being developed for cleaning up contamination in heterogeneous or low-permeability soils. The technology uses electrical current to drive contaminants from the soil into treatment zones installed directly in the contaminated area. The collaboration between a consortium of industry (Monsanto, DuPont, and General Electric) with the Department of Energy (DOE) and the Environmental Protection Agency (EPA) has led to two field tests at a DOE plant, chosen for its combination of low-permeability soil and trichloroethylene (TCE) as the sole contaminant. This paper describes the first field test in which TCE in the contaminated soil was transported into carbon-containing treatment zones where it was trapped. The test was very successful, removing over 98% TCE from the contaminated soil, with most treated samples showing greater than 99% removal. The success of this test paved the way for the second and much larger field test in which TCE was degraded in place.

  20. Soil Remediation of an Arsenic-Contaminated Site With Ferrous Sulfate and Type V Portland Cement

    NASA Astrophysics Data System (ADS)

    Illera, V.; O'Day, P. A.; Rivera, N.; Root, R.; Rafferty, M. T.; Vlassopoulos, D.

    2005-12-01

    High levels of arsenic are present in a site adjacent to San Francisco Bay (in East Palo Alto, CA) as a consequence of the activity of a former pesticide manufacturing plant. Most of the readily accessible arsenic at the site has been removed by remedial excavation and surface capping. In-situ fixation of residual arsenic was performed close to the source about 10 years ago where arsenic values in capped soils ranged from 500 to 5000 mg kg-1. The fixation method consisted of the addition of ferrous sulfate (3% w/w), type V Portland cement (10% w/w) and water. Both products were mixed with the contaminated soil to a treatment depth between 1.5 and 9 meters. The treated soil was then capped to prevent weathering. This long-term amended soil offers an opportunity to compare the processes that prevent microbial arsenic reduction and control the immobilization of arsenic in the treated soils versus natural soils, and to study the aging effects of arsenic sorption. Solid phase characterization of soil samples from both the field and controlled laboratory experiments were carried out to study the speciation and bioavailability of arsenic and to ascertain the mechanisms of the arsenic immobilization in the treated soil. These methods included physical description by field observations, X-ray diffraction (XRD), scanning electron microscopy with energy dispersive spectroscopy, total elemental concentrations, and solid phase fractionation by sequential extraction. Both synchrotron X-ray absorption spectroscopy (XAS) and XRD measurements were used to determine oxidation state of arsenic and iron and host phases present in the soil. The remedial treatment was successful in immobilizing the arsenic in the contaminated soil, and decreasing its leachability. Measurements taken at short aging times (during the first month) showed that the treatment was effective in reducing leachable arsenic as evidenced by the TCLP wet test (< 5 mg l-1 leached). The field amendment influenced

  1. Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: I. Effects on trace elements and nutrients solubility and leaching risk.

    PubMed

    Pardo, T; Bernal, M P; Clemente, R

    2014-07-01

    A mesocosm experiment, in columns, was conducted in a growth chamber to assess the viability of two organic materials (pig slurry and compost; in combination with hydrated lime) for the remediation of a highly acidic and trace elements (TEs) contaminated mine soil and the reduction of its associated leaching risks. Their influence on the evolution throughout the soil depth of the physicochemical properties (including TEs mobility) of the soil and soil solution (in situ periodic collection) and on Lolium perenne growth and foliar TEs accumulation was evaluated. Soluble and extractable concentrations of the different TEs were considerably high, although the organic amendments (with lime) and lime addition successfully decreased TEs mobility in the top soil layer, as a consequence of a rise in pH and changes in the redox conditions. Compost and pig slurry increased the soluble organic-C and dissolved N, K and P of the soil, producing a certain downwards displacement of N and K. The organic amendments allowed the growth of L. perenne in the soil, thus indicating improvement of soil conditions, but elevated TEs availability in the soil led to toxicity symptoms and abnormally high TEs concentrations in the plants. An evaluation of the functioning and ecotoxicological risks of the remediated soils is reported in part II: this allows verification of the viability of the amendments for remediation strategies. PMID:24875879

  2. Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: I. Effects on trace elements and nutrients solubility and leaching risk.

    PubMed

    Pardo, T; Bernal, M P; Clemente, R

    2014-07-01

    A mesocosm experiment, in columns, was conducted in a growth chamber to assess the viability of two organic materials (pig slurry and compost; in combination with hydrated lime) for the remediation of a highly acidic and trace elements (TEs) contaminated mine soil and the reduction of its associated leaching risks. Their influence on the evolution throughout the soil depth of the physicochemical properties (including TEs mobility) of the soil and soil solution (in situ periodic collection) and on Lolium perenne growth and foliar TEs accumulation was evaluated. Soluble and extractable concentrations of the different TEs were considerably high, although the organic amendments (with lime) and lime addition successfully decreased TEs mobility in the top soil layer, as a consequence of a rise in pH and changes in the redox conditions. Compost and pig slurry increased the soluble organic-C and dissolved N, K and P of the soil, producing a certain downwards displacement of N and K. The organic amendments allowed the growth of L. perenne in the soil, thus indicating improvement of soil conditions, but elevated TEs availability in the soil led to toxicity symptoms and abnormally high TEs concentrations in the plants. An evaluation of the functioning and ecotoxicological risks of the remediated soils is reported in part II: this allows verification of the viability of the amendments for remediation strategies.

  3. Degradation of oil products in a soil from a Russian Barents hot-spot during electrodialytic remediation.

    PubMed

    Pedersen, Kristine B; Lejon, Tore; Jensen, Pernille E; Ottosen, Lisbeth M

    2016-01-01

    A highly oil-polluted soil from Krasnoe in North-West Russia was used to investigate the degradation of organic pollutants during electrodialytic remediation. Removal efficiencies were up to 70 % for total hydrocarbons (THC) and up to 65 % for polyaromatic hydrocarbons (PAH). Relatively more of the lighter PAH compounds and THC fractions were degraded. A principal component analysis (PCA) revealed a difference in the distribution of PAH compounds after the remediation. The observed clustering of experiments in the PCA scores plot was assessed to be related to the stirring rate. Multivariate analysis of the experimental settings and final concentrations in the 12 experiments revealed that the stirring rate of the soil suspension was by far the most important parameter for the remediation for both THC and PAH. Light was the second most important variable for PAH and seems to influence degradation. The experimental variables current density and remediation time did not significantly influence the degradation of the organic pollutants. Despite current density not influencing the remediation, there is potential for degrading organic pollutants during electrodialytic removal of heavy metals, as long as a stirred set-up is applied. Depending on remediation objectives, further optimisation may be needed in order to develop efficient remediation strategies.

  4. Degradation of oil products in a soil from a Russian Barents hot-spot during electrodialytic remediation.

    PubMed

    Pedersen, Kristine B; Lejon, Tore; Jensen, Pernille E; Ottosen, Lisbeth M

    2016-01-01

    A highly oil-polluted soil from Krasnoe in North-West Russia was used to investigate the degradation of organic pollutants during electrodialytic remediation. Removal efficiencies were up to 70 % for total hydrocarbons (THC) and up to 65 % for polyaromatic hydrocarbons (PAH). Relatively more of the lighter PAH compounds and THC fractions were degraded. A principal component analysis (PCA) revealed a difference in the distribution of PAH compounds after the remediation. The observed clustering of experiments in the PCA scores plot was assessed to be related to the stirring rate. Multivariate analysis of the experimental settings and final concentrations in the 12 experiments revealed that the stirring rate of the soil suspension was by far the most important parameter for the remediation for both THC and PAH. Light was the second most important variable for PAH and seems to influence degradation. The experimental variables current density and remediation time did not significantly influence the degradation of the organic pollutants. Despite current density not influencing the remediation, there is potential for degrading organic pollutants during electrodialytic removal of heavy metals, as long as a stirred set-up is applied. Depending on remediation objectives, further optimisation may be needed in order to develop efficient remediation strategies. PMID:27026865

  5. Evaluation of electrode configuration and mode of DC power for improvement of electrokinetic soil remediation

    NASA Astrophysics Data System (ADS)

    Kim, Soon-Oh; Lee, Woo Chun; Lee, Sang Woo; Lee, Byung-Tae

    2014-05-01

    Electrokinetic soil remediation is also called electrokinetic soil processing, electroreclamation, and electrochemical decontamination. The electrokinetic technique needs a low-level direct current of the order of mA/cm2 between electrodes to remove contaminants. The electrokinetic technique is one of the most promising remediation processes, and offers high efficiency and time effectiveness in the decontamination of low-permeability soils contaminated with heavy metals, radionuclides, or organic compounds. The significance of this technique is attributed to its low operational cost and potential applicability to a wide range of contaminant types, and these benefits have resulted in the initiation of numerous studies into its use for waste remediation. Electrode configuration is crucial for cost-effectiveness and overall efficacy of the elelectrokinetic processing, particularly in its field implementation. We investigated the effectiveness of various electrode arrays which can be grouped into one-dimensional (1-D) and two-dimensional (2-D) ones. Normally, the DC electricity of full wave has been used to remove contaminants from soils using elelectrokinetic processing. However, application of half-wave DC power can be also taken into account to improve efficacy of the processing, because it generates pulse power and accelerates the migration of contaminants within soils. We empirically evaluated the effect of type of DC electricity on the overall performance of the electrokinetic soil processing. The 1-D configuration with 5 electrode pairs showed the least total electric power, but that consumed in only the soil cell was less in the 2-D arrays than in 1-D ones. Particularly, most of the electric power is likely to be consumed in the electrode compartments, and the electric resistance in the electrode parts should be reduced to save the electric energy cost in the whole processing. In terms of removal efficiencies of 5 heavy metal contaminants, overall efficiency

  6. APPLICATION OF THE LASAGNA{trademark} SOIL REMEDIATION TECHNOLOGY AT THE DOE PADUCAH GASEOUS DIFFUSION PLANT

    SciTech Connect

    Swift, Barry D.; Tarantino, Joseph J., P. E.

    2003-02-27

    The Paducah Gaseous Diffusion Plant (PGDP), owned by the Department of Energy (DOE), has been enriching uranium since the early 1950s. The enrichment process involves electrical and mechanical components that require periodic cleaning. The primary cleaning agent was trichloroethene (TCE) until the late 1980s. Historical documentation indicates that a mixture of TCE and dry ice were used at PGDP for testing the integrity of steel cylinders, which stored depleted uranium. TCE and dry ice were contained in a below-ground pit and used during the integrity testing. TCE seeped from the pit and contaminated the surrounding soil. The Lasagna{trademark} technology was identified in the Record of Decision (ROD) as the selected alternative for remediation of the cylinder testing site. A public-private consortium formed in 1992 (including DOE, the U.S. Environmental Protection Agency, and the Kentucky Department for Environmental Protection, Monsanto, DuPont, and General Electric) developed the Lasagna{trademark} technology. This innovative technology employs electrokinetics to remediate soil contaminated with organics and is especially suited to sites with low permeability soils. This technology uses direct current to move water through the soil faster and more uniformly than hydraulic methods. Electrokinetics moves contaminants in soil pore water through treatment zones comprised of iron filings, where the contaminants are decomposed to basic chemical compounds such as ethane. After three years of development in the laboratory, the consortium field tested the Lasagna{trademark} process in several phases. CDM installed and operated Phase I, the trial installation and field test of a 150-square-foot area selected for a 120-day run in 1995. Approximately 98 percent of the TCE was removed. CDM then installed and operated the next phase (IIa), a year-long test on a 600-square-foot site. Completed in July 1997, this test removed 75 percent of the total volume of TCE down to a

  7. Effect of oxidant dosage on integrated electrochemical remediation of contaminant mixtures in soils.

    PubMed

    Reddy, Krishna R; Karri, Madhusudhana R

    2008-07-01

    Many sites are contaminated with contaminant mixtures, commonly heavy metals and polycyclic aromatic hydrocarbons (PAHs), which pose a great challenge for remediation. The objective of this research was to investigate coupled Fenton-like oxidation and electrokinetic remediation of low permeability soils contaminated with both heavy metals and PAHs. This remediation process aims at simultaneous oxidation of organic contaminants and removal of heavy metals. Fenton's reagent, consisting of hydrogen peroxide (H(2)O(2)) and native iron catalyst, is utilized for chemical oxidation. Laboratory batch and electrokinetic experiments were performed on kaolin (a low permeability soil) spiked with nickel and phenanthrene each at a concentration of 500 mg/kg of dry soil to represent typical heavy metal and PAH contaminants found at contaminated sites. Experiments were conducted using H(2)O(2) solution in 5%, 10%, 20% and 30% concentrations and also using deionized (DI) water as control. For electrokinetic experiments, a voltage gradient of 1 VDC/cm was applied and H(2)O(2) solution was introduced at the anode for a total duration of four weeks. Batch tests showed that phenanthrene oxidation increases from 76% to 87% when the H(2)O(2) concentration increases from 5% to 30%. The electrokinetic experiments showed substantial electroosmotic flow in all the tests. Approximately one pore volume of flow was generated in the DI baseline test and about 1.2-1.6 pore volumes were generated in case of H(2)O(2) tests. Phenanthrene was partially oxidized in the H(2)O(2) tests and its removal from the soil was insignificant. Oxidation of phenanthrene increased with increasing concentration of H(2)O(2); a maximum of 56% oxidation was observed with 30% H(2)O(2). Nickel migrated from anode to cathode. This migration was more pronounced in the H(2)O(2) tests as compared to the DI baseline test. Nickel precipitated in all the tests near the cathode due to high pH conditions. These results emphasize

  8. DEMONSTRATION OF PILOT-SCALE PERVAPORATION SYSTEMS FOR VOLATILE ORGANIC COMPOUND REMOVAL FROM A SURFACTANT ENHANCED AQUIFER REMEDIATION FLUID. II. HOLLOW FIBER MEMBRANE MODULES

    EPA Science Inventory

    Pilot-scale demonstration of pervaporation-based removal of volatile organic compounds from a surfactant enhanced aquifer remediation (SEAR) fluid has been conducted at USEPA's Test & Evaluation Facility using hollow fiber membrane modules. The membranes consisted of microporous...

  9. Demonstration of the Fenton Reaction

    ERIC Educational Resources Information Center

    Luehrs, Dean C.; Roher, Alex E.

    2007-01-01

    The study demonstrates the Fenton reaction, which is carried out using the Fenton reagent that is used for groundwater and soil remediation. The Fenton reaction can be implicated in DNA damage, Alzheimer's disease, cardiovascular disease and ageing in general.

  10. DEMONSTRATION BULLETIN: SOIL/SEDIMENT WASHING SYSTEM BERGMANN USA

    EPA Science Inventory

    The Bergmann USA Soil/Sediment Washing System is a waste minimization technique designed to separate or "partition" soils and sediments by grain size and density. In this water-based volume reduction process, hazardous contaminants are concentrated into a small residual portion...

  11. Measurement systems in the area of land remediation and soil segregation activities

    SciTech Connect

    Simon, Gerold G.; Sokcic-Kostic, Marina; Auler, Ingolf; Eickelpasch, Ludger; Betts, Jonathan

    2007-07-01

    Available in abstract form only. Full text of publication follows: The remediation of radioactively contaminated land is a small but growing sector in the area of decommissioning of nuclear facilities. This also includes the material from buildings after demolition. Contamination comprises in general alpha and beta activities and emission of alpha, beta and gamma radiation. The measurement is in practice restricted to the measurement of gamma emission, because of the high penetration of material by gamma rays. All isotopes, which do not emit gammas are estimated on the basis of given relation between alpha and beta emitters without gamma radiation and emitters with gamma radiation. This method is called 'key nuclide method'. Whilst many studies have been completed, others still continue in the processing of large volumes of concrete, steel and soil. An important conclusion from these and similar research programs is that a significant proportion of the waste contains only low concentrations of radioactive nuclides. Therefore, much of the material from the remediation can be considered for 'free release'. It was often not possible to attain adequate specific information on these materials, so a measurement system is needed for their classification and characterization. NUKEM Technologies has practical experience in characterising and remediating of nuclear sites. Recently, it has pioneered the use of innovative in-situ and ex-situ characterisation and waste segregation technologies, which enhance the efficiency of remedial actions and provide assurance to customers, regulators and the public that all significant contamination has been removed and sites can be used for new purposes. (authors)

  12. [Action mechanisms of microorganisms on arsenic and the feasibility of utilizing fungi remediation of arsenic-contaminated soil].

    PubMed

    Su, Shi-ming; Zeng, Xi-bai; Bai, Ling-yu; Li, Lian-fang

    2010-12-01

    Utilizing fungi to remediate arsenic-contaminated soil and water body has a great potential, which has been focused and highlighted in environmental sciences. Though the arsenic in environment can not be biodegraded as organic contaminants, its bioavailability can be affected by microorganisms via the processes oxidation/reduction, absorption/desorption, methylation/demethylation, and precipitation/dissolution, etc., and thereby, its toxicity could be reduced, and the arsenic-contaminated environment could be remediated. This paper introduced the action mechanisms of microorganisms on arsenic, summarized the research progress in the arsenic bioaccumulation and bio-volatilization by fungi, and discussed the feasibility of utilizing fungi in the remediation of arsenic-contaminated soil, aimed to provide theoretical reference for the bioremediation strategies of arsenic-contaminated soils.

  13. Process challenges in rotary kiln-based incinerators in soil remediation projects

    SciTech Connect

    Acharya, P.; Fogo, D.; McBride, C.

    1996-12-31

    Most Superfund sites undergoing thermal remediation consist of high-moisture content (15 to 40 percent) soils having light organic contamination (low-heat content). In the early 1980s, the rotary kiln incinerators employed at these Superfund sites were relatively small mobile hazardous waste incinerators (HWI) built on standard-size semi-trailers. As the industry matured over the past ten years, competition has driven the industry to larger and more efficient rotary kiln systems that minimize the cost per ton of soil treated by increasing the throughput rates and shortening on-site processing time. Because these units are transported from site to site by truck or a combination of rail and truck, the rotary kiln outside shell diameters have peaked to approximately 13.5 feet. Now the focus has shifted to increasing the processing capacity of these existing, maximized fixed-sized systems. Such actions include the use of oxygen-based combustion systems, which increase the throughput and efficiency by improving heat transfer and reducing the volume of combustion gas requiring treatment. However, despite the experience and expertise gained by the participants in the thermal remediation industry, many of the same process challenges still remain. This article discusses these process challenges facing the industry and potential solutions, based on data from IT`s Hybrid Thermal Treatment System{reg_sign} HTTS{reg_sign} and other sources. 10 refs., 2 figs., 3 tabs.

  14. Utilization of biomass residues for the remediation of metal-polluted soils

    SciTech Connect

    Fischer, K.; Kettrup, A.; Bipp, H.P.; Riemschneider, P.; Leidmann, P.; Bieniek, D.

    1998-07-15

    The utilization of biomass residues as sources for natural chelates is a new approach to improve the ecological and economical balance of leaching techniques for the remediation of metal-polluted soils. Residues, such as molasses, blood meal, and silage effluents, containing various aliphatic carboxylic acids, sugar acids, and amino acids or their precursor compounds were selected, hydrolyzed and oxidized, if required, and analyzed for their organic constituents. Soils that were contaminated with metals via sewage sludge amendment were extracted in batch and column experiments at various pH values. Grass silage effluent removed {approximately} 75% of Cd and > 50% of Cu and Zn at pH 4.4. The neutralized effluent was less effective except for Cu (69% leached). The neutral blood meal hydrolysate extracted primarily Cu (55--66%) and Ni (38--67%). Metal bonds attacked by this extractant were identified using a sequential leaching procedure. Hydrolysates containing sugar acids mobilized Cu and Pb under alkaline conditions. The actual results support the conclusion that biomass residues have a potential to serve as extractants in remediation techniques.

  15. Use of Carboxymethyl-beta-cyclodextrin (CMCD) as Flushing Agent for Remediation of Metal Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Skold, M. E.; Thyne, G. D.; McCray, J. E.; Drexler, J. W.

    2005-12-01

    One of the major challenges in remediating soil and ground water is the presence of mixed organic and inorganic contaminants. Due to their very different behavior, research has to a large extent focused on remediation of either organic or inorganic contaminants rather than mixed waste. Cyclodextrins (CDs) are a group of non-toxic sugar based molecules that do not sorb to soil particles and do not experience pore size exclusion. Thus, they have good hydraulic properties. CDs enhance the solubility of organic compounds by forming inclusion complexes between organic contaminants and the non-polar cavity at the center of the CD. By substituting functional groups to the cyclodextrin molecule it can form complexes with heavy metals. Previous studies have shown that carboxymethyl-beta-cyclodextrin (CMCD) can simultaneously complex organic and inorganic contaminants. The aim of this study is to compare how strongly CMCD complexes several common heavy metals, radioactive elements and a common divalent cation. Results from batch experiments show that CMCD has the ability to complex a wide array of heavy metals and radioactive elements. The solubility of metal oxalates and metal oxides clearly increased in the presence of CMCD. Logarithmic conditional formation constants ranged from 3.5 to 6 for heavy metals and from 3 to 6 for radioactive elements. Calcium, which may compete for binding sites, has a logarithmic conditional formation constant of 3.1. Batch experiments performed at 10 and 25 degrees C showed little temperature effect on conditional formation constants. Results from batch experiments were compared to results from column experiments where Pb was sorbed onto hydrous ferric oxide coated sand and subsequently removed by a CMCD solution. The results indicate that CMCD is a potential flushing agent for remediation of mixed waste sites.

  16. [Continuous remediation of heavy metal contaminated soil by co-cropping system enhanced with chelator].

    PubMed

    Wei, Ze-Bin; Guo, Xiao-Fang; Wu, Qi-Tang; Long, Xin-Xian

    2014-11-01

    In order to elucidate the continuous effectiveness of co-cropping system coupling with chelator enhancement in remediating heavy metal contaminated soils and its environmental risk towards underground water, soil lysimeter (0.9 m x 0.9 m x 0.9 m) experiments were conducted using a paddy soil affected by Pb and Zn mining in Lechang district of Guangdong Province, 7 successive crops were conducted for about 2.5 years. The treatments included mono-crop of Sedum alfredii Hance (Zn and Cd hyperaccumulator), mono-crop of corn (Zea mays, cv. Yunshi-5, a low-accumulating cultivar), co-crop of S. alfredii and corn, and co-crop + MC (Mixture of Chelators, comprised of citric acid, monosodium glutamate waste liquid, EDTA and KCI with molar ratio of 10: 1:2:3 at the concentration of 5 mmol x kg(-1) soil). The changes of heavy metal concentrations in plants, soil and underground water were monitored. Results showed that the co-cropping system was suitable only in spring-summer seasons and significantly increased Zn and Cd phytoextraction. In autumn-winter seasons, the growth of S. alfredii and its phytoextraction of Zn and Cd were reduced by co-cropping and MC application. In total, the mono-crops of S. alfredii recorded a highest phytoextraction of Zn and Cd. However, the greatest reduction of soil Zn, Cd and Pb was observed with the co-crop + MC treatment, the reduction rates were 28%, 50%, and 22%, respectively, relative to the initial soil metal content. The reduction of this treatment was mainly attributed to the downwards leaching of metals to the subsoil caused by MC application. The continuous monitoring of leachates during 2. 5 year's experiment also revealed that the addition of MC increased heavy metal concentrations in the leaching water, but they did not significantly exceed the III grade limits of the underground water standard of China.

  17. IPEC Gels for Remediating Soils Contaminated as Result of Nuclear and Industrial Activities

    SciTech Connect

    Mikheykin, S.V.; Anciferova, E.Yu.; Simonov, V.P.; Zezin, A.B.; Rogacheva, V.B.; Bolusheva, T.N.

    2006-07-01

    Under International Scientific and Technological Center (ISTC, Moscow) Project no. 1567 the Moscow research team in collaboration with Los Alamos National Laboratory developed and tested new kind of inter-polyelectrolyte complexes with micro-gel (IPECs) for soil surface stabilization, prevention of radioactive contamination distribution with wind and water streams and for site remediation using mixtures of new water-soluble polymers with seeding grasses. Evidently, the most important factor responsible for the effectiveness of a polymeric aggregator is the ratio of the size of poly-complex particles to that of dispersion particles being aggregated. The particle size of IPEC produced of a pair of linear oppositely charged poly-electrolytes is usually fractions of a micron. Such a particle can fix only small aggregates ({approx}10 {mu}m and less). One of the ways of improving poly-complex aggregators is to use loose cross-linked poly-electrolytic gels as an IPEC component. When generating/dispersing these poly-electrolytic gels, particles of specified sizes can be produced. These poly-electrolytic micro-gels introduced into soil save moisture, what is important for arid sites. Wind erosion was studied as a function of soil physical-chemical properties and the air stream velocity. A laboratory wind tunnel instrumented to follow the process on a real-time basis was used for our study. Polymer-treated samples show a high wind erosion resistance in the wind velocity range up to 40 m/s. The micro-gel dispersion MGD-2 was injected in combination with MLA-1 in the experiments with water flow - water erosion resistance. With an increase in the water-polymer solution application rate from 2.0 to 4.0 l/m{sup 2} the soil resistance to eroding water streams with velocity of 55 cm/s (2.0 l/m{sup 2}) and at 70.0 cm/s with 4.0 l/m{sup 2}. Based on the classification of soils by erosion resistance, soils eroded with a water stream 1 cm high at a velocity of 50 cm/s are considered to

  18. Synergistic influence of Vetiveria zizanioides and selected rhizospheric microbial strains on remediation of endosulfan contaminated soil.

    PubMed

    Singh, Vandana; Singh, Pratiksha; Singh, Nandita

    2016-09-01

    Application of endosulfan tolerant rhizospheric bacterial strain isolated from pesticide contaminated area, Ghaziabad in combination with V. zizanioides for the remediation of endosulfan is described herein. The dissipation of endosulfan from soil was considerably enhanced in the presence of bacterial strain and Vetiveria zizanioides together when compared to the dissipation in presence of either of them alone. Four strains- EAG-EC-12 (M1), EAG-EC-13(M2), EAG-EC-14(M3) and EAG-EC-15(M4) are used for this purpose. V. zizanioides was grown in garden soil spiked with 1500 µg g(-1) of endosulfan and inoculated with 100 ml of microbial culture of above motioned strains. Effect of microbial inoculation on plant growth, endosulfan uptake and endosulfan removal efficiency were analyzed. The microbial inoculation significantly enhances the growth of test plant and endosulfan dissipation from soil (p < 0.05). The addition of bacterial strain M1, M2, M3 and M4 in treated pots showed enhanced root length by 13, 33 35, 20.2 and 4.3 %, above ground plant length by 16.38, 35.56, 24.92 and 9.8 % and biomass by 33.69, 49.63, 39.24 and 17.09 % respectively when compared with endosulfan treated plants. After 135 days of exposure, a decline in endosulfan concentration by 59.12, 64.56, 62.69 and 56.39 % was obtained in the spiked soil inoculated with bacterial strains M1, M2, M3 and M4 respectively whereas, decrease in endosulfan concentration by 72.78, 85.25, 76.91 and 65.44 % in the vegetative spiked soil inoculated with same strains was observed during same exposure period. After 135 days of growth period, enhanced removal of endosulfan from experimental soil by 13.66, 20.69, 14.22 and 9.05 % was found in vegetative experiment inoculated with same strains when compared with non vegetative experiment. Result of the study showed that use of toletant plant and tolerant bacterial strains could be the better strategy for the remediation of endosulfan contaminated soil. PMID

  19. DEMONSTRATION AND EVALUATION OF INNOVATIVE REMEDIATION TECHNOLOGIES THROUGH THE EPA SITE PROGRAM

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program has successfuly promoted the development, commercialization and implementation of innovative hazardous waste treatment technologies for 18 years. SITE offers a mechanism for conducting joint technology demonstration an...

  20. Evaluation of soil amendments as a remediation alternative for cadmium-contaminated soils under cacao plantations.

    PubMed

    Chavez, E; He, Z L; Stoffella, P J; Mylavarapu, R; Li, Y; Baligar, V C

    2016-09-01

    Elevated plant-available cadmium (Cd) in soils results in contamination to cacao (Theobroma cacao L) beans. Effectiveness of vermicompost and zeolite in reducing available Cd in three cacao-growing soils was studied under laboratory conditions. Sorption-desorption experiments were conducted in soils and amendments. Cadmium was added at 0 or 5 mg kg(-1) (spiked), then, amendments were incorporated at 0, 0.5, or 2 %. Amended soils were incubated at room temperature for 28 days. Plant-available Cd was determined using 0.01 M CaCl2 (WSE) and Mehlich 3 (M3) extraction procedures in subsamples taken from individual bags at six time intervals. Soils and amendments displayed different sorption characteristics and a better fit was attained with Freundlich model (R (2) > 0.82). Amendments were ineffective in reducing extractable Cd in non-spiked soils. In Cd-spiked soils, vermicompost at 2 % significantly reduced WSE-Cd (P < 0.01) from 3.36, 0.54, and 0.38 mg kg(-1) to values lower that instrument's detection in all the three soils and significantly diminished M3-extractable Cd (P < 0.05) from 4.62 to 4.11 mg kg(-1) in only one soil. Vermicompost at 0.5 % significantly decreased WSE-Cd (P < 0.01) from 3.04 and 0.31 to 1.69 and 0.20 mg kg(-1), respectively, in two soils with low sorption capacity for Cd. In contrast, zeolite failed to reduce WSE- or M3-extractable Cd in all studied soils. A negative correlation occurred between soil pH and WSE-Cd (r > -0.89, P < 0.01). The decrease in WSE-Cd appears to be associated with the increase in pH of the vermicompost-amended soils. PMID:27234831

  1. Evaluation of soil amendments as a remediation alternative for cadmium-contaminated soils under cacao plantations.

    PubMed

    Chavez, E; He, Z L; Stoffella, P J; Mylavarapu, R; Li, Y; Baligar, V C

    2016-09-01

    Elevated plant-available cadmium (Cd) in soils results in contamination to cacao (Theobroma cacao L) beans. Effectiveness of vermicompost and zeolite in reducing available Cd in three cacao-growing soils was studied under laboratory conditions. Sorption-desorption experiments were conducted in soils and amendments. Cadmium was added at 0 or 5 mg kg(-1) (spiked), then, amendments were incorporated at 0, 0.5, or 2 %. Amended soils were incubated at room temperature for 28 days. Plant-available Cd was determined using 0.01 M CaCl2 (WSE) and Mehlich 3 (M3) extraction procedures in subsamples taken from individual bags at six time intervals. Soils and amendments displayed different sorption characteristics and a better fit was attained with Freundlich model (R (2) > 0.82). Amendments were ineffective in reducing extractable Cd in non-spiked soils. In Cd-spiked soils, vermicompost at 2 % significantly reduced WSE-Cd (P < 0.01) from 3.36, 0.54, and 0.38 mg kg(-1) to values lower that instrument's detection in all the three soils and significantly diminished M3-extractable Cd (P < 0.05) from 4.62 to 4.11 mg kg(-1) in only one soil. Vermicompost at 0.5 % significantly decreased WSE-Cd (P < 0.01) from 3.04 and 0.31 to 1.69 and 0.20 mg kg(-1), respectively, in two soils with low sorption capacity for Cd. In contrast, zeolite failed to reduce WSE- or M3-extractable Cd in all studied soils. A negative correlation occurred between soil pH and WSE-Cd (r > -0.89, P < 0.01). The decrease in WSE-Cd appears to be associated with the increase in pH of the vermicompost-amended soils.

  2. Countercurrent soil washing system for remediation of viscous hydrocarbons, heavy metals, radionuclides

    SciTech Connect

    Kuhlman, M.I.; Karlsson, M.K.; Downie, C.A.

    1995-12-31

    Drying augers and multicell DAF tanks are excellent machines in which to countercurrently wash soil and remove hazardous hydrocarbons, metals or radionuclides. An auger works well because it preferentially moves soil along one side of its trough. Thus, when enough high pressure and temperature water jets are placed along that path, contaminants can be melted, or dissolved and scoured from the soil. Contaminants and fines flow down the opposite side of the auger and out for extraction in a series of flotation tanks. Countercurrent washing of the silt results when soil settles in tanks through rising water and air bubbles then is pumped through cyclones placed above the next DAF tank of the series. LNAPLs, DNAPLs, or metallic contaminants made hydrophobic by chemicals in the system are removed at the overflow of the cyclones or by flotation in the tanks. The overflow from the cyclones and DAF tanks flows into the previous tank of the series. Examples of contaminants remediated include; arsenic, cadmium, lead and mercury, Naturally Occurring Radioactive Materials (NORM), uranium, solid oils, polyaromatic hydrocarbons in creosote and coal tars, and polychlorinated hydrocarbons.

  3. The risk implications of approaches to setting soil remediation goals at hazardous waste contaminated sites

    SciTech Connect

    Labieniec, P.A.

    1994-08-01

    An integrated exposure and carcinogenic risk assessment model for organic contamination in soil, SoilRisk, was developed and used for evaluating the risk implications of both site-specific and uniform-concentration approaches to setting soil remediation goals at hazardous-waste-contaminated sites. SoilRisk was applied to evaluate the uncertainty in the risk estimate due to uncertainty in site conditions at a representative site. It was also used to evaluate the variability in risk across a region of sites that can occur due to differences in site characteristics that affect contaminant transport and fate when a uniform concentration approach is used. In evaluating regional variability, Ross County, Ohio and the State of Ohio were used as examples. All analyses performed considered four contaminants (benzene, trichloroethylene (TCE), chlordane, and benzo[a]pyrene (BAP)) and four exposure scenarios (commercial, recreational and on- and offsite residential). Regardless of whether uncertainty in risk at a single site or variability in risk across sites was evaluated, the exposure scenario specified and the properties of the target contaminant had more influence than variance in site parameters on the resulting variance and magnitude of the risk estimate. In general, variance in risk was found to be greater for the relatively less degradable and more mobile of the chemicals studied (TCE and chlordane) than for benzene which is highly degradable and BAP which is very immobile in the subsurface.

  4. Re-cycling of remediated soil--evaluation of leaching tests as tools for characterization.

    PubMed

    Dalgren, Kristin Elgh; Düker, Anders; Arwidsson, Zandra; von Kronhelm, Thomas; van Hees, Patrick A W

    2011-02-01

    In Sweden, leaching tests with deionized water (D.W.) are utilized in risk assessment of materials entering landfills, but implementation of these results to evaluate the risk of spreading of pollutants in the environment is difficult. One problem is that most leaching procedures only consider heavy metals release, whereas organic pollutants are left out. The aim of the present study was to assess the possible pollutant mitigation in four remediated soils, three with heavy metals and one with polycyclic aromatic hydrocarbons (PAH) contamination. The mitigation was evaluated by standardized batch and column leaching tests utilizing three different leaching solutions: D.W., a weak ionic solution (0.001 M CaCl(2)) and an artificially made soil water (ASW). In general, batch leaching tests implied larger contaminant removal than column leaching test, possibly due to the more rough treatment of the soil particles, and guidelines would at times be exceeded by the batch leaching test but not by column leaching tests. Utilization of CaCl(2) was found to release less heavy metal than D.W., whereas the metals mobilized by ASW were removed from solution by the filtration of soil leachates. Low molecular weight PAH was most efficiently mobilized by CaCl(2), while D.W. worked better for high molecular weight PAH. Despite very low initial PAH-concentrations, tap- and groundwater criteria were exceeded by all leaching solutions.

  5. Natural attenuation processes for remediation of arsenic contaminated soils and groundwater.

    PubMed

    Wang, Suiling; Mulligan, Catherine N

    2006-12-01

    Arsenic (As) contamination presents a hazard in many countries. Natural attenuation (NA) of As-contaminated soils and groundwater may be a cost-effective in situ remedial option. It relies on the site intrinsic assimilative capacity and allows in-place cleanup. Sorption to solid phases is the principal mechanism immobilizing As in soils and removing it from groundwater. Hydroxides of iron, aluminum and manganese, clay and sulfide minerals, and natural organic matter are commonly associated with soils and aquifer sediments, and have been shown to be significant As adsorbents. The extent of sorption is influenced by As speciation and the site geochemical conditions such as pH, redox potential, and the co-occurring ions. Microbial activity may catalyze the transformation of As species, or mediate redox reactions thus influencing As mobility. Plants that are capable of hyperaccumulating As may translocate As from contaminated soils and groundwater to their tissues, providing the basis for phytoremediation. However, NA is subject to hydrological changes and may take substantial periods of time, thus requiring long-term monitoring. The current understanding of As NA processes remains limited. Sufficient site characterization is critical to the success of NA. Further research is required to develop conceptual and mathematical models to predict the fate and transport of As and to evaluate the site NA capacity. Engineering enhanced NA using environmentally benign products may be an effective alternative.

  6. ACTIVE SOIL DEPRESSURIZATION (ASD) DEMONSTRATION IN A LARGE BUILDING

    EPA Science Inventory

    The report gives results of an evaluation of the feasibility of implementing radon resistant construction techniques -- especially active soil depressurization (ASD) -- in new large buildings in Florida. Indoor radon concentrations and radon entry were monitored in a finished bui...

  7. Sorption of priority pollutants to biochars and activated carbons for application to soil and sediment remediation

    NASA Astrophysics Data System (ADS)

    Beckingham, B.; Gomez-Eyles, J. L.; Kwon, S.; Riedel, G.; Gilmour, C.; Ghosh, U.

    2012-04-01

    The effectiveness of different biochars in comparison to 2 commercially available activated carbons (ACs) to sorb polychlorinated biphenyls (PCBs) and mercury (Hg) was assessed, with the aim of identifying promising materials for application to soil and sediment remediation and elucidating material properties that may enhance pollutant binding potential. Biochars studied were produced from pine dust, peanut hull, barley straw, and acai pit in addition to steam-activated biochars made from poultry litter (chicken and turkey). Aqueous concentrations of PCBs were measured using a polyoxymethylene passive sampling technique allowing a very low environmentally-relevant concentration range to be examined. Mercury pH-edge isotherms were conducted at relatively high concentrations in a wide pH range (pH 3-11). Sorption of Hg at low concentrations was also performed with ACs and two other biochars made from a marsh reed and a hard wood. Organic contaminant isotherms were analyzed by the Freundlich model, and Freundlich sorption coefficients (KFr) were normalized to a single concentration to allow comparison among materials (i.e. Kd). Values of Kd were related to the sorbent surface area, with sorption being greater for ACs than activated biochars, followed by unactivated biochars. ACs also had higher carbon content (80-90%) than biochars (22 - 77%). This sorption trend would thus be expected for adsorption of hydrophobic compounds to black carbon surfaces. In contrast, at high concentration all biochars removed more Hg from solution than ACs. Steam-activated poultry litter biochars showed the best performance, with consistent removal of >99.7% Hg over the entire pH range. The relatively high sulfur and phosphate content of these materials likely contribute to this enhanced Hg sorption. Also, owing to their lower pyrolysis temperatures relative to ACs, biochars are reported to have a greater surface group functionality which can enhance cation sorption. The importance of

  8. Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite.

    PubMed

    Malandrino, Mery; Abollino, Ornella; Buoso, Sandro; Giacomino, Agnese; La Gioia, Carmela; Mentasti, Edoardo

    2011-01-01

    We evaluated the distribution of 15 metal ions, namely Al, Cd, Cu, Cr, Fe, La, Mn, Ni, Pb, Sc, Ti, V, Y, Zn and Zr, in the soil of a contaminated site in Piedmont (Italy). This area was found to be heavily contaminated with Cu, Cr and Ni. The availability of these metal ions was studied using Tessier's sequential extraction procedure: the fraction of mobile species, which potentially is the most harmful for the environment, was much higher than that normally present in unpolluted soils. This soil was hence used to evaluate the effectiveness of treatment with vermiculite to reduce the availability of the pollutants to two plants, Lactuca sativa and Spinacia oleracea, by pot experiments. The results indicated that the addition of vermiculite significantly reduces the uptake of metal pollutants by plants, confirming the possibility of using this clay in amendment treatments of metal-contaminated soils. The effect of plant growth on metal fractionation in soils was investigated. Finally, the sum of the metal percentages extracted into the first two fractions of Tessier's protocol was found to be suitable in predicting the phytoavailability of most of the pollutants present in the investigated soil.

  9. The development and testing of technologies for the remediation of mercury-contaminated soils, Task 7.52. Topical report, December 1992--December 1993

    SciTech Connect

    Stepan, D.J.; Fraley, R.H.; Charlton, D.S.

    1994-02-01

    The release of elemental mercury into the environment from manometers that are used in the measurement of natural gas flow through pipelines has created a potentially serious problem for the gas industry. Regulations, particularly the Land Disposal Restrictions (LDR), have had a major impact on gas companies dealing with mercury-contaminated soils. After the May 8, 1993, LDR deadline extension, gas companies were required to treat mercury-contaminated soils by designated methods to specified levels prior to disposal in landfills. In addition, gas companies must comply with various state regulations that are often more stringent than the LDR. The gas industry is concerned that the LDRs do not allow enough viable options for dealing with their mercury-related problems. The US Environmental Protection Agency has specified the Best Demonstrated Available Technology (BDAT) as thermal roasting or retorting. However, the Agency recognizes that treatment of certain wastes to the LDR standards may not always be achievable and that the BDAT used to set the standard may be inappropriate. Therefore, a Treatability Variance Process for remedial actions was established (40 Code of Federal Regulations 268.44) for the evaluation of alternative remedial technologies. This report presents evaluations of demonstrations for three different remedial technologies: a pilot-scale portable thermal treatment process, a pilot-scale physical separation process in conjunction with chemical leaching, and a bench-scale chemical leaching process.

  10. Sampling errors associated with soil composites used to estimate mean Ra-226 concentrations at an UMTRA remedial-action site

    SciTech Connect

    Gilbert, R.O.; Baker, K.R.; Nelson, R.A.; Miller, R.H.; Miller, M.L.

    1987-07-01

    The decision whether to take additional remedial action (removal of soil) from regions contaminated by uranium mill tailings involves collecting 20 plugs of soil from each 10-m by 10-m plot in the region and analyzing a 500-g portion of the mixed soil for /sup 226/Ra. A soil sampling study was conducted in the windblown mill-tailings flood plain area at Shiprock, New Mexico, to evaluate whether reducing the number of soil plugs to 9 would have any appreciable impact on remedial-action decisions. The results of the Shiprock study are described and used in this paper to develop a simple model of the standard deviation of /sup 226/Ra measurements on composite samples formed from 21 or fewer plugs. This model is used to predict as a function of the number of soil plugs per composite, the percent accuracy with which the mean /sup 226/Ra concentration in surface soil can be estimated, and the probability of making incorrect remedial action decisions on the basis of statistical tests. 8 refs., 15 figs., 9 tabs.

  11. Sorption interactions of heavy metals with biochar in soil remediation studies

    NASA Astrophysics Data System (ADS)

    Fristak, Vladimir; Friesl-Hanl, Wolfgang; Wawra, Anna; Soja, Gerhard

    2015-04-01

    The search for new materials in soil remediation applications has led to new conversion technologies such as carbonization and pyrolysis. Biochar represents the pyrolytic product of different biomass input materials processed at 350-1000°C and anoxic conditions. The pyrolysis temperature and feedstock have a considerable influence on the quality of the charred product and also its main physico-chemical properties. Biochar as porous material with large specific surface and C-stability is utilized in various environmental and agricultural technologies. Carbon sequestration, increase of soil water-holding capacity and pH as well as sorption of different xenobiotics present only a fraction of the multitude of biochar application possibilities. Heavy metals as potential sources of ecotoxicological risks are characterized by their non-degradability and the potential transfer into the food chain. Carbonaceous materials have been used for a long time as sorbents for heavy metals and organic contaminants in soil and water technologies. The similarity of biochar with activated carbon predetermines this material as remediation tool which plays an important role in heavy metal immobilization and retention with a parallel reduction in the risk of ground water and food crop contamination. In all this processes the element-specific sorption behaviour of biochar creates new conditions for pollutant binding. Sorption interaction and separation of contaminants from soil solution or waste effluent can be affected by wide-ranging parameters. In detail, our study was based on batch-sorption comparisons of two biochars produced from wood chips and green waste residues. We observed that sorption efficiency of biochar for model bivalent heavy metals (Cd, Zn, Cu) can be influenced by equilibrium parameters such as pH, contact time, initial concentration of metal in reaction solutions, presence of surfactants and chemical modification by acid hydrolysis, esterification and methylation. The

  12. Demonstration test and evaluation of ultraviolet/ultraviolet catalyzed peroxide oxidation for groundwater remediation at Oak Ridge K-25 Site

    SciTech Connect

    1994-12-31

    In the UItraviolet/Ultraviolet Catalyzed Groundwater Remediation program, W.J. Schafer Associates, Inc. (WJSA) demonstrated, tested and evaluated a new ultraviolet (UV) lamp integrated with an existing commercial technology employing UV catalyzed peroxide oxidation to destroy organics in groundwater at an Oak Ridge K-25 site. The existing commercial technology is the perox-pure{trademark} process of Peroxidation Systems Incorporated (PSI) that employs standard UV lamp technology to catalyze H{sub 2}O{sub 2} into OH radicals, which attack many organic molecules. In comparison to classical technologies for remediation of groundwater contaminated with organics, the perox-pure{trademark} process not only is cost effective but also reduces contaminants to harmless by-products instead of transferring the contaminants from one medium to another (such as in activated carbon or air stripping). Although the perox-pure{trademark} process is cost effective against many organics, it is not effective for some organic contaminants of interest to DOE such as TCA, which has the highest concentration of the organics at the K-25 test site. Contaminants such as TCA are treated more readily by direct photolysis using short wavelength UV light. WJSA has been developing a unique UV lamp which is very efficient in the short UV wavelength region. Consequently, combining this UV lamp with the perox-pure{trademark} process results in a means for treating essentially all organic contaminants. In the program reported here, the new UV lamp lifetime was improved and the lamp integrated into a PSI demonstration trailer. Even though this UV lamp operated at less than optimum power and UV efficiency, the destruction rate for the TCA was more than double that of the commercial unit. An optimized UV lamp may double again the destruction rate; i.e., a factor of four greater than the commercial system.

  13. Solid/solution Cu fractionations/speciation of a Cu contaminated soil after pilot-scale electrokinetic remediation and their relationships with soil microbial and enzyme activities.

    PubMed

    Wang, Quan-Ying; Zhou, Dong-Mei; Cang, Long; Li, Lian-Zhen; Wang, Peng

    2009-01-01

    The aim of this study was to investigate the detailed metal speciation/fractionations of a Cu contaminated soil before and after electrokinetic remediation as well as their relationships with the soil microbial and enzyme activities. Significant changes in the exchangeable and adsorbed-Cu fractionations occurred after electrokinetic treatment, while labile soil Cu in the solution had a tendency to decrease from the anode to the cathode, and the soil free Cu(2+) ions were mainly accumulated in the sections close to the cathode. The results of regression analyses revealed that both the soil Cu speciation in solution phase and the Cu fractionations in so