Sample records for soil sample analysis

  1. Soil sampling kit and a method of sampling therewith

    DOEpatents

    Thompson, Cyril V.

    1991-01-01

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allow an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds.

  2. Soil sampling kit and a method of sampling therewith

    DOEpatents

    Thompson, C.V.

    1991-02-05

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allows an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds. 11 figures.

  3. REPRESENTATIVE SAMPLING AND ANALYSIS OF HETEROGENEOUS SOILS

    EPA Science Inventory

    Standard sampling and analysis methods for hazardous substances in contaminated soils currently are available and routinely employed. Standard methods inherently assume a homogeneous soil matrix and contaminant distribution; therefore only small sample quantities typically are p...

  4. Soil forensics: How far can soil clay analysis distinguish between soil vestiges?

    PubMed

    Corrêa, R S; Melo, V F; Abreu, G G F; Sousa, M H; Chaker, J A; Gomes, J A

    2018-03-01

    Soil traces are useful as forensic evidences because they frequently adhere to individuals and objects associated with crimes and can place or discard a suspect at/from a crime scene. Soil is a mixture of organic and inorganic components and among them soil clay contains signatures that make it reliable as forensic evidence. In this study, we hypothesized that soils can be forensically distinguished through the analysis of their clay fraction alone, and that samples of the same soil type can be consistently distinguished according to the distance they were collected from each other. To test these hypotheses 16 Oxisol samples were collected at distances of between 2m and 1.000m, and 16 Inceptisol samples were collected at distances of between 2m and 300m from each other. Clay fractions were extracted from soil samples and analyzed for hyperspectral color reflectance (HSI), X-ray diffraction crystallographic (XRD), and for contents of iron oxides, kaolinite and gibbsite. The dataset was submitted to multivariate analysis and results were from 65% to 100% effective to distinguish between samples from the two soil types. Both soil types could be consistently distinguished for forensic purposes according to the distance that samples were collected from each other: 1000m for Oxisol and 10m for Inceptisol. Clay color and XRD analysis were the most effective techniques to distinguish clay samples, and Inceptisol samples were more easily distinguished than Oxisol samples. Soil forensics seems a promising field for soil scientists as soil clay can be useful as forensic evidence by using routine analytical techniques from soil science. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  5. POLYBROMINATED DIPHENYL ETHERS IN US SOILS

    EPA Science Inventory

    Chemical analysis of thirty-three soil samples from 15 US states reveals Polybrominated Diphenyl Ethers (PBDEs), in every sample.PBDE concentrations rangefrom 0.09 to 1200 parts per billion by mass. These data are the first analysis of soil concentrations of PBDEs in soils from a...

  6. Advanced multivariate analysis to assess remediation of hydrocarbons in soils.

    PubMed

    Lin, Deborah S; Taylor, Peter; Tibbett, Mark

    2014-10-01

    Accurate monitoring of degradation levels in soils is essential in order to understand and achieve complete degradation of petroleum hydrocarbons in contaminated soils. We aimed to develop the use of multivariate methods for the monitoring of biodegradation of diesel in soils and to determine if diesel contaminated soils could be remediated to a chemical composition similar to that of an uncontaminated soil. An incubation experiment was set up with three contrasting soil types. Each soil was exposed to diesel at varying stages of degradation and then analysed for key hydrocarbons throughout 161 days of incubation. Hydrocarbon distributions were analysed by Principal Coordinate Analysis and similar samples grouped by cluster analysis. Variation and differences between samples were determined using permutational multivariate analysis of variance. It was found that all soils followed trajectories approaching the chemical composition of the unpolluted soil. Some contaminated soils were no longer significantly different to that of uncontaminated soil after 161 days of incubation. The use of cluster analysis allows the assignment of a percentage chemical similarity of a diesel contaminated soil to an uncontaminated soil sample. This will aid in the monitoring of hydrocarbon contaminated sites and the establishment of potential endpoints for successful remediation.

  7. Soil Gas Sample Handling: Evaluation of Water Removal and Sample Ganging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritz, Brad G.; Abrecht, David G.; Hayes, James C.

    2016-10-31

    Soil gas sampling is currently conducted in support of Nuclear Test Ban treaty verification. Soil gas samples are collected and analyzed for isotopes of interest. Some issues that can impact sampling and analysis of these samples are excess moisture and sample processing time. Here we discuss three potential improvements to the current sampling protocol; a desiccant for water removal, use of molecular sieve to remove CO 2 from the sample during collection, and a ganging manifold to allow composite analysis of multiple samples.

  8. Wavelet-based image analysis system for soil texture analysis

    NASA Astrophysics Data System (ADS)

    Sun, Yun; Long, Zhiling; Jang, Ping-Rey; Plodinec, M. John

    2003-05-01

    Soil texture is defined as the relative proportion of clay, silt and sand found in a given soil sample. It is an important physical property of soil that affects such phenomena as plant growth and agricultural fertility. Traditional methods used to determine soil texture are either time consuming (hydrometer), or subjective and experience-demanding (field tactile evaluation). Considering that textural patterns observed at soil surfaces are uniquely associated with soil textures, we propose an innovative approach to soil texture analysis, in which wavelet frames-based features representing texture contents of soil images are extracted and categorized by applying a maximum likelihood criterion. The soil texture analysis system has been tested successfully with an accuracy of 91% in classifying soil samples into one of three general categories of soil textures. In comparison with the common methods, this wavelet-based image analysis approach is convenient, efficient, fast, and objective.

  9. CO2 Radiocarbon Analysis to Quantify Organic Contaminant Degradation, MNA, and Engineered Remediation Approaches

    DTIC Science & Technology

    2014-12-18

    carbon backbone). This may be analytically relevant where soil gas is sampled under anaerobic conditions. However, at the soil:air interface, methane is...of the ambient CO2 on-site coming from the fossil end-member (i.e. the contaminant). Sampling , processing and analysis of soil gas 14CO2 and 14CH4...gasoline service station having fuel-contaminated soil and groundwater. The SVE system ran for ~3 months prior to sampling . Soil gas and groundwater

  10. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review.

    PubMed

    Hou, Deyi; O'Connor, David; Nathanail, Paul; Tian, Li; Ma, Yan

    2017-12-01

    Heavy metal soil contamination is associated with potential toxicity to humans or ecotoxicity. Scholars have increasingly used a combination of geographical information science (GIS) with geostatistical and multivariate statistical analysis techniques to examine the spatial distribution of heavy metals in soils at a regional scale. A review of such studies showed that most soil sampling programs were based on grid patterns and composite sampling methodologies. Many programs intended to characterize various soil types and land use types. The most often used sampling depth intervals were 0-0.10 m, or 0-0.20 m, below surface; and the sampling densities used ranged from 0.0004 to 6.1 samples per km 2 , with a median of 0.4 samples per km 2 . The most widely used spatial interpolators were inverse distance weighted interpolation and ordinary kriging; and the most often used multivariate statistical analysis techniques were principal component analysis and cluster analysis. The review also identified several determining and correlating factors in heavy metal distribution in soils, including soil type, soil pH, soil organic matter, land use type, Fe, Al, and heavy metal concentrations. The major natural and anthropogenic sources of heavy metals were found to derive from lithogenic origin, roadway and transportation, atmospheric deposition, wastewater and runoff from industrial and mining facilities, fertilizer application, livestock manure, and sewage sludge. This review argues that the full potential of integrated GIS and multivariate statistical analysis for assessing heavy metal distribution in soils on a regional scale has not yet been fully realized. It is proposed that future research be conducted to map multivariate results in GIS to pinpoint specific anthropogenic sources, to analyze temporal trends in addition to spatial patterns, to optimize modeling parameters, and to expand the use of different multivariate analysis tools beyond principal component analysis (PCA) and cluster analysis (CA). Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. STATISTICAL SAMPLING AND DATA ANALYSIS

    EPA Science Inventory

    Research is being conducted to develop approaches to improve soil and sediment sampling techniques, measurement design and geostatistics, and data analysis via chemometric, environmetric, and robust statistical methods. Improvements in sampling contaminated soil and other hetero...

  12. The use of Vacutainer tubes for collection of soil samples for helium analysis

    USGS Publications Warehouse

    Hinkle, Margaret E.; Kilburn, James E.

    1979-01-01

    Measurements of the helium concentration of soil samples collected and stored in Vacutainer-brand evacuated glass tubes show that Vacutainers are reliable containers for soil collection. Within the limits of reproducibility, helium content of soils appears to be independent of variations in soil temperature, barometric pressure, and quantity of soil moisture present in the sample.

  13. A soil sampling intercomparison exercise for the ALMERA network.

    PubMed

    Belli, Maria; de Zorzi, Paolo; Sansone, Umberto; Shakhashiro, Abduhlghani; Gondin da Fonseca, Adelaide; Trinkl, Alexander; Benesch, Thomas

    2009-11-01

    Soil sampling and analysis for radionuclides after an accidental or routine release is a key factor for the dose calculation to members of the public, and for the establishment of possible countermeasures. The IAEA organized for selected laboratories of the ALMERA (Analytical Laboratories for the Measurement of Environmental Radioactivity) network a Soil Sampling Intercomparison Exercise (IAEA/SIE/01) with the objective of comparing soil sampling procedures used by different laboratories. The ALMERA network is a world-wide network of analytical laboratories located in IAEA member states capable of providing reliable and timely analysis of environmental samples in the event of an accidental or intentional release of radioactivity. Ten ALMERA laboratories were selected to participate in the sampling exercise. The soil sampling intercomparison exercise took place in November 2005 in an agricultural area qualified as a "reference site", aimed at assessing the uncertainties associated with soil sampling in agricultural, semi-natural, urban and contaminated environments and suitable for performing sampling intercomparison. In this paper, the laboratories sampling performance were evaluated.

  14. BOREAS TE-2 NSA Soil Lab Data

    NASA Technical Reports Server (NTRS)

    Veldhuis, Hugo; Hall, Forrest G. (Editor); Knapp, David E. (Editor)

    2000-01-01

    This data set contains the major soil properties of soil samples collected in 1994 at the tower flux sites in the Northern Study Area (NSA). The soil samples were collected by Hugo Veldhuis and his staff from the University of Manitoba. The mineral soil samples were largely analyzed by Barry Goetz, under the supervision of Dr. Harold Rostad at the University of Saskatchewan. The organic soil samples were largely analyzed by Peter Haluschak, under the supervision of Hugo Veldhuis at the Centre for Land and Biological Resources Research in Winnipeg, Manitoba. During the course of field investigation and mapping, selected surface and subsurface soil samples were collected for laboratory analysis. These samples were used as benchmark references for specific soil attributes in general soil characterization. Detailed soil sampling, description, and laboratory analysis were performed on selected modal soils to provide examples of common soil physical and chemical characteristics in the study area. The soil properties that were determined include soil horizon; dry soil color; pH; bulk density; total, organic, and inorganic carbon; electric conductivity; cation exchange capacity; exchangeable sodium, potassium, calcium, magnesium, and hydrogen; water content at 0.01, 0.033, and 1.5 MPascals; nitrogen; phosphorus: particle size distribution; texture; pH of the mineral soil and of the organic soil; extractable acid; and sulfur. These data are stored in ASCII text files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  15. PIXE Analysis of Aerosol and Soil Samples Collected in the Adirondack Mountains

    NASA Astrophysics Data System (ADS)

    Yoskowitz, Joshua; Ali, Salina; Nadareski, Benjamin; Labrake, Scott; Vineyard, Michael

    2014-09-01

    We have performed an elemental analysis of aerosol and soil samples collected at Piseco Lake in Upstate New York using proton induced X-ray emission spectroscopy (PIXE). This work is part of a systematic study of airborne pollution in the Adirondack Mountains. Of particular interest is the sulfur content that can contribute to acid rain, a well-documented problem in the Adirondacks. We used a nine-stage cascade impactor to collect the aerosol samples near Piseco Lake and distribute the particulate matter onto Kapton foils by particle size. The soil samples were also collected at Piseco Lake and pressed into cylindrical pellets for experimentation. PIXE analysis of the aerosol and soil samples were performed with 2.2-MeV proton beams from the 1.1-MV Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. There are higher concentrations of sulfur at smaller particle sizes (0.25-1 μm), suggesting that it could be suspended in the air for days and originate from sources very far away. Other elements with significant concentrations peak at larger particle sizes (1-4 μm) and are found in the soil samples, suggesting that these elements could originate in the soil. The PIXE analysis will be described and the resulting data will be presented.

  16. The analysis of soil cores polluted with certain metals using the Box-Cox transformation.

    PubMed

    Meloun, Milan; Sánka, Milan; Nemec, Pavel; Krítková, Sona; Kupka, Karel

    2005-09-01

    To define the soil properties for a given area or country including the level of pollution, soil survey and inventory programs are essential tools. Soil data transformations enable the expression of the original data on a new scale, more suitable for data analysis. In the computer-aided interactive analysis of large data files of soil characteristics containing outliers, the diagnostic plots of the exploratory data analysis (EDA) often find that the sample distribution is systematically skewed or reject sample homogeneity. Under such circumstances the original data should be transformed. The Box-Cox transformation improves sample symmetry and stabilizes spread. The logarithmic plot of a profile likelihood function enables the optimum transformation parameter to be found. Here, a proposed procedure for data transformation in univariate data analysis is illustrated on a determination of cadmium content in the plough zone of agricultural soils. A typical soil pollution survey concerns the determination of the elements Be (16 544 values available), Cd (40 317 values), Co (22 176 values), Cr (40 318 values), Hg (32 344 values), Ni (34 989 values), Pb (40 344 values), V (20 373 values) and Zn (36 123 values) in large samples.

  17. Proton-Induced X-Ray Emission Analysis of Crematorium Emissions

    NASA Astrophysics Data System (ADS)

    Ali, Salina; Nadareski, Benjamin; Yoskowitz, Joshua; Labrake, Scott; Vineyard, Michael

    2014-09-01

    There has been considerable debate in recent years about possible mercury emissions from crematoria due to amalgam tooth restorations. We have performed a proton-induced X-ray emission (PIXE) analysis of aerosol and soil samples taken near the Vale Cemetery Crematorium in Schenectady, NY, to address this concern. The aerosol samples were collected on the roof of the crematorium using a nine-stage, cascade impactor that separates the particulate matter by aerodynamic diameter and deposits it onto thin Kapton foils. The soil samples were collected at several different distances from the crematorium and compressed into pellets with a hydraulic press. The Kapton foils containing the aerosol samples and the soil pellets were bombarded with 2.2-MeV protons from the 1.1-MV tandem Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. We measured significant concentrations of sulfur, phosphorus, potassium, calcium, and iron, but essentially no mercury in the aerosol samples. The lower limit of detection for airborne mercury in this experiment was approximately 0.2 ng / m3. The PIXE analysis of the soil samples showed the presence of elements commonly found in soil (Si, K, Ca, Ti, Mn, Fe), but no trace of mercury. There has been considerable debate in recent years about possible mercury emissions from crematoria due to amalgam tooth restorations. We have performed a proton-induced X-ray emission (PIXE) analysis of aerosol and soil samples taken near the Vale Cemetery Crematorium in Schenectady, NY, to address this concern. The aerosol samples were collected on the roof of the crematorium using a nine-stage, cascade impactor that separates the particulate matter by aerodynamic diameter and deposits it onto thin Kapton foils. The soil samples were collected at several different distances from the crematorium and compressed into pellets with a hydraulic press. The Kapton foils containing the aerosol samples and the soil pellets were bombarded with 2.2-MeV protons from the 1.1-MV tandem Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. We measured significant concentrations of sulfur, phosphorus, potassium, calcium, and iron, but essentially no mercury in the aerosol samples. The lower limit of detection for airborne mercury in this experiment was approximately 0.2 ng / m3. The PIXE analysis of the soil samples showed the presence of elements commonly found in soil (Si, K, Ca, Ti, Mn, Fe), but no trace of mercury. Union College Department of Physics and Astronomy.

  18. Evaluation of soil quality indicators in paddy soils under different crop rotation systems

    NASA Astrophysics Data System (ADS)

    Nadimi-Goki, Mandana; Bini, Claudio; Haefele, Stephan; Abooei, Monireh

    2013-04-01

    Evaluation of soil quality indicators in paddy soils under different crop rotation systems Soil quality, by definition, reflects the capacity to sustain plant and animal productivity, maintain or enhance water and air quality, and promote plant and animal health. Soil quality assessment is an essential issue in soil management for agriculture and natural resource protection. This study was conducted to detect the effects of four crop rotation systems (rice-rice-rice, soya-rice-rice, fallow-rice and pea-soya-rice) on soil quality indicators (soil moisture, porosity, bulk density, water-filled pore space, pH, extractable P, CEC, OC, OM, microbial respiration, active carbon) in paddy soils of Verona area, Northern Italy. Four adjacent plots which managed almost similarly, over five years were selected. Surface soil samples were collected from each four rotation systems in four times, during growing season. Each soil sample was a composite of sub-samples taken from 3 points within 350 m2 of agricultural land. A total of 48 samples were air-dried and passed through 2mm sieve, for some chemical, biological, and physical measurements. Statistical analysis was done using SPSS. Statistical results revealed that frequency distribution of most data was normal. The lowest CV% was related to pH. Analysis of variance (ANOVA) and comparison test showed that there are significant differences in soil quality indicators among crop rotation systems and sampling times. Results of multivariable regression analysis revealed that soil respiration had positively correlation coefficient with soil organic matter, soil moisture and cation exchange capacity. Overall results indicated that the rice rotation with legumes such as bean and soybean improved soil quality over a long time in comparison to rice-fallow rotation, and this is reflected in rice yield. Keywords: Soil quality, Crop Rotation System, Paddy Soils, Italy

  19. FIELD-SCALE STUDIES: HOW DOES SOIL SAMPLE PRETREATMENT AFFECT REPRESENTATIVENESS ? (ABSTRACT)

    EPA Science Inventory

    Samples from field-scale studies are very heterogeneous and can contain large soil and rock particles. Oversize materials are often removed before chemical analysis of the soil samples because it is not practical to include these materials. Is the extracted sample representativ...

  20. FIELD-SCALE STUDIES: HOW DOES SOIL SAMPLE PRETREATMENT AFFECT REPRESENTATIVENESS?

    EPA Science Inventory

    Samples from field-scale studies are very heterogeneous and can contain large soil and rock particles. Oversize materials are often removed before chemical analysis of the soil samples because it is not practical to include these materials. Is the extracted sample representativ...

  1. The effects of the physical and chemical properties of soils on the spectral reflectance of soils

    NASA Technical Reports Server (NTRS)

    Montgomery, O. L.; Baumgardner, M. F.

    1974-01-01

    The effects of organic matter, free iron oxides, texture, moisture content, and cation exchange capacity on the spectral reflectance of soils were investigated along with techniques for differentiating soil orders by computer analysis of multispectral data. By collecting soil samples of benchmark soils from the different climatic regions within the United States and using the extended wavelength field spectroradiometer to obtain reflectance values and curves for each sample, average curves were constructed for each soil order. Results indicate that multispectral analysis may be a valuable tool for delineating and quantifying differences between soils.

  2. A guide to soil samplng and analysis on the National Forests of the Inland Northwest United States

    Treesearch

    Deb Page-Dumroese; Al Harvey; Marty Jurgensen

    1995-01-01

    This guide details soil collection methods, sample analysis, and data translation. It outlines what field soil scientists need to make accurate interpretations of site information. Included are instructions for sampling typical Andisols found on National Forests of the Inland Northwest United States.

  3. Rapid analysis of 2,4-D in soil samples by modified Soxhlet apparatus using HPLC with UV detection.

    PubMed

    Kashyap, Sanjay M; Pandya, Girish H; Kondawar, Vivek K; Gabhane, Sanjay S

    2005-02-01

    The 2,4-dichlorophenoxy acetic acid (2,4-D) is used as a systemic herbicide to control broadleaf weeds in wheat, corn, range land/pasture land, sorghum, and barley. In this study, a fast and efficient method is developed by selection of modified extraction apparatus and high-performance liquid chromatography (HPLC)-UV conditions for the determination of 2,4-D in soil samples. The method is applied to the study of soil samples collected from the agricultural field. The herbicide is extracted from soil samples by acetonitrile in a modified Soxhlet apparatus. The advantages of the apparatus are that it uses small volume of organic solvent, reduced time of extraction, and better recovery of the analyte. The extract is filtered using a very fine microfiber paper. The total extract is concentrated in a rotatory evaporator, dried under ultrahigh pure N2, and finally reconstituted in 1 mL of acetonitrile. HPLC-UV at 228 nm is used for analysis. The herbicide is identified and quantitated using the HPLC system. The method is validated by the analysis of spiked soil samples. Recoveries obtained varied from 85% to 100% for spiked soil samples. The limit of quantitation (LOQ) and the limit of detection (LOD) are 0.010 and 0.005 parts per million (ppm), respectively, for spiked soil samples. The LOQ and LOD are 0.006 and 0.003 ppm for unspiked soil samples. The measured concentrations of 2,4-D in spiked soil samples are between 0.010 and 0.020 ppm with an average of 0.016 +/- 0.003 ppm. For unspiked soil samples it is between 0.006 ppm and 0.012 ppm with an average of 0.009 +/- 0.002 ppm. The measured concentrations of 2,4-D in soil samples are generally low and do not exceed the regulatory agencies guidelines.

  4. Soil Carbon Variability and Change Detection in the Forest Inventory Analysis Database of the United States

    NASA Astrophysics Data System (ADS)

    Wu, A. M.; Nater, E. A.; Dalzell, B. J.; Perry, C. H.

    2014-12-01

    The USDA Forest Service's Forest Inventory Analysis (FIA) program is a national effort assessing current forest resources to ensure sustainable management practices, to assist planning activities, and to report critical status and trends. For example, estimates of carbon stocks and stock change in FIA are reported as the official United States submission to the United Nations Framework Convention on Climate Change. While the main effort in FIA has been focused on aboveground biomass, soil is a critical component of this system. FIA sampled forest soils in the early 2000s and has remeasurement now underway. However, soil sampling is repeated on a 10-year interval (or longer), and it is uncertain what magnitude of changes in soil organic carbon (SOC) may be detectable with the current sampling protocol. We aim to identify the sensitivity and variability of SOC in the FIA database, and to determine the amount of SOC change that can be detected with the current sampling scheme. For this analysis, we attempt to answer the following questions: 1) What is the sensitivity (power) of SOC data in the current FIA database? 2) How does the minimum detectable change in forest SOC respond to changes in sampling intervals and/or sample point density? Soil samples in the FIA database represent 0-10 cm and 10-20 cm depth increments with a 10-year sampling interval. We are investigating the variability of SOC and its change over time for composite soil data in each FIA region (Pacific Northwest, Interior West, Northern, and Southern). To guide future sampling efforts, we are employing statistical power analysis to examine the minimum detectable change in SOC storage. We are also investigating the sensitivity of SOC storage changes under various scenarios of sample size and/or sample frequency. This research will inform the design of future FIA soil sampling schemes and improve the information available to international policy makers, university and industry partners, and the public.

  5. Analytical methods of the U.S. Geological Survey's New York District Water-Analysis Laboratory

    USGS Publications Warehouse

    Lawrence, Gregory B.; Lincoln, Tricia A.; Horan-Ross, Debra A.; Olson, Mark L.; Waldron, Laura A.

    1995-01-01

    The New York District of the U.S. Geological Survey (USGS) in Troy, N.Y., operates a water-analysis laboratory for USGS watershed-research projects in the Northeast that require analyses of precipitation and of dilute surface water and soil water for major ions; it also provides analyses of certain chemical constituents in soils and soil gas samples.This report presents the methods for chemical analyses of water samples, soil-water samples, and soil-gas samples collected in wateshed-research projects. The introduction describes the general materials and technicques for each method and explains the USGS quality-assurance program and data-management procedures; it also explains the use of cross reference to the three most commonly used methods manuals for analysis of dilute waters. The body of the report describes the analytical procedures for (1) solution analysis, (2) soil analysis, and (3) soil-gas analysis. The methods are presented in alphabetical order by constituent. The method for each constituent is preceded by (1) reference codes for pertinent sections of the three manuals mentioned above, (2) a list of the method's applications, and (3) a summary of the procedure. The methods section for each constitutent contains the following categories: instrumentation and equipment, sample preservation and storage, reagents and standards, analytical procedures, quality control, maintenance, interferences, safety considerations, and references. Sufficient information is presented for each method to allow the resulting data to be appropriately used in environmental investigations.

  6. Rapid and sensitive determination of tellurium in soil and plant samples by sector-field inductively coupled plasma mass spectrometry.

    PubMed

    Yang, Guosheng; Zheng, Jian; Tagami, Keiko; Uchida, Shigeo

    2013-11-15

    In this work, we report a rapid and highly sensitive analytical method for the determination of tellurium in soil and plant samples using sector field inductively coupled plasma mass spectrometry (SF-ICP-MS). Soil and plant samples were digested using Aqua regia. After appropriate dilution, Te in soil and plant samples was directly analyzed without any separation and preconcentration. This simple sample preparation approach avoided to a maximum extent any contamination and loss of Te prior to the analysis. The developed analytical method was validated by the analysis of soil/sediment and plant reference materials. Satisfactory detection limits of 0.17 ng g(-1) for soil and 0.02 ng g(-1) for plant samples were achieved, which meant that the developed method was applicable to studying the soil-to-plant transfer factor of Te. Our work represents for the first time that data on the soil-to-plant transfer factor of Te were obtained for Japanese samples which can be used for the estimation of internal radiation dose of radioactive tellurium due to the Fukushima Daiichi Nuclear Power Plant accident. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Rapid Measurement of Soil Carbon in Rice Paddy Field of Lombok Island Indonesia Using Near Infrared Technology

    NASA Astrophysics Data System (ADS)

    Kusumo, B. H.; Sukartono, S.; Bustan, B.

    2018-02-01

    Measuring soil organic carbon (C) using conventional analysis is tedious procedure, time consuming and expensive. It is needed simple procedure which is cheap and saves time. Near infrared technology offers rapid procedure as it works based on the soil spectral reflectance and without any chemicals. The aim of this research is to test whether this technology able to rapidly measure soil organic C in rice paddy field. Soil samples were collected from rice paddy field of Lombok Island Indonesia, and the coordinates of the samples were recorded. Parts of the samples were analysed using conventional analysis (Walkley and Black) and some other parts were scanned using near infrared spectroscopy (NIRS) for soil spectral collection. Partial Least Square Regression (PLSR) Models were developed using data of soil C analysed using conventional analysis and data from soil spectral reflectance. The models were moderately successful to measure soil C in rice paddy field of Lombok Island. This shows that the NIR technology can be further used to monitor the C change in rice paddy soil.

  8. Worldwide Organic Soil Carbon and Nitrogen Data (1986) (NDP-018)

    DOE Data Explorer

    Zinke, P. J. [Univ. of California, Berkeley, CA (United States); Stangenberger, A. G. [Univ. of California, Berkeley, CA (United States); Post, W. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Emanuel, W. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Olson, J. S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Millemann, R. E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, T. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    1986-01-01

    This data base was begun with the collection and analysis of soil samples from California. Additional data came from soil surveys of Italy, Greece, Iran, Thailand, Vietnam, various tropical Amazonian areas, and U.S. forests and from the soil-survey literature. The analyzed samples were collected at uniform soil-depth increments and included bulk-density determinations. The data on each sample are soil profile number; soil profile carbon content; soil profile nitrogen content; sampling site latitude and longitude; site elevation; profile literature reference source; and soil profile codes for Holdridge life zone, Olson ecosystem type, and parent material. These data may be used to estimate the size of the soil organic carbon and nitrogen pools at equilibrium with natural soil-forming factors.

  9. Installation Restoration General Environmental Technology Development. Task 6. Materials Handling of Explosive Contaminated Soil and Sediment.

    DTIC Science & Technology

    1985-06-01

    of chemical analysis and sensitivity testing on material samples . At this 4 time, these samples must be packaged and...preparation at a rate of three samples per hour. One analyst doing both sample preparation and the HPLC analysis can run 16 samples in an 8-hour day. II... study , sensitivity testing was reviewed to enable recommendations for complete analysis of contaminated soils. Materials handling techniques,

  10. Hyperspectral analysis of clay minerals

    NASA Astrophysics Data System (ADS)

    Janaki Rama Suresh, G.; Sreenivas, K.; Sivasamy, R.

    2014-11-01

    A study was carried out by collecting soil samples from parts of Gwalior and Shivpuri district, Madhya Pradesh in order to assess the dominant clay mineral of these soils using hyperspectral data, as 0.4 to 2.5 μm spectral range provides abundant and unique information about many important earth-surface minerals. Understanding the spectral response along with the soil chemical properties can provide important clues for retrieval of mineralogical soil properties. The soil samples were collected based on stratified random sampling approach and dominant clay minerals were identified through XRD analysis. The absorption feature parameters like depth, width, area and asymmetry of the absorption peaks were derived from spectral profile of soil samples through DISPEC tool. The derived absorption feature parameters were used as inputs for modelling the dominant soil clay mineral present in the unknown samples using Random forest approach which resulted in kappa accuracy of 0.795. Besides, an attempt was made to classify the Hyperion data using Spectral Angle Mapper (SAM) algorithm with an overall accuracy of 68.43 %. Results showed that kaolinite was the dominant mineral present in the soils followed by montmorillonite in the study area.

  11. Combination of a Fast Cleanup Procedure and a DR-CALUX® Bioassay for Dioxin Surveillance in Taiwanese Soils

    PubMed Central

    Lin, Ding-Yan; Lee, Yi-Pin; Li, Chiu-Ping; Chi, Kai-Hsien; Liang, Bo-Wei P.; Liu, Wen-Yao; Wang, Chih-Cheng; Lin, Susana; Chen, Ting-Chien; Yeh, Kuei-Jyum C.; Hsu, Ping-Chi; Hsu, Yi-Chyun; Chao, How-Ran; Tsou, Tsui-Chun

    2014-01-01

    Our goal was to determine dioxin levels in 800 soil samples collected from Taiwan. An in vitro DR-CALUX® assay was carried out with the help of an automated Soxhlet system and fast cleanup column. The mean dioxin level of 800 soil samples was 36.0 pg-bioanalytical equivalents (BEQs)/g dry weight (d.w.). Soil dioxin-BEQs were higher in northern Taiwan (61.8 pg-BEQ/g d.w.) than in central, southern, and eastern Taiwan (22.2, 24.9, and 7.80 pg-BEQ/g d.w., respectively). Analysis of multiple linear regression models identified four major predictors of dioxin-BEQs including soil sampling location (β = 0.097, p < 0.001), land use (β = 0.065, p < 0.001), soil brightness (β = 0.170, p < 0.001), and soil moisture (β = 0.051, p = 0.020), with adjusted R2 = 0.947 (p < 0.001) (n = 662). An univariate logistic regression analysis with the cut-off point of 33.4 pg-BEQ/g d.w. showed significant odds ratios (ORs) for soil sampling location (OR = 2.43, p < 0.001), land use (OR = 1.47, p < 0.001), and soil brightness (OR = 2.83, p = 0.009). In conclusion, four variables, including soil sampling location, land use, soil brightness, and soil moisture, may be related to soil-dioxin contamination. Soil samples collected in northern Taiwan, and especially in Bade City, soils near industrial areas, and soils with darker color may contain higher dioxin-BEQ levels. PMID:24806195

  12. Application of Terahertz Radiation to Soil Measurements: Initial Results

    PubMed Central

    Dworak, Volker; Augustin, Sven; Gebbers, Robin

    2011-01-01

    Developing soil sensors with the possibility of continuous online measurement is a major challenge in soil science. Terahertz (THz) electromagnetic radiation may provide the opportunity for the measurement of organic material density, water content and other soil parameters at different soil depths. Penetration depth and information content is important for a functional soil sensor. Therefore, we present initial research on the analysis of absorption coefficients of four different soil samples by means of THz transmission measurements. An optimized soil sample holder to determine absorption coefficients was used. This setup improves data acquisition because interface reflections can be neglected. Frequencies of 340 GHz to 360 GHz and 1.627 THz to 2.523 THz provided information about an existing frequency dependency. The results demonstrate the potential of this THz approach for both soil analysis and imaging of buried objects. Therefore, the THz approach allows different soil samples to be distinguished according to their different absorption properties so that relations among soil parameters may be established in future. PMID:22163737

  13. Assessing NIR & MIR Spectral Analysis as a Method for Soil C Estimation Across a Network of Sampling Sites

    NASA Astrophysics Data System (ADS)

    Spencer, S.; Ogle, S.; Borch, T.; Rock, B.

    2008-12-01

    Monitoring soil C stocks is critical to assess the impact of future climate and land use change on carbon sinks and sources in agricultural lands. A benchmark network for soil carbon monitoring of stock changes is being designed for US agricultural lands with 3000-5000 sites anticipated and re-sampling on a 5- to10-year basis. Approximately 1000 sites would be sampled per year producing around 15,000 soil samples to be processed for total, organic, and inorganic carbon, as well as bulk density and nitrogen. Laboratory processing of soil samples is cost and time intensive, therefore we are testing the efficacy of using near-infrared (NIR) and mid-infrared (MIR) spectral methods for estimating soil carbon. As part of an initial implementation of national soil carbon monitoring, we collected over 1800 soil samples from 45 cropland sites in the mid-continental region of the U.S. Samples were processed using standard laboratory methods to determine the variables above. Carbon and nitrogen were determined by dry combustion and inorganic carbon was estimated with an acid-pressure test. 600 samples are being scanned using a bench- top NIR reflectance spectrometer (30 g of 2 mm oven-dried soil and 30 g of 8 mm air-dried soil) and 500 samples using a MIR Fourier-Transform Infrared Spectrometer (FTIR) with a DRIFT reflectance accessory (0.2 g oven-dried ground soil). Lab-measured carbon will be compared to spectrally-estimated carbon contents using Partial Least Squares (PLS) multivariate statistical approach. PLS attempts to develop a soil C predictive model that can then be used to estimate C in soil samples not lab-processed. The spectral analysis of soil samples either whole or partially processed can potentially save both funding resources and time to process samples. This is particularly relevant for the implementation of a national monitoring network for soil carbon. This poster will discuss our methods, initial results and potential for using NIR and MIR spectral approaches to either replace or augment traditional lab-based carbon analyses of soils.

  14. Diffuse Reflectance Spectroscopy for Total Carbon Analysis of Hawaiian Soils

    NASA Astrophysics Data System (ADS)

    McDowell, M. L.; Bruland, G. L.; Deenik, J. L.; Grunwald, S.; Uchida, R.

    2010-12-01

    Accurate assessment of total carbon (Ct) content is important for fertility and nutrient management of soils, as well as for carbon sequestration studies. The non-destructive analysis of soils by diffuse reflectance spectroscopy (DRS) is a potential supplement or alternative to the traditional time-consuming and costly combustion method of Ct analysis, especially in spatial or temporal studies where sample numbers are large. We investigate the use of the visible to near-infrared (VNIR) and mid-infrared (MIR) spectra of soils coupled with chemometric analysis to determine their Ct content. Our specific focus is on Hawaiian soils of agricultural importance. Though this technique has been introduced to the soil community, it has yet to be fully tested and used in practical applications for all soil types, and this is especially true for Hawaii. In short, DRS characterizes and differentiates materials based on the variation of the light reflected by a material at certain wavelengths. This spectrum is dependent on the material’s composition, structure, and physical state. Multivariate chemometric analysis unravels the information in a set of spectra that can help predict a property such as Ct. This study benefits from the remarkably diverse soils of Hawaii. Our sample set includes 216 soil samples from 145 pedons from the main Hawaiian Islands archived at the National Soil Survey Center in Lincoln, NE, along with more than 50 newly-collected samples from Kauai, Oahu, Molokai, and Maui. In total, over 90 series from 10 of the 12 soil orders are represented. The Ct values of these samples range from < 1% - 55%. We anticipate that the diverse nature of our sample set will ensure a model with applicability to a wide variety of soils, both in Hawaii and globally. We have measured the VNIR and MIR spectra of these samples and obtained their Ct values by dry combustion. Our initial analyses are conducted using only samples obtained from the Lincoln archive. In this preliminary case, we use Partial Least Squares (PLS) regression with cross validation to develop a prediction model for soils of unknown carbon content given only their spectral signature. We find R2 values of greater than 0.93 for the MIR spectra and 0.87 for the VNIR spectra, indicating a strong ability to correlate a soil’s spectrum with its Ct content. We build on these encouraging results by continuing chemometric analyses using the full data set, different data subsets, separate model calibration and validation groups, combined VNIR and MIR spectra, and exploring different data pretreatment options and variations to the PLS parameters.

  15. Effect of Drying on Heavy Metal Fraction Distribution in Rice Paddy Soil

    PubMed Central

    Qi, Yanbing; Huang, Biao; Darilek, Jeremy Landon

    2014-01-01

    An understanding of how redox conditions affect soil heavy metal fractions in rice paddies is important due to its implications for heavy metal mobility and plant uptake. Rice paddy soil samples routinely undergo oxidation prior to heavy metal analysis. Fraction distribution of Cu, Pb, Ni, and Cd from paddy soil with a wide pH range was investigated. Samples were both dried according to standard protocols and also preserved under anaerobic conditions through the sampling and analysis process and heavy metals were then sequentially extracted for the exchangeable and carbonate bound fraction (acid soluble fraction), iron and manganese oxide bound fraction (reducible fraction), organic bound fraction (oxidizable fraction), and residual fraction. Fractions were affected by redox conditions across all pH ranges. Drying decreased reducible fraction of all heavy metals. Curesidual fraction, Pboxidizable fraction, Cdresidual fraction, and Niresidual fraction increased by 25%, 33%, 35%, and >60%, respectively. Pbresidual fraction, Niacid soluble fraction, and Cdoxidizable fraction decreased 33%, 25%, and 15%, respectively. Drying paddy soil prior to heavy metal analysis overestimated Pb and underestimated Cu, Ni, and Cd. In future studies, samples should be stored after injecting N2 gas to maintain the redox potential of soil prior to heavy metal analysis, and investigate the correlation between heavy metal fraction distribution under field conditions and air-dried samples. PMID:24823670

  16. Hyperspectral imaging to investigate the distribution of organic matter and iron down the soil profile

    NASA Astrophysics Data System (ADS)

    Hobley, Eleanor; Kriegs, Stefanie; Steffens, Markus

    2017-04-01

    Obtaining reliable and accurate data regarding the spatial distribution of different soil components is difficult due to issues related with sampling scale and resolution on the one hand and laboratory analysis on the other. When investigating the chemical composition of soil, studies frequently limit themselves to two dimensional characterisations, e.g. spatial variability near the surface or depth distribution down the profile, but rarely combine both approaches due to limitations to sampling and analytical capacities. Furthermore, when assessing depth distributions, samples are taken according to horizon or depth increments, resulting in a mixed sample across the sampling depth. Whilst this facilitates mean content estimation per depth increment and therefore reduces analytical costs, the sample information content with regards to heterogeneity within the profile is lost. Hyperspectral imaging can overcome these sampling limitations, yielding high resolution spectral data of down the soil profile, greatly enhancing the information content of the samples. This can then be used to augment horizontal spatial characterisation of a site, yielding three dimensional information into the distribution of spectral characteristics across a site and down the profile. Soil spectral characteristics are associated with specific chemical components of soil, such as soil organic matter or iron contents. By correlating the content of these soil components with their spectral behaviour, high resolution multi-dimensional analysis of soil chemical composition can be obtained. Here we present a hyperspectral approach to the characterisation of soil organic matter and iron down different soil profiles, outlining advantages and issues associated with the methodology.

  17. Biocorrosive activity analysis of the oil pipeline soil in the Khanty-Mansiysk Autonomous Region of Ugra and the Krasnodar Territory of the Russian Federation

    NASA Astrophysics Data System (ADS)

    Chesnokova, M. G.; Shalay, V. V.; Kriga, A. S.

    2017-08-01

    The purpose of the study was to assess the biocorrosive activity of oil pipeline soil in the Khanty-Mansiysk Autonomous Region of Yugra and the Krasnodar Territory of the Russian Federation, due to the action of a complex of factors and analysis of sulfate-reducing and thionic bacteria content. The number of bacteria in the sulfur cycle (autotrophic thionic and sulfate-reducing bacteria), the total concentration of sulfur and iron in soil samples adjacent to the surface of underground pipelines, the specific electrical resistivity of the soil was determined. A criterion for the biocorrosive activity of the soil (CBA) was established. The study of the biocorrosive activity of the soil has established its features in the area of the oil pipeline construction in the compared territories. In the soil of the Krasnodar Territory pipeline, aggressive samples were recorded in 5.75% of cases, samples with moderate aggressiveness (49.43%), with weak soil aggressiveness (42.53% of cases), and samples with potential aggressiveness (2.30%). On the territory of the Khanty-Mansiysk Autonomous Region of Yugra, samples with weak soil aggressiveness prevailed (55.17% of cases), with moderate aggressiveness (34.5% of cases). When carrying out multiple regression analysis in the system of variables "factors of soil biocorrosive activity", informative data of modeling the indicator "the content of thiobacteria in soil" was established. The results of the research show the need for dynamic monitoring and the development of preventive measures to prevent biocorrosion.

  18. Assessment of groundwater and soil quality for agricultural purposes in Kopruoren basin, Kutahya, Turkey

    NASA Astrophysics Data System (ADS)

    Arslan, Sebnem

    2017-07-01

    This research evaluated the irrigation water and agricultural soil quality in the Kopruoren Basin by using hierarchical cluster analysis. Physico-chemical properties and major ion chemistry of 19 groundwater samples were used to determine the irrigation water quality indices. The results revealed out that the groundwaters are in general suitable for irrigation and have low sodium hazard, although they are very hard in nature due to the dominant presence of Ca+2, Mg+2 and HCO3- ions. Water samples contain arsenic in concentrations below the recommended guidelines for irrigation (59.7 ± 14.7 μg/l), however, arsenic concentrations in 89% of the 9 soil samples exceed the maximum allowable concentrations set for agricultural soils (81 ± 24.3 mg/kg). Nickel element, albeit not present in high concentrations in water samples, is enriched in all of the agricultural soil samples (390 ± 118.2 mg/kg). Hierarchical cluster analysis studies conducted to identify the sources of chemical constituents in water and soil samples elicited that the chemistry of the soils in the study area are highly impacted by the soil parent material and both geogenic and anthropogenic pollution sources are responsible for the metal contents of the soil samples. On the other hand, water chemistry in the area is affected by water-rock interactions, anthropogenic and agricultural pollution.

  19. Trace element analysis of soil type collected from the Manjung and central Perak

    NASA Astrophysics Data System (ADS)

    Azman, Muhammad Azfar; Hamzah, Suhaimi; Rahman, Shamsiah Abdul; Elias, Md Suhaimi; Abdullah, Nazaratul Ashifa; Hashim, Azian; Shukor, Shakirah Abd; Kamaruddin, Ahmad Hasnulhadi Che

    2015-04-01

    Trace elements in soils primarily originated from their parent materials. Parents' material is the underlying geological material that has been undergone different types of chemical weathering and leaching processes. Soil trace elements concentrations may be increases as a result of continuous input from various human activities, including power generation, agriculture, mining and manufacturing. This paper describes the Neutron Activation Analysis (NAA) method used for the determination of trace elements concentrations in part per million (ppm) present in the terrestrial environment soil in Perak. The data may indicate any contamination of trace elements contributed from human activities in the area. The enrichment factors were used to check if there any contamination due to the human activities (power plants, agricultural, mining, etc.) otherwise the values would serve as a baseline data for future study. The samples were collected from 27 locations of different soil series in the area at two different depths: the top soil (0-15cm) and the sub soil (15-30cm). The collected soil samples were air dried at 60°C and passed through 2 µm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia TRIGA Mark II reactor followed by gamma spectrometric analysis. By activating the stable elements in the samples, the elements can be determined from the intensities of gamma energies emitted by the respected radionuclides.

  20. Seasonal abundance of soil arthropods in relation to meteorological and edaphic factors in the agroecosystems of Faisalabad, Punjab, Pakistan

    NASA Astrophysics Data System (ADS)

    Shakir, Muhammad Mussadiq; Ahmed, Sohail

    2015-05-01

    Soil arthropods are an important component of agroecosystems, contributing significantly to their biodiversity and functioning. However, seasonal patterns, population dynamics, and significant roles of these soil arthropods in improvement of soil structures and functions are influenced by many factors. The objective of the current study was to investigate soil arthropod abundance in relation to a blend of meteorological and edaphic factors and to find out the difference in abundance among various crops (sugarcane, cotton, wheat, alfalfa fodder, and citrus orchards). The arthropod sampling was done by pitfall traps and Tullgren extractions on fortnightly intervals. Soil temperature and relative humidity were noted on the field sites while analysis for soil pH, organic matter, and soil moisture contents were done in the laboratory. The rainfall data was obtained from an observatory. Results showed that significant differences were found in soil arthropod abundance across different sampling months and crops. Out of total 13,673 soil arthropods sampled, 38 % belonged to Collembola, followed by 15 % Hymenoptera, 15 % Acarina, 11 % Myriapods, 6 % Coleoptera, 5 % Orthoptera, and 5 % Araneae. Mean abundance per sample was highest in summer months as compared to winter. Overall abundance per sample was significantly different between all crops ( p < 0.05). Cluster analysis revealed four categories of soil arthropods according to abundance, i.e., highly abundant (Collembola, Acarina, Myripoda, Hymenoptera), moderately abundant (Orthoptera, Aranae, Coleoptera), least abundant (Dermaptera, Hemiptera, Diptera), and rare (Blattaria, Isoptera, Diplura, Lepidoptera). Soil temperature and soil organic matter showed significant positive correlation with abundance, while relative humidity was significantly negatively correlated. Soil moisture and soil pH showed no significant correlations while no correlation was found with total rainfall. PCA analysis revealed that soil surface arthropods were the major contributors of variation in overall abundance in extreme temperature months while microarthropods in low-temperature months. CCA analysis revealed the occurrence of different arthropod groups in correspondence with different abiotic variables. Results are discussed in view of position of these arthropods as useful indicators under changing environmental conditions impacting agroecosystems in the study area.

  1. Probing dissolved organic matter in the critical zone: a comparison between in situ sampling and aqueous soil extracts

    NASA Astrophysics Data System (ADS)

    Perdrial, J. N.; Perdrial, N.; Harpold, A. A.; Peterson, A. M.; Vasquez, A.; Chorover, J.

    2011-12-01

    Analyzing dissolved organic matter (DOM) of soil solution constitutes an integral activity in critical zone science as important insights to nutrient and carbon cycling and mineral weathering processes can be gained. Soil solution can be obtained by a variety of approaches such as by in situ zero-tension and tension samplers or by performing soil extracts in the lab. It is generally preferred to obtain soil solution in situ with the least amount of disturbance. However, in water limited environments, such as in southwestern US, in situ sampling is only possible during few hydrologic events and soil extracts are often employed. In order to evaluate the performance of different sampling approaches for OM analysis, results from aqueous soil extracts were compared with in situ samples obtained from suction cups and passive capillary wick samplers (PCAP's). Soil from an OA-horizon of mixed conifer forest Jemez River Basin Critical Zone Observatory (JRB-CZO) in NM was sampled twice and in situ samples from co-located suction cups and PCAPs were collected 7 times during the 2011 snowmelt period. Dissolved organic carbon and nitrogen concentrations (DOC and DN) as well as OM quality (FTIR, fluorescence spectroscopy and PARAFAC) were analyzed. The aqueous soil extracts (solid:solution = 1:5 mass basis) showed highest DOC and lowest DN concentrations whereas samples collected in-situ had lower DOC and higher DN concentrations. PARAFAC analysis using a four component model showed a dominance of fluorescence in region I and II (protein-like fluorescence) for samples collected in situ indicating the presence of more bio-molecules (proteins). In contrast, the dominant PARAFAC component of the soil extract was found in region 3 (fulvic acid-like fluorescence). FTIR analysis showed high intensity band at 1600 cm-1 in the case of the aqueous soil extract that correspond to asymmetric stretching of carboxyl groups. These preliminary results indicate that aqueous soil extracts likely lead to the underestimation of the amount of biomolecules and the overestimation of fulvic acid contents of soil solutions.

  2. Analyses and description of soil samples from Mountain Lake and Peters Mountain Wilderness Study areas, Virginia and West Virginia

    USGS Publications Warehouse

    Motooka, J.M.; Curtis, Craig A.; Lesure, Frank Gardner

    1978-01-01

    Semiquantitative emission spectrographic analyses for 30 elements and atomic absorption analysis for zinc on 98 soil samples are reported here in detail. Location for all samples are in Universal Transverse Mercator (UTM) coordinates. A few samples of soil developed on Lower Devonian sandstone and chert contain more barium and zinc than soils on other formations but do not suggest the occurrence of economic concentrations of either element.

  3. Analysis of Explosives in Soil Using Solid Phase Microextraction and Gas Chromatography: Environmental Analysis

    DTIC Science & Technology

    2006-01-01

    ENVIRONMENTAL ANALYSIS Analysis of Explosives in Soil Using Solid Phase Microextraction and Gas Chromatography Howard T. Mayfield Air Force Research...Abstract: Current methods for the analysis of explosives in soils utilize time consuming sample preparation workups and extractions. The method detection...chromatography/mass spectrometry to provide a con- venient and sensitive analysis method for explosives in soil. Keywords: Explosives, TNT, solid phase

  4. Microbial soil community analyses for forensic science: Application to a blind test.

    PubMed

    Demanèche, Sandrine; Schauser, Leif; Dawson, Lorna; Franqueville, Laure; Simonet, Pascal

    2017-01-01

    Soil complexity, heterogeneity and transferability make it valuable in forensic investigations to help obtain clues as to the origin of an unknown sample, or to compare samples from a suspect or object with samples collected at a crime scene. In a few countries, soil analysis is used in matters from site verification to estimates of time after death. However, up to date the application or use of soil information in criminal investigations has been limited. In particular, comparing bacterial communities in soil samples could be a useful tool for forensic science. To evaluate the relevance of this approach, a blind test was performed to determine the origin of two questioned samples (one from the mock crime scene and the other from a 50:50 mixture of the crime scene and the alibi site) compared to three control samples (soil samples from the crime scene, from a context site 25m away from the crime scene and from the alibi site which was the suspect's home). Two biological methods were used, Ribosomal Intergenic Spacer Analysis (RISA), and 16S rRNA gene sequencing with Illumina Miseq, to evaluate the discriminating power of soil bacterial communities. Both techniques discriminated well between soils from a single source, but a combination of both techniques was necessary to show that the origin was a mixture of soils. This study illustrates the potential of applying microbial ecology methodologies in soil as an evaluative forensic tool. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. CTEPP STANDARD OPERATING PROCEDURE FOR EXTRACTING AND PREPARING DUST AND SOIL SAMPLES FOR ANALYSIS OF NEUTRAL PERSISTENT ORGANIC POLLUTANTS (SOP-5.14)

    EPA Science Inventory

    This SOP summarizes the method for extracting and preparing a dust or soil sample for analysis of neutral persistent organic pollutants. It covers the extraction and concentration of samples that are to be analyzed by gas chromatography/mass spectrometry.

  6. Simultaneous quantitative analysis of arsenic, bismuth, selenium, and tellurium in soil samples using multi-channel hydride-generation atomic fluorescence spectrometry.

    PubMed

    Wang, Fang; Zhang, Gai

    2011-03-01

    The basic principles and the application of hydride-generation multi-channel atomic fluorescence spectrometry (HG-MC-AFS) in soil analysis are described. It is generally understood that only one or two elements can be simultaneously detected by commonly used one- or two-channel HG-AFS. In this work, a new sample-sensitive and effective method for the analysis of arsenic, bismuth, tellurium, and selenium in soil samples by simultaneous detection using HG-MC-AFS was developed. The method detection limits for arsenic, bismuth, tellurium, and selenium are 0.19 μg/g, 0.10 μg/g, 0.11 μg/g, and 0.08 μg/g, respectively. This method was successfully applied to the simultaneous determination of arsenic, bismuth, tellurium, and selenium in soil samples.

  7. Laboratory and Airborne BRDF Analysis of Vegetation Leaves and Soil Samples

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.

    2008-01-01

    Laboratory-based Bidirectional Reflectance Distribution Function (BRDF) analysis of vegetation leaves, soil, and leaf litter samples is presented. The leaf litter and soil samples, numbered 1 and 2, were obtained from a site located in the savanna biome of South Africa (Skukuza: 25.0degS, 31.5degE). A third soil sample, number 3, was obtained from Etosha Pan, Namibia (19.20degS, 15.93degE, alt. 1100 m). In addition, BRDF of local fresh and dry leaves from tulip tree (Liriodendron tulipifera) and acacia tree (Acacia greggii) were studied. It is shown how the BRDF depends on the incident and scatter angles, sample size (i.e. crushed versus whole leaf,) soil samples fraction size, sample status (i.e. fresh versus dry leaves), vegetation species (poplar versus acacia), and vegetation s biochemical composition. As a demonstration of the application of the results of this study, airborne BRDF measurements acquired with NASA's Cloud Absorption Radiometer (CAR) over the same general site where the soil and leaf litter samples were obtained are compared to the laboratory results. Good agreement between laboratory and airborne measured BRDF is reported.

  8. Soil analysis based on sa,ples withdrawn from different volumes: correlation versus calibration

    Treesearch

    Lucian Weilopolski; Kurt Johnsen; Yuen Zhang

    2010-01-01

    Soil, particularly in forests, is replete with spatial variation with respect to soil C. Th e present standard chemical method for soil analysis by dry combustion (DC) is destructive, and comprehensive sampling is labor intensive and time consuming. Th ese, among other factors, are contributing to the development of new methods for soil analysis. Th ese include a near...

  9. Soils element activities for the period October 1973--September 1974

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, E.B.; Essington, E.H.; White, M.G.

    Soils Element activities were conducted on behalf of the U. S. Atomic Energy Commission's Nevada Applied Ecology Group (NAEG) program to provide source term information for the other program elements and maintain continuous cognizance of program requirements for sampling, sample preparation, and analysis. Activities included presentation of papers; participation in workshops; analysis of soil, vegetation, and animal tissue samples for $sup 238$Pu, $sup 239-240$Pu, $sup 241$Am, $sup 137$Cs, $sup 60$Co, and gamma scan for routine and laboratory quality control purposes; preparation and analysis of animal tissue samples for NAEG laboratory certification; studies on a number of analytical, sample preparation, andmore » sample collection procedures; and contributions to the evaluation of procedures for calculation of specialized counting statistics. (auth)« less

  10. Genetic analysis reveals diversity and genetic relationship among Trichoderma isolates from potting media, cultivated soil and uncultivated soil.

    PubMed

    Al-Sadi, Abdullah M; Al-Oweisi, Fatma A; Edwards, Simon G; Al-Nadabi, Hamed; Al-Fahdi, Ahmed M

    2015-07-28

    Trichoderma is one of the most common fungi in soil. However, little information is available concerning the diversity of Trichoderma in soil with no previous history of cultivation. This study was conducted to investigate the most common species and the level of genetic relatedness of Trichoderma species from uncultivated soil in relation to cultivated soil and potting media. A total of 24, 15 and 13 Trichoderma isolates were recovered from 84 potting media samples, 45 cultivated soil samples and 65 uncultivated soil samples, respectively. Analysis based on the internal transcribed spacer region of the ribosomal RNA (rRNA) and the translation elongation factor gene (EF1) indicated the presence of 9 Trichoderma species: T. harzianum (16 isolates), T. asperellum (13), T. citrinoviride (9), T. orientalis (3), T. ghanense (3), T. hamatum (3), T. longibrachiatum (2), T. atroviride (2), and T. viride (1). All species were found to occur in potting media samples, while five Trichoderma species were recovered from the cultivated soils and four from the uncultivated soils. AFLP analysis of the 52 Trichoderma isolates produced 52 genotypes and 993 polymorphic loci. Low to moderate levels of genetic diversity were found within populations of Trichoderma species (H = 0.0780 to 0.2208). Analysis of Molecular Variance indicated the presence of very low levels of genetic differentiation (Fst = 0.0002 to 0.0139) among populations of the same Trichoderma species obtained from the potting media, cultivated soil and uncultivated soil. The study provides evidence for occurrence of Trichoderma isolates in soil with no previous history of cultivation. The lack of genetic differentiation among Trichoderma populations from potting media, cultivated soil and uncultivated soil suggests that some factors could have been responsible for moving Trichoderma propagules among the three substrates. The study reports for the first time the presence of 4 Trichoderma species in Oman: T. asperellum, T. ghanense, T. longibrachiatum and T. orientalis.

  11. Performance evaluation soil samples utilizing encapsulation technology

    DOEpatents

    Dahlgran, J.R.

    1999-08-17

    Performance evaluation soil samples and method of their preparation uses encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration. 1 fig.

  12. Performance evaluation soil samples utilizing encapsulation technology

    DOEpatents

    Dahlgran, James R.

    1999-01-01

    Performance evaluation soil samples and method of their preparation using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration.

  13. Characterization and forensic analysis of soil samples using laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Jantzi, Sarah C; Almirall, José R

    2011-07-01

    A method for the quantitative elemental analysis of surface soil samples using laser-induced breakdown spectroscopy (LIBS) was developed and applied to the analysis of bulk soil samples for discrimination between specimens. The use of a 266 nm laser for LIBS analysis is reported for the first time in forensic soil analysis. Optimization of the LIBS method is discussed, and the results compared favorably to a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method previously developed. Precision for both methods was <10% for most elements. LIBS limits of detection were <33 ppm and bias <40% for most elements. In a proof of principle study, the LIBS method successfully discriminated samples from two different sites in Dade County, FL. Analysis of variance, Tukey's post hoc test and Student's t test resulted in 100% discrimination with no type I or type II errors. Principal components analysis (PCA) resulted in clear groupings of the two sites. A correct classification rate of 99.4% was obtained with linear discriminant analysis using leave-one-out validation. Similar results were obtained when the same samples were analyzed by LA-ICP-MS, showing that LIBS can provide similar information to LA-ICP-MS. In a forensic sampling/spatial heterogeneity study, the variation between sites, between sub-plots, between samples and within samples was examined on three similar Dade sites. The closer the sampling locations, the closer the grouping on a PCA plot and the higher the misclassification rate. These results underscore the importance of careful sampling for geographic site characterization.

  14. Area of Concern (AOC) 314 Verification Survey at Former McClellan AFB, Sacramento, CA

    DTIC Science & Technology

    2015-03-31

    also collected 22 soil samples from within AOC 314. Laboratory analysis revealed that the concentration of radium-226 (Ra-226) in 10 of the soil ...at least one sample that exceeded 2.0 pCi/g. The highest concentration of Ra-226 found in any of the soil samples was 25.8 pCi/g. Based on these...and ensure the potential health risk to future inhabitants is minimized. USAFSAM/OEC personnel also collected 22 soil samples from within AOC 314

  15. Computer image analysis of etched tracks from ionizing radiation

    NASA Technical Reports Server (NTRS)

    Blanford, George E.

    1994-01-01

    I proposed to continue a cooperative research project with Dr. David S. McKay concerning image analysis of tracks. Last summer we showed that we could measure track densities using the Oxford Instruments eXL computer and software that is attached to an ISI scanning electron microscope (SEM) located in building 31 at JSC. To reduce the dependence on JSC equipment, we proposed to transfer the SEM images to UHCL for analysis. Last summer we developed techniques to use digitized scanning electron micrographs and computer image analysis programs to measure track densities in lunar soil grains. Tracks were formed by highly ionizing solar energetic particles and cosmic rays during near surface exposure on the Moon. The track densities are related to the exposure conditions (depth and time). Distributions of the number of grains as a function of their track densities can reveal the modality of soil maturation. As part of a consortium effort to better understand the maturation of lunar soil and its relation to its infrared reflectance properties, we worked on lunar samples 67701,205 and 61221,134. These samples were etched for a shorter time (6 hours) than last summer's sample and this difference has presented problems for establishing the correct analysis conditions. We used computer counting and measurement of area to obtain preliminary track densities and a track density distribution that we could interpret for sample 67701,205. This sample is a submature soil consisting of approximately 85 percent mature soil mixed with approximately 15 percent immature, but not pristine, soil.

  16. PREDICTED GROUND WATER, SOIL AND SOIL GAS IMPACTS FROM U.S. GASOLINES, 2004, FIRST ANALYSIS OF THE AUTUMNAL DATA

    EPA Science Inventory

    Ninety six gasoline samples were collected from around the U.S. in Autumn 2004. A detailed hydrocarbon analysis was performed on each sample resulting in a data set of approximately 300 chemicals per sample. Statistical analyses were performed on the entire suite of reported chem...

  17. CTEPP STANDARD OPERATING PROCEDURE FOR EXTRACTING AND PREPARING DUST AND SOIL SAMPLES FOR ANALYSIS OF POLAR PERSISTENT ORGANIC POLLUTANTS (SOP-5.15)

    EPA Science Inventory

    The method for extracting and preparing a dust or soil sample for analysis of polar persistent organic pollutants is summarized in this SOP. It covers the extraction, concentration, and derivatization of samples that are to be analyzed by gas chromatography/mass spectrometry.

  18. Analysis of large soil samples for actinides

    DOEpatents

    Maxwell, III; Sherrod, L [Aiken, SC

    2009-03-24

    A method of analyzing relatively large soil samples for actinides by employing a separation process that includes cerium fluoride precipitation for removing the soil matrix and precipitates plutonium, americium, and curium with cerium and hydrofluoric acid followed by separating these actinides using chromatography cartridges.

  19. AEROBIC SOIL MICROCOSMS FOR LONG-TERM BIODEGRADATION OF HYDROCARBON VAPORS

    EPA Science Inventory

    The aims of this research project included the development of laboratory protocols for the preparation of aerobic soil microcosms using aseptic field soil samples, and for the gas chromatographic analysis of hydrocarbon vapor biodegradation based on vapor samples obtained from th...

  20. Trace element analysis of soil type collected from the Manjung and central Perak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azman, Muhammad Azfar, E-mail: m-azfar@nuclearmalaysia.gov.my; Hamzah, Suhaimi; Rahman, Shamsiah Abdul

    2015-04-29

    Trace elements in soils primarily originated from their parent materials. Parents’ material is the underlying geological material that has been undergone different types of chemical weathering and leaching processes. Soil trace elements concentrations may be increases as a result of continuous input from various human activities, including power generation, agriculture, mining and manufacturing. This paper describes the Neutron Activation Analysis (NAA) method used for the determination of trace elements concentrations in part per million (ppm) present in the terrestrial environment soil in Perak. The data may indicate any contamination of trace elements contributed from human activities in the area. Themore » enrichment factors were used to check if there any contamination due to the human activities (power plants, agricultural, mining, etc.) otherwise the values would serve as a baseline data for future study. The samples were collected from 27 locations of different soil series in the area at two different depths: the top soil (0-15cm) and the sub soil (15-30cm). The collected soil samples were air dried at 60°C and passed through 2 µm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia TRIGA Mark II reactor followed by gamma spectrometric analysis. By activating the stable elements in the samples, the elements can be determined from the intensities of gamma energies emitted by the respected radionuclides.« less

  1. Soil Sampling Operating Procedure

    EPA Pesticide Factsheets

    EPA Region 4 Science and Ecosystem Support Division (SESD) document that describes general and specific procedures, methods, and considerations when collecting soil samples for field screening or laboratory analysis.

  2. Laboratory Evaluation of Remediation Alternatives for U.S. Coast Guard Small Arms Firing Ranges

    DTIC Science & Technology

    1999-11-01

    S) is an immobilization process that involves the mixing of a contaminated soil with a binder material to enhance the physical and chemical...samples were shipped to WES for laboratory analysis. Phase III: Homogenization of the Bulk Samples. Each of the bulk samples was separately mixed to...produce uniform samples for testing. These mixed bulk soil samples were analyzed for metal content. Phase IV: Characterization of the Bulk Soils

  3. Core vs. Bulk Samples in Soil-Moisture Tension Analyses

    Treesearch

    Walter M. Broadfoot

    1954-01-01

    The usual laboratory procedure in determining soil-moisture tension values is to use "undisturbed" soil cores for tensions up to 60 cm. of water and bulk soil samples for higher tensions. Low tensions are usually obtained with a tension table and the higher tensions by use of pressure plate apparatus. In tension analysis at the Vicksburg Infiltration Project...

  4. Strengths and weaknesses of temporal stability analysis for monitoring and estimating grid-mean soil moisture in a high-intensity irrigated agricultural landscape

    NASA Astrophysics Data System (ADS)

    Ran, Youhua; Li, Xin; Jin, Rui; Kang, Jian; Cosh, Michael H.

    2017-01-01

    Monitoring and estimating grid-mean soil moisture is very important for assessing many hydrological, biological, and biogeochemical processes and for validating remotely sensed surface soil moisture products. Temporal stability analysis (TSA) is a valuable tool for identifying a small number of representative sampling points to estimate the grid-mean soil moisture content. This analysis was evaluated and improved using high-quality surface soil moisture data that were acquired by a wireless sensor network in a high-intensity irrigated agricultural landscape in an arid region of northwestern China. The performance of the TSA was limited in areas where the representative error was dominated by random events, such as irrigation events. This shortcoming can be effectively mitigated by using a stratified TSA (STSA) method, proposed in this paper. In addition, the following methods were proposed for rapidly and efficiently identifying representative sampling points when using TSA. (1) Instantaneous measurements can be used to identify representative sampling points to some extent; however, the error resulting from this method is significant when validating remotely sensed soil moisture products. Thus, additional representative sampling points should be considered to reduce this error. (2) The calibration period can be determined from the time span of the full range of the grid-mean soil moisture content during the monitoring period. (3) The representative error is sensitive to the number of calibration sampling points, especially when only a few representative sampling points are used. Multiple sampling points are recommended to reduce data loss and improve the likelihood of representativeness at two scales.

  5. High resolution analysis of soil elements with laser-induced breakdown

    DOEpatents

    Ebinger, Michael H [Santa Fe, NM; Harris, Ronny D [Los Alamos, NM

    2010-04-06

    The invention is a system and method of detecting a concentration of an element in a soil sample wherein an opening or slot is formed in a container that supports a soil sample that was extracted from the ground whereupon at least a length of the soil sample is exposed via the opening. At each of a plurality of points along the exposed length thereof, the soil sample is ablated whereupon a plasma is formed that emits light characteristic of the elemental composition of the ablated soil sample. Each instance of emitted light is separated according to its wavelength and for at least one of the wavelengths a corresponding data value related to the intensity of the light is determined. As a function of each data value a concentration of an element at the corresponding point along the length of the soil core sample is determined.

  6. Practical Cost-Optimization of Characterization and Remediation Decisions at DNAPL Sites with Consideration of Prediction Uncertainty

    DTIC Science & Technology

    2011-05-01

    well] TR GWsampC sampling and analysis cost per groundwater sample [$K/sample] i TR boreC cost per soil boring [$K/boring] TR SOILsampC cost per... soil sample analyzed [$K/sample] d annual discount rate [-] DNAPL dense nonaqueous phase liquid (E0, N0) raw easting and northing field...kg] fE fraction of non-monitoring variable costs attributable to energy use [-] Fi total soil and/or groundwater samples divided by pre

  7. Soil Gas Sampling Operating Procedure

    EPA Pesticide Factsheets

    EPA Region 4 Science and Ecosystem Support Division (SESD) document that describes general and specific procedures, methods, and considerations when collecting soil gas samples for field screening or laboratory analysis.

  8. Evaluation of PLS, LS-SVM, and LWR for quantitative spectroscopic analysis of soils

    USDA-ARS?s Scientific Manuscript database

    Soil testing requires the analysis of large numbers of samples in laboratory that are often time consuming and expensive. Mid-infrared spectroscopy (mid-IR) and near-infrared spectroscopy (NIRS) are fast, non-destructive, and inexpensive analytical methods that have been used for soil analysis, in l...

  9. [Development of an analyzing system for soil parameters based on NIR spectroscopy].

    PubMed

    Zheng, Li-Hua; Li, Min-Zan; Sun, Hong

    2009-10-01

    A rapid estimation system for soil parameters based on spectral analysis was developed by using object-oriented (OO) technology. A class of SOIL was designed. The instance of the SOIL class is the object of the soil samples with the particular type, specific physical properties and spectral characteristics. Through extracting the effective information from the modeling spectral data of soil object, a map model was established between the soil parameters and its spectral data, while it was possible to save the mapping model parameters in the database of the model. When forecasting the content of any soil parameter, the corresponding prediction model of this parameter can be selected with the same soil type and the similar soil physical properties of objects. And after the object of target soil samples was carried into the prediction model and processed by the system, the accurate forecasting content of the target soil samples could be obtained. The system includes modules such as file operations, spectra pretreatment, sample analysis, calibrating and validating, and samples content forecasting. The system was designed to run out of equipment. The parameters and spectral data files (*.xls) of the known soil samples can be input into the system. Due to various data pretreatment being selected according to the concrete conditions, the results of predicting content will appear in the terminal and the forecasting model can be stored in the model database. The system reads the predicting models and their parameters are saved in the model database from the module interface, and then the data of the tested samples are transferred into the selected model. Finally the content of soil parameters can be predicted by the developed system. The system was programmed with Visual C++6.0 and Matlab 7.0. And the Access XP was used to create and manage the model database.

  10. X-ray microtomography analysis of soil structure deformation caused by centrifugation

    NASA Astrophysics Data System (ADS)

    Schlüter, Steffen; Leuther, Frederic; Vogler, Steffen; Vogel, Hans-Jörg

    2016-04-01

    Centrifugation provides a fast method to measure soil water retention curves over a wide moisture range. However, deformation of soil structure may occur at high angular velocities in the centrifuge. The objective of this study was to capture these changes in soil structure with X-ray microtomography and to measure local deformations via digital volume correlation. Two samples were investigated that differ in texture and rock content. A detailed analysis of the pore space reveals an interplay between shrinkage due to drying and soil compaction due to compression. Macroporosity increases at moderate angular velocity because of crack formation due to moisture release. At higher angular velocities, corresponding to capillary pressure of <-100kPa, macroporosity decreases again because of structure deformation due to compression. While volume changes due to swelling clay minerals are immanent to any drying process, the compaction of soil is a specific drawback of the centrifugation method. A new protocol for digital volume correlation was developed to analyze the spatial heterogeneity of deformation. In both samples the displacement of soil constituents is highest in the top part of the sample and exhibits high lateral variability explained by the spatial distribution of macropores in the sample. Centrifugation should therefore only be applied after the completion of all other hydraulic or thermal experiments, or any other analysis that depends on the integrity of soil structure.

  11. X-ray microtomography analysis of soil structure deformation caused by centrifugation

    NASA Astrophysics Data System (ADS)

    Schlüter, S.; Leuther, F.; Vogler, S.; Vogel, H.-J.

    2016-01-01

    Centrifugation provides a fast method to measure soil water retention curves over a wide moisture range. However, deformation of soil structure may occur at high angular velocities in the centrifuge. The objective of this study was to capture these changes in soil structure with X-ray microtomography and to measure local deformations via digital volume correlation. Two samples were investigated that differ in texture and rock content. A detailed analysis of the pore space reveals an interplay between shrinkage due to drying and soil compaction due to compression. Macroporosity increases at moderate angular velocity because of crack formation due to moisture release. At higher angular velocities, corresponding to capillary pressure of ψ < -100 kPa, macroporosity decreases again because of structure deformation due to compression. While volume changes due to swelling clay minerals are immanent in any drying process, the compaction of soil is a specific drawback of the centrifugation method. A new protocol for digital volume correlation was developed to analyze the spatial heterogeneity of deformation. In both samples the displacement of soil constituents is highest in the top part of the sample and exhibits high lateral variability explained by the spatial distribution of macropores in the sample. Centrifugation should therefore only be applied after the completion of all other hydraulic or thermal experiments, or any other analysis that depends on the integrity of soil structure.

  12. Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. continuous cropping fields

    PubMed Central

    Li, Longyun; Wu, Xiaoli; Wang, Yu

    2018-01-01

    In this study, effects of continuous cropping on soil properties, enzyme activities, and relative abundance, community composition and diversity of fungal taxa were investigated. Rhizosphere soil from field continuously cropped for one-year, three-year and five-year by Coptis chinensis Franch. was collected and analyzed. Illumina high-throughput sequencing analysis showed that continuous cropping of C. chinensis resulted in a significant and continuous decline in the richness and diversity of soil fungal population. Ascomycota, Zygomycota, Basidiomycota, and Glomeromycota were the dominant phyla of fungi detected in rhizosphere soil. Fungal genera such as Phoma, Volutella, Pachycudonia, Heterodermia, Gibberella, Cladosporium, Trichocladium, and Sporothrix, were more dominant in continuously cropped samples for three-year and five-year compared to that for one-year. By contrast, genera, such as Zygosaccharomyces, Pseudotaeniolina, Hydnum, Umbelopsis, Humicola, Crustoderma, Psilocybe, Coralloidiomyces, Mortierella, Polyporus, Pyrenula, and Monographella showed higher relative abundance in one-year samples than that in three-year and five-year samples. Cluster analysis of the fungal communities from three samples of rhizosphere soil from C. chinensis field revealed that the fungal community composition, diversity, and structure were significantly affected by the continuous cropping. Continuous cropping of C. chinensis also led to significant declines in soil pH, urease, and catalase activities. Redundancy analysis showed that the soil pH had the most significant effect on soil fungal population under continuous cropping of C. chinensis. PMID:29538438

  13. Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. continuous cropping fields.

    PubMed

    Song, Xuhong; Pan, Yuan; Li, Longyun; Wu, Xiaoli; Wang, Yu

    2018-01-01

    In this study, effects of continuous cropping on soil properties, enzyme activities, and relative abundance, community composition and diversity of fungal taxa were investigated. Rhizosphere soil from field continuously cropped for one-year, three-year and five-year by Coptis chinensis Franch. was collected and analyzed. Illumina high-throughput sequencing analysis showed that continuous cropping of C. chinensis resulted in a significant and continuous decline in the richness and diversity of soil fungal population. Ascomycota, Zygomycota, Basidiomycota, and Glomeromycota were the dominant phyla of fungi detected in rhizosphere soil. Fungal genera such as Phoma, Volutella, Pachycudonia, Heterodermia, Gibberella, Cladosporium, Trichocladium, and Sporothrix, were more dominant in continuously cropped samples for three-year and five-year compared to that for one-year. By contrast, genera, such as Zygosaccharomyces, Pseudotaeniolina, Hydnum, Umbelopsis, Humicola, Crustoderma, Psilocybe, Coralloidiomyces, Mortierella, Polyporus, Pyrenula, and Monographella showed higher relative abundance in one-year samples than that in three-year and five-year samples. Cluster analysis of the fungal communities from three samples of rhizosphere soil from C. chinensis field revealed that the fungal community composition, diversity, and structure were significantly affected by the continuous cropping. Continuous cropping of C. chinensis also led to significant declines in soil pH, urease, and catalase activities. Redundancy analysis showed that the soil pH had the most significant effect on soil fungal population under continuous cropping of C. chinensis.

  14. Analysis of problems and failures in the measurement of soil-gas radon concentration.

    PubMed

    Neznal, Martin; Neznal, Matěj

    2014-07-01

    Long-term experience in the field of soil-gas radon concentration measurements allows to describe and explain the most frequent causes of failures, which can appear in practice when various types of measurement methods and soil-gas sampling techniques are used. The concept of minimal sampling depth, which depends on the volume of the soil-gas sample and on the soil properties, is shown in detail. Consideration of minimal sampling depth at the time of measurement planning allows to avoid the most common mistakes. The ways how to identify influencing parameters, how to avoid a dilution of soil-gas samples by the atmospheric air, as well as how to recognise inappropriate sampling methods are discussed. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Soil ionomic and enzymatic responses and correlations to fertilizations amended with and without organic fertilizer in long-term experiments.

    PubMed

    Feng, Xumeng; Ling, Ning; Chen, Huan; Zhu, Chen; Duan, Yinghua; Peng, Chang; Yu, Guanghui; Ran, Wei; Shen, Qirong; Guo, Shiwei

    2016-04-15

    To investigate potential interactions between the soil ionome and enzyme activities affected by fertilization with or without organic fertilizer, soil samples were collected from four long-term experiments over China. Irrespective of variable interactions, fertilization type was the major factor impacting soil ionomic behavior and accounted for 15.14% of the overall impact. Sampling site was the major factor affecting soil enzymatic profile and accounted for 34.25% of the overall impact. The availabilities of Pb, La, Ni, Co, Fe and Al were significantly higher in soil with only chemical fertilizer than the soil with organic amendment. Most of the soil enzyme activities, including α-glucosidase activity, were significantly activated by organic amendment. Network analysis between the soil ionome and the soil enzyme activities was more complex in the organic-amended soils than in the chemical fertilized soils, whereas the network analysis among the soil ions was less complex with organic amendment. Moreover, α-glucosidase was revealed to generally harbor more corrections with the soil ionic availabilities in network. We concluded that some of the soil enzymes activated by organic input can make the soil more vigorous and stable and that the α-glucosidase revealed by this analysis might help stabilize the soil ion availability.

  16. Soil ionomic and enzymatic responses and correlations to fertilizations amended with and without organic fertilizer in long-term experiments

    PubMed Central

    Feng, Xumeng; Ling, Ning; Chen, Huan; Zhu, Chen; Duan, Yinghua; Peng, Chang; Yu, Guanghui; Ran, Wei; Shen, Qirong; Guo, Shiwei

    2016-01-01

    To investigate potential interactions between the soil ionome and enzyme activities affected by fertilization with or without organic fertilizer, soil samples were collected from four long-term experiments over China. Irrespective of variable interactions, fertilization type was the major factor impacting soil ionomic behavior and accounted for 15.14% of the overall impact. Sampling site was the major factor affecting soil enzymatic profile and accounted for 34.25% of the overall impact. The availabilities of Pb, La, Ni, Co, Fe and Al were significantly higher in soil with only chemical fertilizer than the soil with organic amendment. Most of the soil enzyme activities, including α-glucosidase activity, were significantly activated by organic amendment. Network analysis between the soil ionome and the soil enzyme activities was more complex in the organic-amended soils than in the chemical fertilized soils, whereas the network analysis among the soil ions was less complex with organic amendment. Moreover, α-glucosidase was revealed to generally harbor more corrections with the soil ionic availabilities in network. We concluded that some of the soil enzymes activated by organic input can make the soil more vigorous and stable and that the α-glucosidase revealed by this analysis might help stabilize the soil ion availability. PMID:27079657

  17. Soil Gas Sampling

    EPA Pesticide Factsheets

    Field Branches Quality System and Technical Procedures: This document describes general and specific procedures, methods and considerations to be used and observed when collecting soil gas samples for field screening or laboratory analysis.

  18. Regolith Evolved Gas Analyzer

    NASA Technical Reports Server (NTRS)

    Hoffman, John H.; Hedgecock, Jud; Nienaber, Terry; Cooper, Bonnie; Allen, Carlton; Ming, Doug

    2000-01-01

    The Regolith Evolved Gas Analyzer (REGA) is a high-temperature furnace and mass spectrometer instrument for determining the mineralogical composition and reactivity of soil samples. REGA provides key mineralogical and reactivity data that is needed to understand the soil chemistry of an asteroid, which then aids in determining in-situ which materials should be selected for return to earth. REGA is capable of conducting a number of direct soil measurements that are unique to this instrument. These experimental measurements include: (1) Mass spectrum analysis of evolved gases from soil samples as they are heated from ambient temperature to 900 C; and (2) Identification of liberated chemicals, e.g., water, oxygen, sulfur, chlorine, and fluorine. REGA would be placed on the surface of a near earth asteroid. It is an autonomous instrument that is controlled from earth but does the analysis of regolith materials automatically. The REGA instrument consists of four primary components: (1) a flight-proven mass spectrometer, (2) a high-temperature furnace, (3) a soil handling system, and (4) a microcontroller. An external arm containing a scoop or drill gathers regolith samples. A sample is placed in the inlet orifice where the finest-grained particles are sifted into a metering volume and subsequently moved into a crucible. A movable arm then places the crucible in the furnace. The furnace is closed, thereby sealing the inner volume to collect the evolved gases for analysis. Owing to the very low g forces on an asteroid compared to Mars or the moon, the sample must be moved from inlet to crucible by mechanical means rather than by gravity. As the soil sample is heated through a programmed pattern, the gases evolved at each temperature are passed through a transfer tube to the mass spectrometer for analysis and identification. Return data from the instrument will lead to new insights and discoveries including: (1) Identification of the molecular masses of all of the gases liberated from heated soil samples; (2) Identification of the asteroid soil mineralogy to aid in the selection process for returned samples; (3) Existence of oxygen in the asteroid soil and the potential for in-situ resource utilization (ISRU); and (4) Existence of water and other volatiles in the asteroid soil. Additional information is contained in the original extended abstract.

  19. Removal of uranium from soil sample digests for ICP-OES analysis of trace metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foust, R.D. Jr.; Bidabad, M.

    1996-10-01

    An analytical procedure has been developed to quantitatively remove uranium from soil sample digests, permitting ICP-OES analysis of trace metals. The procedure involves digesting a soil sample with standard procedures (EPA SW-846, Method 3050), and passing the sample digestate through commercially available resin (U/TEVA{sm_bullet}Spec, Eichrom Industries, Inc.) containing diarryl amylphosphonate as the stationary phase. Quantitative removal of uranium was achieved with soil samples containing up to 60% uranium, and percent recoveries averaged better than 85% for 9 of the 10 metals evaluated (Ag, As, Cd. Cr, Cu, Ni, Pb, Se and Tl). The U/TEVA{sm_bullet}Spec column was regenerated by washing withmore » 200 mL of a 0.01 M oxalic acid/0.02 M nitric acid solution, permitting re-use of the column. GFAAS analysis of a sample spiked with 56.5% uranium, after treatment of the digestate with a U/TEVA{sm_bullet}Spec resin column, resulted in percent recoveries of 97% or better for all target metals.« less

  20. In-situ soil carbon analysis using inelastic neutron scattering

    USDA-ARS?s Scientific Manuscript database

    In situ soil carbon analysis using inelastic neutron scattering (INS) is based on the emission of 4.43 MeV gamma rays from carbon nuclei excited by fast neutrons. This in-situ method has excellent potential for easily measuring soil carbon since it does not require soil core sampling and processing ...

  1. ANALYSIS OF SOIL AND DUST SAMPLES FOR POLYCHLORINATED BIPHENYLS BY ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA)

    EPA Science Inventory

    An inhibition enzyme-linked immunosorbent assay (ELISA) was used to determine polychlorinated biphenyls (PCBs) in house dust and soil. Soil and house dust samples were analyzed for PCB by both gas chromatography/electron capture detection (GC/ECD) and ELISA methods. A correlati...

  2. Addendum to Sampling and Analysis Plan (SAP) for Assessment of LANL-Derived Residual Radionuclides in Soils within Tract A-16-d for Land Conveyance and Transfer for Sewage Treatment Facility Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whicker, Jeffrey Jay; Gillis, Jessica Mcdonnel; Ruedig, Elizabeth

    This report summarizes the sampling design used, associated statistical assumptions, as well as general guidelines for conducting post-sampling data analysis. Sampling plan components presented here include how many sampling locations to choose and where within the sampling area to collect those samples. The type of medium to sample (i.e., soil, groundwater, etc.) and how to analyze the samples (in-situ, fixed laboratory, etc.) are addressed in other sections of the sampling plan.

  3. Experimental parameters optimization of instrumental neutron activation analysis in order to determine selected elements in some industrial soils in Turkey

    NASA Astrophysics Data System (ADS)

    Haciyakupoglu, Sevilay; Nur Esen, Ayse; Erenturk, Sema

    2014-08-01

    The purpose of this study is optimization of the experimental parameters for analysis of soil matrix by instrumental neutron activation analysis and quantitative determination of barium, cerium, lanthanum, rubidium, scandium and thorium in soil samples collected from industrialized urban areas near Istanbul. Samples were irradiated in TRIGA MARK II Research Reactor of Istanbul Technical University. Two types of reference materials were used to check the accuracy of the applied method. The achieved results were found to be in compliance with certified values of the reference materials. The calculated En numbers for mentioned elements were found to be less than 1. The presented data of element concentrations in soil samples will help to trace the pollution as an impact of urbanization and industrialization, as well as providing database for future studies.

  4. Visible-near infrared spectroscopy as a tool to improve mapping of soil properties

    NASA Astrophysics Data System (ADS)

    Evgrafova, Alevtina; Kühnel, Anna; Bogner, Christina; Haase, Ina; Shibistova, Olga; Guggenberger, Georg; Tananaev, Nikita; Sauheitl, Leopold; Spielvogel, Sandra

    2017-04-01

    Spectroscopic measurements, which are non-destructive, precise and rapid, can be used to predict soil properties and help estimate the spatial variability of soil properties at the pedon scale. These estimations are required for quantifying soil properties with higher precision, identifying the changes in soil properties and ecosystem response to climate change as well as increasing the estimation accuracy of soil-related models. Our objectives were to (i) predict soil properties for nested samples (n = 296) using the laboratory-based visible-near infrared (vis-NIR) spectra of air-dried (<2 mm) soil samples and values of measured soil properties for gridded samples (n = 174) as calibration and validation sets; (ii) estimate the precision and predictive accuracy of an empirical spectral model using (a) our own spectral library and (b) the global spectral library; (iii) support the global spectral library with obtained vis-NIR spectral data on permafrost-affected soils. The soil samples were collected from three permafrost-affected soil profiles underlain by permafrost at various depths between 23 cm to 57.5 cm below the surface (Cryosols) and one soil profile with no presence of permafrost within the upper 100 cm layer (Cambisol) in order to characterize the spatial distribution and variability of soil properties. The gridded soil samples (n = 174) were collected using an 80 cm wide grid with a mesh size of 10 cm on both axes. In addition, 300 nested soil samples were collected using a grid of 12 cm by 12 cm (25 samples per grid) from a hole of 1 cm in a diameter with a distance from the next sample of 1 cm. Due to a small amount of available soil material (< 1.5 g), 296 nested soil samples were analyzed only using vis-NIR spectroscopy. The air-dried mineral gridded soil samples (n = 174) were sieved through a 2-mm sieve and ground with an agate mortar prior to the elemental analysis. The soil organic carbon and total nitrogen concentrations (in %) were determined using a dry combustion method on the Vario EL cube analyzer (Elementar Analysensysteme GmbH, Germany). Inorganic C was removed from the mineral soil samples with pH values higher than 7 prior to the elemental analysis using the volatilization method (HCl, 6 hours). The pH of soil samples was measured in 0.01 M CaCl2 using a 1:2 soil:solution ratio. However, for soil sample with a high in organic matter content, a 1:10 ratio was applied. We also measured oxalate and dithionite extracted iron, aluminum and manganese oxides and hydroxides using inductively coupled plasma optical emission spectroscopy (Varian Vista MPX ICP-OES, Agilent Technologies, USA). We predicted the above-mentioned soil properties for all nested samples using partial least squares regression, which was performed using R program. We can conclude that vis-NIR spectroscopy can be used effectively in order to describe, estimate and further map the spatial patterns of soil properties using geostatistical methods. This research could also help to improve the global soil spectral library taking into account that only few previous applications of vis-NIR spectroscopy were conducted on permafrost-affected soils of Northern Siberia. Keywords: Visible-near infrared spectroscopy, vis-NIR, permafrost-affected soils, Siberia, partial least squares regression.

  5. The effect of heavy metal concentration and soil pH on the abundance of selected microbial groups within ArcelorMittal Poland steelworks in Cracow.

    PubMed

    Lenart, Anna; Wolny-Koładka, Katarzyna

    2013-01-01

    The present study aimed to identify the effect of heavy metal concentration and soil pH on the abundance of the selected soil microorganisms within ArcelorMittal Poland steelworks, Cracow. The analysis included 20 soil samples, where the concentration of Fe, Zn, Cd, Pb, Ni, Cu, Mn, Cr and soil pH were evaluated together with the number of mesophilic bacteria, fungi, Actinomycetes and Azotobacter spp. In the majority of samples soil pH was alkaline. The limits of heavy metals exceeded in eight samples and in one sample, the concentration of Zn exceeded 31-fold. Chromium was the element which most significantly limited the number of bacteria and Actinomycetes.

  6. Microbial colonization in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota

    NASA Astrophysics Data System (ADS)

    Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

    2015-02-01

    Colonization of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focused on the settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associated vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soil types on the surface of the island. Total viable bacterial counts were performed with the plate count method at 22, 30 and 37 °C for all soil samples, and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms and aerobic and anaerobic bacteria. The subsurface biosphere was investigated by collecting liquid subsurface samples from a 181 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between nutrient deficits and the number of microorganisms in surface soil samples. The lowest number of bacteria (1 × 104-1 × 105 cells g-1) was detected in almost pure pumice but the count was significantly higher (1 × 106-1 × 109 cells g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated samples and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 and 172 m depth at 80 and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

  7. Evaluation of soil water stable isotope analysis by H2O(liquid)-H2O(vapor) equilibration method

    NASA Astrophysics Data System (ADS)

    Gralher, Benjamin; Stumpp, Christine

    2014-05-01

    Environmental tracers like stable isotopes of water (δ18O, δ2H) have proven to be valuable tools to study water flow and transport processes in soils. Recently, a new technique for soil water isotope analysis has been developed that employs a vapor phase being in isothermal equilibrium with the liquid phase of interest. This has increased the potential application of water stable isotopes in unsaturated zone studies as it supersedes laborious extraction of soil water. However, uncertainties of analysis and influencing factors need to be considered. Therefore, the objective of this study was to evaluate different methodologies of analysing stable isotopes in soil water in order to reduce measurement uncertainty. The methodologies included different preparation procedures of soil cores for equilibration of vapor and soil water as well as raw data correction. Two different inflatable sample containers (freezer bags, bags containing a metal layer) and equilibration atmospheres (N2, dry air) were tested. The results showed that uncertainties for δ18O were higher compared to δ2H that cannot be attributed to any specific detail of the processing routine. Particularly, soil samples with high contents of organic matter showed an apparent isotope enrichment which is indicative for fractionation due to evaporation. However, comparison of water samples obtained from suction cups with the local meteoric water line indicated negligible fractionation processes in the investigated soils. Therefore, a method was developed to correct the raw data reducing the uncertainties of the analysis.. We conclude that the evaluated method is advantageous over traditional methods regarding simplicity, resource requirements and sample throughput but careful consideration needs to be made regarding sample handling and data processing. Thus, stable isotopes of water are still a good tool to determine water flow and transport processes in the unsaturated zone.

  8. Magnetic properties of alluvial soils polluted with heavy metals

    NASA Astrophysics Data System (ADS)

    Dlouha, S.; Petrovsky, E.; Boruvka, L.; Kapicka, A.; Grison, H.

    2012-04-01

    Magnetic properties of soils, reflecting mineralogy, concentration and grain-size distribution of Fe-oxides, proved to be useful tool in assessing the soil properties in terms of various environmental conditions. Measurement of soil magnetic properties presents a convenient method to investigate the natural environmental changes in soils as well as the anthropogenic pollution of soils with several risk elements. The effect of fluvial pollution with Cd, Cu, Pb and Zn on magnetic soil properties was studied on highly contaminated alluvial soils from the mining/smelting district (Příbram; CZ) using a combination of magnetic and geochemical methods. The basic soil characteristics, the content of heavy metals, oxalate, and dithionite extractable iron were determined in selected soil samples. Soil profiles were sampled using HUMAX soil corer and the magnetic susceptibility was measured in situ, further detailed magnetic analyses of selected distinct layers were carried out. Two types of variations of magnetic properties in soil profiles were observed corresponding to indentified soil types (Fluvisols, and Gleyic Fluvisols). Significantly higher values of topsoil magnetic susceptibility compared to underlying soil are accompanied with high concentration of heavy metals. Sequential extraction analysis proved the binding of Pb, Zn and Cd in Fe and Mn oxides. Concentration and size-dependent parameters (anhysteretic and isothermal magnetization) were measured on bulk samples in terms of assessing the origin of magnetic components. The results enabled to distinguish clearly topsoil layers enhanced with heavy metals from subsoil samples. The dominance of particles with pseudo-single domain behavior in topsoil and paramagnetic/antiferromagnetic contribution in subsoil were observed. These measurements were verified with room temperature hysteresis measurement carried out on bulk samples and magnetic extracts. Thermomagnetic analysis of magnetic susceptibility measured on magnetic extracts indicated the presence of magnetite/maghemite in the uppermost layers, and strong mineralogical transformation of iron oxyhydroxides during heating. Magnetic techniques give valuable information about the soil Fe oxides, which are useful for investigation of the environmental effects in soil. Key words: magnetic methods, Fe oxides, pollution, alluvial soils.

  9. Using the VegeSafe community science program to measure, evaluate risk and advise on soil-metal contamination in Sydney backyards

    NASA Astrophysics Data System (ADS)

    Taylor, M. P.; Rouillon, M.; Harvey, P.; Kristensen, L. J.; Steven, G. G.

    2016-12-01

    The extent of metal contamination in Sydney residential garden soils was evaluated using data collated from a 3-year university community science program called VegeSafe. Despite knowledge of industrial and urban contamination amongst scientists, the general public remains under informed about the potential risks of exposure from legacy contaminants in their home environments. The Australian community was offered free soil metal screening allowing access to soil samples for research purposes. Participants followed specific soil sampling instructions and posted samples to the University for analysis with a field portable X-ray Fluorescence (pXRF) spectrometer. Over the 3-year period >5000 soil samples were collected and analysed from >1000 households across Australia, primarly from vegetable gardens. As anticipated, the primary soil metal of concern was lead: mean concentrations were 413 mg/kg (front garden), 707 mg/kg (drip line), 226 mg/kg (back yard) and 301 mg/kg (vegetable garden). The Australian soil lead guideline of 300 mg/kg for residential yards was exceeded at 40% of domestic properties. Soil lead concentrations >1000 mg/kg were identified in 15% of Sydney backyards. The incidence of highest soil lead contamination was greatest in the inner city area with concentrations declining towards background values of 20-30 mg/kg at 30-40 km distance from the city. Community engagement with VegeSafe participants has resulted in useful outcomes: dissemination of knowledge related to contamination legacies and health risks, owners building raised beds containing clean soil, and, in numerous cases owners replacing their contaminated soil. This study demonstrates the potential for similar community science programs for expediting mass sample collection of soils and dusts for analysis of traditional and emerging contaminants within the home environment.

  10. Geospatial compilation of results from field sample collection in support of mineral resource investigations, Western Alaska Range, Alaska, July 2013

    USGS Publications Warehouse

    Johnson, Michaela R.; Graham, Garth E.; Hubbard, Bernard E.; Benzel, William M.

    2015-07-16

    This Data Series summarizes results from July 2013 sampling in the western Alaska Range near Mount Estelle, Alaska. The fieldwork combined in situ and camp-based spectral measurements of talus/soil and rock samples. Five rock and 48 soil samples were submitted for quantitative geochemi­cal analysis (for 55 major and trace elements), and the 48 soils samples were also analyzed by x-ray diffraction to establish mineralogy and geochemistry. The results and sample photo­graphs are presented in a geodatabase that accompanies this report. The spectral, mineralogical, and geochemical charac­terization of these samples and the sites that they represent can be used to validate existing remote-sensing datasets (for example, ASTER) and future hyperspectral studies. Empiri­cal evidence of jarosite (as identified by x-ray diffraction and spectral analysis) corresponding with gold concentrations in excess of 50 parts per billion in soil samples suggests that surficial mapping of jarosite in regional surveys may be use­ful for targeting areas of prospective gold occurrences in this sampling area.

  11. A simple evaluation of soil quality of waterlogged purple paddy soils with different productivities.

    PubMed

    Liu, Zhanjun; Zhou, Wei; Lv, Jialong; He, Ping; Liang, Guoqing; Jin, Hui

    2015-01-01

    Evaluation of soil quality can be crucial for designing efficient farming systems and ensuring sustainable agriculture. The present study aimed at evaluating the quality of waterlogged purple paddy soils with different productivities in Sichuan Basin. The approach involved comprehensive analyses of soil physical and chemical properties, as well as enzyme activities and microbial community structure measured by phospholipid fatty acid analysis (PLFA). A total of 36 soil samples were collected from four typical locations, with 12 samples representing high productivity purple paddy soil (HPPS), medium productivity purple paddy soil (MPPS) and low productivity purple paddy soil (LPPS), respectively. Most measured soil properties showed significant differences (P ≤ 0.05) among HPPS, MPPS and LPPS. Pearson correlation analysis and principal component analysis were used to identify appropriate soil quality indicators. A minimum data set (MDS) including total nitrogen (TN), available phosphorus (AP), acid phosphatase (ACP), total bacteria (TB) and arbuscular mycorrhizal fungi was established and accounted for 82.1% of the quality variation among soils. A soil quality index (SQI) was developed based on the MDS method, whilst HPPS, MPPS and LPPS received mean SQI scores of 0.725, 0.536 and 0.425, respectively, with a ranking of HPPS > MPPS > LPPS. HPPS showed relatively good soil quality characterized by optimal nutrient availability, enzymatic and microbial activities, but the opposite was true of LPPS. Low levels of TN, AP and soil microbial activities were considered to be the major constraints limiting the productivity in LPPS. All soil samples collected were rich in available N, K, Si and Zn, but deficient in available P, which may be the major constraint for the studied regions. Managers in our study area should employ more appropriate management in the LPPS to improve its rice productivity, and particularly to any potential limiting factor.

  12. Micro-PIXE evaluation of radioactive cesium transfer in contaminated soil samples

    NASA Astrophysics Data System (ADS)

    Fujishiro, F.; Ishii, K.; Matsuyama, S.; Arai, H.; Ishizaki, A.; Osada, N.; Sugai, H.; Kusano, K.; Nozawa, Y.; Yamauchi, S.; Karahashi, M.; Oshikawa, S.; Kikuchi, K.; Koshio, S.; Watanabe, K.; Suzuki, Y.

    2014-01-01

    Micro-PIXE analysis has been performed on two soil samples with high cesium activity concentrations. These soil samples were contaminated by fallout from the accident at Fukushima Daiichi Nuclear Power Plant. One exhibits a radioactive cesium transfer of ˜0.01, and the other shows a radioactive cesium transfer of less than 0.001, even though both samples have high cesium activity concentrations exceeding 10,000 Bq/kg. X-ray spectra and elemental images of the soil samples revealed the presence of chlorine, which can react with cesium to produce an inorganic soluble compound, and phosphorus-containing cesium-capturable organic compounds.

  13. Application of a Stir Bar Sorptive Extraction sample preparation method with HPLC for soil fungal biomass determination in soils from a detrital manipulation study.

    PubMed

    Beni, Áron; Lajtha, Kate; Kozma, János; Fekete, István

    2017-05-01

    Ergosterol is a sterol found ubiquitously in cell membranes of filamentous fungi. Although concentrations in different fungal species span the range of 2.6 to 42μg/mL of dry mass, many studies have shown a strong correlation between soil ergosterol content and fungal biomass. The analysis of ergosterol in soil therefore could be an effective tool for monitoring changes in fungal biomass under different environmental conditions. Stir Bar Sorptive Extraction (SBSE) is a new sample preparation method to extract and concentrate organic analytes from liquid samples. SBSE was here demonstrated to be a simple, fast, and cost effective method for the quantitative analysis of ergosterol from field-collected soils. Using this method we observed that soil ergosterol as a measure of fungal biomass proved to be a sensitive indicator of soil microbial dynamics that were altered by changes in plant detrital inputs to soils in a long-term field experiment. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Major and trace element chemistry of Luna 24 samples from Mare Crisium

    NASA Technical Reports Server (NTRS)

    Blanchard, D. P.; Brannon, J. C.; Aaboe, E.; Budahn, J. R.

    1978-01-01

    Atomic absorption spectrometry and instrumental neutron activation analysis were employed to analyze six Luna 24 soils for major and trace elements. The analysis revealed well-mixed soils, though size fractions of each of the soils showed quite dissimilar compositions. Thus the regolith apparently has not been extensively reworked. Noritic breccia admixed preferentially to the finest size fractions and differential comminution of one or more other soil components accounted for the observed elemental distributions as a function of grain size. The ferrobasalt composition and one or more components with higher MgO contents have been identified in the samples.

  15. Accelerated solvent extraction combined with dispersive liquid-liquid microextraction before gas chromatography with mass spectrometry for the sensitive determination of phenols in soil samples.

    PubMed

    Xing, Han-Zhu; Wang, Xia; Chen, Xiang-Feng; Wang, Ming-Lin; Zhao, Ru-Song

    2015-05-01

    A method combining accelerated solvent extraction with dispersive liquid-liquid microextraction was developed for the first time as a sample pretreatment for the rapid analysis of phenols (including phenol, m-cresol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol) in soil samples. In the accelerated solvent extraction procedure, water was used as an extraction solvent, and phenols were extracted from soil samples into water. The dispersive liquid-liquid microextraction technique was then performed on the obtained aqueous solution. Important accelerated solvent extraction and dispersive liquid-liquid microextraction parameters were investigated and optimized. Under optimized conditions, the new method provided wide linearity (6.1-3080 ng/g), low limits of detection (0.06-1.83 ng/g), and excellent reproducibility (<10%) for phenols. Four real soil samples were analyzed by the proposed method to assess its applicability. Experimental results showed that the soil samples were free of our target compounds, and average recoveries were in the range of 87.9-110%. These findings indicate that accelerated solvent extraction with dispersive liquid-liquid microextraction as a sample pretreatment procedure coupled with gas chromatography and mass spectrometry is an excellent method for the rapid analysis of trace levels of phenols in environmental soil samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Study on a pattern classification method of soil quality based on simplified learning sample dataset

    USGS Publications Warehouse

    Zhang, Jiahua; Liu, S.; Hu, Y.; Tian, Y.

    2011-01-01

    Based on the massive soil information in current soil quality grade evaluation, this paper constructed an intelligent classification approach of soil quality grade depending on classical sampling techniques and disordered multiclassification Logistic regression model. As a case study to determine the learning sample capacity under certain confidence level and estimation accuracy, and use c-means algorithm to automatically extract the simplified learning sample dataset from the cultivated soil quality grade evaluation database for the study area, Long chuan county in Guangdong province, a disordered Logistic classifier model was then built and the calculation analysis steps of soil quality grade intelligent classification were given. The result indicated that the soil quality grade can be effectively learned and predicted by the extracted simplified dataset through this method, which changed the traditional method for soil quality grade evaluation. ?? 2011 IEEE.

  17. Contribution of soil fauna to soil functioning in degraded environments: a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Gargiulo, Laura; Mele, Giacomo; Moradi, Jabbar; Kukla, Jaroslav; Jandová, Kateřina; Frouz, Jan

    2016-04-01

    The restoration of the soil functions is essential for the recovery of highly degraded sites and, consequently, the study of the soil fauna role in the soil development in such environments has great potential from a practical point of view. The soils of the post-mining sites represent unique models for the study of the natural ecological succession because mining creates similar environments characterized by the same substrate, but by different ages according to the year of closure of mines. The aim of this work was to assess the contribution of different species of macrofauna on the evolution of soil structure and on the composition and activity of the microbial community in soil samples subjected to ecological restoration or characterized by spontaneous ecological succession. For this purpose, an experimental test was carried out in two sites characterized by different post-mining conditions: 1) natural succession, 2) reclamation with planting trees. These sites are located in the post-mining area of Sokolov (Czech Republic). For the experimental test repacked soil cores were prepared in laboratory with sieved soil sampled from the two sites. The soil cores were prepared maintaining the sequence of soil horizons present in the field. These samples were inoculated separately with two genera of earthworms (Lumbricus and Aporrectodea) and two of centipedes (Julida and Polydesmus). In particular, based on their body size, were inoculated for each cylinder 2 individuals of millipedes, 1 individual of Lumbricus and 4 individuals of Aporrectodea. For each treatment and for control samples 5 replicates were prepared and all samples were incubated in field for 1 month in the two original sampling sites. After the incubation the samples were removed from the field and transported in laboratory in order to perform the analysis of microbial respiration, of PLFA (phospholipid-derived fatty acids) and ergosterol contents and finally for the characterization of soil structure. All replicates were subjected to soil respiration measurement by means of chemical titration method. Then some replicates were destructively analyzed for PLFA and ergosterol and others were used for the 3D soil image analysis of the soil pore system. The soil cores were imaged using X-ray microtomography and three-dimensional image processing was performed in order to obtain 3D reconstructions and preliminary analysis of the identified biopores. The experimental approach used in this multidisciplinary study showed a promising potential to provide new useful information about the widely differentiated contribution of many types of macrofauna to the formation of the soil pore system and to the development of the soil microbial functions in different types of environments.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Distler, T. M.; Wong, C. M.

    Runoff-water samples for the first, third, and fourth quarters of 1975 were analyzed for pesticide residues at LLL and independently by the LFE Environmental Analysis Laboratories. For the compounds analyzed, upper limits to possible contamination were placed conservatively at the low parts-per-billion level. In addition, soil samples were also analyzed. Future work will continue to include quarterly sampling and will be broadened in scope to include quantitative analysis of a larger number of compounds. A study of recovery efficiency is planned. Because of the high backgrounds on soil samples together with the uncertainties introduced by the cleanup procedures, there ismore » little hope of evaluating the distribution of a complex mixture of pesticides among the aqueous and solid phases in a drainage sample. No further sampling of soil from the streambed is therefore contemplated.« less

  19. Correlation of soil and sediment organic matter polarity to aqueous sorption of nonionic compounds

    USGS Publications Warehouse

    Kile, D.E.; Wershaw, R. L.; Chiou, C.T.

    1999-01-01

    Polarities of the soiL/sediment organic matter (SOM) in 19 soil and 9 freshwater sediment sam pies were determined from solid-state 13C-CP/MAS NMR spectra and compared with published partition coefficients (K(oc)) of carbon tetrachloride (CT) from aqueous solution. Nondestructive analysis of whole samples by solid-state NMR permits a direct assessment of the polarity of SOM that is not possible by elemental analysis. The percent of organic carbon associated with polar functional groups was estimated from the combined fraction of carbohydrate and carboxylamide-ester carbons. A plot of the measured partition coefficients (K(oc)) of carbon tetrachloride (CT) vs. percent polar organic carbon (POC) shows distinctly different populations of soils and sediments as well as a roughly inverse trend among the soil/sediment populations. Plots of K(oc) values for CT against other structural group carbon fractions did not yield distinct populations. The results indicate that the polarity of SOM is a significant factor in accounting for differences in K(oc) between the organic matter in soils and sediments. The alternate direct correlation of the sum of aliphatic and aromatic structural carbons with K(oc) illustrates the influence of nonpolar hydrocarbon on solute partition interaction. Additional elemental analysis data of selected samples further substantiate the effect of the organic matter polarity on the partition efficiency of nonpolar solutes. The separation between soil and sediment samples based on percent POC reflects definite differences of the properties of soil and sediment organic matters that are attributable to diagenesis.Polarities of the soil/sediment organic matter (SOM) in 19 soil and 9 freshwater sediment samples were determined from solid-state 13C-CP/MAS NMR spectra and compared with published partition coefficients (Koc) of carbon tetrachloride (CT) from aqueous solution. Nondestructive analysis of whole samples by solid-state NMR permits a direct assessment of the polarity of SOM that is not possible by elemental analysis. The percent of organic carbon associated with polar functional groups was estimated from the combined fraction of carbohydrate and carboxyl-amide-ester carbons. A plot of the measured partition coefficients (Koc) of carbon tetrachloride (CT) vs. percent polar organic carbon (POC) shows distinctly different populations of soils and sediments as well as a roughly inverse trend among the soil/sediment populations. Plots of Koc values for CT against other structural group carbon fractions did not yield distinct populations. The results indicate that the polarity of SOM is a significant factor in accounting for differences in Koc between the organic matter in soils and sediments. The alternate direct correlation of the sum of aliphatic and aromatic structural carbons with Koc illustrates the influence of nonpolar hydrocarbon on solute partition interaction. Additional elemental analysis data of selected samples further substantiate the effect of the organic matter polarity on the partition efficiency of nonpolar solutes. The separation between soil and sediment samples based on percent POC reflects definite differences of the properties of soil and sediment organic matters that are attributable to diagenesis.

  20. State-Space Estimation of Soil Organic Carbon Stock

    NASA Astrophysics Data System (ADS)

    Ogunwole, Joshua O.; Timm, Luis C.; Obidike-Ugwu, Evelyn O.; Gabriels, Donald M.

    2014-04-01

    Understanding soil spatial variability and identifying soil parameters most determinant to soil organic carbon stock is pivotal to precision in ecological modelling, prediction, estimation and management of soil within a landscape. This study investigates and describes field soil variability and its structural pattern for agricultural management decisions. The main aim was to relate variation in soil organic carbon stock to soil properties and to estimate soil organic carbon stock from the soil properties. A transect sampling of 100 points at 3 m intervals was carried out. Soils were sampled and analyzed for soil organic carbon and other selected soil properties along with determination of dry aggregate and water-stable aggregate fractions. Principal component analysis, geostatistics, and state-space analysis were conducted on the analyzed soil properties. The first three principal components explained 53.2% of the total variation; Principal Component 1 was dominated by soil exchange complex and dry sieved macroaggregates clusters. Exponential semivariogram model described the structure of soil organic carbon stock with a strong dependence indicating that soil organic carbon values were correlated up to 10.8m.Neighbouring values of soil organic carbon stock, all waterstable aggregate fractions, and dithionite and pyrophosphate iron gave reliable estimate of soil organic carbon stock by state-space.

  1. Sampling and Analysis for Lead in Water and Soil Samples on a University Campus: A Student Research Project.

    ERIC Educational Resources Information Center

    Butala, Steven J.; Zarrabi, Kaveh

    1995-01-01

    Describes a student research project that determined concentrations of lead in water drawn from selected drinking fountains and in selected soil samples on the campus of the University of Nevada, Las Vegas. (18 references) (DDR)

  2. Microbial colonisation in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota

    NASA Astrophysics Data System (ADS)

    Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

    2014-09-01

    Colonisation of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focusing on settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associate vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soils types on the surface of the island. Total viable bacterial counts were performed with plate count at 22, 30 and 37 °C for all soils samples and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms aerobic and anaerobic bacteria. The deep subsurface biosphere was investigated by collecting liquid subsurface samples from a 182 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between N deficits and the number of microorganisms in surface soils samples. The lowest number of bacteria (1 × 104-1 × 105 g-1) was detected in almost pure pumice but the count was significant higher (1 × 106-1 × 109 g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 m and 172 m depth at 80 °C and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

  3. New approach to measure soil particulate organic matter in intact samples using X-ray computed micro-tomography

    NASA Astrophysics Data System (ADS)

    Kravchenko, Alexandra; Negassa, Wakene; Guber, Andrey; Schmidt, Sonja

    2014-05-01

    Particulate soil organic matter (POM) is biologically and chemically active fraction of soil organic matter. It is a source of many agricultural and ecological benefits, among which are POM's contribution to C sequestration. Most of conventional research methods for studying organic matter dynamics involve measurements conducted on pre-processed i.e., ground and sieved soil samples. Unfortunately, grinding and sieving completely destroys soil structure, the component crucial for soil functioning and C protection. Importance of a better understanding of the role of soil structure and of the physical protection that it provides to soil C cannot be overstated; and analysis of quantities, characteristics, and decomposition rates of POM in soil samples with intact structure is among the key elements of gaining such understanding. However, a marked difficulty hindering the progress in such analyses is a lack of tools for identification and quantitative analysis of POM in intact soil samples. Recent advancement in applications of X-ray computed micro-tomography (μ-CT) to soil science has given an opportunity to conduct such analyses. The objective of the current study is to develop a procedure for identification and quantitative characterization of POM within intact soil samples using X-ray μ-CT images and to test performance of the proposed procedure on a set of multiple intact soil macro-aggregates. We used 16 4-6 mm soil aggregates collected at 0-15 cm depth from a Typic Hapludalf soil at multiple field sites with diverse agricultural management history. The aggregates have been scanned at SIMBIOS Centre, Dundee, Scotland at 10 micron resolution. POM was determined from the aggregate images using the developed procedure. The procedure was based on combining image pre-processing steps with discriminant analysis classification. The first component of the procedure consisted of image pre-processing steps based on the range of gray values (GV) along with shape and size of POM pieces. That was followed by discriminant analysis conducted using statistical and geostatistical characteristics of POM pieces. POM identified in the intact individual soil aggregates using the proposed procedure was in good agreement with POM measured in the studied aggregates using conventional lab method (R2=0.75). Of particular importance for accurate identification of POM in the images was the information on spatial characteristics of POM's GVs. Since this is the first attempt of POM determination, future work will be needed to explore how the proposed procedure performs under a variety of potentially influential factors, such as POM's origin and decomposition stage, X-ray scanning settings, image filtering and segmentation methods.

  4. Methanogens at the top of the world: occurrence and potential activity of methanogens in newly deglaciated soils in high-altitude cold deserts in the Western Himalayas

    PubMed Central

    Aschenbach, Katrin; Conrad, Ralf; Řeháková, Klára; Doležal, Jiří; Janatková, Kateřina; Angel, Roey

    2013-01-01

    Methanogens typically occur in reduced anoxic environments. However, in recent studies it has been shown that many aerated upland soils, including desert soils also host active methanogens. Here we show that soil samples from high-altitude cold deserts in the western Himalayas (Ladakh, India) produce CH4 after incubation as slurry under anoxic conditions at rates comparable to those of hot desert soils. Samples of matured soil from three different vegetation belts (arid, steppe, and subnival) were compared with younger soils originating from frontal and lateral moraines of receding glaciers. While methanogenic rates were higher in the samples from matured soils, CH4 was also produced in the samples from the recently deglaciated moraines. In both young and matured soils, those covered by a biological soil crust (biocrust) were more active than their bare counterparts. Isotopic analysis showed that in both cases CH4 was initially produced from H2/CO2 but later mostly from acetate. Analysis of the archaeal community in the in situ soil samples revealed a clear dominance of sequences related to Thaumarchaeota, while the methanogenic community comprised only a minor fraction of the archaeal community. Similar to other aerated soils, the methanogenic community was comprised almost solely of the genera Methanosarcina and Methanocella, and possibly also Methanobacterium in some cases. Nevertheless, ~103 gdw−1 soil methanogens were already present in the young moraine soil together with cyanobacteria. Our results demonstrate that Methanosarcina and Methanocella not only tolerate atmospheric oxygen but are also able to survive in these harsh cold environments. Their occurrence in newly deglaciated soils shows that they are early colonizers of desert soils, similar to cyanobacteria, and may play a role in the development of desert biocrusts. PMID:24348469

  5. Assessment of soil biological quality index (QBS-ar) in different crop rotation systems in paddy soils

    NASA Astrophysics Data System (ADS)

    Nadimi-Goki, Mandana; Bini, Claudio; haefele, Stephan

    2013-04-01

    New methods, based on soil microarthropods for soil quality evaluation have been proposed by some Authors. Soil microarthropods demonstrated to respond sensitively to land management practices and to be correlated with beneficial soil functions. QBS Index (QBS-ar) is calculated on the basis of microarthropod groups present in a soil sample. Each biological form found in the sample receives a score from 1 to 20 (eco-morphological index, EMI), according to its adaptation to soil environment. The objective of this study was to evaluate the effect of various rotation systems and sampling periods on soil biological quality index, in paddy soils. For the purpose of this study surface soil samples (0-15 cm depth) were collected from different rotation systems (rice-rice-rice, soya-rice-rice, fallow-rice and pea-soya-rice) with three replications, and four sampling times in April (after field preparation), June (after seedling), August (after tillering stage) and October (after rice harvesting). The study area is located in paddy soils of Verona area, Northern Italy. Soil microarthropods from a total of 48 samples were extracted and classified according to the Biological Quality of Soil Index (QBS-ar) method. In addition soil moisture, Cumulative Soil Respiration and pH were measured in each site. More diversity of microarthropod groups was found in June and August sampling times. T-test results between different rotations did not show significant differences while the mean difference between rotation and different sampling times is statistically different. The highest QBS-ar value was found in the fallow-rice rotation in the forth soil sampling time. Similar value was found in soya-rice-rice rotation. Result of linear regression analysis indicated that there is significant correlation between QBS-ar values and Cumulative Soil Respiration. Keywords: soil biological quality index (QBS-ar), Crop Rotation System, paddy soils, Italy

  6. Soil moisture ground truth, Lafayette, Indiana, site; St. Charles Missouri, site; Centralia, Missouri, site

    NASA Technical Reports Server (NTRS)

    Jones, E. B.

    1975-01-01

    The soil moisture ground-truth measurements and ground-cover descriptions taken at three soil moisture survey sites located near Lafayette, Indiana; St. Charles, Missouri; and Centralia, Missouri are given. The data were taken on November 10, 1975, in connection with airborne remote sensing missions being flown by the Environmental Research Institute of Michigan under the auspices of the National Aeronautics and Space Administration. Emphasis was placed on the soil moisture in bare fields. Soil moisture was sampled in the top 0 to 1 in. and 0 to 6 in. by means of a soil sampling push tube. These samples were then placed in plastic bags and awaited gravimetric analysis.

  7. [Impacts of landscape patterns on heavy metal contamination of agricultural top soils in the Pearl River Delta, South China].

    PubMed

    Li, Cheng; Li, Fang-bai; Wu, Zhi-feng; Cheng, Jiong

    2015-04-01

    Landscape patterns are known to influence many ecological processes, but the relationship between landscape patterns and soil pollution processes is not well understood. Based on 300 top soil samples, land use and cover map for the Pearl River Delta (PRD) of 2005, this study explored the characteristics and spatial pattern of heavy metal contamination of agricultural top soils and examined the impacts of landscape patterns on the heavy metal contamination in the buffers of soil samples. Research methods included geostatistical analysis, landscape pattern analysis, single-factor pollution indices, and Pearson correlation analysis. We found that: 1) out of the 235 agricultural soil samples, 3.8%, 0.4%, 17.0% and 9.4% samples exceeded the Grade II national standard for As, Pb, Cd and Ni concentrations respectively. High pollution levels were found in three cities, Guangzhou, Foshan and Zhongshan; 2) soils in the farmland were more polluted than those in the forest and orchard land, and there were no differences among different agricultural land use types in contamination level of each heavy metal (except Cd); and 3) the proportion, mean patch area as well as the degree of landscape fragmentation, landscape-level structural complexity and aggregation/connectivity of water at the buffer zone were significantly positively correlated with the contamination level of each of the four heavy metals in agricultural top soils. Part of the landscape pattern of urban land in the buffer zone also positively correlated with Pb and Cd levels (P < 0.05). On the contrary, the proportion, mean patch area and aggregation degree of forest land negatively correlated with soil Pb and Ni levels (P < 0.05); and 4) the closer to the industry land were the soil samples, the more polluted the soils were for Pb, Cd and Ni. Only landscape diversity was found to be positively correlated with soil Cd contamination. The study results provide new information and scientific basis for heavy metal pollution control and remediation, especially for agricultural soils in the PRD.

  8. Soil moisture variability across different scales in an Indian watershed for satellite soil moisture product validation

    NASA Astrophysics Data System (ADS)

    Singh, Gurjeet; Panda, Rabindra K.; Mohanty, Binayak P.; Jana, Raghavendra B.

    2016-05-01

    Strategic ground-based sampling of soil moisture across multiple scales is necessary to validate remotely sensed quantities such as NASA's Soil Moisture Active Passive (SMAP) product. In the present study, in-situ soil moisture data were collected at two nested scale extents (0.5 km and 3 km) to understand the trend of soil moisture variability across these scales. This ground-based soil moisture sampling was conducted in the 500 km2 Rana watershed situated in eastern India. The study area is characterized as sub-humid, sub-tropical climate with average annual rainfall of about 1456 mm. Three 3x3 km square grids were sampled intensively once a day at 49 locations each, at a spacing of 0.5 km. These intensive sampling locations were selected on the basis of different topography, soil properties and vegetation characteristics. In addition, measurements were also made at 9 locations around each intensive sampling grid at 3 km spacing to cover a 9x9 km square grid. Intensive fine scale soil moisture sampling as well as coarser scale samplings were made using both impedance probes and gravimetric analyses in the study watershed. The ground-based soil moisture samplings were conducted during the day, concurrent with the SMAP descending overpass. Analysis of soil moisture spatial variability in terms of areal mean soil moisture and the statistics of higher-order moments, i.e., the standard deviation, and the coefficient of variation are presented. Results showed that the standard deviation and coefficient of variation of measured soil moisture decreased with extent scale by increasing mean soil moisture.

  9. Bacterial Community Diversity of Oil-Contaminated Soils Assessed by High Throughput Sequencing of 16S rRNA Genes.

    PubMed

    Peng, Mu; Zi, Xiaoxue; Wang, Qiuyu

    2015-09-24

    Soil bacteria play a major role in ecological and biodegradable function processes in oil-contaminated soils. Here, we assessed the bacterial diversity and changes therein in oil-contaminated soils exposed to different periods of oil pollution using 454 pyrosequencing of 16S rRNA genes. No less than 24,953 valid reads and 6246 operational taxonomic units (OTUs) were obtained from all five studied samples. OTU richness was relatively higher in contaminated soils than clean samples. Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Planctomycetes and Proteobacteria were the dominant phyla among all the soil samples. The heatmap plot depicted the relative percentage of each bacterial family within each sample and clustered five samples into two groups. For the samples, bacteria in the soils varied at different periods of oil exposure. The oil pollution exerted strong selective pressure to propagate many potentially petroleum degrading bacteria. Redundancy analysis (RDA) indicated that organic matter was the highest determinant factor for explaining the variations in community compositions. This suggests that compared to clean soils, oil-polluted soils support more diverse bacterial communities and soil bacterial community shifts were mainly controlled by organic matter and exposure time. These results provide some useful information for bioremediation of petroleum contaminated soil in the future.

  10. Multivariate analysis of selected metals in tannery effluents and related soil.

    PubMed

    Tariq, Saadia R; Shah, Munir H; Shaheen, N; Khalique, A; Manzoor, S; Jaffar, M

    2005-06-30

    Effluent and relevant soil samples from 38 tanning units housed in Kasur, Pakistan, were obtained for metal analysis by flame atomic absorption spectrophotometric method. The levels of 12 metals, Na, Ca, K, Mg, Fe, Mn, Cr, Co, Cd, Ni, Pb and Zn were determined in the two media. The data were evaluated towards metal distribution and metal-to-metal correlations. The study evidenced enhanced levels of Cr (391, 16.7 mg/L) and Na (25,519, 9369 mg/L) in tannery effluents and relevant soil samples, respectively. The effluent versus soil trace metal content relationship confirmed that the effluent Cr was strongly correlated with soil Cr. For metal source identification the techniques of principal component analysis, and cluster analysis were applied. The principal component analysis yielded two factors for effluents: factor 1 (49.6% variance) showed significant loading for Ca, Fe, Mn, Cr, Cd, Ni, Pb and Zn, referring to a tanning related source for these metals, and factor 2 (12.6% variance) with higher loadings of Na, K, Mg and Co, was associated with the processes during the skin/hide treatment. Similarly, two factors with a cumulative variance of 34.8% were obtained for soil samples: factor 1 manifested the contribution from Mg, Mn, Co, Cd, Ni and Pb, which though soil-based is basically effluent-derived, while factor 2 was found associated with Na, K, Ca, Cr and Zn which referred to a tannery-based source. The dendograms obtained from cluster analysis, also support the observed results. The study exhibits a gross pollution of soils with Cr at levels far exceeding the stipulated safe limit laid down for tannery effluents.

  11. Enrichment and Bioavailability of Trace Elements in Soil in Vicinity of Railways in Japan.

    PubMed

    Wang, Zhen; Watanabe, Izumi; Ozaki, Hirozaku; Zhang, Jianqiang

    2018-01-01

    This study focuses on the concentrations, distribution, pollution levels, and bioavailability of 12 trace elements in soils along 6 different railways in Japan. Three diesel powered railways and three electricity powered railways were chosen as target. Surface soils (< 3 cm) were collected in vicinity of railways for analysis. Digestion and extraction were performed before concentration and bioavailability analysis. Enrichment factor was applied to investigate contamination levels of selected elements. The mean concentrations of Cr, Co, Ni, Cu, Zn, Sn, and Pb in soil samples were higher than soil background value in Japan. Concentrations of trace elements in soils along different railway had different characteristics. Horizontal distribution of Cu, Zn, Cd, Sn, and Pb in soil samples showed obviously downtrend with distance along railways with high frequency. Concentrations of V, Mn, Fe, and Co were higher in soils along railways which pass through city center. According to principal component analysis and cluster analysis, concentrations of Cu, Zn, Sn, and Pb could be considered as the indicators of soil contamination level along electricity powered trains, whereas indicators along diesel powered trains were not clear. Enrichment factor analysis proved that operation of freight trains had impact on pollution level of Cr, Ni, and Cd. Bioavailability of Mn, Co, Zn, and Cd in soil along electricity-powered railways were higher, and bioavailability of Pb in railways located in countryside was lower. Thus, enrichment and bioavailability of trace elements can be indicators of railway-originated trace elements pollution in soil.

  12. Processing Protocol for Soil Samples Potentially ...

    EPA Pesticide Factsheets

    Method Operating Procedures This protocol describes the processing steps for 45 g and 9 g soil samples potentially contaminated with Bacillus anthracis spores. The protocol is designed to separate and concentrate the spores from bulk soil down to a pellet that can be used for further analysis. Soil extraction solution and mechanical shaking are used to disrupt soil particle aggregates and to aid in the separation of spores from soil particles. Soil samples are washed twice with soil extraction solution to maximize recovery. Differential centrifugation is used to separate spores from the majority of the soil material. The 45 g protocol has been demonstrated by two laboratories using both loamy and sandy soil types. There were no significant differences overall between the two laboratories for either soil type, suggesting that the processing protocol would be robust enough to use at multiple laboratories while achieving comparable recoveries. The 45 g protocol has demonstrated a matrix limit of detection at 14 spores/gram of soil for loamy and sandy soils.

  13. Processing protocol for soil samples potentially contaminated with Bacillus anthracis spores [HS7.52.02 - 514

    USGS Publications Warehouse

    Silvestri, Erin E.; Griffin, Dale W.

    2017-01-01

    This protocol describes the processing steps for 45 g and 9 g soil samples potentially contaminated with Bacillus anthracis spores. The protocol is designed to separate and concentrate the spores from bulk soil down to a pellet that can be used for further analysis. Soil extraction solution and mechanical shaking are used to disrupt soil particle aggregates and to aid in the separation of spores from soil particles. Soil samples are washed twice with soil extraction solution to maximize recovery. Differential centrifugation is used to separate spores from the majority of the soil material. The 45 g protocol has been demonstrated by two laboratories using both loamy and sandy soil types. There were no significant differences overall between the two laboratories for either soil type, suggesting that the processing protocol would be robust enough to use at multiple laboratories while achieving comparable recoveries. The 45 g protocol has demonstrated a matrix limit of detection at 14 spores/gram of soil for loamy and sandy soils.

  14. Determination of linuron and related compounds in soil by microwave-assisted solvent extraction and reversed-phase liquid chromatography with UV detection.

    PubMed

    Molins, C; Hogendoorn, E A; Dijkman, E; Heusinkveld, H A; Baumann, R A

    2000-02-11

    The combination of microwave-assisted solvent extraction (MASE) and reversed-phase liquid chromatography (RPLC) with UV detection has been investigated for the efficient determination of phenylurea herbicides in soils involving the single-residue method (SRM) approach (linuron) and the multi-residue method (MRM) approach (monuron, monolinuron, isoproturon, metobromuron, diuron and linuron). Critical parameters of MASE, viz, extraction temperature, water content and extraction solvent were varied in order to optimise recoveries of the analytes while simultaneously minimising co-extraction of soil interferences. The optimised extraction procedure was applied to different types of soil with an organic carbon content of 0.4-16.7%. Besides freshly spiked soil samples, method validation included the analysis of samples with aged residues. A comparative study between the applicability of RPLC-UV without and with the use of column switching for the processing of uncleaned extracts, was carried out. For some of the tested analyte/matrix combinations the one-column approach (LC mode) is feasible. In comparison to LC, coupled-column LC (LC-LC mode) provides high selectivity in single-residue analysis (linuron) and, although less pronounced in multi-residue analysis (all six phenylurea herbicides), the clean-up performance of LC-LC improves both time of analysis and sample throughput. In the MRM approach the developed procedure involving MASE and LC-LC-UV provided acceptable recoveries (range, 80-120%) and RSDs (<12%) at levels of 10 microg/kg (n=9) and 50 microg/kg (n=7), respectively, for most analyte/matrix combinations. Recoveries from aged residue samples spiked at a level of 100 microg/kg (n=7) ranged, depending of the analyte/soil type combination, from 41-113% with RSDs ranging from 1-35%. In the SRM approach the developed LC-LC procedure was applied for the determination of linuron in 28 sandy soil samples collected in a field study. Linuron could be determined in soil with a limit of quantitation of 10 microg/kg.

  15. NIR & MIR spectroscopy as an effective tool for detecting urban influences on soils

    NASA Astrophysics Data System (ADS)

    Brook, Anna; Kopel, Daniella; Wittenberg, Lea

    2016-04-01

    Soil supports ecosystem functions and services, sustains ecosystems and biodiversity, yet in the urban spreading world of today, soil as a resource is in constant danger. Human society takes for granted the services provided by open green patches allocated within and nearby cities, with no consideration of ramifications of urban development on those areas. The urban ecology science recognizes the need to learn, identify and monitor the soils of cities - urban soils. The definitions of those soils are mainly descriptive, since urban soils do not submitted to the pedological process as natural soils. The main objective of this paper is to characterize urban soils in open green undisturbed patches by mineralogical composition. This goal was achieved using field and laboratory spectroscopy across visible near, short wave infrared regions and laboratory thermal mid infrared region. The majority of the studies on urban soils concentrate on identifying and mapping of pollution mostly heavy metals. In this study a top-down analysis (a simple and intuitive spectral feature for detecting the presence of minerals, organic matter and pollutants in mixed soil samples) is applied. This method uses spectral activity (SA) detection in a structured hierarchical approach to quickly and, more importantly, correctly identify dominant spectral features. The applied method is adopted by multiple in-production tools including continuum removal normalization, guided by polynomial generalization, and spectral-likelihood algorithms: orthogonal subspace projection (OSP) and iterative spectral mixture analysis (ISMA) were compared to feature likelihood methods. A total of 70 soil samples were collected at different locations: in remnant area within the city (edge and core), on the borders of the neighborhoods (edge) and in the fringe zone and in 2 locations in the protected park. The park samples were taken in locations found more than 100m from roads or direct anthropogenic disturbances. The samples were collected outside the setback of the residential areas (edge), and the fringe samples were taken away from the edge, where construction debris or waste was no longer visible - approximately 18 m-50 m down the slopes. The samples were taken from the upper layer of the soils, after the course organic or trash residues were removed. A soil sample drill, 5 cm in diameter and 10 cm deep, was used collecting up to 100 ml sample caps. The samples were air-dried, sifted through a 2 mm sieve to remove large particles and rock fragments and ground to <200 nm samples for spectral analysis across 400-2500 nm and laboratory mid-IR analysis. A ratio between the spectral features of soils' aliphatic and aromatic groups and calcite or hydroxyls to estimate the total organic matter via method proposed by Dlapa et al., 2014; base on the ratio indices between aliphatic hydrocarbons (3000-2800cm-1) to calcite mineral (peak area at 875cm-1, central wave length) and between carboxyl aromatic groups (1800-1200cm-1) to calcite mineral, were calculated for soil total carbon estimation. Results of the proposed top-down unmixing method suggest that the analysis is made very fast due to the simplified hierarchy which avoids the high-learning curve associated with unmixing algorithms showed that the most abundant components found in the all the samples taken within city boundaries were organic matter. In the "organic matter" category, we summarized all forms of vegetation endmembers including coarse vegetation and organic carbon. The second component was concrete followed by plastic and bricks. We found traces of concrete in all the urban study samples, even samples taken as far as 150 m from the edge of patches. In the park soils, we found a low diversity of materials and only two identifications of anthropogenic substances. The results of the soils pH, measured electrometrically and the particle size distribution, measured by Laser diffraction, indicate there is no difference between the samples particle size distribution and the pH values of the samples but they are not significantly different from the expected, except for the OM percentage. The suggested method was very effective for tracing the man-made substances, we could find concrete and asphalt, plastic and synthetic polymers after they were assimilated, broken down and decomposed into soil particles. By the top-down unmixing method we did not limit the substances we characterize and so we could detect unexpected materials and contaminants.

  16. Quantitative evaluation of the CEEM soil sampling intercomparison.

    PubMed

    Wagner, G; Lischer, P; Theocharopoulos, S; Muntau, H; Desaules, A; Quevauviller, P

    2001-01-08

    The aim of the CEEM soil project was to compare and to test the soil sampling and sample preparation guidelines used in the member states of the European Union and Switzerland for investigations of background and large-scale contamination of soils, soil monitoring and environmental risk assessments. The results of the comparative evaluation of the sampling guidelines demonstrated that, in soil contamination studies carried out with different sampling strategies and methods, comparable results can hardly be expected. Therefore, a reference database (RDB) was established by the organisers, which acted as a basis for the quantitative comparison of the participants' results. The detected deviations were related to the methodological details of the individual strategies. The comparative evaluation concept consisted of three steps: The first step was a comparison of the participants' samples (which were both centrally and individually analysed) between each other, as well as with the reference data base (RDB) and some given soil quality standards on the level of concentrations present. The comparison was made using the example of the metals cadmium, copper, lead and zinc. As a second step, the absolute and relative deviations between the reference database and the participants' results (both centrally analysed under repeatability conditions) were calculated. The comparability of the samples with the RDB was categorised on four levels. Methods of exploratory statistical analysis were applied to estimate the differential method bias among the participants. The levels of error caused by sampling and sample preparation were compared with those caused by the analytical procedures. As a third step, the methodological profiles of the participants were compiled to concisely describe the different procedures used. They were related to the results to find out the main factors leading to their incomparability. The outcome of this evaluation process was a list of strategies and methods, which are problematic with respect to comparability, and should be standardised and/or specified in order to arrive at representative and comparable results in soil contamination studies throughout Europe. Pre-normative recommendations for harmonising European soil sampling guidelines and standard operating procedures have been outlined in Wagner G, Desules A, Muntau H, Theocharopoulos S. Comparative Evaluation of European Methods for Sampling and Sample Preparation of Soils for Inorganic Analysis (CEEM Soil). Final Report of the Contract SMT4-CT96-2085, Sci Total Environ 2001;264:181-186. Wagner G, Desaules A, Munatu H. Theocharopolous S, Quevauvaller Ph. Suggestions for harmonising sampling and sample pre-treatment procedures and improving quality assurance in pre-analytical steps of soil contamination studies. Paper 1.7 Sci Total Environ 2001b;264:103-118.

  17. A versatile system for biological and soil chemical tests on a planetary landing craft. II - Hardware development

    NASA Technical Reports Server (NTRS)

    Martin, J. P.; Kok, B.; Radmer, R.

    1976-01-01

    A system has been under development which is designed to seek remotely for clues to life in planetary soil samples. The basic approach is a set of experiments, all having a common sensor, a gas analysis mass spectrometer which monitors gas composition in the head spaces above sealed, temperature controlled soil samples. Versatility is obtained with up to three preloaded, sealed fluid injector capsules for each of eleven soil test cells. Tests results with an engineering model has demonstrated performance capability of subsystem components such as soil distribution, gas sampling valves, injector mechanisms, temperature control, and test cell seal.

  18. Spatial Variability of PAHs and Microbial Community Structure in Surrounding Surficial Soil of Coal-Fired Power Plants in Xuzhou, China

    PubMed Central

    Ma, Jing; Zhang, Wangyuan; Chen, Yi; Zhang, Shaoliang; Feng, Qiyan; Hou, Huping; Chen, Fu

    2016-01-01

    This work investigated the spatial profile and source analysis of polycyclic aromatic hydrocarbons (PAHs) in soil that surrounds coal-fired power plants in Xuzhou, China. High-throughput sequencing was employed to investigate the composition and structure of soil bacterial communities. The total concentration of 15 PAHs in the surface soils ranged from 164.87 to 3494.81 μg/kg dry weight. The spatial profile of PAHs was site-specific with a concentration of 1400.09–3494.81 μg/kg in Yaozhuang. Based on the qualitative and principal component analysis results, coal burning and vehicle emission were found to be the main sources of PAHs in the surface soils. The phylogenetic analysis revealed differences in bacterial community compositions among different sampling sites. Proteobacteria was the most abundant phylum, while Acidobacteria was the second most abundant. The orders of Campylobacterales, Desulfobacterales and Hydrogenophilales had the most significant differences in relative abundance among the sampling sites. The redundancy analysis revealed that the differences in bacterial communities could be explained by the organic matter content. They could also be explicated by the acenaphthene concentration with longer arrows. Furthermore, OTUs of Proteobacteria phylum plotted around particular samples were confirmed to have a different composition of Proteobacteria phylum among the sample sites. Evaluating the relationship between soil PAHs concentration and bacterial community composition may provide useful information for the remediation of PAH contaminated sites. PMID:27598188

  19. Spatial Variability of PAHs and Microbial Community Structure in Surrounding Surficial Soil of Coal-Fired Power Plants in Xuzhou, China.

    PubMed

    Ma, Jing; Zhang, Wangyuan; Chen, Yi; Zhang, Shaoliang; Feng, Qiyan; Hou, Huping; Chen, Fu

    2016-09-02

    This work investigated the spatial profile and source analysis of polycyclic aromatic hydrocarbons (PAHs) in soil that surrounds coal-fired power plants in Xuzhou, China. High-throughput sequencing was employed to investigate the composition and structure of soil bacterial communities. The total concentration of 15 PAHs in the surface soils ranged from 164.87 to 3494.81 μg/kg dry weight. The spatial profile of PAHs was site-specific with a concentration of 1400.09-3494.81 μg/kg in Yaozhuang. Based on the qualitative and principal component analysis results, coal burning and vehicle emission were found to be the main sources of PAHs in the surface soils. The phylogenetic analysis revealed differences in bacterial community compositions among different sampling sites. Proteobacteria was the most abundant phylum, while Acidobacteria was the second most abundant. The orders of Campylobacterales, Desulfobacterales and Hydrogenophilales had the most significant differences in relative abundance among the sampling sites. The redundancy analysis revealed that the differences in bacterial communities could be explained by the organic matter content. They could also be explicated by the acenaphthene concentration with longer arrows. Furthermore, OTUs of Proteobacteria phylum plotted around particular samples were confirmed to have a different composition of Proteobacteria phylum among the sample sites. Evaluating the relationship between soil PAHs concentration and bacterial community composition may provide useful information for the remediation of PAH contaminated sites.

  20. Forensic Comparison of Soil Samples Using Nondestructive Elemental Analysis.

    PubMed

    Uitdehaag, Stefan; Wiarda, Wim; Donders, Timme; Kuiper, Irene

    2017-07-01

    Soil can play an important role in forensic cases in linking suspects or objects to a crime scene by comparing samples from the crime scene with samples derived from items. This study uses an adapted ED-XRF analysis (sieving instead of grinding to prevent destruction of microfossils) to produce elemental composition data of 20 elements. Different data processing techniques and statistical distances were evaluated using data from 50 samples and the log-LR cost (C llr ). The best performing combination, Canberra distance, relative data, and square root values, is used to construct a discriminative model. Examples of the spatial resolution of the method in crime scenes are shown for three locations, and sampling strategy is discussed. Twelve test cases were analyzed, and results showed that the method is applicable. The study shows how the combination of an analysis technique, a database, and a discriminative model can be used to compare multiple soil samples quickly. © 2016 American Academy of Forensic Sciences.

  1. Batch experiments versus soil pore water extraction--what makes the difference in isoproturon (bio-)availability?

    PubMed

    Folberth, Christian; Suhadolc, Metka; Scherb, Hagen; Munch, Jean Charles; Schroll, Reiner

    2009-10-01

    Two approaches to determine pesticide (bio-)availability in soils (i) batch experiments with "extraction with an excess of water" (EEW) and (ii) the recently introduced "soil pore water (PW) extraction" of pesticide incubated soil samples have been compared with regard to the sorption behavior of the model compound isoproturon in soils. A significant correlation between TOC and adsorbed pesticide amount was found when using the EEW approach. In contrast, there was no correlation between TOC and adsorbed isoproturon when using the in situ PW extraction method. Furthermore, sorption was higher at all concentrations in the EEW method when comparing the distribution coefficients (K(d)) for both methods. Over all, sorption in incubated soil samples at an identical water tension (-15 kPa) and soil density (1.3 g cm(-3)) appears to be controlled by a complex combination of sorption driving soil parameters. Isoproturon bioavailability was found to be governed in different soils by binding strength and availability of sorption sites as well as water content, whereas the dominance of either one of these factors seems to depend on the individual composition and characteristics of the respective soil sample. Using multiple linear regression analysis we obtained furthermore indications that the soil pore structure is affected by the EEW method due to disaggregation, resulting in a higher availability of pesticide sorption sites than in undisturbed soil samples. Therefore, it can be concluded that isoproturon sorption is overestimated when using the EEW method, which should be taken into account when using data from this approach or similar batch techniques for risk assessment analysis.

  2. Soil pretreatment and fast cell lysis for direct polymerase chain reaction from forest soils for terminal restriction fragment length polymorphism analysis of fungal communities

    Treesearch

    Fei Cheng; Lin Hou; Keith Woeste; Zhengchun Shang; Xiaobang Peng; Peng Zhao; Shuoxin Zhang

    2016-01-01

    Humic substances in soil DNA samples can influence the assessment of microbial diversity and community composition. Using multiple steps during or after cell lysis adds expenses, is time-consuming, and causes DNA loss. A pretreatment of soil samples and a single step DNA extraction may improve experimental results. In order to optimize a protocol for obtaining high...

  3. Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium.

    PubMed

    Senesi, G S; Dell'Aglio, M; Gaudiuso, R; De Giacomo, A; Zaccone, C; De Pascale, O; Miano, T M; Capitelli, M

    2009-05-01

    Soil is unanimously considered as one of the most important sink of heavy metals released by human activities. Heavy metal analysis of natural and polluted soils is generally conducted by the use of atomic absorption spectroscopy (AAS) or inductively coupled plasma optical emission spectroscopy (ICP-OES) on adequately obtained soil extracts. Although in recent years the emergent technique of laser-induced breakdown spectroscopy (LIBS) has been applied widely and with increasing success for the qualitative and quantitative analyses of a number of heavy metals in soil matrices with relevant simplification of the conventional methodologies, the technique still requires further confirmation before it can be applied fully successfully in soil analyses. The main objective of this work was to demonstrate that new developments in LIBS technique are able to provide reliable qualitative and quantitative analytical evaluation of several heavy metals in soils, with special focus on the element chromium (Cr), and with reference to the concentrations measured by conventional ICP spectroscopy. The preliminary qualitative LIBS analysis of five soil samples and one sewage sludge sample has allowed the detection of a number of elements including Al, Ca, Cr, Cu, Fe, Mg, Mn, Pb, Si, Ti, V and Zn. Of these, a quantitative analysis was also possible for the elements Cr, Cu, Pb, V and Zn based on the obtained linearity of the calibration curves constructed for each heavy metal, i.e., the proportionality between the intensity of the LIBS emission peaks and the concentration of each heavy metal in the sample measured by ICP. In particular, a triplet of emission lines for Cr could be used for its quantitative measurement. The consistency of experiments made on various samples was supported by the same characteristics of the laser-induced plasma (LIP), i.e., the typical linear distribution confirming the existence of local thermodynamic equilibrium (LTE) condition, and similar excitation temperatures and comparable electron number density measured for all samples. An index of the anthropogenic contribution of Cr in polluted soils was calculated in comparison to a non-polluted reference soil. Thus, the intensity ratios of the emission lines of heavy metal can be used to detect in few minutes the polluted areas for which a more detailed sampling and analysis can be useful.

  4. Planning Considerations Related to Collecting and Analyzing Samples of the Martian Soils

    NASA Technical Reports Server (NTRS)

    Liu, Yang; Mellon, Mike T.; Ming, Douglas W.; Morris, Richard V.; Noble, Sarah K.; Sullivan, Robert J.; Taylor, Lawrence A.; Beaty, David W.

    2014-01-01

    The Mars Sample Return (MSR) End-to-End International Science Analysis Group (E2E-iSAG [1]) established scientific objectives associ-ated with Mars returned-sample science that require the return and investigation of one or more soil samples. Soil is defined here as loose, unconsolidated materials with no implication for the presence or absence of or-ganic components. The proposed Mars 2020 (M-2020) rover is likely to collect and cache soil in addition to rock samples [2], which could be followed by future sample retrieval and return missions. Here we discuss key scientific consid-erations for sampling and caching soil samples on the proposed M-2020 rover, as well as the state in which samples would need to be preserved when received by analysts on Earth. We are seeking feedback on these draft plans as input to mission requirement formulation. A related planning exercise on rocks is reported in an accompanying abstract [3].

  5. Analyzing silver concentration in soil using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Prasetyo, S.; Isnaeni; Zaitun; Mitchell, K.; Suliyanti, M. M.; Herbani, Y.

    2018-03-01

    Determination of concentration of heavy metal ions in soil, such as silver, is very important to study soil pollution levels. Several techniques have been developed to determine silver ion concentration in soil. In this paper, we utilized laser-induced breakdown spectroscopy (LIBS) to study silver concentration in soil. We used four different data analysis methods to calculate silver concentration. In this case, we prepared soil samples with different silver ion concentrations from 400 ppm to 1000 ppm. Our analysis was focused on the 843.15 nm silver atomic absorption line. We found that plasma intensity increased as silver concentration increased. Our findings were based on our analysis using four different analysis methods. We believe that these analysis methods are able to calculate silver concentration in soil using LIBS.

  6. Contamination valuation of soil and groundwater source at anaerobic municipal solid waste landfill site.

    PubMed

    Aziz, Shuokr Qarani; Maulood, Yousif Ismael

    2015-12-01

    The present work aimed to determine the risks that formed landfill leachate from anaerobic Erbil Landfill Site (ELS) poses on groundwater source and to observe the effects of disposed municipal solid waste (MSW) on soil properties. The study further aims to fill the gap in studies on the effects of disposed MSW and produced leachate on the groundwater characteristics and soil quality at ELS, Iraq. Soil, leachate, and groundwater samples were collected from ELS for use as samples in this study. Unpolluted groundwater samples were collected from an area outside of the landfill. Field and laboratory experiments for the soil samples were conducted. Chemical analyses for the soil samples such as organic matter, total salts, and SO4 (=) were also performed. Raw leachate and groundwater samples were analyzed using physical and chemical experiments. The yields for sorptivity, steady-state infiltration rate, and hydraulic conductivity of the soil samples were 0.0006 m/√s, 0.00004 m/s, and 2.17 × 10(-5) m/s, respectively. The soil at ELS was found to be light brown clayey gravel with sand and light brown gravely lean clay layers with low permeability. Unprocessed leachate analysis identified the leachate as stabilized. Findings showed that the soil and groundwater at the anaerobic ELS were contaminated.

  7. Transversely Excited Atmospheric CO2 Laser-Induced Plasma Spectroscopy for the Detection of Heavy Metals in Soil

    NASA Astrophysics Data System (ADS)

    Khumaeni, A.; Sugito, H.; Setia Budi, W.; Yoyo Wardaya, A.

    2018-01-01

    A rapid detection of heavy metals in soil was presented by the metal-assisted gas plasma method using specific characteristics of a pulsed, transversely excited atmospheric (TEA) CO2 laser. The soil particles were placed in a hole made of acrylic plate. The sample was covered by a to prevent the soil particles from being blown off. The mesh also functioned to initiate a luminous plasma. When a TEA CO2 laser (1500 mJ, 200 ns) was focused on the soil sample, passing through the metal mesh, some of the laser energy was used to generate the gas plasma on the mesh surface, and the remaining laser energy was employed to ablate the soil particles. The fine, ablated soil particles moved into the gas plasma region to be dissociated and excited. Using this technique, analysis can be made with reduced sample pretreatment, and therefore a rapid analysis can be performed efficiently. The results proved that the signal to noise ratio (S/N) of the emission spectral lines is much better for the case of the present method (mesh method) compared to the case of standard laser-induced breakdown spectroscopy using the pellet method. Rapid detection of heavy metal elements in soil has been successfully carried out. The detection limits of Cu and Hg in soil were estimated to be 3 and 10 mg/kg, respectively. The present method has good potential for rapid and sensitive detection of heavy metals in soil samples.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Wade C.

    Oak Ridge Institute for Science and Education (ORISE) personnel visited the United Nuclear Corporation (UNC) Naval Products site on three separate occasions during the months of October and November 2011. The purpose of these visits was to conduct confirmatory surveys of soils associated with the Argyle Street sewer line that was being removed. Soil samples were collected from six different, judgmentally determined locations in the Argyle Street sewer trench. In addition to the six soil samples collected by ORISE, four replicate soil samples were collected by Cabrera Services, Inc. (CSI) for analysis by the ORISE laboratory. Replicate samples S0010 andmore » S0011 were final status survey (FSS) bias samples; S0012 was an FSS systematic sample; and S0015 was a waste characterization sample. Six soil samples were also collected for background determination. Uranium-235 and uranium-238 concentrations were determined via gamma spectroscopy; the spectra were also reviewed for other identifiable photopeaks. Radionuclide concentrations for these soil samples are provided. In addition to the replicate samples and the samples collected by ORISE, CSI submitted three soil samples for inter-laboratory comparison analyses. One sample was from the background reference area, one was from waste characterization efforts (material inside the sewer line), and one was a FSS sample. The inter-laboratory comparison analyses results between ORISE and CSI were in agreement, except for one sample collected in the reference area. Smear results For Argyle Street sewer pipes are tabulated.« less

  9. The preservation of microbial DNA in archived soils of various genetic types.

    PubMed

    Ivanova, Ekaterina A; Korvigo, Ilia O; Aparin, Boris F; Chirak, Evgenii L; Pershina, Elizaveta V; Romaschenko, Nikolay S; Provorov, Nikolai A; Andronov, Evgeny E

    2017-01-01

    This study is a comparative analysis of samples of archived (stored for over 70-90 years) and modern soils of two different genetic types-chernozem and sod-podzolic soils. We revealed a reduction in biodiversity of archived soils relative to their modern state. Particularly, long-term storage in the museum exerted a greater impact on the microbiomes of sod-podzolic soils, while chernozem samples better preserved the native community. Thus, the persistence of microbial DNA in soil is largely determined by the physico-chemical characteristics that differ across soil types. Chernozems create better conditions for the long-term DNA preservation than sod-podzolic soils. This results in supposedly higher levels of biodiversity conservation in the microbiomes of chernozem with preservation of major microbial taxa dominant in the modern (control) soil samples, which makes archived chernozems a promising object for paleosoil studies.

  10. The preservation of microbial DNA in archived soils of various genetic types

    PubMed Central

    Korvigo, Ilia O.; Aparin, Boris F.; Chirak, Evgenii L.; Pershina, Elizaveta V.; Romaschenko, Nikolay S.; Provorov, Nikolai A.; Andronov, Evgeny E.

    2017-01-01

    This study is a comparative analysis of samples of archived (stored for over 70–90 years) and modern soils of two different genetic types–chernozem and sod-podzolic soils. We revealed a reduction in biodiversity of archived soils relative to their modern state. Particularly, long-term storage in the museum exerted a greater impact on the microbiomes of sod-podzolic soils, while chernozem samples better preserved the native community. Thus, the persistence of microbial DNA in soil is largely determined by the physico-chemical characteristics that differ across soil types. Chernozems create better conditions for the long-term DNA preservation than sod-podzolic soils. This results in supposedly higher levels of biodiversity conservation in the microbiomes of chernozem with preservation of major microbial taxa dominant in the modern (control) soil samples, which makes archived chernozems a promising object for paleosoil studies. PMID:28339464

  11. Comparison of procedures for correction of matrix interferences in the analysis of soils by ICP-OES with CCD detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadler, D.A.; Sun, F.; Littlejohn, D.

    1995-12-31

    ICP-OES is a useful technique for multi-element analysis of soils. However, as a number of elements are present in relatively high concentrations, matrix interferences can occur and examples have been widely reported. The availability of CCD detectors has increased the opportunities for rapid multi-element, multi-wave-length determination of elemental concentrations in soils and other environmental samples. As the composition of soils from industrial sites can vary considerably, especially when taken from different pit horizons, procedures are required to assess the extent of interferences and correct the effects, on a simultaneous multi-element basis. In single element analysis, plasma operating conditions can sometimesmore » be varied to minimize or even remove multiplicative interferences. In simultaneous multi-element analysis, the scope for this approach may be limited, depending on the spectrochemical characteristics of the emitting analyte species. Matrix matching, by addition of major sample components to the analyte calibrant solutions, can be used to minimize inaccuracies. However, there are also limitations to this procedure, when the sample composition varies significantly. Multiplicative interference effects can also be assessed by a {open_quotes}single standard addition{close_quotes} of each analyte to the sample solution and the information obtained may be used to correct the analyte concentrations determined directly. Each of these approaches has been evaluated to ascertain the best procedure for multi-element analysis of industrial soils by ICP-OES with CCD detection at multiple wavelengths. Standard reference materials and field samples have been analyzed to illustrate the efficacy of each procedure.« less

  12. The Surface Chemical Composition of Lunar Samples and Its Significance for Optical Properties

    NASA Technical Reports Server (NTRS)

    Gold, T.; Bilson, E.; Baron, R. L.

    1976-01-01

    The surface iron, titanium, calcium, and silicon concentration in numerous lunar soil and rock samples was determined by Auger electron spectroscopy. All soil samples show a large increase in the iron to oxygen ratio compared with samples of pulverized rock or with results of the bulk chemical analysis. A solar wind simulation experiment using 2 keV energy alpha -particles showed that an ion dose corresponding to approximately 30,000 years of solar wind increased the iron concentration on the surface of the pulverized Apollo 14 rock sample 14310 to the concentration measured in the Apollo 14 soil sample 14163, and the albedo of the pulverized rock decreased from 0.36 to 0.07. The low albedo of the lunar soil is related to the iron + titanium concentration on its surface. A solar wind sputter reduction mechanism is discussed as a possible cause for both the surface chemical and optical properties of the soil.

  13. Evaluation and characterization of anti-estrogenic and anti-androgenic activities in soil samples along the Second Songhua River, China.

    PubMed

    Li, Jian; Wang, Yafei; Kong, Dongdong; Wang, Jinsheng; Teng, Yanguo; Li, Na

    2015-11-01

    In the present study, re-combined estrogen receptor (ER) and androgen receptor (AR) gene yeast assays combined with a novel approach based on Monte Carlo simulation were used for evaluation and characterization of soil samples collected from Jilin along the Second Songhua River to assess their antagonist/agonist properties for ER and AR. The results showed that estrogenic activity only occurred in the soil samples collected in the agriculture area, but most soil samples showed anti-estrogenic activities, and the bioassay-derived 4-hydroxytamoxifen equivalents ranged from N.D. to 23.51 μg/g. Hydrophilic substance fractions were determined as potential contributors associated with anti-estrogenic activity in these soil samples. Moreover, none of the soil samples exhibited AR agonistic potency, whereas 54% of the soil samples exhibited AR antagonistic potency. The flutamide equivalents varied between N.D. and 178.05 μg/g. Based on Monte Carlo simulation-related mass balance analysis, the AR antagonistic activities were significantly correlated with the media polar and polar fractions. All of these results support that this novel calculation method can be adopted effectively to quantify and characterize the ER/AR agonists and antagonists of the soil samples, and these data could help provide useful information for future management and remediation efforts.

  14. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR EXTRACTION OF SOIL AND HOUSE DUST SAMPLES FOR GC/MS ANALYSIS OF PESTICIDE AND PAH (BCO-L-28.0)

    EPA Science Inventory

    The purpose of this SOP is to describe procedures for extracting and preparing a dust or soil sample for gas chromatography mass spectrometry (GC/MS) analysis of pesticides and polyaromatic hydrocarbons (PAHs). This procedure was followed to ensure consistent data retrieval durin...

  15. Spatial distribution and enteroparasite contamination in peridomiciliar soil and water in the Apucaraninha Indigenous Land, southern Brazil.

    PubMed

    da Silva, Joseane Balan; Piva, Camila; Falavigna-Guilherme, Ana Lúcia; Rossoni, Diogo Francisco; de Ornelas Toledo, Max Jean

    2016-04-01

    The prevalence and distribution of soil and water samples contaminated with enteroparasites of humans and animals with zoonotic potential (EHAZP) in Apucaraninha Indigenous Land (AIL), southern Brazil, was evaluated. An environmental survey was conducted to evaluate the presence of parasitic forms in peridomiciliary soil and associated variables. Soil samples were collected from 40/293 domiciles (10 domiciles per season), from November 2010 to June 2011, and evaluated by modified methods of Faust et al. and Lutz. Analyses of water from seven consumption sites were also performed. The overall prevalence of soil samples contaminated by EHAZP was 23.8 %. The most prevalent parasitic forms were cyst of Entamoeba spp. and eggs of Ascaris spp. The highest prevalence of contaminated soil samples was observed in winter (31 %). The probability map obtained with geostatistical analyses showed an average of 47 % soil contamination at a distance of approximately 140 m. The parasitological analysis of water did not detect Giardia spp. or Cryptosporidium spp. and showed that all collection points were within the standards of the Brazilian law. However, the microbiological analysis showed the presence of Escherichia coli in 6/7 sampled points. Despite the low level of contamination by EHAZP in peridomiciliar soil and the absence of pathogenic protozoa in water, the AIL soil and water (due to the presence of fecal coliforms) are potential sources of infection for the population, indicating the need for improvements in sanitation and water treatment, in addition periodic treatment of the population with antiparasitic.

  16. Characterization of polycyclic aromatic hydrocarbons in soil close to secondary copper and aluminum smelters.

    PubMed

    Hu, Jicheng; Wu, Jing; Zha, Xiaoshuo; Yang, Chen; Hua, Ying; Wang, Ying; Jin, Jun

    2017-04-01

    A total of 35 surface soil samples around two secondary copper smelters and one secondary aluminum smelter were collected and analyzed for 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs). The concentrations of PAHs were highest when the soil sample sites were closest to the secondary copper smelters. And, a level gradient of PAHs was observed in soil samples according to the distance from two secondary copper smelters, respectively. The results suggested that PAH concentrations in surrounding soils may be influenced by secondary copper smelters investigated, whereas no such gradient was observed in soils around the secondary aluminum smelter. Further analysis revealed that PAH patterns in soil samples also showed some difference between secondary copper and aluminum smelter, which may be attributed to the difference in their fuel and smelting process. PAH patterns and diagnostic ratios indicated that biomass burning may be also an important source of PAHs in the surrounding soil in addition to the emissions from the plants investigated.

  17. Soil Components in Heterogeneous Impact Glass in Martian Meteorite EETA79001

    NASA Technical Reports Server (NTRS)

    Schrader, C. M.; Cohen, B. A.; Donovan, J. J.; Vicenzi, E. P.

    2010-01-01

    Martian soil composition can illuminate past and ongoing near-surface processes such as impact gardening [2] and hydrothermal and volcanic activity [3,4]. Though the Mars Exploration Rovers (MER) have analyzed the major-element composition of Martian soils, no soil samples have been returned to Earth for detailed chemical analysis. Rao et al. [1] suggested that Martian meteorite EETA79001 contains melted Martian soil in its impact glass (Lithology C) based on sulfur enrichment of Lithology C relative to the meteorite s basaltic lithologies (A and B) [1,2]. If true, it may be possible to extract detailed soil chemical analyses using this meteoritic sample. We conducted high-resolution (0.3 m/pixel) element mapping of Lithology C in thin section EETA79001,18 by energy dispersive spectrometry (EDS). We use these data for principal component analysis (PCA).

  18. Partitioning the relative contributions of inorganic plant composition and soil characteristics to the quality of Helichrysum italicum subsp. italicum (Roth) G. Don fil. essential oil.

    PubMed

    Bianchini, Ange; Santoni, François; Paolini, Julien; Bernardini, Antoine-François; Mouillot, David; Costa, Jean

    2009-07-01

    Composition of Helichrysum italicum subsp. italicum essential oil showed chemical variability according to vegetation cycle, environment, and geographic origins. In the present work, 48 individuals of this plant at different development stages and the corresponding root soils were sampled: i) 28 volatile components were identified and measured in essential oil by using GC and GC/MS; ii) ten elements from plants and soils have been estimated using colorimetry in continuous flux, flame atomic absorption spectrometry, or emission spectrometry (FAAS/FAES); iii) texture and acidity (real and potential) of soil samples were also reported. Relationships between the essential-oil composition, the inorganic plant composition, and the soil characteristics (inorganic composition, texture, and acidity) have been established using multivariate analysis such as Principal Component Analysis (PCA) and partial Redundancy Analysis (RDA). This study demonstrates a high level of intraspecific differences in oil composition due to environmental factors and, more particularly, soil characteristics.

  19. Climatically driven loss of calcium in steppe soil as a sink for atmospheric carbon

    Treesearch

    A.G. Lapenis; G.B. Lawrence; S.W. Bailey; B.F. Aparin; A.I. Shiklomanov; N.A. Speranskaya; M.S. Torn; M. Calef

    2008-01-01

    During the last several thousand years the semi-arid, cold climate of the Russian steppe formed highly fertile soils rich in organic carbon and calcium (classified as Chernozems in the Russian system). Analysis of archived soil samples collected in Kemannaya Steppe Preserve in 1920, 1947, 1970, and fresh samples collected in 1998 indicated that the native steppe...

  20. Random whole metagenomic sequencing for forensic discrimination of soils.

    PubMed

    Khodakova, Anastasia S; Smith, Renee J; Burgoyne, Leigh; Abarno, Damien; Linacre, Adrian

    2014-01-01

    Here we assess the ability of random whole metagenomic sequencing approaches to discriminate between similar soils from two geographically distinct urban sites for application in forensic science. Repeat samples from two parklands in residential areas separated by approximately 3 km were collected and the DNA was extracted. Shotgun, whole genome amplification (WGA) and single arbitrarily primed DNA amplification (AP-PCR) based sequencing techniques were then used to generate soil metagenomic profiles. Full and subsampled metagenomic datasets were then annotated against M5NR/M5RNA (taxonomic classification) and SEED Subsystems (metabolic classification) databases. Further comparative analyses were performed using a number of statistical tools including: hierarchical agglomerative clustering (CLUSTER); similarity profile analysis (SIMPROF); non-metric multidimensional scaling (NMDS); and canonical analysis of principal coordinates (CAP) at all major levels of taxonomic and metabolic classification. Our data showed that shotgun and WGA-based approaches generated highly similar metagenomic profiles for the soil samples such that the soil samples could not be distinguished accurately. An AP-PCR based approach was shown to be successful at obtaining reproducible site-specific metagenomic DNA profiles, which in turn were employed for successful discrimination of visually similar soil samples collected from two different locations.

  1. Termite infestation associated with type of soil in pulau pinang, malaysia (isoptera: rhinotermitidae).

    PubMed

    Majid, Abdul Hafiz Ab; Ahmad, Abu Hassan

    2013-12-01

    Nine soil samples from nine buildings infested with Coptotermes gestroi in Pulau Pinang, Malaysia, were tested for the type of soil texture. The soil texture analysis procedures used the hydrometer method. Four of nine buildings (44%) yielded loamy sand-type soil, whereas five of nine buildings (56%) contained sandy loam-type soil.

  2. Termite Infestation Associated with Type of Soil in Pulau Pinang, Malaysia (Isoptera: Rhinotermitidae)

    PubMed Central

    Majid, Abdul Hafiz Ab; Ahmad, Abu Hassan

    2013-01-01

    Nine soil samples from nine buildings infested with Coptotermes gestroi in Pulau Pinang, Malaysia, were tested for the type of soil texture. The soil texture analysis procedures used the hydrometer method. Four of nine buildings (44%) yielded loamy sand-type soil, whereas five of nine buildings (56%) contained sandy loam-type soil. PMID:24575252

  3. Characterization of the spatial variability of soil available zinc at various sampling densities using grouped soil type information.

    PubMed

    Song, Xiao-Dong; Zhang, Gan-Lin; Liu, Feng; Li, De-Cheng; Zhao, Yu-Guo

    2016-11-01

    The influence of anthropogenic activities and natural processes involved high uncertainties to the spatial variation modeling of soil available zinc (AZn) in plain river network regions. Four datasets with different sampling densities were split over the Qiaocheng district of Bozhou City, China. The difference of AZn concentrations regarding soil types was analyzed by the principal component analysis (PCA). Since the stationarity was not indicated and effective ranges of four datasets were larger than the sampling extent (about 400 m), two investigation tools, namely F3 test and stationarity index (SI), were employed to test the local non-stationarity. Geographically weighted regression (GWR) technique was performed to describe the spatial heterogeneity of AZn concentrations under the non-stationarity assumption. GWR based on grouped soil type information (GWRG for short) was proposed so as to benefit the local modeling of soil AZn within each soil-landscape unit. For reference, the multiple linear regression (MLR) model, a global regression technique, was also employed and incorporated the same predictors as in the GWR models. Validation results based on 100 times realization demonstrated that GWRG outperformed MLR and can produce similar or better accuracy than the GWR approach. Nevertheless, GWRG can generate better soil maps than GWR for limit soil data. Two-sample t test of produced soil maps also confirmed significantly different means. Variogram analysis of the model residuals exhibited weak spatial correlation, rejecting the use of hybrid kriging techniques. As a heuristically statistical method, the GWRG was beneficial in this study and potentially for other soil properties.

  4. Soil characterisation by bacterial community analysis for forensic applications: A quantitative comparison of environmental technologies.

    PubMed

    Habtom, Habteab; Demanèche, Sandrine; Dawson, Lorna; Azulay, Chen; Matan, Ofra; Robe, Patrick; Gafny, Ron; Simonet, Pascal; Jurkevitch, Edouard; Pasternak, Zohar

    2017-01-01

    The ubiquity and transferability of soil makes it a resource for the forensic investigator, as it can provide a link between agents and scenes. However, the information contained in soils, such as chemical compounds, physical particles or biological entities, is seldom used in forensic investigations; due mainly to the associated costs, lack of available expertise, and the lack of soil databases. The microbial DNA in soil is relatively easy to access and analyse, having thus the potential to provide a powerful means for discriminating soil samples or linking them to a common origin. We compared the effectiveness and reliability of multiple methods and genes for bacterial characterisation in the differentiation of soil samples: ribosomal intergenic spacer analysis (RISA), terminal restriction fragment length polymorphism (TRFLP) of the rpoB gene, and five methods using the 16S rRNA gene: phylogenetic microarrays, TRFLP, and high throughput sequencing with Roche 454, Illumina MiSeq and IonTorrent PGM platforms. All these methods were also compared to long-chain hydrocarbons (n-alkanes) and fatty alcohol profiling of the same soil samples. RISA, 16S TRFLP and MiSeq performed best, reliably and significantly discriminating between adjacent, similar soil types. As TRFLP employs the same capillary electrophoresis equipment and procedures used to analyse human DNA, it is readily available for use in most forensic laboratories. TRFLP was optimized for forensic usage in five parameters: choice of primer pair, fluorescent tagging, concentrating DNA after digestion, number of PCR amplifications per sample and number of capillary electrophoresis runs per PCR amplification. This study shows that molecular microbial ecology methodologies are robust in discriminating between soil samples, illustrating their potential usage as an evaluative forensic tool. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Soil Viral Communities Vary Temporally and along a Land Use Transect as Revealed by Virus-Like Particle Counting and a Modified Community Fingerprinting Approach (fRAPD)

    PubMed Central

    Narr, Anja; Nawaz, Ali; Wick, Lukas Y.; Harms, Hauke; Chatzinotas, Antonis

    2017-01-01

    Environmental surveys on soil viruses are still rare and mostly anecdotal, i. e., they mostly report on viruses at one location or for only a few sampling dates. Detailed time-series analysis with multiple samples can reveal the spatio-temporal dynamics of viral communities and provide important input as to how viruses interact with their potential hosts and the environment. Such surveys, however, require fast, easy-to-apply and reliable methods. In the present study we surveyed monthly across 13 months the abundance of virus-like particles (VLP) and the structure of the viral communities in soils along a land use transect (i.e., forest, pasture, and cropland). We evaluated 32 procedures to extract VLP from soil using different buffers and mechanical methods. The most efficient extraction was achieved with 1× saline magnesium buffer in combination with 20 min vortexing. For community structure analysis we developed an optimized fingerprinting approach (fluorescent RAPD-PCR; fRAPD) by combining RAPD-PCR with fluorescently labeled primers in order to size the obtained fragments on a capillary sequencing machine. With the concomitantly collected data of soil specific factors and weather data, we were able to find correlations of viral abundance and community structure with environmental variables and sampling site. More specifically, we found that soil specific factors such as pH and total nitrogen content played a significant role in shaping both soil viral abundance and community structure. The fRAPD analysis revealed high temporal changes and clustered the viral communities according to sampling sites. In particular we observed that temperature and rainfall shaped soil viral communities in non-forest sites. In summary our findings suggest that sampling site was a key factor for shaping the abundance and community structure of soil viruses, and when site vegetation was reduced, temperature and rainfall were also important factors. PMID:29067022

  6. Procedures for sampling radium-contaminated soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleischhauer, H.L.

    Two procedures for sampling the surface layer (0 to 15 centimeters) of radium-contaminated soil are recommended for use in remedial action projects. Both procedures adhere to the philosophy that soil samples should have constant geometry and constant volume in order to ensure uniformity. In the first procedure, a ''cookie cutter'' fashioned from pipe or steel plate, is driven to the desired depth by means of a slide hammer, and the sample extracted as a core or plug. The second procedure requires use of a template to outline the sampling area, from which the sample is obtained using a trowel ormore » spoon. Sampling to the desired depth must then be performed incrementally. Selection of one procedure over the other is governed primarily by soil conditions, the cookie cutter being effective in nongravelly soils, and the template procedure appropriate for use in both gravelly and nongravelly soils. In any event, a minimum sample volume of 1000 cubic centimeters is recommended. The step-by-step procedures are accompanied by a description of the minimum requirements for sample documentation. Transport of the soil samples from the field is then addressed in a discussion of the federal regulations for shipping radioactive materials. Interpretation of those regulations, particularly in light of their application to remedial action soil-sampling programs, is provided in the form of guidance and suggested procedures. Due to the complex nature of the regulations, however, there is no guarantee that our interpretations of them are complete or entirely accurate. Preparation of soil samples for radium-226 analysis by means of gamma-ray spectroscopy is described.« less

  7. PCR detection of Burkholderia multivorans in water and soil samples.

    PubMed

    Peeters, Charlotte; Daenekindt, Stijn; Vandamme, Peter

    2016-08-12

    Although semi-selective growth media have been developed for the isolation of Burkholderia cepacia complex bacteria from the environment, thus far Burkholderia multivorans has rarely been isolated from such samples. Because environmental B. multivorans isolates mainly originate from water samples, we hypothesized that water rather than soil is its most likely environmental niche. The aim of the present study was to assess the occurrence of B. multivorans in water samples from Flanders (Belgium) using a fast, culture-independent PCR assay. A nested PCR approach was used to achieve high sensitivity, and specificity was confirmed by sequencing the resulting amplicons. B. multivorans was detected in 11 % of the water samples (n = 112) and 92 % of the soil samples (n = 25) tested. The percentage of false positives was higher for water samples compared to soil samples, showing that the presently available B. multivorans recA primers lack specificity when applied to the analysis of water samples. The results of the present study demonstrate that B. multivorans DNA is commonly present in soil samples and to a lesser extent in water samples in Flanders (Belgium).

  8. How soil organic matter composition controls hexachlorobenzene-soil-interactions: adsorption isotherms and quantum chemical modeling.

    PubMed

    Ahmed, Ashour A; Kühn, Oliver; Aziz, Saadullah G; Hilal, Rifaat H; Leinweber, Peter

    2014-04-01

    Hazardous persistent organic pollutants (POPs) interact in soil with the soil organic matter (SOM) but this interaction is insufficiently understood at the molecular level. We investigated the adsorption of hexachlorobenzene (HCB) on soil samples with systematically modified SOM. These samples included the original soil, the soil modified by adding a hot water extract (HWE) fraction (soil+3 HWE and soil+6 HWE), and the pyrolyzed soil. The SOM contents increased in the order pyrolyzed soil

  9. Distribution and Source Identification of Pb Contamination in industrial soil

    NASA Astrophysics Data System (ADS)

    Ko, M. S.

    2017-12-01

    INTRODUCTION Lead (Pb) is toxic element that induce neurotoxic effect to human, because competition of Pb and Ca in nerve system. Lead is classified as a chalophile element and galena (PbS) is the major mineral. Although the Pb is not an abundant element in nature, various anthropogenic source has been enhanced Pb enrichment in the environment after the Industrial Revolution. The representative anthropogenic sources are batteries, paint, mining, smelting, and combustion of fossil fuel. Isotope analysis widely used to identify the Pb contamination source. The Pb has four stable isotopes that are 208Pb, 207Pb, 206Pb, and 204Pb in natural. The Pb is stable isotope and the ratios maintain during physical and chemical fractionation. Therefore, variations of Pb isotope abundance and relative ratios could imply the certain Pb contamination source. In this study, distributions and isotope ratios of Pb in industrial soil were used to identify the Pb contamination source and dispersion pathways. MATERIALS AND METHODS Soil samples were collected at depth 0­-6 m from an industrial area in Korea. The collected soil samples were dried and sieved under 2 mm. Soil pH, aqua-regia digestion and TCLP carried out using sieved soil sample. The isotope analysis was carried out to determine the abundance of Pb isotope. RESULTS AND DISCUSSION The study area was developed land for promotion of industrial facilities. The study area was forest in 1980, and the satellite image show the alterations of land use with time. The variations of land use imply the possibilities of bringing in external contaminated soil. The Pb concentrations in core samples revealed higher in lower soil compare with top soil. Especially, 4 m soil sample show highest Pb concentrations that are approximately 1500 mg/kg. This result indicated that certain Pb source existed at 4 m depth. CONCLUSIONS This study investigated the distribution and source identification of Pb in industrial soil. The land use and Pb concentration at depth indicated elusive contamination event or contamination sources. In order to identify the contamination source clearly, isotope and Pb compound/mineralogy analysis are necessary.

  10. A High-Performance Liquid Chromatography-Based Screening Method for the Analysis of Atrazine, Alachlor, and Ten of Their Transformation Products

    USGS Publications Warehouse

    Schroyer, B.R.; Capel, P.D.

    1996-01-01

    A high-performance liquid Chromatography (HPLC) method is presented for the for the fast, quantitative analysis of the target analytes in water and in low organic-carbon, sandy soils that are known to be contaminated with the parent herbicides. Speed and ease of sample preparation was prioritized above minimizing detection limits. Soil samples were extracted using 80:20 methanol:water (volume:volume). Water samples (50 ??L) were injected directly into the HPLC without prior preparation. Method quantification limits for soil samples (10 g dry weight) and water samples ranged from 20 to 110 ng/g and from 20 to 110 ??g/L for atrazine and its transformation products and from 80 to 320 ng/g and from 80 to 320 ??g/L for alachlor and its transformation products, respectively.

  11. Multifractal analysis of 2D gray soil images

    NASA Astrophysics Data System (ADS)

    González-Torres, Ivan; Losada, Juan Carlos; Heck, Richard; Tarquis, Ana M.

    2015-04-01

    Soil structure, understood as the spatial arrangement of soil pores, is one of the key factors in soil modelling processes. Geometric properties of individual and interpretation of the morphological parameters of pores can be estimated from thin sections or 3D Computed Tomography images (Tarquis et al., 2003), but there is no satisfactory method to binarized these images and quantify the complexity of their spatial arrangement (Tarquis et al., 2008, Tarquis et al., 2009; Baveye et al., 2010). The objective of this work was to apply a multifractal technique, their singularities (α) and f(α) spectra, to quantify it without applying any threshold (Gónzalez-Torres, 2014). Intact soil samples were collected from four horizons of an Argisol, formed on the Tertiary Barreiras group of formations in Pernambuco state, Brazil (Itapirema Experimental Station). The natural vegetation of the region is tropical, coastal rainforest. From each horizon, showing different porosities and spatial arrangements, three adjacent samples were taken having a set of twelve samples. The intact soil samples were imaged using an EVS (now GE Medical. London, Canada) MS-8 MicroCT scanner with 45 μm pixel-1 resolution (256x256 pixels). Though some samples required paring to fit the 64 mm diameter imaging tubes, field orientation was maintained. References Baveye, P.C., M. Laba, W. Otten, L. Bouckaert, P. Dello, R.R. Goswami, D. Grinev, A. Houston, Yaoping Hu, Jianli Liu, S. Mooney, R. Pajor, S. Sleutel, A. Tarquis, Wei Wang, Qiao Wei, Mehmet Sezgin. Observer-dependent variability of the thresholding step in the quantitative analysis of soil images and X-ray microtomography data. Geoderma, 157, 51-63, 2010. González-Torres, Iván. Theory and application of multifractal analysis methods in images for the study of soil structure. Master thesis, UPM, 2014. Tarquis, A.M., R.J. Heck, J.B. Grau; J. Fabregat, M.E. Sanchez and J.M. Antón. Influence of Thresholding in Mass and Entropy Dimension of 3-D Soil Images. Nonlinear Process in Geophysics, 15, 881-891, 2008. Tarquis, A.M., R.J. Heck, D. Andina, A. Alvarez and J.M. Antón. Multifractal analysis and thresholding of 3D soil images. Ecological Complexity, 6, 230-239, 2009. Tarquis, A.M.; D. Giménez, A. Saa, M.C. Díaz. and J.M. Gascó. Scaling and Multiscaling of Soil Pore Systems Determined by Image Analysis. Scaling Methods in Soil Systems. Pachepsky, Radcliffe and Selim Eds., 19-33, 2003. CRC Press, Boca Ratón, Florida. Acknowledgements First author acknowledges the financial support obtained from Soil Imaging Laboratory (University of Gueplh, Canada) in 2014.

  12. Spectral reflectance characteristics of soils in northeastern Brazil as influenced by salinity levels.

    PubMed

    Pessoa, Luiz Guilherme Medeiros; Freire, Maria Betânia Galvão Dos Santos; Wilcox, Bradford Paul; Green, Colleen Heather Machado; De Araújo, Rômulo José Tolêdo; De Araújo Filho, José Coelho

    2016-11-01

    In northeastern Brazil, large swaths of once-productive soils have been severely degraded by soil salinization, but the true extent of the damage has not been assessed. Emerging remote sensing technology based on hyperspectral analysis offers one possibility for large-scale assessment, but it has been unclear to what extent the spectral properties of soils are related to salinity characteristics. The purpose of this study was to characterize the spectral properties of degraded (saline) and non-degraded agricultural soils in northeastern Brazil and determine the extent to which these properties correspond to soil salinity. We took soil samples from 78 locations within a 45,000-km 2 site in Pernambuco State. We used cluster analysis to group the soil samples on the basis of similarities in salinity and sodicity levels, and then obtained spectral data for each group. The physical properties analysis indicated a predominance of the coarse sand fraction in almost all the soil groups, and total porosity was similar for all the groups. The chemical analysis revealed different levels of degradation among the groups, ranging from non-degraded to strongly degraded conditions, as defined by the degree of salinity and sodicity. The soil properties showing the highest correlation with spectral reflectance were the exchangeable sodium percentage followed by fine sand. Differences in the reflectance curves for the various soil groups were relatively small and were not significant. These results suggest that, where soil crusts are not present, significant challenges remain for using hyperspectral remote sensing to assess soil salinity in northeastern Brazil.

  13. [Evaluation and source analysis of the mercury pollution in soils and vegetables around a large-scale zinc smelting plant].

    PubMed

    Liu, Fang; Wang, Shu-Xiao; Wu, Qing-Ru; Lin, Hai

    2013-02-01

    The farming soil and vegetable samples around a large-scale zinc smelter were collected for mercury content analyses, and the single pollution index method with relevant regulations was used to evaluate the pollution status of sampled soils and vegetables. The results indicated that the surface soil and vegetables were polluted with mercury to different extent. Of the soil samples, 78% exceeded the national standard. The mercury concentration in the most severely contaminated area was 29 times higher than the background concentration, reaching the severe pollution degree. The mercury concentration in all vegetable samples exceeded the standard of non-pollution vegetables. Mercury concentration, in the most severely polluted vegetables were 64.5 times of the standard, and averagely the mercury concentration in the vegetable samples was 25.4 times of the standard. For 85% of the vegetable samples, the mercury concentration, of leaves were significantly higher than that of roots, which implies that the mercury in leaves mainly came from the atmosphere. The mercury concentrations in vegetable roots were significantly correlated with that in soils, indicating the mercury in roots was mainly from soil. The mercury emissions from the zinc smelter have obvious impacts on the surrounding soils and vegetables. Key words:zinc smelting; mercury pollution; soil; vegetable; mercury content

  14. Microbial Communities and Functional Genes Associated with Soil Arsenic Contamination and the Rhizosphere of the Arsenic-Hyperaccumulating Plant Pteris vittata L. ▿ †

    PubMed Central

    Xiong, Jinbo; Wu, Liyou; Tu, Shuxin; Van Nostrand, Joy D.; He, Zhili; Zhou, Jizhong; Wang, Gejiao

    2010-01-01

    To understand how microbial communities and functional genes respond to arsenic contamination in the rhizosphere of Pteris vittata, five soil samples with different arsenic contamination levels were collected from the rhizosphere of P. vittata and nonrhizosphere areas and investigated by Biolog, geochemical, and functional gene microarray (GeoChip 3.0) analyses. Biolog analysis revealed that the uncontaminated soil harbored the greatest diversity of sole-carbon utilization abilities and that arsenic contamination decreased the metabolic diversity, while rhizosphere soils had higher metabolic diversities than did the nonrhizosphere soils. GeoChip 3.0 analysis showed low proportions of overlapping genes across the five soil samples (16.52% to 45.75%). The uncontaminated soil had a higher heterogeneity and more unique genes (48.09%) than did the arsenic-contaminated soils. Arsenic resistance, sulfur reduction, phosphorus utilization, and denitrification genes were remarkably distinct between P. vittata rhizosphere and nonrhizosphere soils, which provides evidence for a strong linkage among the level of arsenic contamination, the rhizosphere, and the functional gene distribution. Canonical correspondence analysis (CCA) revealed that arsenic is the main driver in reducing the soil functional gene diversity; however, organic matter and phosphorus also have significant effects on the soil microbial community structure. The results implied that rhizobacteria play an important role during soil arsenic uptake and hyperaccumulation processes of P. vittata. PMID:20833780

  15. Trace geochemistry of lunar material

    NASA Technical Reports Server (NTRS)

    Morrison, G. H.

    1974-01-01

    The lunar samples from the Apollo 16 and 17 flights which were analyzed include soil, igneous rock, anorthositic gabbro, orange soil, subfloor basalt, and norite breccia. Up to 57 elements including majors, minors, rare earths and other trace elements were determined in the lunar samples. The analytical techniques used were spark source mass spectrometry and neutron activation analysis. The latter was done either instrumentally or with group radiochemical separations. The differences in abundances of the elements in lunar soils at the various sites are discussed. With regard to the major elements only Si is about the same at all the sites. A detailed analysis which was performed on a sample of the Allende meteorite is summarized.

  16. Field Analysis of Polychlorinated Biphenyls (PCBs) in Soil Using Solid-Phase Microextraction (SPME) and a Portable Gas Chromatography-Mass Spectrometry System.

    PubMed

    Zhang, Mengliang; Kruse, Natalie A; Bowman, Jennifer R; Jackson, Glen P

    2016-05-01

    An expedited field analysis method was developed for the determination of polychlorinated biphenyls (PCBs) in soil matrices using a portable gas chromatography-mass spectrometry (GC-MS) instrument. Soil samples of approximately 0.5 g were measured with a portable scale and PCBs were extracted by headspace solid-phase microextraction (SPME) with a 100 µm polydimethylsiloxane (PDMS) fiber. Two milliliters of 0.2 M potassium permanganate and 0.5 mL of 6 M sulfuric acid solution were added to the soil matrices to facilitate the extraction of PCBs. The extraction was performed for 30 min at 100 ℃ in a portable heating block that was powered by a portable generator. The portable GC-MS instrument took less than 6 min per analysis and ran off an internal battery and helium cylinder. Six commercial PCB mixtures, Aroclor 1016, 1221, 1232, 1242, 1248, 1254, and 1260, could be classified based on the GC chromatograms and mass spectra. The detection limit of this method for Aroclor 1260 in soil matrices is approximately 10 ppm, which is sufficient for guiding remediation efforts in contaminated sites. This method was applicable to the on-site analysis of PCBs with a total analysis time of 37 min per sample. However, the total analysis time could be improved to less than 7 min per sample by conducting the rate-limiting extraction step for different samples in parallel. © The Author(s) 2016.

  17. COMPOSITE SAMPLING FOR SOIL VOC ANALYSIS

    EPA Science Inventory

    Data published by numerous researchers over the last decade demonstrate that there is a high degree of spatial variability in the measurement of volatile organic compounds (VOCs) in soil at contaminated waste sites. This phenomenon is confounded by the use of a small sample aliqu...

  18. Development and Application of Immunoaffinity Chromatography for Coplanar PCBs in Soil and Sediment

    EPA Science Inventory

    An immunoaffinity chromatography (IAC) column was developed as a simple cleanup procedure for preparing environmental samples for analysis of polychlorinated biphenyls (PCBs). Soil and sediment samples were prepared using pressurized liquid extraction (PLE), followed by the IAC c...

  19. Analysis and interpretation of Viking inorganic chemistry data (Mars data analysis program)

    NASA Technical Reports Server (NTRS)

    Clark, B. C.

    1982-01-01

    Soil samples gathered by the Viking Lander from the surface of Mars were analyzed. The Martian fines were lower in aluminum, iron, sulfur, and chlorine than typical terrestrial continental soils or lunar mare fines. Sample variabilities were as great within a few meters as between lander locations (4500 km apart) implying the existence of a universal Martian regolith component of constant average composition.

  20. Atomic Force Microscopy for Soil Analysis

    NASA Astrophysics Data System (ADS)

    gazze, andrea; doerr, stefan; dudley, ed; hallin, ingrid; matthews, peter; quinn, gerry; van keulen, geertje; francis, lewis

    2016-04-01

    Atomic Force Microscopy (AFM) is a high-resolution surface-sensitive technique, which provides 3-dimensional topographical information and material properties of both stiff and soft samples in their natural environments. Traditionally AFM has been applied to samples with low roughness: hence its use for soil analysis has been very limited so far. Here we report the optimization settings required for a standardization of high-resolution and artefact-free analysis of natural soil with AFM: soil immobilization, AFM probe selection, artefact recognition and minimization. Beyond topography, AFM can be used in a spectroscopic mode to evaluate nanomechanical properties, such as soil viscosity, stiffness, and deformation. In this regards, Bruker PeakForce-Quantitative NanoMechanical (QNM) AFM provides a fast and convenient way to extract physical properties from AFM force curves in real-time to obtain soil nanomechanical properties. Here we show for the first time the ability of AFM to describe the topography of natural soil at nanometre resolution, with observation of micro-components, such as clays, and of nano-structures, possibly of biotic origin, the visualization of which would prove difficult with other instrumentations. Finally, nanomechanical profiling has been applied to different wettability states in soil and the respective physical patterns are discussed.

  1. Combined Analyses of Bacterial, Fungal and Nematode Communities in Andosolic Agricultural Soils in Japan

    PubMed Central

    Bao, Zhihua; Ikunaga, Yoko; Matsushita, Yuko; Morimoto, Sho; Takada-Hoshino, Yuko; Okada, Hiroaki; Oba, Hirosuke; Takemoto, Shuhei; Niwa, Shigeru; Ohigashi, Kentaro; Suzuki, Chika; Nagaoka, Kazunari; Takenaka, Makoto; Urashima, Yasufumi; Sekiguchi, Hiroyuki; Kushida, Atsuhiko; Toyota, Koki; Saito, Masanori; Tsushima, Seiya

    2012-01-01

    We simultaneously examined the bacteria, fungi and nematode communities in Andosols from four agro-geographical sites in Japan using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and statistical analyses to test the effects of environmental factors including soil properties on these communities depending on geographical sites. Statistical analyses such as Principal component analysis (PCA) and Redundancy analysis (RDA) revealed that the compositions of the three soil biota communities were strongly affected by geographical sites, which were in turn strongly associated with soil characteristics such as total C (TC), total N (TN), C/N ratio and annual mean soil temperature (ST). In particular, the TC, TN and C/N ratio had stronger effects on bacterial and fungal communities than on the nematode community. Additionally, two-way cluster analysis using the combined DGGE profile also indicated that all soil samples were classified into four clusters corresponding to the four sites, showing high site specificity of soil samples, and all DNA bands were classified into four clusters, showing the coexistence of specific DGGE bands of bacteria, fungi and nematodes in Andosol fields. The results of this study suggest that geography relative to soil properties has a simultaneous impact on soil microbial and nematode community compositions. This is the first combined profile analysis of bacteria, fungi and nematodes at different sites with agricultural Andosols. PMID:22223474

  2. Combined analyses of bacterial, fungal and nematode communities in andosolic agricultural soils in Japan.

    PubMed

    Bao, Zhihua; Ikunaga, Yoko; Matsushita, Yuko; Morimoto, Sho; Takada-Hoshino, Yuko; Okada, Hiroaki; Oba, Hirosuke; Takemoto, Shuhei; Niwa, Shigeru; Ohigashi, Kentaro; Suzuki, Chika; Nagaoka, Kazunari; Takenaka, Makoto; Urashima, Yasufumi; Sekiguchi, Hiroyuki; Kushida, Atsuhiko; Toyota, Koki; Saito, Masanori; Tsushima, Seiya

    2012-01-01

    We simultaneously examined the bacteria, fungi and nematode communities in Andosols from four agro-geographical sites in Japan using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and statistical analyses to test the effects of environmental factors including soil properties on these communities depending on geographical sites. Statistical analyses such as Principal component analysis (PCA) and Redundancy analysis (RDA) revealed that the compositions of the three soil biota communities were strongly affected by geographical sites, which were in turn strongly associated with soil characteristics such as total C (TC), total N (TN), C/N ratio and annual mean soil temperature (ST). In particular, the TC, TN and C/N ratio had stronger effects on bacterial and fungal communities than on the nematode community. Additionally, two-way cluster analysis using the combined DGGE profile also indicated that all soil samples were classified into four clusters corresponding to the four sites, showing high site specificity of soil samples, and all DNA bands were classified into four clusters, showing the coexistence of specific DGGE bands of bacteria, fungi and nematodes in Andosol fields. The results of this study suggest that geography relative to soil properties has a simultaneous impact on soil microbial and nematode community compositions. This is the first combined profile analysis of bacteria, fungi and nematodes at different sites with agricultural Andosols.

  3. Advances in spectroscopic methods for quantifying soil carbon

    USGS Publications Warehouse

    Reeves, James B.; McCarty, Gregory W.; Calderon, Francisco; Hively, W. Dean

    2012-01-01

    The current gold standard for soil carbon (C) determination is elemental C analysis using dry combustion. However, this method requires expensive consumables, is limited by the number of samples that can be processed (~100/d), and is restricted to the determination of total carbon. With increased interest in soil C sequestration, faster methods of analysis are needed, and there is growing interest in methods based on diffuse reflectance spectroscopy in the visible, near-infrared or mid-infrared spectral ranges. These spectral methods can decrease analytical requirements and speed sample processing, be applied to large landscape areas using remote sensing imagery, and be used to predict multiple analytes simultaneously. However, the methods require localized calibrations to establish the relationship between spectral data and reference analytical data, and also have additional, specific problems. For example, remote sensing is capable of scanning entire watersheds for soil carbon content but is limited to the surface layer of tilled soils and may require difficult and extensive field sampling to obtain proper localized calibration reference values. The objective of this chapter is to discuss the present state of spectroscopic methods for determination of soil carbon.

  4. Comparison of soil sampling and analytical methods for asbestos at the Sumas Mountain Asbestos Site-Working towards a toolbox for better assessment.

    PubMed

    Wroble, Julie; Frederick, Timothy; Frame, Alicia; Vallero, Daniel

    2017-01-01

    Established soil sampling methods for asbestos are inadequate to support risk assessment and risk-based decision making at Superfund sites due to difficulties in detecting asbestos at low concentrations and difficulty in extrapolating soil concentrations to air concentrations. Environmental Protection Agency (EPA)'s Office of Land and Emergency Management (OLEM) currently recommends the rigorous process of Activity Based Sampling (ABS) to characterize site exposures. The purpose of this study was to compare three soil analytical methods and two soil sampling methods to determine whether one method, or combination of methods, would yield more reliable soil asbestos data than other methods. Samples were collected using both traditional discrete ("grab") samples and incremental sampling methodology (ISM). Analyses were conducted using polarized light microscopy (PLM), transmission electron microscopy (TEM) methods or a combination of these two methods. Data show that the fluidized bed asbestos segregator (FBAS) followed by TEM analysis could detect asbestos at locations that were not detected using other analytical methods; however, this method exhibited high relative standard deviations, indicating the results may be more variable than other soil asbestos methods. The comparison of samples collected using ISM versus discrete techniques for asbestos resulted in no clear conclusions regarding preferred sampling method. However, analytical results for metals clearly showed that measured concentrations in ISM samples were less variable than discrete samples.

  5. Comparison of soil sampling and analytical methods for asbestos at the Sumas Mountain Asbestos Site—Working towards a toolbox for better assessment

    PubMed Central

    2017-01-01

    Established soil sampling methods for asbestos are inadequate to support risk assessment and risk-based decision making at Superfund sites due to difficulties in detecting asbestos at low concentrations and difficulty in extrapolating soil concentrations to air concentrations. Environmental Protection Agency (EPA)’s Office of Land and Emergency Management (OLEM) currently recommends the rigorous process of Activity Based Sampling (ABS) to characterize site exposures. The purpose of this study was to compare three soil analytical methods and two soil sampling methods to determine whether one method, or combination of methods, would yield more reliable soil asbestos data than other methods. Samples were collected using both traditional discrete (“grab”) samples and incremental sampling methodology (ISM). Analyses were conducted using polarized light microscopy (PLM), transmission electron microscopy (TEM) methods or a combination of these two methods. Data show that the fluidized bed asbestos segregator (FBAS) followed by TEM analysis could detect asbestos at locations that were not detected using other analytical methods; however, this method exhibited high relative standard deviations, indicating the results may be more variable than other soil asbestos methods. The comparison of samples collected using ISM versus discrete techniques for asbestos resulted in no clear conclusions regarding preferred sampling method. However, analytical results for metals clearly showed that measured concentrations in ISM samples were less variable than discrete samples. PMID:28759607

  6. Concurrent temporal stability of the apparent electrical conductivity and soil water content

    USDA-ARS?s Scientific Manuscript database

    Knowledge of spatio-temporal soil water content (SWC) variability within agricultural fields is useful to improve crop management. Spatial patterns of soil water contents can be characterized using the temporal stability analysis, however high density sampling is required. Soil apparent electrical c...

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solc, J.

    The reclamation effort typically deals with consequences of mining activity instead of being planned well before the mining. Detailed assessment of principal hydro- and geochemical processes participating in pore and groundwater chemistry evolution was carried out at three surface mine localities in North Dakota-the Fritz mine, the Indian Head mine, and the Velva mine. The geochemical model MINTEQUA2 and advanced statistical analysis coupled with traditional interpretive techniques were used to determine site-specific environmental characteristics and to compare the differences between study sites. Multivariate statistical analysis indicates that sulfate, magnesium, calcium, the gypsum saturation index, and sodium contribute the most tomore » overall differences in groundwater chemistry between study sites. Soil paste extract pH and EC measurements performed on over 3700 samples document extremely acidic soils at the Fritz mine. The number of samples with pH <5.5 reaches 80%-90% of total samples from discrete depth near the top of the soil profile at the Fritz mine. Soil samples from Indian Head and Velva do not indicate the acidity below the pH of 5.5 limit. The percentage of samples with EC > 3 mS cm{sup -1} is between 20% and 40% at the Fritz mine and below 20% for samples from Indian Head and Velva. The results of geochemical modeling indicate an increased tendency for gypsum saturation within the vadose zone, particularly within the lands disturbed by mining activity. This trend is directly associated with increased concentrations of sulfate anions as a result of mineral oxidation. Geochemical modeling, statistical analysis, and soil extract pH and EC measurements proved to be reliable, fast, and relatively cost-effective tools for the assessment of soil acidity, the extent of the oxidation zone, and the potential for negative impact on pore and groundwater chemistry.« less

  8. The Impact of Fire on Mercury Cycling in Watershed Systems

    NASA Astrophysics Data System (ADS)

    Lopez, S.; Mendez, C.; Hogue, T.; Jay, J.

    2006-12-01

    Mercury methylation is a process by which the less-toxic inorganic mercury is transformed into methylmercury (MeHg). MeHg is a potent neurotoxin with a strong tendency to biomagnify within the food chain. Limited studies suggest that wildfires change the soil characteristics and contribute to Hg transport and possibly methylation in downstream ecosystems. We propose that post-fire Hg cycling can be related to various soil properties and burn characteristics. In order to better understand the effects of wildfires on Hg cycling, studies were undertaken within a burned watershed and a neighboring unburned site, Malibu Creek and Cold Creek, respectively. Soil sampling of the burned and control (unburned) regions were composed of 25 square foot grids with nine equidistant sampling points. Sediment samples for soil sieve analysis were collected at all grid points to determine the particle size distribution of the fine and coarse grain aggregates. Total Hg sediments were collected from the three middle points of the grid at two soil horizons to provide a vertical profile. Total Hg concentrations of the sediment samples were measured using the Direct Mercury Analyzer (DMA80). Initial analysis of the soil profiles reveals a decrease in Hg concentration at the soil surface (89 percent loss). Preliminary results indicate sites with the lowest concentration of Hg are characterized by a higher percentage of finer grain aggregates. Runoff from the first post-fire storm was extremely turbid and dark gray in color due to high levels of suspended solids (3980 mg/L). Total Hg concentrations in unfiltered and filtered samples (0.2 micron) were 196 and 4.7 ng/L, respectively, compared to the control which had unfiltered and filtered Hg levels of 6.1 and 2.3 ng/L, respectively, and 450 mg/L total suspended solids. The concentration of Hg on the particles was six times higher than the Hg content of suspended particles at the control site. Results also show much stronger partitioning (three-fold higher Kd's) to the solid phase in the fire- impacted site. On-going work includes: 1) analysis of Hg and ancillary geochemical parameters overlying water and porewater from samples collected in the streambed downstream of the fire, 2) analysis of Hg concentrations in various particle size fractions of soil; and 3) preliminary characterization of recovery through analysis of soil properties and Hg levels at the burned and control sites, one-year post-fire.

  9. Lead (Pb) and other metals in New York City community garden soils: factors influencing contaminant distributions

    PubMed Central

    Mitchell, Rebecca G.; Spliethoff, Henry M.; Ribaudo, Lisa N.; Lopp, Donna M.; Shayler, Hannah A.; Marquez-Bravo, Lydia G.; Lambert, Veronique T.; Ferenz, Gretchen S.; Russell-Anelli, Jonathan M.; Stone, Edie B.; McBride, Murray B.

    2014-01-01

    Urban gardens provide affordable fresh produce to communities with limited access to healthy food but may also increase exposure to lead (Pb) and other soil contaminants. Metals analysis of 564 soil samples from 54 New York City (NYC) community gardens found at least one sample exceeding health-based guidance values in 70% of gardens. However, most samples (78%) did not exceed guidance values, and medians were generally below those reported in NYC soil and other urban gardening studies. Barium (Ba) and Pb most frequently exceeded guidance values and along with cadmium (Cd) were strongly correlated with zinc (Zn), a commonly measured nutrient. Principal component analysis suggested that contaminants varied independently from organic matter and geogenic metals. Contaminants were associated with visible debris and a lack of raised beds; management practices (e.g., importing uncontaminated soil) have likely reduced metals concentrations. Continued exposure reduction efforts would benefit communities already burdened by environmental exposures. PMID:24502997

  10. Lead (Pb) and other metals in New York City community garden soils: factors influencing contaminant distributions.

    PubMed

    Mitchell, Rebecca G; Spliethoff, Henry M; Ribaudo, Lisa N; Lopp, Donna M; Shayler, Hannah A; Marquez-Bravo, Lydia G; Lambert, Veronique T; Ferenz, Gretchen S; Russell-Anelli, Jonathan M; Stone, Edie B; McBride, Murray B

    2014-04-01

    Urban gardens provide affordable fresh produce to communities with limited access to healthy food but may also increase exposure to lead (Pb) and other soil contaminants. Metals analysis of 564 soil samples from 54 New York City (NYC) community gardens found at least one sample exceeding health-based guidance values in 70% of gardens. However, most samples (78%) did not exceed guidance values, and medians were generally below those reported in NYC soil and other urban gardening studies. Barium (Ba) and Pb most frequently exceeded guidance values and along with cadmium (Cd) were strongly correlated with zinc (Zn), a commonly measured nutrient. Principal component analysis suggested that contaminants varied independently from organic matter and geogenic metals. Contaminants were associated with visible debris and a lack of raised beds; management practices (e.g., importing uncontaminated soil) have likely reduced metals concentrations. Continued exposure reduction efforts would benefit communities already burdened by environmental exposures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Capillary-driven microfluidic paper-based analytical devices for lab on a chip screening of explosive residues in soil.

    PubMed

    Ueland, Maiken; Blanes, Lucas; Taudte, Regina V; Stuart, Barbara H; Cole, Nerida; Willis, Peter; Roux, Claude; Doble, Philip

    2016-03-04

    A novel microfluidic paper-based analytical device (μPAD) was designed to filter, extract, and pre-concentrate explosives from soil for direct analysis by a lab on a chip (LOC) device. The explosives were extracted via immersion of wax-printed μPADs directly into methanol soil suspensions for 10min, whereby dissolved explosives travelled upwards into the μPAD circular sampling reservoir. A chad was punched from the sampling reservoir and inserted into a LOC well containing the separation buffer for direct analysis, avoiding any further extraction step. Eight target explosives were separated and identified by fluorescence quenching. The minimum detectable amounts for all eight explosives were between 1.4 and 5.6ng with recoveries ranging from 53-82% from the paper chad, and 12-40% from soil. This method provides a robust and simple extraction method for rapid identification of explosives in complex soil samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Laser ablation-laser induced breakdown spectroscopy for the measurement of total elemental concentration in soils.

    PubMed

    Pareja, Jhon; López, Sebastian; Jaramillo, Daniel; Hahn, David W; Molina, Alejandro

    2013-04-10

    The performances of traditional laser-induced breakdown spectroscopy (LIBS) and laser ablation-LIBS (LA-LIBS) were compared by quantifying the total elemental concentration of potassium in highly heterogeneous solid samples, namely soils. Calibration curves for a set of fifteen samples with a wide range of potassium concentrations were generated. The LA-LIBS approach produced a superior linear response different than the traditional LIBS scheme. The analytical response of LA-LIBS was tested with a large set of different soil samples for the quantification of the total concentration of Fe, Mn, Mg, Ca, Na, and K. Results showed an acceptable linear response for Ca, Fe, Mg, and K while poor signal responses were found for Na and Mn. Signs of remaining matrix effects for the LA-LIBS approach in the case of soil analysis were found and discussed. Finally, some improvements and possibilities for future studies toward quantitative soil analysis with the LA-LIBS technique are suggested.

  13. Composite Sampling Approaches for Bacillus anthracis Surrogate Extracted from Soil

    PubMed Central

    France, Brian; Bell, William; Chang, Emily; Scholten, Trudy

    2015-01-01

    Any release of anthrax spores in the U.S. would require action to decontaminate the site and restore its use and operations as rapidly as possible. The remediation activity would require environmental sampling, both initially to determine the extent of contamination (hazard mapping) and post-decon to determine that the site is free of contamination (clearance sampling). Whether the spore contamination is within a building or outdoors, collecting and analyzing what could be thousands of samples can become the factor that limits the pace of restoring operations. To address this sampling and analysis bottleneck and decrease the time needed to recover from an anthrax contamination event, this study investigates the use of composite sampling. Pooling or compositing of samples is an established technique to reduce the number of analyses required, and its use for anthrax spore sampling has recently been investigated. However, use of composite sampling in an anthrax spore remediation event will require well-documented and accepted methods. In particular, previous composite sampling studies have focused on sampling from hard surfaces; data on soil sampling are required to extend the procedure to outdoor use. Further, we must consider whether combining liquid samples, thus increasing the volume, lowers the sensitivity of detection and produces false negatives. In this study, methods to composite bacterial spore samples from soil are demonstrated. B. subtilis spore suspensions were used as a surrogate for anthrax spores. Two soils (Arizona Test Dust and sterilized potting soil) were contaminated and spore recovery with composites was shown to match individual sample performance. Results show that dilution can be overcome by concentrating bacterial spores using standard filtration methods. This study shows that composite sampling can be a viable method of pooling samples to reduce the number of analysis that must be performed during anthrax spore remediation. PMID:26714315

  14. Metagenomic Characterization and Biochemical Analysis of Cellulose-Degrading Bacterial Communities from Sheep Rumen, Termite Hindgut, Decaying Plant Materials, and Soil

    DTIC Science & Technology

    2016-01-04

    Biochemical Analysis of Cellulose-DegradingBacterial Communities from Sheep Rumen, Termite Hindgut, Decaying Plant Materials,and Soil In an effort to...degrading bacteria from various samples, including termite gut, sheep rumen, soil, and decaying plant materials. Using selective media culture with...Metagenomic Characterization and Biochemical Analysis of Cellulose-DegradingBacterial Communities from Sheep Rumen, Termite Hindgut, Decaying Plant

  15. Schematic of Sample Analysis at Mars SAM Instrument

    NASA Image and Video Library

    2011-01-18

    This schematic illustration for NASA Mars Science Laboratory Sample Analysis at Mars SAM instrument shows major components of the microwave-oven-size instrument, which will examine samples of Martian rocks, soil and atmosphere.

  16. Assessing Statistically Significant Heavy-Metal Concentrations in Abandoned Mine Areas via Hot Spot Analysis of Portable XRF Data

    PubMed Central

    Kim, Sung-Min; Choi, Yosoon

    2017-01-01

    To develop appropriate measures to prevent soil contamination in abandoned mining areas, an understanding of the spatial variation of the potentially toxic trace elements (PTEs) in the soil is necessary. For the purpose of effective soil sampling, this study uses hot spot analysis, which calculates a z-score based on the Getis-Ord Gi* statistic to identify a statistically significant hot spot sample. To constitute a statistically significant hot spot, a feature with a high value should also be surrounded by other features with high values. Using relatively cost- and time-effective portable X-ray fluorescence (PXRF) analysis, sufficient input data are acquired from the Busan abandoned mine and used for hot spot analysis. To calibrate the PXRF data, which have a relatively low accuracy, the PXRF analysis data are transformed using the inductively coupled plasma atomic emission spectrometry (ICP-AES) data. The transformed PXRF data of the Busan abandoned mine are classified into four groups according to their normalized content and z-scores: high content with a high z-score (HH), high content with a low z-score (HL), low content with a high z-score (LH), and low content with a low z-score (LL). The HL and LH cases may be due to measurement errors. Additional or complementary surveys are required for the areas surrounding these suspect samples or for significant hot spot areas. The soil sampling is conducted according to a four-phase procedure in which the hot spot analysis and proposed group classification method are employed to support the development of a sampling plan for the following phase. Overall, 30, 50, 80, and 100 samples are investigated and analyzed in phases 1–4, respectively. The method implemented in this case study may be utilized in the field for the assessment of statistically significant soil contamination and the identification of areas for which an additional survey is required. PMID:28629168

  17. Assessing Statistically Significant Heavy-Metal Concentrations in Abandoned Mine Areas via Hot Spot Analysis of Portable XRF Data.

    PubMed

    Kim, Sung-Min; Choi, Yosoon

    2017-06-18

    To develop appropriate measures to prevent soil contamination in abandoned mining areas, an understanding of the spatial variation of the potentially toxic trace elements (PTEs) in the soil is necessary. For the purpose of effective soil sampling, this study uses hot spot analysis, which calculates a z -score based on the Getis-Ord Gi* statistic to identify a statistically significant hot spot sample. To constitute a statistically significant hot spot, a feature with a high value should also be surrounded by other features with high values. Using relatively cost- and time-effective portable X-ray fluorescence (PXRF) analysis, sufficient input data are acquired from the Busan abandoned mine and used for hot spot analysis. To calibrate the PXRF data, which have a relatively low accuracy, the PXRF analysis data are transformed using the inductively coupled plasma atomic emission spectrometry (ICP-AES) data. The transformed PXRF data of the Busan abandoned mine are classified into four groups according to their normalized content and z -scores: high content with a high z -score (HH), high content with a low z -score (HL), low content with a high z -score (LH), and low content with a low z -score (LL). The HL and LH cases may be due to measurement errors. Additional or complementary surveys are required for the areas surrounding these suspect samples or for significant hot spot areas. The soil sampling is conducted according to a four-phase procedure in which the hot spot analysis and proposed group classification method are employed to support the development of a sampling plan for the following phase. Overall, 30, 50, 80, and 100 samples are investigated and analyzed in phases 1-4, respectively. The method implemented in this case study may be utilized in the field for the assessment of statistically significant soil contamination and the identification of areas for which an additional survey is required.

  18. Predicting soil quality indices with near infrared analysis in a wildfire chronosequence.

    PubMed

    Cécillon, Lauric; Cassagne, Nathalie; Czarnes, Sonia; Gros, Raphaël; Vennetier, Michel; Brun, Jean-Jacques

    2009-01-15

    We investigated the power of near infrared (NIR) analysis for the quantitative assessment of soil quality in a wildfire chronosequence. The effect of wildfire disturbance and soil engineering activity of earthworms on soil organic matter quality was first assessed with principal component analysis of NIR spectra. Three soil quality indices were further calculated using an adaptation of the method proposed by Velasquez et al. [Velasquez, E., Lavelle, P., Andrade, M. GISQ, a multifunctional indicator of soil quality. Soil Biol Biochem 2007; 39: 3066-3080.], each one addressing an ecosystem service provided by soils: organic matter storage, nutrient supply and biological activity. Partial least squares regression models were developed to test the predicting ability of NIR analysis for these soil quality indices. All models reached coefficients of determination above 0.90 and ratios of performance to deviation above 2.8. This finding provides new opportunities for the monitoring of soil quality, using NIR scanning of soil samples.

  19. Effects of digestion, chemical separation, and deposition on Po-210 quantitative analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiner, Brienne N.; Morley, Shannon M.; Beacham, Tere A.

    Polonium-210 is a radioactive isotope often used to study sedimentation processes, food chains, aerosol behavior, and atmospheric circulations related to environmental sciences. Materials for the analysis of Po-210 range from tobacco leaves or cotton fibers, to soils and sediments. The purpose of this work was to determine polonium losses from a variety of sample types (soil, cotton fiber, and air filter) due to digestion technique, chemical separation, and deposition method for alpha energy analysis. Results demonstrated that yields from a perchloric acid wet-ash were similar to that from a microwave digestion. Both were greater than the dry-ash procedure. The poloniummore » yield from the perchloric acid wet ash was 87 ± 5%, the microwave digestion had a yield of 100 ± 7%, and the dry ash had a yield of 38 ± 5%. The chemical separation of polonium by an anion exchange resin was used only on the soil samples due to the complex nature of this sample. The yield of Po-209 tracer after chemical separation and deposition for alpha analysis was 83 ± 7% for the soil samples. Spontaneous deposition yields for the cotton and air filters were 87 ± 4% and 92 ± 6%, respectively. Based on the overall process yields for each sample type the amount of Po-210 was quantified using alpha energy analysis. The soil contained 0.18 ± 0.08 Bq/g, the cotton swipe contained 0.7 mBq/g, and the air filter contained 0.04 ± 0.02 mBq/g. High and robust yields of polonium are possible using a suitable digestion, separation, and deposition method.« less

  20. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR ANALYSIS OF SOIL OR HOUSE DUST SAMPLES USING CHLORPYRIFOS ELISA SAMPLES (BCO-L-1.0)

    EPA Science Inventory

    This abstract is included for completeness of documentation, but this SOP was not used in the study.

    The purpose of this SOP is to describe the procedures for analyzing both Stage II and Stage III soil and vacuum-cleaner collected house dust samples, and Stage III air samples u...

  1. Effect of soil texture and chemical properties on laboratory-generated dust emissions from SW North America

    NASA Astrophysics Data System (ADS)

    Mockford, T.; Zobeck, T. M.; Lee, J. A.; Gill, T. E.; Dominguez, M. A.; Peinado, P.

    2012-12-01

    Understanding the controls of mineral dust emissions and their particle size distributions during wind-erosion events is critical as dust particles play a significant impact in shaping the earth's climate. It has been suggested that emission rates and particle size distributions are independent of soil chemistry and soil texture. In this study, 45 samples of wind-erodible surface soils from the Southern High Plains and Chihuahuan Desert regions of Texas, New Mexico, Colorado and Chihuahua were analyzed by the Lubbock Dust Generation, Analysis and Sampling System (LDGASS) and a Beckman-Coulter particle multisizer. The LDGASS created dust emissions in a controlled laboratory setting using a rotating arm which allows particle collisions. The emitted dust was transferred to a chamber where particulate matter concentration was recorded using a DataRam and MiniVol filter and dust particle size distribution was recorded using a GRIMM particle analyzer. Particle size analysis was also determined from samples deposited on the Mini-Vol filters using a Beckman-Coulter particle multisizer. Soil textures of source samples ranged from sands and sandy loams to clays and silts. Initial results suggest that total dust emissions increased with increasing soil clay and silt content and decreased with increasing sand content. Particle size distribution analysis showed a similar relationship; soils with high silt content produced the widest range of dust particle sizes and the smallest dust particles. Sand grains seem to produce the largest dust particles. Chemical control of dust emissions by calcium carbonate content will also be discussed.

  2. Baseline soil levels of PCDD/Fs established prior to the construction of municipal solid waste incinerators in China.

    PubMed

    Liu, Hong-mei; Lu, Sheng-yong; Buekens, Alfons G; Chen, Tong; Li, Xiao-dong; Yan, Jian-hua; Ma, Xiao-jun; Cen, Ke-fa

    2012-01-01

    In order to determine the baseline contamination by polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in different areas in China, prior to the construction of municipal solid waste incinerators (MSWIs), a total of 32 representative soil samples was collected near 16 incinerators and analyzed for their PCDD/F concentrations. The PCDD/F baseline concentrations in the soil samples ranged from 0.32 to 11.4 ng I-TEQ kg(-1) (dry matter), with average and median value of 2.73 and 2.24 ng I-TEQ kg(-1) (dry matter), respectively, and a span between maximum and minimum recorded value of 36. The PCDD homologues predominated in 26 out of 32 soil samples, with the ratio (PCDDs)/(PCDFs) ranging from 1.1 to 164; however in the other 6 samples, PCDF homologues were larger, with the same ratio varying from 0.04 to 0.8. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used to examine PCDD/F amount and profile in these soil samples, and their possible associations with known emission sources: in this process 6 really distinct isomer fingerprints were identified. Background PCDD/F levels and profiles were comparable to those found in soils from China and other countries and indicate a rather low baseline PCDD/F contamination of soils. The present data provide the tools for future assessment of a possible impact of these MSWIs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. [Distribution Characteristics of Heavy Metals in Environmental Samples Around Electroplating Factories and the Health Risk Assessment].

    PubMed

    Guo, Peng-ran; Lei, Yong-qian; Zhou, Qiao-li; Wang, Chang; Pan, Jia-chuan

    2015-09-01

    This study aimed to investigate the pollution degree and human health risk of heavy metals in soil and air samples around electroplating factories. Soil, air and waste gas samples were collected to measure 8 heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) in two electroplating factories, located in Baiyun district of Guangzhou city. Geoaccumulation index and USEPA Risk Assessment Guidance for Superfund (RAGS) were respectively carried out. Results showed that concentrations of Hg and Pb in waste gas and Cr in air samples were higher than limits of the corresponding quality standards, and concentrations of Cd, Hg and Zn in soil samples reached the moderate pollution level. The HQ and HI of exposure by heavy metals in air and soil samples were both lower than 1, indicating that there was no non-carcinogen risk. CRAs and CRCr in soil samples were beyond the maximum acceptable level of carcinogen risk (10(-4)), and the contribution rate of CRCr to TCR was over 81%. CRCr, CRNi and TCR in air samples were in range of 10(-6) - 10(-4), indicating there was possibly carcinogen risk but was acceptable risk. CR values for children were higher than adults in soils, but were higher for adults in air samples. Correlation analysis revealed that concentrations of heavy metals in soils were significantly correlated with these in waste gas samples, and PCA data showed pollution sources of Cd, Hg and Zn in soils were different from other metals.

  4. Quantitative passive soil vapor sampling for VOCs--part 1: theory.

    PubMed

    McAlary, Todd; Wang, Xiaomin; Unger, Andre; Groenevelt, Hester; Górecki, Tadeusz

    2014-03-01

    Volatile organic compounds are the primary chemicals of concern at many contaminated sites and soil vapor sampling and analysis is a valuable tool for assessing the nature and extent of contamination. Soil gas samples are typically collected by applying vacuum to a probe in order to collect a whole-gas sample, or by drawing gas through a tube filled with an adsorbent (active sampling). There are challenges associated with flow and vacuum levels in low permeability materials, and leak prevention and detection during active sample collection can be cumbersome. Passive sampling has been available as an alternative to conventional gas sample collection for decades, but quantitative relationships between the mass of chemicals sorbed, the soil vapor concentrations, and the sampling time have not been established. This paper presents transient and steady-state mathematical models of radial vapor diffusion to a drilled hole and considerations for passive sampler sensitivity and practical sampling durations. The results indicate that uptake rates in the range of 0.1 to 1 mL min(-1) will minimize the starvation effect for most soil moisture conditions and provide adequate sensitivity for human health risk assessment with a practical sampling duration. This new knowledge provides a basis for improved passive soil vapour sampler design.

  5. Heavy metals in soils and sediments from Dongting Lake in China: occurrence, sources, and spatial distribution by multivariate statistical analysis.

    PubMed

    Zhang, Yaxin; Tian, Ye; Shen, Maocai; Zeng, Guangming

    2018-05-01

    Heavy metal contamination in soils/sediments and its impact on human health and ecological environment have aroused wide concerns. Our study investigated 30 samples of soils and sediments around Dongting Lake to analyze the concentration of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn in the samples and to distinguish the natural and anthropogenic sources. Also, the relationship between heavy metals and the physicochemical properties of samples was studied by multivariate statistical analysis. Concentration of Cd at most sampling sites were more than five times that of national environmental quality standard for soil in China (GB 15618-1995), and Pb and Zn levels exceeded one to two times. Moreover, Cr in the soil was higher than the national environmental quality standards for one to two times while in sediment was lower than the national standard. The investigation revealed that the accumulations of As, Cd, Mn, and Pb in the soils, and sediments were affected apparently by anthropogenic activities; however, Cr, Fe, and Ni levels were impacted by parent materials. Human activities around Dongting Lake mainly consisted of industrial activities, mining and smelting, sewage discharges, fossil fuel combustion, and agricultural chemicals. The spatial distribution of heavy metal in soil followed the rule of geographical gradient, whereas in sediments, it was significantly affected by the river basins and human activities. The result of principal component analysis (PCA) demonstrated that heavy metals in soils were associated with pH and total phosphorus (TP), while in sediments, As, Cr, Fe, and Ni were closely associated with cation exchange capacity (CEC) and pH, where Pb, Zn, and Cd were associated with total nitrogen (TN), TP, total carbon (TC), moisture content (MC), soil organic matter (SOM), and ignition lost (IL). Our research provides comprehensive approaches to better understand the potential sources and the fate of contaminants in lakeshore soils and sediments.

  6. Changes in Carbon Chemistry and Stability Along Deep Tropical Soil Profiles at the Luquillo Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Stone, M.; Hockaday, W. C.; Plante, A. F.

    2014-12-01

    Tropical forests are the largest terrestrial carbon (C) sink, and tropical forest soils contribute disproportionately to the poorly-characterized deep soil C pool. The goal of this study was to evaluate how carbon chemistry and stability change with depth in tropical forest soils formed on two contrasting parent materials. We used soils from pits excavated to 140 cm depth that were stratified across two soil types (Oxisols and Inceptisols) at the Luquillo Critical Zone Observatory in northeast Puerto Rico. We used 13C nuclear magnetic resonance (NMR) spectroscopy to characterize soil C chemistry and differential scanning calorimetry (DSC) coupled with evolved gas analysis (CO2-EGA) to evaluate the thermal stability of soil C during ramped combustion. Thirty-four samples with an initial C concentration ≥1% were chosen from discrete depth intervals (0, 30, 60, 90 & 140 cm) for 13C NMR analysis, while DSC was performed on 122 samples that included the NMR sample set and additional samples at 20, 50, 80 and 110 cm depth. Preliminary 13C NMR results indicate higher alkyl : O-alkyl ratios and an enrichment of aliphatic and proteinaceous C with depth, compared with greater aromatic and carbohydrate signals in surface soils. The energy density of soil C (J mg-1 C) also declined significantly with depth. In Oxisols, most CO2 evolution from combustion occurred around 300ºC, while most CO2 evolution occurred at higher temperatures (400-500ºC) in Inceptisols. Our findings suggest soil C is derived primarily of plant biomolecules in surface soils and becomes increasingly microbial with depth. Soil matrix-mediated differences in C transport and preservation may result in differences in C chemistry between the two soil types and a more thermally labile C pool in the Oxisols. We suggest that energy-poor substrates, combined with potentially stronger organo-mineral interactions in subsoils, may explain the long-term stability of deep C in highly weathered tropical soils.

  7. Heavy metals content in degraded agricultural soils of a mountain region related to soil properties

    NASA Astrophysics Data System (ADS)

    Navarro-Pedreño, José; Belén Almendro-Candel, María; Gómez, Ignacio; Jordán, Manuel M.; Bech, Jaume; Zorpas, Antonis

    2017-04-01

    Agriculture has been practiced for long time in Mediterranean regions. Intensive agriculture and irrigation have developed mainly in the valleys and coastal areas. In the mountainous areas, dry farming has been practiced for centuries. Soils have been fertilized using mainly organic amendments. Plants extracted nutrients and other elements like heavy metals presented in soils and agricultural practices modified soil properties that could favor the presence of heavy metals. In this work, it has been checked the content of heavy metals in 100 agricultural soils samples of the NorthWest area of the province of Alicante (Spain) which has been long cultivated with cereals and olive trees, and now soils are abandoned and degraded because of the low agricultural yields. European policy has the aim to improve the sustainable agriculture and recover landscapes of mountain regions. So that, it is important to check the state of the soils (Marques et al. 2007). Soils samples (arable layer) were analyzed determining: pH (1:5, w/v, water extract), equivalent calcium carbonate content, organic matter by Walkley-Black method (Nelson and Sommers 1996), micronutrients (Cu, Fe, Mn, Zn) extracted with DTPA (Lindsay and Norvell, 1978) and measured by atomic absorption spectrometry, and total content of metals (Cd, Cr, Ni, Pb) measured in soil samples after microwave acid digestion (Moral et al. 1996), quantifying the content of metals by ICP analysis. The correlation between soil properties and metals. The results indicated that pH and carbonates are the most important properties of these soils correlated with the metals (both micronutrients and heavy metals). The available micronutrients (all of them) are close correlated with the pH and carbonates in soils. Moreover, heavy metals like Pb and Ni are related to available Mn and Zn. Keywords: pH, carbonates, heavy metals, abandoned soils. References: Lindsay,W.L., andW.A. Norvell. 1978. "Development of a DTPA Soil Test for Zinc, Iron, Manganese and Copper." Soil Science Society of America Journal 42: 421-428. Marques,M.J., R. Jimenez-Ballesta, A. Á lvarez, and R. Bienes. 2007. "Spanish Research on Soil Damage." Science of the Total Environment 378: 1-4. Moral, R., J. Navarro-Pedreño, I. Gómez, and J. Mataix. 1996. "Quantitative Analysis of Organic Residues: Effects of Samples Preparation in the Determination of Metal." Communications in Soil Science and Plant Analysis 27: 753-761. Nelson, D.W., and L.E. Sommers. 1996. "Total Carbon, Organic Carbon, and Organic Matter." In Methods of Soil Analysis. Part 3. Chemical Methods, edited by D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, M.E. Sumner. Madison, WI: American Society of Agronomy.

  8. Limitations and potential of spectral subtractions in fourier-transform infrared (FTIR) spectroscopy of soil samples

    USDA-ARS?s Scientific Manuscript database

    Soil science research is increasingly applying Fourier transform infrared (FTIR) spectroscopy for analysis of soil organic matter (SOM). However, the compositional complexity of soils and the dominance of the mineral component can limit spectroscopic resolution of SOM and other minor components. The...

  9. Challenges in Bulk Soil Sampling and Analysis for Vapor Intrusion Screening of Soil

    EPA Science Inventory

    This draft Engineering Issue Paper discusses technical issues with monitoring soil excavations for VOCs and describes options for such monitoring as part of a VI pathway assessment at sites where soil excavation is being considered or used as part of the remedy for VOC-contaminat...

  10. Determining baselines and variability of elements in plants and soils near the Kenai National Wildlife Refuge, Alaska

    USGS Publications Warehouse

    Crock, J.G.; Severson, R.C.; Gough, L.P.

    1992-01-01

    Recent investigations on the Kenai Peninsula had two major objectives: (1) to establish elemental baseline concentrations ranges for native vegetation and soils; and, (2) to determine the sampling density required for preparing stable regional geochemical maps for various elements in native plants and soils. These objectives were accomplished using an unbalanced, nested analysis-of-variance (ANOVA) barbell sampling design. Hylocomium splendens (Hedw.) BSG (feather moss, whole plant), Picea glauca (Moench) Voss (white spruce, twigs and needles), and soil horizons (02 and C) were collected and analyzed for major and trace total element concentrations. Using geometric means and geometric deviations, expected baseline ranges for elements were calculated. Results of the ANOVA show that intensive soil or plant sampling is needed to reliably map the geochemistry of the area, due to large local variability. For example, producing reliable element maps of feather moss using a 50 km cell (at 95% probability) would require sampling densities of from 4 samples per cell for Al, Co, Fe, La, Li, and V, to more than 15 samples per cell for Cu, Pb, Se, and Zn.Recent investigations on the Kenai Peninsula had two major objectives: (1) to establish elemental baseline concentrations ranges for native vegetation and soils; and, (2) to determine the sampling density required for preparing stable regional geochemical maps for various elements in native plants and soils. These objectives were accomplished using an unbalanced, nested analysis-of-variance (ANOVA) barbell sampling design. Hylocomium splendens (Hedw.) BSG (feather moss, whole plant), Picea glauca (Moench) Voss (white spruce, twigs and needles), and soil horizons (02 and C) were collected and analyzed for major and trace total element concentrations. Using geometric means and geometric deviations, expected baseline ranges for elements were calculated. Results of the ANOVA show that intensive soil or plant sampling is needed to reliably map the geochemistry of the area, due to large local variability. For example, producing reliable element maps of feather moss using a 50 km cell (at 95% probability) would require sampling densities of from 4 samples per cell Al, Co, Fe, La, Li, and V, to more than 15 samples per cell for Cu, Pb, Se, and Zn.

  11. Characterization of mineral phases of agricultural soil samples of Colombian coffee using Mössbauer spectroscopy and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Rodríguez, Humberto Bustos; Lozano, Dagoberto Oyola; Martínez, Yebrayl Antonio Rojas; Pinilla, Marlene Rivera; Alcázar, German Antonio Pérez

    2012-03-01

    Soil chemical analysis, X-ray diffraction (XRD) and Mössbauer spectrometry (MS) of 57Fe were used to characterize mineral phases of samples taken from the productive layer (horizon A) of agricultural coffee soil from Tolima (Colombia). Chemical analysis shows the chemical and textural parameters of samples from two different regions of Tolima, i.e., Ibagué and Santa Isabel. By XRD phases like illite (I), andesine (A) and quartz (Q) in both samples were identified. The quantity of these phases is different for the two samples. The MS spectra taken at room temperature were adjusted by using five doublets, three of them associated to Fe + 3 type sites and the other two to Fe + 2 type sites. According to their isomer shift and quadrupole splitting the presence of phases like illite (detected by DRX), nontronite and biotite (not detected by XRD) can be postulated.

  12. Tools based on multivariate statistical analysis for classification of soil and groundwater in Apulian agricultural sites.

    PubMed

    Ielpo, Pierina; Leardi, Riccardo; Pappagallo, Giuseppe; Uricchio, Vito Felice

    2017-06-01

    In this paper, the results obtained from multivariate statistical techniques such as PCA (Principal component analysis) and LDA (Linear discriminant analysis) applied to a wide soil data set are presented. The results have been compared with those obtained on a groundwater data set, whose samples were collected together with soil ones, within the project "Improvement of the Regional Agro-meteorological Monitoring Network (2004-2007)". LDA, applied to soil data, has allowed to distinguish the geographical origin of the sample from either one of the two macroaeras: Bari and Foggia provinces vs Brindisi, Lecce e Taranto provinces, with a percentage of correct prediction in cross validation of 87%. In the case of the groundwater data set, the best classification was obtained when the samples were grouped into three macroareas: Foggia province, Bari province and Brindisi, Lecce and Taranto provinces, by reaching a percentage of correct predictions in cross validation of 84%. The obtained information can be very useful in supporting soil and water resource management, such as the reduction of water consumption and the reduction of energy and chemical (nutrients and pesticides) inputs in agriculture.

  13. Development of remote sensing techniques capable of delineating soils as an aid to soil survey

    NASA Technical Reports Server (NTRS)

    Coleman, T. L.; Montgomery, O. L.

    1988-01-01

    Eighty-one benchmark soils from Alabama, Georgia, Florida, Tennessee, and Mississippi were evaluated to determine the feasibility of spectrally differentiating among soil categories. Relationships among spectral properties that occur between soils and within soils were examined, using discriminant analysis. Soil spectral data were obtained from air-dried samples using an Exotech Model 20C field spectroradiometer (0.37 to 2.36 microns). Differentiating among the orders, suborders, great groups, and subgroups using reflectance spectra achieved varying percentages of accuracy. Six distinct reflectance curve forms were developed from the air-dried samples based on the shape and presence or absence of adsorption bands. Iron oxide and organic matter content were the dominant soil parameters affecting the spectral characteristics for differentiating among and between these soils.

  14. Validated Test Method 5030C: Purge-and-Trap for Aqueous Samples

    EPA Pesticide Factsheets

    This method describes a purge-and-trap procedure for the analysis of volatile organic compoundsin aqueous samples & water miscible liquid samples. It also describes the analysis of high concentration soil and waste sample extracts prepared in Method 5035.

  15. Environmental contamination with Toxocara spp. eggs in public parks and playground sandpits of Greater Lisbon, Portugal.

    PubMed

    Otero, David; Alho, Ana M; Nijsse, Rolf; Roelfsema, Jeroen; Overgaauw, Paul; Madeira de Carvalho, Luís

    Toxocarosis is a zoonotic parasitic disease transmitted from companion animals to humans. Environmental contamination with Toxocara eggs is considered to be the main source of human infections. In Portugal, knowledge regarding the current situation, including density, distribution and environmental contamination by Toxocara spp., is largely unknown. The present study investigated environmental contamination with Toxocara spp. eggs, in soil and faecal samples collected from public parks and playground sandpits in Greater Lisbon, Portugal. A total of 151 soil samples and 135 canine faecal samples were collected from 7 public sandpits and 12 public parks, over a 4 month-period. Soil samples were tested by a modified centrifugation and sedimentation/flotation technique and faecal samples were tested by an adaptation of the Cornell-Wisconsin method. Molecular analysis and sequencing were performed to discriminate Toxocara species in the soil. Overall, 85.7% of the sandpits (6/7) and 50.0% of the parks (6/12) were contaminated with Toxocara spp. eggs. The molecular analysis of soil samples showed that, 85.5% of the sandpits and 34.4% of the parks were contaminated with Toxocara cati eggs. Faecal analysis showed that 12.5% of the sandpits and 3.9% of the parks contained Toxocara canis eggs. In total, 53.0% of soil and 5.9% of faecal samples were positive for Toxocara spp. Additionally, 56.0% of the eggs recovered from the samples were embryonated after 60 days of incubation, therefore considered viable and infective. The average density was 4.2 eggs per hundred grams of soil. Public parks and playground sandpits in the Lisbon area were found to be heavily contaminated with T. cati eggs, representing a serious menace to public health as the studied areas represent common places where people of all ages, particularly children, recreate. This study sounds an alarm bell regarding the necessity to undertake effective measures such as reduction of stray animals, active faecal collection by pet owners, awareness campaigns and control strategies to decrease the high risk to both animal and human health. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Rapid detection of soils contaminated with heavy metals and oils by laser induced breakdown spectroscopy (LIBS).

    PubMed

    Kim, Gibaek; Kwak, Jihyun; Kim, Ki-Rak; Lee, Heesung; Kim, Kyoung-Woong; Yang, Hyeon; Park, Kihong

    2013-12-15

    A laser induced breakdown spectroscopy (LIBS) coupled with the chemometric method was applied to rapidly discriminate between soils contaminated with heavy metals or oils and clean soils. The effects of the water contents and grain sizes of soil samples on LIBS emissions were also investigated. The LIBS emission lines decreased by 59-75% when the water content increased from 1.2% to 7.8%, and soil samples with a grain size of 75 μm displayed higher LIBS emission lines with lower relative standard deviations than those with a 2mm grain size. The water content was found to have a more pronounced effect on the LIBS emission lines than the grain size. Pelletizing and sieving were conducted for all samples collected from abandoned mining areas and military camp to have similar water contents and grain sizes before being analyzed by the LIBS with the chemometric analysis. The data show that three types of soil samples were clearly discerned by using the first three principal components from the spectral data of soil samples. A blind test was conducted with a 100% correction rate for soil samples contaminated with heavy metals and oil residues. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. A survey on polycyclic aromatic hydrocarbon concentrations in soil in Chiang-Mai, Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amagai, Takashi; Takahashi, Yukari; Matsushita, Hidetsuru

    Soil samples were collected at 30 sampling sites along roadsides in the city of Chiang-Mai, Thailand, in February 1996, and concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were determined. The distribution of PAH concentration in the soil samples was almost log-normal for all PAHs. Concentrations of pyrene (Py) and fluoranthene (Fluor) were the highest, followed by those of benzo[ghi]perylene and coronene (Cor). Since PAH concentrations were highest on the roadside where the traffic density was high, vehicles were the main determinants of PAH concentration in soil in Chiang-Mai. Significant correlations among PAH concentrations were found for almost all PAHs. PAHmore » profiles in the air were different from those in the soil. For example, relative benzo[a]pyrene (BaP) concentration in the soil was significantly lower than that in the air. Relative concentrations of Fluor, Py, chrysene, and Cor in the soil were considerably higher than those in the air, due presumably to their difference in photochemical reactivities and in sources. The sampling of soil has advantages relative to that of air: (1) collection of soil is easy; (2) it needs no special equipment and electricity; (3) it takes little time; and (4) it can be collected anywhere. Therefore PAH analysis in soil was useful as a proxy-screening tool for air pollution levels with consideration of compositional differences between soil and air samples.« less

  18. Elemental composition study of heavy metal (Ni, Cu, Zn) in riverbank soil by electrokinetic-assisted phytoremediation using XRF and SEM/EDX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamari, Suhailly; Embong, Zaidi; Bakar, Ismail

    Electrokinetic (EK)-assisted phytoremediation is one of the methods that have a big potential in enhancing the ability of plant uptake in soils remediation process. This research was conducted to investigate the difference in elemental composition concentration of riverbank soil and the change of pH between pre- and post-phytoremediation under the following condition: 1) control or as-receive sample; 2) Dieffenbachia spp plant with EK system (a pair of EK electrodes connected to a direct current (DC) power supply). After the electrodes were connected to a magnitude of 6V/cm{sup −1} electric field for 4 hours/day, the soil and plant samples were analyzedmore » using and X-ray Fluorescence Spectrometer (XRF) and Scanning Electron Microscope / Energy Dispersive X-ray Spectroscopy (SEM/EDX). The SEM/EDX analysis showed that concentration of elemental composition (Ni, Cu and Zn) in post-phytoremediation plant powder samples had increase while elemental concentrations in the post-phytoremediation soil samples were decreased. XRF analysis presented a variation in soil elemental composition concentration from anode to cathode where the concentration near anode region increased while decreased near the cathode region. A significant changes in soil pH were obtained where the soil pH increase in cathode region while decrease in anode region. The results reveal that the assistance of EK in phytoremediation process has increase the efficiency of plant uptake.« less

  19. Microorganisms, Organic Carbon, and Their Relationship with Oxidant Activity in Hyper-Arid Mars-Like Soils: Implications for Soil Habitability

    NASA Technical Reports Server (NTRS)

    Valdivia-Silva, Julio E.; Karouia, Fathi; Navarro-Gonzalez, Rafael; McKay, Christopher

    2016-01-01

    Soil samples from the hyper-arid region in the Atacama 23 Desert in Southern Peru (La Joya Desert) were analyzed for total and labile organic carbon (TOC & LOC), phospholipid fatty acids analysis (PLFA), quantitative real time polymerase chain reaction (qRT-PCR), 4',6- diamidino-2-phenylindole (DAPI)-fluorescent microscopy, culturable microorganisms, and oxidant activity, in order to understand the relationship between the presence of organic matter and microorganisms in these types of soils. TOC content levels were similar to the labile pool of carbon suggesting the absence of recalcitrant carbon in these soils. The range of LOC was from 2 to 60 micro-g/g of soil. PLFA analysis indicated a maximum of 2.3 x 10(exp 5) cell equivalents/g. Culturing of soil extracts yielded 1.1 x 10(exp 2)-3.7 x 10(exp 3) CFU/g. qRT-PCR showed between 1.0 x 10(exp 2) and 8 x 10(exp 3) cells/g; and DAPI fluorescent staining indicated bacteria counts up to 5 x 104 cells/g. Arid and semiarid samples (controls) showed values between 10(exp 7) and 10(exp 11) cells/g with all of the methods used. Importantly, the concentration of microorganisms in hyper-arid soils did not show any correlation with the organic carbon content; however, there was a significant dependence on the oxidant activity present in these soil samples evaluated as the capacity to decompose sodium formate in 10 hours. We suggest that the analysis of oxidant activity could be a useful indicator of the microbial habitability in hyper-arid soils, obviating the need to measure water activity over time. This approach could be useful in astrobiological studies on other worlds.

  20. Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India--spectroscopical approach.

    PubMed

    Chandrasekaran, A; Ravisankar, R; Harikrishnan, N; Satapathy, K K; Prasad, M V R; Kanagasabapathy, K V

    2015-02-25

    Anthropogenic activities increase the accumulation of heavy metals in the soil environment. Soil pollution significantly reduces environmental quality and affects the human health. In the present study soil samples were collected at different locations of Yelagiri Hills, Tamilnadu, India for heavy metal analysis. The samples were analyzed for twelve selected heavy metals (Mg, Al, K, Ca, Ti, Fe, V, Cr, Mn, Co, Ni and Zn) using energy dispersive X-ray fluorescence (EDXRF) spectroscopy. Heavy metals concentration in soil were investigated using enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF) and pollution load index (PLI) to determine metal accumulation, distribution and its pollution status. Heavy metal toxicity risk was assessed using soil quality guidelines (SQGs) given by target and intervention values of Dutch soil standards. The concentration of Ni, Co, Zn, Cr, Mn, Fe, Ti, K, Al, Mg were mainly controlled by natural sources. Multivariate statistical methods such as correlation matrix, principal component analysis and cluster analysis were applied for the identification of heavy metal sources (anthropogenic/natural origin). Geo-statistical methods such as kirging identified hot spots of metal contamination in road areas influenced mainly by presence of natural rocks. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Proton Induced X-Ray Emission (PIXE) Analysis to Measure Trace Metals in Soil Along the East River in Queens, New York

    NASA Astrophysics Data System (ADS)

    Chalise, Sajju; Conlan, Skye; Porat, Zachary; Labrake, Scott; Vineyard, Michael

    2017-09-01

    The Union College Ion-Beam Analysis Lab's 1.1 MV tandem Pelletron accelerator is used to determine the presence of heavy trace metals in Queens, NY between Astoria Park and 3.5 miles south to Gantry State Park. A PIXE analysis was performed on 0.5 g pelletized soil samples with a 2.2 MeV proton beam. The results show the presence of elements ranging from Ti to Pb with the concentration of Pb in Astoria Park (2200 +/-200 ppm) approximately ten times that of the Gantry State Park. We hypothesize that the high lead concentration at Astoria Park is due to the nearby Hell Gate Bridge, painted in 1916 with lead based paint, then sandblasted and repainted in the '90s. If the lead is from the repair of the bridge, then we should see the concentration decrease as we go further from the bridge. To test this, soil samples were collected and analyzed from seven different locations north and south of the bridge. The concentrations of lead decreased drastically within a 500 m radius and were approximately constant at greater distances. More soil samples need to be collected within the 500 m radius from bridge to identify the potential source of Pb. We will describe the experimental procedure, the PIXE analysis of soil samples, and present preliminary results on the distribution of heavy trace metals.

  2. Spatially resolved δ13C analysis using laser ablation isotope ratio mass spectrometry

    NASA Astrophysics Data System (ADS)

    Moran, J.; Riha, K. M.; Nims, M. K.; Linley, T. J.; Hess, N. J.; Nico, P. S.

    2014-12-01

    Inherent geochemical, organic matter, and microbial heterogeneity over small spatial scales can complicate studies of carbon dynamics through soils. Stable isotope analysis has a strong history of helping track substrate turnover, delineate rhizosphere activity zones, and identifying transitions in vegetation cover, but most traditional isotope approaches are limited in spatial resolution by a combination of physical separation techniques (manual dissection) and IRMS instrument sensitivity. We coupled laser ablation sampling with isotope measurement via IRMS to enable spatially resolved analysis over solid surfaces. Once a targeted sample region is ablated the resulting particulates are entrained in a helium carrier gas and passed through a combustion reactor where carbon is converted to CO2. Cyrotrapping of the resulting CO2 enables a reduction in carrier gas flow which improves overall measurement sensitivity versus traditional, high flow sample introduction. Currently we are performing sample analysis at 50 μm resolution, require 65 ng C per analysis, and achieve measurement precision consistent with other continuous flow techniques. We will discuss applications of the laser ablation IRMS (LA-IRMS) system to microbial communities and fish ecology studies to demonstrate the merits of this technique and how similar analytical approaches can be transitioned to soil systems. Preliminary efforts at analyzing soil samples will be used to highlight strengths and limitations of the LA-IRMS approach, paying particular attention to sample preparation requirements, spatial resolution, sample analysis time, and the types of questions most conducive to analysis via LA-IRMS.

  3. [Restoration of microbial ammonia oxidizers in air-dried forest soils upon wetting].

    PubMed

    Zhou, Xue; Huang, Rong; Song, Ge; Pan, Xianzhang; Jia, Zhongjun

    2014-11-04

    This study was aimed to investigate the abundance and community shift of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in air-dried forest soils in response to water addition, to explore the applicability of air-dried soil for microbial ecology study, and to elucidate whether AOA within the marine group 1. 1a dominate ammonia oxidizers communities in the acidic forest soils in China. Soil samples were collected from 10 forest sites of the China Ecosystem Research Network (CERN) and kept under air-drying conditions in 2010. In 2013 the air-dried soil samples were adjusted to 60% of soil maximum water holding capacity for a 28-day incubation at 28 degrees C in darkness. DGGE fingerprinting, clone library construction, pyrosequencing and quantitative PCR of amoA genes were performed to assess community change of ammonia oxidizers in air-dried and re-wetted soils. After incubation for 28 days, the abundance of bacteria and archaea increased significantly, up to 3,230 and 568 times, respectively. AOA increased significantly in 8 samples, and AOB increased significantly in 5 of 10 samples. However, pyrosequencing of amoA genes reveals insignificant changes in composition of AOA and AOB communities. Phylogenetic analysis of amoA genes indicates that archaeal ammonia oxidizers were predominated by AOA within the soil group 1. 1b lineage, while the Nitrosospira-like AOB dominate bacteria ammonia oxidizer communities. There was a significantly positive correlation between AOA/AOB ratio and total nitrogen (r2 = 0.54, P < 0.05), implying that soil ammonia oxidation might be dominated by AOA in association with ammonium released from soil mineralization. Phylogenetic analysis suggest that AOA members within the soil group 1. 1b lineage were not restricted to non-acidic soils as previously thought. The abundance rather than composition of AOA and AOB changed in response to water addition. This indicates that air-dried soil could be of help for microbial biogeography study.

  4. Using semi-variogram analysis for providing spatially distributed information on soil surface condition for land surface modeling

    NASA Astrophysics Data System (ADS)

    Croft, Holly; Anderson, Karen; Kuhn, Nikolaus J.

    2010-05-01

    The ability to quantitatively and spatially assess soil surface roughness is important in geomorphology and land degradation studies. Soils can experience rapid structural degradation in response to land cover changes, resulting in increased susceptibility to erosion and a loss of Soil Organic Matter (SOM). Changes in soil surface condition can also alter sediment detachment, transport and deposition processes, infiltration rates and surface runoff characteristics. Deriving spatially distributed quantitative information on soil surface condition for inclusion in hydrological and soil erosion models is therefore paramount. However, due to the time and resources involved in using traditional field sampling techniques, there is a lack of spatially distributed information on soil surface condition. Laser techniques can provide data for a rapid three dimensional representation of the soil surface at a fine spatial resolution. This provides the ability to capture changes at the soil surface associated with aggregate breakdown, flow routing, erosion and sediment re-distribution. Semi-variogram analysis of the laser data can be used to represent spatial dependence within the dataset; providing information about the spatial character of soil surface structure. This experiment details the ability of semi-variogram analysis to spatially describe changes in soil surface condition. Soil for three soil types (silt, silt loam and silty clay) was sieved to produce aggregates between 1 mm and 16 mm in size and placed evenly in sample trays (25 x 20 x 2 cm). Soil samples for each soil type were exposed to five different durations of artificial rainfall, to produce progressively structurally degraded soil states. A calibrated laser profiling instrument was used to measure surface roughness over a central 10 x 10 cm plot of each soil state, at 2 mm sample spacing. The laser data were analysed within a geostatistical framework, where semi-variogram analysis quantitatively represented the change in soil surface structure during crusting. The laser data were also used to create digital surface models (DSM) of the soil states for visual comparison. This research has shown that aggregate breakdown and soil crusting can be shown quantitatively by a decrease in sill variance (silt soil: 11.67 (control) to 1.08 (after 90 mins rainfall)). Features present within semi-variograms were spatially linked to features at the soil surface, such as soil cracks, tillage lines and areas of deposition. Directional semi-variograms were used to provide a spatially orientated component, where the directional sill variance associated with a soil crack was shown to increase from 7.95 to 19.33. Periodicity within semi-variogram was also shown to quantify the spatial scale of soil cracking networks and potentially surface flowpaths; an average distance between soil cracks of 37 mm closely corresponded to the distance of 38 mm shown in the semi-variogram. The results provide a strong basis for the future retrieval of spatio-temporal variations in soil surface condition. Furthermore, the presence of process-based information on hydrological pathways within semi-variograms may work towards an inclusion of geostatisically-derived information in land surface models and the understanding of complex surface processes at different spatial scales.

  5. Development and Application of Pyrolysis Gas Chromatography/Mass Spectrometry for the Analysis of Bound Trinitrotoluene Residues in Soil

    USGS Publications Warehouse

    Weiss, J.M.; Mckay, A.J.; Derito, C.; Watanabe, C.; Thorn, K.A.; Madsen, E.L.

    2004-01-01

    TNT (trinitrotoluene) is a contaminant of global environmental significance, yet determining its environmental fate has posed longstanding challenges. To date, only differential extraction-based approaches have been able to determine the presence of covalently bound, reduced forms of TNT in field soils. Here, we employed thermal elution, pyrolysis, and gas chromatography/mass spectrometry (GC/MS) to distinguish between covalently bound and noncovalently bound reduced forms of TNT in soil. Model soil organic matter-based matrixes were used to develop an assay in which noncovalently bound (monomeric) aminodinitrotoluene (ADNT) and diaminonitrotoluene (DANT) were desorbed from the matrix and analyzed at a lower temperature than covalently bound forms of these same compounds. A thermal desorption technique, evolved gas analysis, was initially employed to differentiate between covalently bound and added 15N-labeled monomeric compounds. A refined thermal elution procedure, termed "double-shot analysis" (DSA), allowed a sample to be sequentially analyzed in two phases. In phase 1, all of an added 15N-labeled monomeric contaminant was eluted from the sample at relatively low temperature. In phase 2 during high-temperature pyrolysis, the remaining covalently bound contaminants were detected. DSA analysis of soil from the Louisiana Army Ammunition Plant (LAAP; ???5000 ppm TNT) revealed the presence of DANT, ADNT, and TNT. After scrutinizing the DSA data and comparing them to results from solvent-extracted and base/acid-hydrolyzed LAAP soil, we concluded that the TNT was a noncovalently bound "carryover" from phase 1. Thus, the pyrolysis-GC/MS technique successfully defined covalently bound pools of ADNT and DANT in the field soil sample.

  6. Relationship between Heavy Metal Concentrations in Soils and Grasses of Roadside Farmland in Nepal

    PubMed Central

    Yan, Xuedong; Zhang, Fan; Zeng, Chen; Zhang, Man; Devkota, Lochan Prasad; Yao, Tandong

    2012-01-01

    Transportation activities can contribute to accumulation of heavy metals in roadside soil and grass, which could potentially compromise public health and the environment if the roadways cross farmland areas. Particularly, heavy metals may enter the food chain as a result of their uptake by roadside edible grasses. This research was conducted to investigate heavy metal (Cu, Zn, Cd, and Pb) concentrations in roadside farmland soils and corresponding grasses around Kathmandu, Nepal. Four factors were considered for the experimental design, including sample type, sampling location, roadside distance, and tree protection. A total of 60 grass samples and 60 topsoil samples were collected under dry weather conditions. The Multivariate Analysis of Variance (MANOVA) results indicate that the concentrations of Cu, Zn, and Pb in the soil samples are significantly higher than those in the grass samples; the concentrations of Cu and Pb in the suburban roadside farmland are higher than those in the rural mountainous roadside farmland; and the concentrations of Cu and Zn at the sampling locations with roadside trees are significantly lower than those without tree protection. The analysis of transfer factor, which is calculated as the ratio of heavy-metal concentrations in grass to those in the corresponding soil, indicates that the uptake capabilities of heavy metals from soil to grass is in the order of Zn > Cu > Pb. Additionally, it is found that as the soils’ heavy-metal concentrations increase, the capability of heavy-metal transfer to the grass decreases, and this relationship can be characterized by an exponential regression model. PMID:23202679

  7. Collaborative, Nondestructive Analysis of Contaminated Soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, K. B.; Dai, Z.; Davidson, L.

    This report summarizes a joint nondestructive analysis exercise that LLNL, LANL, and COMENA discussed through a collaborative meeting in July 2017. This work was performed as one part of a collaboration with Algeria under Action Sheet 7: “Technical Cooperation and Assistance in Nuclear Forensics”. The primary intent of this exercise was for US and Algerian participants to jointly share results of nondestructive analyses (NDA) of a contaminated soil sample provided by the Algerians and to discuss key observations and analytical approaches. While the two samples were analyzed blind at LLNL and LANL, the soil samples were revealed after the exercisemore » to have a common origin, and to have originated as an IAEA soil sample (IAEA-326, Bojanowski et al., 2001) provided to COMENA as part of a previous exercise. Comparative analysis revealed common findings between the laboratories, and also emphasized the need for standardized operating procedures to improve inter-comparability and confidence in conclusions. Recommended handling practices in the presence of sample heterogeneities were also discussed. This exercise provided an opportunity to demonstrate nuclear forensics analytical capabilities at COMENA, LANL, and LLNL, and identified areas that could benefit from future technical exchanges. Plans were made for a follow-on joint exercise in 2018, involving destructive analyses of the CUP-2 uranium ore concentrate standard.« less

  8. Representativeness of laboratory sampling procedures for the analysis of trace metals in soil.

    PubMed

    Dubé, Jean-Sébastien; Boudreault, Jean-Philippe; Bost, Régis; Sona, Mirela; Duhaime, François; Éthier, Yannic

    2015-08-01

    This study was conducted to assess the representativeness of laboratory sampling protocols for purposes of trace metal analysis in soil. Five laboratory protocols were compared, including conventional grab sampling, to assess the influence of sectorial splitting, sieving, and grinding on measured trace metal concentrations and their variability. It was concluded that grinding was the most important factor in controlling the variability of trace metal concentrations. Grinding increased the reproducibility of sample mass reduction by rotary sectorial splitting by up to two orders of magnitude. Combined with rotary sectorial splitting, grinding increased the reproducibility of trace metal concentrations by almost three orders of magnitude compared to grab sampling. Moreover, results showed that if grinding is used as part of a mass reduction protocol by sectorial splitting, the effect of sieving on reproducibility became insignificant. Gy's sampling theory and practice was also used to analyze the aforementioned sampling protocols. While the theoretical relative variances calculated for each sampling protocol qualitatively agreed with the experimental variances, their quantitative agreement was very poor. It was assumed that the parameters used in the calculation of theoretical sampling variances may not correctly estimate the constitutional heterogeneity of soils or soil-like materials. Finally, the results have highlighted the pitfalls of grab sampling, namely, the fact that it does not exert control over incorrect sampling errors and that it is strongly affected by distribution heterogeneity.

  9. Assessment of heavy metals contamination in soil profiles of roadside Suaeda salsa wetlands in a Chinese delta

    NASA Astrophysics Data System (ADS)

    Wen, Xiaojun; Wang, Qinggai; Zhang, Guangliang; Bai, Junhong; Wang, Wei; Zhang, Shuai

    2017-02-01

    Five sampling sites (Sites A, B, C, D and E) were selected along a 250 m sampling zone covered by Suaeda salsa, which is perpendicular to a road, in the Yellow River Delta of China. Soil samples were collected to a depth of 40cm in these five sampling sites to investigate the profile distributions and toxic risks of heavy metals. Concentrations of heavy metals (As, Cd, Cr, Cu, Ni, Pb and Zn) were determined using inductively coupled plasma atomic absorption spectrometry (ICP-AAS). The results showed that in each sampling site, Cd, Cu, Pb and Zn have approximately constant concentrations along soil profiles and did not show high contamination compared with the values of probable effect levels (PELs). All soils exhibited As and Ni contamination at all sampling sites compared with other heavy metals. The index of geo-accumulation (Igeo) values for As in the 20-30 cm soil layer at Site B was grouped into Class Ⅳ(2 < Igeo ≤ 3), indicating that the soil was moderately to strongly contaminated. Forty percent of Igeo values of Cd for all soil samples were grouped into Class Ⅳ(2 < Igeo ≤ 3) and 75% samples of Site C showed moderately to strongly contaminated level. The Enrichment factor (EF) values of As at Sites B, C, D and E reached significant enrichment level and EF values of Cd at five sampling sites all reached significant enrichment level. The sum of toxic units (∑TUs) values for surface soils of Sites B and C beyond 4 indicated that Sites B and C have severer toxicity compared with other three sampling sites. As and Ni should be paid more attention to avoid potential ecotoxicity due to their high contribution ratios to the ∑TUs in Suaeda salsa wetlands. Correlation analysis (CA) and principal components analysis (PCA) revealed that Cr, Cu, Ni, Pb and Zn might derive from the common sources, Cd might originate from another, while As might have more complex sources in this study area.

  10. Automating data analysis for two-dimensional gas chromatography/time-of-flight mass spectrometry non-targeted analysis of comparative samples.

    PubMed

    Titaley, Ivan A; Ogba, O Maduka; Chibwe, Leah; Hoh, Eunha; Cheong, Paul H-Y; Simonich, Staci L Massey

    2018-03-16

    Non-targeted analysis of environmental samples, using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC/ToF-MS), poses significant data analysis challenges due to the large number of possible analytes. Non-targeted data analysis of complex mixtures is prone to human bias and is laborious, particularly for comparative environmental samples such as contaminated soil pre- and post-bioremediation. To address this research bottleneck, we developed OCTpy, a Python™ script that acts as a data reduction filter to automate GC × GC/ToF-MS data analysis from LECO ® ChromaTOF ® software and facilitates selection of analytes of interest based on peak area comparison between comparative samples. We used data from polycyclic aromatic hydrocarbon (PAH) contaminated soil, pre- and post-bioremediation, to assess the effectiveness of OCTpy in facilitating the selection of analytes that have formed or degraded following treatment. Using datasets from the soil extracts pre- and post-bioremediation, OCTpy selected, on average, 18% of the initial suggested analytes generated by the LECO ® ChromaTOF ® software Statistical Compare feature. Based on this list, 63-100% of the candidate analytes identified by a highly trained individual were also selected by OCTpy. This process was accomplished in several minutes per sample, whereas manual data analysis took several hours per sample. OCTpy automates the analysis of complex mixtures of comparative samples, reduces the potential for human error during heavy data handling and decreases data analysis time by at least tenfold. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Slope stability analysis of landslide in Wayang Windu Geothermal Field, Pangalengan, West Java Province, Indonesia

    NASA Astrophysics Data System (ADS)

    Yuhendar, A. H.; Wusqa, U.; Kartiko, R. D.; Raya, N. R.; Misbahudin

    2016-05-01

    Large-scale landslide occurred in Margamukti village, Pangalengan, Bandung Regency, West Java Province, Indonesia. The landslide damaged geothermal gas pipeline along 300 m in Wayang Windu Geothermal Field. Based on field observation, landslide occured in rotational sliding movement. Laboratory analysis were conducted to obtain the characteristics of the soil. Based on the condition of the landslide in this area, the Factor of Safety can be simulated by the soil mechanics approach. Factor of safety analysis based on soil cohesion and internal friction angle was conducted using manual sensitivity analysis for back analysis. The analysis resulted soil cohesion in critical condition (FS<1) is 6.01 kPa. This value is smaller than cohesion of undisturbed slope soil sample. Water from rainfall is the most important instability factors in research area. Because it decreases cohesion in soils and increases weight and pore water pressure in granular media.

  12. Comparative forensic soil analysis of New Jersey state parks using a combination of simple techniques with multivariate statistics.

    PubMed

    Bonetti, Jennifer; Quarino, Lawrence

    2014-05-01

    This study has shown that the combination of simple techniques with the use of multivariate statistics offers the potential for the comparative analysis of soil samples. Five samples were obtained from each of twelve state parks across New Jersey in both the summer and fall seasons. Each sample was examined using particle-size distribution, pH analysis in both water and 1 M CaCl2 , and a loss on ignition technique. Data from each of the techniques were combined, and principal component analysis (PCA) and canonical discriminant analysis (CDA) were used for multivariate data transformation. Samples from different locations could be visually differentiated from one another using these multivariate plots. Hold-one-out cross-validation analysis showed error rates as low as 3.33%. Ten blind study samples were analyzed resulting in no misclassifications using Mahalanobis distance calculations and visual examinations of multivariate plots. Seasonal variation was minimal between corresponding samples, suggesting potential success in forensic applications. © 2014 American Academy of Forensic Sciences.

  13. NASA applications project in Miami County, Indiana

    NASA Technical Reports Server (NTRS)

    Fernandez, R. Norberto; Lozano-Garcia, D. Fabian; Wyss, Phillip J.; Johannsen, Chris J.

    1989-01-01

    The study site selection is intended to serve all of the different research areas within the project, i.e., soil conditions, soil management, etc. There are seven major soil associations or soils formed on similar landscapes in the Miami Co., and over 38 soil series that were mapped. Soil sampling was conducted in some sites because of its variability in soils and cover types, variable topography, and presence of erosion problems. Results from analysis of these soil data is presented.

  14. Taxonomic and functional profiles of soil samples from Atlantic forest and Caatinga biomes in northeastern Brazil

    PubMed Central

    Pacchioni, Ralfo G; Carvalho, Fabíola M; Thompson, Claudia E; Faustino, André L F; Nicolini, Fernanda; Pereira, Tatiana S; Silva, Rita C B; Cantão, Mauricio E; Gerber, Alexandra; Vasconcelos, Ana T R; Agnez-Lima, Lucymara F

    2014-01-01

    Although microorganisms play crucial roles in ecosystems, metagenomic analyses of soil samples are quite scarce, especially in the Southern Hemisphere. In this work, the microbial diversity of soil samples from an Atlantic Forest and Caatinga was analyzed using a metagenomic approach. Proteobacteria and Actinobacteria were the dominant phyla in both samples. Among which, a significant proportion of stress-resistant bacteria associated to organic matter degradation was found. Sequences related to metabolism of amino acids, nitrogen, and DNA and stress resistance were more frequent in Caatinga soil, while the forest sample showed the highest occurrence of hits annotated in phosphorous metabolism, defense mechanisms, and aromatic compound degradation subsystems. The principal component analysis (PCA) showed that our samples are close to the desert metagenomes in relation to taxonomy, but are more similar to rhizosphere microbiota in relation to the functional profiles. The data indicate that soil characteristics affect the taxonomic and functional distribution; these characteristics include low nutrient content, high drainage (both are sandy soils), vegetation, and exposure to stress. In both samples, a rapid turnover of organic matter with low greenhouse gas emission was suggested by the functional profiles obtained, reinforcing the importance of preserving natural areas. PMID:24706600

  15. Sample Analysis at Mars for Curiosity

    NASA Image and Video Library

    2010-10-08

    The Sample Analysis at Mars SAM instrument will analyze samples of Martian rock and soil collected by the rover arm to assess carbon chemistry through a search for organic compounds, and to look for clues about planetary change.

  16. Adequacy of laser diffraction for soil particle size analysis

    PubMed Central

    Fisher, Peter; Aumann, Colin; Chia, Kohleth; O'Halloran, Nick; Chandra, Subhash

    2017-01-01

    Sedimentation has been a standard methodology for particle size analysis since the early 1900s. In recent years laser diffraction is beginning to replace sedimentation as the prefered technique in some industries, such as marine sediment analysis. However, for the particle size analysis of soils, which have a diverse range of both particle size and shape, laser diffraction still requires evaluation of its reliability. In this study, the sedimentation based sieve plummet balance method and the laser diffraction method were used to measure the particle size distribution of 22 soil samples representing four contrasting Australian Soil Orders. Initially, a precise wet riffling methodology was developed capable of obtaining representative samples within the recommended obscuration range for laser diffraction. It was found that repeatable results were obtained even if measurements were made at the extreme ends of the manufacturer’s recommended obscuration range. Results from statistical analysis suggested that the use of sample pretreatment to remove soil organic carbon (and possible traces of calcium-carbonate content) made minor differences to the laser diffraction particle size distributions compared to no pretreatment. These differences were found to be marginally statistically significant in the Podosol topsoil and Vertosol subsoil. There are well known reasons why sedimentation methods may be considered to ‘overestimate’ plate-like clay particles, while laser diffraction will ‘underestimate’ the proportion of clay particles. In this study we used Lin’s concordance correlation coefficient to determine the equivalence of laser diffraction and sieve plummet balance results. The results suggested that the laser diffraction equivalent thresholds corresponding to the sieve plummet balance cumulative particle sizes of < 2 μm, < 20 μm, and < 200 μm, were < 9 μm, < 26 μm, < 275 μm respectively. The many advantages of laser diffraction for soil particle size analysis, and the empirical results of this study, suggest that deployment of laser diffraction as a standard test procedure can provide reliable results, provided consistent sample preparation is used. PMID:28472043

  17. Soil and Foliar Guidelines for Phosphorus Fertilization of Loblolly Pine

    Treesearch

    Carol G. Wells; D.M. Crutchfield; N.M. Berenyi; C.B. Davey

    1973-01-01

    Several established studies of phosphorus fertilization in 3-year-old plantations of loblolly pine were measured for tree height and sampled for soil tests and needle analysis in order to relate soil and needle content to response to fertilization. Soil tests with the extractant adopted by the North Carolina Soil Testing Laboratories and percentage of P in needles were...

  18. QA/QC requirements for physical properties sampling and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Innis, B.E.

    1993-07-21

    This report presents results of an assessment of the available information concerning US Environmental Protection Agency (EPA) quality assurance/quality control (QA/QC) requirements and guidance applicable to sampling, handling, and analyzing physical parameter samples at Comprehensive Environmental Restoration, Compensation, and Liability Act (CERCLA) investigation sites. Geotechnical testing laboratories measure the following physical properties of soil and sediment samples collected during CERCLA remedial investigations (RI) at the Hanford Site: moisture content, grain size by sieve, grain size by hydrometer, specific gravity, bulk density/porosity, saturated hydraulic conductivity, moisture retention, unsaturated hydraulic conductivity, and permeability of rocks by flowing air. Geotechnical testing laboratories alsomore » measure the following chemical parameters of soil and sediment samples collected during Hanford Site CERCLA RI: calcium carbonate and saturated column leach testing. Physical parameter data are used for (1) characterization of vadose and saturated zone geology and hydrogeology, (2) selection of monitoring well screen sizes, (3) to support modeling and analysis of the vadose and saturated zones, and (4) for engineering design. The objectives of this report are to determine the QA/QC levels accepted in the EPA Region 10 for the sampling, handling, and analysis of soil samples for physical parameters during CERCLA RI.« less

  19. Curiosity analyzes Martian soil samples

    NASA Astrophysics Data System (ADS)

    Showstack, Randy; Balcerak, Ernie

    2012-12-01

    NASA's Mars Curiosity rover has conducted its first analysis of Martian soil samples using multiple instruments, the agency announced at a 3 December news briefing at the AGU Fall Meeting in San Francisco. "These results are an unprecedented look at the chemical diversity in the area," said NASA's Michael Meyer, program scientist for Curiosity.

  20. 7 CFR 301.85-4 - Issuance and cancellation of certificates and permits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... interstate movement (for other than scientific purposes) of regulated articles (except soil samples for...) Certificates may be issued for any regulated articles (except soil samples for processing, testing, or analysis... any destination under all Federal domestic plant quarantines applicable to such articles and: (1) Have...

  1. 7 CFR 301.85-4 - Issuance and cancellation of certificates and permits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... interstate movement (for other than scientific purposes) of regulated articles (except soil samples for...) Certificates may be issued for any regulated articles (except soil samples for processing, testing, or analysis... any destination under all Federal domestic plant quarantines applicable to such articles and: (1) Have...

  2. Thermal and Evolved Gas Analysis (TEGA) of hyperarid soils doped with microorganisms from the Atacama Desert in southern Peru (Pampas de la Joya): Implications for the Phoenix Mission

    NASA Astrophysics Data System (ADS)

    Valdivia-Silva, Julio E.; Navarro-Gonzalez, Rafael; McKay, Chris

    TEGA is one of several instruments on board of the Phoenix Lander that will perform differential scanning calorimetry and evolved gas analysis of soil samples and ice, collected from the surface and subsurface at a northern landing site on Mars. TEGA is a combination of a high-temperature furnace and a mass spectrometer that will be use to analyze samples delivered to instrument via a robotic arm. The samples will be heated at a programmed ramp rate up to 1000° C and the power required for heating will be carefully and continuously monitored (scanning calorimetry). The evolved gases generated during the process will be analyzed with the evolved-gas analyzer (a magnetic sector mass spectrometer) in order to determine the composition of gases released as a function of temperature. Our laboratory has developed a sample characterization method using a pyrolizer integrated to a quadrupole mass spectrometer to support the interpretations of TEGA data. Here we examine the thermal and evolved gas properties of six types of hyperarid soils from the Pampas de La Joya southern Peru, a possible analog to Mars, which has been previously enriched with microorganisms (Salmonella thypimurium, Micrococcus luteus, and Candida albicans) to investigate the effect of soil matrix over TEGA response. Between 20 to 40 mg of soil pre-treated to 500° C for 24 hours to remove traces of organics, was mixed with or without 5mg biomass lyophilized (dry weight). Additionally 20 mg of each one microorganism were analyzed. The samples were placed in the pyrolizer that reached 1200° C at 1 hour. The volatiles released were transferred to the MS using helium as a carrier gas. The quadrupole MS was ran in scan mode from 40-350m/z. As expected, there were significant differences in the evolved gas behaviors for microorganism samples with or without a soil matrix under similar heating conditions. In addition, samples belonging to the most arid environments had significant differences compared with less arid soils. Organic C in the form of CO2 (ion 44 m/z) for microorganisms evolved between 326±19.5° C showing characteristic patterns for each one. Others ions such as 41, 78 and 91 m/z were found too. Interestingly, the release of CO2 increased and ions previously found disappeared, demonstrating a high-oxidant activity in the soil matrix when it is subjected to temperature. Samples of soil pre-treated show CO2 evolved up to 650° C suggesting thermal decomposition of carbonates. Finally in hyperarid soils, ion 44 began its release to 330±30° C while the less arid soils to 245±45° C. These results indicate that some organics (mixed with soils) are oxidized to CO2, and that carbonates present in hyperarid soils also decompose into CO2. The nature of oxidant(s) present in the soils from Pampas de La Joya is still unknown. Key words: Thermal analysis, TEGA, Atacama desert, La Joya desert, hyperarid soils.

  3. Mass spectrometer-pyrolysis experiment for atmospheric and soil sample analysis on the surface of Mars

    NASA Technical Reports Server (NTRS)

    Mauersberger, Konrad; Mahaffy, Paul; Niemann, Hasso

    1992-01-01

    Results from the Viking mission will form the foundation for future in-depth investigations of atmosphere-surface interactions on Mars. The two Viking landers carried impressive instrumentation to obtain and analyze soil samples: the sites were observed by cameras, and the collector head was located on a long boom and allowed the collection of large samples at various depths. A selection of grain sizes was possible and a distribution system supplied a number of experiments with soil material. Despite stationary vehicles, a wide sampling field was reachable. The GCMS system, responsible for atmospheric as well as surface soil analysis, worked well on both landers. Atmospheric measurements resulted in the determination of the abundance of noble gases as well as of other molecular species. Isotopic composition measurements included the important ratios of C-13/C-12, N-15/N-14, and Ar-36/Ar-40. To verify these past results and to advance detailed studies of noble gas isotope ratios and minor constituents, better instrument sensitivities, higher precision, and lower background contributions are required in future Mars missions. Soil analysis during the Viking mission concentrated on organic material. Heating cycles were performed to 500 C and only water and carbon dioxide were identified. Higher pyrolysis temperatures are of primary importance to advance our understanding of the mineralogy and gas loading of surface material and atmospheric exchange.

  4. Speciation analysis of aluminium in plant parts of Betula pendula and in soil.

    PubMed

    Zioła-Frankowska, Anetta; Frankowski, Marcin

    2018-03-01

    The research presents the first results of aluminium speciation analysis in aqueous extracts of individual plant parts of Betula pendula and soil samples, using High Performance Ion Chromatography with Diode Array Detection (HPIC-DAD). The applied method allowed us to carry out a full speciation analysis of aluminium in the form of predominant aluminium-fluoride complexes: AlF (x=2,3,4) (3-x) (first analytical signal), AlF 2+ (second analytical signal) and Al 3+ (third analytical signal) in samples of lateral roots, tap roots, twigs, stem, leaf and soil collected under roots of B. pendula. Concentrations of aluminium and its complexes were determined for two types of environment characterised by different degree of human impact: contaminated site of the Chemical Plant in Luboń and protected area of the Wielkopolski National Park. For all the analysed samples of B. pendula and soil, AlF (x=2,3,4) (3-x) had the largest contribution, followed by Al 3+ and AlF 2+ . Significant differences in concentration and contribution of Al-F complexes and Al 3+ form, depending on the place of sampling (different anthropogenic pressure) and plant part of B. pendula were observed. Based on the obtained results, it was found that transport of aluminium is "blocked" by lateral roots, and is closely related to Al content of soil. Copyright © 2017. Published by Elsevier B.V.

  5. Comparison of pore water samplers and cryogenic distillation under laboratory and field conditions for soil water stable isotope analysis.

    PubMed

    Thoma, Michael; Frentress, Jay; Tagliavini, Massimo; Scandellari, Francesca

    2018-02-15

    We used pore water samplers (PWS) to sample for isotope analysis (1) only water, (2) soil under laboratory conditions, and (3) soil in the field comparing the results with cryogenic extraction (CE). In (1) and (2), no significant differences between source and water extracted with PWS were detected with a mean absolute difference (MAD) always lower than 2 ‰ for δ 2 H and 1 ‰ for δ 18 O. In (2), CE water was more enriched than PWS-extracted water, with a MAD respect to source water of roughly 8 ‰ for δ 2 H and 4 ‰ for δ 18 O. In (3), PWS water was enriched relative to CE water by 3 ‰ for δ 2 H and 0.9 ‰ for δ 18 O. The latter result may be due to the distinct water portions sampled by the two methods. Large pores, easily sampled by PWS, likely retain recent, and enriched, summer precipitation while small pores, only sampled by CE, possibly retain isotopically depleted water from previous winter precipitation or irrigation inputs. Accuracy and precision were greater for PWS relative to CE. PWS is therefore suggested as viable tool to extract soil water for stable isotope analysis, particularly for soils used in this study (sandy and silty loams).

  6. Some Remarks on Practical Aspects of Laboratory Testing of Deep Soil Mixing Composites Achieved in Organic Soils

    NASA Astrophysics Data System (ADS)

    Kanty, Piotr; Rybak, Jarosław; Stefaniuk, Damian

    2017-10-01

    This paper presents the results of laboratory testing of organic soil-cement samples are presented in the paper. The research program continues previously reported the authors’ experiences with cement-fly ash-soil sample testing. Over 100 of compression and a dozen of tension tests have been carried out altogether. Several samples were waiting for failure test for over one year after they were formed. Several factors, like: the large amount of the tested samples, a long observation time, carrying out the tests in complex cycles of loading and the possibility of registering the loads and deformation in the axial and lateral direction - have made it possible to take into consideration numerous interdependencies, three of which have been presented in this work: the increments of compression strength, the stiffness of soil-cement in relation to strength and the tensile strength. Compressive strength, elastic modulus and tensile resistance of cubic samples were examined. Samples were mixed and stored in the laboratory conditions. Further numerical analysis in the Finite Element Method numerical code Z_Soil, were performed on the basis of laboratory test results. Computations prove that cement-based stabilization of organic soil brings serious risks (in terms of material capacity and stiffness) and Deep Soil Mixing technology should not be recommended for achieving it. The numerical analysis presented in the study below includes only one type of organic and sandy soil and several possible geometric combinations. Despite that, it clearly points to the fact that designing the DSM columns in the organic soil may be linked with a considerable risk and the settlement may reach too high values. During in situ mixing, the organic material surrounded by sand layers surely mixes with one another in certain areas. However, it has not been examined and it is difficult to assume such mixing already at the designing stage. In case of designing the DSM columns which goes through a thin layer of organic soil it is recommended to carry out each time the core drilling which checks the degree of material mixing and their strength.

  7. Abundance and diversity of ammonia-oxidizing archaea and bacteria in the rhizosphere soil of three plants in the Ebinur Lake wetland.

    PubMed

    He, Yuan; Hu, Wenge; Ma, Decao; Lan, Hongzhu; Yang, Yang; Gao, Yan

    2017-07-01

    Ammonia oxidation is carried out by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). The Ebinur Lake wetland is the best example of a temperate arid zone wetland ecosystem in China. Soil samples were collected from rhizosphere and non-rhizosphere soil containing Halocnemum strobilaceum (samples H and H'), Phragmites australis (samples R and R'), and Karelinia caspia (samples K and K') to study the relationship between environmental factors and the community structure of AOB and AOA. Phylogenetic analysis showed that the AOA sequences belonged to the Nitrosopumilus and Nitrososphaera clusters. AOB were grouped into Nitrosospira sp. and Nitrosomonas sp. Quantitative polymerase chain reaction results showed that the AOA abundance ranged from 2.09 × 10 4 to 2.94 × 10 5 gene copies/g soil. The highest number of AOA was detected in sample K, followed by samples R and H. AOB abundance varied between 2.91 × 10 5 and 1.05 × 10 6 gene copies/g soil, which was higher than that of AOA. Redundancy analysis indicated that electrical conductivity, pH, and NH 4 + -N might influence the community structure of AOA and AOB. AOB might play a more crucial role than AOA in ammonia oxidation based on AOB's higher diversity and abundance in the Ebinur Lake wetland in Xinjiang.

  8. Remote Sensing Soil Moisture Analysis by Unmanned Aerial Vehicles Digital Imaging

    NASA Astrophysics Data System (ADS)

    Yeh, C. Y.; Lin, H. R.; Chen, Y. L.; Huang, S. Y.; Wen, J. C.

    2017-12-01

    In recent years, remote sensing analysis has been able to apply to the research of climate change, environment monitoring, geology, hydro-meteorological, and so on. However, the traditional methods for analyzing wide ranges of surface soil moisture of spatial distribution surveys may require plenty resources besides the high cost. In the past, remote sensing analysis performed soil moisture estimates through shortwave, thermal infrared ray, or infrared satellite, which requires lots of resources, labor, and money. Therefore, the digital image color was used to establish the multiple linear regression model. Finally, we can find out the relationship between surface soil color and soil moisture. In this study, we use the Unmanned Aerial Vehicle (UAV) to take an aerial photo of the fallow farmland. Simultaneously, we take the surface soil sample from 0-5 cm of the surface. The soil will be baking by 110° C and 24 hr. And the software ImageJ 1.48 is applied for the analysis of the digital images and the hue analysis into Red, Green, and Blue (R, G, B) hue values. The correlation analysis is the result from the data obtained from the image hue and the surface soil moisture at each sampling point. After image and soil moisture analysis, we use the R, G, B and soil moisture to establish the multiple regression to estimate the spatial distributions of surface soil moisture. In the result, we compare the real soil moisture and the estimated soil moisture. The coefficient of determination (R2) can achieve 0.5-0.7. The uncertainties in the field test, such as the sun illumination, the sun exposure angle, even the shadow, will affect the result; therefore, R2 can achieve 0.5-0.7 reflects good effect for the in-suit test by using the digital image to estimate the soil moisture. Based on the outcomes of the research, using digital images from UAV to estimate the surface soil moisture is acceptable. However, further investigations need to be collected more than ten days (four times a day) data to verify the relation between the image hue and the soil moisture for reliable moisture estimated model. And it is better to use the digital single lens reflex camera to prevent the deformation of the image and to have a better auto exposure. Keywords: soil, moisture, remote sensing

  9. Impact of Oriented Clay Particles on X-Ray Spectroscopy Analysis

    NASA Astrophysics Data System (ADS)

    Lim, A. J. M. S.; Syazwani, R. N.; Wijeyesekera, D. C.

    2016-07-01

    Understanding the engineering properties of the mineralogy and microfabic of clayey soils is very complex and thus very difficult for soil characterization. Micromechanics of soils recognize that the micro structure and mineralogy of clay have a significant influence on its engineering behaviour. To achieve a more reliable quantitative evaluation of clay mineralogy, a proper sample preparation technique for quantitative clay mineral analysis is necessary. This paper presents the quantitative evaluation of elemental analysis and chemical characterization of oriented and random oriented clay particles using X-ray spectroscopy. Three different types of clays namely marine clay, bentonite and kaolin clay were studied. The oriented samples were prepared by placing the dispersed clay in water and left to settle on porous ceramic tiles by applying a relatively weak suction through a vacuum pump. Images form a Scanning Electron Microscope (SEM) was also used to show the comparison between the orientation patterns of both the sample preparation techniques. From the quantitative analysis of the X-ray spectroscopy, oriented sampling method showed more accuracy in identifying mineral deposits, because it produced better peak intensity on the spectrum and more mineral content can be identified compared to randomly oriented samples.

  10. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR EXTRACTION OF METALS FROM SOIL, DUST, AIR FILTER, AND SURFACE AND DERMAL SAMPLES FOR AA (GRAPHITE FURNACE OR FLAME) OR ICP-AES ANALYSIS (BCO-L-3.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the acid digestion of soil, house dust, air filter, and surface or dermal wipe samples for analysis using inductively coupled plasma atomic emissions spectrometry (ICP-AES) and/or graphite furnace atomic absorption spectrometry (GFAAS) or fl...

  11. A geophysical and biochemical investigation of buried remains in contrasting soil textures in southern Ontario

    NASA Astrophysics Data System (ADS)

    Lowe, Amanda C.

    Ground penetrating radar (GPR) is a non-invasive, geophysical tool used for the detection of clandestine graves. GPR operates by detecting density differences in soil by the transmission of high frequency electromagnetic (EM) waves from an antenna. A 500 Megahertz (MHz) frequency antenna is typically used for forensic investigations, as it provides a suitable compromise between depth of penetration and sub-surface resolution. Domestic pig (Sus scrofa) carcasses were clothed in 100% cotton t-shirts and 50% cotton/50% polyester briefs, and buried at a consistent depth at three field sites of contrasting soil texture (silty clay loam, fine sand and fine sandy loam) in southern Ontario. GPR was used to detect and monitor the graves for a period of 14 months post burial. Analysis of collected data revealed that GPR had applicability in the detection of clandestine graves containing remains in silty clay loam and fine sandy loam soils, but was not suitable for detection in fine sandy soil. Specifically, within a fine sandy loam soil, there is the potential to estimate the post burial interval (PBI), as hyperbolic grave response was well defined at the beginning of the 14 month burial duration, but became less distinctive near the completion of the study. Following the detection of a clandestine grave containing a carcass, collection of gravesoil, tissue and textile samples is important for the estimation of the stage of decomposition and the post burial interval (PBI) of the remains. Throughout the decomposition process of a carcass, adipose tissue is subjected to hydrolytic enzymes that convert triglycerides to their corresponding unsaturated, saturated and salts of fatty acids. The composition of fatty acids in the decomposed tissue will vary with the post mortem period, but it is unknown what affect the soil texture has on lipid degradation. As decomposition proceeds, fatty acids can leach from the tissues into the surrounding burial environment. Fatty acid analysis of gravesoil, tissue and textile samples, exhumed at two, eleven and fourteen month post burial intervals, was conducted using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and gas chromatography-mass spectrometry (GC-MS). Infrared (IR) spectroscopy analysis of the samples provided a qualitative profile of lipid degradation. Analysis of gravesoil samples did not reveal IR spectroscopy bands attributable to fatty acid degradation or adipocere formation. IR spectroscopy analysis of tissue samples is applicable for the estimation of carcass decomposition in all of the soil textures tested. Results of textile IR spectroscopy analysis revealed limited potential to estimate the stage of carcass decomposition in silty clay loam soil. GC-MS was used to quantify the peak area ratio (area/int std area) (PAR) of myristic (C14:0), palmitic (C16:0), palmitoleic (C16:1), stearic (C18:0) and oleic (C18:1) acids. GC-MS results revealed that analysis of both tissue and textile samples can be useful in the estimation of the stage of decomposition and the PBI of carcasses in all three of the soil textures tested. The results of this research may have applicability within forensic investigations involving decomposing bodies by aiding in the location of clandestine graves in silty clay loam and fine sandy loam soil through the use of GPR. Infrared spectroscopy and GC-MS analysis of the fatty acid composition of tissue and textile samples may also be incorporated into investigational protocols to aid in the estimation of the stage of decomposition and the PBI of a body. Key Words: forensic science, ground penetrating radar, soil texture, buried remains, fatty acids, gas chromatography-mass spectrometry (GC-MS), infrared spectroscopy

  12. Geochemical Exploration Techniques Applicable in the Search for Copper Deposits

    USGS Publications Warehouse

    Chaffee, Maurice A.

    1975-01-01

    Geochemical exploration is an important part of copper-resource evaluation. A large number of geochemical exploration techniques, both proved and untried, are available to the geochemist to use in the search for new copper deposits. Analyses of whole-rock samples have been used in both regional and local geochemical exploration surveys in the search for copper. Analyses of mineral separates, such as biotite, magnetite, and sulfides, have also been used. Analyses of soil samples are widely used in geochemical exploration, especially for localized surveys. It is important to distinguish between residual and transported soil types. Orientation studies should always be conducted prior to a geochemical investigation in a given area in order to determine the best soil horizon and the best size of soil material for sampling in that area. Silty frost boils, caliche, and desert varnish are specialized types of soil samples that might be useful sampling media. Soil gas is a new and potentially valuable geochemical sampling medium, especially in exploring for buried mineral deposits in arid regions. Gaseous products in samples of soil may be related to base-metal deposits and include mercury vapor, sulfur dioxide, hydrogen sulfide, carbon oxysulfide, carbon dioxide, hydrogen, oxygen, nitrogen, the noble gases, the halogens, and many hydrocarbon compounds. Transported materials that have been used in geochemical sampling programs include glacial float boulders, glacial till, esker gravels, stream sediments, stream-sediment concentrates, and lake sediments. Stream-sediment sampling is probably the most widely used and most successful geochemical exploration technique. Hydrogeochemical exploration programs have utilized hot- and cold-spring waters and their precipitates as well as waters from lakes, streams, and wells. Organic gel found in lakes and at stream mouths is an unproved sampling medium. Suspended material and dissolved gases in any type of water may also be useful media. Samples of ice and snow have been used for limited geochemical surveys. Both geobotanical and biogeochemical surveys have been successful in locating copper deposits in many parts of the world. Micro-organisms, including bacteria and algae, are other unproved media that should be studied. Animals can be used in geochemical-prospecting programs. Dogs have been used quite successfully to sniff out hidden and exposed sulfide minerals. Tennite mounds are commonly composed of subsurface material, but have not as yet proved to be useful in locating buried mineral deposits. Animal tissue and waste products are essentially unproved but potentially valuable sampling media. Knowledge of the location of areas where trace-element-associated diseases in animals and man are endemic as well as a better understanding of these diseases, may aid in identifying regions that are enriched in or depleted of various elements, including copper. Results of analyses of gases in the atmosphere are proving valuable in mineral-exploration surveys. Studies involving metallic compounds exhaled by plants into the atmosphere, and of particulate matter suspended in the atmosphere are reviewed these methods may become important in the future. Remote-sensing techniques are useful for making indirect measurements of geochemical responses. Two techniques applicable to geochemical exploration are neutron-activation analysis and gamma-ray spectrometry. Aerial photography is especially useful in vegetation surveys. Radar imagery is an unproved but potentially valuable method for use in studies of vegetation in perpetually clouded regions. With the advent of modern computers, many new techniques, such as correlation analysis, regression analysis, discriminant analysis, factor analysis, cluster analysis, trend-surface analysis, and moving-average analysis can be applied to geochemical data sets. Selective use of these techniques can provide new insights into the interpretatio

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This interim notice covers the following: extractable organic halides in solids, total organic halides, analysis by gas chromatography/Fourier transform-infrared spectroscopy, hexadecane extracts for volatile organic compounds, GC/MS analysis of VOCs, GC/MS analysis of methanol extracts of cryogenic vapor samples, screening of semivolatile organic extracts, GPC cleanup for semivolatiles, sample preparation for GC/MS for semi-VOCs, analysis for pesticides/PCBs by GC with electron capture detection, sample preparation for pesticides/PCBs in water and soil sediment, report preparation, Florisil column cleanup for pesticide/PCBs, silica gel and acid-base partition cleanup of samples for semi-VOCs, concentrate acid wash cleanup, carbon determination in solids using Coulometrics` CO{submore » 2} coulometer, determination of total carbon/total organic carbon/total inorganic carbon in radioactive liquids/soils/sludges by hot persulfate method, analysis of solids for carbonates using Coulometrics` Model 5011 coulometer, and soxhlet extraction.« less

  14. Characterizing mineral dusts and other aerosols from the Middle East--Part 2: grab samples and re-suspensions.

    PubMed

    Engelbrecht, Johann P; McDonald, Eric V; Gillies, John A; Jayanty, R K M Jay; Casuccio, Gary; Gertler, Alan W

    2009-02-01

    The purpose of the Enhanced Particulate Matter Surveillance Program was to provide scientifically founded information on the chemical and physical properties of dust collected during a period of approximately 1 year in Djibouti, Afghanistan (Bagram, Khowst), Qatar, United Arab Emirates, Iraq (Balad, Baghdad, Tallil, Tikrit, Taji, Al Asad), and Kuwait (northern, central, coastal, and southern regions). To fully understand mineral dusts, their chemical and physical properties, as well as mineralogical inter-relationships, were accurately established. In addition to the ambient samples, bulk soil samples were collected at each of the 15 sites. In each case, approximately 1 kg of soil from the top 10 mm at a previously undisturbed area near the aerosol sampling site was collected. The samples were air-dried and sample splits taken for soil analysis. Further sample splits were sieved to separate the < 38 micro m particle fractions for mineralogical analysis. Examples of major-element and trace-element chemistry, mineralogy, and other physical properties of the 15 grab samples are presented. The purpose of the trace-element analysis was to measure levels of potentially harmful metals while the major-element and ion-chemistry analyses provided an estimate of mineral components. X-ray diffractometry provided a measure of the mineral content of the dust. Scanning electron microscopy with energy dispersive spectroscopy was used to analyze chemical composition of small individual particles. From similarities in the chemistry and mineralogy of re-suspended and ambient sample sets, it is evident that portions of the ambient dust are from local soils.

  15. Carbon and Sulfur Isotopic Composition of Rocknest Soil as Determined with the Sample Analysis at Mars(SAM) Quadrupole Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Franz, H. B.; McAdam, C.; Stern, J. C.; Archer, P. D., Jr.; Sutter, B.; Grotzinger, J. P.; Jones, J. H.; Leshin, L. A.; Mahaffy, P. R.; Ming, D. W.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity rover got its first taste of solid Mars in the form of loose, unconsolidated materials (soil) acquired from an aeolian bedform designated Rocknest. Evolved gas analysis (EGA) revealed the presence of H2O as well as O-, C- and S-bearing phases in these samples. CheMin did not detect crystalline phases containing these gaseous species but did detect the presence of X-ray amorphous materials. In the absence of definitive mineralogical identification by CheMin, SAM EGA data can provide clues to the nature and/or mineralogy of volatile-bearing phases through examination of temperatures at which gases are evolved from solid samples. In addition, the isotopic composition of these gases, particularly when multiple sources contribute to a given EGA curve, may be used to identify possible formation scenarios and relationships between phases. Here we report C and S isotope ratios for CO2 and SO2 evolved from Rocknest soil samples as measured with SAM's quadrupole mass spectrometer (QMS).

  16. Statistical Assessment of a Paired-site Approach for Verification of Carbon and Nitrogen Sequestration on CRP Land

    NASA Astrophysics Data System (ADS)

    Kucharik, C.; Roth, J.

    2002-12-01

    The threat of global climate change has provoked policy-makers to consider plausible strategies to slow the accumulation of greenhouse gases, especially carbon dioxide, in the atmosphere. One such idea involves the sequestration of atmospheric carbon (C) in degraded agricultural soils as part of the Conservation Reserve Program (CRP). While the potential for significant C sequestration in CRP grassland ecosystems has been demonstrated, the paired-site sampling approach traditionally used to quantify soil C changes has not been evaluated with robust statistical analysis. In this study, 14 paired CRP (> 8 years old) and cropland sites in Dane County, Wisconsin (WI) were used to assess whether a paired-site sampling design could detect statistically significant differences (ANOVA) in mean soil organic C and total nitrogen (N) storage. We compared surface (0 to 10 cm) bulk density, and sampled soils (0 to 5, 5 to 10, and 10 to 25 cm) for textural differences and chemical analysis of organic matter (OM), soil organic C (SOC), total N, and pH. The CRP contributed to lowering soil bulk density by 13% (p < 0.0001) and increased SOC and OM storage (kg m-2) by 13 to 17% in the 0 to 5 cm layer (p = 0.1). We tested the statistical power associated with ANOVA for measured soil properties, and calculated minimum detectable differences (MDD). We concluded that 40 to 65 paired sites and soil sampling in 5 cm increments near the surface were needed to achieve an 80% confidence level (α = 0.05; β = 0.20) in soil C and N sequestration rates. Because soil C and total N storage was highly variable among these sites (CVs > 20%), only a 23 to 29% change in existing total organic C and N pools could be reliably detected. While C and N sequestration (247 kg C ha{-1 } yr-1 and 17 kg N ha-1 yr-1) may be occurring and confined to the surface 5 cm as part of the WI CRP, our sampling design did not statistically support the desired 80% confidence level. We conclude that usage of statistical power analysis is essential to insure a high level of confidence in soil C and N sequestration rates that are quantified using paired plots.

  17. Contents and leachability of heavy metals (Pb, Cu, Sb, Zn, As) in soil at the Pantex firing range, Amarillo, Texas.

    PubMed

    Basunia, S; Landsberger, S

    2001-10-01

    Pantex firing range soil samples were analyzed for Pb, Cu, Sb, Zn, and As. One hundred ninety-seven samples were collected from the firing range and vicinity area. There was a lack of knowledge about the distribution of Pb in the firing range, so a random sampling with proportional allocation was chosen. Concentration levels of Pb and Cu in the firing range were found to be in the range of 11-4675 and 13-359 mg/kg, respectively. Concentration levels of Sb were found to be in the range of 1-517 mg/kg. However, the Zn and As concentration levels were close to average soil background levels. The Sn concentration level was expected to be higher in the Pantex firing range soil samples. However, it was found to be below the neutron activation analysis (NAA) detection limit of 75 mg/kg. Enrichment factor analysis showed that Pb and Sb were highly enriched in the firing range with average magnitudes of 55 and 90, respectively. Cu was enriched approximately 6 times more than the usual soil concentration levels. Toxicity characteristic leaching procedure (TCLP) was carried out on size-fractionated homogeneous soil samples. The concentration levels of Pb in leachates were found to be approximately 12 times higher than the U.S. Environmental Protection Agency (EPA) regulatory concentration level of 5 mg/L. Sequential extraction (SE) was also performed to characterize Pb and other trace elements into five different fractions. The highest Pb fraction was found with organic matter in the soil.

  18. Assessment of Ecological Risk of Heavy Metal Contamination in Coastal Municipalities of Montenegro.

    PubMed

    Mugoša, Boban; Đurović, Dijana; Nedović-Vuković, Mirjana; Barjaktarović-Labović, Snežana; Vrvić, Miroslav

    2016-03-31

    Assessment of heavy metal concentrations in the soil samples of urban parks and playgrounds is very important for the evaluation of potential risks for residents, especially children. Until recently, there has been very little data about urban parks pollution in Montenegro. To evaluate the sources of potential contamination and concentration of heavy metals, soil samples from coastal urban parks and kindergartens of Montenegro were collected. Based on the heavy metal concentrations, multivariate analysis combined with geochemical approaches showed that soil samples in coastal areas of Montenegro had mean Pb and Cd concentrations that were over two times higher than the background values, respectively. Based on principal component analysis (PCA), soil pollution with Pb, Cd, Cu, and Zn is contributed by anthropogenic sources. Results for Cr in the surface soils were primarily derived from natural sources. Calculation of different ecological contamination factors showed that Cd is the primary contribution to ecological risk index (RI) origins from anthropogenic, industry, and urbanization sources. This data provides evidence about soil pollution in coastal municipalities of Montenegro. Special attention should be paid to this problem in order to continue further research and to consider possible ways of remediation of the sites where contamination has been observed.

  19. Development of a mobile system based on laser-induced breakdown spectroscopy and dedicated to in situ analysis of polluted soils

    NASA Astrophysics Data System (ADS)

    Bousquet, B.; Travaillé, G.; Ismaël, A.; Canioni, L.; Michel-Le Pierrès, K.; Brasseur, E.; Roy, S.; le Hecho, I.; Larregieu, M.; Tellier, S.; Potin-Gautier, M.; Boriachon, T.; Wazen, P.; Diard, A.; Belbèze, S.

    2008-10-01

    Principal Components Analysis (PCA) is successfully applied to the full laser-induced breakdown spectroscopy (LIBS) spectra of soil samples, defining classes according to the concentrations of the major elements. The large variability of the LIBS data is related to the heterogeneity of the samples and the representativeness of the data is finally discussed. Then, the development of a mobile LIBS system dedicated to the in-situ analysis of soils polluted by heavy metals is described. Based on the use of ten-meter long optical fibers, the mobile system allows deported measurements. Finally, the laser-assisted drying process studied by the use of a customized laser has not been retained to overcome the problem of moisture.

  20. Comparision of ICP-OES and MP-AES in determing soil nutrients by Mechlich3 method

    NASA Astrophysics Data System (ADS)

    Tonutare, Tonu; Penu, Priit; Krebstein, Kadri; Rodima, Ako; Kolli, Raimo; Shanskiy, Merrit

    2014-05-01

    Accurate, routine testing of nutrients in soil samples is critical to understanding soil potential fertility. There are different factors which must be taken into account selecting the best analytical technique for soil laboratory analysis. Several techniques can provide adequate detection range for same analytical subject. In similar cases the choise of technique will depend on factors such as sample throughput, required infrastructure, ease of use, used chemicals and need for gas supply and operating costs. Mehlich 3 extraction method is widely used for the determination of the plant available nutrient elements contents in agricultural soils. For determination of Ca, K, and Mg from soil extract depending of laboratory ICP and AAS techniques are used, also flame photometry for K in some laboratories. For the determination of extracted P is used ICP or Vis spectrometry. The excellent sensitivity and wide working range for all extracted elements make ICP a nearly ideal method, so long as the sample throughput is big enough to justify the initial capital outlay. Other advantage of ICP techniques is the multiplex character (simultaneous acquisition of all wavelengths). Depending on element the detection limits are in range 0.1 - 1000 μg/L. For smaller laboratories with low sample throughput requirements the use of AAS is more common. Flame AAS is a fast, relatively cheap and easy technique for analysis of elements. The disadvantages of the method is single element analysis and use of flammable gas, like C2H2 and oxidation gas N2O for some elements. Detection limits of elements for AAS lays from 1 to 1000 μg/L. MP-AES offers a unique alternative to both, AAS and ICP-OES techniques with its detection power, speed of analysis. MP-AES is quite new, simple and relatively inexpensive multielemental technique, which is use self-sustained atmospheric pressure microwave plasma (MP) using nitrogen gas generated by nitrogen generator. Therefore not needs for argon and flammable (C2H2) gases, cylinder handling and the running costs of equipment are low. Detection limits of elements for MP-AES lays between the AAS and ICP ones. The objective of this study was to compare the results of soil analysis using two multielemental analytical methods - ICP-OES and MP-AES. In the experiment, different soil types with various texture, content of organic matter and pH were used. For the study soil samples of Albeluvisols, Leptosols, Cambisols, Regosols and Histosols were used . The plant available nutrients were estimated by Mehlich 3 extraction. The ICP-OES analysis were provided in the Estonian Agricultural Research Centre and MP-AES analysis in department of Soil Science and Agrochemistry at Estonian University of Life Sciences. The detection limits and limits of quantification of Ca, K, Mg and P in extracts are calculated and reported.

  1. Sampling and analysis plan for assessment of beryllium in soils surrounding TA-40 building 15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruedig, Elizabeth

    Technical Area (TA) 40 Building 15 (40-15) is an active firing site at Los Alamos National Laboratory. The weapons facility operations (WFO) group plans to build an enclosure over the site in 2017, so that test shots may be conducted year-round. The enclosure project is described in PRID 16P-0209. 40-15 is listed on LANL OSH-ISH’s beryllium inventory, which reflects the potential for beryllium in/on soils and building surfaces at 40-15. Some areas in and around 40-15 have previously been sampled for beryllium, but past sampling efforts did not achieve complete spatial coverage of the area. This Sampling and Analysis Planmore » (SAP) investigates the area surrounding 40-15 via 9 deep (≥1-ft.) soil samples and 11 shallow (6-in.) soil samples. These samples will fill the spatial data gaps for beryllium at 40-15, and will be used to support OSH-ISH’s final determination of 40-15’s beryllium registry status. This SAP has been prepared by the Environmental Health Physics program in consultation with the Industrial Hygiene program. Industrial Hygiene is the owner of LANL’s beryllium program, and will make a final determination with regard to the regulatory status of beryllium at 40-15.« less

  2. Spatial Variability of the Topsoil Organic Carbon in the Moso Bamboo Forests of Southern China in Association with Soil Properties

    PubMed Central

    Zhang, Houxi; Zhuang, Shunyao; Qian, Haiyan; Wang, Feng; Ji, Haibao

    2015-01-01

    Understanding the spatial variability of soil organic carbon (SOC) must be enhanced to improve sampling design and to develop soil management strategies in terrestrial ecosystems. Moso bamboo (Phyllostachys pubescens Mazel ex Houz.) forests have a high SOC storage potential; however, they also vary significantly spatially. This study investigated the spatial variability of SOC (0-20 cm) in association with other soil properties and with spatial variables in the Moso bamboo forests of Jian’ou City, which is a typical bamboo hometown in China. 209 soil samples were collected from Moso bamboo stands and then analyzed for SOC, bulk density (BD), pH, cation exchange capacity (CEC), and gravel content (GC) based on spatial distribution. The spatial variability of SOC was then examined using geostatistics. A Kriging map was produced through ordinary interpolation and required sample numbers were calculated by classical and Kriging methods. An aggregated boosted tree (ABT) analysis was also conducted. A semivariogram analysis indicated that ln(SOC) was best fitted with an exponential model and that it exhibited moderate spatial dependence, with a nugget/sill ratio of 0.462. SOC was significantly and linearly correlated with BD (r = −0.373**), pH (r = −0.429**), GC (r = −0.163*), CEC (r = 0.263**), and elevation (r = 0.192**). Moreover, the Kriging method requires fewer samples than the classical method given an expected standard error level as per a variance analysis. ABT analysis indicated that the physicochemical variables of soil affected SOC variation more significantly than spatial variables did, thus suggesting that the SOC in Moso bamboo forests can be strongly influenced by management practices. Thus, this study provides valuable information in relation to sampling strategy and insight into the potential of adjustments in agronomic measure, such as in fertilization for Moso bamboo production. PMID:25789615

  3. [Application of simulated annealing method and neural network on optimizing soil sampling schemes based on road distribution].

    PubMed

    Han, Zong-wei; Huang, Wei; Luo, Yun; Zhang, Chun-di; Qi, Da-cheng

    2015-03-01

    Taking the soil organic matter in eastern Zhongxiang County, Hubei Province, as a research object, thirteen sample sets from different regions were arranged surrounding the road network, the spatial configuration of which was optimized by the simulated annealing approach. The topographic factors of these thirteen sample sets, including slope, plane curvature, profile curvature, topographic wetness index, stream power index and sediment transport index, were extracted by the terrain analysis. Based on the results of optimization, a multiple linear regression model with topographic factors as independent variables was built. At the same time, a multilayer perception model on the basis of neural network approach was implemented. The comparison between these two models was carried out then. The results revealed that the proposed approach was practicable in optimizing soil sampling scheme. The optimal configuration was capable of gaining soil-landscape knowledge exactly, and the accuracy of optimal configuration was better than that of original samples. This study designed a sampling configuration to study the soil attribute distribution by referring to the spatial layout of road network, historical samples, and digital elevation data, which provided an effective means as well as a theoretical basis for determining the sampling configuration and displaying spatial distribution of soil organic matter with low cost and high efficiency.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudson, W.G.

    Scapteriscus vicinus is the most important pest of turf and pasture grasses in Florida. This study develops a method of correlating sample results with true population density and provides the first quantitative information on spatial distribution and movement patterns of mole crickets. Three basic techniques for sampling mole crickets were compared: soil flushes, soil corer, and pitfall trapping. No statistical difference was found between the soil corer and soil flushing. Soil flushing was shown to be more sensitive to changes in population density than pitfall trapping. No technique was effective for sampling adults. Regression analysis provided a means of adjustingmore » for the effects of soil moisture and showed soil temperature to be unimportant in predicting efficiency of flush sampling. Cesium-137 was used to label females for subsequent location underground. Comparison of mean distance to nearest neighbor with the distance predicted by a random distribution model showed that the observed distance in the spring was significantly greater than hypothesized (Student's T-test, p < 0.05). Fall adult nearest neighbor distance was not different than predicted by the random distribution hypothesis.« less

  5. Polonium-210 analyses of vegetables, cured and uncured tobacco, and associated soils.

    PubMed

    Berger, K C; Erhardt, W H; Francis, C W

    1965-12-24

    Analysis of the edible portion of vegetables and samples of green leaf tobacco failed to show polonium-210. The cured samples of leaf tobacco and the soils that were analyzed all contained small quantities of the element. Muck soils contained three times as much Po(210) as did mineral soils. Solutions used commonly to extract "available" forms of many mineral elements failed to extract a detectable amount of Po(2l0). Indications are that Po(210) or its radioactive precursors are not taken up from the soil directly by plant roots but rather by sorption in dead, moist plant materials at the atmosphere-plant interface.

  6. Mineralogy and Elemental Composition of Wind Drift Soil at Rocknest, Gale Crater

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Bish, D. L.; Morris, R. V.; Downs, R. T.; Trieman, A. H.; Morrison, S. M.; Chipera, S. J.; Ming, D. W.; Yen, A. S.; Vaniman, D. T.; hide

    2013-01-01

    The Mars Science Laboratory rover Curiosity has been exploring Mars since August 5, 2012, conducting engineering and first-time activities with its mobility system, arm, sample acquisition and processing system (SA/SPaH-CHIMRA) and science instruments. Curiosity spent 54 sols at a location named "Rocknest," collecting and processing five scoops of loose, unconsolidated materials ("soil") acquired from an aeolian bedform (Fig. 1). The Chemistry and Mineralogy (CheMin) instrument analyzed portions of scoops 3, 4, and 5, to obtain the first quantitative mineralogical analysis of Mars soil, and to provide context for Sample Analysis at Mars (SAM) measurements of volatiles, isotopes and possible organic materials.

  7. Bulk, rare earth, and other trace elements in Apollo 14 and 15 and Luna 16 samples.

    NASA Technical Reports Server (NTRS)

    Laul, J. C.; Wakita, H.; Showalter, D. L.; Boynton, W. V.; Schmitt, R. A.

    1972-01-01

    Measurement of 24 and 34 bulk, minor, and trace elements in lunar specimens by instrumental and radiochemical neutron activation analysis shows greater Al2O3, Na2O, and K2O abundances and higher TiO2, FeO, MnO and Cr2O3 depletions in Apollo 14 soil samples as compared to Apollo 11 samples and to most of Apollo 12 samples. The uniform abundances in 14230 core tube soils and three other Apollo 14 soils indicate that the regolith is uniform to at least 22 cm depth and within about 200 m from the lunar module.

  8. Physicochemical Properties Influencing Presence of Burkholderia pseudomallei in Soil from Small Ruminant Farms in Peninsular Malaysia

    PubMed Central

    Panchadcharam, Chandrawathani; Zakaria, Zunita; Abdul Aziz, Saleha

    2016-01-01

    Soil is considered to be a major reservoir of Burkholderia pseudomallei in the environment. This paper investigates soil physicochemical properties that may influence presence of B. pseudomallei in soil samples from small ruminant farms in Peninsular Malaysia. Soil samples were collected from the farms and cultured for B. pseudomallei. The texture, organic matter and water contents, pH, elemental contents, cation exchange capacities, carbon, sulfur and nitrogen contents were determined. Analysis of soil samples that were positive and negative for B. pseudomallei using multivariable logistic regression found that the odds of bacterial isolation from soil was significantly higher for samples with higher contents of iron (OR = 1.01, 95%CI = 1.00–1.02, p = 0.03), water (OR = 1.28, 95%CI = 1.05–1.55, p = 0.01) and clay (OR = 1.54, 95%CI = 1.15–2.06, p = 0.004) compared to the odds of isolation in samples with lower contents of the above variables. These three factors may have favored the survival of B. pseudomallei because iron regulates expression of respiratory enzymes, while water is essential for soil ecology and agent’s biological processes and clay retains water and nutrients. PMID:27635652

  9. Spatial Variation of Soil Lead in an Urban Community Garden: Implications for Risk-Based Sampling.

    PubMed

    Bugdalski, Lauren; Lemke, Lawrence D; McElmurry, Shawn P

    2014-01-01

    Soil lead pollution is a recalcitrant problem in urban areas resulting from a combination of historical residential, industrial, and transportation practices. The emergence of urban gardening movements in postindustrial cities necessitates accurate assessment of soil lead levels to ensure safe gardening. In this study, we examined small-scale spatial variability of soil lead within a 15 × 30 m urban garden plot established on two adjacent residential lots located in Detroit, Michigan, USA. Eighty samples collected using a variably spaced sampling grid were analyzed for total, fine fraction (less than 250 μm), and bioaccessible soil lead. Measured concentrations varied at sampling scales of 1-10 m and a hot spot exceeding 400 ppm total soil lead was identified in the northwest portion of the site. An interpolated map of total lead was treated as an exhaustive data set, and random sampling was simulated to generate Monte Carlo distributions and evaluate alternative sampling strategies intended to estimate the average soil lead concentration or detect hot spots. Increasing the number of individual samples decreases the probability of overlooking the hot spot (type II error). However, the practice of compositing and averaging samples decreased the probability of overestimating the mean concentration (type I error) at the expense of increasing the chance for type II error. The results reported here suggest a need to reconsider U.S. Environmental Protection Agency sampling objectives and consequent guidelines for reclaimed city lots where soil lead distributions are expected to be nonuniform. © 2013 Society for Risk Analysis.

  10. SOIL AND FILL LABORATORY SUPPORT - 1991

    EPA Science Inventory

    The report gives results of soil analysis laboratory work by the University of Florida in Support of the Florida Radon Research Program (FRRP). Analyses were performed on soil and fill samples collected during 1991 by the FRRP Research House program and the New House Evaluation P...

  11. Radioactivity measurement of radioactive contaminated soil by using a fiber-optic radiation sensor

    NASA Astrophysics Data System (ADS)

    Joo, Hanyoung; Kim, Rinah; Moon, Joo Hyun

    2016-06-01

    A fiber-optic radiation sensor (FORS) was developed to measure the gamma radiation from radioactive contaminated soil. The FORS was fabricated using an inorganic scintillator (Lu,Y)2SiO5:Ce (LYSO:Ce), a mixture of epoxy resin and hardener, aluminum foil, and a plastic optical fiber. Before its real application, the FORS was tested to determine if it performed adequately. The test result showed that the measurements by the FORS adequately followed the theoretically estimated values. Then, the FORS was applied to measure the gamma radiation from radioactive contaminated soil. For comparison, a commercial radiation detector was also applied to measure the same soil samples. The measurement data were analyzed by using a statistical parameter, the critical level to determine if net radioactivity statistically different from background was present in the soil sample. The analysis showed that the soil sample had radioactivity distinguishable from background.

  12. Local versus field scale soil heterogeneity characterization - a challenge for representative sampling in pollution studies

    NASA Astrophysics Data System (ADS)

    Kardanpour, Z.; Jacobsen, O. S.; Esbensen, K. H.

    2015-06-01

    This study is a contribution to development of a heterogeneity characterisation facility for "next generation" sampling aimed at more realistic and controllable pesticide variability in laboratory pots in experimental environmental contaminant assessment. The role of soil heterogeneity on quantification of a set of exemplar parameters, organic matter, loss on ignition (LOI), biomass, soil microbiology, MCPA sorption and mineralization is described, including a brief background on how heterogeneity affects sampling/monitoring procedures in environmental pollutant studies. The Theory of Sampling (TOS) and variographic analysis has been applied to develop a fit-for-purpose heterogeneity characterization approach. All parameters were assessed in large-scale profile (1-100 m) vs. small-scale (0.1-1 m) replication sampling pattern. Variographic profiles of experimental analytical results concludes that it is essential to sample at locations with less than a 2.5 m distance interval to benefit from spatial auto-correlation and thereby avoid unnecessary, inflated compositional variation in experimental pots; this range is an inherent characteristic of the soil heterogeneity and will differ among soils types. This study has a significant carrying-over potential for related research areas e.g. soil science, contamination studies, and environmental monitoring and environmental chemistry.

  13. Assessing soil quality indicator under different land use and soil erosion using multivariate statistical techniques.

    PubMed

    Nosrati, Kazem

    2013-04-01

    Soil degradation associated with soil erosion and land use is a critical problem in Iran and there is little or insufficient scientific information in assessing soil quality indicator. In this study, factor analysis (FA) and discriminant analysis (DA) were used to identify the most sensitive indicators of soil quality for evaluating land use and soil erosion within the Hiv catchment in Iran and subsequently compare soil quality assessment using expert opinion based on soil surface factors (SSF) form of Bureau of Land Management (BLM) method. Therefore, 19 soil physical, chemical, and biochemical properties were measured from 56 different sampling sites covering three land use/soil erosion categories (rangeland/surface erosion, orchard/surface erosion, and rangeland/stream bank erosion). FA identified four factors that explained for 82 % of the variation in soil properties. Three factors showed significant differences among the three land use/soil erosion categories. The results indicated that based upon backward-mode DA, dehydrogenase, silt, and manganese allowed more than 80 % of the samples to be correctly assigned to their land use and erosional status. Canonical scores of discriminant functions were significantly correlated to the six soil surface indices derived of BLM method. Stepwise linear regression revealed that soil surface indices: soil movement, surface litter, pedestalling, and sum of SSF were also positively related to the dehydrogenase and silt. This suggests that dehydrogenase and silt are most sensitive to land use and soil erosion.

  14. 30 CFR 773.6 - Public participation in permit processing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Information that pertains only to the analysis of the chemical and physical properties of the coal to be mined... operation, including the U.S. Department of Agriculture Soil Conservation Service district office, the local... pertaining to coal seams, test borings, core samplings, or soil samples in an application shall be made...

  15. 30 CFR 773.6 - Public participation in permit processing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Information that pertains only to the analysis of the chemical and physical properties of the coal to be mined... operation, including the U.S. Department of Agriculture Soil Conservation Service district office, the local... pertaining to coal seams, test borings, core samplings, or soil samples in an application shall be made...

  16. Seasonal Dynamics of Trace Elements in Tidal Salt Marsh Soils as Affected by the Flow-Sediment Regulation Regime

    PubMed Central

    Bai, Junhong; Xiao, Rong; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing; Reddy, K. Ramesh

    2014-01-01

    Soil profiles were collected in three salt marshes with different plant species (i.e. Phragmites australis, Tamarix chinensis and Suaeda salsa) in the Yellow River Delta (YRD) of China during three seasons (summer and fall of 2007 and the following spring of 2008) after the flow-sediment regulation regime. Total elemental contents of As, Cd, Cu, Pb and Zn were determined using inductively coupled plasma atomic absorption spectrometry to investigate temporal variations in trace elements in soil profiles of the three salt marshes, assess the enrichment levels and ecological risks of these trace elements in three sampling seasons and identify their influencing factors. Trace elements did not change significantly along soil profiles at each site in each sampling season. The highest value for each sampling site was observed in summer and the lowest one in fall. Soils in both P. australis and S. salsa wetlands tended to have higher trace element levels than those in T. chinensis wetland. Compared to other elements, both Cd and As had higher enrichment factors exceeding moderate enrichment levels. However, the toxic unit (TU) values of these trace elements did not exceed probable effect levels. Correlation analysis showed that these trace elements were closely linked to soil properties such as moisture, sulfur, salinity, soil organic matter, soil texture and pH values. Principal component analysis showed that the sampling season affected by the flow-sediment regulation regime was the dominant factor influencing the distribution patterns of these trace elements in soils, and plant community type was another important factor. The findings of this study could contribute to wetland conservation and management in coastal regions affected by the hydrological engineering. PMID:25216278

  17. Influence of uranium on bacterial communities: a comparison of natural uranium-rich soils with controls.

    PubMed

    Mondani, Laure; Benzerara, Karim; Carrière, Marie; Christen, Richard; Mamindy-Pajany, Yannick; Février, Laureline; Marmier, Nicolas; Achouak, Wafa; Nardoux, Pascal; Berthomieu, Catherine; Chapon, Virginie

    2011-01-01

    This study investigated the influence of uranium on the indigenous bacterial community structure in natural soils with high uranium content. Radioactive soil samples exhibiting 0.26% - 25.5% U in mass were analyzed and compared with nearby control soils containing trace uranium. EXAFS and XRD analyses of soils revealed the presence of U(VI) and uranium-phosphate mineral phases, identified as sabugalite and meta-autunite. A comparative analysis of bacterial community fingerprints using denaturing gradient gel electrophoresis (DGGE) revealed the presence of a complex population in both control and uranium-rich samples. However, bacterial communities inhabiting uraniferous soils exhibited specific fingerprints that were remarkably stable over time, in contrast to populations from nearby control samples. Representatives of Acidobacteria, Proteobacteria, and seven others phyla were detected in DGGE bands specific to uraniferous samples. In particular, sequences related to iron-reducing bacteria such as Geobacter and Geothrix were identified concomitantly with iron-oxidizing species such as Gallionella and Sideroxydans. All together, our results demonstrate that uranium exerts a permanent high pressure on soil bacterial communities and suggest the existence of a uranium redox cycle mediated by bacteria in the soil.

  18. Influence of Uranium on Bacterial Communities: A Comparison of Natural Uranium-Rich Soils with Controls

    PubMed Central

    Mondani, Laure; Benzerara, Karim; Carrière, Marie; Christen, Richard; Mamindy-Pajany, Yannick; Février, Laureline; Marmier, Nicolas; Achouak, Wafa; Nardoux, Pascal; Berthomieu, Catherine; Chapon, Virginie

    2011-01-01

    This study investigated the influence of uranium on the indigenous bacterial community structure in natural soils with high uranium content. Radioactive soil samples exhibiting 0.26% - 25.5% U in mass were analyzed and compared with nearby control soils containing trace uranium. EXAFS and XRD analyses of soils revealed the presence of U(VI) and uranium-phosphate mineral phases, identified as sabugalite and meta-autunite. A comparative analysis of bacterial community fingerprints using denaturing gradient gel electrophoresis (DGGE) revealed the presence of a complex population in both control and uranium-rich samples. However, bacterial communities inhabiting uraniferous soils exhibited specific fingerprints that were remarkably stable over time, in contrast to populations from nearby control samples. Representatives of Acidobacteria, Proteobacteria, and seven others phyla were detected in DGGE bands specific to uraniferous samples. In particular, sequences related to iron-reducing bacteria such as Geobacter and Geothrix were identified concomitantly with iron-oxidizing species such as Gallionella and Sideroxydans. All together, our results demonstrate that uranium exerts a permanent high pressure on soil bacterial communities and suggest the existence of a uranium redox cycle mediated by bacteria in the soil. PMID:21998695

  19. Concentrations of polychlorinated biphenyls in soil and indoor dust associated with electricity generation facilities in Lagos, Nigeria.

    PubMed

    Folarin, Bilikis Temitope; Abdallah, Mohamed Abou-Elwafa; Oluseyi, Temilola; Olayinka, Kehinde; Harrad, Stuart

    2018-09-01

    Concentrations of 7 indicator polychlorinated biphenyls (PCBs) were measured in dust and soil samples from 12 power stations collected over the two major seasons of the Nigerian climate. Median ƩPCB 7 concentrations in soil ranged from 2 ng/g for power station A to 220 ng/g for power station I; while those in dust ranged from 21 ng/g for power station L to 2200 ng/g for power station I. For individual congeners, median PCB concentrations ranged from 3.8 ng/g for PCB 101 to 52 ng/g for PCB 180 in dust, and <0.07 ng/g for PCB 28 to 5.9 ng/g for PCB 153 in soil. The type of power station activity exerted a significant influence on concentrations of ΣPCB 7 in dust and soil (generation > transmission > distribution). Congener patterns in dust and soil samples were compared using principal component analysis (PCA) with those in transformer oil samples from 3 of the power stations studied and with common PCB mixtures (Aroclors). This revealed congener patterns in soil were more closely related to that in the transformer oil than dust. Congener patterns in most samples were similar to Aroclor 1260. Concentrations of PCBs in soil samples close to the transformers significantly exceeded those in soil sampled further away. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR EXTRACTION OF METALS FROM SOIL, DUST, AIR FILTER, AND SURFACE AND DERMAL WIPE SAMPLES FOR AA (GRAPHITE FURNACE OR FLAME) OR ICP-AES ANALYSIS (BCO-L-3.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the acid digestion of soil, house dust, air filter, and surface or dermal wipe samples for analysis using inductively coupled plasma atomic emissions spectrometry (ICP-AES) and/or graphite furnace atomic absorption spectrometry (GFAAS) or fl...

  1. Application of Bioassays for the Ecotoxicity Assessment of Contaminated Soils

    NASA Astrophysics Data System (ADS)

    Fernández, María D.; Babín, Mar; Tarazona, José V.

    The use of bioassays for soil characterization is receiving significant attention as a complementary tool to chemical analysis. Bioassays consist of direct toxicity assays of environmental samples that are transferred to the laboratory and analyzed for toxicity against selected organisms. Such soil samples contain the combination of the different pollutants present in situ and enable factors such as the bioavailability of contaminants or the interactions (synergic and antagonic) between them to be simultaneously studied.

  2. Changes in the dissolved organic matter leaching from soil under severe temperature and N-deposition.

    PubMed

    Nguyen, Hang Vo-Minh; Choi, Jung Hyun

    2015-06-01

    In this study, we conducted growth chamber experiments using three types of soil (wetland, rice paddy, and forest) under the conditions of a severe increase in the temperature and N-deposition in order to investigate how extreme weather influences the characteristics of the dissolved organic matter (DOM) leaching from different soil types. This leachate controls the quantity and quality of DOM in surface water systems. After 5 months of incubation, the dissolved organic carbon (DOC) concentrations decreased in the range of 21.1 to 88.9 %, while the specific UV absorption (SUVA) values increased substantially in the range of 19.9 to 319.9 % for all of the samples. Higher increases in the SUVA values were observed at higher temperatures, whereas the opposite trend was observed for samples with N-addition. The parallel factor analysis (PARAFAC) results showed that four fluorescence components: terrestrial humic-like (component 1 (C1)), microbial humic-like (component 2 (C2)), protein-like (component 3 (C3)), and anthropogenic humic-like (component 4 (C4)) constituted the fluorescence matrices of soil samples. During the experiment, labile DOM from the soils was consumed and transformed into resistant aromatic carbon structures and less biodegradable components via microbial processes. The principle component analysis (PCA) results indicated that severe temperatures and N-deposition could enhance the contribution of the aromatic carbon compounds and humic-like components in the soil samples.

  3. Measurement of particle size distribution of soil and selected aggregate sizes using the hydrometer method and laser diffractometry

    NASA Astrophysics Data System (ADS)

    Guzmán, G.; Gómez, J. A.; Giráldez, J. V.

    2010-05-01

    Soil particle size distribution has been traditionally determined by the hydrometer or the sieve-pipette methods, both of them time consuming and requiring a relatively large soil sample. This might be a limitation in situations, such as for instance analysis of suspended sediment, when the sample is small. A possible alternative to these methods are the optical techniques such as laser diffractometry. However the literature indicates that the use of this technique as an alternative to traditional methods is still limited, because the difficulty in replicating the results obtained with the standard methods. In this study we present the percentages of soil grain size determined using laser diffractometry within ranges set between 0.04 - 2000 μm. A Beckman-Coulter ® LS-230 with a 750 nm laser beam and software version 3.2 in five soils, representative of southern Spain: Alameda, Benacazón, Conchuela, Lanjarón and Pedrera. In three of the studied soils (Alameda, Benacazón and Conchuela) the particle size distribution of each aggregate size class was also determined. Aggregate size classes were obtained by dry sieve analysis using a Retsch AS 200 basic ®. Two hundred grams of air dried soil were sieved during 150 s, at amplitude 2 mm, getting nine different sizes between 2000 μm and 10 μm. Analyses were performed by triplicate. The soil sample preparation was also adapted to our conditions. A small amount each soil sample (less than 1 g) was transferred to the fluid module full of running water and disaggregated by ultrasonication at energy level 4 and 80 ml of sodium hexametaphosphate solution during 580 seconds. Two replicates of each sample were performed. Each measurement was made for a 90 second reading at a pump speed of 62. After the laser diffractometry analysis, each soil and its aggregate classes were processed calibrating its own optical model fitting the optical parameters that mainly depends on the color and the shape of the analyzed particle. As a second alternative a unique optical model valid for a broad range of soils developed by the Department of Soil, Water, and Environmental Science of the University of Arizona (personal communication, already submitted) was tested. The results were compared with the particle size distribution measured in the same soils and aggregate classes using the hydrometer method. Preliminary results indicate a better calibration of the technique using the optical model of the Department of Soil, Water, and Environmental Science of the University of Arizona, which obtained a good correlations (r2>0.85). This result suggests that with an appropriate calibration of the optical model laser diffractometry might provide a reliable soil particle characterization.

  4. Hg Storage and Mobility in Tundra Soils of Northern Alaska

    NASA Astrophysics Data System (ADS)

    Olson, C.; Obrist, D.

    2017-12-01

    Atmospheric mercury (Hg) can be transported over long distances to remote regions such as the Arctic where it can then deposit and temporarily be stored in soils. This research aims to improve the understanding of terrestrial Hg storage and mobility in the arctic tundra, a large receptor area for atmospheric deposition and a major source of Hg to the Arctic Ocean. We aim to characterize spatial Hg pool sizes across various tundra sites and to quantify the mobility of Hg from thawing tundra soils using laboratory mobility experiments. Active layer and permafrost soil samples were collected in the summer of 2014 and 2015 at the Toolik Field Station in northern Alaska (68° 38' N) and along a 200 km transect extending from Toolik to the Arctic Ocean. Soil samples were analyzed for total Hg concentration, bulk density, and major and trace elements. Hg pool sizes were estimated by scaling up Hg soil concentrations using soil bulk density measurements. Mobility of Hg in tundra soils was quantified by shaking soil samples with ultrapure Milli-Q® water as an extracting solution for 24 and 72 hours. Additionally, meltwater samples were collected for analysis when present. The extracted supernatant was analyzed for total Hg, dissolved organic carbon, cations and anions, redox, and ph. Mobility of Hg from soil was calculated using Hg concentrations determined in solid soil samples and in supernatant of soil solution samples. Results of this study show Hg levels in tundra mineral soils that are 2-5 times higher than those observed at temperate sites closer to pollution sources. Most of the soil Hg was located in mineral horizons where Hg mass accounted for 72% of the total soil pool. Soil Hg pool sizes across the tundra sites were highly variable (166 - 1,365 g ha-1; avg. 419 g ha-1) due to the heterogeneity in soil type, bulk density, depth to frozen layer, and soil Hg concentration. Preliminary results from the laboratory experiment show higher mobility of Hg in mineral soils of active layer samples (0.062%) than in permafrost soils (0.026%) where soil Hg concentrations were lower. Mobilization of Hg stored in thawing permafrost soils could lead to accelerated export of Hg to aquatic systems, with major implications to Arctic wildlife and human health.

  5. [Relationships between soil and rocky desertification in typical karst mountain area based on redundancy analysis].

    PubMed

    Long, Jian; Liao, Hong-Kai; Li, Juan; Chen, Cai-Yun

    2012-06-01

    Redundancy analysis (RDA) was employed to reveal the relationships between soil and rocky desertification through vegetation investigation and analysis of soil samples collected in typical karst mountain area of southwest Guizhou Province. The results showed that except TP, TK and ACa, all other variables including SOC, TN, MBC, ROC, DOC, available nutrients and basal respiration showed significant downward trends during the rocky desertification process. RDA results showed significant correlations between different types of desertification and soil variables, described as non-degraded > potential desertification > light desertification > moderate desertification > severe desertification. Moreover, RDA showed that using SOC, TN, AN, and BD as soil indicators, 74.4% of the variance information on soil and rocky desertification could be explained. Furthermore, the results of correlation analysis showed that soil variables were significantly affected by surface vegetation. Considering the ecological function of the aboveground vegetation and the soil quality, Zanthoxylum would be a good choice for restoration of local vegetation in karst mountain area.

  6. Aqueous solubility calculation for petroleum mixtures in soil using comprehensive two-dimensional gas chromatography analysis data.

    PubMed

    Mao, Debin; Lookman, Richard; Van De Weghe, Hendrik; Vanermen, Guido; De Brucker, Nicole; Diels, Ludo

    2009-04-03

    An assessment of aqueous solubility (leaching potential) of soil contaminations with petroleum hydrocarbons (TPH) is important in the context of the evaluation of (migration) risks and soil/groundwater remediation. Field measurements using monitoring wells often overestimate real TPH concentrations in case of presence of pure oil in the screened interval of the well. This paper presents a method to calculate TPH equilibrium concentrations in groundwater using soil analysis by high-performance liquid chromatography followed by comprehensive two-dimensional gas chromatography (HPLC-GCXGC). The oil in the soil sample is divided into 79 defined hydrocarbon fractions on two GCXGC color plots. To each of these fractions a representative water solubility is assigned. Overall equilibrium water solubility of the non-aqueous phase liquid (NAPL) present in the sample and the water phase's chemical composition (in terms of the 79 fractions defined) are then calculated using Raoult's law. The calculation method was validated using soil spiked with 13 different TPH mixtures and 1 field-contaminated soil. Measured water solubilities using a column recirculation equilibration experiment agreed well to calculated equilibrium concentrations and water phase TPH composition.

  7. Thermal Analyzer for Planetary Soil (TAPS): an in Situ Instrument for Mineral and Volatile-element Measurements

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.; Ming, D. W.; Gruener, J. E.; Gibbons, F. L.; Allton, J. H.

    1993-01-01

    Thermal Analyzer for Planetary Soil (TAPS) offers a specific implementation for the generic thermal analyzer/evolved-gas analyzer (TA/EGA) function included in the Mars Environmental Survey (MESUR) strawman payload; applications to asteroids and comets are also possible. The baseline TAPS is a single-sample differential scanning calorimeter (DSC), backed by a capacitive-polymer humidity sensor, with an integrated sampling mechanism. After placement on a planetary surface, TAPS acquires 10-50 mg of soil or sediment and heats the sample from ambient temperature to 1000-1300 K. During heating, DSC data are taken for the solid and evolved gases are swept past the water sensor. Through ground based data analysis, multicomponent DSC data are deconvolved and correlated with the water release profile to quantitatively determine the types and relative proportions of volatile-bearing minerals such as clays and other hydrates, carbonates, and nitrates. The rapid-response humidity sensors also achieve quantitative analysis of total water. After conclusion of soil-analysis operations, the humidity sensors become available for meteorology. The baseline design fits within a circular-cylindrical volume less than 1000 cm(sup 3), occupies 1.2 kg mass, and consumes about 2 Whr of power per analysis. Enhanced designs would acquire and analyze multiple samples and employ additional microchemical sensors for analysis of CO2, SO2, NO(x), and other gaseous species. Atmospheric pumps are also being considered as alternatives to pressurized purge gas.

  8. Thermal Analyzer for Planetary Soil (TAPS): an in situ instrument for mineral and volatile-element measurements

    NASA Astrophysics Data System (ADS)

    Gooding, J. L.; Ming, D. W.; Gruener, J. E.; Gibbons, F. L.; Allton, J. H.

    Thermal Analyzer for Planetary Soil (TAPS) offers a specific implementation for the generic thermal analyzer/evolved-gas analyzer (TA/EGA) function included in the Mars Environmental Survey (MESUR) strawman payload; applications to asteroids and comets are also possible. The baseline TAPS is a single-sample differential scanning calorimeter (DSC), backed by a capacitive-polymer humidity sensor, with an integrated sampling mechanism. After placement on a planetary surface, TAPS acquires 10-50 mg of soil or sediment and heats the sample from ambient temperature to 1000-1300 K. During heating, DSC data are taken for the solid and evolved gases are swept past the water sensor. Through ground based data analysis, multicomponent DSC data are deconvolved and correlated with the water release profile to quantitatively determine the types and relative proportions of volatile-bearing minerals such as clays and other hydrates, carbonates, and nitrates. The rapid-response humidity sensors also achieve quantitative analysis of total water. After conclusion of soil-analysis operations, the humidity sensors become available for meteorology. The baseline design fits within a circular-cylindrical volume less than 1000 cm3, occupies 1.2 kg mass, and consumes about 2 Whr of power per analysis. Enhanced designs would acquire and analyze multiple samples and employ additional microchemical sensors for analysis of CO2, SO2, NO(x), and other gaseous species. Atmospheric pumps are also being considered as alternatives to pressurized purge gas.

  9. Evaluation of a modified QuEChERS extraction of multiple classes of pesticides from a rice paddy soil by LC-APCI-MS/MS.

    PubMed

    Caldas, Sergiane S; Bolzan, Cátia M; Cerqueira, Maristela B; Tomasini, Débora; Furlong, Eliana B; Fagundes, Carlos; Primel, Ednei G

    2011-11-23

    A new method for the determination of clomazone, fipronil, tebuconazole, propiconazole, and azoxystrobin in samples of rice paddy soil is presented. The extraction of the pesticides from soil samples was performed by using a modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) method. Some extraction conditions such as salt addition, sample acidification, use of buffer, and cleanup step were evaluated. The optimized method dealt with a single extraction of the compounds under study with acidified acetonitrile, followed by the addition of MgSO(4) and NaCl prior to the final determination by liquid chromatography-atmospheric chemical pressure ionization-tandem mass spectrometry. Validation studies were carried out in soil samples. Recoveries of the spiked samples ranged between 70.3 and 120% with relative standard deviation lower than 18.2%. The limits of quantification were between 10 and 50 μg kg(-1). The method was applied to the analysis of real samples of soils where rice is cultivated.

  10. Laser-Induced Breakdown Spectroscopy for Qualitative Analysis of Metals in Simulated Martian Soils

    ERIC Educational Resources Information Center

    Mowry, Curtis; Milofsky, Rob; Collins, William; Pimentel, Adam S.

    2017-01-01

    This laboratory introduces students to laser-induced breakdown spectroscopy (LIBS) for the analysis of metals in soil and rock samples. LIBS employs a laser-initiated spark to induce electronic excitation of metal atoms. Ensuing atomic emission allows for qualitative and semiquantitative analysis. The students use LIBS to analyze a series of…

  11. Direct surface analysis of pesticides on soil, leaves, grass, and stainless steel by static secondary ion mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingram, J.C.; Groenewold, G.S.; Appelhans, A.D.

    1997-02-01

    Direct surface analyses by static secondary ion mass spectrometry (SIMS) were performed for the following pesticides adsorbed on dandelion leaves, grass, soil, and stainless steel samples: alachlor, atrazine, captan, carbofuran, chlorpyrifos, chlorosulfuron, chlorthal-dimethyl, cypermethrin, 2,4-D, diuron, glyphosate, malathion, methomyl, methyl arsonic acid, mocap, norflurazon, oxyfluorfen, paraquat, temik, and trifluralin. The purpose of this study was to evaluate static SIMS as a tool for pesticide analysis, principally for use in screening samples for pesticides. The advantage of direct surface analysis compared with conventional pesticide analysis methods is the elimination of sample pretreatment including extraction, which streamlines the analysis substantially; total analysismore » time for SIMS analysis was ca. 10 min/sample. Detection of 16 of the 20 pesticides on all four substrates was achieved. Of the remaining four pesticides, only one (trifluralin) was not detected on any of the samples. The minimum detectable quantity was determined for paraquat on soil in order to evaluate the efficacy of using SIMS as a screening tool. Paraquat was detected at 3 pg/mm{sup 2} (c.a. 0.005 monolayers). The results of these studies suggest that SIMS is capable of direct surface detection of a range of pesticides, with low volatility, polar pesticides being the most easily detected. 25 refs., 2 figs., 2 tabs.« less

  12. Reconnaissance of Soil, Ground Water, and Plant Contamination at an Abandoned Oilfield-Service Site near Shawnee, Oklahoma, 2005-2006

    USGS Publications Warehouse

    Mashburn, Shana L.; Smith, S. Jerrod

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Absentee Shawnee Tribe of Oklahoma, began a reconnaissance study of a site in Pottawatomie County, Oklahoma, in 2005 by testing soil, shallow ground water, and plant material for the presence of trace elements and semivolatile organic compounds. Chemical analysis of plant material at the site was investigated as a preliminary tool to determine the extent of contamination at the site. Thirty soil samples were collected from 15 soil cores during October 2005 and analyzed for trace elements and semivolatile organic compounds. Five small-diameter, polyvinyl-chloride-cased wells were installed and ground-water samples were collected during December 2005 and May 2006 and analyzed for trace elements and semivolatile organic compounds. Thirty Johnsongrass samples and 16 Coralberry samples were collected during September 2005 and analyzed for 53 constituents, including trace elements. Results of the soil, ground-water, and plant data indicate that the areas of trace element and semivolatile organic compound contamination are located in the shallow (A-horizon) soils near the threading barn. Most of the trace-element concentrations in the soils on the study site were either similar to or less than trace-element concentrations in background soils. Several trace elements and semivolatile organic compounds exceeded the U.S. Environmental Protection Agency, Region 6, Human Health Medium-Specific Screening Levels 2007 for Tap Water, Residential Soils, Industrial Indoor Soils, and Industrial Outdoor Soils. There was little or no correlation between the plant and soil sample concentrations and the plant and ground-water concentrations based on the current sample size and study design. The lack of correlation between trace-element concentrations in plants and soils, and plants and ground water indicate that plant sampling was not useful as a preliminary tool to assess contamination at the study site.

  13. A Multiscale Approach to Modeling Carbon and Nitrogen Cycling within a High Elevation Watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, Corey

    This funding represents a small sub-award related the larger project titled: A Multiscale Approach to Modeling Carbon and Nitrogen Cycling within a High Elevation Watershed. The goal of the sub-award was to facilitate the characterization of carbon and radiocarbon data collected from the East River watershed outside Gothic, Colorado USA. During the period of funding from 8/1/15 until 7/31/17, we sampled 40 soil profiles and collected ~325 soil samples. This funding supported the collection, processing, and elemental analysis of each of these samples. In addition, the funding allowed for the further density separation of a subset of soil resulting inmore » 60 measurements of 13C and 14C of bulk soil and density separates. Funding also supported installation of temperature and moisture data sensors arrays, soil gas wells, and soil water lysimeters. From this infrastructure, a steady stream data including soil gas, water, and physical information have been generated to support the larger research project.« less

  14. Chemical characterization and spatial distribution of PAHs and heavy hydrocarbons in rural sites of Campania Region, South Italy.

    PubMed

    Monaco, D; Riccio, A; Chianese, E; Adamo, P; Di Rosa, S; Fagnano, M

    2015-10-01

    In this paper, the behaviour and distribution patterns of heavy hydrocarbons and several polycyclic aromatic hydrocarbon (PAH) priority pollutants, as listed by the US Environmental Protection Agency, were evaluated in 891 soil samples. The samples were collected in three expected polluted rural sites in Campania (southern Italy) as part of the LIFE11 ECOREMED project, funded by the European Commission, to test innovative agriculture-based soil restoration techniques. These sites have been selected because they have been used for the temporary storage of urban and building waste (Teverola), subject to illicit dumping of unknown material (Trentola-Ducenta), or suspected to be polluted by metals due to agricultural practices (Giugliano). Chemical analysis of soil samples allowed the baseline pollution levels to be determined prior to any intervention. It was found that these areas can be considered contaminated for residential use, in accordance with Italian environmental law (Law Decree 152/2006). Statistical analysis applied to the data proved that average mean concentrations of heavy hydrocarbons could be as high as 140 mg/kg of dry soil with peaks of 700 mg/kg of dry soil, for the Trentola-Ducenta site; the median concentration of analytical results for hydrocarbon (HC) concentration for the Trentola-Ducenta and Giugliano sites was 63 and 73.4 mg/kg dry soil, respectively; for Teverola, the median level was 35 mg/kg dry soil. Some PAHs (usually benzo(a)pyrene) also exceeded the maximum allowed level in all sites. From the principal component analysis applied to PAH concentrations, it emerged that pollutants can be supposed to derive from a single source for the three sites. Diagnostic ratios calculated to determine possible PAH sources suggest petroleum combustion or disposal practice. Our sampling protocol also showed large dishomogeneity in soil pollutant spatial distribution, even at a scale as small as 3.3 m, indicating that variability could emerge at very short spatial scales.

  15. Taxonomic and functional profiles of soil samples from Atlantic forest and Caatinga biomes in northeastern Brazil.

    PubMed

    Pacchioni, Ralfo G; Carvalho, Fabíola M; Thompson, Claudia E; Faustino, André L F; Nicolini, Fernanda; Pereira, Tatiana S; Silva, Rita C B; Cantão, Mauricio E; Gerber, Alexandra; Vasconcelos, Ana T R; Agnez-Lima, Lucymara F

    2014-06-01

    Although microorganisms play crucial roles in ecosystems, metagenomic analyses of soil samples are quite scarce, especially in the Southern Hemisphere. In this work, the microbial diversity of soil samples from an Atlantic Forest and Caatinga was analyzed using a metagenomic approach. Proteobacteria and Actinobacteria were the dominant phyla in both samples. Among which, a significant proportion of stress-resistant bacteria associated to organic matter degradation was found. Sequences related to metabolism of amino acids, nitrogen, and DNA and stress resistance were more frequent in Caatinga soil, while the forest sample showed the highest occurrence of hits annotated in phosphorous metabolism, defense mechanisms, and aromatic compound degradation subsystems. The principal component analysis (PCA) showed that our samples are close to the desert metagenomes in relation to taxonomy, but are more similar to rhizosphere microbiota in relation to the functional profiles. The data indicate that soil characteristics affect the taxonomic and functional distribution; these characteristics include low nutrient content, high drainage (both are sandy soils), vegetation, and exposure to stress. In both samples, a rapid turnover of organic matter with low greenhouse gas emission was suggested by the functional profiles obtained, reinforcing the importance of preserving natural areas. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  16. Determination of naturally occurring radionuclides in soil samples of Ayranci, Turkey

    NASA Astrophysics Data System (ADS)

    Agar, Osman; Eke, Canel; Boztosun, Ismail; Emin Korkmaz, M.

    2015-04-01

    The specific activity, radiation hazard index and the annual effective dose of the naturally occurring radioactive elements (238U, 232Th and 40K) were determined in soil samples collected from 12 different locations in Ayranci region by using a NaI(Tl) gamma-ray spectrometer. The measured activity concentrations of the natural radionuclides in studied soil samples were compared with the corresponding results of different countries and the internationally reported values. From the analysis, it is found that these materials may be safely used as construction materials and do not pose significant radiation hazards.

  17. Fluorescence lifetime evaluation of whole soils from the Amazon rainforest.

    PubMed

    Nicolodelli, Gustavo; Tadini, Amanda Maria; Nogueira, Marcelo Saito; Pratavieira, Sebastião; Mounier, Stephane; Huaman, Jose Luis Clabel; Dos Santos, Cléber Hilário; Montes, Célia Regina; Milori, Débora Marcondes Bastos Pereira

    2017-08-20

    Time-resolved fluorescence spectroscopy (TRFS) is a new tool that can be used to investigate processes of interaction between metal ions and organic matter (OM) in soils, providing a specific analysis of the structure and dynamics of macromolecules. To the best of our knowledge, there are no studies in the literature reporting the use of this technique applied to whole/non-fractionated soil samples, making it a potential method for use in future studies. This work describes the use of TRFS to evaluate the fluorescence lifetimes of OM of whole soils from the Amazon region. Analysis was made of pellets of soils from an oxisol-spodosol system, collected in São Gabriel da Cachoeira (Amazonas, Brazil). The fluorescence lifetimes in the oxisol-spodosol system were attributed to two different fluorophores. One was related to complexation of an OM fraction with metals, resulting in a shorter fluorophore lifetime. A short fluorescence lifetime (2-12 ns) could be associated with simpler structures of the OM, while a long lifetime (19-66 ns) was associated with more complex OM structures. This new TRFS technique for analysis of the fluorescence lifetime in whole soil samples complies with the principles of green chemistry.

  18. Advanced microwave soil moisture studies. [Big Sioux River Basin, Iowa

    NASA Technical Reports Server (NTRS)

    Dalsted, K. J.; Harlan, J. C.

    1983-01-01

    Comparisons of low level L-band brightness temperature (TB) and thermal infrared (TIR) data as well as the following data sets: soil map and land cover data; direct soil moisture measurement; and a computer generated contour map were statistically evaluated using regression analysis and linear discriminant analysis. Regression analysis of footprint data shows that statistical groupings of ground variables (soil features and land cover) hold promise for qualitative assessment of soil moisture and for reducing variance within the sampling space. Dry conditions appear to be more conductive to producing meaningful statistics than wet conditions. Regression analysis using field averaged TB and TIR data did not approach the higher sq R values obtained using within-field variations. The linear discriminant analysis indicates some capacity to distinguish categories with the results being somewhat better on a field basis than a footprint basis.

  19. Studying the spatial variability of Cr in agricultural field using both particle induced X-ray emission (PIXE) and instrumental neutron activation analysis (INAA) technique

    NASA Astrophysics Data System (ADS)

    Cruvinel, Paulo E.; Crestana, Sílvio; Artaxo, Paulo; Martins, JoséV.; Armelin, Maria JoséA.

    1996-04-01

    In the field of soil physics, a technique which permits a non-destructive, accurate and fast elemental analysis with a minimum of sample preparation effort is often desired. Although trace elements are minor components of the solid phase, they play an important role in soil fertility. Cr is of nutritional importance because it is a required element in human and animal nutrition. The immobility of Cr may be responsible for an inadequate Cr supply to plants. This work not only demonstrates the suitability of PIXE as a fast and non-destructive technique, useful to measure Cr content in soil samples, but also outlines a study of spatial variability of that element in agricultural field. To demonstrate the capability of the method soil samples were collected in a 5000 m 2 agricultural field. The soil samples were analyzed using both PIXE and INAA techniques. Besides, a Fourier interpolation technique was used to verify the distribution of Cr along of the sampled field. INAA was carried out by means of the γ-ray emitted by 51Cr(320 keV). Results show that there is a good linear relationship between the elemental concentration of Cr obtained using those techniques, i.e. a correlation coefficient of r2 = 0.82 was achieved.

  20. Estimate Soil Erodibility Factors Distribution for Maioli Block

    NASA Astrophysics Data System (ADS)

    Lee, Wen-Ying

    2014-05-01

    The natural conditions in Taiwan are poor. Because of the steep slopes, rushing river and fragile geology, soil erosion turn into a serious problem. Not only undermine the sloping landscape, but also created sediment disaster like that reservoir sedimentation, river obstruction…etc. Therefore, predict and control the amount of soil erosion has become an important research topic. Soil erodibility factor (K) is a quantitative index of distinguish the ability of soil to resist the erosion separation and handling. Taiwan soil erodibility factors have been calculated 280 soil samples' erodibility factors by Wann and Huang (1989) use the Wischmeier and Smith nomorgraph. 221 samples were collected at the Maioli block in Miaoli. The coordinates of every sample point and the land use situations were recorded. The physical properties were analyzed for each sample. Three estimation methods, consist of Kriging, Inverse Distance Weighted (IDW) and Spline, were applied to estimate soil erodibility factors distribution for Maioli block by using 181 points data, and the remaining 40 points for the validation. Then, the SPSS regression analysis was used to comparison of the accuracy of the training data and validation data by three different methods. Then, the best method can be determined. In the future, we can used this method to predict the soil erodibility factors in other areas.

  1. Determination and evaluation of cadmium, copper, nickel, and zinc in agricultural soils of western Macedonia, Greece.

    PubMed

    Papadopoulos, A; Prochaska, C; Papadopoulos, F; Gantidis, N; Metaxa, E

    2007-10-01

    The objective of this study was to determine the levels of major phytotoxic metals--including cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn)--in agricultural soils of Western Macedonia, Greece. We also wanted to determine the possible relationships among elements and between soil properties and elemental concentrations. Surface soil samples, n = 570, were collected and analyzed. The results of the elemental analysis showed that the mean metal concentrations were consistent with reported typical concentrations found in Greek agricultural soils in the cases of Zn and Cu. Cd exhibited lower and Ni higher mean concentrations than the typical levels reported in the literature. Metal concentrations in the majority of the examined samples (>69%) were found to be higher than the respective critical plant-deficiency levels. However, only 0.4% and 0.2% of the analyzed soil samples, respectively, exhibited Cd and Ni concentrations higher than the levels that cause plant toxicity, as referenced by other investigators. These results suggest that the soils studied can be considered as unpolluted with respect to the examined food-chain metal contaminants. However, the levels of the metal concentrations in some of the soil samples, and the low correlation of the metals with soil properties, suggest an anthropogenic rather that lithogenic origin.

  2. The "soil" of Mars (viking 1).

    PubMed

    Shorthill, R W; Moore, H J; Scott, R F; Hutton, R E; Liebes, S; Spitzer, C R

    1976-10-01

    The location of the Viking 1 lander is most ideal for the study of soil properties because it has one footpad in soft material and one on hard material. As each soil sample was acquired, information on soil properties was obtained. Although analysis is still under way, early results on bulk density, particle size, angle of internal friction, cohesion, adhesion, and penetration resistance of the soil of Mars are presented.

  3. The "Soil" of mars (viking 1)

    USGS Publications Warehouse

    Shorthill, R.W.; Moore, H.J.; Scott, R.F.; Hutton, R.E.; Liebes, S.; Spitzer, G.R.

    1976-01-01

    The location of the Viking 1 lander is most ideal for the study of soil properties because it has one footpad in soft material and one on hard material. As each soil sample was acquired, information on soil properties was obtained. Although analysis is still under way, early results on bulk density, particle size, angle of internal friction, cohesion, adhesion, and penetration resistance of the soil of Mars are presented.

  4. Isotopic studies in returned lunar samples

    NASA Technical Reports Server (NTRS)

    Alexander, E. C., Jr.

    1971-01-01

    Analysis of lunar soil samples returned by Apollo 11 and 12 flights are discussed. Isotopic studies of the rare gases from Apollo 11 flight lunar samples are presented. The lunar soil analyses indicated the following: (1) high concentrations of solar wind rare gases, (2) isotopic match between solar wind gases and gas components in gas-rich meteorites, and (3) rare gases attributable to spallation reactions induced in heavier nuclides by cosmic ray particles.

  5. PIXE analysis of sand and soil from Ulaanbaatar and Karakurum, Mongolia

    NASA Astrophysics Data System (ADS)

    Markwitz, A.; Barry, B.; Shagjjamba, D.

    2008-09-01

    Twenty-one sand and soil samples were collected at the surface from 22 to 25 June 2007 at sampling sites from Ulaanbaatar to Karakurum, Mongolia. The sand samples were collected from constantly changing sand dunes which may still contain salt from prehistoric oceans. The dry sand and soil samples were processed for PIXE and PIGE analyses. A clear division between soils and sand become apparent in the silicon results. Concentrations of all bulk elements in human habitation samples and of Si, Al, K and Fe in dry lake/flood plain samples are similar to those in the soils and sands. Among elements which could be regarded as being at trace concentrations the average S concentration in the soils is 0.9 g kg-1 whereas it is not detected in the sand samples. Zinc and Cu concentrations are both higher in the soils than the sands and are strongly correlated. A surprising presence of uranium at a concentration of 350 mg kg-1 was detected in the PIXE measurement on one of the dry lake samples. Gamma spectrometry confirmed the presence of U in this sample and also at a lower level in a sample from the lake shore, but in none of the other samples. Further, the gamma spectrometry showed that 238U decay products were present only at a level corresponding to about 3 mg kg-1 U for a system in radioactive equilibrium, a figure which is typical for U in the earth's crust. Disequilibria between 238U and its decay products occur naturally but such a high degree of separation at high concentration would be unique if confirmed. PIXE and PIGE measurements of these samples highlight the difficulty in correlating trace element measurements with occurrence of indicators of sea salt in air particulate samples.

  6. Geochemical characteristics of rare earth elements in different types of soil: A chemometric approach.

    PubMed

    Khan, Aysha Masood; Behkami, Shima; Yusoff, Ismail; Md Zain, Sharifuddin Bin; Bakar, Nor Kartini Abu; Bakar, Ahmad Farid Abu; Alias, Yatimah

    2017-10-01

    Rare earth elements (REEs) are becoming significant due to their huge applications in many industries, large-scale mining and refining activities. Increasing usage of such metals pose negative environmental impacts. In this research ICP-MS has been used to analyze soil samples collected from former ex-mining areas in the depths of 0-20 cm, 21-40 cm, and 41-60 cm of residential, mining, natural, and industrial areas of Perak. Principal component analysis (PCA) revealed that soil samples taken from different mining, industrial, residential, and natural areas are separated into four clusters. It was observed that REEs were abundant in most of the samples from mining areas. Concentration of the rare elements decrease in general as we move from surface soil to deeper soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Point-of-care mobile digital microscopy and deep learning for the detection of soil-transmitted helminths and Schistosoma haematobium.

    PubMed

    Holmström, Oscar; Linder, Nina; Ngasala, Billy; Mårtensson, Andreas; Linder, Ewert; Lundin, Mikael; Moilanen, Hannu; Suutala, Antti; Diwan, Vinod; Lundin, Johan

    2017-06-01

    Microscopy remains the gold standard in the diagnosis of neglected tropical diseases. As resource limited, rural areas often lack laboratory equipment and trained personnel, new diagnostic techniques are needed. Low-cost, point-of-care imaging devices show potential in the diagnosis of these diseases. Novel, digital image analysis algorithms can be utilized to automate sample analysis. Evaluation of the imaging performance of a miniature digital microscopy scanner for the diagnosis of soil-transmitted helminths and Schistosoma haematobium, and training of a deep learning-based image analysis algorithm for automated detection of soil-transmitted helminths in the captured images. A total of 13 iodine-stained stool samples containing Ascaris lumbricoides, Trichuris trichiura and hookworm eggs and 4 urine samples containing Schistosoma haematobium were digitized using a reference whole slide-scanner and the mobile microscopy scanner. Parasites in the images were identified by visual examination and by analysis with a deep learning-based image analysis algorithm in the stool samples. Results were compared between the digital and visual analysis of the images showing helminth eggs. Parasite identification by visual analysis of digital slides captured with the mobile microscope was feasible for all analyzed parasites. Although the spatial resolution of the reference slide-scanner is higher, the resolution of the mobile microscope is sufficient for reliable identification and classification of all parasites studied. Digital image analysis of stool sample images captured with the mobile microscope showed high sensitivity for detection of all helminths studied (range of sensitivity = 83.3-100%) in the test set (n = 217) of manually labeled helminth eggs. In this proof-of-concept study, the imaging performance of a mobile, digital microscope was sufficient for visual detection of soil-transmitted helminths and Schistosoma haematobium. Furthermore, we show that deep learning-based image analysis can be utilized for the automated detection and classification of helminths in the captured images.

  8. Point-of-care mobile digital microscopy and deep learning for the detection of soil-transmitted helminths and Schistosoma haematobium

    PubMed Central

    Holmström, Oscar; Linder, Nina; Ngasala, Billy; Mårtensson, Andreas; Linder, Ewert; Lundin, Mikael; Moilanen, Hannu; Suutala, Antti; Diwan, Vinod; Lundin, Johan

    2017-01-01

    ABSTRACT Background: Microscopy remains the gold standard in the diagnosis of neglected tropical diseases. As resource limited, rural areas often lack laboratory equipment and trained personnel, new diagnostic techniques are needed. Low-cost, point-of-care imaging devices show potential in the diagnosis of these diseases. Novel, digital image analysis algorithms can be utilized to automate sample analysis. Objective: Evaluation of the imaging performance of a miniature digital microscopy scanner for the diagnosis of soil-transmitted helminths and Schistosoma haematobium, and training of a deep learning-based image analysis algorithm for automated detection of soil-transmitted helminths in the captured images. Methods: A total of 13 iodine-stained stool samples containing Ascaris lumbricoides, Trichuris trichiura and hookworm eggs and 4 urine samples containing Schistosoma haematobium were digitized using a reference whole slide-scanner and the mobile microscopy scanner. Parasites in the images were identified by visual examination and by analysis with a deep learning-based image analysis algorithm in the stool samples. Results were compared between the digital and visual analysis of the images showing helminth eggs. Results: Parasite identification by visual analysis of digital slides captured with the mobile microscope was feasible for all analyzed parasites. Although the spatial resolution of the reference slide-scanner is higher, the resolution of the mobile microscope is sufficient for reliable identification and classification of all parasites studied. Digital image analysis of stool sample images captured with the mobile microscope showed high sensitivity for detection of all helminths studied (range of sensitivity = 83.3–100%) in the test set (n = 217) of manually labeled helminth eggs. Conclusions: In this proof-of-concept study, the imaging performance of a mobile, digital microscope was sufficient for visual detection of soil-transmitted helminths and Schistosoma haematobium. Furthermore, we show that deep learning-based image analysis can be utilized for the automated detection and classification of helminths in the captured images. PMID:28838305

  9. History and progress of the North American Soil Geochemical Landscapes Project, 2001-2010

    USGS Publications Warehouse

    Smith, David B.; Cannon, William F.; Woodruff, Laurel G.; Rivera, Francisco Moreira; Rencz, Andrew N.; Garrett, Robert G.

    2012-01-01

    In 2007, the U.S. Geological Survey, the Geological Survey of Canada, and the Mexican Geological Survey initiated a low-density (1 site per 1600 km2, 13323 sites) geochemical and mineralogical survey of North American soils (North American Soil Geochemical Landscapes Project). Sampling and analytical protocols were developed at a series of workshops in 20032004 and pilot studies were conducted from 20042007. The ideal sampling protocol at each site includes a sample from 05 cm depth, a composite of the soil A horizon, and a sample from the soil C horizon. The 3, HClO4, and HF. Separate methods are used for As, Hg, Se, and total C on this same size fraction. The major mineralogical components are determined by a quantitative X-ray diffraction method. Sampling in the conterminous U.S. was completed in 2010 (c. 4800 sites) with chemical and mineralogical analysis currently underway. In Mexico, approximately 66% of the sampling (871 sites) had been done by the end of 2010 with completion expected in 2012. After completing sampling in the Maritime provinces and portions of other provinces (472 sites, 7.6% of the total), Canada withdrew from the project in 2010. Preliminary results for a swath from the central U.S. to Florida clearly show the effects of soil parent material and climate on the chemical and mineralogical composition of soils. A sample archive will be established and made available for future investigations.

  10. Reduction of heavy metal from soil in Bakri Landfill, Muar, Johor by using Electrokinetic method

    NASA Astrophysics Data System (ADS)

    Azhar, ATS; Muhammad, E.; Zaidi, E.; Ezree, AM; Aziman, M.; Hazreek, ZAM; Nizam, ZM; Norshuhaila, MS

    2017-08-01

    The present study focuses on the contamination levels and distribution of heavy metals in soil samples located at Bakri Landfill area, Muar, Johor, Malaysia. The aim of this study is to determine the type of heavy metal elements that contribute towards soil contamination and to reduce them based on the comparison of elemental analysis between pre and post Electrokinetic (EK) processes. The ppm level concentration of elements in this landfill soil is measured by using X-ray Fluorescence analysis. ICP-MS testing was carried out for liquid samples analysis. There were two set of EK experiments conducted. In first phase, voltage was maintained at 3 Vcm-1 and prolonged for 3 hours, while second phase was operated at 1 Vcm-1 for 48 hours. In this work, distilled water was used as an electrolyte for the process and two identical copper foil were used as electrodes due to high electrical conductivity. The application of EK remediation revealed that successful removal of Rb and Ba elements in the soil were observed by 2-3%, however other heavy metals have not changed.

  11. DNA analysis of soil extracts can be used to investigate fine root depth distribution of trees

    PubMed Central

    Bithell, Sean L.; Tran-Nguyen, Lucy T. T.; Hearnden, Mark N.; Hartley, Diana M.

    2015-01-01

    Understanding the root distribution of trees by soil coring is time-consuming as it requires the separation of roots from soil and classification of roots into particular size classes. This labour-intensive process can limit sample throughput and therefore sampling intensity. We investigated the use of quantitative polymerase chain reaction (qPCR) on soil DNA extractions to determine live fine root DNA density (RDD, mg DNA m−2) for mango (Mangifera indica) trees. The specificity of the qPCR was tested against DNA extracted from 10 mango cultivars and 14 weed species. All mango cultivars and no weeds were detected. Mango DNA was successfully quantified from control soil spiked with mango roots and weed species. The DNA yield of mango root sections stored in moist soil at 23–28 °C declined after 15 days to low concentrations as roots decayed, indicating that dead root materials in moist soil would not cause false-positive results. To separate large roots from samples, a root separation method for field samples was used to target the root fragments remaining in sieved (minimum 2 mm aperture) soil for RDD comparisons. Using this method we compared the seasonal RDD values of fine roots for five mango rootstock cultivars in a field trial. The mean cultivar DNA yields by depth from root fragments in the sieved soil samples had the strongest relationship (adjusted multiple R2 = 0.9307, P < 0.001) with the dry matter (g m−2) of fine (diameter <0.64 mm) roots removed from the soil by sieving. This method provides a species-specific and rapid means of comparing the distribution and concentration of live fine roots of trees in orchards using soil samples up to 500 g. PMID:25552675

  12. Rock pushing and sampling under rocks on Mars

    USGS Publications Warehouse

    Moore, H.J.; Liebes, S.; Crouch, D.S.; Clark, L.V.

    1978-01-01

    Viking Lander 2 acquired samples on Mars from beneath two rocks, where living organisms and organic molecules would be protected from ultraviolet radiation. Selection of rocks to be moved was based on scientific and engineering considerations, including rock size, rock shape, burial depth, and location in a sample field. Rock locations and topography were established using the computerized interactive video-stereophotogrammetric system and plotted on vertical profiles and in plan view. Sampler commands were developed and tested on Earth using a full-size lander and surface mock-up. The use of power by the sampler motor correlates with rock movements, which were by plowing, skidding, and rolling. Provenance of the samples was determined by measurements and interpretation of pictures and positions of the sampler arm. Analytical results demonstrate that the samples were, in fact, from beneath the rocks. Results from the Gas Chromatograph-Mass Spectrometer of the Molecular Analysis experiment and the Gas Exchange instrument of the Biology experiment indicate that more adsorbed(?) water occurs in samples under rocks than in samples exposed to the sun. This is consistent with terrestrial arid environments, where more moisture occurs in near-surface soil un- der rocks than in surrounding soil because the net heat flow is toward the soil beneath the rock and the rock cap inhibits evaporation. Inorganic analyses show that samples of soil from under the rocks have significantly less iron than soil exposed to the sun. The scientific significance of analyses of samples under the rocks is only partly evaluated, but some facts are clear. Detectable quantities of martian organic molecules were not found in the sample from under a rock by the Molecular Analysis experiment. The Biology experiments did not find definitive evidence for Earth-like living organisms in their sample. Significant amounts of adsorbed water may be present in the martian regolith. The response of the soil from under a rock to the aqueous nutrient in the Gas Exchange instrument indicates that adsorbed water and hydrates play an important role in the oxidation potential of the soil. The rock surfaces are strong, because they did not scratch, chip or spall when the sampler pushed them. Fresh surfaces of soil and the undersides of rocks were exposed so that they could be imaged in color. A ledge of soil adhered to one rock that tilted, showing that a crust forms near the surface of Mars. The reason for low amounts of iron in the sampIes from under the rocks is not known at this time.

  13. Inter-laboratory variation in the chemical analysis of acidic forest soil reference samples from eastern North America

    Treesearch

    D.S. Ross; S.W. Bailey; R.D. Briggs; J. Curry; I.J. Fernandez; G. Fredriksen; C.L. Goodale; P.W. Hazlett; P.R. Heine; C.E. Johnson; J.T. Larson; G.B. Lawrence; R.K. Kolka; R. Ouimet; D. Pare; D. deB Richter; C.D. Schirmer; R.A. Warby

    2015-01-01

    Long-term forest soil monitoring and research often requires a comparison of laboratory data generated at different times and in different laboratories. Quantifying the uncertainty associated with these analyses is necessary to assess temporal changes in soil properties. Forest soil chemical properties, and methods to measure these properties, often differ from...

  14. Five-Year-Old Cottonwood Plantation on a Clay Site: Growth, Yield, and Soil Properties

    Treesearch

    R. M. Krinard; H. E. Kennedy

    1980-01-01

    A random sample of Stoneville select cottonwood (Populus deltoides Bartr.) clones planted on recent old-field clay soils at 12- by 12- foot spacing averaged 75-percent survival after five years. The growth and yield was about half that expected from planted cottonwood on medium-textured soils. Soil moisture analysis showed more height growth in years...

  15. Occurrence and source apportionment of polycyclic aromatic hydrocarbons in soils and sediment from Hanfeng Lake, Three Gorges, China.

    PubMed

    Cai, Jing; Gao, Shutao; Zhu, Like; Jia, Xuwei; Zeng, Xiangying; Yu, Zhiqiang

    2017-11-10

    This study was conducted to investigate the pollutant status and the retention mechanism of polycyclic aromatic hydrocarbons (PAHs) in soils and sediment from bank-water-level-fluctuating zone (WLFZ)-water systems in Hanfeng Lake, Three Gorges, China. The concentrations of the 16 PAHs ranged from 21.8 to 1324 ng g -1 dry wt for all 20 soil and sediment samples. These concentration levels were remarkably lower than those in soils and sediment collected domestically and worldwide. PAHs with two and three rings were found to be dominant in all the samples, with phenanthrene being most abundant. The spatial distribution of PAHs in bank soil, WLFZ soil, and sediment implied that the transfer and fate of PAHs in the bank soil-WLFZ soil-sediment systems were influenced by both water dynamic factors and physicochemical properties of PAHs. Diagnostic ratio analysis and principal component analysis suggested that the PAHs in the areas of Hanfeng Lake were primarily (>75%) derived from coal combustion and vehicle emissions . Use of natural gas, improving gasoline/diesel quality and phasing out old and nonstandard vehicles and ships are proposed to control PAH contamination and protect drinking water safety in the region.

  16. A Lipid Extraction and Analysis Method for Characterizing Soil Microbes in Experiments with Many Samples

    PubMed Central

    Oates, Lawrence G.; Read, Harry W.; Gutknecht, Jessica L. M.; Duncan, David S.; Balser, Teri B.; Jackson, Randall D.

    2017-01-01

    Microbial communities are important drivers and regulators of ecosystem processes. To understand how management of ecosystems may affect microbial communities, a relatively precise but effort-intensive technique to assay microbial community composition is phospholipid fatty acid (PLFA) analysis. PLFA was developed to analyze phospholipid biomarkers, which can be used as indicators of microbial biomass and the composition of broad functional groups of fungi and bacteria. It has commonly been used to compare soils under alternative plant communities, ecology, and management regimes. The PLFA method has been shown to be sensitive to detecting shifts in microbial community composition. An alternative method, fatty acid methyl ester extraction and analysis (MIDI-FA) was developed for rapid extraction of total lipids, without separation of the phospholipid fraction, from pure cultures as a microbial identification technique. This method is rapid but is less suited for soil samples because it lacks an initial step separating soil particles and begins instead with a saponification reaction that likely produces artifacts from the background organic matter in the soil. This article describes a method that increases throughput while balancing effort and accuracy for extraction of lipids from the cell membranes of microorganisms for use in characterizing both total lipids and the relative abundance of indicator lipids to determine soil microbial community structure in studies with many samples. The method combines the accuracy achieved through PLFA profiling by extracting and concentrating soil lipids as a first step, and a reduction in effort by saponifying the organic material extracted and processing with the MIDI-FA method as a second step. PMID:28745639

  17. Applying Monte-Carlo simulations to optimize an inelastic neutron scattering system for soil carbon analysis

    USDA-ARS?s Scientific Manuscript database

    Computer Monte-Carlo (MC) simulations (Geant4) of neutron propagation and acquisition of gamma response from soil samples was applied to evaluate INS system performance characteristic [sensitivity, minimal detectable level (MDL)] for soil carbon measurement. The INS system model with best performanc...

  18. SOIL AND FILL LABORATORY SUPPORT - 1992 RADIOLOGICAL ANALYSES - FLORIDA RADON RESEARCH PROGRAM

    EPA Science Inventory

    The report gives results of soil analysis laboratory work by the University of Florida in support of the Florida Radon Research Program (FRRP). Analyses were performed on soil and fill samples collected during 1992 by the FRRP Research House Program and the New House Evaluation P...

  19. Profiling Nematode Communities in Unmanaged Flowerbed and Agricultural Field Soils in Japan by DNA Barcode Sequencing

    PubMed Central

    Morise, Hisashi; Miyazaki, Erika; Yoshimitsu, Shoko; Eki, Toshihiko

    2012-01-01

    Soil nematodes play crucial roles in the soil food web and are a suitable indicator for assessing soil environments and ecosystems. Previous nematode community analyses based on nematode morphology classification have been shown to be useful for assessing various soil environments. Here we have conducted DNA barcode analysis for soil nematode community analyses in Japanese soils. We isolated nematodes from two different environmental soils of an unmanaged flowerbed and an agricultural field using the improved flotation-sieving method. Small subunit (SSU) rDNA fragments were directly amplified from each of 68 (flowerbed samples) and 48 (field samples) isolated nematodes to determine the nucleotide sequence. Sixteen and thirteen operational taxonomic units (OTUs) were obtained by multiple sequence alignment from the flowerbed and agricultural field nematodes, respectively. All 29 SSU rDNA-derived OTUs (rOTUs) were further mapped onto a phylogenetic tree with 107 known nematode species. Interestingly, the two nematode communities examined were clearly distinct from each other in terms of trophic groups: Animal predators and plant feeders were markedly abundant in the flowerbed soils, in contrast, bacterial feeders were dominantly observed in the agricultural field soils. The data from the flowerbed nematodes suggests a possible food web among two different trophic nematode groups and plants (weeds) in the closed soil environment. Finally, DNA sequences derived from the mitochondrial cytochrome oxidase c subunit 1 (COI) gene were determined as a DNA barcode from 43 agricultural field soil nematodes. These nematodes were assigned to 13 rDNA-derived OTUs, but in the COI gene analysis were assigned to 23 COI gene-derived OTUs (cOTUs), indicating that COI gene-based barcoding may provide higher taxonomic resolution than conventional SSU rDNA-barcoding in soil nematode community analysis. PMID:23284767

  20. GICHD Mine Dog Testing Project - Soil Sample Results No.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PHELAN, JAMES M.; BARNETT, JAMES L.; BENDER, SUSAN FAE ANN

    2003-03-01

    A mine dog evaluation project initiated by the Geneva International Center for Humanitarian Demining is evaluating the capability and reliability of mine detection dogs. The performance of field-operational mine detection dogs will be measured in test minefields in Afghanistan and Bosnia containing actual, but unfused landmines. Repeated performance testing over two years through various seasonal weather conditions will provide data simulating near real world conditions. Soil samples will be obtained adjacent to the buried targets repeatedly over the course of the test. Chemical analysis results from these soil samples will be used to evaluate correlations between mine dog detection performancemore » and seasonal weather conditions. This report documents the analytical chemical methods and results from the third batch of soils received. This batch contained samples from Kharga, Afghanistan collected in October 2002.« less

  1. GICHD mine dog testing project : soil sample results #5.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, James L.; Phelan, James M.; Archuleta, Luisa M.

    2004-01-01

    A mine dog evaluation project initiated by the Geneva International Center for Humanitarian Demining is evaluating the capability and reliability of mine detection dogs. The performance of field-operational mine detection dogs will be measured in test minefields in Afghanistan containing actual, but unfused landmines. Repeated performance testing over two years through various seasonal weather conditions will provide data simulating near real world conditions. Soil samples will be obtained adjacent to the buried targets repeatedly over the course of the test. Chemical analysis results from these soil samples will be used to evaluate correlations between mine dog detection performance and seasonalmore » weather conditions. This report documents the analytical chemical methods and results from the fifth batch of soils received. This batch contained samples from Kharga, Afghanistan collected in June 2003.« less

  2. Interaction of Soil Heavy Metal Pollution with Industrialisation and the Landscape Pattern in Taiyuan City, China

    PubMed Central

    Liu, Yong; Su, Chao; Zhang, Hong; Li, Xiaoting; Pei, Jingfei

    2014-01-01

    Many studies indicated that industrialization and urbanization caused serious soil heavy metal pollution from industrialized age. However, fewer previous studies have conducted a combined analysis of the landscape pattern, urbanization, industrialization, and heavy metal pollution. This paper was aimed at exploring the relationships of heavy metals in the soil (Pb, Cu, Ni, As, Cd, Cr, Hg, and Zn) with landscape pattern, industrialisation, urbanisation in Taiyuan city using multivariate analysis. The multivariate analysis included correlation analysis, analysis of variance (ANOVA), independent-sample T test, and principal component analysis (PCA). Geographic information system (GIS) was also applied to determine the spatial distribution of the heavy metals. The spatial distribution maps showed that the heavy metal pollution of the soil was more serious in the centre of the study area. The results of the multivariate analysis indicated that the correlations among heavy metals were significant, and industrialisation could significantly affect the concentrations of some heavy metals. Landscape diversity showed a significant negative correlation with the heavy metal concentrations. The PCA showed that a two-factor model for heavy metal pollution, industrialisation, and the landscape pattern could effectively demonstrate the relationships between these variables. The model explained 86.71% of the total variance of the data. Moreover, the first factor was mainly loaded with the comprehensive pollution index (P), and the second factor was primarily loaded with landscape diversity and dominance (H and D). An ordination of 80 samples could show the pollution pattern of all the samples. The results revealed that local industrialisation caused heavy metal pollution of the soil, but such pollution could respond negatively to the landscape pattern. The results of the study could provide a basis for agricultural, suburban, and urban planning. PMID:25251460

  3. Interaction of soil heavy metal pollution with industrialisation and the landscape pattern in Taiyuan city, China.

    PubMed

    Liu, Yong; Su, Chao; Zhang, Hong; Li, Xiaoting; Pei, Jingfei

    2014-01-01

    Many studies indicated that industrialization and urbanization caused serious soil heavy metal pollution from industrialized age. However, fewer previous studies have conducted a combined analysis of the landscape pattern, urbanization, industrialization, and heavy metal pollution. This paper was aimed at exploring the relationships of heavy metals in the soil (Pb, Cu, Ni, As, Cd, Cr, Hg, and Zn) with landscape pattern, industrialisation, urbanisation in Taiyuan city using multivariate analysis. The multivariate analysis included correlation analysis, analysis of variance (ANOVA), independent-sample T test, and principal component analysis (PCA). Geographic information system (GIS) was also applied to determine the spatial distribution of the heavy metals. The spatial distribution maps showed that the heavy metal pollution of the soil was more serious in the centre of the study area. The results of the multivariate analysis indicated that the correlations among heavy metals were significant, and industrialisation could significantly affect the concentrations of some heavy metals. Landscape diversity showed a significant negative correlation with the heavy metal concentrations. The PCA showed that a two-factor model for heavy metal pollution, industrialisation, and the landscape pattern could effectively demonstrate the relationships between these variables. The model explained 86.71% of the total variance of the data. Moreover, the first factor was mainly loaded with the comprehensive pollution index (P), and the second factor was primarily loaded with landscape diversity and dominance (H and D). An ordination of 80 samples could show the pollution pattern of all the samples. The results revealed that local industrialisation caused heavy metal pollution of the soil, but such pollution could respond negatively to the landscape pattern. The results of the study could provide a basis for agricultural, suburban, and urban planning.

  4. System for high throughput water extraction from soil material for stable isotope analysis of water

    USDA-ARS?s Scientific Manuscript database

    A major limitation in the use of stable isotope of water in ecological studies is the time that is required to extract water from soil and plant samples. Using vacuum distillation the extraction time can be less than one hour per sample. Therefore, assembling a distillation system that can process m...

  5. Terahertz Spectroscopy for Proximal Soil Sensing: An Approach to Particle Size Analysis

    PubMed Central

    Dworak, Volker; Mahns, Benjamin; Selbeck, Jörn; Weltzien, Cornelia

    2017-01-01

    Spatially resolved soil parameters are some of the most important pieces of information for precision agriculture. These parameters, especially the particle size distribution (texture), are costly to measure by conventional laboratory methods, and thus, in situ assessment has become the focus of a new discipline called proximal soil sensing. Terahertz (THz) radiation is a promising method for nondestructive in situ measurements. The THz frequency range from 258 gigahertz (GHz) to 350 GHz provides a good compromise between soil penetration and the interaction of the electromagnetic waves with soil compounds. In particular, soil physical parameters influence THz measurements. This paper presents investigations of the spectral transmission signals from samples of different particle size fractions relevant for soil characterization. The sample thickness ranged from 5 to 17 mm. The transmission of THz waves was affected by the main mineral particle fractions, sand, silt and clay. The resulting signal changes systematically according to particle sizes larger than half the wavelength. It can be concluded that THz spectroscopic measurements provide information about soil texture and penetrate samples with thicknesses in the cm range. PMID:29048392

  6. Matching soil salinization and cropping systems in communally managed irrigation schemes

    NASA Astrophysics Data System (ADS)

    Malota, Mphatso; Mchenga, Joshua

    2018-03-01

    Occurrence of soil salinization in irrigation schemes can be a good indicator to introduce high salt tolerant crops in irrigation schemes. This study assessed the level of soil salinization in a communally managed 233 ha Nkhate irrigation scheme in the Lower Shire Valley region of Malawi. Soil samples were collected within the 0-0.4 m soil depth from eight randomly selected irrigation blocks. Irrigation water samples were also collected from five randomly selected locations along the Nkhate River which supplies irrigation water to the scheme. Salinity of both the soil and the irrigation water samples was determined using an electrical conductivity (EC) meter. Analysis of the results indicated that even for very low salinity tolerant crops (ECi < 2 dS/m), the irrigation water was suitable for irrigation purposes. However, root-zone soil salinity profiles depicted that leaching of salts was not adequate and that the leaching requirement for the scheme needs to be relooked and always be adhered to during irrigation operation. The study concluded that the crop system at the scheme needs to be adjusted to match with prevailing soil and irrigation water salinity levels.

  7. Analysis of the bacterial community changes in soil for septic tank effluent treatment in response to bio-clogging.

    PubMed

    Nie, J Y; Zhu, N W; Zhao, K; Wu, L; Hu, Y H

    2011-01-01

    Soil columns were set up to survey the bacterial community in the soil for septic tank effluent treatment. When bio-clogging occurred in the soil columns, the effluent from the columns was in poorer quality. To evaluate changes of the soil bacterial community in response to bio-clogging, the bacterial community was characterized by DNA gene sequences from soil samples after polymerase chain reaction coupled with denaturing gradient gel electrophoresis process. Correspondence analysis showed that Proteobacteria related bacteria were the main bacteria within the soil when treating septic tank effluent. However, Betaproteobacteria related bacteria were the dominant microorganisms in the normal soil, whereas Alphaproteobacteria related bacteria were more abundant in the clogged soil. This study provided insight into changes of the soil bacterial community in response to bio-clogging. The results can supply some useful information for the design and management of soil infiltration systems.

  8. Analysis of Mars analogue soil samples using solid-phase microextraction, organic solvent extraction and gas chromatography/mass spectrometry

    NASA Astrophysics Data System (ADS)

    Orzechowska, G. E.; Kidd, R. D.; Foing, B. H.; Kanik, I.; Stoker, C.; Ehrenfreund, P.

    2011-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are robust and abundant molecules in extraterrestrial environments. They are found ubiquitously in the interstellar medium and have been identified in extracts of meteorites collected on Earth. PAHs are important target molecules for planetary exploration missions that investigate the organic inventory of planets, moons and small bodies. This study is part of an interdisciplinary preparation phase to search for organic molecules and life on Mars. We have investigated PAH compounds in desert soils to determine their composition, distribution and stability. Soil samples (Mars analogue soils) were collected at desert areas of Utah in the vicinity of the Mars Desert Research Station (MDRS), in the Arequipa region in Peru and from the Jutland region of Denmark. The aim of this study was to optimize the solid-phase microextraction (SPME) method for fast screening and determination of PAHs in soil samples. This method minimizes sample handling and preserves the chemical integrity of the sample. Complementary liquid extraction was used to obtain information on five- and six-ring PAH compounds. The measured concentrations of PAHs are, in general, very low, ranging from 1 to 60 ng g-1. The texture of soils is mostly sandy loam with few samples being 100 % silt. Collected soils are moderately basic with pH values of 8-9 except for the Salten Skov soil, which is slightly acidic. Although the diverse and variable microbial populations of the samples at the sample sites might have affected the levels and variety of PAHs detected, SPME appears to be a rapid, viable field sampling technique with implications for use on planetary missions.

  9. Analysis of Mars Analogue Soil Samples Using Solid-Phase Microextraction, Organic Solvent Extraction and Gas Chromatography/Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Orzechowska, G. E.; Kidd, R. D.; Foing, B. H.; Kanik, I.; Stoker, C.; Ehrenfreund, P.

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are robust and abundant molecules in extraterrestrial environments. They are found ubiquitously in the interstellar medium and have been identified in extracts of meteorites collected on Earth. PAHs are important target molecules for planetary exploration missions that investigate the organic inventory of planets, moons and small bodies. This study is part of an interdisciplinary preparation phase to search for organic molecules and life on Mars. We have investigated PAH compounds in desert soils to determine their composition, distribution and stability. Soil samples (Mars analogue soils) were collected at desert areas of Utah in the vicinity of the Mars Desert Research Station (MDRS), in the Arequipa region in Peru and from the Jutland region of Denmark. The aim of this study was to optimize the solid-phase microextraction (SPME) method for fast screening and determination of PAHs in soil samples. This method minimizes sample handling and preserves the chemical integrity of the sample. Complementary liquid extraction was used to obtain information on five- and six-ring PAH compounds. The measured concentrations of PAHs are, in general, very low, ranging from 1 to 60 ng g(sup -1). The texture of soils is mostly sandy loam with few samples being 100% silt. Collected soils are moderately basic with pH values of 8-9 except for the Salten Skov soil, which is slightly acidic. Although the diverse and variable microbial populations of the samples at the sample sites might have affected the levels and variety of PAHs detected, SPME appears to be a rapid, viable field sampling technique with implications for use on planetary missions.

  10. [Effects of Phyllostachys edulis cultivation on soil bacterial and fungal community structure and diversity].

    PubMed

    Zhao, Tian Xin; Mao, Xin Wei; Cheng, Min; Chen, Jun Hui; Qin, Hua; Li, Yong Chun; Liang, Chen Fei; Xu, Qiu Fang

    2017-11-01

    This study examined how soil bacterial and fungal communities responded to the cultivation history of Moso bamboo in Anji and Changxing counties, Huzhou, Zhejiang, China. Soil samples (0-20 and 20-40 cm) were taken from bamboo plantations subjected to different cultivation histories and analyzed the community structures of soil bacterial and fungal by PCR-DGGE methods. It was found that soil bacterial and fungal communities varied greatly with the development of bamboo plantations which converted from Masson pine forest or formed via invading adjacent broadleaf shrub forest. Soil bacterial community structures exhibited a greater response to bamboo cultivation time than fungal community, but bacteria structure of surface soil displayed an ability of resiliency to disturbance and the tendency to recover to the original state. The cultivation time, sampling site and soil layer significantly affected the biodiversity of soil bacteria and fungi, especially the latter two factors. Redundancy analysis (RDA) of soil properties and bacteria or fungi communities showed that there were no accordant factors to drive the alteration of microbial structure, and the first two axes explained less than 65.0% of variance for most of the sampling sites and soil layers, indicating there existed soil parameters besides the five examined that contributed to microbial community alteration.

  11. Sample pretreatment optimization for the analysis of short chain chlorinated paraffins in soil with gas chromatography-electron capture negative ion-mass spectrometry.

    PubMed

    Chen, Laiguo; Huang, Yumei; Han, Shuang; Feng, Yongbin; Jiang, Guo; Tang, Caiming; Ye, Zhixiang; Zhan, Wei; Liu, Ming; Zhang, Sukun

    2013-01-25

    Accurately quantifying short chain chlorinated paraffins (SCCPs) in soil samples with gas chromatograph coupled with electron capture negative ionization mass spectrometry (GC-ECNI-MS) is difficult because many other polychlorinated pollutants are present in the sample matrices. These pollutants (e.g., polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and toxaphene) can cause serious interferences during SCCPs analysis with GC-MS. Four main columns packed with different adsorbents, including silica gel, Florisil and alumina, were investigated in this study to determine their performance for separating interfering pollutants from SCCPs. These experimental results suggest that the optimum cleanup procedure uses a silica gel column and a multilayer silica gel-Florisil composite column. This procedure completely separated 22 PCB congeners, 23 OCPs and three toxaphene congeners from SCCPs. However, p,p'-DDD, cis-nonachlor and o,p'-DDD were not completely removed and only 53% of the total toxaphene was removed. This optimized method was successfully and effectively applied for removing interfering pollutants from real soil samples. SCCPs in 17 soil samples from different land use areas within a suburban region were analyzed with the established method. The concentrations of SCCPs in these samples were between 7 and 541 ng g(-1) (mean: 84 ng g(-1)). Similar homologue SCCPs patterns were observed between the soil samples collected from different land use areas. In addition, lower chlorinated (Cl(6/7)) C(10)- and C(11)- SCCPs were the dominant congeners. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Application of a new purification method of West-Kazakhstan chestnut soil microbiota DNA for metagenomic analysis

    NASA Astrophysics Data System (ADS)

    Sergaliev, N. Kh.; Kakishev, M. G.; Zhiengaliev, A. T.; Volodin, M. A.; Andronov, E. E.; Pinaev, A. G.

    2015-04-01

    A method for the extraction of soil microbial DNA has been tested on chestnut soils (Kastanozems) of the West Kazakhstan region. The taxonomic analysis of soil microbiome libraries has shown that the phyla Actinobacteria and Proteobacteria constitute the largest part of microbial communities in the analyzed soils. The Archaea form an appreciable part of the microbiome in the studied samples. In the underdeveloped dark chestnut soil, their portion is higher than 11%. This is of interest, as the proportion of Archaea in the soil communities of virgin lands usually does not exceed 5%. In addition to the phyla mentioned above, there are representatives of the phyla Acidobacteria, Bacteroidetes, Firmicutes, Gemmatimonadales, Planctomycetes, and Verrucomicrobia, which are all fairly common in soil communities.

  13. Heavy metals in soils and crops in Southeast Asia. 1. Peninsular Malaysia.

    PubMed

    Zarcinas, Bernhard A; Ishak, Che Fauziah; McLaughlin, Mike J; Cozens, Gill

    2004-12-01

    In a reconnaisance soil geochemical and plant survey undertaken to study the heavy metal uptake by major food crops in Malaysia, 241 soils were analysed for cation exchange capacity (CEC), organic carbon (C), pH, electrical conductivity (EC) and available phosphorus (P) using appropriate procedures. These soils were also analysed for arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn) using aqua regia digestion, together with 180 plant samples using nitric acid digestion. Regression analysis between the edible plant part and aqua regia soluble soil As, Cd, Cr, Cu, Hg, Ni, Pb and Zn concentrations sampled throughout Peninsular Malaysia, indicated a positive relationship for Pb in all the plants sampled in the survey (R2 = 0.195, p < 0.001), for Ni in corn (R2 = 0.649, p < 0.005), for Cu in chili (R2 = 0.344, p < 0.010) and for Zn in chili (R2 = 0.501, p < 0.001). Principal component analysis of the soil data suggested that concentrations of Co, Ni, Pb and Zn were strongly correlated with concentrations of Al and Fe, which is suggestive of evidence of background variations due to changes in soil mineralogy. Thus the evidence for widespread contamination of soils by these elements through agricultural activities is not strong. Chromium was correlated with soil pH and EC, Na, S, and Ca while Hg was not correlated with any of these components, suggesting diffuse pollution by aerial deposition. However As, Cd, Cu were strongly associated with organic matter and available and aqua regia soluble soil P, which we attribute to inputs in agricultural fertilisers and soil organic amendments (e.g. manures, composts).

  14. Interaction of Benzo(a)pyrene with the natural organic matter of soil using three-dimensional (3-D) fluorescence spectroscopy with Parallel Factor Analysis

    NASA Astrophysics Data System (ADS)

    El Fallah, Rawa

    2017-04-01

    Benzo(a)pyrene (BaP) is a polycyclic aromatic hydrocarbon arising mainly from the incomplete combustion of organic material. It is toxic and has mutagenic and carcinogenic properties. It is classified as a priority pollutant by The United States Environmental Protection Agency (US-EPA). After it's emission in the atmosphere, and due to its physico-chemical properties, BaP will be deposited in the soil. Its aromaticity gives it the capacity to be studied by fluorescence spectroscopy so that of the Natural Organic Matter (NOM). In this study we used fluorescence excitation-emission-matrix (FEEM) with Parallel Factor analysis (PARAFAC) to study the interaction between NOM of soil and BaP. Soil sample was treated with Tetrasodium pyrophosphate along with Sodium hydroxide to obtain the Humic Substances, which afterwards were physically fractioned under acidic pH into solid Humic Acid and liquid Fulvic Acid. Three concentrations of BaP solution were added to each soil fraction. We compared the results of PARAFAC analysis of the samples containing BaP and the original NOM fractions. In the samples containing BaP, four fluorophores (components) were found, the fourth identified as BaP. Out of the three other fluorophores characteristic of NOM, two were found similar in all NOM fractions whereas only one fluorophore had some variations in its spectral characteristics. The presence of BaP changed the fluorescence of NOM. These modifications were depending on the type of soil fraction.

  15. Composition of soil microbiome along elevation gradients in southwestern highlands of Saudi Arabia.

    PubMed

    Yasir, Muhammad; Azhar, Esam I; Khan, Imran; Bibi, Fehmida; Baabdullah, Rnda; Al-Zahrani, Ibrahim A; Al-Ghamdi, Ahmed K

    2015-03-14

    Saudi Arabia is mostly barren except the southwestern highlands that are susceptible to environmental changes, a hotspot for biodiversity, but poorly studied for microbial diversity and composition. In this study, 454-pyrosequencing of 16S rRNA gene hypervariable region V6 was used to analyze soil bacterial community along elevation gradients of the southwestern highlands. In general, lower percentage of total soil organic matter (SOM) and nitrogen were detected in the analyzed soil samples. Total 33 different phyla were identified across the samples, including dominant phyla Proteobacteria, Actinobacteria and Acidobacteria. Representative OTUs were grouped into 329 and 508 different taxa at family and genus level taxonomic classification, respectively. The identified OTUs unique to each sample were very low irrespective of the altitude. Jackknifed principal coordinates analysis (PCoA) revealed, overall differences in the bacterial community were more related to the quantity of specific OTUs than to their diversity among the studied samples. Bacterial diversity and soil physicochemical properties did not show consistent changes along the elevation gradients. The large number of OTUs shared between the studied samples suggest the presence of a core soil bacterial community in the southwestern highlands of Saudi Arabia.

  16. Diversity and Distribution Characteristics of Viruses in Soils of a Marine-Terrestrial Ecotone in East China.

    PubMed

    Yu, Dan-Ting; Han, Li-Li; Zhang, Li-Mei; He, Ji-Zheng

    2018-02-01

    A substantial gap remains in our understanding of the abundance, diversity, and ecology of viruses in soil although some advances have been achieved in recent years. In this study, four soil samples according to the salinity gradient from shore to inland in East China have been characterized. Results showed that spherical virus particles represented the largest viral component in all of the four samples. The viromes had remarkably different taxonomic compositions, and most of the sequences were derived from single-stranded DNA viruses, especially from families Microviridae and Circoviridae. Compared with viromes from other aquatic and sediment samples, the community compositions of our four soil viromes resembled each other, meanwhile coastal sample virome closely congregated with sediment and hypersaline viromes, and high salinity paddy soil sample virome was similar with surface sediment virome. Phylogenetic analysis of functional genes showed that four viromes have high diversity of the subfamily Gokushovirinae in family Microviridae and most of Circoviridae replicase protein sequences grouped within the CRESS-DNA viruses. This work provided an initial outline of the viral communities in marine-terrestrial ecotone and will improve our understanding of the ecological functions of soil viruses.

  17. Selected trace metals and organic compounds and bioavailability of selected organic compounds in soils, Hackberry Flat, Tillman County, Oklahoma, 1994-95

    USGS Publications Warehouse

    Becker, M.F.

    1997-01-01

    In 1995 the Oklahoma Department of Wildlife Conservation acquired a drained wetland in southwest Oklahoma known as Hackberry Flat. Following restoration by Wildlife Conservation the wetland will be used by migratory birds and waterfowl. If naturally occurring trace metals and residual organic compounds from agriculture and industry were present, they may have posed a potential biohazard and were a concern for Wildlife Conservation. The U. S. Geological Survey, in cooperation with Wildlife Conservation and the Oklahoma Geological Survey, examined the soils of Hackberry Flat to determine trace metal concentrations, presence of selected organic compounds, and the bioavailability of selected organic compounds in the soils. The purpose of this report is to present the data that establish the baseline concentrations of selected trace metals and organic compounds in the soils of Hackberry Flat prior to wetland restoration. Sampling and analysis were performed using two approaches. One was to collect soil samples and analyze the composition with standard laboratory practices. The second exposed composite soils samples to organic-free water and a semipermeable membrane device that mimics an organism and then analyzed the device. Ten soil samples were collected in 1994 to be analyzed for trace metals, organochlorine pesticides, and polychlorinated biphenyls. Soil samples tested for bioavailability of selected organic compounds were collected in 1995. Most of the 182 soil samples collected were from the center of every 40-acre quarter-quarter section owned by the Wildlife Conservation. The samples were grouped by geographical area with a maximum of 16 sample sites per group. Concentrations of most selected trace metals measured from soils in Hackberry Flat are within the range of mean concentrations measured in cultivated soils within the United States. Organochlorine pesticides, polychlorinated biphenyls, and polyaromatic hydrocarbons were not found at concentrations above the analytical detection levels and, if present, in the soil samples are at concentrations below the detection level of the analytical method used. Organochlorine pesticides, total polychlorinated biphenyls, and polyaromatic hydrocarbons were not detected in any of the semipermeable membrane devices at the analytical detection levels.

  18. Luminescence petrography of lunar samples

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Light-colored metaclastic rock fragments, mainly anorthositic breccias, are dominant in the lithic clasts of rock 14321 and constitute about 25% of the Apollo 14 soils. Concentration of anorthositic breccias is less in the Apollo 15 soils, but is higher in the Front samples. The Rille edge soils are rich in basalt fragments. The Apollo 15 soils are also rich in green glasses. True anorthosites in the Hadley region were found only at the St. George Crater site. Varying degrees of metamorphism were found in the anorthositic fragments, and luminescence zonations give independent evidence of metamorphism. Compositional zoning verifies the interpretation of luminescence. Rock 14321 gives evidence of modest annealing, but the light metaclastic fragments were metamorphosed before incorporation into the rock. Reaction rimming on plagioclase results in mosaicism and preferentially affects grains. The spectral analysis of luminescence in plagioclase shows that a red-infrared emission band is present in a small fraction of plagioclase grains. Samples from trench bottoms and from beneath a large boulder were compared with surface samples. Large variations in soil composition indicate marked layering in the Apollo 15 soils.

  19. A model based on Rock-Eval thermal analysis to quantify the size of the centennially persistent organic carbon pool in temperate soils

    NASA Astrophysics Data System (ADS)

    Cécillon, Lauric; Baudin, François; Chenu, Claire; Houot, Sabine; Jolivet, Romain; Kätterer, Thomas; Lutfalla, Suzanne; Macdonald, Andy; van Oort, Folkert; Plante, Alain F.; Savignac, Florence; Soucémarianadin, Laure N.; Barré, Pierre

    2018-05-01

    Changes in global soil carbon stocks have considerable potential to influence the course of future climate change. However, a portion of soil organic carbon (SOC) has a very long residence time ( > 100 years) and may not contribute significantly to terrestrial greenhouse gas emissions during the next century. The size of this persistent SOC reservoir is presumed to be large. Consequently, it is a key parameter required for the initialization of SOC dynamics in ecosystem and Earth system models, but there is considerable uncertainty in the methods used to quantify it. Thermal analysis methods provide cost-effective information on SOC thermal stability that has been shown to be qualitatively related to SOC biogeochemical stability. The objective of this work was to build the first quantitative model of the size of the centennially persistent SOC pool based on thermal analysis. We used a unique set of 118 archived soil samples from four agronomic experiments in northwestern Europe with long-term bare fallow and non-bare fallow treatments (e.g., manure amendment, cropland and grassland) as a sample set for which estimating the size of the centennially persistent SOC pool is relatively straightforward. At each experimental site, we estimated the average concentration of centennially persistent SOC and its uncertainty by applying a Bayesian curve-fitting method to the observed declining SOC concentration over the duration of the long-term bare fallow treatment. Overall, the estimated concentrations of centennially persistent SOC ranged from 5 to 11 g C kg-1 of soil (lowest and highest boundaries of four 95 % confidence intervals). Then, by dividing the site-specific concentrations of persistent SOC by the total SOC concentration, we could estimate the proportion of centennially persistent SOC in the 118 archived soil samples and the associated uncertainty. The proportion of centennially persistent SOC ranged from 0.14 (standard deviation of 0.01) to 1 (standard deviation of 0.15). Samples were subjected to thermal analysis by Rock-Eval 6 that generated a series of 30 parameters reflecting their SOC thermal stability and bulk chemistry. We trained a nonparametric machine-learning algorithm (random forests multivariate regression model) to predict the proportion of centennially persistent SOC in new soils using Rock-Eval 6 thermal parameters as predictors. We evaluated the model predictive performance with two different strategies. We first used a calibration set (n = 88) and a validation set (n = 30) with soils from all sites. Second, to test the sensitivity of the model to pedoclimate, we built a calibration set with soil samples from three out of the four sites (n = 84). The multivariate regression model accurately predicted the proportion of centennially persistent SOC in the validation set composed of soils from all sites (R2 = 0.92, RMSEP = 0.07, n = 30). The uncertainty of the model predictions was quantified by a Monte Carlo approach that produced conservative 95 % prediction intervals across the validation set. The predictive performance of the model decreased when predicting the proportion of centennially persistent SOC in soils from one fully independent site with a different pedoclimate, yet the mean error of prediction only slightly increased (R2 = 0.53, RMSEP = 0.10, n = 34). This model based on Rock-Eval 6 thermal analysis can thus be used to predict the proportion of centennially persistent SOC with known uncertainty in new soil samples from different pedoclimates, at least for sites that have similar Rock-Eval 6 thermal characteristics to those included in the calibration set. Our study reinforces the evidence that there is a link between the thermal and biogeochemical stability of soil organic matter and demonstrates that Rock-Eval 6 thermal analysis can be used to quantify the size of the centennially persistent organic carbon pool in temperate soils.

  20. Assessment of Ecological Risk of Heavy Metal Contamination in Coastal Municipalities of Montenegro

    PubMed Central

    Mugoša, Boban; Đurović, Dijana; Nedović-Vuković, Mirjana; Barjaktarović-Labović, Snežana; Vrvić, Miroslav

    2016-01-01

    Assessment of heavy metal concentrations in the soil samples of urban parks and playgrounds is very important for the evaluation of potential risks for residents, especially children. Until recently, there has been very little data about urban parks pollution in Montenegro. To evaluate the sources of potential contamination and concentration of heavy metals, soil samples from coastal urban parks and kindergartens of Montenegro were collected. Based on the heavy metal concentrations, multivariate analysis combined with geochemical approaches showed that soil samples in coastal areas of Montenegro had mean Pb and Cd concentrations that were over two times higher than the background values, respectively. Based on principal component analysis (PCA), soil pollution with Pb, Cd, Cu, and Zn is contributed by anthropogenic sources. Results for Cr in the surface soils were primarily derived from natural sources. Calculation of different ecological contamination factors showed that Cd is the primary contribution to ecological risk index (RI) origins from anthropogenic, industry, and urbanization sources. This data provides evidence about soil pollution in coastal municipalities of Montenegro. Special attention should be paid to this problem in order to continue further research and to consider possible ways of remediation of the sites where contamination has been observed. PMID:27043601

  1. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions

    PubMed Central

    Angel, Roey; Claus, Peter; Conrad, Ralf

    2012-01-01

    The prototypical representatives of the Euryarchaeota—the methanogens—are oxygen sensitive and are thought to occur only in highly reduced, anoxic environments. However, we found methanogens of the genera Methanosarcina and Methanocella to be present in many types of upland soils (including dryland soils) sampled globally. These methanogens could be readily activated by incubating the soils as slurry under anoxic conditions, as seen by rapid methane production within a few weeks, without any additional carbon source. Analysis of the archaeal 16S ribosomal RNA gene community profile in the incubated samples through terminal restriction fragment length polymorphism and quantification through quantitative PCR indicated dominance of Methanosarcina, whose gene copy numbers also correlated with methane production rates. Analysis of the δ13C of the methane further supported this, as the dominant methanogenic pathway was in most cases aceticlastic, which Methanocella cannot perform. Sequences of the key methanogenic enzyme methyl coenzyme M reductase retrieved from the soil samples before incubation confirmed that Methanosarcina and Methanocella are the dominant methanogens, though some sequences of Methanobrevibacter and Methanobacterium were also detected. The global occurrence of only two active methanogenic archaea supports the hypothesis that these are autochthonous members of the upland soil biome and are well adapted to their environment. PMID:22071343

  2. Results of chemical analyses of soil, shale, and soil/shale extract from the Mancos Shale formation in the Gunnison Gorge National Conservation Area, southwestern Colorado, and at Hanksville, Utah

    USGS Publications Warehouse

    Tuttle, Michele L.W.; Fahy, Juli; Grauch, Richard I.; Ball, Bridget A.; Chong, Geneva W.; Elliott, John G.; Kosovich, John J.; Livo, Keith E.; Stillings, Lisa L.

    2007-01-01

    Results of chemical and some isotopic analyses of soil, shale, and water extracts collected from the surface, trenches, and pits in the Mancos Shale are presented in this report. Most data are for sites on the Gunnison Gorge National Conservation Area (GGNCA) in southwestern Colorado. For comparison, data from a few sites from the Mancos landscape near Hanksville, Utah, are included. Twelve trenches were dug on the GGNCA from which 258 samples for whole-rock (total) analyses and 187 samples for saturation paste extracts were collected. Sixteen of the extract samples were duplicated and subjected to a 1:5 water extraction for comparison. A regional soil survey across the Mancos landscape on the GGNCA generated 253 samples for whole-rock analyses and saturation paste extractions. Seventeen gypsum samples were collected on the GGNCA for sulfur and oxygen isotopic analysis. Sixteen samples were collected from shallow pits in the Mancos Shale near Hanksville, Utah.

  3. Tank 241-AX-104 upper vadose zone cone penetrometer demonstration sampling and analysis plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FIELD, J.G.

    1999-02-02

    This sampling and analysis plan (SAP) is the primary document describing field and laboratory activities and requirements for the tank 241-AX-104 upper vadose zone cone penetrometer (CP) demonstration. It is written in accordance with Hanford Tank Initiative Tank 241-AX-104 Upper Vadose Zone Demonstration Data Quality Objective (Banning 1999). This technology demonstration, to be conducted at tank 241-AX-104, is being performed by the Hanford Tanks Initiative (HTI) Project as a part of Tank Waste Remediation System (TWRS) Retrieval Program (EM-30) and the Office of Science and Technology (EM-50) Tanks Focus Area. Sample results obtained as part of this demonstration will providemore » additional information for subsequent revisions to the Retrieval Performance Evaluation (RPE) report (Jacobs 1998). The RPE Report is the result of an evaluation of a single tank farm (AX Tank Farm) used as the basis for demonstrating a methodology for developing the data and analyses necessary to support making tank waste retrieval decisions within the context of tank farm closure requirements. The RPE includes a study of vadose zone contaminant transport mechanisms, including analysis of projected tank leak characteristics, hydrogeologic characteristics of tank farm soils, and the observed distribution of contaminants in the vadose zone in the tank farms. With limited characterization information available, large uncertainties exist as to the nature and extent of contaminants that may exist in the upper vadose zone in the AX Tank Farm. Traditionally, data has been collected from soils in the vadose zone through the installation of boreholes and wells. Soil samples are collected as the bore hole is advanced and samples are screened on site and/or sent to a laboratory for analysis. Some in-situ geophysical methods of contaminant analysis can be used to evaluate radionuclide levels in the soils adjacent to an existing borehole. However, geophysical methods require compensation for well casing interference and soil moisture content and may not be successful in some conditions. In some cases the level of interference must be estimated due to uncertainties regarding the materials used in well construction and soil conditions, Well casing deployment used for many in-situ geophysical methods is relatively expensive and geophysical methods do not generally provide real time values for contaminants. In addition, some of these methods are not practical within the boundaries of the tank farm due to physical constraints, such as underground piping and other hardware. The CP technologies could facilitate future characterization of vadose zone soils by providing vadose zone data in near real-time, reducing the number of soil samples and boreholes required, and reducing characterization costs.« less

  4. [Sources and potential risk of heavy metals in roadside soils of Xi' an City].

    PubMed

    Chen, Jing-hui; Lu, Xin-wei; Zhai, Meng

    2011-07-01

    Based on the X-Ray fluorescence spectroscopic measurement of heavy metals concentration in roadside soil samples from Xi' an City, and by the methods of principal component analysis, cluster analysis, and correlation analysis, this paper approached the possible sources of heavy metals in the roadside soils of the City. In the meantime, potential ecological risk index was used to assess the ecological risk of the heavy metals. In the roadside soils, the mean concentrations of Co, Cr, Cu, Mn, Ni, Pb, and Zn were higher than those of the Shaanxi soil background values. The As, Mn and Ni in roadside soils mainly came from natural source and transportation source, the Cu, Pb, and Zn mainly came from transportation source, and the Co and Cr mainly came from industry source. These heavy metals in the roadside soils belonged to medium pollution, and had medium potential ecological risk.

  5. In situ silicone tube microextraction: a new method for undisturbed sampling of root-exuded thiophenes from marigold (Tagetes erecta L.) in soil.

    PubMed

    Mohney, Brian K; Matz, Tricia; Lamoreaux, Jessica; Wilcox, David S; Gimsing, Anne Louise; Mayer, Philipp; Weidenhamer, Jeffrey D

    2009-11-01

    The difficulties of monitoring allelochemical concentrations in soil and their dynamics over time have been a major barrier to testing hypotheses of allelopathic effects. Here, we evaluate three diffusive sampling strategies that employ polydimethylsiloxane (PDMS) sorbents to map the spatial distribution and temporal dynamics of root-exuded thiophenes from the African marigold, Tagetes erecta. Solid phase root zone extraction (SPRE) probes constructed by inserting stainless steel wire into PDMS tubing were used to monitor thiophene concentrations at various depths beneath marigolds growing in PVC pipes. PDMS sheets were used to map the distribution of thiophenes beneath marigolds grown in thin glass boxes. Concentrations of the two major marigold thiophenes measured by these two methods were extremely variable in both space and time. Dissection and analysis of roots indicated that distribution of thiophenes in marigold roots also was quite variable. A third approach used 1 m lengths of PDMS microtubing placed in marigold soil for repeated sampling of soil without disturbance of the roots. The two ends of the tubing remained out of the soil so that solvent could be washed through the tubing to collect samples for HPLC analysis. Unlike the other two methods, initial experiments with this approach show more uniformity of response, and suggest that soil concentrations of marigold thiophenes are affected greatly even by minimal disturbance of the soil. Silicone tube microextraction gave a linear response for alpha-terthienyl when maintained in soils spiked with 0-10 ppm of this thiophene. This method, which is experimentally simple and uses inexpensive materials, should be broadly applicable to the measurement of non-polar root exudates, and thus provides a means to test hypotheses about the role of root exudates in plant-plant and other interactions.

  6. 16-year trends in elements of lichens at Theodore Roosevelt National Park, ND

    USGS Publications Warehouse

    Bennett, J.P.; Wetmore, C.M.

    2000-01-01

    An epiphytic lichen and a soil lichen in two very closely related genera (Parmelia sulcata and Xanthoparmelia chlorochroa, respectively) were sampled 16 years apart at Theodore Roosevelt National Park in North Dakota and measured for their elemental content. Mercury and cadmium decreased approximately 30% over the time period in both species. Sulfur decreased 8% in the epiphytic species, but increased 20% in the soil lichen. Factor analysis revealed that soil elements were higher in the soil lichen, indicating there was some soil contamination in that species. A relationship between iron and titanium was found only in the soil lichen. Sulfur and mercury were highly enriched in both species relative to the soil, which suggests that the atmosphere is a contributing source of these elements. New baseline values were calculated, 22 elements for both species, although it is not recommended that the soil lichen be sampled in the future.

  7. Comparative statistical analysis of chrome and vegetable tanning effluents and their effects on related soil.

    PubMed

    Tariq, Saadia R; Shah, Munir H; Shaheen, Nazia

    2009-09-30

    Two tanning units of Pakistan, namely, Kasur and Mian Channun were investigated with respect to the tanning processes (chrome and vegetable, respectively) and the effects of the tanning agents on the quality of soil in vicinity of tanneries were evaluated. The effluent and soil samples from 16 tanneries each of Kasur and Mian Channun were collected. The levels of selected metals (Na, K, Ca, Mg, Fe, Cr, Mn, Co, Cd, Ni, Pb and Zn) were determined by using flame atomic absorption spectrophotometer under optimum analytical conditions. The data thus obtained were subjected to univariate and multivariate statistical analyses. Most of the metals exhibited considerably higher concentrations in the effluents and soils of Kasur compared with those of Mian Channun. It was observed that the soil of Kasur was highly contaminated by Na, K, Ca and Mg emanating from various processes of leather manufacture. Furthermore, the levels of Cr were also present at much enhanced levels than its background concentration due to the adoption of chrome tanning. The levels of Cr determined in soil samples collected from the vicinity of Mian Channun tanneries were almost comparable to the background levels. The soil of this city was found to have contaminated only by the metals originating from pre-tanning processes. The apportionment of selected metals in the effluent and soil samples was determined by a multivariate cluster analysis, which revealed significant differences in chrome and vegetable tanning processes.

  8. Nitrification and occurrence of salt-tolerant nitrifying bacteria in the Negev desert soils.

    PubMed

    Nejidat, Ali

    2005-03-01

    Ammonia oxidation potential, major ammonia oxidizers and occurrence of salt-tolerant nitrifying bacteria were studied in soil samples collected from diverse ecosystems along the northern Negev desert. Great diversity in ammonia oxidation potential was observed among the soil samples, and ammonia oxidizers were the rate-limiting step of nitrification. Denaturing gradient gel electrophoresis and partial 16S rRNA gene sequences indicate that members of the genus Nitrosospira are the major ammonia oxidizers in the natural desert soil samples. Upon enrichment with different salt concentrations, salt-tolerant nitrifying enrichments were established from several soil samples. In two enrichments, nitrification was not inhibited by 400 mM NaCl. Electrophoretic analysis and partial 16S rRNA gene sequences indicate that Nitrosomonas species were dominant in the 400 mM salt enrichment. The results point towards the potential of the desert ecosystem as a source of stress-tolerant nitrifying bacteria or other microorganisms with important properties.

  9. Analysis of bacterial xylose isomerase gene diversity using gene-targeted metagenomics.

    PubMed

    Nurdiani, Dini; Ito, Michihiro; Maruyama, Toru; Terahara, Takeshi; Mori, Tetsushi; Ugawa, Shin; Takeyama, Haruko

    2015-08-01

    Bacterial xylose isomerases (XI) are promising resources for efficient biofuel production from xylose in lignocellulosic biomass. Here, we investigated xylose isomerase gene (xylA) diversity in three soil metagenomes differing in plant vegetation and geographical location, using an amplicon pyrosequencing approach and two newly-designed primer sets. A total of 158,555 reads from three metagenomic DNA replicates for each soil sample were classified into 1127 phylotypes, detected in triplicate and defined by 90% amino acid identity. The phylotype coverage was estimated to be within the range of 84.0-92.7%. The xylA gene phylotypes obtained were phylogenetically distributed across the two known xylA groups. They shared 49-100% identities with their closest-related XI sequences in GenBank. Phylotypes demonstrating <90% identity with known XIs in the database accounted for 89% of the total xylA phylotypes. The differences among xylA members and compositions within each soil sample were significantly smaller than they were between different soils based on a UniFrac distance analysis, suggesting soil-specific xylA genotypes and taxonomic compositions. The differences among xylA members and their compositions in the soil were strongly correlated with 16S rRNA variation between soil samples, also assessed by amplicon pyrosequencing. This is the first report of xylA diversity in environmental samples assessed by amplicon pyrosequencing. Our data provide information regarding xylA diversity in nature, and can be a basis for the screening of novel xylA genotypes for practical applications. Copyright © 2015. Published by Elsevier B.V.

  10. Soil sampling strategies for site assessments in petroleum-contaminated areas.

    PubMed

    Kim, Geonha; Chowdhury, Saikat; Lin, Yen-Min; Lu, Chih-Jen

    2017-04-01

    Environmental site assessments are frequently executed for monitoring and remediation performance evaluation purposes, especially in total petroleum hydrocarbon (TPH)-contaminated areas, such as gas stations. As a key issue, reproducibility of the assessment results must be ensured, especially if attempts are made to compare results between different institutions. Although it is widely known that uncertainties associated with soil sampling are much higher than those with chemical analyses, field guides or protocols to deal with these uncertainties are not stipulated in detail in the relevant regulations, causing serious errors and distortion of the reliability of environmental site assessments. In this research, uncertainties associated with soil sampling and sample reduction for chemical analysis were quantified using laboratory-scale experiments and the theory of sampling. The research results showed that the TPH mass assessed by sampling tends to be overestimated and sampling errors are high, especially for the low range of TPH concentrations. Homogenization of soil was found to be an efficient method to suppress uncertainty, but high-resolution sampling could be an essential way to minimize this.

  11. Case study of microarthropod communities to assess soil quality in different managed vineyards

    NASA Astrophysics Data System (ADS)

    Gagnarli, E.; Goggioli, D.; Tarchi, F.; Guidi, S.; Nannelli, R.; Vignozzi, N.; Valboa, G.; Lottero, M. R.; Corino, L.; Simoni, S.

    2015-07-01

    Land use influences the abundance and diversity of soil arthropods. The evaluation of the impact of different management strategies on soil quality is increasingly sought, and the determination of community structures of edaphic fauna can represent an efficient tool. In the area of Langhe (Piedmont, Italy), eight vineyards characterized for physical and chemical properties (soil texture, soil pH, total organic carbon, total nitrogen, calcium carbonate) were selected. We evaluated the effect of two types of crop management, organic and integrated pest management (IPM), on abundance and biodiversity of microarthropods living at the soil surface. Soil sampling was carried out in winter 2011 and spring 2012. All specimens were counted and determined up to the order level. The biodiversity analysis was performed using ecological indexes (taxa richness, dominance, Shannon-Wiener, Buzas and Gibson's evenness, Margalef, equitability, Berger-Parker), and the biological soil quality was assessed with the BSQ-ar index. The mesofauna abundance was affected by both the type of management and sampling time. On the whole, a higher abundance was in organic vineyards (N = 1981) than in IPM ones (N = 1062). The analysis performed by ecological indexes showed quite a high level of biodiversity in this environment, particularly in May 2012. Furthermore, the BSQ-ar values registered were similar to those obtained in preserved soils.

  12. Microbial community analysis in rice paddy soils irrigated by acid mine drainage contaminated water.

    PubMed

    Sun, Min; Xiao, Tangfu; Ning, Zengping; Xiao, Enzong; Sun, Weimin

    2015-03-01

    Five rice paddy soils located in southwest China were selected for geochemical and microbial community analysis. These rice fields were irrigated with river water which was contaminated by Fe-S-rich acid mine drainage. Microbial communities were characterized by high-throughput sequencing, which showed 39 different phyla/groups in these samples. Among these phyla/groups, Proteobacteria was the most abundant phylum in all samples. Chloroflexi, Acidobacteria, Nitrospirae, and Bacteroidetes exhibited higher relative abundances than other phyla. A number of rare and candidate phyla were also detected. Moreover, canonical correspondence analysis suggested that pH, sulfate, and nitrate were significant factors that shaped the microbial community structure. In addition, a wide diversity of Fe- and S-related bacteria, such as GOUTA19, Shewanella, Geobacter, Desulfobacca, Thiobacillus, Desulfobacterium, and Anaeromyxobacter, might be responsible for biogeochemical Fe and S cycles in the tested rice paddy soils. Among the dominant genera, GOUTA19 and Shewanella were seldom detected in rice paddy soils.

  13. Determination of diagnostic standards on saturated soil extracts for cut roses grown in greenhouses.

    PubMed

    Franco-Hermida, John Jairo; Quintero, María Fernanda; Cabrera, Raúl Iskander; Guzman, José Miguel

    2017-01-01

    This work comprises the theoretical determination and validation of diagnostic standards for the analysis of saturated soil extracts for cut rose flower crops (Rosa spp.) growing in the Bogota Plateau, Colombia. The data included 684 plant tissue analyses and 684 corresponding analyses of saturated soil extracts, all collected between January 2009 and June 2013. The tissue and soil samples were selected from 13 rose farms, and from cultivars grafted on the 'Natal Briar' rootstock. These concurrent samples of soil and plant tissues represented 251 production units (locations) of approximately 10,000 m2 distributed across the study area. The standards were conceived as a tool to improve the nutritional balance in the leaf tissue of rose plants and thereby define the norms for expressing optimum productive potential relative to nutritional conditions in the soil. To this end, previously determined diagnostic standard for rose leaf tissues were employed to obtain rates of foliar nutritional balance at each analyzed location and as criteria for determining the diagnostic norms for saturated soil extracts. Implementing this methodology to foliar analysis, showed a higher significant correlation for diagnostic indices. A similar behavior was observed in saturated soil extracts analysis, becoming a powerful tool for integrated nutritional diagnosis. Leaf analyses determine the most limiting nutrients for high yield and analyses of saturated soil extracts facilitate the possibility of correcting the fertigation formulations applied to soils or substrates. Recommendations are proposed to improve the balance in soil-plant system with which the possibility of yield increase becomes more probable. The main recommendations to increase and improve rose crop flower yields would be: continuously check pH values of SSE, reduce the amounts of P, Fe, Zn and Cu in fertigation solutions and carefully analyze the situation of Mn in the soil-plant system.

  14. Metal distribution in urban soil around steel industry beside Queen Alia Airport, Jordan.

    PubMed

    Al-Khashman, Omar A; Shawabkeh, Reyad A

    2009-12-01

    The objective of this study was to assess the extent and severity of metal contamination in urban soil around Queen Alia Airport, Jordan. Thirty-two soil samples were collected around steel manufacturing plants located in the Al-Jiza area, south Jordan, around the Queen Alia Airport. The samples were obtained at two depths, 0-10 and 10-20 cm, and were analyzed by atomic absorption spectrophotometry for lead (Pb), zinc (Zn), cadmium (Cd), iron (Fe), copper (Cu) and chromium (Cr) levels. The physicochemical factors believed to affect the mobility of metals in the soil of the study area were also examined, including pH, electrical conductivity, total organic matter, calcium carbonate (CaCO(3)) content and cation exchange capacity. The high concentrations of Pb, Zn and Cd in the soil samples were found to be related to anthropogenic sources, such as the steel manufacturing plants, agriculture and traffic emissions, with the highest concentrations of these metals close to the site of the steel plants; in contrast the concentration of Cr was low in the soil sampled close to the steel plants. The metals were concentrated in the surface soil, and concentrations decreased with increasing depth, reflecting the physical properties of the soil and its alkaline pH. The mineralogical composition of the topsoil, identified by X-ray diffraction, was predominantly quartz, calcite, dolomite and minor minerals, such as gypsum and clay minerals. Metal concentrations were compared using one-way analysis of variance (ANOVA) to compute the statistical significance of the mean. The results of the ANOVA showed significant differences between sites for Pb, Cd and Cu, but no significant differences for the remaining metals tested. Factor analysis revealed that polluted soil occurs predominantly at sites around the steel plants and that there is no significant variation in the characteristics of the unpolluted soil, which are uniform in the study area.

  15. Assessment of Fluoride Concentration of Soil and Vegetables in Vicinity of Zinc Smelter, Debari, Udaipur, Rajasthan.

    PubMed

    Bhat, Nagesh; Jain, Sandeep; Asawa, Kailash; Tak, Mridula; Shinde, Kushal; Singh, Anukriti; Gandhi, Neha; Gupta, Vivek Vardhan

    2015-10-01

    As of late, natural contamination has stimulated as a reaction of mechanical and other human exercises. In India, with the expanding industrialization, numerous unsafe substances are utilized or are discharged amid generation as cleans, exhaust, vapours and gasses. These substances at last are blended in the earth and causes health hazards. To determine concentration of fluoride in soils and vegetables grown in the vicinity of Zinc Smelter, Debari, Udaipur, Rajasthan. Samples of vegetables and soil were collected from areas situated at 0, 1, 2, 5, and 10 km distance from the zinc smelter, Debari. Three samples of vegetables (i.e. Cabbage, Onion and Tomato) and 3 samples of soil {one sample from the upper layer of soil (i.e. 0 to 20 cm) and one from the deep layer (i.e. 20 - 40 cm)} at each distance were collected. The soil and vegetable samples were sealed in clean polythene bags and transported to the laboratory for analysis. One sample each of water and fertilizer from each distance were also collected. The mean fluoride concentration in the vegetables grown varied between 0.36 ± 0.69 to 0.71 ± 0.90 ppm. The fluoride concentration in fertilizer and water sample from various distances was found to be in the range of 1.4 - 1.5 ppm and 1.8 - 1.9 ppm respectively. The fluoride content of soil and vegetables was found to be higher in places near to the zinc smelter.

  16. Gamma-Ray Attenuation to Evaluate Soil Porosity: An Analysis of Methods

    PubMed Central

    Pires, Luiz F.; Pereira, André B.

    2014-01-01

    Soil porosity (ϕ) is of a great deal for environmental studies due to the fact that water infiltrates and suffers redistribution in the soil pore space. Many physical and biochemical processes related to environmental quality occur in the soil porous system. Representative determinations of ϕ are necessary due to the importance of this physical property in several fields of natural sciences. In the current work, two methods to evaluate ϕ were analyzed by means of gamma-ray attenuation technique. The first method uses the soil attenuation approach through dry soil and saturated samples, whereas the second one utilizes the same approach but taking into account dry soil samples to assess soil bulk density and soil particle density to determine ϕ. The results obtained point out a good correlation between both methods. However, when ϕ is obtained through soil water content at saturation and a 4 mm collimator is used to collimate the gamma-ray beam the first method also shows good correlations with the traditional one. PMID:24616640

  17. Levels and distributions of organochlorine pesticides in the soil-groundwater system of vegetable planting area in Tianjin City, Northern China.

    PubMed

    Pan, Hong-Wei; Lei, Hong-Jun; He, Xiao-Song; Xi, Bei-Dou; Han, Yu-Ping; Xu, Qi-Gong

    2017-04-01

    To study the influence of long-term pesticide application on the distribution of organochlorine pesticides (OCPs) in the soil-groundwater system, 19 soil samples and 19 groundwater samples were collected from agricultural area with long-term pesticide application history in Northern China. Results showed that the composition of OCPs changed significantly from soil to groundwater. For example, ∑DDT, ∑HCH, and ∑heptachlor had high levels in the soil and low levels in the groundwater; in contrast, endrin had low level in the soil and high level in the groundwater. Further study showed that OCP distribution in the soil was significantly influenced by its residue time, soil organic carbon level, and small soil particle contents (i.d. <0.0002 mm). Correlation analysis also indicates that the distribution of OCPs in the groundwater was closely related to the levels of OCPs in the soil layer, which may act as a pollution source.

  18. Analysis of diversity of diazotrophic bacteria associated with the rhizosphere of a tropical Arbor, Melastoma malabathricum L.

    PubMed

    Sato, Atsuya; Watanabe, Toshihiro; Unno, Yusuke; Purnomo, Erry; Osaki, Mitsuru; Shinano, Takuro

    2009-01-01

    The diversity of diazotrophic bacteria in the rhizosphere of Melastoma malabathricum L. was investigated by cloning-sequencing of the nifH gene directly amplified from DNA extracted from soil. Samples were obtained from the rhizosphere and bulk soil of M. malabathricum growing in three different soil types (acid sulfate, peat and sandy clay soils) located very close to each other in south Kalimantan, Indonesia. Six clone libraries were constructed, generated from bulk and rhizosphere soil samples, and 300 nifH clones were produced, then assembled into 29 operational taxonomic units (OTUs) based on percent identity values. Our results suggested that nifH gene diversity is mainly dependent on soil properties, and did not differ remarkably between the rhizosphere and bulk soil of M. malabathricum except in acid sulfate soil. In acid sulfate soil, as the Shannon diversity index was lower in rhizosphere than in bulk soil, it is suggested that particular bacterial species might accumulate in the rhizosphere.

  19. Bioavailability and mobility of organic contaminants in soil: new three-step ecotoxicological evaluation.

    PubMed

    Prokop, Zbyněk; Nečasová, Anežka; Klánová, Jana; Čupr, Pavel

    2016-03-01

    A novel approach was developed for rapid assessment of bioavailability and potential mobility of contaminants in soil. The response of the same test organism to the organic extract, water extract and solid phase of soil was recorded and compared. This approach was designed to give an initial estimate of the total organic toxicity (response to organic extractable fraction), as well as the mobile (response to water extract) and bioavailable fraction (response to solid phase) of soil samples. Eighteen soil samples with different levels of pollution and content of organic carbon were selected to validate the novel three-step ecotoxicological evaluation approach. All samples were chemically analysed for priority contaminants, including aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), hexachlorocyclohexane (HCH) and dichlordiphenyltrichloroethane (DDT). The ecotoxicological evaluation involved determination of toxicity of the organic, mobile and bioavailable fractions of soil to the test organism, bacterium Bacillus cereus. We found a good correlation between the chemical analysis and the toxicity of organic extract. The low toxicity of water extracts indicated low water solubility, and thus, low potential mobility of toxic contaminants present in the soil samples. The toxicity of the bioavailable fraction was significantly greater than the toxicity of water-soluble (mobile) fraction of the contaminants as deduced from comparing untreated samples and water extracts. The bioavailability of the contaminants decreased with increasing concentrations of organic carbon in evaluated soil samples. In conclusion, the three-step ecotoxicological evaluation utilised in this study can give a quick insight into soil contamination in context with bioavailability and mobility of the contaminants present. This information can be useful for hazard identification and risk assessment of soil-associated contaminants. Graphical Abstract New three-step ecotoxicological evaluation by using the same organism.

  20. Continuous versus pulse neutron induced gamma spectroscopy for soil carbon analysis

    USDA-ARS?s Scientific Manuscript database

    Neutron induced gamma spectra analysis (NGA) provides a means of measuring carbon in large soil volumes without destructive sampling. Calibration of the NGA system must account for system background and the interference of other nuclei on the carbon peak at 4.43 MeV. Accounting for these factors pro...

  1. Evaluation of some pollutant levels in environmental samples collected from the area of the new campus of Taif University.

    PubMed

    Sharshar, Taher; Hassan, H Ebrahim; Arida, Hassan A; Aydarous, Abdulkadir; Bazaid, Salih A; Ahmed, Mamdouh A

    2013-01-01

    The levels of radioactivity and heavy metals in soil, plant and groundwater samples collected from the area of the new campus of Taif University, Saudi Arabia, and its neighbouring areas have been determined. High-resolution gamma-ray spectroscopy was used for radioactivity measurements, and inductively coupled plasma atomic emission spectroscopy was used to determine the concentration of heavy metals. The means of (226)Ra, (228)Ra and (40)K concentrations in water samples collected from four wells were found to be 0.13 ± 0.03, 0.05 ± 0.03 and 1.3 ± 0.5 Bq l(-1), respectively. The means of (238)U, (226)Ra, (228)Ra ((232)Th for soil samples) and (40)K concentrations in wild plant and soil samples were found to be 3.7 ± 4.1, 8.8 ± 11.6, 3.8 ± 2.9 and 1025 ± 685, and 8.6 ± 3.4, 12.8 ± 3.4, 16.6 ± 7.1 and 618 ± 82 Bq kg(-1) dry weight (DW), respectively. The (137)Cs of artificial origin was also detected in soil samples with a mean concentration of 3.8 ± 2.2 Bq kg(-1) DW. Evaluating the results, it can be concluded that the concentrations of (238)U, (226)Ra, (232)Th and (40)K in soil samples fall within the world average. Furthermore, 19 trace and major elements in groundwater samples and 22 elements in soil and plant samples were determined. The sampling locations of soil can be classified into three groups (relatively high, medium and low polluted) according to their calculated metal pollution index using the contents of trace and major elements. A cluster analysis of the contents of radioactivity and trace element contents in soil samples shows the presence of two main distinct clusters of sampling locations.

  2. The rapid measurement of soil carbon stock using near-infrared technology

    NASA Astrophysics Data System (ADS)

    Kusumo, B. H.; Sukartono; Bustan

    2018-03-01

    As a soil pool stores carbon (C) three times higher than an atmospheric pool, the depletion of C stock in the soil will significantly increase the concentration of CO2 in the atmosphere, causing global warming. However, the monitoring or measurement of soil C stock using conventional procedures is time-consuming and expensive. So it requires a rapid and non-destructive technique that is simple and does not need chemical substances. This research is aimed at testing whether near-infrared (NIR) technology is able to rapidly measure C stock in the soil. Soil samples were collected from an agricultural land at the sub-district of Kayangan, North Lombok, Indonesia. The coordinates of the samples were recorded. Parts of the samples were analyzed using conventional procedure (Walkley and Black) and some other parts were scanned using near-infrared spectroscopy (NIRS) for soil spectral collection. Partial Least Square Regression (PLSR) was used to develop models from soil C data measured by conventional analysis and from spectral data scanned by NIRS. The best model was moderately successful to measure soil C stock in the study area in North Lombok. This indicates that the NIR technology can be further used to monitor the change of soil C stock in the soil.

  3. Mapping The Temporal and Spatial Variability of Soil Moisture Content Using Proximal Soil Sensing

    NASA Astrophysics Data System (ADS)

    Virgawati, S.; Mawardi, M.; Sutiarso, L.; Shibusawa, S.; Segah, H.; Kodaira, M.

    2018-05-01

    In studies related to soil optical properties, it has been proven that visual and NIR soil spectral response can predict soil moisture content (SMC) using proper data analysis techniques. SMC is one of the most important soil properties influencing most physical, chemical, and biological soil processes. The problem is how to provide reliable, fast and inexpensive information of SMC in the subsurface from numerous soil samples and repeated measurement. The use of spectroscopy technology has emerged as a rapid and low-cost tool for extensive investigation of soil properties. The objective of this research was to develop calibration models based on laboratory Vis-NIR spectroscopy to estimate the SMC at four different growth stages of the soybean crop in Yogyakarta Province. An ASD Field-spectrophotoradiometer was used to measure the reflectance of soil samples. The partial least square regression (PLSR) was performed to establish the relationship between the SMC with Vis-NIR soil reflectance spectra. The selected calibration model was used to predict the new samples of SMC. The temporal and spatial variability of SMC was performed in digital maps. The results revealed that the calibration model was excellent for SMC prediction. Vis-NIR spectroscopy was a reliable tool for the prediction of SMC.

  4. Soil pollution in Central district of Saint-Petersburg (Russia)

    NASA Astrophysics Data System (ADS)

    Terekhina, Natalia; Ufimtseva, Margarita

    2015-04-01

    Analysis of soil samples of upper horizon for the content of chemical elements (Fe, Mn, Cu, Zn, Pb, Ni, Cr, Co, Cd, Ba, Sr) was carried out by atomic emission with inductively coupled plasma. A relative indicator of soil contamination degree is a concentration coefficient, representing the ratio of metal content in tested soil samples to the local background value of the corresponding element. Total pollution index is calculated by the concentration coefficients, which are greater than 1, taking into account the hazard class of metals (1 class - Zn, Pb ,Cd; 2 - class Cr, Ni, Cu ,Со; 3 class - Fe, Mn, Sr, Ba). Analysis of trace element of urban soils demonstrated mosaic patterns of pollution for Central district. The method of correlation sets constructing and factor analysis revealed three groups of chemical elements having a strong and significant association with each other: Pb-Cu-Cd-Zn-Ba, Ni-Cr-Co, Fe-Mn. Elements of the first group are characterized by high values of concentration coefficient and are the main pollutants - their average content is 3-11 times higher than background values. Strontium does not have strong correlation with the other elements, and its lowest concentration coefficient indicates that the element can not be regarded as a pollutant. The spatial distribution of the total pollution index identified several sources of pollution, the origin of which may be different. The main reason is probably the impact of vehicle emissions, although local pollution of soil is possible (the soils, contaminated during reconstruction of lawns, dumping of construction materials, etc.). Differentiated assessment of database shows that 48% of samples refer to dangerous pollution category, 37% - to moderately dangerous category, 15% - to allowable category. Thus, almost half of the district is characterized as dangerous in terms of soil contamination. Solution of the problem of soil contamination is recommended in three ways: reducing the intensity of vehicular traffic through the historic center of the city, improving the quality of transport emissions, removal of contaminated soil layers in particularly polluted areas and the introduction of clean soil, optimization of verdurization of the urban environment, as a means of reducing the flow of atmospheric pollutants in soil.

  5. Analytical method for nitroaromatic explosives in radiologically contaminated soil for ISO/IEC 17025 accreditation

    DOE PAGES

    Boggess, Andrew; Crump, Stephen; Gregory, Clint; ...

    2017-12-06

    Here, unique hazards are presented in the analysis of radiologically contaminated samples. Strenuous safety and security precautions must be in place to protect the analyst, laboratory, and instrumentation used to perform analyses. A validated method has been optimized for the analysis of select nitroaromatic explosives and degradative products using gas chromatography/mass spectrometry via sonication extraction of radiologically contaminated soils, for samples requiring ISO/IEC 17025 laboratory conformance. Target analytes included 2-nitrotoluene, 4-nitrotoluene, 2,6-dinitrotoluene, and 2,4,6-trinitrotoluene, as well as the degradative product 4-amino-2,6-dinitrotoluene. Analytes were extracted from soil in methylene chloride by sonication. Administrative and engineering controls, as well as instrument automationmore » and quality control measures, were utilized to minimize potential human exposure to radiation at all times and at all stages of analysis, from receiving through disposition. Though thermal instability increased uncertainties of these selected compounds, a mean lower quantitative limit of 2.37 µg/mL and mean accuracy of 2.3% relative error and 3.1% relative standard deviation were achieved. Quadratic regression was found to be optimal for calibration of all analytes, with compounds of lower hydrophobicity displaying greater parabolic curve. Blind proficiency testing (PT) of spiked soil samples demonstrated a mean relative error of 9.8%. Matrix spiked analyses of PT samples demonstrated that 99% recovery of target analytes was achieved. To the knowledge of the authors, this represents the first safe, accurate, and reproducible quantitative method for nitroaromatic explosives in soil for specific use on radiologically contaminated samples within the constraints of a nuclear analytical lab.« less

  6. Analytical method for nitroaromatic explosives in radiologically contaminated soil for ISO/IEC 17025 accreditation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boggess, Andrew; Crump, Stephen; Gregory, Clint

    Here, unique hazards are presented in the analysis of radiologically contaminated samples. Strenuous safety and security precautions must be in place to protect the analyst, laboratory, and instrumentation used to perform analyses. A validated method has been optimized for the analysis of select nitroaromatic explosives and degradative products using gas chromatography/mass spectrometry via sonication extraction of radiologically contaminated soils, for samples requiring ISO/IEC 17025 laboratory conformance. Target analytes included 2-nitrotoluene, 4-nitrotoluene, 2,6-dinitrotoluene, and 2,4,6-trinitrotoluene, as well as the degradative product 4-amino-2,6-dinitrotoluene. Analytes were extracted from soil in methylene chloride by sonication. Administrative and engineering controls, as well as instrument automationmore » and quality control measures, were utilized to minimize potential human exposure to radiation at all times and at all stages of analysis, from receiving through disposition. Though thermal instability increased uncertainties of these selected compounds, a mean lower quantitative limit of 2.37 µg/mL and mean accuracy of 2.3% relative error and 3.1% relative standard deviation were achieved. Quadratic regression was found to be optimal for calibration of all analytes, with compounds of lower hydrophobicity displaying greater parabolic curve. Blind proficiency testing (PT) of spiked soil samples demonstrated a mean relative error of 9.8%. Matrix spiked analyses of PT samples demonstrated that 99% recovery of target analytes was achieved. To the knowledge of the authors, this represents the first safe, accurate, and reproducible quantitative method for nitroaromatic explosives in soil for specific use on radiologically contaminated samples within the constraints of a nuclear analytical lab.« less

  7. Contrasting the microbiomes from forest rhizosphere and deeper bulk soil from an Amazon rainforest reserve.

    PubMed

    Fonseca, Jose Pedro; Hoffmann, Luisa; Cabral, Bianca Catarina Azeredo; Dias, Victor Hugo Giordano; Miranda, Marcio Rodrigues; de Azevedo Martins, Allan Cezar; Boschiero, Clarissa; Bastos, Wanderley Rodrigues; Silva, Rosane

    2018-02-05

    Pristine forest ecosystems provide a unique perspective for the study of plant-associated microbiota since they host a great microbial diversity. Although the Amazon forest is one of the hotspots of biodiversity around the world, few metagenomic studies described its microbial community diversity thus far. Understanding the environmental factors that can cause shifts in microbial profiles is key to improving soil health and biogeochemical cycles. Here we report a taxonomic and functional characterization of the microbiome from the rhizosphere of Brosimum guianense (Snakewood), a native tree, and bulk soil samples from a pristine Brazilian Amazon forest reserve (Cuniã), for the first time by the shotgun approach. We identified several fungi and bacteria taxon significantly enriched in forest rhizosphere compared to bulk soil samples. For archaea, the trend was the opposite, with many archaeal phylum and families being considerably more enriched in bulk soil compared to forest rhizosphere. Several fungal and bacterial decomposers like Postia placenta and Catenulispora acidiphila which help maintain healthy forest ecosystems were found enriched in our samples. Other bacterial species involved in nitrogen (Nitrobacter hamburgensis and Rhodopseudomonas palustris) and carbon cycling (Oligotropha carboxidovorans) were overrepresented in our samples indicating the importance of these metabolic pathways for the Amazon rainforest reserve soil health. Hierarchical clustering based on taxonomic similar microbial profiles grouped the forest rhizosphere samples in a distinct clade separated from bulk soil samples. Principal coordinate analysis of our samples with publicly available metagenomes from the Amazon region showed grouping into specific rhizosphere and bulk soil clusters, further indicating distinct microbial community profiles. In this work, we reported significant shifts in microbial community structure between forest rhizosphere and bulk soil samples from an Amazon forest reserve that are probably caused by more than one environmental factors such as rhizosphere and soil depth. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Detection of salts in soil using transversely excited atmospheric (TEA) carbon dioxide (CO2) laser-induced breakdown spectroscopy (LIBS) by the aid of a metal mesh

    NASA Astrophysics Data System (ADS)

    Idris, N.; Ramli, M.; Khumaeni, A.; Kurihara, K.

    2018-04-01

    In this work, a nickel metal mesh was used to allow a direct detection of salt in soil sample by LIBS utilizing unique characteristics of a TEA CO2. The metal mesh is placed in the front of the soil sample to prevent the soil sample from blowing off upon focusing the high pulsed laser beam irradiation. LIBS apparatus used in this work is a TEA CO2 laser operated at wavelength of 10.6 μm with pulse energy and duration of 3J and 200 ns, respectively. The laser beam was focused using a ZnSe lens (f = 200 mm) onto soil sample after passing through the metal mesh. The emission spectrum from the induced plasma was detected using an optical multichannel analyzer (OMA) system consisting of a 0.32-m-focal length spectrograph with a grating of 1200 graves/mm and a 1024-channel photodiode detector array with a micro-channel plate intensifier. The soil sample used is a standard soil and ordinary soil containing several salts such as Ca, Mg at high concentration. The LIBS experiment was carried out at high pressure surrounding gas of 1 atmosphere. It was observed that by the aid of the metal mesh, strong breakdown gas plasma can be produced just after TEA CO2 laser irradiation on soil sample without significant sample blowing off. It was found that emission lines from salts, Ca (Ca II 393. 3 nm, Ca II 396.3 nm, Ca I 422.5 nm), and also other salts including Mg and Na can clearly be detected with strong emission intensity and narrow spectral width. This result implies that a TEA CO2 LIBS assisted by the metal mesh (metal mesh method) can be used for direct analysis several salts such as Ca, Mg, and Na in soil sample.

  9. Assessment of temperature peaks reached during a wildfire. An approach using X-ray diffraction and differential thermal analysis

    NASA Astrophysics Data System (ADS)

    Jiménez-González, Marco A.; Jordán, Antonio; Zavala, Lorena M.; Mataix-Solera, Jorge; Bárcenas-Moreno, Gema; Jiménez-Morillo, Nicasio T.; Bellinfante, Nicolás

    2014-05-01

    1. INTRODUCTION Wildfires may induce important chemical and physical changes in soils, including changes in the soil composition, mineralogical changes, soil water repellency, aggregate stability or textural changes (Bodí et al., 2013; Granged et al., 2011a, 2011b, 2011c; Jordán et al., 2011, 2013; Mataix-Solera et al., 2011). As these changes usually occur after threshold temperature peaks, the assessment of these helps to explain many of the processes occurring during burning and in the postfire (Pereira et al., 2012, 2013; Shakesby, 2011). In July 2011, a wildfire burnt a pine forested area (50 ha) in Gorga (Alicante, SW Spain), approximately at 38° 44.3' N and 0° 20.7' W. Main soil type is Lithic Xerorthent developed from limestone. The study of mineralogical changes in soil after a wildfire should help to assess fire temperature peaks reached during burning. In order to study the impact of fire temperature on mineralogical changes and determine temperature peaks during burning, burnt soil plots under shrubland were randomly collected (0-5 cm deep). Control samples from adjacent unburnt areas were also collected for control. 2. METHODS Soil samples were ground using an agate mortar and then sieved (< 0.002mm) and analyzed by X-ray diffraction (XRD). XRD was conducted on a Bruker (model D8 advance A25) powder θ:θ diffractometer, which uses a Cu anticathode (40KV, 30mA), Ni filter in the diffracted bean and lineal detector. Powder samples were scanned from 3 to 70° 2θ, using a step size of 0.015° 2θ and a scan speed of 0.15° 2θ s-1. Mineralogical phase identification and quantification of minerals was carried out with XPowder. In order to study other possible reaction in burnt soil, unburnt soil samples were exposed to temperatures of 300, 500 and 700 °C in a Mufla furnace during 20 minutes. Unburnt control and treated samples were analyzed by differential thermal analysis (DTA) and thermogravimetric analysis (TG). 3. RESULTS Diffractograms show that the blixita peak, found in the control sample, disappears in the diffractograms of burnt samples. Other significant peaks (calcite, quartz and microcline, for example) do not show significant changes between control and burnt samples. After semiquantitative analysis, the proportion of calcite increased in burnt soil samples (76.3%, on average) respect to control unburnt soil samples (62.3%). This increase may be explained by calcium carbonate released by ash after combustion of organic matter. Consequently, quartz proportion decreased in burnt samples (10.7%, on average) respect to control samples (26.1%). After DTA analysis, a valley occurs between 400 and 700 °C in the control sample which is not present in 500 and 700 oC heated samples. This loss of energy is attributed to combustion of organic matter approximately between 400 and 500 °C, as well as thermal changes in iron oxides (which occurs approximately between 300 and 500 °C) and loss of structural water (>420 °C). In samples heated at 500 and 700 °C, these changes are not appreciated as they occurred during calcination. In the 300 °C heated sample, some of these changes partially occurred. Peaks observed approximately at 100 °C correspond to release of absorbed water. Peaks at 900 °C are a consequence of destruction of calcite. Finally a peak was observed at 680 °C in the control sample may be explained as a consequence of the destruction of blixite (Pb8(OH)2Cl4), which was present in control samples (1.1%) but not in burnt samples. This peak is probably masked in heated samples. REFERENCES Bodí, M.B., Muñoz-Santa, I., Armero, C., Doerr, S.H., Mataix-Solera, J., Cerdà, A. 2013. Spatial and temporal variations of water repellency and probability of its occurrence in calcareous Mediterranean rangeland soils affected by fires. Catena, 108, 14-25. Granged, A.J.P., Jordán, A., Zavala, L.M., Muñoz-Rojas, M., Mataix-Solera, J. 2011a. Short-term effects of experimental fire for a soil under eucalyptus forest (SE Australia). Geoderma, 167-168, 125-134. Granged, A.J.P., Zavala, L.M., Jordán, A., Bárcenas-Moreno, B. 2011b. Post-fire evolution of soil properties and vegetation cover in a Mediterranean heathland after experimental burning: A 3-year study. Geoderma, 164, 85-94. Granged, A.J.P., Jordán, A., Zavala, L.M., Bárcenas-Moreno, B. 2011c. Fire-induced changes in soil water repellency increased fingered flow and runoff rates following the 2004 Huelva wildfire. Hydrological Processes, 25, 1614-1629. Jordán, A., Zavala, L.M., Mataix-Solera, J., Nava, A.L., Alanís, N. 2011. Effect of fire severity on water repellency and aggregate stability on Mexican volcanic soils. Catena, 84, 136-147. Jordán A., Zavala, L.M., Mataix-Solera, J., Doerr, S.H. 2013. Soil water repellency: Origin, assessment and geomorphological consequences. Catena, 108, 1-5. Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A., Zavala, L.M. 2011. Fire effects on soil aggregation: A review. Earth-Science Reviews, 109, 44-60. Pereira, P., Mierauskas, P., Úbeda, X., Mataix-Solera, J., Cerdà, A. 2012. Fire in Protected Areas - the Effect of Protection and Importance of Fire Management. Environmental Research, Engineering and Management, 59, 52-62. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Martin, D., Jordán, A., Burguet, M. 2013. Spatial models for monitoring the spatio-temporal evolution of ashes after fire - a case study of a burnt grassland in Lithuania. Solid Earth 4, 153-165. Shakesby, R.A. 2011. Post-wildfire soil erosion in the Mediterranean: review and future research directions. Earth-Science Reviews, 71-100.

  10. Combining supercritical fluid extraction of soil herbicides with enzyme immunoassay analysis.

    PubMed

    Stearman, G K

    2001-10-01

    Supercritical fluid extraction (SFE) of soil herbicides followed by enzyme immunoassay analysis (EIA) is explained in a step-by-step process. Extracted herbicides, include 2,4-D, simazine, atrazine, and alachlor. The herbicide, trifluralin was not successfully analyzed by EIA because of crossreacting metabolites. Problems with SFE, including uneven packing of cells, leaks, uneven flow and clogging, can largely be eliminated as the method parameters are optimized. It was necessary to add modifiers including methanol or acetone to the SF CO2 to increase the solubility of the analytes. Detection limits of 2.5 ng/g soil for atrazine and alachlor and 15 ng/g soil for simazine and 2,4-D without concentration of the sample were achieved. Recoveries above 80% and relative standard deviations (RSDs) less than 15% for 2,4-D simazine, atrazine and alachlor were achieved. Atrazine and alachlor recoveries were above 90% with RSDs below 10%. Forty soil samples could be extracted and analyzed in an 8-h day.

  11. Microbial communities inhabiting oil-contaminated soils from two major oilfields in Northern China: Implications for active petroleum-degrading capacity.

    PubMed

    Sun, Weimin; Dong, Yiran; Gao, Pin; Fu, Meiyan; Ta, Kaiwen; Li, Jiwei

    2015-06-01

    Although oilfields harbor a wide diversity of microorganisms with various metabolic potentials, our current knowledge about oil-degrading bacteria is limited because the vast majority of oil-degrading bacteria remain uncultured. In the present study, microbial communities in nine oil-contaminated soils collected from Daqing and Changqing, two of the largest oil fields in China, were characterized through highthroughput sequencing of 16S rRNA genes. Bacteria related to the phyla Proteobacteria and Actinobacteria were dominant in four and three samples, respectively. At the genus level, Alkanindiges, Arthrobacter, Pseudomonas, Mycobacterium, and Rhodococcus were frequently detected in nine soil samples. Many of the dominant genera were phylogenetically related to the known oil-degrading species. The correlation between physiochemical parameters within the microbial communities was also investigated. Canonical correspondence analysis revealed that soil moisture, nitrate, TOC, and pH had an important impact in shaping the microbial communities of the hydrocarbon-contaminated soil. This study provided an in-depth analysis of microbial communities in oilcontaminated soil and useful information for future bioremediation of oil contamination.

  12. Soil analyses for 1,3-dichloropropene (1,3-DCP), sodium n-methyldithiocarbamate (metam-sodium), and their degradation products near Fort Hall Idaho, September 1999 through March 2000

    USGS Publications Warehouse

    Parliman, D.J.

    2001-01-01

    Between September 1999 and March 2000, soil samples from the Fort Hall, Idaho, area were analyzed for two soil fumigants, 1,3-dichloropropene (1,3-DCP) and sodium n-methyldithiocarbamate (metam-sodium), and their degradation products. Ground water is the only source of drinking water at Fort Hall, and the purpose of the investigation was to determine potential risk of ground-water contamination from persistence and movement of these pesticides in cropland soils. 1,3-DCP, metam-sodium, or their degradation products were detected in 42 of 104 soil samples. The samples were collected from 1-, 2-, and 3-foot depths in multiple backhoe trenches during four sampling events—before pesticide application in September; after application in October; before soil freeze in December; and after soil thaw in March. In most cases, concentrations of the pesticide compounds were at or near their laboratory minimum reporting limits. U.S. Environmental Protection Agency Method 5035 was used as the guideline for soil sample preparation and analyses, and either sodium bisulfate (NaHSO4), an acidic preservative, or pesticide-free water was added to samples prior to analyses. Addition of NaHSO4 to the samples resulted in a greater number of compound detections, but pesticide-free water was added to most samples to avoid the strong reactions of soil carbonate minerals with the NaHSO4. As a result, nondetection of compounds in samples containing pesticide-free water did not necessarily indicate that the compounds were absent. Detections of these compounds were inconsistent among trenches with similar soil characteristics and histories of soil fumigant use. Compounds were detected at different depths and different trench locations during each sampling event. Overall results of this study showed that the original compounds or their degradation products can persist in soil 6 months or more after their application and are present to at least 3 feet below land surface in some areas. A few of the soil analyses results were unexpected. Degradation products of metam-sodium were detected in samples from croplands with a history of 1,3-DCP applications only, and were not detected in samples from croplands with a history of metam-sodium applications. Although 1,2-dibromoethane (EDB) has not been used in the area for many years, EDB was detected in a few soil samples. The presence of EDB in soil could be caused by irrigation of croplands with EDBcontaminated ground water. Analyses of these soil samples resulted in many unanswered questions, and further studies are needed. One potential study to determine vertical extent of pesticide compound migration in sediments, for example, would include analysis of one or more columns of soil and sediments (land surface to ground water, about 35 to 50 feet below land surface) in areas with known soil contamination. Another study would expand the scope of soil contamination to include broader types of cropland conditions and compound analyses.

  13. Computed Tomography to Estimate the Representative Elementary Area for Soil Porosity Measurements

    PubMed Central

    Borges, Jaqueline Aparecida Ribaski; Pires, Luiz Fernando; Belmont Pereira, André

    2012-01-01

    Computed tomography (CT) is a technique that provides images of different solid and porous materials. CT could be an ideal tool to study representative sizes of soil samples because of the noninvasive characteristic of this technique. The scrutiny of such representative elementary sizes (RESs) has been the target of attention of many researchers related to soil physics field owing to the strong relationship between physical properties and size of the soil sample. In the current work, data from gamma-ray CT were used to assess RES in measurements of soil porosity (ϕ). For statistical analysis, a study on the full width at a half maximum (FWHM) of the adjustment of distribution of ϕ at different areas (1.2 to 1162.8 mm2) selected inside of tomographic images was proposed herein. The results obtained point out that samples with a section area corresponding to at least 882.1 mm2 were the ones that provided representative values of ϕ for the studied Brazilian tropical soil. PMID:22666133

  14. Removal of uranium from soil samples for ICP-OES analysis of RCRA metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wero, M.; Lederer-Cano, A.; Billy, C.

    1995-12-01

    Soil samples containing high levels of uranium present unique analytical problems when analyzed for toxic metals (Ag, As, Ba, Cd, Cr, Cu, Ni, Pb, Se and Tl) because of the spectral interference of uranium in the ICP-OES emission spectrometer. Methods to remove uranium from the digestates of soil samples, known to be high in uranium, have been developed that reduce the initial uranium concentration (1-3%) to less than 500 ppm. UTEVA ion exchange columns, used as an ICP-OES analytical pre-treatment, reduces uranium to acceptable levels, permitting good analytical results of the RCRA metals by ICP-OES.

  15. Water vapor weathering of Taurus-Littrow orange soil - A pore-structure analysis

    NASA Technical Reports Server (NTRS)

    Cadenhead, D. A.; Mikhail, R. S.

    1975-01-01

    A pore-volume analysis was performed on water vapor adsorption data previously obtained on a fresh sample of Taurus-Littrow orange soil, and the analysis was repeated on the same sample after its exposure to moist air for a period of approximately six months. The results indicate that exposure of an outgassed sample to high relative pressures of water vapor can result in the formation of substantial micropore structure, the precise amount being dependent on the sample pretreatment, particularly the outgassing temperature. Micropore formation is explained in terms of water penetration into surface defects. In contrast, long-term exposure to moist air at low relative pressures appears to reverse the process with the elimination of micropores and enlargement of mesopores possibly through surface diffusion of metastable adsorbent material. The results are considered with reference to the storage of lunar samples.

  16. Field isotopic study of lead fate and compartmentalization in earthworm-soil-metal particle systems for highly polluted soil near Pb recycling factory.

    PubMed

    Goix, Sylvaine; Mombo, Stéphane; Schreck, Eva; Pierart, Antoine; Lévêque, Thibaut; Deola, Frédéric; Dumat, Camille

    2015-11-01

    Earthworms are important organisms in soil macrofauna and play a key role in soil functionality, and consequently in terrestrial ecotoxicological risk assessments. Because they are frequently observed in soils strongly polluted by metals, the influence of earthworm bioturbation on Pb fate could therefore be studied through the use of Pb isotopes. Total Pb concentrations and isotopic composition ((206)Pb, (207)Pb and (208)Pb) were then measured in earthworms, casts and bulk soils sampled at different distance from a lead recycling factory. Results showed decreasing Pb concentrations with the distance from the factory whatever the considered matrix (bulk soils, earthworm bodies or cast samples) with higher concentrations in bulk soils than in cast samples. The bivariate plot (208)Pb/(206)Pb ratios versus (206)Pb/(207)Pb ratios showed that all samples can be considered as a linear mixing between metallic process particulate matter (PM) and geochemical Pb background. Calculated anthropogenic fraction of Pb varied between approximately 84% and 100%. Based on Pb isotopic signatures, the comparison between casts, earthworms and bulk soils allowed to conclude that earthworms preferentially ingest the anthropogenic lead fraction associated with coarse soil organic matter. Actually, soil organic matter was better correlated with Pb isotopic ratios than with Pb content in soils. The proposed hypothesis is therefore a decrease of soil organic matter turnover due to Pb pollution with consequences on Pb distribution in soils and earthworm exposure. Finally, Pb isotopes analysis constitutes an efficient tool to study the influence of earthworm bioturbation on Pb cycle in polluted soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Distribution of some natural and man-made radionuclides in soil from the city of Veles (Republic of Macedonia) and its environs.

    PubMed

    Dimovska, Snezana; Stafilov, Trajce; Sajn, Robert; Frontasyeva, Marina

    2010-02-01

    A systematic study of soil radioactivity in the metallurgical centre of the Republic of Macedonia, the city of Veles and its environs, was carried out. The measurement of the radioactivity was performed in 55 samples from evenly distributed sampling sites. The gross alpha and gross beta radioactivity measurements were made as a screening, using a low background gas-flow proportional counter. For the analysis of (40)K, (238)U, (232)Th and (137)Cs, a P-type coaxial high purity germanium detector was used. The values for the activity concentrations of the natural radionuclides fall well within the worldwide range as reported in the literature. It is shown that the activity of man-made radionuclides, except for (137)Cs, is below the detection limit. (137)Cs originated from the atmospheric deposition and present in soil in the activity concentration range of 2-358 Bq kg(-1) is irregularly distributed over the sampled territory owing to the complicated orography of the land. The results of gamma spectrometry are compared to the K, U, and Th concentrations previously obtained by the reactor neutron activation analysis in the same soil samples.

  18. Statistical design and analysis of environmental studies for plutonium and other transuranics at NAEG ''safety-shot'' sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, R.O.; Eberhardt, L.L.; Fowler, E.B.

    This paper is centered around the use of stratified random sampling for estimating the total amount (inventory) of $sup 239-240$Pu and uranium in surface soil at ten ''safety-shot'' sites on the Nevada Test Site (NTS) and Tonopah Test Range (TTR) that are currently being studied by the Nevada Applied Ecology Group (NAEG). The use of stratified random sampling has resulted in estimates of inventory at these desert study sites that have smaller standard errors than would have been the case had simple random sampling (no stratification) been used. Estimates of inventory are given for $sup 235$U, $sup 238$U, and $supmore » 239-240$Pu in soil at A Site of Area 11 on the NTS. Other results presented include average concentrations of one or more of these isotopes in soil and vegetation and in soil profile samples at depths to 25 cm. The regression relationship between soil and vegetation concentrations of $sup 235$U and $sup 238$U at adjacent sampling locations is also examined using three different models. The applicability of stratified random sampling to the estimation of concentration contours of $sup 239-240$Pu in surface soil using computer algorithms is also investigated. Estimates of such contours are obtained using several different methods. The planning of field sampling plans for estimating inventory and distribution is discussed. (auth)« less

  19. Phoenix Mars Lander's Chemistry Lab in a Box

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The wet chemistry laboratory on NASA's Phoenix Mars Lander has four teacup-size beakers. This photograph shows one of them. The laboratory is part of the spacecraft's Microscopy, Electrochemistry and Conductivity Analyzer.

    Each beaker will be used only once, for assessing soluble chemicals in a sample of Martian soil by mixing water with the sample to a soupy consistency and keeping it warm enough to remain liquid during the analysis.

    On the inner surface of the beaker are 26 sensors, mostly electrodes behind selectively permeable membranes or gels. Some sensors will give information about the acidity or alkalinity of the soil sample. Others will gauge concentrations of such ions as chlorides, bromides, magnesium, calcium and potassium. Comparisons of the concentrations of water-soluble ions in soil samples from different depths below the surface of the landing site may provide clues to the history of the water in the soil.

  20. GICHD mine dog testing project - soil sample results #4.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, James L.; Phelan, James M.; Archuleta, Luisa M.

    2003-08-01

    A mine dog evaluation project initiated by the Geneva International Center for Humanitarian Demining is evaluating the capability and reliability of mine detection dogs. The performance of field-operational mine detection dogs will be measured in test minefields in Afghanistan and Bosnia containing actual, but unfused landmines. Repeated performance testing over two years through various seasonal weather conditions will provide data simulating near real world conditions. Soil samples will be obtained adjacent to the buried targets repeatedly over the course of the test. Chemical analysis results from these soil samples will be used to evaluate correlations between mine dog detection performancemore » and seasonal weather conditions. This report documents the analytical chemical methods and results from the fourth batch of soils received. This batch contained samples from Kharga, Afghanistan collected in April 2003 and Sarajevo, Bosnia collected in May 2003.« less

  1. Determination of the resistance of fabric printed with triclosan microcapsules to the action of soil micro-flora

    NASA Astrophysics Data System (ADS)

    Golja, B.; Forte Tavčer, P.

    2017-10-01

    Microcapsules with a pressure-sensitive melamine-formaldehyde wall and triclosan core were printed to 100% cotton fabric with screen printing technique. Previous research showed excellent antibacterial activity (estimated for E. Coli and S. Aureus) of such fabric, so our aim in this research was to determine its resistance to the action of microorganisms present in the soil. The soil burial test was conducted. The breaking strength of the buried samples was measured and also the scanning electron microscope analysis was done. The results showed that none of the samples are resistant to decay. It is evident from SEM micrographs that on all of the buried samples greater morphological changes occur due to the functions of the soil microflora. It can be concluded that the samples printed with triclosan microcapsules are biodegradable which is environmentally preferable.

  2. Genomic and metagenomic analysis of microbes in a soil environment affected by the 2011 Great East Japan Earthquake tsunami.

    PubMed

    Hiraoka, Satoshi; Machiyama, Asako; Ijichi, Minoru; Inoue, Kentaro; Oshima, Kenshiro; Hattori, Masahira; Yoshizawa, Susumu; Kogure, Kazuhiro; Iwasaki, Wataru

    2016-01-14

    The Great East Japan Earthquake of 2011 triggered large tsunami waves, which flooded broad areas of land along the Pacific coast of eastern Japan and changed the soil environment drastically. However, the microbial characteristics of tsunami-affected soil at the genomic level remain largely unknown. In this study, we isolated microbes from a soil sample using general low-nutrient and seawater-based media to investigate microbial characteristics in tsunami-affected soil. As expected, a greater proportion of strains isolated from the tsunami-affected soil than the unaffected soil grew in the seawater-based medium. Cultivable strains in both the general low-nutrient and seawater-based media were distributed in the genus Arthrobacter. Most importantly, whole-genome sequencing of four of the isolated Arthrobacter strains revealed independent losses of siderophore-synthesis genes from their genomes. Siderophores are low-molecular-weight, iron-chelating compounds that are secreted for iron uptake; thus, the loss of siderophore-synthesis genes indicates that these strains have adapted to environments with high-iron concentrations. Indeed, chemical analysis confirmed the investigated soil samples to be rich in iron, and culture experiments confirmed weak cultivability of some of these strains in iron-limited media. Furthermore, metagenomic analyses demonstrated over-representation of denitrification-related genes in the tsunami-affected soil sample, as well as the presence of pathogenic and marine-living genera and genes related to salt-tolerance. Collectively, the present results would provide an example of microbial characteristics of soil disturbed by the tsunami, which may give an insight into microbial adaptation to drastic environmental changes. Further analyses on microbial ecology after a tsunami are envisioned to develop a deeper understanding of the recovery processes of terrestrial microbial ecosystems.

  3. Geochemical mapping of polluted soils and environmental risk assessment associated to mining activities: a comparison case study in El Campillo (Huelva, Spain) and the Zambales (Luzon Island,The Philippines)

    NASA Astrophysics Data System (ADS)

    Zuluaga, Maria Clara; Albanese, Stefano; de Vivo, Benedetto; Nieto, Jose Miguel; David, Carlos Primo C.; Norini, Gianluca

    2014-05-01

    The soil is one of the environmental systems which could be most affected by the dispersion of pollutant, also because of the close relationship with the atmosphere and meteoric waters. The distribution and type of contamination depends closely on the climate, precipitations, drainage, vegetation, lithology and human activities. As a matter of fact, soil contamination due to heavy metals and metalloids, such as As, Cd, Cr, Cu, Ni, Pb and Zn, represents the source of a severe potential hazard for the ecosystem equilibrium and the health of living beings. This study is carried out in two abandoned mining zones near to populated areas, which underwent similar mining history, but in very different climatic and environmental conditions. The aim of the research is to analyze the influence of precipitation amounts, soil thickness, drainage density and vegetation cover on pollutant distribution. The first zone is in El Campillo, a town at the Rio Tinto mining district and belongs to the Iberic Pyritic Belt of the southwest Iberian peninsula. This mining site is characterized by a Mediterranean climate with low precipitation (700 mm/year), low vegetation cover and poor soil development. The second case study is the Zambales Mountain Range, a mining district in the Luzon Island of the Philippines dominated by a tropical weather, forests, intense rainfalls (2350 mm/year) and good soil development. The wide spectrum of climatic variables in the case studies requires to develop a single flexible methodology for the mapping and monitoring of the environmental degradation in both semi-arid and tropical environments, allowing comparative studies. The methodological approach comprises remote sensing, Geographic Information System (GIS), spatial statistical analysis, field sampling, ICP analysis and isotopic geochemical analysis. The presentation illustrates the first stage of the project. The processing of multispectral (Aster) and hyperspectral (Hyperion) images, in comparison with available geological and geochemical data, is used to search for spectral indicators of specific pollutant or anomalies in the vegetation cover related to soil contamination. Then, digital elevation models (DEMs) are used to delineate the drainage and superficial flow and to find potential correlations with the remobilization and dispersion of the pollutant in the soils, sediments and water bodies. These results allow a first comparison between the case studies, and delineate the different behavior of pollutants dispersion in the two climatic end-members. Also the remote sensing and GIS analysis form the basis to plan the future soil and sediment sampling campaign, according to the specific characteristics of the areas. The field, remote sensing and ICP data will be integrated in a GIS database for spatial geostatistical analysis. Those analysis will be complemented with the lead isotopic analysis of soil samples and human hair samples collected from the people who lives close to the mining zones, in order to determine the origin of the lead from the isotopic composition.

  4. Properties of Soil Pore Space Regulate Pathways of Plant Residue Decomposition and Community Structure of Associated Bacteria

    PubMed Central

    Negassa, Wakene C.; Guber, Andrey K.; Kravchenko, Alexandra N.; Marsh, Terence L.; Hildebrandt, Britton; Rivers, Mark L.

    2015-01-01

    Physical protection of soil carbon (C) is one of the important components of C storage. However, its exact mechanisms are still not sufficiently lucid. The goal of this study was to explore the influence of soil structure, that is, soil pore spatial arrangements, with and without presence of plant residue on (i) decomposition of added plant residue, (ii) CO2 emission from soil, and (iii) structure of soil bacterial communities. The study consisted of several soil incubation experiments with samples of contrasting pore characteristics with/without plant residue, accompanied by X-ray micro-tomographic analyses of soil pores and by microbial community analysis of amplified 16S–18S rRNA genes via pyrosequencing. We observed that in the samples with substantial presence of air-filled well-connected large (>30 µm) pores, 75–80% of the added plant residue was decomposed, cumulative CO2 emission constituted 1,200 µm C g-1 soil, and movement of C from decomposing plant residue into adjacent soil was insignificant. In the samples with greater abundance of water-filled small pores, 60% of the added plant residue was decomposed, cumulative CO2 emission constituted 2,000 µm C g-1 soil, and the movement of residue C into adjacent soil was substantial. In the absence of plant residue the influence of pore characteristics on CO2 emission, that is on decomposition of the native soil organic C, was negligible. The microbial communities on the plant residue in the samples with large pores had more microbial groups known to be cellulose decomposers, that is, Bacteroidetes, Proteobacteria, Actinobacteria, and Firmicutes, while a number of oligotrophic Acidobacteria groups were more abundant on the plant residue from the samples with small pores. This study provides the first experimental evidence that characteristics of soil pores and their air/water flow status determine the phylogenetic composition of the local microbial community and directions and magnitudes of soil C decomposition processes. PMID:25909444

  5. Properties of soil pore space regulate pathways of plant residue decomposition and community structure of associated bacteria

    DOE PAGES

    Negassa, Wakene C.; Guber, Andrey K.; Kravchenko, Alexandra N.; ...

    2015-07-01

    Physical protection of soil carbon (C) is one of the important components of C storage. However, its exact mechanisms are still not sufficiently lucid. The goal of this study was to explore the influence of soil structure, that is, soil pore spatial arrangements, with and without presence of plant residue on (i) decomposition of added plant residue, (ii) CO₂ emission from soil, and (iii) structure of soil bacterial communities. The study consisted of several soil incubation experiments with samples of contrasting pore characteristics with/without plant residue, accompanied by X-ray micro-tomographic analyses of soil pores and by microbial community analysis ofmore » amplified 16S–18S rRNA genes via pyrosequencing. We observed that in the samples with substantial presence of air-filled well-connected large (>30 µm) pores, 75–80% of the added plant residue was decomposed, cumulative CO₂ emission constituted 1,200 µm C g⁻¹ soil, and movement of C from decomposing plant residue into adjacent soil was insignificant. In the samples with greater abundance of water-filled small pores, 60% of the added plant residue was decomposed, cumulative CO₂ emission constituted 2,000 µm C g⁻¹ soil, and the movement of residue C into adjacent soil was substantial. In the absence of plant residue the influence of pore characteristics on CO₂ emission, that is on decomposition of the native soil organic C, was negligible. The microbial communities on the plant residue in the samples with large pores had more microbial groups known to be cellulose decomposers, that is, Bacteroidetes, Proteobacteria, Actinobacteria, and Firmicutes, while a number of oligotrophic Acidobacteria groups were more abundant on the plant residue from the samples with small pores. This study provides the first experimental evidence that characteristics of soil pores and their air/water flow status determine the phylogenetic composition of the local microbial community and directions and magnitudes of soil C decomposition processes.« less

  6. Properties of soil pore space regulate pathways of plant residue decomposition and community structure of associated bacteria.

    PubMed

    Negassa, Wakene C; Guber, Andrey K; Kravchenko, Alexandra N; Marsh, Terence L; Hildebrandt, Britton; Rivers, Mark L

    2015-01-01

    Physical protection of soil carbon (C) is one of the important components of C storage. However, its exact mechanisms are still not sufficiently lucid. The goal of this study was to explore the influence of soil structure, that is, soil pore spatial arrangements, with and without presence of plant residue on (i) decomposition of added plant residue, (ii) CO2 emission from soil, and (iii) structure of soil bacterial communities. The study consisted of several soil incubation experiments with samples of contrasting pore characteristics with/without plant residue, accompanied by X-ray micro-tomographic analyses of soil pores and by microbial community analysis of amplified 16S-18S rRNA genes via pyrosequencing. We observed that in the samples with substantial presence of air-filled well-connected large (>30 µm) pores, 75-80% of the added plant residue was decomposed, cumulative CO2 emission constituted 1,200 µm C g(-1) soil, and movement of C from decomposing plant residue into adjacent soil was insignificant. In the samples with greater abundance of water-filled small pores, 60% of the added plant residue was decomposed, cumulative CO2 emission constituted 2,000 µm C g(-1) soil, and the movement of residue C into adjacent soil was substantial. In the absence of plant residue the influence of pore characteristics on CO2 emission, that is on decomposition of the native soil organic C, was negligible. The microbial communities on the plant residue in the samples with large pores had more microbial groups known to be cellulose decomposers, that is, Bacteroidetes, Proteobacteria, Actinobacteria, and Firmicutes, while a number of oligotrophic Acidobacteria groups were more abundant on the plant residue from the samples with small pores. This study provides the first experimental evidence that characteristics of soil pores and their air/water flow status determine the phylogenetic composition of the local microbial community and directions and magnitudes of soil C decomposition processes.

  7. Properties of soil pore space regulate pathways of plant residue decomposition and community structure of associated bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negassa, Wakene C.; Guber, Andrey K.; Kravchenko, Alexandra N.

    Physical protection of soil carbon (C) is one of the important components of C storage. However, its exact mechanisms are still not sufficiently lucid. The goal of this study was to explore the influence of soil structure, that is, soil pore spatial arrangements, with and without presence of plant residue on (i) decomposition of added plant residue, (ii) CO₂ emission from soil, and (iii) structure of soil bacterial communities. The study consisted of several soil incubation experiments with samples of contrasting pore characteristics with/without plant residue, accompanied by X-ray micro-tomographic analyses of soil pores and by microbial community analysis ofmore » amplified 16S–18S rRNA genes via pyrosequencing. We observed that in the samples with substantial presence of air-filled well-connected large (>30 µm) pores, 75–80% of the added plant residue was decomposed, cumulative CO₂ emission constituted 1,200 µm C g⁻¹ soil, and movement of C from decomposing plant residue into adjacent soil was insignificant. In the samples with greater abundance of water-filled small pores, 60% of the added plant residue was decomposed, cumulative CO₂ emission constituted 2,000 µm C g⁻¹ soil, and the movement of residue C into adjacent soil was substantial. In the absence of plant residue the influence of pore characteristics on CO₂ emission, that is on decomposition of the native soil organic C, was negligible. The microbial communities on the plant residue in the samples with large pores had more microbial groups known to be cellulose decomposers, that is, Bacteroidetes, Proteobacteria, Actinobacteria, and Firmicutes, while a number of oligotrophic Acidobacteria groups were more abundant on the plant residue from the samples with small pores. This study provides the first experimental evidence that characteristics of soil pores and their air/water flow status determine the phylogenetic composition of the local microbial community and directions and magnitudes of soil C decomposition processes.« less

  8. The seed bank longevity index revisited: limited reliability evident from a burial experiment and database analyses.

    PubMed

    Saatkamp, Arne; Affre, Laurence; Dutoit, Thierry; Poschlod, Peter

    2009-09-01

    Seed survival in the soil contributes to population persistence and community diversity, creating a need for reliable measures of soil seed bank persistence. Several methods estimate soil seed bank persistence, most of which count seedlings emerging from soil samples. Seasonality, depth distribution and presence (or absence) in vegetation are then used to classify a species' soil seed bank into persistent or transient, often synthesized into a longevity index. This study aims to determine if counts of seedlings from soil samples yield reliable seed bank persistence estimates and if this is correlated to seed production. Seeds of 38 annual weeds taken from arable fields were buried in the field and their viability tested by germination and tetrazolium tests at 6 month intervals for 2.5 years. This direct measure of soil seed survival was compared with indirect estimates from the literature, which use seedling emergence from soil samples to determine seed bank persistence. Published databases were used to explore the generality of the influence of reproductive capacity on seed bank persistence estimates from seedling emergence data. There was no relationship between a species' soil seed survival in the burial experiment and its seed bank persistence estimate from published data using seedling emergence from soil samples. The analysis of complementary data from published databases revealed that while seed bank persistence estimates based on seedling emergence from soil samples are generally correlated with seed production, estimates of seed banks from burial experiments are not. The results can be explained in terms of the seed size-seed number trade-off, which suggests that the higher number of smaller seeds is compensated after germination. Soil seed bank persistence estimates correlated to seed production are therefore not useful for studies on population persistence or community diversity. Confusion of soil seed survival and seed production can be avoided by separate use of soil seed abundance and experimental soil seed survival.

  9. Digital soil classification and elemental mapping using imaging Vis-NIR spectroscopy: How to explicitly quantify stagnic properties of a Luvisol under Norway spruce

    NASA Astrophysics Data System (ADS)

    Kriegs, Stefanie; Buddenbaum, Henning; Rogge, Derek; Steffens, Markus

    2015-04-01

    Laboratory imaging Vis-NIR spectroscopy of soil profiles is a novel technique in soil science that can determine quantity and quality of various chemical soil properties with a hitherto unreached spatial resolution in undisturbed soil profiles. We have applied this technique to soil cores in order to get quantitative proof of redoximorphic processes under two different tree species and to proof tree-soil interactions at microscale. Due to the imaging capabilities of Vis-NIR spectroscopy a spatially explicit understanding of soil processes and properties can be achieved. Spatial heterogeneity of the soil profile can be taken into account. We took six 30 cm long rectangular soil columns of adjacent Luvisols derived from quaternary aeolian sediments (Loess) in a forest soil near Freising/Bavaria using stainless steel boxes (100×100×300 mm). Three profiles were sampled under Norway spruce and three under European beech. A hyperspectral camera (VNIR, 400-1000 nm in 160 spectral bands) with spatial resolution of 63×63 µm² per pixel was used for data acquisition. Reference samples were taken at representative spots and analysed for organic carbon (OC) quantity and quality with a CN elemental analyser and for iron oxides (Fe) content using dithionite extraction followed by ICP-OES measurement. We compared two supervised classification algorithms, Spectral Angle Mapper and Maximum Likelihood, using different sets of training areas and spectral libraries. As established in chemometrics we used multivariate analysis such as partial least-squares regression (PLSR) in addition to multivariate adaptive regression splines (MARS) to correlate chemical data with Vis-NIR spectra. As a result elemental mapping of Fe and OC within the soil core at high spatial resolution has been achieved. The regression model was validated by a new set of reference samples for chemical analysis. Digital soil classification easily visualizes soil properties within the soil profiles. By combining both techniques, detailed soil maps, elemental balances and a deeper understanding of soil forming processes at the microscale become feasible for complete soil profiles.

  10. Effects of fire on the state of several elements in some soils of Sardinia.

    PubMed

    Senette, C; Meloni, S; Alberti, G; Melis, P

    2000-01-01

    In order to individuate the modifications induced in the soil by fires relatively to the mobility of metals and rare earth three soils of Sardinia which differ in their mineralogical and physico-chemical characteristics were sampled. The analytical results obtained on the samples drawn at different depths (0-5 and 10-30 cm) three months after a fire and on the tests indicate that only the surface layer underwent significant modifications. The dynamics of metals and the distribution of the rare earths were found to depend, besides the amount and quality of the burned material, on the different behaviour of elements towards leaching. The diffractometric analysis showed that the soil surface layer of all the samples did not exceed 400 degrees C.

  11. Investigating the Origin of Chlorohydrocarbons Detected by the Sample Analysis at Mars (SAM) Instrument at Rocknest

    NASA Technical Reports Server (NTRS)

    Glavin, D.; Archer, D.; Brunner, A.; Buch, A.; Cabane, M.; Coll, P.; Conrad, P.; Coscia, D.; Dworkin J.; Eigenbrode, J.; hide

    2013-01-01

    The search for organic compounds on Mars, including molecules of either abiotic or biological origin is one of the key goals of the Mars Science Laboratory (MSL) mission. Previously the Viking and Phoenix Lander missions searched for organic compounds, but did not find any definitive evidence of martian organic material in the soils. The Viking pyrolysis gas chromatography mass spectrometry (GCMS) instruments did not detect any organic compounds of martian or exogenous origin above a level of a few parts-per-billion (ppb) in the near surface regolith at either landing site [1]. Viking did detect chloromethane and dichloromethane at pmol levels (up to 40 ppb) after heating the soil samples up to 500 C (Table 1), although it was originally argued that the chlorohydrocarbons were derived from cleaning solvents used on the instrument hardware, and not from the soil samples themselves [1]. More recently, it was suggested that the chlorohydrocarbons detected by Viking may have been formed by oxidation of indigenous organic matter during pyrolysis of the soil in the presence of perchlorates [2]. Although it is unknown if the Viking soils contained perchlorates, Phoenix did reveal relatively high concentrations (0.6 wt%) of perchlorate salt in the icy regolith [3], therefore, it is possible that the chlorohydrocarbons detected by Viking were produced, at least partially, during the experiments [2,4]. The Sample Analysis at Mars (SAM) instrument suite on MSL analyzed the organic composition of the soil at Rocknest in Gale Crater using a combination of pyrolysis evolved gas analysis (EGA) and GCMS. One empty cup procedural blank followed by multiple EGA-GCMS analyses of the Rocknest soil were carried out. Here we will discuss the results from these SAM measurements at Rocknest and the steps taken to determine the source of the chlorohydrocarbons.

  12. Brazilian Cerrado soil Actinobacteria ecology.

    PubMed

    Suela Silva, Monique; Naves Sales, Alenir; Teixeira Magalhães-Guedes, Karina; Ribeiro Dias, Disney; Schwan, Rosane Freitas

    2013-01-01

    A total of 2152 Actinobacteria strains were isolated from native Cerrado (Brazilian Savannah) soils located in Passos, Luminárias, and Arcos municipalities (Minas Gerais State, Brazil). The soils were characterised for chemical and microbiological analysis. The microbial analysis led to the identification of nine genera (Streptomyces, Arthrobacter, Rhodococcus, Amycolatopsis, Microbacterium, Frankia, Leifsonia, Nakamurella, and Kitasatospora) and 92 distinct species in both seasons studied (rainy and dry). The rainy season produced a high microbial population of all the aforementioned genera. The pH values of the soil samples from the Passos, Luminárias, and Arcos regions varied from 4.1 to 5.5. There were no significant differences in the concentrations of phosphorus, magnesium, and organic matter in the soils among the studied areas. Samples from the Arcos area contained large amounts of aluminium in the rainy season and both hydrogen and aluminium in the rainy and dry seasons. The Actinobacteria population seemed to be unaffected by the high levels of aluminium in the soil. Studies are being conducted to produce bioactive compounds from Actinobacteria fermentations on different substrates. The present data suggest that the number and diversity of Actinobacteria spp. in tropical soils represent a vast unexplored resource for the biotechnology of bioactives production.

  13. Brazilian Cerrado Soil Actinobacteria Ecology

    PubMed Central

    Suela Silva, Monique; Naves Sales, Alenir; Teixeira Magalhães-Guedes, Karina; Ribeiro Dias, Disney; Schwan, Rosane Freitas

    2013-01-01

    A total of 2152 Actinobacteria strains were isolated from native Cerrado (Brazilian Savannah) soils located in Passos, Luminárias, and Arcos municipalities (Minas Gerais State, Brazil). The soils were characterised for chemical and microbiological analysis. The microbial analysis led to the identification of nine genera (Streptomyces, Arthrobacter, Rhodococcus, Amycolatopsis, Microbacterium, Frankia, Leifsonia, Nakamurella, and Kitasatospora) and 92 distinct species in both seasons studied (rainy and dry). The rainy season produced a high microbial population of all the aforementioned genera. The pH values of the soil samples from the Passos, Luminárias, and Arcos regions varied from 4.1 to 5.5. There were no significant differences in the concentrations of phosphorus, magnesium, and organic matter in the soils among the studied areas. Samples from the Arcos area contained large amounts of aluminium in the rainy season and both hydrogen and aluminium in the rainy and dry seasons. The Actinobacteria population seemed to be unaffected by the high levels of aluminium in the soil. Studies are being conducted to produce bioactive compounds from Actinobacteria fermentations on different substrates. The present data suggest that the number and diversity of Actinobacteria spp. in tropical soils represent a vast unexplored resource for the biotechnology of bioactives production. PMID:23555089

  14. Restoration with pioneer plants changes soil properties and remodels the diversity and structure of bacterial communities in rhizosphere and bulk soil of copper mine tailings in Jiangxi Province, China.

    PubMed

    Sun, Xiaoyan; Zhou, Yanling; Tan, Yinjing; Wu, Zhaoxiang; Lu, Ping; Zhang, Guohua; Yu, Faxin

    2018-05-25

    To unravel the ecological function played by pioneer plants in the practical restoration of mine tailings, it is vital to explore changes of soil characteristics and microbial communities in rhizosphere and bulk soil following the adaptation and survival of plants. In the present study, the diversity and structure of rhizospheric bacterial communities of three pioneer plants in copper mine tailings were investigated by Illumina MiSeq sequencing, and the effects of pioneer plants on soil properties were also evaluated. Significant soil improvement was detected in rhizospheric samples, and Alnus cremastogyne showed higher total organic matter, total nitrogen, and available phosphorus than two other herbaceous plants. Microbial diversity indices in rhizosphere and bulk soil of reclaimed tailings were significantly higher than bare tailings, even the soil properties of bulk soil in reclaimed tailings were not significantly different from those of bare tailings. A detailed taxonomic composition analysis demonstrated that Alphaproteobacteria and Deltaproteobacteria, Chloroflexi, Acidobacteria, and Gemmatimonadetes showed significantly higher relative abundance in rhizosphere and bulk soil. In contrast, Gammaproteobacteria and Firmicutes were abundant in bare tailings, in which Bacillus, Pseudomonas, and Lactococcus made up the majority of the bacterial community (63.04%). Many species within known heavy metal resistance and nutrient regulatory microorganism were identified in reclaimed tailings, and were more abundant among rhizospheric microbes. Hierarchical clustering and principal coordinate analysis (PCoA) analysis demonstrated that the bacterial profiles in the rhizosphere clustered strictly together according to plant types, and were distinguishable from bulk soil. However, we also identified a large shared OTUs that occurred repeatedly and was unaffected by highly diverse soil properties in rhizosphere and bulk samples. Redundancy analysis indicated that water content and Cu and As concentrations were the main environmental regulators of microbial composition. These results suggest that the interactive effect of pioneer plants and harsh soil environmental conditions remodel the specific bacterial communities in rhizosphere and bulk soil in mine tailings. And A. cremastogyne might be approximate candidate for phytoremediation of mine tailings for better soil amelioration effect and relative higher diversity of bacterial community in rhizosphere.

  15. Dendrochemical evidence for soil recovery from acidic deposition in forests of the northeastern U.S. with comparisons to the southeastern U.S. and Russia

    Treesearch

    Walter C. Shortle; Kevin T. Smith; Andrei G. Lapenis

    2017-01-01

    A soil resampling approach has detected an early stage of recovery in the cation chemistry of spruce forest soil due to reductions in acid deposition. That approach is limited by the lack of soil data and archived soil samples prior to major increases in acid deposition during the latter half of the 20th century. An alternative approach is the dendrochemical analysis...

  16. Microwave assisted solvent extraction and coupled-column reversed-phase liquid chromatography with UV detection use of an analytical restricted-access-medium column for the efficient multi-residue analysis of acidic pesticides in soils.

    PubMed

    Hogendoom, E A; Huls, R; Dijkman, E; Hoogerbrugge, R

    2001-12-14

    A screening method has been developed for the determination of acidic pesticides in various types of soils. Methodology is based on the use of microwave assisted solvent extraction (MASE) for fast and efficient extraction of the analytes from the soils and coupled-column reversed-phase liquid chromatography (LC-LC) with UV detection at 228 nm for the instrumental analysis of uncleaned extracts. Four types of soils, including sand, clay and peat, with a range in organic matter content of 0.3-13% and ten acidic pesticides of different chemical families (bentazone, bromoxynil, metsulfuron-methyl, 2,4-D, MCPA, MCPP, 2,4-DP, 2,4,5-T, 2,4-DB and MCPB) were selected as matrices and analytes, respectively. The method developed included the selection of suitable MASE and LC-LC conditions. The latter consisted of the selection of a 5-microm GFF-II internal surface reversed-phase (ISRP, Pinkerton) analytical column (50 x 4.6 mm, I.D.) as the first column in the RAM-C18 configuration in combination with an optimised linear gradient elution including on-line cleanup of sample extracts and reconditioning of the columns. The method was validated with the analysis of freshly spiked samples and samples with aged residues (120 days). The four types of soils were spiked with the ten acidic pesticides at levels between 20 and 200 microg/kg. Weighted regression of the recovery data showed for most analyte-matrix combinations, including freshly spiked samples and aged residues, that the method provides overall recoveries between 60 and 90% with relative standard deviations of the intra-laboratory reproducibility's between 5 and 25%; LODs were obtained between 5 and 50 microg/kg. Evaluation of the data set with principal component analysis revealed that the parameters (i) increase of organic matter content of the soil samples and (ii) aged residues negatively effect the recovery of the analytes.

  17. Nondestructive characterization of municipal-solid-waste-contaminated surface soil by energy-dispersive X-ray fluorescence and low-Z (atomic number) particle electron probe X-ray microanalysis.

    PubMed

    Gupta, Dhrubajyoti; Ghosh, Rita; Mitra, Ajoy K; Roy, Subinit; Sarkar, Manoranjan; Chowdhury, Subhajit; Bhowmik, Asit; Mukhopadhyay, Ujjal; Maskey, Shila; Ro, Chul-Un

    2011-11-01

    The long-term environmental impact of municipal solid waste (MSW) landfilling is still under investigation due to the lack of detailed characterization studies. A MSW landfill site, popularly known as Dhapa, in the eastern fringe of the metropolis of Kolkata, India, is the subject of present study. A vast area of Dhapa, adjoining the current core MSW dump site and evolving from the raw MSW dumping in the past, is presently used for the cultivation of vegetables. The inorganic chemical characteristics of the MSW-contaminated Dhapa surface soil (covering a 2-km stretch of the area) along with a natural composite (geogenic) soil sample (from a small countryside farm), for comparison, were investigated using two complementary nondestructive analytical techniques, energy-dispersive X-ray fluorescence (EDXRF) for bulk analysis and low-Z (atomic number) particle electron probe X-ray microanalysis (low-Z particle EPMA) for single-particle analysis. The bulk concentrations of K, Rb, and Zr remain almost unchanged in all the soil samples. The Dhapa soil is found to be polluted with heavy metals such as Cu, Zn, and Pb (highly elevated) and Ti, Cr, Mn, Fe, Ni, and Sr (moderately elevated), compared to the natural countryside soil. These high bulk concentration levels of heavy metals were compared with the Ecological Soil Screening Levels for these elements (U.S. Environment Protection Agency) to assess the potential risk on the immediate biotic environment. Low-Z particle EPMA results showed that the aluminosilicate-containing particles were the most abundant, followed by SiO2, CaCO3-containing, and carbonaceous particles in the Dhapa samples, whereas in the countryside sample only aluminosilicate-containing and SiO2 particles were observed. The mineral particles encountered in the countryside sample are solely of geogenic origin, whereas those from the Dhapa samples seem to have evolved from a mixture of raw dumped MSW, urban dust, and other contributing factors such as wind, precipitation, weather patterns, farming, and water logging, resulting in their diverse chemical compositions and the abundant observation of carbonaceous species. Particles containing C and P were more abundant in the Dhapa samples than in the countryside soil sample, suggesting that MSW-contaminated soils are more fertile. However, the levels of particles containing potentially toxic heavy metals such as Cr, Mn, Ni, Cu, Zn, and/or Pb in the Dhapa samples were significant, corroborated by their high bulk concentration levels (EDXRF), causing deep concern for the immediate environment and contamination of the food chain through food crops.

  18. Peat soils stabilization using Effective Microorganisms (EM)

    NASA Astrophysics Data System (ADS)

    Yusof, N. Z.; Samsuddin, N. S.; Hanif, M. F.; Syed Osman, S. B.

    2018-04-01

    Peat soil is known as geotechnical problematic soil since it is the softest soil having highly organic and moisture content which led to high compressibility, low shear strength and long-term settlement. The aim of this study was to obtain the stabilized peat soils using the Effective Microorganisms (EM). The volume of EM added and mixed with peat soils varied with 2%, 4%, 6%, 8% and 10% and then were cured for 7, 14 and 21 days. The experiment was done for uncontrolled and controlled moisture content. Prior conducting the main experiments, the physical properties such as moisture content, liquid limit, specific gravity, and plastic limit etc. were measure for raw peat samples. The Unconfined Compressive Strength (UCS) test was performed followed by regression analysis to check the effect of EM on the soil strength. Obtained results have shown that the mix design for controlled moisture contents showed the promising improvement in their compressive strength. The peat soil samples with 10% of EM shows the highest increment in UCS value and the percentage of increments are in the range of 44% to 65% after curing for 21 days. The regression analysis of the EM with the soil compressive strength showed that in controlled moisture conditions, EM significantly improved the soil stability as the value of R2 ranged between 0.97 – 0.78. The results have indicated that the addition of EM in peat soils provides significant improving in the strength of the soil as well as the other engineering properties.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Sarah L.; Gibbons, Sean M.; Owens, Sarah M.

    Soil microbial communities are essential for ecosystem function, but linking community composition to biogeochemical processes is challenging because of high microbial diversity and large spatial variability of most soil characteristics. We investigated soil bacterial community structure in a switchgrass stand planted on soil with a history of grassland vegetation at high spatial resolution to determine whether biogeographic trends occurred at the centimeter scale. Moreover, we tested whether such heterogeneity, if present, influenced community structure within or among ecosystems. Pronounced heterogeneity was observed at centimeter scales, with abrupt changes in relative abundance of phyla from sample to sample. At the ecosystemmore » scale (> 10 m), however, bacterial community composition and structure were subtly, but significantly, altered by fertilization, with higher alpha diversity in fertilized plots. Moreover, by comparing these data with data from 1772 soils from the Earth Microbiome Project, it was found that 20% diverse globally sourced soil samples, while grassland soils shared approximately 40% of their operational taxonomic units with the current study. By spanning several orders of magnitude, the analysis suggested that extreme patchiness characterized community structure at smaller scales but that coherent patterns emerged at larger length scales.« less

  20. Method for evaluating moisture tensions of soils using spectral data

    NASA Technical Reports Server (NTRS)

    Peterson, John B. (Inventor)

    1982-01-01

    A method is disclosed which permits evaluation of soil moisture utilizing remote sensing. Spectral measurements at a plurality of different wavelengths are taken with respect to sample soils and the bidirectional reflectance factor (BRF) measurements produced are submitted to regression analysis for development therefrom of predictable equations calculated for orderly relationships. Soil of unknown reflective and unknown soil moisture tension is thereafter analyzed for bidirectional reflectance and the resulting data utilized to determine the soil moisture tension of the soil as well as providing a prediction as to the bidirectional reflectance of the soil at other moisture tensions.

  1. Distinctive soil organic matter composition in a precipitation contrast of a Hawaiian Andosol

    NASA Astrophysics Data System (ADS)

    Inagaki, Thiago M.; Grant, Katherine; Mueller, Carsten W.; Lehmann, Johannes; Derry, Louis A.; Kögel-Knabner, Ingrid

    2017-04-01

    Volcanic Andosols are recognized by their strong capacity to accumulate soil organic carbon (SOC), and for presenting a singular aggregation pattern. However, the factors which govern their SOC storage and aggregation hierarchy are still poorly understood. In addition, many methods of fractionation are proposed for these soils and there is no consensus regarding the ideal methodology. In this way, the objective of this study was to evaluate the soil organic matter (SOM) properties of an Andosol through CN analysis, NMR spectroscopy, and Scanning electron microscopy (SEM) + NanoSIMS analysis in the soil mineral fraction testing different dispersion treatments. We tested three Andosol samples from two different sites of the Kohala region - Hawaii with contrasting precipitation levels. The samples tested were as follow: 1784-60 (altitude-average depth cm) and 1784-80: subsoil samples from 0.5-0.7 and 0.7-0.9 m depth, respectively, with annual mean precipitation of 1784 mm and altitude of 1194 m; and 2286-50: subsoil sample from 45-60 cm depth, with annual mean precipitation of 2286 mm and altitude of 1501 m. We performed the SOM fractionation using ultrasonic dispersion at 1500 J ml-1, wet sieving and sedimentation. Five fractions were obtained as follow: free particulate organic matter (fPOM), 4000-63, 63-20, 20-2 and < 2µm, respectively. We made the fractionation procedure in two sets: with and without a pre-dispersion treatment with Na saturation to test its influence on the SOM characterization. The C content and distribution was analyzed in all the fractions, and the NMR and SEM+NanoSIMS analysis were carried out in the fraction <2µm of 1784-60 and 1784-80 samples. Overall, the pre-dispersion treatment with NaCL saturation did not influence the C content and its distribution, as well as the SOM composition observed by NMR and NanoSIMS analysis. More than 90% of the soil mass was concentrated in the fractions below 20 µm (i.e. 20-2 and <2µm). The <2µm fraction was the most representative for the evaluated Andosol, accounting with 83% of the C content and 74% of the soil mass for the three samples evaluated overall. The 2286-50 presented a higher C content than the other samples specially for fPOM and 63-20 µm fraction. The C and mass distribution along the fractions, on the other hand, was similar between the different soil samples. We observed a great difference in the SOM composition between the 1784-60 and 2286-50 samples in the mineral fraction (<2µm) through NMR spectroscopy. 2286-50 overall presented a dominance of alkyl-C, while 1784-60 presented higher amounts of carboxyl-C and O/N alkyl groups, which can be possibly be explained by differences in the mineral composition of each sample. Also the NanoSIMS analysis demonstrated distinct spatial differences in the distribution of 12C- and 12C14N- in organo-mineral associations at the micro scale between the two sites. The results of this study suggest that mineral interactions in the smaller size-fractions (<2µm) can be the key to explain the mechanisms of C storage in Andosols and that the pre-dispersion treatment with NaCL does not provide significant changes in the SOM study.

  2. Source identification and spatial distribution of heavy metals in tobacco-growing soils in Shandong province of China with multivariate and geostatistical analysis.

    PubMed

    Liu, Haiwei; Zhang, Yan; Zhou, Xue; You, Xiuxuan; Shi, Yi; Xu, Jialai

    2017-02-01

    Samples of surface soil from tobacco (Nicotiana tabacum L.) fields were analysed for heavy metals and showed the following concentrations (mean of 246 samples, mg/kg): As, 5.10; Cd, 0.11; Cr, 49.49; Cu, 14.72; Hg, 0.08; Ni, 19.28; Pb. 20.20 and Zn, 30.76. The values of the index of geoaccumulation (I geo ) and of the enrichment factor indicated modest enrichment with As, Cd, Cr, Hg, Ni or Pb. Principal component analysis and cluster analysis correctly allocated each investigated element to its source, whether anthropogenic or natural. The results were consistent with estimated inputs of heavy metals from fertilizers, irrigation water and atmospheric deposition. The variation in the concentrations of As, Cd, Cu, Pb and Zn in the soil was mainly due to long-term agricultural practises, and that of Cr and Ni was mainly due to the soil parent material, whereas the source of Hg was industrial activity, which ultimately led to atmospheric deposition. Atmospheric deposition was the main exogenous source of heavy metals, and fertilizers also played an important role in the accumulation of these elements in soil. Identifying the sources of heavy metals in agricultural soils can serve as a basis for appropriate action to control and reduce the addition of heavy metals to cultivated soils.

  3. Loss of surface horizon of an irrigated soil detected by radiometric images of normalized difference vegetation index.

    NASA Astrophysics Data System (ADS)

    Fabian Sallesses, Leonardo; Aparicio, Virginia Carolina; Costa, Jose Luis

    2017-04-01

    The use of the soil in the Humid Pampa of Argentina has changed since the mid-1990s from agricultural-livestock production (that included pastures with direct grazing) to a purely agricultural production. Also, in recent years the area under irrigation by central pivot has been increased to 150%. The waters used for irrigation are sodium carbonates. The combination of irrigation and rain increases the sodium absorption ratio of soil (SARs), consequently raising the clay dispersion and reducing infiltration. This implies an increased risk of soil loss. A reduction in the development of white clover crop (Trifolium repens L.) was observed at an irrigation plot during 2015 campaign. The clover was planted in order to reduce the impact of two maize (Zea mays L.) campaigns under irrigation, which had increased soil SAR and deteriorated soil structure. SPOT-5 radiometric normalized difference vegetation index (NDVI) images were used to determine two zones of high and low production. In each zone, four random points were selected for further geo-referenced field sampling. Two geo-referenced measures of effective depth and surface soil sampling were carried out in each point. Texture of soil samples was determined by Pipette Method of Sedimentation Analysis. Data exploratory analysis showed that low production zone had a media effective depth = 80 cm and silty clay loam texture, while high production zone had a media effective depth > 140 cm and silt loam texture. The texture class of the low production zone did not correspond to prior soil studies carried out by the INTA (National Institute of Agricultural Technology), which showed that those soil textures were silt loam at surface and silty clay loam at sub-surface. The loss of the A horizon is proposed as a possible explanation, but further research is required. Besides, the need of a soil cartography actualization, which integrates new satellite imaging technologies and geo-referenced measurements with soil sensors is emphasized. Key words: soil use change, satellite images, erosion.

  4. Static sampling of dynamic processes - a paradox?

    NASA Astrophysics Data System (ADS)

    Mälicke, Mirko; Neuper, Malte; Jackisch, Conrad; Hassler, Sibylle; Zehe, Erwin

    2017-04-01

    Environmental systems monitoring aims at its core at the detection of spatio-temporal patterns of processes and system states, which is a pre-requisite for understanding and explaining their baffling heterogeneity. Most observation networks rely on distributed point sampling of states and fluxes of interest, which is combined with proxy-variables from either remote sensing or near surface geophysics. The cardinal question on the appropriate experimental design of such a monitoring network has up to now been answered in many different ways. Suggested approaches range from sampling in a dense regular grid using for the so-called green machine, transects along typical catenas, clustering of several observations sensors in presumed functional units or HRUs, arrangements of those cluster along presumed lateral flow paths to last not least a nested, randomized stratified arrangement of sensors or samples. Common to all these approaches is that they provide a rather static spatial sampling, while state variables and their spatial covariance structure dynamically change in time. It is hence of key interest how much of our still incomplete understanding stems from inappropriate sampling and how much needs to be attributed to an inappropriate analysis of spatial data sets. We suggest that it is much more promising to analyze the spatial variability of processes, for instance changes in soil moisture values, than to investigate the spatial variability of soil moisture states themselves. This is because wetting of the soil, reflected in a soil moisture increase, is causes by a totally different meteorological driver - rainfall - than drying of the soil. We hence propose that the rising and the falling limbs of soil moisture time series belong essentially to different ensembles, as they are influenced by different drivers. Positive and negative temporal changes in soil moisture need, hence, to be analyzed separately. We test this idea using the CAOS data set as a benchmark. Specifically, we expect the covariance structure of the positive temporal changes of soil moisture to be dominated by the spatial structure of rain- and through-fall and saturated hydraulic conductivity. The covariance in temporarily decreasing soil moisture during radiation driven conditions is expect to be dominated by the spatial structure of retention properties and plant transpiration. An analysis of soil moisture changes has furthermore the advantage that those are free from systematic measurement errors.

  5. Chemical Analysis of Soils: An Environmental Chemistry Laboratory for Undergraduate Science Majors.

    ERIC Educational Resources Information Center

    Willey, Joan D.; Avery, G. Brooks, Jr.; Manock, John J.; Skrabal, Stephen A.; Stehman, Charles F.

    1999-01-01

    Describes a laboratory exercise for undergraduate science students in which they evaluate soil samples for various parameters related to suitability for crop production and capability for retention of contaminants. (Contains 18 references.) (WRM)

  6. Comparison of soil pollution concentrations determined using AAS and portable XRF techniques.

    PubMed

    Radu, Tanja; Diamond, Dermot

    2009-11-15

    Past mining activities in the area of Silvermines, Ireland, have resulted in heavily polluted soils. The possibility of spreading pollution to the surrounding areas through dust blow-offs poses a potential threat for the local communities. Conventional environmental soil and dust analysis techniques are very slow and laborious and consequently there is a need for fast and accurate analytical methods, which can provide real-time in situ pollution mapping. Laboratory-based aqua regia acid digestion of the soil samples collected in the area followed by the atomic absorption spectrophotometry (AAS) analysis confirmed very high pollution, especially by Pb, As, Cu, and Zn. In parallel, samples were analyzed using portable X-ray fluorescence radioisotope and miniature tube powered (XRF) NITON instruments and their performance was compared. Overall, the portable XRF instrument gave excellent correlation with the laboratory-based reference AAS method.

  7. Matrix effects in applying mono- and polyclonal ELISA systems to the analysis of weathered oils in contaminated soil.

    PubMed

    Pollard, S J T; Farmer, J G; Knight, D M; Young, P J

    2002-01-01

    Commercial mono- and polyclonal enzyme-linked immunosorbent assay (ELISA) systems were applied to the on-site analysis of weathered hydrocarbon-contaminated soils at a former integrated steelworks. Comparisons were made between concentrations of solvent extractable matter (SEM) determined gravimetrically by Soxhlet (dichloromethane) extraction and those estimated immunologically by ELISA determination over a concentration range of 2000-330,000 mg SEM/kg soil dry weight. Both ELISA systems tinder-reported for the more weathered soil samples. Results suggest this is due to matrix effects in the sample rather than any inherent bias in the ELISA systems and it is concluded that, for weathered hydrocarbons typical of steelworks and coke production sites, the use of ELISA requires careful consideration as a field technique. Consideration of the target analyte relative to the composition of the hydrocarbon waste encountered appears critical.

  8. Preliminary study of soil permeability properties using principal component analysis

    NASA Astrophysics Data System (ADS)

    Yulianti, M.; Sudriani, Y.; Rustini, H. A.

    2018-02-01

    Soil permeability measurement is undoubtedly important in carrying out soil-water research such as rainfall-runoff modelling, irrigation water distribution systems, etc. It is also known that acquiring reliable soil permeability data is rather laborious, time-consuming, and costly. Therefore, it is desirable to develop the prediction model. Several studies of empirical equations for predicting permeability have been undertaken by many researchers. These studies derived the models from areas which soil characteristics are different from Indonesian soil, which suggest a possibility that these permeability models are site-specific. The purpose of this study is to identify which soil parameters correspond strongly to soil permeability and propose a preliminary model for permeability prediction. Principal component analysis (PCA) was applied to 16 parameters analysed from 37 sites consist of 91 samples obtained from Batanghari Watershed. Findings indicated five variables that have strong correlation with soil permeability, and we recommend a preliminary permeability model, which is potential for further development.

  9. Thermal volatilization (TV) of different hyperarid Mars like-soils from the Atacama Desert: Implications for the analysis of the Phoenix Mission

    NASA Astrophysics Data System (ADS)

    Valdivia-Silva, J. E.; Navarro-Gonzalez, R.; McKay, C. P.

    2008-09-01

    The Phoenix spacecraft will search for organics in the soil and ice in the Martian north polar regions using thermal volatilization (TV) followed by mass spectrometry (MS). This experiment is a combination of a high-temperature furnace and a mass spectrometer that will be use to analyze samples delivered to instrument via a robotic arm. The samples will be heated from ambient to 1000ºC while evolved gases, including organic molecules and fragments, if they are present, will be simultaneously measured by a magnetic sector mass spectrometer (1). Our laboratory has developed a sample characterization method using a pyrolizer integrated to a quadrupole mass spectrometer to support the interpretations of TV data. The Atacama Desert, on northern Chile and southern Peru, has been considered the most arid region over the world (2) and an excellent Mars-like soil analogous (3). These soils contain very low levels to organic matter (10-40 ppm of organic C), and exotic mineralogical composition including iron oxides, which are common characteristics expected on Mars. A previous paper that examined the release of organics from samples soils by flash TV (pyrolisis) coupled to GC-MS (4). This work showed low efficiency of flash TV in soils with low organics or high contents of iron minerals. In addition, other study of agricultural soils showed low correlation between organics concentration and TV response, when levels of total organic matter were below 50000 ppm C or high presence of iron oxides (5). However, the efficiency of gradual heating by TV analysis from hyperarid soils has not been investigated. Here we examine the thermal and evolved gas properties of six types of soils from the two hyperarid core regions from the Atacama Desert: Yungay (northern Chile) and Pampas de La Joya (southern Peru), in order to investigate the effect of soil matrix and low organics contents over TV response. Between 20 to 40 mg of soil was loaded in a capillary quartz tube and it was mounted in the center of platinum coil filament pyrolizer probe. Then sample into de quartz tube was subjected to a thermal treatment from 30°C to 1200°C with a heating rate of 20°C/min. The resulting volatiles evolved from the sample were carried away by helium and transferred into a HP quadrupole mass spectrometer operating in electron ionization mode at 70 eV with a resolution of 1m/z. The mass analyzer was scanned from 10 to 200 m/z at a rate 5.3 scans per second. The nominal sensitivity of the mass analyzer is 0.02 ppb of hexachlorobenzene. Blanks were prepared with no soil added. As expected, there were significant differences in the evolved gas behaviors between soils samples depending of the soil matrix under similar heating conditions. First, the samples belonging to the most arid environments (PE001, PE389) had significant differences compared with less arid soils (PE378, PE386). Carbon in hyperarid soils, in the form of CO2 (ion 44 m/z) began its release to 330±30°C, while the less arid soils to 245±45°C. Volatile ions released from soils during TV-MS analysis were analyzed searching organics fragments. Soil type VI (PE-001), which contains ~11.4 ppm organic C, showed the release of the following mass fragments: 18, 44, 48, 64, and 66. Sources for the release of CO2 in TV analysis of soils comes to oxidation of organic matter (<600ºC), and thermal decomposition of carbonates (>600ºC). Mass 18 originates from water releasing in the course of dehydration processes that is bound in soil minerals, and from oxidation of organics in different temperatures depending the mineral fraction in the soil. The masses 48, 64, and 66 have similar thermal properties, beginning to be released at ~370°C and continue to rise up to 1200°C. These masses are due to the decomposition of sulfates into SO+, SO2 +, and S34O2 +. Mass 66 is detected only if the abundance of mass 64 is very high. TV traces from soils type V (PE-276), type I (PE-361), and type II (PE-388), which contain low organics concentrations (3-23 ppm of organic C), presented similar ions released to soil type VI, but with some variations at times of peak start or maximum release. The TV-MS trace for soil type IV (PE-287) showed the release of the following ions: 16, 18, 36, 44, 48, and 64. In this soil, the mass 44 showed the highest value at >760°C, probably by thermal decomposition of carbonates at higher temperatures; however at 700ºC, CO2 could result from the decomposition oxidation of refractory organics that have been detected by pyrolisis-GC-MS at 750ºC (4). In contrast, the TV-MS trace for sample soil type III (PE-386), which contains 35 ppm of organic C, showed the release of the following major mass fragments (m/z): 18, 30, 36, 44, 48 and 64 (Figure 1). EPSC Abstracts, Vol. 3, EPSC2008-A-00490, 2008 European Planetary Science Congress, Author(s) 2008 Probably, the mass 30 is due to NO that evolves from the thermal oxidation of N-organics at low temperature or degradation of nitrates at high temperatures. Additionally, ion 36 could be due to thermal degradation to chlorides. Our results show interesting ions released from Marslike soils by TV analysis, however soils that have low levels to organic carbon (3-40 ppm), were not detected by this method. If the concentrations of organics in the soils and ice on Mars at the Phoenix landing site are low than 30 ppm, the experiment could fail. Recently, our laboratory investigated the presence of organics in the samples soils by the release of NO (mass 30) at low temperatures using TV-MS (Research submitted). Hence, Phoenix mission could have an option in the searching for organic matter on Mars. These data indicate the importance of the study of Mars-like soils to prevent similar problems in space research.

  10. Differential soil water sourcing of managed Loblolly Pine and Sweet Gum revealed by stable isotopes in the Upper Coastal Plain, USA

    NASA Astrophysics Data System (ADS)

    Brockman, L. E.; Younger, S. E.; Jackson, C. R.; McDonnell, J.; Janzen, K. F.

    2017-12-01

    Stable isotope signatures of stem water can illuminate where in the soil profile different types of trees are accessing soil water and thereby contribute to our understanding of water movement through the soil plant atmosphere continuum. The objective of this study was to use 2H and 18O isotopes to characterize water sources of fourteen-year-old intensively managed Loblolly Pine and Sweet Gum stands in replicated (n=3) paired plots. In order to differentiate the isotopic signatures of tree and soil water, both species and five soil depths were sampled monthly for one year. Tree sap and soil water were extracted cryogenically and their isotopic signatures were determined. Although plant water uptake is generally considered a non-fractionating process, our dataset suggests a source of fractionation in 2H signatures in both species and during most of the thirteen sampling events. As a result, only the 18O isotopic data were used to determine the vertical distribution of soil water contributions to stem water. Statistically, we grouped the five soil sampling depths into three isotopic horizons. Shallow, intermediate and deep soil represent sampling depths of 0-10cm, 30-70cm and 100-125cm, respectively. These isotopic horizons were used in a direct inference approach and Bayesian mixing model analysis to determine the origin of stem water. In this study, Loblolly Pine used more water from intermediate and deep soil while Sweet Gum used more water from shallow and intermediate soil. In the winter months, January through March, Loblolly Pine transpired primarily deep soil where as Sweet Gum mainly utilized shallow soil for transpiration. These results indicate that both species have opportunistic water use patterns with seasonal variation.

  11. [Pollution characteristics and sources of polycyclic aromatic hydrocarbons in riparian soils along urban rivers of Wenzhou city].

    PubMed

    Zhou, Jie-Cheng; Bi, Chun-Juan; Chen, Zhen-Lou; Wang, Lu; Xu, Shi-Yuan; Pan, Qi

    2012-12-01

    Twenty one riparian soil samples along Jiushanwai River and Shanxia River of Wenzhou city were collected in August 2010 to investigate the pollution characteristics of polycyclic aromatic hydrocarbons (PAHs). The samples were extracted by an accelerated solvent extractor (ASE), purified by a purification column and determined by GC-MS. Results showed that the total concentrations of PAHs in the riparian soils ranged from 60.7 ng x g(-1) to 3 871.3 ng x g(-1), and the concentrations of sigma PAHs in soils along the Shanxia River were significantly lower than the levels along Jiushanwai River. The dominant compounds were 2 to 3 rings in the riparian soils along both rivers, which in average accounted for 62.47% - 72.51% in sigma PAHs. Compared with the PAHs concentrations in soils of other areas in the world, the riparian soils of the studied rivers were moderately polluted by PAHs, but the concentrations of BaP in three soil samples were much higher than the soil standard value of the former Soviet Union, which should be paid more attention. Based on the ratios of Ant/(Ant + Phe) and Fla/(Fla + Pyr) and principal component analysis results, PAHs in riparian soils of the studied rivers were mainly derived from both the petroleum and combustion.

  12. Reconnaissance techniques for determining soil-gas radon concentrations: an example from Prince Georges County, Maryland

    USGS Publications Warehouse

    Reimer, G.M.

    1990-01-01

    Radon reconnaissance requires some special considerations because a large area must be covered in a short period of time and analyses must be made soon after collection because of Rn decay. A simple approach to collection and field analysis consists of a small-diameter probe pounded into the ground to a depth of at least 0.75 m. Analysis is by an alpha-scintillometer. Soil-gas samples collected along a traverse in Prince Georges County, Maryland, demonstrates the utility of the technique. The reconnaissance sampling revealed Rn soil-gas concentrations of up to 2500 pCi/L (picocuries per liter) indicating that the potential exists for indoor accumulations in excess of 4 pCi/L. -from Author

  13. Assessment of Potential Location of High Arsenic Contamination Using Fuzzy Overlay and Spatial Anisotropy Approach in Iron Mine Surrounding Area

    PubMed Central

    Wirojanagud, Wanpen; Srisatit, Thares

    2014-01-01

    Fuzzy overlay approach on three raster maps including land slope, soil type, and distance to stream can be used to identify the most potential locations of high arsenic contamination in soils. Verification of high arsenic contamination was made by collection samples and analysis of arsenic content and interpolation surface by spatial anisotropic method. A total of 51 soil samples were collected at the potential contaminated location clarified by fuzzy overlay approach. At each location, soil samples were taken at the depth of 0.00-1.00 m from the surface ground level. Interpolation surface of the analysed arsenic content using spatial anisotropic would verify the potential arsenic contamination location obtained from fuzzy overlay outputs. Both outputs of the spatial surface anisotropic and the fuzzy overlay mapping were significantly spatially conformed. Three contaminated areas with arsenic concentrations of 7.19 ± 2.86, 6.60 ± 3.04, and 4.90 ± 2.67 mg/kg exceeded the arsenic content of 3.9 mg/kg, the maximum concentration level (MCL) for agricultural soils as designated by Office of National Environment Board of Thailand. It is concluded that fuzzy overlay mapping could be employed for identification of potential contamination area with the verification by surface anisotropic approach including intensive sampling and analysis of the substances of interest. PMID:25110751

  14. Simultaneous determination of inorganic and organic ions in plant parts of Betula pendula from two different types of ecosystems (Wielkopolski National Park and Chemical Plant in Luboń, Poland).

    PubMed

    Frankowski, Marcin

    2016-06-01

    The results of inorganic and organic anion concentrations in samples of soils and plant parts of Betula pendula (tap roots, lateral roots, stem, twigs, leaves), in the bioavailable fraction, are presented in this study. An ion chromatography method was applied for the first time in the simultaneous determination of inorganic and organic anions, as an effective tool for qualitative and quantitative analysis of samples with different matrix. A linear gradient elution with potassium hydroxide allowed for the separation of both inorganic and organic ions such as: F(-), CH3COO(-), HCOO(-), Cl(-), NO2 (-), Br(-) and NO3 (-), SO4 (2-), CH2(COO)2 (2-), C2O4 (2-), PO4 (3-) and C3H5O(COO)3 (3-). The samples of soils and plant parts of B. pendula from the area of the Wielkopolski National Park (WNP) and the Chemical Plant in Luboń (LU; protected vs. contaminated area) were selected for the study. The obtained results indicated that such inorganic ions as: F(-), Cl(-), NO3 (-) and PO4 (3-) are quite easily transported from soil to leaves. In contrast, the mechanism of migration could not be clearly defined for SO4 (2-) because the ion was retained in roots of many of the analysed samples. Significantly higher bioavailability of inorganic ions was observed for samples collected from the area of the WNP. Phosphates were the only ions which showed no variation in their concentrations between the two sampling sites, both for soils and plant parts of B. pendula. None of the organic anions was detected in soil samples. The acetate, formate, malonate, oxalate and citrate ions were detected in all leaf samples. The statistical analysis allowed the author to determine the mechanism of ion migration and accumulation in leaves and, additionally, determine the variation in the occurrence of inorganic and organic ions depending on the sampling site (WNP vs. LU). The results of the statistical analysis were confirmed by the bioacumulation (BF) and translocation (TF) factors.

  15. Culture-independent analysis of hydrocarbonoclastic bacterial communities in environmental samples during oil-bioremediation.

    PubMed

    Dashti, Narjes; Ali, Nedaa; Salamah, Samar; Khanafer, Majida; Al-Shamy, Ghada; Al-Awadhi, Husain; Radwan, Samir S

    2018-04-15

    To analyze microbial communities in environmental samples, this study combined Denaturing Gradient Gel Electrophoresis of amplified 16S rRNA-genes in total genomic DNA extracts from those samples with gene sequencing. The environmental samples studied were oily seawater and soil samples, that had been bioaugmented with natural materials rich in hydrocarbonoclastic bacteria. This molecular approach revealed much more diverse bacterial taxa than the culture-dependent method we had used in an earlier study for the analysis of the same samples. The study described the dynamics of bacterial communities during bioremediation. The main limitation associated with this molecular approach, namely of not distinguishing hydrocarbonoclastic taxa from others, was overcome by consulting the literature for the hydrocarbonoclastic potential of taxa related to those identified in this study. By doing so, it was concluded that the hydrocarbonoclastic bacterial taxa were much more diverse than those captured by the culture-dependent approach. The molecular analysis also revealed the frequent occurrence of nifH-genes in the total genomic DNA extracts of all the studied environmental samples, which reflects a nitrogen-fixation potential. Nitrogen fertilization is long known to enhance microbial oil-bioremediation. The study revealed that bioaugmentation using plant rhizospheres or soil with long history of oil-pollution was more effective in oil-removal in the desert soil than in seawater microcosms. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  16. Hyperspectral Imaging Analysis for the Classification of Soil Types and the Determination of Soil Total Nitrogen

    PubMed Central

    Jia, Shengyao; Li, Hongyang; Wang, Yanjie; Tong, Renyuan; Li, Qing

    2017-01-01

    Soil is an important environment for crop growth. Quick and accurately access to soil nutrient content information is a prerequisite for scientific fertilization. In this work, hyperspectral imaging (HSI) technology was applied for the classification of soil types and the measurement of soil total nitrogen (TN) content. A total of 183 soil samples collected from Shangyu City (People’s Republic of China), were scanned by a near-infrared hyperspectral imaging system with a wavelength range of 874–1734 nm. The soil samples belonged to three major soil types typical of this area, including paddy soil, red soil and seashore saline soil. The successive projections algorithm (SPA) method was utilized to select effective wavelengths from the full spectrum. Pattern texture features (energy, contrast, homogeneity and entropy) were extracted from the gray-scale images at the effective wavelengths. The support vector machines (SVM) and partial least squares regression (PLSR) methods were used to establish classification and prediction models, respectively. The results showed that by using the combined data sets of effective wavelengths and texture features for modelling an optimal correct classification rate of 91.8%. could be achieved. The soil samples were first classified, then the local models were established for soil TN according to soil types, which achieved better prediction results than the general models. The overall results indicated that hyperspectral imaging technology could be used for soil type classification and soil TN determination, and data fusion combining spectral and image texture information showed advantages for the classification of soil types. PMID:28974005

  17. [Parameters optimization and cleaning efficiency evaluation of attrition scrubbing remediation of Pb-contaminated soil].

    PubMed

    Yang, Wen; Huang, Jin-lou; Peng, Hui-qing; Li, Si-tuo

    2013-09-01

    Attrition scrubbing was used to remediate lead contaminated-site soil, and the main purpose was to remove fine particles and lead contaminants from the surface of sand. The optimal parameters of attrition scrubbing were determined by orthogonal experiment, and three soil samples with different lead concentration were subjected to attrition scrubbing experiments. The results showed that the optimal scrubbing parameters were: a solid ratio of 70% dry matter, a temperature of 25 degrees C, an attrition time of 30 min, and an attrition speed of 1200 r x min(-1). Before attrition scrubbing, the screening and analysis of soil showed that in all three soil samples, lead was mainly enriched on sand and fine particles, and the distribution of lead was highly correlated to the organic matter. After attrition scrubbing, the washing efficiency of the original state lead contaminated sand soil in triplicates was 67.61%, 31.71% and 41.01%, respectively, which indicates that attrition scrubbing can remove part of the fine soil and lead contaminants from the surface of sand, to accomplish the purpose of pollutants enrichment. Scanning electron microscopy (SEM) analysis showed that the sand surface became smooth after attrition scrubbing. The results above show that attrition scrubbing has a good washing effect for the remediation of lead contaminated sand soil.

  18. Analysis of heavy metal sources in soil using kriging interpolation on principal components.

    PubMed

    Ha, Hoehun; Olson, James R; Bian, Ling; Rogerson, Peter A

    2014-05-06

    Anniston, Alabama has a long history of operation of foundries and other heavy industry. We assessed the extent of heavy metal contamination in soils by determining the concentrations of 11 heavy metals (Pb, As, Cd, Cr, Co, Cu, Mn, Hg, Ni, V, and Zn) based on 2046 soil samples collected from 595 industrial and residential sites. Principal Component Analysis (PCA) was adopted to characterize the distribution of heavy metals in soil in this region. In addition, a geostatistical technique (kriging) was used to create regional distribution maps for the interpolation of nonpoint sources of heavy metal contamination using geographical information system (GIS) techniques. There were significant differences found between sampling zones in the concentrations of heavy metals, with the exception of the levels of Ni. Three main components explaining the heavy metal variability in soils were identified. The results suggest that Pb, Cd, Cu, and Zn were associated with anthropogenic activities, such as the operations of some foundries and major railroads, which released these heavy metals, whereas the presence of Co, Mn, and V were controlled by natural sources, such as soil texture, pedogenesis, and soil hydrology. In general terms, the soil levels of heavy metals analyzed in this study were higher than those reported in previous studies in other industrial and residential communities.

  19. Practical soil analysis by laser induced breakdown spectroscopy employing subtarget supported micro mesh as a powder sample holder

    NASA Astrophysics Data System (ADS)

    Suyanto, Hery; Lie, Tjung Jie; Kurniawan, Koo Hendrik; Kagawa, Kiichiro; Tjia, May On

    2017-11-01

    A practical alternative of sample preparation technique is proposed for direct powder analysis using laser-induced breakdown spectroscopy (LIBS) instead of the commonly adopted treatment of pelletizing the powder. The resulted pellet is known to suffer from reduced sensitivity of emission. Besides, it may also give rise to interfering effect from the binder emission. We introduce in this report a more practical technique of using a subtarget supported micro mesh (SSMM) powder sample holder. The LIBS spectrum of standard soil powder measured with 13 mJ 1064 nm Nd:YAG laser in 0.65 kPa ambient air is shown to exhibit the sharp emission lines of all the major elements in the sample. A comparison with the emission spectra measured from the pelletized powder, the spectrum obtained using the SSMM sample holder shows distinctly superior spectral quality marked by the absence of matrix effect found in pelletized powder samples, and the much stronger intensity due to the more effective shock wave plasma induced thermal excitation process produced by the hard subtarget in the sample holder. Repeating the measurement on a number of the standard soil samples of various Pb contents is shown to yield a linear calibration line with practically zero intercept and a detection limit of less than 10 ppm. We have thus demonstrated the viability of the proposed powder sample holder for the development of practical and quantitative powder analysis in the field.

  20. Development of a Multianalyte Enzyme-Linked Immunosorbent Assay for Permethrin and Aroclors and Its Implementation for Analysis of Soil/Sediment and House Dust ExtractsExtracts

    EPA Science Inventory

    Development of a multianalyte enzyme-linked immunosorbent assay (ELISA) for detection of permethrin and aroclors 1248 or 1254, and implementation of the assay for analysis of soil/sediment samples are described. The feasibility of using the multianalyte ELISA to monitor aroclors ...

  1. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR EXTRACTION OF SOIL/HOUSE DUST FOR GC/MS ANALYSIS OF PESTICIDES (BCO-L-14.0)

    EPA Science Inventory

    The purpose of this SOP is to describe procedures for extracting and preparing dust or soil samples for gas chromatography/mass spectrometry (GC/MS) analysis of pesticides. This procedure was followed to ensure consistent data retrieval during the Arizona NHEXAS project and the "...

  2. Near infrared spectra are more sensitive to land use changes than physical, chemical and biological soil properties

    NASA Astrophysics Data System (ADS)

    Guerrero, C.; Zornoza, R.; Mataix-Solera, J.; Mataix-Beneyto, J.; Scow, K.

    2009-04-01

    We studied the sensibility of the near infrared spectra (NIR) of soils to the changes caused by land use, and we compared with the sensibility of different sets of physical, chemical and biological soil properties. For this purpose, we selected three land uses, constituted by forest, almond trees orchards, and orchards abandoned between 10 and 15 years previously to sampling. Sampling was carried out in four different locations from the province of Alicante (SE Spain). We used discriminant analysis (DA) using different sets of soil properties. The different sets tested in this study using DA were: (1) physical and chemical properties (organic carbon, total nitrogen, available phosphorus, pH, electrical conductivity, cation exchange capacity, aggregate stability, water holding capacity, and available Ca, Mg, K and Na), (2) biochemical properties (microbial biomass carbon, basal respiration and urease, phosphatase and β-glucosidase activities), (3) phospholipids fatty acids (PLFAs), (4) physical, chemical and biochemical properties (all properties of the previous sets), and (5) the NIR spectra of soils (scores of the principal components). In general, all sets of properties were sensible to land use. This was observed in the DAs by the separation (more or less clear) of samples in groups defined by land use (irrespective of site). The worst results were obtained using soil physical and chemical properties. The combination of physical, chemical and biological properties enhanced the separation of samples in groups, indicating higher sensibility. It is accepted than combination of properties of different nature is more effective to evaluate the soil quality. The microbial community structure (PLFAs) was highly sensible to the land use, grouping correctly the 100% of the samples according with the land use. The NIR spectra were also sensitive to land use. The scores of the first 5 components, which explained 99.97% of the variance, grouped correctly the 85% of the soil samples by land use, but were unable to group correctly the 100% of the samples. Surprisingly, when the scarce variance presents in components 5 to 40 was also used, the 100% of the samples were grouped by land use, as it was observed with PLFAs. But PLFAs analysis is expensive and time-consuming (some weeks). In contrast, only some minutes are needed for the obtainment of the NIR spectra. Additionally, no chemicals are need, decreasing the costs. The NIR spectrum of a soil contains relevant information about physical, chemical and biochemical properties. NIR spectrum could be considered as an integrated vision of soil quality, and as consequence offers an integrated vision of perturbations. Thus, NIR spectroscopy could be used as tool to monitoring soil quality in large areas. Acknowledgements: Authors acknowledge to "Bancaja-UMH" for the financial support of the project "NIRPRO"

  3. Hazardous impact and translocation of vanadium (V) species from soil to different vegetables and grasses grown in the vicinity of thermal power plant.

    PubMed

    Khan, Sumaira; Kazi, Tasneem Gul; Kolachi, Nida Fatima; Baig, Jameel Ahmed; Afridi, Hassan Imran; Shah, Abdul Qadir; Kumar, Sham; Shah, Faheem

    2011-06-15

    The distribution of vanadium (V) species in soil (test soil), vegetables and grasses, collected from the vicinity of a thermal power plant has been studied. For comparison purpose soil (control soil), same vegetable and grass samples were collected from agricultural land devoid of any industrial area. A simple and efficient ultrasonic assisted extraction method has been developed for the extraction of V(5+) species from soil, vegetable and grass samples using Na(2)CO(3) in the range of 0.1-0.5 mol/L. For comparison purpose same sub samples were also extracted by conventional heating method. The total and V species were determined by electrothermal atomic absorption spectrometry using different modifiers. The validity of V(5+) and V(4+) determination had been confirmed by the spike recovery and total amount of V by the analysis of CRM 1570 (spinach leave) and sub samples of agricultural soil. The concentration of total V was found in the range of 90-215 and 11.4-42.3 μg/g in test and control soil samples, respectively. The contents of V(5+) and total V in vegetables and grasses grown around the thermal power plant were found in the range of 2.9-5.25 and 8.74-14.9 μg/g, respectively, which were significantly higher than those values obtained from vegetables and fodders grown in non exposed agricultural site (P<0.01). Statistical evaluations indicate that the sum of concentrations of V(5+) and V(4+) species was not significantly different from total concentration of V in same sub samples of vegetable, grass and soil of both origins, at 95% level of confidence. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. In situ semi-quantitative analysis of polluted soils by laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Ismaël, Amina; Bousquet, Bruno; Michel-Le Pierrès, Karine; Travaillé, Grégoire; Canioni, Lionel; Roy, Stéphane

    2011-05-01

    Time-saving, low-cost analyses of soil contamination are required to ensure fast and efficient pollution removal and remedial operations. In this work, laser-induced breakdown spectroscopy (LIBS) has been successfully applied to in situ analyses of polluted soils, providing direct semi-quantitative information about the extent of pollution. A field campaign has been carried out in Brittany (France) on a site presenting high levels of heavy metal concentrations. Results on iron as a major component as well as on lead and copper as minor components are reported. Soil samples were dried and prepared as pressed pellets to minimize the effects of moisture and density on the results. LIBS analyses were performed with a Nd:YAG laser operating at 1064 nm, 60 mJ per 10 ns pulse, at a repetition rate of 10 Hz with a diameter of 500 μm on the sample surface. Good correlations were obtained between the LIBS signals and the values of concentrations deduced from inductively coupled plasma atomic emission spectroscopy (ICP-AES). This result proves that LIBS is an efficient method for optimizing sampling operations. Indeed, "LIBS maps" were established directly on-site, providing valuable assistance in optimizing the selection of the most relevant samples for future expensive and time-consuming laboratory analysis and avoiding useless analyses of very similar samples. Finally, it is emphasized that in situ LIBS is not described here as an alternative quantitative analytical method to the usual laboratory measurements but simply as an efficient time-saving tool to optimize sampling operations and to drastically reduce the number of soil samples to be analyzed, thus reducing costs. The detection limits of 200 ppm for lead and 80 ppm for copper reported here are compatible with the thresholds of toxicity; thus, this in situ LIBS campaign was fully validated for these two elements. Consequently, further experiments are planned to extend this study to other chemical elements and other matrices of soils.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, B.B.; Ripp, J.; Sims, R.C.

    The Electric Power Research Institute (EPRI) is studying the environmental impact of preservatives associated with in-service utility poles. As part of this endeavor, two EPRI contractors, META Environmental, Inc. (META) and Atlantic Environmental Services, Inc. (Atlantic), have collected soil samples from around wood utility poles nationwide, for various chemical and physical analyses. This report covers the results for 107 pole sites in the US. These pole sites included a range of preservative types, soil types, wood types, pole sizes, and in-service ages. The poles in this study were preserved with one of two types of preservative: pentachlorophenol (PCP) or creosote.more » Approximately 40 to 50 soil samples were collected from each wood pole site in this study. The soil samples collected from the pole sites were analyzed for chlorinated phenols and total petroleum hydrocarbons (TPH) if the pole was preserved with PCP, or for polycyclic aromatic hydrocarbons (PAHs) if the pole was preserved with creosote. The soil samples were also analyzed for physical/chemical parameters, such as pH, total organic carbon (TOC), and cationic exchange capacity (CEC). Additional samples were used in studies to determine biological degradation rates, and soil-water distribution and retardation coefficients of PCP in site soils. Methods of analysis followed standard EPA and ASTM methods, with some modifications in the chemical analyses to enable the efficient processing of many samples with sufficiently low detection limits for this study. All chemical, physical, and site-specific data were stored in a relational computer database.« less

  6. Surface retention and photochemical reactivity of the diphenylether herbicide oxyfluorfen.

    PubMed

    Scrano, Laura; Bufo, Sabino A; Cataldi, Tommaso R I; Albanis, Triantafyllos A

    2004-01-01

    The photochemical behavior of oxyfluorfen [2-chloro-1-(3-etoxy-4-nitrophenoxy)-4-(trifluoromethyl) benzene] on two Greek soils was investigated. Soils were sampled from Nea Malgara and Preveza regions, characterized by a different organic matter content. Soils were spiked with the diphenyl-ether herbicide and irradiation experiments were performed either in the laboratory with a solar simulator (xenon lamp) or outside, under natural sunlight irradiation; other soil samples were kept in the dark to control the retention reaction. Kinetic parameters of both retention and photochemical reactions were calculated using zero-, first- and second- (Langmuir-Hinshelwood) order equations, and best fit was checked through statistical analysis. The soil behaviors were qualitatively similar but quantitatively different, with the soil sampled from the Nea Malgara region much more sorbent as compared with Preveza soil. All studied reactions followed second-order kinetics and photochemical reactions were influenced by retaining capability of the soils. The contributions of the photochemical processes to the global dissipation rates were also calculated. Two main metabolites were identified as 2-chloro-1-(3-ethoxy-4-hydroxyphenoxy)-4-(trifluoromethyl)benzene and 2-chloro-1- (3-hydroxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene.

  7. Metals distribution in soils around the cement factory in southern Jordan.

    PubMed

    Al-Khashman, Omar A; Shawabkeh, Reyad A

    2006-04-01

    Thirty one soil samples were collected from south Jordan around the cement factory in Qadissiya area. The samples were obtained at two depths, 0-10 cm and 10-20 cm and were analyzed by atomic absorption spectrophotometery for Pb, Zn, Cd, Fe, Cu and Cr. Physicochemical factors believed to affect their mobility of metals in soil of the study area were examined such as; pH, TOM, CaCO3, CEC and conductivity. The relatively high concentrations of lead, zinc and cadmium in the soil samples of the investigated area were related to anthropogenic sources such as cement industry, agriculture activities and traffic emissions. It was found that the lead, zinc and cadmium have the highest level in area close to the cement factory, while the concentration of chromium was low. This study indicate that all of the metals are concentrated on the surface soil, and decreased in the lower part of the soil, this due to reflects their mobility and physical properties of soil and its alkaline pH values. The use of factor analysis showed that anthropogenic activities seem to be the responsible source of pollution for metals in urban soils.

  8. Studies on geotechnical properties of subsoil in south east coastal region of India

    NASA Astrophysics Data System (ADS)

    Dutta, Susom; Barik, D. K.

    2017-11-01

    Soil testing and analysis has become essential before commencement of any activity or process on soil i.e. residential construction, road construction etc. It is the most important work particularly in coastal area as these areas are more vulnerable to the natural disastrous like tsunami and cyclone. In India, there is lack of facility to collect and analyse the soil from the field. Hence, to study the various characteristics of the coastal region sub soil, Old Mahabalipuram area, which is the South East region of India has been chosen in this study. The aim of this study is to collect and analyse the soil sample from various localities of the Old Mahabalipuram area. The analysed soil data will be helpful for the people who are working in the field of Geotechnical in coastal region of India to make decision. The soil sample collected from different boreholes have undergone various field and laboratory tests like Pressuremeter Test, Field Permeability Test, Electrical Resistivity Test, Standard Penetration Test, Shear Test, Atterberg Limits etc. are performed including rock tests to know the geotechnical properties of the soil samples for each and every stratum

  9. Distribution and Analysis of Heavy Metals Contamination in Soil, Perlis, Malaysia

    NASA Astrophysics Data System (ADS)

    Nihla Kamarudzaman, Ain; Woo, Yee Shan; Jalil, Mohd Faizal Ab

    2018-03-01

    The concentration of six heavy metals such as Cu, Cr, Ni, Cd, Zn and Mn were studied in the soils around Perlis. The aim of the study is to assess the heavy metals contamination distribution due to industrialisation and agricultural activities. Soil samples were collected at depth of 0 - 15 cm in five stations around Perlis. The soil samples are subjected to soil extraction and the concentration of heavy metals was determined via ICP - OES. Overall concentrations of Cr, Cu, Zn, Ni, Cd and Mn in the soil samples ranged from 0.003 - 0.235 mg/L, 0.08 - 41.187 mg/L, 0.065 - 45.395 mg/L, 0.031 - 2.198 mg/L, 0.01 - 0.174 mg/L and 0.165 - 63.789 mg/L respectively. The concentration of heavy metals in the soil showed the following decreasing trend, Mn > Zn > Cu > Ni > Cr > Cd. From the result, the level of heavy metals in the soil near centralised Chuping industrial areas gives maximum value compared to other locations in Perlis. As a conclusion, increasing anthropogenic activities have influenced the environment, especially in increasing the pollution loading.

  10. Effect of the edaphic factors and metal content in soil on the diversity of Trichoderma spp.

    PubMed

    Racić, Gordana; Körmöczi, Péter; Kredics, László; Raičević, Vera; Mutavdžić, Beba; Vrvić, Miroslav M; Panković, Dejana

    2017-02-01

    Influence of edaphic factors and metal content on diversity of Trichoderma species at 14 different soil sampling locations, on two depths, was examined. Forty-one Trichoderma isolates from 14 sampling sites were determined as nine species based on their internal transcribed spacer (ITS) sequences. Our results indicate that weakly alkaline soils are rich sources of Trichoderma strains. Also, higher contents of available K and P are connected with higher Trichoderma diversity. Increased metal content in soil was not inhibiting factor for Trichoderma species occurrence. Relationship between these factors was confirmed by locally weighted sequential smoothing (LOESS) nonparametric smoothing analysis. Trichoderma strain (Szeged Microbiology Collection (SZMC) 22669) from soil with concentrations of Cr and Ni above remediation values should be tested for its potential for bioremediation of these metals in polluted soils.

  11. Nuclear chemistry of returned lunar samples: Nuclide analysis by gamma-ray spectrometry

    NASA Technical Reports Server (NTRS)

    Kelley, G. D.; Eldridge, J. S.

    1972-01-01

    Concentrations of primordial radioelements and of cosmogenic radionuclides in crystalline rocks, breccias, and soils from the Ocean of Storms were determined. Concentrations of K, Th, U, Al-26, and Na-22 were determined for seven clastic or brecciated rocks, three sieved samples of fines, and one composite sample of sawdust from the cutting of a fragmental rock, all from samples obtained on the Apollo 14 mission. The K, Th, and U concentrations and cogmogenic radionuclide abundances in rocks and soils from Apollo 15 are also discussed.

  12. Determination of organophosphate flame retardants in soil and fish using ultrasound-assisted extraction, solid-phase clean-up, and liquid chromatography with tandem mass spectrometry.

    PubMed

    Lorenzo, María; Campo, Julián; Picó, Yolanda

    2018-03-22

    A solid-liquid extraction method in combination with high-performance liquid chromatography and tandem mass spectrometry was developed and optimized for extraction and analysis of organophosphorus flame retardants in soil and fish. Methanol was chosen as the optimum extraction solvent, not only in terms of extraction efficiency, but also for its broader analyte coverage. The subsequent clean-up by solid-phase extraction is required to eliminate matrix coextractives and reduce matrix effects. Recoveries of the optimized method were 50-121% for soil and 47-123% for biota, both with high precision (RSDs <12% in soil and <23% in biota). The method limits of detection ranged from 0.06 to 0.20 ng/g dry weight and between 0.02 and 0.30 ng/g wet weight for soil and biota samples, respectively. However, samples with a high lipid content produce several problems as solid-phase extraction cartridge clogging that increase variability and analysis time. The method was successfully applied for the determination of organophosphorus flame retardants in soil and fish from L'Albufera Natural Park (Valencia, Spain). Target compounds were detected in all soil and fish samples with values varying from 13.8 to 89.7 ng/g dry weight and from 3.3 to 53.0 ng/g wet weight, respectively. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Rapid Radiochemical Analyses in Support of Fukushima Nuclear Accident - 13196

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    There is an increasing need to develop faster analytical methods for emergency response, including emergency soil and air filter samples [1, 2]. The Savannah River National Laboratory (SRNL) performed analyses on samples received from Japan in April, 2011 as part of a U.S. Department of Energy effort to provide assistance to the government of Japan, following the nuclear event at Fukushima Daiichi, resulting from the earthquake and tsunami on March 11, 2011. Of particular concern was whether it was safe to plant rice in certain areas (prefectures) near Fukushima. The primary objectives of the sample collection, sample analysis, and datamore » assessment teams were to evaluate personnel exposure hazards, identify the nuclear power plant radiological source term and plume deposition, and assist the government of Japan in assessing any environmental and agricultural impacts associated with the nuclear event. SRNL analyzed approximately 250 samples and reported approximately 500 analytical method determinations. Samples included soil from farmland surrounding the Fukushima reactors and air monitoring samples of national interest, including those collected at the U.S. Embassy and American military bases. Samples were analyzed for a wide range of radionuclides, including strontium-89, strontium-90, gamma-emitting radionuclides, and plutonium, uranium, americium and curium isotopes. Technical aspects of the rapid soil and air filter analyses will be described. The extent of radiostrontium contamination was a significant concern. For {sup 89,90}Sr analyses on soil samples, a rapid fusion technique using 1.5 gram soil aliquots to enable a Minimum Detectable Activity (MDA) of <1 pCi {sup 89,90}Sr /g of soil was employed. This sequential technique has been published recently by this laboratory for actinides and radiostrontium in soil and vegetation [3, 4]. It consists of a rapid sodium hydroxide fusion, pre-concentration steps using iron hydroxide and calcium fluoride precipitations, followed by Sr-Resin separation and gas flow proportional counting. To achieve a lower detection limit for analysis of some of the Japanese soil samples, a 10 gram aliquot of soil was taken, acid-leached and processed with similar preconcentration chemistry. The MDA using this approach was ∼0.03 pCi/g (1.1 mBq/g)/, which is less than the 0.05-0.10 pCi/g {sup 90}Sr levels found in soil as a result of global fallout. The chemical yields observed for the Japanese soil samples was typically 75-80% and the laboratory control sample (LCS) and matrix spike (MS) results looked very good for this work Individual QC results were well within the ± 25% acceptable range and the average of these results does not show significant bias. Additional data for a radiostrontium in soil method for 50 gram samples will also be presented, which appears to be a significant step forward based on looking at the current literature, with higher chemical yields for even larger sample aliquots and lower MDA [5, 6, 7] Hou et al surveyed a wide range of separation methods for Pu in waters and environmental solid samples [8]. While there are many actinide methods in the scientific literature, few would be considered rapid due to the tedious and time-consuming steps involved. For actinide analyses in soil, a new rapid method for the determination of actinide isotopes in soil samples using both alpha spectrometry and inductively-coupled plasma mass spectrometry was employed. The new rapid soil method utilizes an acid leaching method, iron/titanium hydroxide precipitation, a lanthanum fluoride soil matrix removal step, and a rapid column separation process with TEVA Resin. The large soil matrix is removed easily and rapidly using these two simple precipitations with high chemical recoveries and effective removal of interferences. [9, 10] Vacuum box technology and rapid flow rates were used to reduce analytical time. Challenges associated with the mineral content in the volcanic soil will be discussed. Air filter samples were reported within twenty-four (24) hours of receipt using rapid techniques published previously. [11] The rapid reporting of high quality analytical data arranged through the U.S. Department of Energy Consequence Management Home Team was critical to allow the government of Japan to readily evaluate radiological impacts from the nuclear reactor incident to both personnel and the environment. SRNL employed unique rapid methods capability for radionuclides to support Japan that can also be applied to environmental, bioassay and waste management samples. New rapid radiochemical techniques for radionuclides in soil and other environmental matrices as well as some of the unique challenges associated with this work will be presented that can be used for application to environmental monitoring, environmental remediation, decommissioning and decontamination activities. (authors)« less

  14. RAPID RADIOCHEMICAL ANALYSES IN SUPPORT OF FUKUSHIMA NUCLEAR ACCIDENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, S.

    2012-11-07

    There is an increasing need to develop faster analytical methods for emergency response, including emergency soil and air filter samples. The Savannah River National Laboratory (SRNL) performed analyses on samples received from Japan in April, 2011 as part of a U.S. Department of Energy effort to provide assistance to the government of Japan, following the nuclear event at Fukushima Daiichi, resulting from the earthquake and tsunami on March 11, 2011. Of particular concern was whether it was safe to plant rice in certain areas (prefectures) near Fukushima. The primary objectives of the sample collection, sample analysis, and data assessment teamsmore » were to evaluate personnel exposure hazards, identify the nuclear power plant radiological source term and plume deposition, and assist the government of Japan in assessing any environmental and agricultural impacts associated with the nuclear event. SRNL analyzed approximately 250 samples and reported approximately 500 analytical method determinations. Samples included soil from farmland surrounding the Fukushima reactors and air monitoring samples of national interest, including those collected at the U.S. Embassy and American military bases. Samples were analyzed for a wide range of radionuclides, including strontium-89, strontium-90, gamma-emitting radionuclides, and plutonium, uranium, americium and curium isotopes. Technical aspects of the rapid soil and air filter analyses will be described. The extent of radiostrontium contamination was a significant concern. For {sup 89,90}Sr analyses on soil samples, a rapid fusion technique using 1.5 gram soil aliquots to enable a Minimum Detectable Activity (MDA) of <1 pCi {sup 89,90} Sr /g of soil was employed. This sequential technique has been published recently by this laboratory for actinides and radiostrontium in soil and vegetation. It consists of a rapid sodium hydroxide fusion, pre-concentration steps using iron hydroxide and calcium fluoride precipitations, followed by Sr-Resin separation and gas flow proportional counting. To achieve a lower detection limit for analysis of some of the Japanese soil samples, a 10 gram aliquot of soil was taken, acid-leached and processed with similar preconcentration chemistry. The MDA using this approach was ~0.03 pCi/g (1.1 mBq/g)/, which is less than the 0.05-0.10 pCi/g {sup 90}Sr levels found in soil as a result of global fallout. The chemical yields observed for the Japanese soil samples was typically 75-80% and the laboratory control sample (LCS) and matrix spike (MS) results looked very good for this work Individual QC results were well within the ± 25% acceptable range and the average of these results does not show significant bias. Additional data for a radiostrontium in soil method for 50 gram samples will also be presented, which appears to be a significant step forward based on looking at the current literature, with higher chemical yields for even larger sample aliquots and lower MDA. Hou et al surveyed a wide range of separation methods for Pu in waters and environmental solid samples. While there are many actinide methods in the scientific literature, few would be considered rapid due to the tedious and time-consuming steps involved. For actinide analyses in soil, a new rapid method for the determination of actinide isotopes in soil samples using both alpha spectrometry and inductively-coupled plasma mass spectrometry was employed. The new rapid soil method utilizes an acid leaching method, iron/titanium hydroxide precipitation, a lanthanum fluoride soil matrix removal step, and a rapid column separation process with TEVA Resin. The large soil matrix is removed easily and rapidly using these two simple precipitations with high chemical recoveries and effective removal of interferences. Vacuum box technology and rapid flow rates were used to reduce analytical time. Challenges associated with the mineral content in the volcanic soil will be discussed. Air filter samples were reported within twenty-four (24) hours of receipt using rapid techniques published previously. The rapid reporting of high quality analytical data arranged through the U.S. Department of Energy Consequence Management Home Team was critical to allow the government of Japan to readily evaluate radiological impacts from the nuclear reactor incident to both personnel and the environment. SRNL employed unique rapid methods capability for radionuclides to support Japan that can also be applied to environmental, bioassay and waste management samples. New rapid radiochemical techniques for radionuclides in soil and other environmental matrices as well as some of the unique challenges associated with this work will be presented that can be used for application to environmental monitoring, environmental remediation, decommissioning and decontamination activities.« less

  15. Spectral mapping of soil organic matter

    NASA Technical Reports Server (NTRS)

    Kristof, S. J.; Baumgardner, M. F.; Johannsen, C. J.

    1974-01-01

    Multispectral remote sensing data were examined for use in the mapping of soil organic matter content. Computer-implemented pattern recognition techniques were used to analyze data collected in May 1969 and May 1970 by an airborne multispectral scanner over a 40-km flightline. Two fields within the flightline were selected for intensive study. Approximately 400 surface soil samples from these fields were obtained for organic matter analysis. The analytical data were used as training sets for computer-implemented analysis of the spectral data. It was found that within the geographical limitations included in this study, multispectral data and automatic data processing techniques could be used very effectively to delineate and map surface soils areas containing different levels of soil organic matter.

  16. Sample collection of ash and burned soils from the October 2007 southern California Wildfires

    USGS Publications Warehouse

    Hoefen, Todd M.; Kokaly, Raymond F.; Martin, Deborah A.; Rochester, Carlton J.; Plumlee, Geoffrey S.; Mendez, Greg; Reichard, Eric G.; Fisher, Robert N.

    2009-01-01

    Between November 2 through 9, 2007 scientists from the U.S. Geological Survey (USGS) collected samples of ash and burned soils from 28 sites in six areas burned as a result of the Southern California wildfires of October 2007, including the Harris, Witch, Santiago, Ammo, Canyon, and Grass Valley Fires. The primary goal of this sampling and analysis effort was to understand how differences in ash and burned soil composition relate to vegetation type, underlying bedrock geology, burn intensity, and residential versus wildland. Sampling sites were chosen with the input of local experts from the USGS Water Resources and Biological Resources Disciplines to help understand possible effects of the fires on water supplies, ecosystems, and endangered species. The sampling was also carried out in conjunction with detailed field analysis of the spectral reflectance characteristics of the ash, so that chemical and mineralogical characteristics of the field samples could be used to help interpret data collected as part of an airborne, hyperspectral remote-sensing survey of several of the burned areas in mid-late November, 2007.This report presents an overview of the field sampling methodologies used to collect the samples, includes representative photos of the sites sampled, and summarizes important characteristics of each of the collection sites. In this report we use the term “ash” to refer collectively to white mineral ash, which results from full combustion of vegetation and black charred organic matter from partial combustion of vegetation or other materials. These materials were found to be intermingled as a deposited residue on the soil surface following the Southern California fires of 2007.

  17. Fertility status of cultivated floodplain soils in the Zambezi Valley, northern Zimbabwe

    NASA Astrophysics Data System (ADS)

    Chimweta, M.; Nyakudya, I. W.; Jimu, L.

    2018-06-01

    Flood-recession cropping improves smallholder farmers' household food security. The objective of this study was to determine the fertility status of cultivated Zambezi Valley floodplain soils, in northern Zimbabwe. The study was conducted at three sites, along tributaries of Musengezi River. Soil samples were taken at 0.20 m depth increments to 0.60 m from hydromorphologically stratified fields, during the cropping season. Sampling points were replicated twice in each stratum at points equidistant from river edges. Relative elevations of sampling points were measured using levelling equipment. Soil was analysed using: core method for bulk density, hydrometer method for texture, loss on ignition for soil organic carbon (SOC), Kjeldahl procedure for total nitrogen (N), 0.01 M CaCl2 for pH, and Inductively Coupled Plasma (ICP) for Mehlich 3 extractable elements. Data from soil analyses were subjected to One Way Analysis of Variance and Pearson's correlation analysis. Bulk density ranged from 1.2 to 1.4 g cm-3 and it was negatively related to distance from river; and positively related to elevation at two sites. Highest values for SOC and total N were 2.04% and 0.36% respectively. Soil pH ranged from 7.70 to 8.60. Soil organic carbon and N were positively related to distance from river but negatively related to elevation. Threshold concentrations for deficiency: < 12 ppm for K, and <39 ppm for Mg, were exceeded. Calcium, Na, and micronutrients in most cases exceeded concentrations reported for floodplains. Practices that slow down flowing water and fertilizer microdosing are among possible fertility management options.

  18. Characterizing Hydrological Processes in Vadose Zone by Direct Infiltration Water Sampling.

    NASA Astrophysics Data System (ADS)

    Mori, Y.; Higashi, N.; Somura, H.; Takeda, I.; Inoue, M.

    2007-12-01

    These days, planted forest mountainside was roughly maintained due to the population descent and small birth rate. Because thinning operation would delayed, forest was always dark and floor weed was rare. Management induced non point source pollution like surface soil erosion was suspected, however, we could not approach to the source with the stream water analysis. Therefore, direct soil water sampling device using glass fiber capillary force was developed to examine hydrological processes in watershed. In our design, water was collected just by the capillary force and let the excess water down through so that infiltration water was truly sampled and solute concentration kept the same quality as in soil water. The experiment was conducted at two neighboring Japanese cedar planted forest under different management, i.e., south slope was roughly maintained and west slope was well maintained by thinning operation. Load discharges were higher in south slope and lower in west slope. Infiltration water analysis revealed that ion concentration was gradually decreased at west slope, however in south slope, it dropped to lower level in soil water and increased again in stream water. The trend showed that soil buffering function was poor in south slope. Actually, disk permeameter survey revealed that hydraulic conductivity was small in south slope; TOC and biological activity were lower. This entire soil environment explained the water environmental differences in stream water. Because changes in soil environment affects water environment in the future, monitoring or examination of soil environment was considered as preventive measure for environmentally sound water and solute circulation in watershed.

  19. A critical investigation of post-liquefaction strength and steady-state flow behavior of saturated soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jong, H.L.

    1988-01-01

    The first objective was to perform a critical evaluation of the recently proposed steady-state analysis methodology for evaluation of post-liquefaction stability of potentially liquefiable soils. This analysis procedure is based on direct comparison between the in-situ undrained residual (steady state) strength of soils in an embankment or foundation, and the driving shear stresses in these soils. A laboratory investigation was performed to investigate factors affecting steady-state strengths, and also to evaluate the validity of assumptions involved in correcting the results of laboratory steady-state strength tests on undisturbed samples for effects of sampling disturbance in order to estimate in-situ strengths. Next,more » a field case study was performed using the steady-state analysis and testing methodologies to analyze Lower San Fernando Dam, which suffered a liquefaction-induced slope failure as a results of a 1971 earthquake. This leads to the second objective which was to extend the Lower San Fernando Dam case study to consideration of analysis methods used to evaluate the likelihood of triggering liquefaction during an earthquake. Finally, a number of the high quality undisturbed samples were subjected to undrained cyclic testing in order to repeat an earlier (1973) study of the use of cyclic tests data to predict liquefaction behavior at Lower San Fernando Dam.« less

  20. Application of the denaturing gradient gel electrophoresis (DGGE) technique as an efficient diagnostic tool for ciliate communities in soil.

    PubMed

    Jousset, Alexandre; Lara, Enrique; Nikolausz, Marcell; Harms, Hauke; Chatzinotas, Antonis

    2010-02-01

    Ciliates (or Ciliophora) are ubiquitous organisms which can be widely used as bioindicators in ecosystems exposed to anthropogenic and industrial influences. The evaluation of the environmental impact on soil ciliate communities with methods relying on morphology-based identification may be hampered by the large number of samples usually required for a statistically supported, reliable conclusion. Cultivation-independent molecular-biological diagnostic tools are a promising alternative to greatly simplify and accelerate such studies. In this present work a ciliate-specific fingerprint method based on the amplification of a phylogenetic marker gene (i.e. the 18S ribosomal RNA gene) with subsequent analysis by denaturing gradient gel electrophoresis (DGGE) was developed and used to monitor community shifts in a polycyclic aromatic hydrocarbon (PAH) polluted soil. The semi-nested approach generated ciliate-specific amplification products from all soil samples and allowed to distinguish community profiles from a PAH-polluted and a non-polluted control soil. Subsequent sequence analysis of excised bands provided evidence that polluted soil samples are dominated by organisms belonging to the class Colpodea. The general DGGE approach presented in this study might thus in principle serve as a fast and reproducible diagnostic tool, complementing and facilitating future ecological and ecotoxicological monitoring of ciliates in polluted habitats. Copyright 2009 Elsevier B.V. All rights reserved.

  1. Assessment of Fluoride Concentration of Soil and Vegetables in Vicinity of Zinc Smelter, Debari, Udaipur, Rajasthan

    PubMed Central

    Bhat, Nagesh; Asawa, Kailash; Tak, Mridula; Shinde, Kushal; Singh, Anukriti; Gandhi, Neha; Gupta, Vivek Vardhan

    2015-01-01

    Background As of late, natural contamination has stimulated as a reaction of mechanical and other human exercises. In India, with the expanding industrialization, numerous unsafe substances are utilized or are discharged amid generation as cleans, exhaust, vapours and gasses. These substances at last are blended in the earth and causes health hazards. Objective To determine concentration of fluoride in soils and vegetables grown in the vicinity of Zinc Smelter, Debari, Udaipur, Rajasthan. Materials and Methods Samples of vegetables and soil were collected from areas situated at 0, 1, 2, 5, and 10 km distance from the zinc smelter, Debari. Three samples of vegetables (i.e. Cabbage, Onion and Tomato) and 3 samples of soil {one sample from the upper layer of soil (i.e. 0 to 20 cm) and one from the deep layer (i.e. 20 – 40 cm)} at each distance were collected. The soil and vegetable samples were sealed in clean polythene bags and transported to the laboratory for analysis. One sample each of water and fertilizer from each distance were also collected. Results The mean fluoride concentration in the vegetables grown varied between 0.36 ± 0.69 to 0.71 ± 0.90 ppm. The fluoride concentration in fertilizer and water sample from various distances was found to be in the range of 1.4 – 1.5 ppm and 1.8 – 1.9 ppm respectively. Conclusion The fluoride content of soil and vegetables was found to be higher in places near to the zinc smelter. PMID:26557620

  2. [Research on bacteria microecology in root rot rhizosphere soil of Coptis chinensis produced in Shizhu city].

    PubMed

    Song, Xu-Hong; Wang, Yu; Li, Long-Yun; Tan, Jun

    2017-04-01

    Illumina Hiseq 2500 high-throughput sequencing platform was used to study the bacteria richness and diversity, the soil enzyme activities, nutrients in unplanted soil, root-rot and healthy rhizophere soil of Coptis chinensis for deeply discussing the mechanism of the root-rot of C. chinensis. The high-throughput sequencing result showed that the artificial cultivation effected the bacteria community richness and diversity. The bacteria community richness in healthy and diseased rhizosphere soil showed significant lower than that of in unplanted soil (P<0.05) and declined bacteria diversity. The bacteria community richness in root-rot rhizosphere soil increased significantly than that of health and unplanted soil and the diversity was lower significant than that of unplanted soil (P<0.05). The results of soil nutrients and enzyme activities detected that the pH value, available phosphorus and urease activity decreased and the sucrase activity increased significantly (P<0.05). The content of organic carbon and alkaline hydrolysis nitrogen the catalase and urease activity in root rot soil samples was significantly lower than that of healthy soil samples (P<0.05). However, the contents of available phosphorus and available potassium were significantly in root-rot sample higher than that of healthy soil samples (P<0.05). Comprehensive analysis showed that the artificial cultivation declined the bacteria community richness and diversity. The bacteria community richness decreased significantly and the decreased diversity may be the cause of the root-rot. Meanwhile, the decrease of carbon and the catalase activity may be another cause of the root-rot in C. chinensis produced in Shizhu city, Chongqing province. Copyright© by the Chinese Pharmaceutical Association.

  3. Detection of explosives in soils

    DOEpatents

    Chambers, William B.; Rodacy, Philip J.; Phelan, James M.; Woodfin, Ronald L.

    2002-01-01

    An apparatus and method for detecting explosive-indicating compounds in subsurface soil. The apparatus has a probe with an adsorbent material on some portion of its surface that can be placed into soil beneath the ground surface, where the adsorbent material can adsorb at least one explosive-indicating compound. The apparatus additional has the capability to desorb the explosive-indicating compound through heating or solvent extraction. A diagnostic instrument attached to the probe detects the desorbed explosive-indicating compound. In the method for detecting explosive-indicating compounds in soil, the sampling probe with an adsorbent material on at least some portion of a surface of the sampling probe is inserted into the soil to contact the adsorbent material with the soil. The explosive-indicating compounds are then desorbed and transferred as either a liquid or gas sample to a diagnostic tool for analysis. The resulting gas or liquid sample is analyzed using at least one diagnostic tool selected from the group consisting of an ion-mobility spectrometer, a gas chromatograph, a high performance liquid chromatograph, a capillary electrophoresis chromatograph, a mass spectrometer, a Fourier-transform infrared spectrometer and a Raman spectrometer to detect the presence of explosive-indicating compounds.

  4. Biological Communities in Desert Varnish and Potential Implications for Varnish Formation Mechanisms

    NASA Astrophysics Data System (ADS)

    Lang-Yona, Naama; Maier, Stefanie; Macholdt, Dorothea; Rodriguez-Caballero, Emilio; Müller-Germann, Isabell; Yordanova, Petya; Jochum, Klaus-Peter; Andreae, Meinrat O.; Pöschl, Ulrich; Weber, Bettina; Fröhlich-Nowoisky, Janine

    2017-04-01

    Desert varnishes are thin, orange to black coatings found on rocks in arid and semi-arid environments on Earth. The formation mechanisms of rock varnish are still under debate and the involvement of microorganisms in this process remains unclear. In this work we aimed to identify the microbial community occurring in rock varnish to potentially gain insights into the varnish formation mechanism. For this purpose, rocks coated with desert varnish were collected from the Anza-Borrego Desert, California, USA, as well as soils from underneath the rocks. DNA from both varnish coatings and soil samples was extracted and subsequently used for metagenomic analysis, as well as for q-PCR analyses for specific species quantification. The element composition of the varnish coatings was analyzed and compared to the soil samples. Rock varnish shows similar depleted elements, compared to soil, but Mn and Pb are 50-60 times enriched compared to the soil samples, and about 100 times enriched compared to the upper continental crust. Our genomic analyses suggest unique populations and different protein functional groups occurring in the varnish compared to soil samples. We discuss these differences and try to shed light on the mechanism of Mn oxyhydroxide production in desert varnish formation.

  5. 3D Structure of Tillage Soils

    NASA Astrophysics Data System (ADS)

    González-Torre, Iván; Losada, Juan Carlos; Falconer, Ruth; Hapca, Simona; Tarquis, Ana M.

    2015-04-01

    Soil structure may be defined as the spatial arrangement of soil particles, aggregates and pores. The geometry of each one of these elements, as well as their spatial arrangement, has a great influence on the transport of fluids and solutes through the soil. Fractal/Multifractal methods have been increasingly applied to quantify soil structure thanks to the advances in computer technology (Tarquis et al., 2003). There is no doubt that computed tomography (CT) has provided an alternative for observing intact soil structure. These CT techniques reduce the physical impact to sampling, providing three-dimensional (3D) information and allowing rapid scanning to study sample dynamics in near real-time (Houston et al., 2013a). However, several authors have dedicated attention to the appropriate pore-solid CT threshold (Elliot and Heck, 2007; Houston et al., 2013b) and the better method to estimate the multifractal parameters (Grau et al., 2006; Tarquis et al., 2009). The aim of the present study is to evaluate the effect of the algorithm applied in the multifractal method (box counting and box gliding) and the cube size on the calculation of generalized fractal dimensions (Dq) in grey images without applying any threshold. To this end, soil samples were extracted from different areas plowed with three tools (moldboard, chissel and plow). Soil samples for each of the tillage treatment were packed into polypropylene cylinders of 8 cm diameter and 10 cm high. These were imaged using an mSIMCT at 155keV and 25 mA. An aluminium filter (0.25 mm) was applied to reduce beam hardening and later several corrections where applied during reconstruction. References Elliot, T.R. and Heck, R.J. 2007. A comparison of 2D and 3D thresholding of CT imagery. Can. J. Soil Sci., 87(4), 405-412. Grau, J, Médez, V.; Tarquis, A.M., Saa, A. and Díaz, M.C.. 2006. Comparison of gliding box and box-counting methods in soil image analysis. Geoderma, 134, 349-359. González-Torres, Iván. Theory and application of multifractal analysis methods in images for the study of soil structure. Master thesis, UPM, 2014. Houston, A.N.; S. Schmidt, A.M. Tarquis, W. Otten, P.C. Baveye, S.M. Hapca. Effect of scanning and image reconstruction settings in X-ray computed tomography on soil image quality and segmentation performance. Geoderma, 207-208, 154-165, 2013a. Houston, A, Otten, W., Baveye, Ph., Hapca, S. Adaptive-Window Indicator Kriging: A Thresholding Method for Computed Tomography, Computers & Geosciences, 54, 239-248, 2013b. Tarquis, A.M., R.J. Heck, D. Andina, A. Alvarez and J.M. Antón. Multifractal analysis and thresholding of 3D soil images. Ecological Complexity, 6, 230-239, 2009. Tarquis, A.M.; D. Giménez, A. Saa, M.C. Díaz. and J.M. Gascó. Scaling and Multiscaling of Soil Pore Systems Determined by Image Analysis. Scaling Methods in Soil Systems. Pachepsky, Radcliffe and Selim Eds., 19-33, 2003. CRC Press, Boca Ratón, Florida. Acknowledgements First author acknowledges the financial support obtained from Soil Imaging Laboratory (University of Gueplh, Canada) in 2014.

  6. Analysis of Metals Concentration in the Soils of SIPCOT Industrial Complex, Cuddalore, Tamil Nadu

    PubMed Central

    Mathivanan, V.; Prabavathi, R.; Prithabai, C.; Selvisabhanayakam

    2010-01-01

    Phytoremediation is a promising area of new research, both for its low cost and great benefit to society in the clean retrieval of contaminated sites. Phytoremediation is the use of living green plants for in situ risk reduction and/or removal of contaminants from contaminated soil, water, sediments, and air. Specially selected or engineered plants are used in the process. The soil samples were taken from Cuddalore Old Town (OT) and the samples from SIPCOT industrial complex, which was the study area and analyzed for various metals concentrations. Fifteen metals have been analyzed by adopting standard procedure. The detection limits of metal concentration are drawn as control. The various (15) metal concentrations in the soil samples were found higher in soil taken from SIPCOT industrial complex, compared with samples taken from Cuddalore OT. In all the observations, it was found that most of the metals like calcium, cadmium, chromium, cobalt, nickel, and zinc showed maximum concentrations, whereas arsenic, antimony, lead, magnesium, sodium have shown minimum concentrations, both when compared with control. From the present study, it was found that the soil collected from SIPCOT complex area were more polluted due to the presence of various industrial effluents, municipal wastes, and sewages when compared with the soil collected from Cuddalore OT. PMID:21170256

  7. Coupling of multi-walled carbon nanotubes/polydimethylsiloxane coated stir bar sorptive extraction with pulse glow discharge-ion mobility spectrometry for analysis of triazine herbicides in water and soil samples.

    PubMed

    Zou, Nan; Yuan, Chunhao; Liu, Shaowen; Han, Yongtao; Li, Yanjie; Zhang, Jialei; Xu, Xiang; Li, Xuesheng; Pan, Canping

    2016-07-29

    An analytical method based on stir bar sorptive extraction (SBSE) coupled with pulse glow discharge-ion mobility spectrometry (PGD-IMS) was developed for analysis of three triazine pesticide residues in water and soil samples. An injection port with sealing device and stir bars hold device were designed and constructed to directly position the SBSE fiber including the extracted samples into the heating device, making desorption and detection of analytes proceeded simultaneously. The extraction conditions such as SBSE solid phase material, extraction time, extraction temperature, pH value and salt concentration were optimized. Mixture of MWCNTs-COOH and PDMS were shown to be effective in enriching the triazines. The LODs and LOQs of three triazines were found to be 0.006-0.015μgkg(-1) and 0.02-0.05μgkg(-1), and the linear range was 0.05-10μgL(-1) with determination coefficients from 0.9987 to 0.9993. The SBSE-PGD-IMS method was environmentally friendly without organic solvent consumption in the entire experimental procedures, and it was demonstrated to be a commendable rapid analysis technique for analysis of triazine pesticide residues in environmental samples on site. The proposed method was applied for the analysis of real ground water, surface water and soil samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Short-chain chlorinated paraffins (SCCPs) in surface soil from a background area in China: occurrence, distribution, and congener profiles.

    PubMed

    Wang, Xue-Tong; Zhang, Yuan; Miao, Yi; Ma, Ling-Ling; Li, Yuan-Cheng; Chang, Yue-Ya; Wu, Ming-Hong

    2013-07-01

    Short-chain chlorinated paraffins (SCCPs) are extremely complex technical mixtures of polychlorinated n-alkanes with carbon chain lengths from C10 to C13 and chlorine content between 49 and 70%. SCCPs are under consideration for inclusion in the Stockholm Convention on persistent organic pollutants. SCCPs have been used extensively in industrial production, but little is known about the pollution level in soil environment in China. In this study, levels and distribution of SCCPs in soil samples from Chongming Island were analyzed. Concentrations of total SCCPs in soil samples ranged from 0.42 to 420 ng g(-1), with a median of 9.6 ng g(-1). The ubiquitous occurrence of SCCPs in Chongming Island implied that long-range atmospheric transport and soil-air exchange may be the most important pathways for SCCP contamination in the background area. The localized SCCP contamination could be derived from an unidentified source. Hierarchical cluster analysis indicated that C13- and C11-congeners were predominant in most soils and C10- and C12-congeners dominated in the remaining soils. Cl7- and Cl8-congeners were on the average the most dominant chlorine congeners in nearly all soils. Principal component analysis suggested that the separation of even and odd carbon chain congeners occurred during long-range atmospheric transport and aging in soil in the study area.

  9. Drilling on the Moon and Mars: Developing the Science Approach for Subsurface Exploration with Human Crews

    NASA Technical Reports Server (NTRS)

    Stoker, C. R.; Zavaleta, J.; Bell, M.; Direto, S.; Foing, B.; Blake, D.; Kim, S.

    2010-01-01

    DOMEX (Drilling on the Moon and Mars in Human Exploration) is using analog missions to develop the approach for using human crews to perform science activities on the Moon and Mars involving exploration and sampling of the subsurface. Subsurface science is an important activity that may be uniquely enabled by human crews. DOMEX provides an opportunity to plan and execute planetary mission science activities without the expense and overhead of a planetary mission. Objectives: The objective of this first in a series of DOMEX missions were to 1) explore the regional area to understand the geologic context and determine stratigraphy and geologic history of various geologic units in the area. 2) Explore for and characterize sites for deploying a deep (10 m depth) drilling system in a subsequent field season. 3) Perform GPR on candidate drill sites. 4) Select sites that represent different geological units deposited in different epochs and collect soil cores using sterile procedures for mineralogical, organic and biological analysis. 5) Operate the MUM in 3 different sites representing different geological units and soil characteristics. 6) Collect rock and soil samples of sites visited and analyze them at the habitat. Results: At mission start the crew performed a regional survey to identify major geologic units that were correlated to recognized stratigraphy and regional geologic maps. Several candidate drill sites were identified. During the rest of the mission, successful GPR surveys were conducted in four locations. Soil cores were collected in 5 locations representing soils from 4 different geologic units, to depths up to 1m. Soil cores from two locations were analyzed with PCR in the laboratory. The remainder were reserved for subsequent analysis. XRD analysis was performed in the habitat and in the field on 39 samples, to assist with sample characterization, conservation, and archiving. MUM was deployed at 3 field locations and 1 test location (outside the habitat) where it operated autonomously for 2-4 hours at each site. Depths achieved ranged from 15 to 70 cm depending on the soil compressive strength and the presence and depth of subsurface indurated layers. Subsurface samples weighing 0.5 to 1 g were collected at the deepest depth encountered at each of the sites using the MUM automated sample collection system, and subsequently analyzed with XRD. Downhole inspection of holes produced by MUM with the Raman spectrometer was acquired on two of the holes and spectral features associated with selenite were identified in specific soil layers. Previously unreported fossilized remains of vertebrate fauna from the Jurassic era were discovered during our mission. Analysis of mineral biomarkers associated with this discovery are underway.

  10. Ion microprobe mass analysis of lunar samples. Lunar sample program

    NASA Technical Reports Server (NTRS)

    Anderson, C. A.; Hinthorne, J. R.

    1971-01-01

    Mass analyses of selected minerals, glasses and soil particles of lunar, meteoritic and terrestrial rocks have been made with the ion microprobe mass analyzer. Major, minor and trace element concentrations have been determined in situ in major and accessory mineral phases in polished rock thin sections. The Pb isotope ratios have been measured in U and Th bearing accessory minerals to yield radiometric age dates and heavy volatile elements have been sought on the surfaces of free particles from Apollo soil samples.

  11. Evaluation of Three Field-Based Methods for Quantifying Soil Carbon

    PubMed Central

    Izaurralde, Roberto C.; Rice, Charles W.; Wielopolski, Lucian; Ebinger, Michael H.; Reeves, James B.; Thomson, Allison M.; Francis, Barry; Mitra, Sudeep; Rappaport, Aaron G.; Etchevers, Jorge D.; Sayre, Kenneth D.; Govaerts, Bram; McCarty, Gregory W.

    2013-01-01

    Three advanced technologies to measure soil carbon (C) density (g C m−2) are deployed in the field and the results compared against those obtained by the dry combustion (DC) method. The advanced methods are: a) Laser Induced Breakdown Spectroscopy (LIBS), b) Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS), and c) Inelastic Neutron Scattering (INS). The measurements and soil samples were acquired at Beltsville, MD, USA and at Centro International para el Mejoramiento del Maíz y el Trigo (CIMMYT) at El Batán, Mexico. At Beltsville, soil samples were extracted at three depth intervals (0–5, 5–15, and 15–30 cm) and processed for analysis in the field with the LIBS and DRIFTS instruments. The INS instrument determined soil C density to a depth of 30 cm via scanning and stationary measurements. Subsequently, soil core samples were analyzed in the laboratory for soil bulk density (kg m−3), C concentration (g kg−1) by DC, and results reported as soil C density (kg m−2). Results from each technique were derived independently and contributed to a blind test against results from the reference (DC) method. A similar procedure was employed at CIMMYT in Mexico employing but only with the LIBS and DRIFTS instruments. Following conversion to common units, we found that the LIBS, DRIFTS, and INS results can be compared directly with those obtained by the DC method. The first two methods and the standard DC require soil sampling and need soil bulk density information to convert soil C concentrations to soil C densities while the INS method does not require soil sampling. We conclude that, in comparison with the DC method, the three instruments (a) showed acceptable performances although further work is needed to improve calibration techniques and (b) demonstrated their portability and their capacity to perform under field conditions. PMID:23383225

  12. Response of soil bacterial communities to lead and zinc pollution revealed by Illumina MiSeq sequencing investigation.

    PubMed

    Xu, Xihui; Zhang, Zhou; Hu, Shunli; Ruan, Zhepu; Jiang, Jiandong; Chen, Chen; Shen, Zhenguo

    2017-01-01

    Soil provides a critical environment for microbial community development. However, microorganisms may be sensitive to substances such as heavy metals (HMs), which are common soil contaminants. This study investigated bacterial communities using 16S ribosomal RNA (rRNA) gene fragment sequencing in geographic regions with and without HM pollution to elucidate the effects of soil properties and HMs on bacterial communities. No obvious changes in the richness or diversity of bacterial communities were observed between samples from mining and control areas. Significant differences in bacterial richness and diversity were detected between samples from different geographic regions, indicating that the basic soil characteristics were the most important factors affecting bacterial communities other than HMs. However, the abundances of several phyla and genera differed significantly between mining and control samples, suggesting that Zn and Pb pollution may impact the soil bacterial community composition. Moreover, regression analyses showed that the relative abundances of these phyla and genera were correlated significantly with the soil-available Zn and Pb contents. Redundancy analysis indicated that the soil K, ammoniacal nitrogen (NH 4 + -N), total Cu, and available Zn and Cu contents were the most important factors. Our results not only suggested that the soil bacteria were sensitive to HM stresses but also indicated that other soil properties may affect soil microorganisms to a greater extent.

  13. Interaction of gases with lunar materials. [analysis of lunar samples from Apollo 17 flight

    NASA Technical Reports Server (NTRS)

    Holmes, H. F.; Fuller, E. L., Jr.; Gammage, R. B.

    1974-01-01

    The surface chemistry of Apollo 17 lunar fines samples 74220 (the orange soil) and 74241 (the gray control soil) has been studied by measuring the adsorption of nitrogen, argon, and oxygen (all at 77 K) and also water vapor (at 20 or 22 C). In agreement with results for samples from other missions, both samples had low initial specific surface areas, consisted of nonporous particles, and were attacked by water vapor at high relative pressure to give an increased specific surface area and create a pore system which gave rise to a capillary condensation hysteresis loop in the adsorption isotherms. In contrast to previous samples, both of the Apollo 17 soils were partially hydrophobic in their initial interaction with water vapor (both samples were completely hydrophilic after the reaction with water). The results are consistent with formation at high temperatures without subsequent exposure to significant amounts of water.

  14. Analysis of ultrasonic effect on powder and application to radioactive sample compaction

    NASA Astrophysics Data System (ADS)

    Kim, Jungsoon; Sim, Minseop; Kim, Jihyang; Kim, Moojoon

    2018-07-01

    The effect of ultrasound on powder compaction was analyzed. The decreasing in the friction coefficient of the powder sample is derived theoretically. The compaction rate was improved by the ultrasound. We applied the effect to the compaction of environmental radioactive soil samples. From γ-ray spectroscopy analysis, more radionuclides could be detectable in the sample compacted with ultrasound.

  15. Heavy metals and metalloid content in vegetables and soil collected from the gardens of Zagreb, Croatia.

    PubMed

    Puntarić, Dinko; Vidosavljević, Domagoj; Gvozdić, Vlatka; Puntarić, Eda; Puntarić, Ida; Mayer, Dijana; Bosnir, Jasna; Lasić, Dario; Jergović, Matijana; Klarić, Ivana; Vidosavljević, Marina; Krivdić, Ivancica

    2013-09-01

    Aim of this study was to determine concentration of Pb, Cd, As and Hg in green leafy vegetables and soil in the urban area of Zagreb, Croatia and to determine if there is a connection between the contamination of soil and vegetables. Green leafy vegetables and soil samples were taken from the gardens located in the outskirts of the city. Concentrations of Pb, Cd, As and Hg were determined by atomic absorption spectrometry; showing that average concentrations of metals and metalloids in vegetables and in soil, regardless of the location of sampling were below the maximum allowed concentration (MAC). The analysis determined that metal concentrations in only nine vegetable samples (9%) were above maximum allowed values prescribed by national and European legislation (three with higher concentrations of Pb, one with a higher concentration of Cd and five with higher concentrations of Hg). Concentrations of contaminants present in the analysed samples, in general, are lower than the ones published in similar studies. The final distribution and concentration of contaminants in vegetables of Zagreb, besides industry and traffic, is affected by the dominant wind direction.

  16. Assessment of radiological hazard parameters due to natural radioactivity in soils from granite-rich regions in Kütahya Province, Turkey.

    PubMed

    Sahin, Latife; Hafızoğlu, Nurgül; Çetinkaya, Hakan; Manisa, Kaan; Bozkurt, Engin; Biçer, Ahmet

    2017-05-01

    The analysis of natural radioactivity from 238 U, 232 Th and 40 K in 357 soil samples collected from the province of Kütahya was carried out using a NaI(Tl) gamma-ray spectroscopy system at the Nuclear Physics Research Laboratory, Dumlupınar University, Kütahya, Turkey. The specific activities of 238 U, 232 Th and 40 K in the soil samples were evaluated. From the activity concentrations of 238 U, 232 Th and 40 K, the total absorbed outdoor gamma-ray dose rates and the corresponding annual effective dose rates were determined. The corresponding values of the external and internal hazard indices of all the soil samples were also calculated. The external gamma-ray dose rate at 1 m above the ground was directly measured at each collected soil sample location. The results obtained in this study were compared within the limits of values obtained in other cities of Turkey, those in other countries. Radiological maps of Kütahya Province were constructed from the results of this study.

  17. X-Ray Fluorescence to Estimate the Maximum Temperature Reached at Soil Surface during Experimental Slash-and-Burn Fires.

    PubMed

    Melquiades, Fábio L; Thomaz, Edivaldo L

    2016-05-01

    An important aspect for the evaluation of fire effects in slash-and-burn agricultural system, as well as in wildfire, is the soil burn severity. The objective of this study is to estimate the maximum temperature reached in real soil burn events using energy dispersive X-ray fluorescence (EDXRF) as an analytical tool, combined with partial least square (PLS) regression. Muffle-heated soil samples were used for PLS regression model calibration and two real slash-and-burn soils were tested as external samples in the model. It was possible to associate EDXRF spectra alterations to the maximum temperature reached in the heat affected soils with about 17% relative standard deviation. The results are promising since the analysis is fast, nondestructive, and conducted after the burn event, although local calibration for each type of burned soil is necessary. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Chemical-biogeographic survey of secondary metabolism in soil.

    PubMed

    Charlop-Powers, Zachary; Owen, Jeremy G; Reddy, Boojala Vijay B; Ternei, Melinda A; Brady, Sean F

    2014-03-11

    In this study, we compare biosynthetic gene richness and diversity of 96 soil microbiomes from diverse environments found throughout the southwestern and northeastern regions of the United States. The 454-pyroseqencing of nonribosomal peptide adenylation (AD) and polyketide ketosynthase (KS) domain fragments amplified from these microbiomes provide a means to evaluate the variation of secondary metabolite biosynthetic diversity in different soil environments. Through soil composition and AD- and KS-amplicon richness analysis, we identify soil types with elevated biosynthetic potential. In general, arid soils show the richest observed biosynthetic diversity, whereas brackish sediments and pine forest soils show the least. By mapping individual environmental amplicon sequences to sequences derived from functionally characterized biosynthetic gene clusters, we identified conserved soil type-specific secondary metabolome enrichment patterns despite significant sample-to-sample sequence variation. These data are used to create chemical biogeographic distribution maps for biomedically valuable families of natural products in the environment that should prove useful for directing the discovery of bioactive natural products in the future.

  19. [Effect of X-ray micro-computed tomography on the metabolic activity and diversity of soil microbial communities in two Chinese soils].

    PubMed

    Zu, Qianhui; Fang, Huan; Zhou, Hu; Zhang, Jianwei; Peng, Xinhua; Lin, Xiangui; Feng, Youzhi

    2016-01-04

    X-ray micro-computed tomography (micro-CT) technology, as used in the in situ and nondestructive analysis of soil physical structure, provides the opportunity of associating soil physical and biological assays. Due to the high heterogeneity of the soil matrix, X-ray micro-CT scanning and soil microbial assays should be conducted on the same soil sample. This raises the question whether X-ray micro-CT influences microbial function and diversity of the sample soil to be analyzed. To address this question, we used plate counting, microcalorimetry and pyrosequencing approaches to evaluate the effect of X-ray--at doses typically used in micro-CT--on soil microorganisms in a typical soil of North China Plain, Fluvo-aquic soil and in a typical soil of subtropical China, Ultisol soil, respectively. In both soils radiation decreased the number of viable soil bacteria and disturbed their thermogenic profiles. At DNA level, pyrosequencing revealed that alpha diversities of two soils biota were influenced in opposite ways, while beta diversity was not affected although the relative abundances of some guilds were changed. These findings indicate that the metabolically active aspects of soil biota are not compatible with X-ray micro-CT; while the beta molecular diversity based on pyrosequencing could be compatible.

  20. Estimation of soil pH at Mount Beigu Wetland based on visible and near infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Hu, Yongguang; Li, Pingping; Mao, Hanping; Chen, Bin; Wang, Xi

    2006-12-01

    pH of the wetland soil is one of the most important indicators for aquatic vegetation and water bodies. Mount Beigu Wetland, just near the Yangtse River, is under ecological recovery. Visible and near infrared reflectance spectroscopy was adopted to estimate soil pH of the wetland. The spectroradiometer, FieldSpec 3 (ASD) with a full spectral range (350-2500 nm), was used to acquire the reflectance spectra of wetland soil, and soil pH was measured with the pH meter of IQ150 (Spectrum) and InPro 3030 (Mettler Toledo). 146 soil samples were taken with soil sampler (Eijkelkamp) according to different position and depth, which covered the wider range of pH value from 7.1 to 8.39. 133 samples were used to establish the calibration model with the method of partial least square regression and principal component analysis regression. 13 soil samples were used to validate the model. The results show that the model is not good, but the mean error and root mean standard error of prediction are less (1.846% and 0.186 respectively). Spectral reflectancebased estimation of soil pH of the wetland is applicable and the calibration model needs to be improved.

  1. Is there a relationship between soil and groundwater toxicity?

    PubMed

    Sheehan, P; Dewhurst, R E; James, S; Callaghan, A; Connon, R; Crane, M

    2003-03-01

    Part IIA of the Environmental Protection Act 1990 requires environmental regulators to assess the risk of contaminants leaching from soils into groundwater (DETR, 1999). This newly introduced legislation assumes a link between soil and groundwater chemistry, in which rainwater leaches contaminants from soil into the saturated zone. As the toxicity of both groundwater and overlying soils is dependent upon the chemicals present, their partitioning and their bioavailability, similar patterns of soil, leachates and groundwater toxicity should be observed at contaminated sites. Soil and groundwater samples were collected from different contaminated land sites in an urban area, and used to determine relationships between soil chemistry and toxicity, mobility of contaminants, and groundwater chemistry and toxicity. Soils were leached using water to mimic rainfall, and both the soils and leachates tested using bioassays. Soil bioassays were carried out using Eisenia fetida, whilst groundwater and leachates were tested using the Microtox test system and Daphnia magna 48 h acute tests. Analysis of the bioassay responses demonstrated that a number of the samples were toxic to test organisms, however, there were no significant statistical relationships between soil, groundwater and leachate toxicity. Nor were there significant correlations between soil, leachates and groundwater chemistry.

  2. Sampling and Analysis Plan - Guidance and Template v.4 - General Projects - 04/2014

    EPA Pesticide Factsheets

    This Sampling and Analysis Plan (SAP) guidance and template is intended to assist organizations in documenting the procedural and analytical requirements for one-time, or time-limited, projects involving the collection of water, soil, sediment, or other

  3. Spatial variation in total element concentration in soil within the Northern Great Plains coal region, and regional soil chemistry in Bighorn and Wind River basins, Wyoming and Montana

    USGS Publications Warehouse

    Severson, R.C.; Tidball, R.R.

    1979-01-01

    PART A: To objectively determine the changes in chemical character of an area subjected to mining and reclamation, prior information is needed. This study represents a broadscale inventory of total chemical composition of the surficial materials of the Northern Great Plains coal region (western North and South Dakota, eastern Montana, and northeastern Wyoming); data are given for 41 elements in A and C soil horizons. An unbalanced, nested, analysis-of-variance design was used to quantify variation in total content of elements between glaciated and unglaciated terrains, for four increasingly smaller geographic scales, and to quantify variation due to sample preparation and analysis. From this statistical study, reliable maps on a regional basis (>100 km) were prepared for C, K, and Rb in A and C soil horizons; for N a, Si, Th, D, and Zn in A-horizon soil; and for As, Ca, Ge, and Mg in C-horizon soil. The distribution of variance components for the remaining 29 elements did not permit the construction of reliable maps. Therefore, a baseline value for each of these elements is given as a measure of the total element concentration in the soils of the Northern Great Plains coal region. The baseline is expressed as the 95-percent range in concentration to be expected in samples of natural soils. PART B: A reconnaissance study of total concentrations of 38 elements in samples of soils (0-40 cm deep, composite) from the Bighorn and Wind River Basins of Montana and Wyoming indicates that the geographic variation for most elements occurs locally (5 km or less). However, in the Bighorn Basin, Zn exhibits significant regional variation (between geologic units); and in the Wind River Basin, AI, Cr, K, Mn, Mo, Ni, U, and V exhibit similar variation. For the remaining elements, the lack of regional variation suggests that a single summary statistic can be used to estimate a baseline value that reflects the range in concentration to be expected in samples of soils in each basin. The concentrations of most of these elements in both basins are not much different from those measured independently in the Powder River Basin of Wyoming or in the Western United States. In addition, data from an analysis of variance provide an estimate of the number of random samples within an area of specified size (10 km square, approximately a township) that are needed to prepare a reliable map of total element concentration in soils for each of the elements in each of the basins.

  4. Reducing Contingency through Sampling at the Luckey FUSRAP Site - 13186

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frothingham, David; Barker, Michelle; Buechi, Steve

    2013-07-01

    Typically, the greatest risk in developing accurate cost estimates for the remediation of hazardous, toxic, and radioactive waste sites is the uncertainty in the estimated volume of contaminated media requiring remediation. Efforts to address this risk in the remediation cost estimate can result in large cost contingencies that are often considered unacceptable when budgeting for site cleanups. Such was the case for the Luckey Formerly Utilized Sites Remedial Action Program (FUSRAP) site near Luckey, Ohio, which had significant uncertainty surrounding the estimated volume of site soils contaminated with radium, uranium, thorium, beryllium, and lead. Funding provided by the American Recoverymore » and Reinvestment Act (ARRA) allowed the U.S. Army Corps of Engineers (USACE) to conduct additional environmental sampling and analysis at the Luckey Site between November 2009 and April 2010, with the objective to further delineate the horizontal and vertical extent of contaminated soils in order to reduce the uncertainty in the soil volume estimate. Investigative work included radiological, geophysical, and topographic field surveys, subsurface borings, and soil sampling. Results from the investigative sampling were used in conjunction with Argonne National Laboratory's Bayesian Approaches for Adaptive Spatial Sampling (BAASS) software to update the contaminated soil volume estimate for the site. This updated volume estimate was then used to update the project cost-to-complete estimate using the USACE Cost and Schedule Risk Analysis process, which develops cost contingencies based on project risks. An investment of $1.1 M of ARRA funds for additional investigative work resulted in a reduction of 135,000 in-situ cubic meters (177,000 in-situ cubic yards) in the estimated base volume estimate. This refinement of the estimated soil volume resulted in a $64.3 M reduction in the estimated project cost-to-complete, through a reduction in the uncertainty in the contaminated soil volume estimate and the associated contingency costs. (authors)« less

  5. Remediation of soil contaminated with dioxins by subcritical water extraction.

    PubMed

    Hashimoto, Shunji; Watanabe, Kiyohiko; Nose, Kazutoshi; Morita, Masatoshi

    2004-01-01

    The effectiveness of subcritical water extraction (SCWE) was examined for removing dioxins from contaminated soil. Most dioxins in the soil sample were reduced at 300 degrees C or more, but decreased dioxin concentrations were also observed at 150 degrees C. After 4 h of extraction, 99.4%, 94.5% and 60% of PCDDs were removed from samples at 350, 300 and 150 degrees C, respectively. It was also determined that degradation of dioxins had occurred, since the sum of dioxins in the soil plus water extracts after the experiments had considerably decreased. This study revealed that pressurizing is not essential for the removal of dioxins. Reduction was complete within 30 min at 350 degrees C; however, it took a much longer time at lower temperatures. The results of addition experiments in which OCDDs were added to different types of soil samples have shown that dechlorination is one of the major reaction pathways. After addition of OCDD to soil samples, experiments were carried out to examine in detail the degradation pathways of PCDDs. The removal rates and congener profiles varied among soil types. Although it was previously assumed that removal rates and congener profiles depended on the chemical components in soil, nonparametric statistical analysis revealed no significant relationship between the rate of reduction and elements present in the soil. It was confirmed from isomer patterns that dechlorination of the 2,3,7,8-positions in PCDDs takes place somewhat faster than for the 1,4,6,9-positions.

  6. Estimating the spatial distribution of soil organic matter density and geochemical properties in a polygonal shaped Arctic Tundra using core sample analysis and X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Soom, F.; Ulrich, C.; Dafflon, B.; Wu, Y.; Kneafsey, T. J.; López, R. D.; Peterson, J.; Hubbard, S. S.

    2016-12-01

    The Arctic tundra with its permafrost dominated soils is one of the regions most affected by global climate change, and in turn, can also influence the changing climate through biogeochemical processes, including greenhouse gas release or storage. Characterization of shallow permafrost distribution and characteristics are required for predicting ecosystem feedbacks to a changing climate over decadal to century timescales, because they can drive active layer deepening and land surface deformation, which in turn can significantly affect hydrological and biogeochemical responses, including greenhouse gas dynamics. In this study, part of the Next-Generation Ecosystem Experiment (NGEE-Arctic), we use X-ray computed tomography (CT) to estimate wet bulk density of cores extracted from a field site near Barrow AK, which extend 2-3m through the active layer into the permafrost. We use multi-dimensional relationships inferred from destructive core sample analysis to infer organic matter density, dry bulk density and ice content, along with some geochemical properties from nondestructive CT-scans along the entire length of the cores, which was not obtained by the spatially limited destructive laboratory analysis. Multi-parameter cross-correlations showed good agreement between soil properties estimated from CT scans versus properties obtained through destructive sampling. Soil properties estimated from cores located in different types of polygons provide valuable information about the vertical distribution of soil and permafrost properties as a function of geomorphology.

  7. Impact of cultivation on characterisation of species composition of soil bacterial communities.

    PubMed

    McCaig, A E.; Grayston, S J.; Prosser, J I.; Glover, L A.

    2001-03-01

    The species composition of culturable bacteria in Scottish grassland soils was investigated using a combination of Biolog and 16S rDNA analysis for characterisation of isolates. The inclusion of a molecular approach allowed direct comparison of sequences from culturable bacteria with sequences obtained during analysis of DNA extracted directly from the same soil samples. Bacterial strains were isolated on Pseudomonas isolation agar (PIA), a selective medium, and on tryptone soya agar (TSA), a general laboratory medium. In total, 12 and 21 morphologically different bacterial cultures were isolated on PIA and TSA, respectively. Biolog and sequencing placed PIA isolates in the same taxonomic groups, the majority of cultures belonging to the Pseudomonas (sensu stricto) group. However, analysis of 16S rDNA sequences proved more efficient than Biolog for characterising TSA isolates due to limitations of the Microlog database for identifying environmental bacteria. In general, 16S rDNA sequences from TSA isolates showed high similarities to cultured species represented in sequence databases, although TSA-8 showed only 92.5% similarity to the nearest relative, Bacillus insolitus. In general, there was very little overlap between the culturable and uncultured bacterial communities, although two sequences, PIA-2 and TSA-13, showed >99% similarity to soil clones. A cloning step was included prior to sequence analysis of two isolates, TSA-5 and TSA-14, and analysis of several clones confirmed that these cultures comprised at least four and three sequence types, respectively. All isolate clones were most closely related to uncultured bacteria, with clone TSA-5.1 showing 99.8% similarity to a sequence amplified directly from the same soil sample. Interestingly, one clone, TSA-5.4, clustered within a novel group comprising only uncultured sequences. This group, which is associated with the novel, deep-branching Acidobacterium capsulatum lineage, also included clones isolated during direct analysis of the same soil and from a wide range of other sample types studied elsewhere. The study demonstrates the value of fine-scale molecular analysis for identification of laboratory isolates and indicates the culturability of approximately 1% of the total population but under a restricted range of media and cultivation conditions.

  8. Modulation of flyash-induced genotoxicity in Vicia faba by vermicomposting.

    PubMed

    Jain, Kavindra; Singh, Jitendra; Chauhan, L K S; Murthy, R C; Gupta, S K

    2004-09-01

    Cytogenetic effects of pre- and postvermicomposted flyash samples were evaluated on the root meristem cells of Vicia faba. Seedlings of V. faba were directly sown in flyash and cow dung-soil mixtures (20%, 40%, 60%, and 80%) and the lateral roots grown in these test mixtures were sampled at 5 days. Negative control was run parallel in cow dung-soil (CS) mixture alone. One set of flyash-cow dung-soil (FCS) mixture was subjected to vermicomposting by introducing Eisenia foetida species of earthworms for 30 days and the cytogenetic effects were reinvestigated through V. faba root meristems. Chemical analysis carried out prior to vermicomposting revealed high concentrations of heavy metals such as Cr, Cu, Pb, Zn, and Ni in FCS samples. CS samples also showed the presence of these metals. Cytogenetic examinations of root meristems exposed to the FCS mixtures showed significant inhibition of mitotic index (MI), induction of chromosome aberrations (CA), and a significantly increased frequency of mitotic aberrations (MA). The increase of the aberrations was dependent on the flyash concentrations. Roots grown in CS samples also showed chromosomal and MAs; however, the percentage was lower than that observed with FCS and also statistically nonsignificant. Cytogenetic analysis of vermicomposted samples of FCS revealed a 15-45% decline in the aberration frequencies whereas chemical analysis showed a 10-50% decline in the metal concentrations, viz. Cr, Cu, Pb, Zn, and Ni, which indicates E. foetida a potential accumulator of heavy metals and the decline in metal concentrations may be the cause of the decrease in aberration frequencies. The present study indicates the genotoxicity potential of flyash and also the feasibility of vermicomposting for cleanup of metal-contaminated soil to mitigate the toxicity/genotoxicity. Copyright 2004 Elsevier Inc.

  9. Improvements in the analytical methodology for the residue determination of the herbicide glyphosate in soils by liquid chromatography coupled to mass spectrometry.

    PubMed

    Botero-Coy, A M; Ibáñez, M; Sancho, J V; Hernández, F

    2013-05-31

    The determination of glyphosate (GLY) in soils is of great interest due to the widespread use of this herbicide and the need of assessing its impact on the soil/water environment. However, its residue determination is very problematic especially in soils with high organic matter content, where strong interferences are normally observed, and because of the particular physico-chemical characteristics of this polar/ionic herbicide. In the present work, we have improved previous LC-MS/MS analytical methodology reported for GLY and its main metabolite AMPA in order to be applied to "difficult" soils, like those commonly found in South-America, where this herbicide is extensively used in large areas devoted to soya or maize, among other crops. The method is based on derivatization with FMOC followed by LC-MS/MS analysis, using triple quadrupole. After extraction with potassium hydroxide, a combination of extract dilution, adjustment to appropriate pH, and solid phase extraction (SPE) clean-up was applied to minimize the strong interferences observed. Despite the clean-up performed, the use of isotope labelled glyphosate as internal standard (ILIS) was necessary for the correction of matrix effects and to compensate for any error occurring during sample processing. The analytical methodology was satisfactorily validated in four soils from Colombia and Argentina fortified at 0.5 and 5mg/kg. In contrast to most LC-MS/MS methods, where the acquisition of two transitions is recommended, monitoring all available transitions was required for confirmation of positive samples, as some of them were interfered by unknown soil components. This was observed not only for GLY and AMPA but also for the ILIS. Analysis by QTOF MS was useful to confirm the presence of interferent compounds that shared the same nominal mass of analytes as well as some of their main product ions. Therefore, the selection of specific transitions was crucial to avoid interferences. The methodology developed was applied to the analysis of 26 soils from different areas of Colombia and Argentina, and the method robustness was demonstrated by analysis of quality control samples along 4 months. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Environmental Filtering Process Has More Important Roles than Dispersal Limitation in Shaping Large-Scale Prokaryotic Beta Diversity Patterns of Grassland Soils.

    PubMed

    Cao, Peng; Wang, Jun-Tao; Hu, Hang-Wei; Zheng, Yuan-Ming; Ge, Yuan; Shen, Ju-Pei; He, Ji-Zheng

    2016-07-01

    Despite the utmost importance of microorganisms in maintaining ecosystem functioning and their ubiquitous distribution, our knowledge of the large-scale pattern of microbial diversity is limited, particularly in grassland soils. In this study, the microbial communities of 99 soil samples spanning over 3000 km across grassland ecosystems in northern China were investigated using high-throughput sequencing to analyze the beta diversity pattern and the underlying ecological processes. The microbial communities were dominated by Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, and Planctomycetes across all the soil samples. Spearman's correlation analysis indicated that climatic factors and soil pH were significantly correlated with the dominant microbial taxa, while soil microbial richness was positively linked to annual precipitation. The environmental divergence-dissimilarity relationship was significantly positive, suggesting the importance of environmental filtering processes in shaping soil microbial communities. Structural equation modeling found that the deterministic process played a more important role than the stochastic process on the pattern of soil microbial beta diversity, which supported the predictions of niche theory. Partial mantel test analysis have showed that the contribution of independent environmental variables has a significant effect on beta diversity, while independent spatial distance has no such relationship, confirming that the deterministic process was dominant in structuring soil microbial communities. Overall, environmental filtering process has more important roles than dispersal limitation in shaping microbial beta diversity patterns in the grassland soils.

  11. Arbuscular Mycorrhizal Fungi Community Structure, Abundance and Species Richness Changes in Soil by Different Levels of Heavy Metal and Metalloid Concentration

    PubMed Central

    Krishnamoorthy, Ramasamy; Kim, Chang-Gi; Subramanian, Parthiban; Kim, Ki-Yoon; Selvakumar, Gopal; Sa, Tong-Min

    2015-01-01

    Arbuscular Mycorrhizal Fungi (AMF) play major roles in ecosystem functioning such as carbon sequestration, nutrient cycling, and plant growth promotion. It is important to know how this ecologically important soil microbial player is affected by soil abiotic factors particularly heavy metal and metalloid (HMM). The objective of this study was to understand the impact of soil HMM concentration on AMF abundance and community structure in the contaminated sites of South Korea. Soil samples were collected from the vicinity of an abandoned smelter and the samples were subjected to three complementary methods such as spore morphology, terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE) for diversity analysis. Spore density was found to be significantly higher in highly contaminated soil compared to less contaminated soil. Spore morphological study revealed that Glomeraceae family was more abundant followed by Acaulosporaceae and Gigasporaceae in the vicinity of the smelter. T-RFLP and DGGE analysis confirmed the dominance of Funneliformis mosseae and Rhizophagus intraradices in all the study sites. Claroideoglomus claroideum, Funneliformis caledonium, Rhizophagus clarus and Funneliformis constrictum were found to be sensitive to high concentration of soil HMM. Richness and diversity of Glomeraceae family increased with significant increase in soil arsenic, cadmium and zinc concentrations. Our results revealed that the soil HMM has a vital impact on AMF community structure, especially with Glomeraceae family abundance, richness and diversity. PMID:26035444

  12. Mercury conversion processes in Amazon soils evaluated by thermodesorption analysis.

    PubMed

    do Valle, Cláudia M; Santana, Genilson P; Windmöller, Cláudia C

    2006-12-01

    This paper reports on the speciation study and the Hg redox behavior in Amazon soils not influenced by gold mining and collected near Manaus, AM, Brazil. The samples were incubated by adding Hg(0) and HgCl(2) to dry soil. Solid phase Hg speciation analysis was carried out using a Hg thermodesorption technique with the aim of distinguishing elemental Hg(0) from Hg(II) binding forms. In the first case, we observed the conversion of Hg(0) to Hg(II) binding forms in the range of 28-68% and a correlation between the percent of oxidation and OM content. Samples incubated with Hg(II) showed the formation of Hg(I) and/or Hg(0) in the range of 19-69%. The lowest values corresponded to the samples with the lowest clay contents. The kinetics of conversion of Hg(0) as well as HgCl(2) were roughly fitted to the two first order reactions, a fast one and a slow one. It was not possible to evaluate differences between sampling sites and types of soils, but the mean half-life of the first order reaction obtained by the addition of Hg(II) was slower (t(1/2)=365d) than the one obtained by the addition of Hg(0) (t(1/2)=148d). Previous studies have shown the predominance of organically bound Hg in these samples. Thus, the kinetic difference between Hg oxidation and reduction in combination with the efficient retention processes by OM may explain the high background values found in Amazon soils.

  13. Site characterization and evaluation of the stability of the Yesilyurt Landslide (Trabzon, NE Turkey) using back analysis method

    NASA Astrophysics Data System (ADS)

    Kul Yahşi, Bilgehan; Ersoy, Hakan

    2018-06-01

    The aim of this study was to determine the soil profile of the Yeşilyurt Landslide Area (NE Turkey) and to investigate the stability of the landslide area after the excavation planned by back analysis for support design. For these purposes, after the 1/1000 scaled engineering geological map was prepared, seismic refraction, electrical resistivity tomography and ground penetrating radar measurements were performed on different profiles to understand vertical and horizontal homogeneity of the landslide materials and undisturbed/disturbed soil samples were obtained from the test pits to determine the geotechnical properties of the soil. The results of the geophysical measurements showed that the landslide material was composed of two different soil zones. While the maximum thickness of the upper zone is 2.5, the thickness of the lower zone is about 5 m. The depth of dasidic rock mass is about 7 m. Residual cohesions of the soil samples obtained upper and lower zones were determined as 38 kPa and 44 kPa, and their residual friction angles were determined as 18° and 15° respectively. Unit weight values of the soil samples obtained from both zones were 16.9 kN m-3. The data obtained from laboratory tests showed that the landslide material is a uniform lithology. The geophysical measurements indicate that the wave velocity and resistivity values of these profiles differ from each other due to groundwater at a depth of 2.5 m. Limit equilibrium analysis were carried out with Slide v5.0 software using data obtained from the field measurements and laboratory tests to evaluate current and supported cases of the studied area. Because the safety factor of the slope obtained from the LE analyses is 0.99 and the studied soil environment is considered as unstable, the reliable and economical reinforcement was suggested using the retaining wall. The back-analysis method was evaluated to ensure the stability for a 1.5 safety factor and finally the lateral active forces for the retaining wall were calculated in the LE analysis as 718 kN and 1839 kN for without and with seismic load respectively.

  14. Soil respiration and carbon loss relationship with temperature and land use conversion in freeze-thaw agricultural area.

    PubMed

    Ouyang, Wei; Lai, Xuehui; Li, Xia; Liu, Heying; Lin, Chunye; Hao, Fanghua

    2015-11-15

    Soil respiration (Rs) was hypothesized to have a special response pattern to soil temperature and land use conversion in the freeze-thaw area. The Rs differences of eight types of land use conversions during agricultural development were observed and the impacts of Rs on soil organic carbon (SOC) loss were assessed. The land use conversions during last three decades were categorized into eight types, and the 141 SOC sampling sites were grouped by conversion type. The typical soil sampling sites were subsequently selected for monitoring of soil temperature and Rs of each land use conversion types. The Rs correlations with temperature at difference depths and different conversion types were identified with statistical analysis. The empirical mean error model and the biophysical theoretical model with Arrhenius equation about the Rs sensitivity to temperature were both analyzed and shared the similar patterns. The temperature dependence of soil respiration (Q10) analysis further demonstrated that the averaged value of eight types of land use in this freeze-thaw agricultural area ranged from 1.15 to 1.73, which was lower than the other cold areas. The temperature dependence analysis demonstrated that the Rs in the top layer of natural land covers was more sensitive to temperature and experienced a large vertical difference. The natural land covers exhibited smaller Rs and the farmlands had the bigger value due to tillage practices. The positive relationships between SOC loss and Rs were identified, which demonstrated that Rs was the key chain for SOC loss during land use conversion. The spatial-vertical distributions of SOC concentration with the 1.5-km grid sampling showed that the more SOC loss in the farmland, which was coincided with the higher Rs in farmlands. The analysis of Rs dynamics provided an innovative explanation for SOC loss in the freeze-thaw agricultural area. The analysis of Rs dynamics provided an innovative explanation for SOC loss in the freeze-thaw agricultural area. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Spatial distribution of particulate organic matter pools, quantified and characterized by mid-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Bornemann, L.; Welp, G.; Amelung, W.

    2009-04-01

    Comprising more than 60 % of the terrestrial carbon pool, soil organic carbon (SOC) is one of the principal factors regulating the global C-cycle. Against the background of worldwide increasing CO2 emissions, much effort has been put to the modelling of soil-C turnover in order to evaluate its potential for mitigation of climate change. Soil organic matter is an ever changing assemblage of various organic components that interact with the mineral matrix and in dependence of its ecological environment. Carbon storage is thereby assumed to propagate by hierarchical saturation of different carbon pools. A homogeneous distribution of the respective pools within natural environments is unlikely as the controlling soil parameters are subject to spatial and temporal heterogeneity. Several attempts to operationalize this complex soil compartment have been proposed, most of them resting upon a concept of pools with different stability and varying turnover times. Among these pools, particulate organic matter (POM) is considered to be most sensitive to environmental changes and has been shown to explain major parts of the SOC variations. Until today, rather laborious physical and physico-chemical fractionation procedures are most commonly applied for the initialization and validation of POM in C-turnover models. Mid-infrared spectroscopy (MIRS) in combination with partial least squares regression (PLSR) could overcome this problem. The technique is fast, cheap, and requires little sample preparation. All the same, it is an appropriate technique not only for the determination of gross parameters like total soil organic carbon contents, but also for the determination and characterization of minor constituents like black carbon in soils. Basically, the infrared radiation is absorbed by molecules that express a dipole-moment during vibration. As virtually all constituents of soil organic matter and also a multitude of inorganic soil constituents express such a dipole-moment, plentiful chemical information can be extracted from absorption spectra of soil samples. In this work we present the development of calibration models for POM quantification via MIRS-PLSR, and the compilation of a raster data set including SOC and POM of three size classes for the testsite of the SFB-TR32 at Selhausen near Jülich (Germany). The studied test site is an orthic luvisol which has been sampled in a ten times ten meter raster from 0-30 cm depth (n=131). For POM fractionation samples were gently sonicated and material from 2000-250 µm was gained by wet sieving. After a second, more intense sonication, intermediate (250-53 µm) and fine (53-20 µm) material was also gained by wet sieving. All fractions were dried at 40 °C, carbon contents were determined by elemental analysis. For calibration of MIRS-PLSR, SOC contents of 87 bulk soil samples were determined by elemental analysis. Contributions of the different POM fractions to bulk SOC as well as the SOC contents within the particular POM fraction were determined for 36 soil samples by physical particle size fractionation as described above. MIRS-PLSR based predictions for the contribution of POM fractions to bulk soil proved to be satisfactory (R² >0.77) and improved with decreasing particle size. For the predictions of SOC contents in bulk soil and the different POM fractions R² even reached values ≥0.97. Root mean squared errors of the cross validations were in the range of standard deviations of the lab analysis or smaller. As physical fractionation methods are intrinsically susceptible to measurement errors, determination of POM fractions by MIRS analysis may even improve data sets for modelling. Apart from the generally convincing statistical parameters, further evidence for reliable predictions of the contributions of the different POM fractions to bulk SOC could be drawn from the spectral information itself. The spectral features utilized for the determination of the contribution of the different POM fractions to bulk SOC were matching the features for the prediction of the absolute SOC concentrations within the particular fractions. As these predictions were conducted with independent sample sets (bulk soil for the POM contribution and soil fractions for the SOC content within the fraction) the matching structural information for both features of the individual POM fraction indirectly validates the prediction for the POM pools. The latter is especially true as the observed features coincide with the actual knowledge on chemistry and stabilization of POM in soils. For the compilation of a complete raster data-set, the developed calibrations were applied to all of the 131 topsoil samples taken at the SFB-TR32 testsite. Correlation analysis indicated that the coarse and the intermediate POM fractions are related to each other, to bulk SOC content and textural parameters respectively, while the fine POM fraction seems to be independent from these factors. The observed coherences and the applicability of a C-saturation concept will be discussed by visual map-comparison and geostatistical analysis of the determined parameters.

  16. Soil pH is a Key Determinant of Soil Fungal Community Composition in the Ny-Ålesund Region, Svalbard (High Arctic)

    PubMed Central

    Zhang, Tao; Wang, Neng-Fei; Liu, Hong-Yu; Zhang, Yu-Qin; Yu, Li-Yan

    2016-01-01

    This study assessed the fungal community composition and its relationships with properties of surface soils in the Ny-Ålesund Region (Svalbard, High Arctic). A total of thirteen soil samples were collected and soil fungal community was analyzed by 454 pyrosequencing with fungi-specific primers targeting the rDNA internal transcribed spacer (ITS) region. The following eight soil properties were analyzed: pH, organic carbon (C), organic nitrogen (N), ammonium nitrogen (NH4+-N), silicate silicon (SiO42--Si), nitrite nitrogen (NO2--N), phosphate phosphorus (PO43--P), and nitrate nitrogen (NO3--N). A total of 57,952 reads belonging to 541 operational taxonomic units (OTUs) were found. of these OTUs, 343 belonged to Ascomycota, 100 to Basidiomycota, 31 to Chytridiomycota, 22 to Glomeromycota, 11 to Zygomycota, 10 to Rozellomycota, whereas 24 belonged to unknown fungi. The dominant orders were Helotiales, Verrucariales, Agaricales, Lecanorales, Chaetothyriales, Lecideales, and Capnodiales. The common genera (>eight soil samples) were Tetracladium, Mortierella, Fusarium, Cortinarius, and Atla. Distance-based redundancy analysis (db-rda) and analysis of similarities (ANOSIM) revealed that soil pH (p = 0.001) was the most significant factor in determining the soil fungal community composition. Members of Verrucariales were found to predominate in soils of pH 8–9, whereas Sordariales predominated in soils of pH 7–8 and Coniochaetales predominated in soils of pH 6–7. The results suggest the presence and distribution of diverse soil fungal communities in the High Arctic, which can provide reliable data for studying the ecological responses of soil fungal communities to climate changes in the Arctic. PMID:26955371

  17. Dynamics of soil diazotrophic community structure, diversity, and functioning during the cropping period of cotton (Gossypium hirsutum).

    PubMed

    Rai, Sandhya; Singh, Dileep Kumar; Annapurna, Kannepalli

    2015-01-01

    The soil sampled at different growth stages along the cropping period of cotton were analyzed using various molecular tools: restriction fragment length polymorphism (RFLP), terminal restriction length polymorphism (T-RFLP), and cloning-sequencing. The cluster analysis of the diazotrophic community structure of early sampled soil (0, 15, and 30 days) was found to be more closely related to each other than the later sampled one. Phylogenetic and diversity analysis of sequences obtained from the first (0 Day; C0) and last soil sample (180 day; C180) confirmed the data. The phylogenetic analysis revealed that C0 was having more unique sequences than C180 (presence of γ-Proteobacteria exclusively in C0). A relatively higher richness of diazotrophic community sequences was observed in C0 (S(ACE) : 30.76; S(Chao1) : 20.94) than C180 (S(ACE) : 18.00; S(Chao1) : 18.00) while the evenness component of Shannon diversity index increased from C0 (0.97) to C180 (1.15). The impact of routine agricultural activities was more evident based on diazotrophic activity (measured by acetylene reduction assay) than its structure and diversity. The nitrogenase activity of C0 (1264.85 ± 35.7 ηmol of ethylene production g(-1) dry soil h(-1) ) was statistically higher when compared to all other values (p < 0.05). There was no correlation found between diazotrophic community structure/diversity and N2 fixation rates. Thus, considerable functional redundancy of nifH was concluded to be existing at the experimental site. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Spatial variability of isoproturon mineralizing activity within an agricultural field: geostatistical analysis of simple physicochemical and microbiological soil parameters.

    PubMed

    El Sebai, T; Lagacherie, B; Soulas, G; Martin-Laurent, F

    2007-02-01

    We assessed the spatial variability of isoproturon mineralization in relation to that of physicochemical and biological parameters in fifty soil samples regularly collected along a sampling grid delimited across a 0.36 ha field plot (40 x 90 m). Only faint relationships were observed between isoproturon mineralization and the soil pH, microbial C biomass, and organic nitrogen. Considerable spatial variability was observed for six of the nine parameters tested (isoproturon mineralization rates, organic nitrogen, genetic structure of the microbial communities, soil pH, microbial biomass and equivalent humidity). The map of isoproturon mineralization rates distribution was similar to that of soil pH, microbial biomass, and organic nitrogen but different from those of structure of the microbial communities and equivalent humidity. Geostatistics revealed that the spatial heterogeneity in the rate of degradation of isoproturon corresponded to that of soil pH and microbial biomass.

  19. Pilot studies for the North American Soil Geochemical Landscapes Project - Site selection, sampling protocols, analytical methods, and quality control protocols

    USGS Publications Warehouse

    Smith, D.B.; Woodruff, L.G.; O'Leary, R. M.; Cannon, W.F.; Garrett, R.G.; Kilburn, J.E.; Goldhaber, M.B.

    2009-01-01

    In 2004, the US Geological Survey (USGS) and the Geological Survey of Canada sampled and chemically analyzed soils along two transects across Canada and the USA in preparation for a planned soil geochemical survey of North America. This effort was a pilot study to test and refine sampling protocols, analytical methods, quality control protocols, and field logistics for the continental survey. A total of 220 sample sites were selected at approximately 40-km intervals along the two transects. The ideal sampling protocol at each site called for a sample from a depth of 0-5 cm and a composite of each of the O, A, and C horizons. The <2-mm fraction of each sample was analyzed for Al, Ca, Fe, K, Mg, Na, S, Ti, Ag, As, Ba, Be, Bi, Cd, Ce, Co, Cr, Cs, Cu, Ga, In, La, Li, Mn, Mo, Nb, Ni, P, Pb, Rb, Sb, Sc, Sn, Sr, Te, Th, Tl, U, V, W, Y, and Zn by inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry following a near-total digestion in a mixture of HCl, HNO3, HClO4, and HF. Separate methods were used for Hg, Se, total C, and carbonate-C on this same size fraction. Only Ag, In, and Te had a large percentage of concentrations below the detection limit. Quality control (QC) of the analyses was monitored at three levels: the laboratory performing the analysis, the USGS QC officer, and the principal investigator for the study. This level of review resulted in an average of one QC sample for every 20 field samples, which proved to be minimally adequate for such a large-scale survey. Additional QC samples should be added to monitor within-batch quality to the extent that no more than 10 samples are analyzed between a QC sample. Only Cr (77%), Y (82%), and Sb (80%) fell outside the acceptable limits of accuracy (% recovery between 85 and 115%) because of likely residence in mineral phases resistant to the acid digestion. A separate sample of 0-5-cm material was collected at each site for determination of organic compounds. A subset of 73 of these samples was analyzed for a suite of 19 organochlorine pesticides by gas chromatography. Only three of these samples had detectable pesticide concentrations. A separate sample of A-horizon soil was collected for microbial characterization by phospholipid fatty acid analysis (PLFA), soil enzyme assays, and determination of selected human and agricultural pathogens. Collection, preservation and analysis of samples for both organic compounds and microbial characterization add a great degree of complication to the sampling and preservation protocols and a significant increase to the cost for a continental-scale survey. Both these issues must be considered carefully prior to adopting these parameters as part of the soil geochemical survey of North America.

  20. Environmental hazard assessment of contaminated soils in Antarctica: Using a structured tier 1 approach to inform decision-making.

    PubMed

    Pereira, Joana Luísa; Pereira, Patrícia; Padeiro, Ana; Gonçalves, Fernando; Amaro, Eduardo; Leppe, Marcelo; Verkulich, Sergey; Hughes, Kevin A; Peter, Hans-Ulrich; Canário, João

    2017-01-01

    Generally, Antarctica is considered to be an untouched area of the planet; however, the region's ecosystems have been subject to increased human pressure for at least the past half-century. This study assessed soils of Fildes Peninsula, where trace element pollution is thought to prevail. Four soil samples were collected from different locations and assessed following tier 1 methodologies for chemical and ecotoxicological lines of evidence (LoE) used in typical soil Environmental Risk Assessment (ERA). Trace element quantification was run on soil samples and sequential extracts, and elutriates were used to address their ecotoxicity using a standard ecotoxicological battery. The highest levels of trace elements were found for Cr, Cu, Ni and Zn, which were well above baseline levels in two sites located near previously identified contamination sources. Trace element concentrations in soils were compared with soil quality guidelines to estimate the contribution of the chemical LoE for integrated risk calculations; risk was found high, above 0.5 for all samples. Total concentrations in soil were consistent with corresponding sequentially extracted percentages, with Cu and Zn being the most bioavailable elements. Bacteria did not respond consistently to the elutriate samples and cladocerans did not respond at all. In contrast, the growth of microalgae and macrophytes was significantly impaired by elutriates of all soil samples, consistently to estimated trace element concentrations in the elutriate matrix. These results translated into lower risk values for the ecotoxicological compared to the chemical LoE. Nevertheless, integrated risk calculations generated either an immediate recommendation for further analysis to better understand the hazardous potential of the tested soils or showed that the soils could not adequately sustain natural ecosystem functions. This study suggests that the soil ecosystem in Fildes has been inadequately protected and supports previous claims on the need to reinforce protection measures and remediation activities. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Properties of Subsurface Soil Cores from Four Geologic Provinces Surrounding Mars Desert Research Station, Utah: Characterizing Analog Martian Soil in a Human Exploration Scenario

    NASA Technical Reports Server (NTRS)

    Stoker, C. R.; Clarke, J. D. A.; Direito, S.; Foing, B.

    2011-01-01

    The DOMEX program is a NASA-MMAMA funded project featuring simulations of human crews on Mars focused on science activities that involve collecting samples from the subsurface using both manual and robotic equipment methods and analyzing them in the field and post mission. A crew simulating a human mission to Mars performed activities focused on subsurface science for 2 weeks in November 2009 at Mars Desert Research Station near Hanksville, Utah --an important chemical and morphological Mars analog site. Activities performed included 1) survey of the area to identify geologic provinces, 2) obtaining soil and rock samples from each province and characterizing their mineralogy, chemistry, and biology; 3) site selection and reconnaissance for a future drilling mission; 4) deployment and testing of Mars Underground Mole, a percussive robotic soil sampling device; and 5) recording and analyzing how crew time was used to accomplish these tasks. This paper summarizes results from analysis of soil cores

  2. Assessment of heavy metal pollution in vegetables and relationships with soil heavy metal distribution in Zhejiang province, China.

    PubMed

    Ye, Xuezhu; Xiao, Wendan; Zhang, Yongzhi; Zhao, Shouping; Wang, Gangjun; Zhang, Qi; Wang, Qiang

    2015-06-01

    There are increasing concerns on heavy metal contaminant in soils and vegetables. In this study, we investigated heavy metal pollution in vegetables and the corresponding soils in the main vegetable production regions of Zhejiang province, China. A total of 97 vegetable samples and 202 agricultural soil samples were analyzed for the concentrations of Cd, Pb, As, Hg, and Cr. The average levels of Cd, Pb, and Cr in vegetable samples [Chinese cabbage (Brassica campestris spp. Pekinensis), pakchoi (Brassica chinensis L.), celery (Apium graveolens), tomato (Lycopersicon esculentum), cucumber (Colletotrichum lagenarium), cowpea (Vigna unguiculata), pumpkin (Cucurbita pepo L.), and eggplant (Solanum melongena)] were 0.020, 0.048, and 0.043 mg kg(-1), respectively. The Pb and Cr concentrations in all vegetable samples were below the threshold levels of the Food Quality Standard (0.3 and 0.5 mg kg(-1), respectively), except that two eggplant samples exceeded the threshold levels for Cd concentrations (0.05 mg kg(-1)). As and Hg contents in vegetables were below the detection level (0.005 and 0.002 mg kg(-1), respectively). Soil pollution conditions were assessed in accordance with the Chinese Soil Quality Criterion (GB15618-1995, Grade II); 50 and 68 soil samples from the investigated area exceeded the maximum allowable contents for Cd and Hg, respectively. Simple correlation analysis revealed that there were significantly positive correlations between the metal concentrations in vegetables and the corresponding soils, especially for the leafy and stem vegetables such as pakchoi, cabbage, and celery. Bio-concentration factor values for Cd are higher than those for Pb and Cr, which indicates that Cd is more readily absorbed by vegetables than Pb and Cr. Therefore, more attention should be paid to the possible pollution of heavy metals in vegetables, especially Cd.

  3. Long-term effects of land application of class B biosolids on the soil microbial populations, pathogens, and activity.

    PubMed

    Zerzghi, Huruy; Gerba, Charles P; Brooks, John P; Pepper, Ian L

    2010-01-01

    This study evaluated the influence of 20 annual land applications of Class B biosolids on the soil microbial community. The potential benefits and hazards of land application were evaluated by analysis of surface soil samples collected following the 20th land application of biosolids. The study was initiated in 1986 at the University of Arizona Marana Agricultural Center, 21 miles north of Tucson, AZ. The final application of biosolids was in March 2005, followed by growth of cotton (Gossypium hirsutum L.) from April through November 2005. Surface soil samples (0-30 cm) were collected monthly from March 2005, 2 wk after the final biosolids application, through December 2005, and analyzed for soil microbial numbers. December samples were analyzed for additional soil microbial properties. Data show that land application of Class B biosolids had no significant long-term effect on indigenous soil microbial numbers including bacteria, actinomycetes, and fungi compared to unamended control plots. Importantly, no bacterial or viral pathogens were detected in soil samples collected from biosolid amended plots in December (10 mo after the last land application) demonstrating that pathogens introduced via Class B biosolids only survived in soil transiently. However, plots that received biosolids had significantly higher microbial activity or potential for microbial transformations, including nitrification, sulfur oxidation, and dehydrogenase activity, than control plots and plots receiving inorganic fertilizers. Overall, the 20 annual land applications showed no long-term adverse effects, and therefore, this study documents that land application of biosolids at this particular site was sustainable throughout the 20-yr period, with respect to soil microbial properties.

  4. Metagenome-Wide Association Study and Machine Learning Prediction of Bulk Soil Microbiome and Crop Productivity

    PubMed Central

    Chang, Hao-Xun; Haudenshield, James S.; Bowen, Charles R.; Hartman, Glen L.

    2017-01-01

    Areas within an agricultural field in the same season often differ in crop productivity despite having the same cropping history, crop genotype, and management practices. One hypothesis is that abiotic or biotic factors in the soils differ between areas resulting in these productivity differences. In this study, bulk soil samples collected from a high and a low productivity area from within six agronomic fields in Illinois were quantified for abiotic and biotic characteristics. Extracted DNA from these bulk soil samples were shotgun sequenced. While logistic regression analyses resulted in no significant association between crop productivity and the 26 soil characteristics, principal coordinate analysis and constrained correspondence analysis showed crop productivity explained a major proportion of the taxa variance in the bulk soil microbiome. Metagenome-wide association studies (MWAS) identified more Bradyrhizodium and Gammaproteobacteria in higher productivity areas and more Actinobacteria, Ascomycota, Planctomycetales, and Streptophyta in lower productivity areas. Machine learning using a random forest method successfully predicted productivity based on the microbiome composition with the best accuracy of 0.79 at the order level. Our study showed that crop productivity differences were associated with bulk soil microbiome composition and highlighted several nitrogen utility-related taxa. We demonstrated the merit of MWAS and machine learning for the first time in a plant-microbiome study. PMID:28421041

  5. Soil-plant-microbial relations in hydrothermally altered soils of Northern California

    USGS Publications Warehouse

    Blecker, S.W.; Stillings, L.L.; DeCrappeo, N.M.; Ippolito, J.A.

    2014-01-01

    Soils developed on relict hydrothermally altered soils throughout the Western USA present unique opportunities to study the role of geology on above and belowground biotic activity and composition. Soil and vegetation samples were taken at three unaltered andesite and three hydrothermally altered (acid-sulfate) sites located in and around Lassen VolcanicNational Park in northeastern California. In addition, three different types of disturbed areas (clearcut, thinned, and pipeline) were sampled in acid-sulfate altered sites. Soils were sampled (0–15 cm) in mid-summer 2010 from both under-canopy and between-canopy areas within each of the sites. Soils were analyzed for numerous physical and chemical properties along with soil enzyme assays, C and N mineralization potential, microbial biomass-C and C-substrate utilization. Field vegetation measurements consisted of canopy cover by life form (tree, shrub, forb, and grass), tree and shrub density, and above-ground net primary productivity of the understory. Overall, parameters at the clearcut sites were more similar to the unaltered sites, while parameters at the thinned and pipeline sites were more similar to the altered sites. We employed principal components analysis (PCA) to develop two soil quality indices (SQI) to help quantify the differences among the sites: one based on the correlation between soil parameters and canopy cover, and the second based on six sub-indices. Soil quality indices developed in these systems could provide a means for monitoring and identifying key relations between the vegetation, soils, and microorganisms.

  6. Vertical characterization of soil contamination using multi-way modeling--a case study.

    PubMed

    Singh, Kunwar P; Malik, Amrita; Basant, Ankita; Ojha, Priyanka

    2008-11-01

    This study describes application of chemometric multi-way modeling approach to analyze the dataset pertaining to soils of industrial area with a view to assess the soil/sub-soil contamination, accumulation pathways and mobility of contaminants in the soil profiles. The three-way (sampling depths, chemical variables, sampling sites) dataset on heavy metals in soil samples collected from three different sites in an industrial area, up to a depth of 60 m each was analyzed using three-way Tucker3 model validated for stability and goodness of fit. A two component Tucker3 model, explaining 66.6% of data variance, allowed interpretation of the data information in all the three modes. The interpretation of core elements revealing interactions among the components of different modes (depth, variables, sites) allowed inferring more realistic information about the contamination pattern of soils both along the horizontal and vertical coordinates, contamination pathways, and mobility of contaminants through soil profiles, as compared to the traditional data analysis techniques. It concluded that soils at site-1 and site-2 are relatively more contaminated with heavy metals of both the natural as well as anthropogenic origins, as compared to the soil of site-3. Moreover, the accumulation pathways of metals for upper shallow layers and deeper layers of soils in the area were differentiated. The information generated would be helpful in developing strategies for remediation of the contaminated soils for reducing the subsequent risk of ground-water contamination in the study region.

  7. Sampling Soil for Characterization and Site Description

    NASA Technical Reports Server (NTRS)

    Levine, Elissa

    1999-01-01

    The sampling scheme for soil characterization within the GLOBE program is uniquely different from the sampling methods of the other protocols. The strategy is based on an understanding of the 5 soil forming factors (parent material, climate, biota, topography, and time) at each study site, and how each of these interact to produce a soil profile with unique characteristics and unique input and control into the atmospheric, biological, and hydrological systems. Soil profile characteristics, as opposed to soil moisture and temperature, vegetative growth, and atmospheric and hydrologic conditions, change very slowly, depending on the parameter being measured, ranging from seasonally to many thousands of years. Thus, soil information, including profile description and lab analysis, is collected only one time for each profile at a site. These data serve two purposes: 1) to supplement existing spatial information about soil profile characteristics across the landscape at local, regional, and global scales, and 2) to provide specific information within a given area about the basic substrate to which elements within the other protocols are linked. Because of the intimate link between soil properties and these other environmental elements, the static soil properties at a given site are needed to accurately interpret and understand the continually changing dynamics of soil moisture and temperature, vegetation growth and phenology, atmospheric conditions, and chemistry and turbidity in surface waters. Both the spatial and specific soil information can be used for modeling purposes to assess and make predictions about global change.

  8. Risks and benefits of gardening in urban soil; heavy metals and nutrient content in Los Angeles Community Gardens

    NASA Astrophysics Data System (ADS)

    Clarke, L. W.; Jenerette, D.; Bain, D. J.

    2012-12-01

    The availability of soil nutrients and heavy metals in urban community gardens can influence health of crops and participants. Interactions between garden history, management, and soils are understudied in cities. In July 2011, we collected soil samples from 45 plots at 6 Los Angeles community gardens. For comparison, 3 samples were collected from uncultivated garden soils and 3 more from outside soils. Samples were then tested for major nutrients- Nitrogen(N), Potassium (K), and Phosphorous (P)- and organic matter (SOM). We also measured concentrations of 29 metals in 3 gardens using Inductively Coupled Plasma- Atomic Emission Spectroscopy. Potassium and phosphorus exceeded optimum levels in all plots, with some over twice the maximum recommended levels. Over-fertilized soils may contribute to local watershed pollution and crop micronutrient deficiencies. Low soil SOM was observed in gardens in impoverished neighborhoods, possibly due to low quality amendments. Our metals analysis showed dangerous levels of lead (Pb)-- up to 1700 ppm in outside soils and 150 ppm in garden soils-- near older gardens, indicating lead deposition legacies. California lead safety standards indicate that children should not play near soils with Pb above 200 ppm, indicating need for long term monitoring of lead contaminated gardens. Arsenic (As) levels exceeded federal risk levels (0.3 ppm) and average CA background levels (2 ppm) in all areas, with some gardens exceeding 10 ppm. Heavy metal legacies in gardens may pose risks to participants with prolonged exposure and remediation of soils may be necessary.

  9. Use of X-ray diffraction technique and chemometrics to aid soil sampling strategies in traceability studies.

    PubMed

    Bertacchini, Lucia; Durante, Caterina; Marchetti, Andrea; Sighinolfi, Simona; Silvestri, Michele; Cocchi, Marina

    2012-08-30

    Aim of this work is to assess the potentialities of the X-ray powder diffraction technique as fingerprinting technique, i.e. as a preliminary tool to assess soil samples variability, in terms of geochemical features, in the context of food geographical traceability. A correct approach to sampling procedure is always a critical issue in scientific investigation. In particular, in food geographical traceability studies, where the cause-effect relations between the soil of origin and the final foodstuff is sought, a representative sampling of the territory under investigation is certainly an imperative. This research concerns a pilot study to investigate the field homogeneity with respect to both field extension and sampling depth, taking also into account the seasonal variability. Four Lambrusco production sites of the Modena district were considered. The X-Ray diffraction spectra, collected on the powder of each soil sample, were treated as fingerprint profiles to be deciphered by multivariate and multi-way data analysis, namely PCA and PARAFAC. The differentiation pattern observed in soil samples, as obtained by this fast and non-destructive analytical approach, well matches with the results obtained by characterization with other costly analytical techniques, such as ICP/MS, GFAAS, FAAS, etc. Thus, the proposed approach furnishes a rational basis to reduce the number of soil samples to be collected for further analytical characterization, i.e. metals content, isotopic ratio of radiogenic element, etc., while maintaining an exhaustive description of the investigated production areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Identification of dust storm origin in South -West of Iran.

    PubMed

    Broomandi, Parya; Dabir, Bahram; Bonakdarpour, Babak; Rashidi, Yousef

    2017-01-01

    Deserts are the main sources of emitted dust, and are highly responsive to wind erosion. Low content of soil moisture and lack of vegetation cover lead to fine particle's release. One of the semi-arid bare lands in Iran, located in the South-West of Iran in Khoozestan province, was selected to investigate Sand and Dust storm potential. This paper focused on the metrological parameters of the sampling site, their changes and the relationship between these changes and dust storm occurrence, estimation of Reconaissance Drought Index, the Atterberg limits of soil samples and their relation with soil erosion ability, the chemical composition, size distribution of soil and airborne dust samples, and estimation of vertical mass flux by COMSALT through considering the effect of saffman force and interparticle cohesion forces during warm period (April-September) in 2010. The chemical compositions are measured with X-ray fluorescence, Atomic absorption spectrophotometer and X-ray diffraction. The particle size distribution analysis was conducted by using Laser particle size and sieve techniques. There was a strong negative correlation between dust storm occurrence and annual and seasonal rainfall and relative humidity. Positive strong correlation between annual and seasonal maximum temperature and dust storm frequency was seen. Estimation of RDI st in the studied period showed an extremely dry condition. Using the results of particle size distribution and soil consistency, the weak structure of soil was represented. X-ray diffraction analyses of soil and dust samples showed that soil mineralogy was dominated mainly by Quartz and calcite. X-ray fluorescence analyses of samples indicated that the most important major oxide compositions of the soil and airborne dust samples were SiO 2 , Al 2 O 3 , CaO, MgO, Na 2 O, and Fe 2 O 3 , demonstrating similar percentages for soil and dust samples. Estimation of Enrichment Factors for all studied trace elements in soil samples showed Br, Cl, Mo, S, Zn, and Hg with EF values higher than 10. The findings, showed the possible correlation between the degree of anthropogenic soil pollutants, and the remains of Iraq-Iran war. The results expressed sand and dust storm emission potential in this area, was illustrated with measured vertical mass fluxes by COMSALT.

  11. Contaminant bioavailability in soil and phytotoxicity/genotoxicity tests in Vicia faba L.: a case study of boron contamination.

    PubMed

    Barbafieri, Meri; Giorgetti, Lucia

    2016-12-01

    In this work, the model plant for genotoxicity studies Vicia faba L. was used to investigate the relation between Boron (B) content and bioavailability in soil and plant genotoxic/phytotoxic response. A total of nine soil samples were investigated: two soil samples were collected from a B-polluted industrial area in Cecina (Tuscany, Italy), the other samples were obtained by spiking control soil (from a not polluted area of the basin) with seven increased doses of B, from about 20 to 100 mg B kg -1 . As expected, B availability, evaluated by chemical extraction, was higher (twofold) in spiked soils when compared with collected polluted soils with the same B total content. To analyze the phytotoxic effects of B, seed germination, root elongation, biomass production, and B accumulation in plant tissues were considered in V. faba plants grown in the various soils. Moreover, the cytotoxic/genotoxic effects of B were investigated in root meristems by mitotic index (MI) and micronuclei frequency (MCN) analysis. The results highlighted that V. faba was a B-sensitive plant and the appearance of phytotoxic effects, which altered plant growth parameters, were linearly correlated to the bioavailable B concentration in soils. Concerning the occurrence of cytotoxic/genotoxic effects induced by B, no linear correlation was observed even if MCN frequency was logarithmic correlated with the concentration of B bioavailable in soils.

  12. Spatial prediction of near surface soil water retention functions using hydrogeophysics and empirical orthogonal functions

    NASA Astrophysics Data System (ADS)

    Gibson, Justin; Franz, Trenton E.

    2018-06-01

    The hydrological community often turns to widely available spatial datasets such as the NRCS Soil Survey Geographic database (SSURGO) to characterize the spatial variability of soil properties. When used to spatially characterize and parameterize watershed models, this has served as a reasonable first approximation when lacking localized or incomplete soil data. Within agriculture, soil data has been left relatively coarse when compared to numerous other data sources measured. This is because localized soil sampling is both expensive and time intense, thus a need exists in better connecting spatial datasets with ground observations. Given that hydrogeophysics is data-dense, rapid, non-invasive, and relatively easy to adopt, it is a promising technique to help dovetail localized soil sampling with spatially exhaustive datasets. In this work, we utilize two common near surface geophysical methods, cosmic-ray neutron probe and electromagnetic induction, to identify temporally stable spatial patterns of measured geophysical properties in three 65 ha agricultural fields in western Nebraska. This is achieved by repeat geophysical observations of the same study area across a range of wet to dry field conditions in order to evaluate with an empirical orthogonal function. Shallow cores were then extracted within each identified zone and water retention functions were generated in the laboratory. Using EOF patterns as a covariate, we quantify the predictive skill of estimating soil hydraulic properties in areas without measurement using a bootstrap validation analysis. Results indicate that sampling locations informed via repeat hydrogeophysical surveys, required only five cores to reduce the cross-validation root mean squared error by an average of 64% as compared to soil parameters predicted by a commonly used benchmark, SSURGO and ROSETTA. The reduction to five strategically located samples within the 65 ha fields reduces sampling efforts by up to ∼90% as compared to the common practice of soil grid sampling every 1 ha.

  13. Factors associated with the likelihood of Giardia spp. and Cryptosporidium spp. in soil from dairy farms.

    PubMed

    Barwick, R S; Mohammed, H O; White, M E; Bryant, R B

    2003-03-01

    A study was conducted to identify factors associated with the likelihood of detecting Giardia spp. and Cryptosporidium spp. in the soil of dairy farms in a watershed area. A total of 37 farms were visited, and 782 soil samples were collected from targeted areas on these farms. The samples were analyzed for the presence of Cryptosporidium spp. oocysts, Giardia spp. cysts, percent moisture content, and pH. Logistic regression analysis was used to identify risk factors associated with the likelihood of the presence of these organisms. The use of the land at the sampling site was associated with the likelihood of environmental contamination with Cryptosporidium spp. Barn cleaner equipment area and agricultural fields were associated with increased likelihood of environmental contamination with Cryptosporidium spp. The risk of environmental contamination decreased with the pH of the soil and with the score of the potential likelihood of Cryptosporidium spp. The size of the sampling site, as determined by the sampling design, in square feet, was associated nonlinearly with the risk of detecting Cryptosporidium spp. The likelihood of the Giardia cyst in the soil increased with the prevalence of Giardia spp. in animals (i.e., 18 to 39%). As the size of the farm increased, there was decreased risk of Giardia spp. in the soil, and sampling sites which were covered with brush or bare soil showed a decrease in likelihood of detecting Giardia spp. when compared to land which had managed grass. The number of cattle on the farm less than 6 mo of age was negatively associated with the risk of detecting Giardia spp. in the soil, and the percent moisture content was positively associated with the risk of detecting Giardia spp. Our study showed that these two protozoan exist in dairy farm soil at different rates, and this risk could be modified by manipulating the pH of the soil.

  14. Quantification of soil water retention parameters using multi-section TDR-waveform analysis

    NASA Astrophysics Data System (ADS)

    Baviskar, S. M.; Heimovaara, T. J.

    2017-06-01

    Soil water retention parameters are important for describing flow in variably saturated soils. TDR is one of the standard methods used for determining water content in soil samples. In this study, we present an approach to estimate water retention parameters of a sample which is initially saturated and subjected to an incremental decrease in boundary head causing it to drain in a multi-step fashion. TDR waveforms are measured along the height of the sample at assumed different hydrostatic conditions at daily interval. The cumulative discharge outflow drained from the sample is also recorded. The saturated water content is obtained using volumetric analysis after the final step involved in multi-step drainage. The equation obtained by coupling the unsaturated parametric function and the apparent dielectric permittivity is fitted to a TDR wave propagation forward model. The unsaturated parametric function is used to spatially interpolate the water contents along TDR probe. The cumulative discharge outflow data is fitted with cumulative discharge estimated using the unsaturated parametric function. The weight of water inside the sample estimated at the first and final boundary head in multi-step drainage is fitted with the corresponding weights calculated using unsaturated parametric function. A Bayesian optimization scheme is used to obtain optimized water retention parameters for these different objective functions. This approach can be used for samples with long heights and is especially suitable for characterizing sands with a uniform particle size distribution at low capillary heads.

  15. A Comparison of Selected Statistical Techniques to Model Soil Cation Exchange Capacity

    NASA Astrophysics Data System (ADS)

    Khaledian, Yones; Brevik, Eric C.; Pereira, Paulo; Cerdà, Artemi; Fattah, Mohammed A.; Tazikeh, Hossein

    2017-04-01

    Cation exchange capacity (CEC) measures the soil's ability to hold positively charged ions and is an important indicator of soil quality (Khaledian et al., 2016). However, other soil properties are more commonly determined and reported, such as texture, pH, organic matter and biology. We attempted to predict CEC using different advanced statistical methods including monotone analysis of variance (MONANOVA), artificial neural networks (ANNs), principal components regressions (PCR), and particle swarm optimization (PSO) in order to compare the utility of these approaches and identify the best predictor. We analyzed 170 soil samples from four different nations (USA, Spain, Iran and Iraq) under three land uses (agriculture, pasture, and forest). Seventy percent of the samples (120 samples) were selected as the calibration set and the remaining 50 samples (30%) were used as the prediction set. The results indicated that the MONANOVA (R2= 0.82 and Root Mean Squared Error (RMSE) =6.32) and ANNs (R2= 0.82 and RMSE=5.53) were the best models to estimate CEC, PSO (R2= 0.80 and RMSE=5.54) and PCR (R2= 0.70 and RMSE=6.48) also worked well and the overall results were very similar to each other. Clay (positively correlated) and sand (negatively correlated) were the most influential variables for predicting CEC for the entire data set, while the most influential variables for the various countries and land uses were different and CEC was affected by different variables in different situations. Although the MANOVA and ANNs provided good predictions of the entire dataset, PSO gives a formula to estimate soil CEC using commonly tested soil properties. Therefore, PSO shows promise as a technique to estimate soil CEC. Establishing effective pedotransfer functions to predict CEC would be productive where there are limitations of time and money, and other commonly analyzed soil properties are available. References Khaledian, Y., Kiani, F., Ebrahimi, S., Brevik, E.C., Aitkenhead-Peterson, J. 2016. Assessment and monitoring of soil degradation during land use change using multivariate analysis. Land Degradation and Development. doi: 10.1002/ldr.2541.

  16. Profiling microbial community structures across six large oilfields in China and the potential role of dominant microorganisms in bioremediation.

    PubMed

    Sun, Weimin; Li, Jiwei; Jiang, Lei; Sun, Zhilei; Fu, Meiyan; Peng, Xiaotong

    2015-10-01

    Successful bioremediation of oil pollution is based on a comprehensive understanding of the in situ physicochemical conditions and indigenous microbial communities as well as the interaction between microorganisms and geochemical variables. Nineteen oil-contaminated soil samples and five uncontaminated controls were taken from six major oilfields across different geoclimatic regions in China to investigate the spatial distribution of the microbial ecosystem. Microbial community analysis revealed remarkable variation in microbial diversity between oil-contaminated soils taken from different oilfields. Canonical correspondence analysis (CCA) further demonstrated that a suite of in situ geochemical parameters, including soil moisture and sulfate concentrations, were among the factors that influenced the overall microbial community structure and composition. Phylogenetic analysis indicated that the vast majority of sequences were related to the genera Arthrobacter, Dietzia, Pseudomonas, Rhodococcus, and Marinobacter, many of which contain known oil-degrading or oil-emulsifying species. Remarkably, a number of archaeal genera including Halalkalicoccus, Natronomonas, Haloterrigena, and Natrinema were found in relatively high abundance in some of the oil-contaminated soil samples, indicating that these Euryarchaeota may play an important ecological role in some oil-contaminated soils. This study offers a direct and reliable reference of the diversity of the microbial community in various oil-contaminated soils and may influence strategies for in situ bioremediation of oil pollution.

  17. Denaturing gradient gel electrophoresis fingerprinting of soil bacteria in the vicinity of the Chinese Great Wall Station, King George Island, Antarctica.

    PubMed

    Pan, Qi; Wang, Feng; Zhang, Yang; Cai, Minghong; He, Jianfeng; Yang, Haizhen

    2013-08-01

    Bacterial diversity was investigated in soil samples collected from 13 sites around the Great Wall Station, Fildes Peninsula, King George Island, Antarctica, using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes. The classes alpha-, beta-, and gamma-Proteobacteria, as well as the phylum Actinobacteria, were found to be the dominant bacteria in the soils around the Great Wall Station. Although the selected samples were not contaminated by oil, a relationship between soil parameters, microbial biodiversity, and human impact was still seen. Sample sites in human impacted areas showed lower bacterial biodiversity (average H' = 2.65) when compared to non-impacted sites (average H' = 3.05). There was no statistically significant correlation between soil bacterial diversity and total organic carbon (TOC), total nitrogen, or total phosphorus contents of the soil. Canonical correlation analysis showed that TOC content was the most important factor determining bacterial community profiles among the measured soil parameters. In conclusion, microbial biodiversity and community characteristics within relatively small scales (1.5 km) were determined as a function of local environment parameters and anthropogenic impact.

  18. On line automated system for the determination of Sb(V), Sb(III), thrimethyl antimony(v) and total antimony in soil employing multisyringe flow injection analysis coupled to HG-AFS.

    PubMed

    Silva Junior, Mario M; Portugal, Lindomar A; Serra, Antonio M; Ferrer, Laura; Cerdà, Victor; Ferreira, Sergio L C

    2017-04-01

    This paper proposes the use of a multisyringe flow injection analysis (MSFIA) system for inorganic antimony speciation analysis, trimethyl antimony(V) and determination of total antimony in soil samples using hydride generation atomic fluorescence spectrometry (HG-AFS). Total antimony has been determined after reduction of antimony(V) to antimony(III) using potassium iodide and ascorbic acid. For determination of total inorganic antimony the sample is percolated in a mini-column containing the Dowex 50W-X8 resin for retention of the organic species of antimony. Antimony(III) is quantified in presence of 8-hydroxyquinoline as masking agent for antimony(V) after an extraction step of the organic antimony species using the also same mini-column. The trimethyl antimony(V) content is found by difference between total antimony and total inorganic antimony. By other hand, antimony(V) is quantified by difference between total inorganic antimony and antimony(III). The analytical determinations were performed using sodium tetrahydroborate as reducing agent. The optimization step was performed using two-level full factorial design and Doehlert matrix involving the factors: hydrochloric acid and sodium tetrahydroborate concentrations and sample flow rate. The optimized experimental conditions allow the antimony determination utilizing the external calibration technique with limits of detection and quantification of 0.9 and 3.1ngg -1 , respectively, and a precision expressed as relative standard deviation of 3.2% for an antimony solution of 5.0µgL -1 . The method accuracy was confirmed by analysis of the soil certified reference material furnished from Sigma-Aldrich RTC. Additionally, addition/recovery tests were performed employing synthetic solutions prepared using trimethyl antimony(V), antimony(III), antimony(V) and five soil samples. The antimony extraction step was performed in a closed system using hydrochloric acid, ultrasonic radiation and controlled temperature. The method proposed was applied for analysis of thirteen soil samples collected in different sites of the Balearic Islands, Spain, and the results obtained varied from 19 to 46ngg -1 for trimethyl antimony(V) and from 113 to 215ngg -1 for total inorganic antimony. The concentrations obtained to antimony(V) were always higher than for antimony(III) in all the analyzed samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. INNOVATIONS IN SOIL SAMPLING AND DATA ANALYSIS

    EPA Science Inventory

    Successful research outcomes from the VOC in soils work will provide the Agency with methods and techniques that provide the accurate VOC concentrations so that decisions related to a contaminated site can be made to optimize the protectiveness to the environment and human health...

  20. Determination of diagnostic standards on saturated soil extracts for cut roses grown in greenhouses

    PubMed Central

    Cabrera, Raúl Iskander

    2017-01-01

    This work comprises the theoretical determination and validation of diagnostic standards for the analysis of saturated soil extracts for cut rose flower crops (Rosa spp.) growing in the Bogota Plateau, Colombia. The data included 684 plant tissue analyses and 684 corresponding analyses of saturated soil extracts, all collected between January 2009 and June 2013. The tissue and soil samples were selected from 13 rose farms, and from cultivars grafted on the 'Natal Briar' rootstock. These concurrent samples of soil and plant tissues represented 251 production units (locations) of approximately 10,000 m2 distributed across the study area. The standards were conceived as a tool to improve the nutritional balance in the leaf tissue of rose plants and thereby define the norms for expressing optimum productive potential relative to nutritional conditions in the soil. To this end, previously determined diagnostic standard for rose leaf tissues were employed to obtain rates of foliar nutritional balance at each analyzed location and as criteria for determining the diagnostic norms for saturated soil extracts. Implementing this methodology to foliar analysis, showed a higher significant correlation for diagnostic indices. A similar behavior was observed in saturated soil extracts analysis, becoming a powerful tool for integrated nutritional diagnosis. Leaf analyses determine the most limiting nutrients for high yield and analyses of saturated soil extracts facilitate the possibility of correcting the fertigation formulations applied to soils or substrates. Recommendations are proposed to improve the balance in soil-plant system with which the possibility of yield increase becomes more probable. The main recommendations to increase and improve rose crop flower yields would be: continuously check pH values of SSE, reduce the amounts of P, Fe, Zn and Cu in fertigation solutions and carefully analyze the situation of Mn in the soil-plant system. PMID:28542547

  1. Somatic mutation frequencies in the stamen hairs of Tradescantia grown in soil samples from the Bikini Island.

    PubMed

    Ichikawa, S; Ishii, C

    1991-02-01

    Somatic pink mutation frequencies in the stamen hairs of Tradescantia BNL 02 clone grown for 76 days in two soil samples taken from the Bikini Island (where a hydrogen bomb explosion test had been conducted in 1954) were investigated. A significantly high mutation frequency (2.58 +/- 0.17 pink mutant events per 10(3) hairs or 1.34 +/- 0.09 pink mutant events per 10(4) hair-cell divisions) was observed for the plant grown in one of the two Bikini soil samples, as compared to the control plants (1.70 +/- 0.14 or 0.88 +/- 0.07, respectively) grown in the field soil of Saitama University. The soil sample which caused the significant increase in mutation frequency contained 6,880 +/- 330 mBq/g 137Cs, 62.5 +/- 4.4 mBq/g 60Co, and some other nuclides; a 150 microR/hr exposure rate being measured on the surface of the soil sample. The effective cumulative external exposures measured for the inflorescences of the plant grown in this soil sample averaged at most 60.8 mR, being too small to explain the significant elevation in mutation frequency observed. On the other hand, internal exposure due to uptake of radioactive nuclides was estimated to be 125 mrad (1.25 mGy) as an accumulated effective dose, mainly based on a gamma-spectrometrical analysis. However, it seemed highly likely that this value of internal exposure was a considerable underestimate, and the internal exposure was considered to be more significant than the external exposure.

  2. 14CO2 analysis of soil gas: Evaluation of sample size limits and sampling devices

    NASA Astrophysics Data System (ADS)

    Wotte, Anja; Wischhöfer, Philipp; Wacker, Lukas; Rethemeyer, Janet

    2017-12-01

    Radiocarbon (14C) analysis of CO2 respired from soils or sediments is a valuable tool to identify different carbon sources. The collection and processing of the CO2, however, is challenging and prone to contamination. We thus continuously improve our handling procedures and present a refined method for the collection of even small amounts of CO2 in molecular sieve cartridges (MSCs) for accelerator mass spectrometry 14C analysis. Using a modified vacuum rig and an improved desorption procedure, we were able to increase the CO2 recovery from the MSC (95%) as well as the sample throughput compared to our previous study. By processing series of different sample size, we show that our MSCs can be used for CO2 samples of as small as 50 μg C. The contamination by exogenous carbon determined in these laboratory tests, was less than 2.0 μg C from fossil and less than 3.0 μg C from modern sources. Additionally, we tested two sampling devices for the collection of CO2 samples released from soils or sediments, including a respiration chamber and a depth sampler, which are connected to the MSC. We obtained a very promising, low process blank for the entire CO2 sampling and purification procedure of ∼0.004 F14C (equal to 44,000 yrs BP) and ∼0.003 F14C (equal to 47,000 yrs BP). In contrast to previous studies, we observed no isotopic fractionation towards lighter δ13C values during the passive sampling with the depth samplers.

  3. SUPERFUND TREATABILITY CLEARINGHOUSE: FINAL ...

    EPA Pesticide Factsheets

    During the period of July 8 - July 12, 1985, the Shirco Infrared Systems Portable Pilot Test Unit was in operation at the Times Beach Dioxin Research Facility to demonstrate the capability of Shirco's infrared technology to decontaminate silty soil laden with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) at a concentration range of 156 to 306 ppb. Emissions sampling and final analysis was performed by Environmental Research & Technology, Inc. (ERT), while laboratory analysis of the emissions and soil samples was performed by Roy F. Weston Inc. Shirco Infrared Systems prepared the testing procedure protocol and operated the furnace system. publish information

  4. Effect of land use on the spatial variability of organic matter and nutrient status in an Oxisol

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, Jorge; Alves, Marlene Cristina; Vidal Vázquez, Eva

    2013-04-01

    Heterogeneity is now considered as an inherent soil property. Spatial variability of soil attributes in natural landscapes results mainly from soil formation factors. In cultivated soils much heterogeneity can additionally occur as a result of land use, agricultural systems and management practices. Organic matter content (OMC) and nutrients associated to soil exchange complex are key attribute in the maintenance of a high quality soil. Neglecting spatial heterogeneity in soil OMC and nutrient status at the field scale might result in reduced yield and in environmental damage. We analyzed the impact of land use on the pattern of spatial variability of OMC and soil macronutrients at the stand scale. The study was conducted in São Paulo state, Brazil. Land uses were pasture, mango orchard and corn field. Soil samples were taken at 0-10 cm and 10-20 cm depth in 84 points, within 100 m x 100 m plots. Texture, pH, OMC, cation exchange capacity (CEC), exchangeable cations (Ca, Mg, K, H, Al) and resin extractable phosphorus were analyzed.. Statistical variability was found to be higher in parameters defining the soil nutrient status (resin extractable P, K, Ca and Mg) than in general soil properties (OMC, CEC, base saturation and pH). Geostatistical analysis showed contrasting patterns of spatial dependence for the different soil uses, sampling depths and studied properties. Most of the studied data sets collected at two different depths exhibited spatial dependence at the sampled scale and their semivariograms were modeled by a nugget effect plus a structure. The pattern of soil spatial variability was found to be different between the three study soil uses and at the two sampling depths, as far as model type, nugget effect or ranges of spatial dependence were concerned. Both statistical and geostatistical results pointed out the importance of OMC as a driver responsible for the spatial variability of soil nutrient status.

  5. Application of portable X-ray fluorescence spectrometry in environmental investigation of heavy metal-contaminated sites and comparison with laboratory analysis

    NASA Astrophysics Data System (ADS)

    Ding, Liang; Wang, Shui; Cai, Bingjie; Zhang, Mancheng; Qu, Changsheng

    2018-02-01

    In this study, portable X-ray fluorescence spectrometry (pXRF) was used to measure the heavy metal contents of As, Cu, Cr, Ni, Pb and Zn in the soils of heavy metal-contaminated sites. The precision, accuracy and system errors of pXRF were evaluated and compared with traditional laboratory methods to examine the suitability of in situ pXRF. The results show that the pXRF analysis achieved satisfactory accuracy and precision in measuring As, Cr, Cu, Ni, Pb, and Zn in soils, and meets the requirements of the relevant detection technology specifications. For the certified reference soil samples, the pXRF results of As, Cr, Cu, Ni, Pb, and Zn show good linear relationships and coefficients of determination with the values measured using the reference analysis methods; with the exception of Ni, all the measured values were within the 95% confidence level. In the soil samples, the coefficients of determination between Cu, Zn, Pb, and Ni concentrations measured laboratory pXRF and the values measured with laboratory analysis all reach 0.9, showing a good linear relationship; however, there were large deviations between methods for Cr and As. This study provides reference data and scientific support for rapid detection of heavy metals in soils using pXRF in site investigation, which can better guide the practical application of pXRF.

  6. Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils

    DOE PAGES

    Eichorst, Stephanie A.; Strasser, Florian; Woyke, Tanja; ...

    2015-08-31

    The combined approach of incubating environmental samples with stable isotope-labeled substrates followed by single-cell analyses through high-resolution secondary ion mass spectrometry (NanoSIMS) or Raman microspectroscopy provides insights into the in situ function of microorganisms. This approach has found limited application in soils presumably due to the dispersal of microbial cells in a large background of particles. We developed a pipeline for the efficient preparation of cell extracts from soils for subsequent single-cell methods by combining cell detachment with separation of cells and soil particles followed by cell concentration. The procedure was evaluated by examining its influence on cell recoveries andmore » microbial community composition across two soils. This approach generated a cell fraction with considerably reduced soil particle load and of sufficient small size to allow single-cell analysis by NanoSIMS, as shown when detecting active N2-fixing and cellulose-responsive microorganisms via 15N2 and 13C-UL-cellulose incubations, respectively. The same procedure was also applicable for Raman microspectroscopic analyses of soil microorganisms, assessed via microcosm incubations with a 13C-labeled carbon source and deuterium oxide (D2O, a general activity marker). Lastly, the described sample preparation procedure enables single-cell analysis of soil microorganisms using NanoSIMS and Raman microspectroscopy, but should also facilitate single-cell sorting and sequencing.« less

  7. Thermally evolved gas analysis (TEGA) of hyperarid soils doped with microorganisms from the Atacama Desert in southern Peru: Implications for the Phoenix mission

    NASA Astrophysics Data System (ADS)

    Valdivia-Silva, Julio E.; Navarro-González, Rafael; McKay, Christopher

    2009-07-01

    TEGA, one of several instruments on board of the Phoenix Lander, performed differential scanning calorimetry and evolved gas analysis of soil samples and ice, collected from the surface and subsurface at a northern landing site on Mars. TEGA is a combination of a high temperature furnace and a mass spectrometer (MS) that was used to analyze samples delivered to the instrument via a robotic arm. The samples were heated at a programmed ramp rate up to 1000 °C. The power required for heating can be carefully and continuously monitored (scanning calorimetry). The evolved gases generated during the process can be analyzed with the evolved gas analyzer (a magnetic sector mass spectrometer) in order to determine the composition of gases released as a function of temperature. Our laboratory has developed a sample characterization method using a pyrolyzer integrated to a quadrupole mass spectrometer to support the interpretations of TEGA data. Here we examine the evolved gas properties of six types of hyperarid soils from the Pampas de La Joya in southern Peru (a possible analog to Mars), to which we have added with microorganisms ( Salmonella typhimurium, Micrococcus luteus, and Candida albicans) in order to investigate the effect of the soil matrix on the TEGA response. Between 20 and 40 mg of soil, with or without ˜5 mg of lyophilized microorganism biomass (dry weight), were placed in the pyrolyzer and heated from room temperature to 1200 °C in 1 h at a heating rate of 20 °C/min. The volatiles released were transferred to a MS using helium as a carrier gas. The quadrupole MS was ran in scan mode from 10 to 200 m/z. In addition, ˜20 mg of each microorganism without a soil matrix were analyzed. As expected, there were significant differences in the gases released from microorganism samples with or without a soil matrix, under similar heating conditions. Furthermore, samples from the most arid environments had significant differences compared with less arid soils. Organic carbon released in the form of CO 2 (ion 44 m/z) from microorganisms evolved at temperatures of ˜326.0 ± 19.5 °C, showing characteristic patterns for each one. Others ions such as 41, 78 and 91 m/z were also found. Interestingly, during the thermal process, the release of CO 2 increased and ions previously found disappeared, demonstrating a high-oxidant activity in the soil matrix when it was subjected to high temperature. Finally, samples of soil show CO 2 evolved up to 650 °C consistent with thermal decomposition of carbonates. These results indicate that organics mixed with these hyperarid soils are oxidized to CO 2. Our results suggest the existence of at least two types of oxidants in these soils, a thermolabile oxidant which is highly oxidative and other thermostable oxidant which has a minor oxidative activity and that survives the heat-treatment. Furthermore, we find that the interaction of biomass added to soil samples gives a different set of breakdown gases than organics resident in the soil. The nature of oxidant(s) present in the soils from Pampas de La Joya is still unknown.

  8. [Determination of total mass and morphology analysis of heavy metal in soil with potassium biphthalate-sodium hydroxide by ICP-AES].

    PubMed

    Qu, Jiao; Yuan, Xing; Cong, Qiao; Wang, Shuang

    2008-11-01

    Blank soil was used as quality controlling samples, soil sample dealt by potassium biphthalate-sodium hydroxide buffer solution was used as check sample, mixed acid HNO3-HF-HClO4 was chosen to nitrify soil samples, and plasma emission spectrometer (ICP-AES) was used as detecting method. The authors determined the total metal mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the extracted and dealt soil samples, and determined the mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the three chemical morphologies, including acid extractable morphology, oxide associated morphology, and organics associated modality. The experimental results indicated that the different pH of potassium biphthalate-sodium hydroxide buffer solution had obvious influence on the total mass of heavy metal and morphology transformation. Except for metal element Pb and Zn, the addition of different pH potassium dihydrogen phosphate-sodium hydroxide buffer solution could accelerate the soil samples nitrification and the total mass determination of heavy metal in the soil samples. The potassium biphthalate-sodium hydroxide buffer solution could facilitate the acid extractable morphology of Cr, Cu, Hg and Pb, oxidation associated morphology of As, Hg, Pb and Zn and the organic associated morphology transforming of As and Hg. At pH 5.8, the maximum acid extractable morphology contents of Cu and Hg were 2.180 and 0.632 mg x kg(-1), respectively; at pH 6.2, the maximal oxidation associated morphology content of Pb could achieve 27.792 mg x kg(-1); at pH 6.0, the maximum organic associated morphology content of heavy metal Hg was 4.715 mg x kg(-1).

  9. Massive processing of pyro-chromatogram mass spectra (py-GCMS) of soil samples using the PARAFAC2 algorithm

    NASA Astrophysics Data System (ADS)

    Cécillon, Lauric; Quénéa, Katell; Anquetil, Christelle; Barré, Pierre

    2015-04-01

    Due to its large heterogeneity at all scales (from soil core to the globe), several measurements are often mandatory to get a meaningful value of a measured soil property. A large number of measurements can therefore be needed to study a soil property whatever the scale of the study. Moreover, several soil investigation techniques produce large and complex datasets, such as pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) which produces complex 3-way data. In this context, straightforward methods designed to speed up data treatments are needed to deal with large datasets. GC-MS pyrolysis (py-GCMS) is a powerful and frequently used tool to characterize soil organic matter (SOM). However, the treatment of the results of a py-GCMS analysis of soil sample is time consuming (number of peaks, co-elution, etc.) and the treatment of large data set of py-GCMS results is rather laborious. Moreover, peak position shifts and baseline drifts between analyses make the automation of GCMS programs data treatment difficult. These problems can be fixed using the Parallel Factor Analysis 2 (PARAFAC 2, Kiers et al., 1999; Bro et al., 1999). This algorithm has been applied frequently on chromatography data but has never been applied to analyses of SOM. We developed a Matlab routine based on existing Matlab packages dedicated to the simultaneous treatment of dozens of pyro-chromatograms mass spectra. We applied this routine on 40 soil samples. The benefits and expected improvements of our method will be discussed in our poster. References Kiers et al. (1999) PARAFAC2 - PartI. A direct fitting algorithm for the PARAFAC2 model. Journal of Chemometrics, 13: 275-294. Bro et al. (1999) PARAFAC2 - PartII. Modeling chromatographic data with retention time shifts. Journal of Chemometrics, 13: 295-309.

  10. Extraction Methods in Soil Phosphorus Characterisation

    NASA Astrophysics Data System (ADS)

    Soinne, Helena

    2010-05-01

    Extraction methods are widely used to assess the bioavailability of P and to characterise soil P reserves. Even though new and more sophisticated methods to characterise soil P are constantly developed the use of extraction methods is not likely to be replaced because of the relatively simple analytical equipment needed for the analysis. However, the large variety of extractants, pre-treatments and sample preparation procedures complicate the comparison of published results. In order to improve our understanding of the behaviour and cycling of P in soil, it is important to know the role of extracted P in the soil P cycle. The knowledge of the factors affecting the analytical outcome is a prerequisite for justified interpretation of the results. In this study, the effect of sample pre-treatment and properties of the used extractant on extractable molybdate-reactive phosphorus (MRP) and molybdate-unreactive phosphorus (MUP) was studied. Furthermore, the effect of sample preparation procedures prior the analysis on measured MRP and MUP was studied. Two widely used sequential extraction procedures were compared on their ability to show management induced differences on soil P. These results revealed that pre-treatments changed soil properties and air-drying was found to affect soil P, particularly extractable MUP, thought to represent organic P, by disrupting organic matter. This was evidenced by an increase in the water-extractable small-sized (<0.2 µm) P that, at least partly, took place at the expense of the large-sized (>0.2 µm) P. In addition to the effects of sample pre-treatment, the results showed that extractable organic P was sensitive to the chemical nature of the used extractant and to the sample preparation procedures employed prior to P analysis, including centrifugation and filtering of soil suspensions. Filtering may remove a major proportion of extractable MUP; therefore filtering cannot be recommended in the characterisation of solubilised MUP. However, extractants having high ionic strength may cause the organic molecules to collapse during centrifugation and thus affect the recovered concentration of MUP. These findings highlight the importance of characterising the nature of the MUP extracted with different extractants and acknowledging the sensitivity of MUP to analytical procedures when comparing published results. Widely used sequential fractionation procedures proved to be able to detect land-use -derived differences in the distribution of P among fractions of different solubilities. The results of this study demonstrate that, although the extraction methods do not reveal the biogeochemical function of a given P pool in soil, the extraction methods can be used to detect changes in soil P pools with different solubilities. To obtain the most benefit from extraction methods, we need a better understanding of the biological availability of P and the role of extracted P fraction in the P cycle in soils from different environments (climatic and weather) and land-uses.

  11. Experimental investigation of infiltration in soil with occurrence of preferential flow and air trapping

    NASA Astrophysics Data System (ADS)

    Snehota, Michal; Jelinkova, Vladimira; Sacha, Jan; Cislerova, Milena

    2015-04-01

    Recently, a number of infiltration experiments have not proved the validity of standard Richards' theory of the flow in soils with wide pore size distribution. Water flow in such soils under near-saturated conditions often exhibits preferential flow and temporal instability of the saturated hydraulic conductivity. An intact sample of coarse sandy loam from Cambisol series containing naturally developed vertically connected macropore was investigated during recurrent ponding infiltration (RPI) experiments conducted during period of 30 hours. RPI experiment consisted of two ponded infiltration runs, each followed by free gravitational draining of the sample. Three-dimensional neutron tomography (NT) image of the dry sample was acquired before the infiltration begun. The dynamics of the wetting front advancement was investigated by a sequence of neutron radiography (NR) images. Analysis of NR showed that water front moved preferentially through the macropore at the approximate speed of 2 mm/sec, which was significantly faster pace than the 0.3 mm/sec wetting advancement in the surrounding soil matrix. After the water started to flow out of the sample, changes in the local water content distribution were evaluated quantitatively by subtracting the NT image of the dry sample from subsequent tomography images. As a next stage, the experiment was repeated on a composed sample packed of ceramic and coarse sand. Series of infiltration runs was conducted in the sample with different initial water contents. The neutron tomography data quantitatively showed that both in natural soil sample containing the macropore and in the composed sample air was gradually transported from the region of fine soil matrix to the macropores or to the coarser material. The accumulation of the air bubbles in the large pores affected the hydraulic conductivity of the sample reducing it up to 50% of the initial value. This supports the hypothesis on strong influence of entrapped air amount and spatial distribution on infiltration into heterogeneous soils. The research was supported by the Czech Science Foundation Project No. 14-03691S.

  12. Chemical and microbiological characterization of an aged PCB-contaminated soil.

    PubMed

    Stella, T; Covino, S; Burianová, E; Filipová, A; Křesinová, Z; Voříšková, J; Větrovský, T; Baldrian, P; Cajthaml, T

    2015-11-15

    This study was aimed at complex characterization of three soil samples (bulk soil, topsoil and rhizosphere soil) from a site historically contaminated with polychlorinated biphenyls (PCB). The bulk soil was the most highly contaminated, with a PCB concentration of 705.95 mg kg(-1), while the rhizosphere soil was the least contaminated (169.36 mg kg(-1)). PCB degradation intermediates, namely chlorobenzoic acids (CBAs), were detected in all the soil samples, suggesting the occurrence of microbial transformation processes over time. The higher content of organic carbon in the topsoil and rhizosphere soil than in the bulk soil could be linked to the reduced bioaccessibility (bioavailability) of these chlorinated pollutants. However, different proportions of the PCB congener contents and different bioaccessibility of the PCB homologues indicate microbial biotransformation of the compounds. The higher content of organic carbon probably also promoted the growth of microorganisms, as revealed by phospholipid fatty acid (PFLA) quantification. Tag-encoded pyrosequencing analysis showed that the bacterial community structure was significantly similar among the three soils and was predominated by Proteobacteria (44-48%) in all cases. Moreover, analysis at lower taxonomic levels pointed to the presence of genera (Sphingomonas, Bulkholderia, Arthrobacter, Bacillus) including members with reported PCB removal abilities. The fungal community was mostly represented by Basidiomycota and Ascomycota, which accounted for >80% of all the sequences detected in the three soils. Fungal taxa with biodegradation potential (Paxillus, Cryptococcus, Phoma, Mortierella) were also found. These results highlight the potential of the indigenous consortia present at the site as a starting point for PCB bioremediation processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Influences of space, soil, nematodes and plants on microbial community composition of chalk grassland soils.

    PubMed

    Yergeau, Etienne; Bezemer, T Martijn; Hedlund, Katarina; Mortimer, Simon R; Kowalchuk, George A; Van Der Putten, Wim H

    2010-08-01

    Microbial communities respond to a variety of environmental factors related to resources (e.g. plant and soil organic matter), habitat (e.g. soil characteristics) and predation (e.g. nematodes, protozoa and viruses). However, the relative contribution of these factors on microbial community composition is poorly understood. Here, we sampled soils from 30 chalk grassland fields located in three different chalk hill ridges of Southern England, using a spatially explicit sampling scheme. We assessed microbial communities via phospholipid fatty acid (PLFA) analyses and PCR-denaturing gradient gel electrophoresis (DGGE) and measured soil characteristics, as well as nematode and plant community composition. The relative influences of space, soil, vegetation and nematodes on soil microorganisms were contrasted using variation partitioning and path analysis. Results indicate that soil characteristics and plant community composition, representing habitat and resources, shape soil microbial community composition, whereas the influence of nematodes, a potential predation factor, appears to be relatively small. Spatial variation in microbial community structure was detected at broad (between fields) and fine (within fields) scales, suggesting that microbial communities exhibit biogeographic patterns at different scales. Although our analysis included several relevant explanatory data sets, a large part of the variation in microbial communities remained unexplained (up to 92% in some analyses). However, in several analyses, significant parts of the variation in microbial community structure could be explained. The results of this study contribute to our understanding of the relative importance of different environmental and spatial factors in driving the composition of soil-borne microbial communities. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. Selenium and sulfur relationships in alfalfa and soil under field conditions, San Joaquin Valley, California

    USGS Publications Warehouse

    Severson, R.C.; Gough, L.P.

    1992-01-01

    Relationships between total Se and S or soluble SeO4 and SO4 in soils and tissue concentrations in alfalfa (Medicago sativa L.), under field conditions in the San Joaquin Valley of California, suggest that the rate of accumulation of Se in alfalfa may be reduced in areas where high Se and S concentrations in soils were measured. These data suggest that the balance between carbonate and sulfate minerals in soil may have a greater influence on uptake of Se by alfalfa than does the balance of SeO4 and SO4 in soil solution. Soil and alfalfa were sampled from areas representing a wide range in soil Se and S concentrations. Specific sampling locations were selected based on a previous study of Se, S, and other elements where 721 soil samples were collected to map landscape variability and distribution of elements. Six multiple-linear regression equations were developed between total and/or soluble soil chemical constituents and tissue concentrations of Se in alfalfa. We chose a regression model that accounted for 72% of the variability in alfalfa Se concentrations based on an association of elements in soil (total C, S, Se, and Sr) determined by factor analysis. To prepare a map showing the spatial distribution of estimated alfalfa Se concentrations, the model was applied to the data from the previously collected 721 soil samples. Estimated alfalfa Se concentrations in most of the study area were within a range that is predicted to produce alfalfa with neither Se deficiency nor toxicity when consumed by livestock. A few small areas are predicted to produce alfalfa that potentially would not meet minimum dietary needs of livestock.

  15. VegeSafe: A community science program measuring soil-metal contamination, evaluating risk and providing advice for safe gardening.

    PubMed

    Rouillon, Marek; Harvey, Paul J; Kristensen, Louise J; George, Steven G; Taylor, Mark P

    2017-03-01

    The extent of metal contamination in Sydney residential garden soils was evaluated using data collected during a three-year Macquarie University community science program called VegeSafe. Despite knowledge of industrial and urban contamination amongst scientists, the general public remains under-informed about the potential risks of exposure from legacy contaminants in their home garden environment. The community was offered free soil metal screening, allowing access to soil samples for research purposes. Participants followed specific soil sampling instructions and posted samples to the University for analysis with a field portable X-ray Fluorescence (pXRF) spectrometer. Over the three-year study period, >5200 soil samples, primarily from vegetable gardens, were collected from >1200 Australian homes. As anticipated, the primary soil metal of concern was lead; mean concentrations were 413 mg/kg (front yard), 707 mg/kg (drip line), 226 mg/kg (back yard) and 301 mg/kg (vegetable garden). The Australian soil lead guideline of 300 mg/kg for residential gardens was exceeded at 40% of Sydney homes, while concentrations >1000 mg/kg were identified at 15% of homes. The incidence of highest soil lead contamination was greatest in the inner city area with concentrations declining towards background values of 20-30 mg/kg at 30-40 km distance from the city. Community engagement with VegeSafe participants has resulted in useful outcomes: dissemination of knowledge related to contamination legacies and health risks; owners building raised beds containing uncontaminated soil and in numerous cases, owners replacing all of their contaminated soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Application of isotope-dilution laser ablation ICP-MS for direct determination of Pu concentrations in soils at pg g(-1) levels.

    PubMed

    Boulyga, Sergei F; Tibi, Markus; Heumann, Klaus G

    2004-01-01

    The methods available for determination of environmental contamination by plutonium at ultra-trace levels require labor-consuming sample preparation including matrix removal and plutonium extraction in both nuclear spectroscopy and mass spectrometry. In this work, laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was applied for direct analysis of Pu in soil and sediment samples. Application of a LINA-Spark-Atomizer system (a modified laser ablation system providing high ablation rates) coupled with a sector-field ICP-MS resulted in detection limits as low as 3x10(-13) g g(-1) for Pu isotopes in soil samples containing uranium at a concentration of a few microg g(-1). The isotope dilution (ID) technique was used for quantification, which compensated for matrix effects in LA-ICP-MS. Interferences by UH+ and PbO2+ ions and by the peak tail of 238U+ ions were reduced or separated by use of dry plasma conditions and a mass resolution of 4000, respectively. No other effects affecting measurement accuracy, except sample inhomogeneity, were revealed. Comparison of results obtained for three contaminated soil samples by use of alpha-spectrometry, ICP-MS with sample decomposition, and LA-ICP-IDMS showed, in general, satisfactory agreement of the different methods. The specific activity of (239+240)Pu (9.8 +/- 3.0 mBq g(-1)) calculated from LA-ICP-IDMS analysis of SRM NIST 4357 coincided well with the certified value of 10.4 +/- 0.2 mBq g(-1). However, the precision of LA-ICP-MS for determination of plutonium in inhomogeneous samples, i.e. if "hot" particles are present, is limited. As far as we are aware this paper reports the lowest detection limits and element concentrations yet measured in direct LA-ICP-MS analysis of environmental samples.

  17. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce.

    PubMed

    Schreiter, Susanne; Ding, Guo-Chun; Heuer, Holger; Neumann, Günter; Sandmann, Martin; Grosch, Rita; Kropf, Siegfried; Smalla, Kornelia

    2014-01-01

    The complex and enormous diversity of microorganisms associated with plant roots is important for plant health and growth and is shaped by numerous factors. This study aimed to unravel the effects of the soil type on bacterial communities in the rhizosphere of field-grown lettuce. We used an experimental plot system with three different soil types that were stored at the same site for 10 years under the same agricultural management to reveal differences directly linked to the soil type and not influenced by other factors such as climate or cropping history. Bulk soil and rhizosphere samples were collected 3 and 7 weeks after planting. The analysis of 16S rRNA gene fragments amplified from total community DNA by denaturing gradient gel electrophoresis and pyrosequencing revealed soil type dependent differences in the bacterial community structure of the bulk soils and the corresponding rhizospheres. The rhizosphere effect differed depending on the soil type and the plant growth developmental stage. Despite the soil type dependent differences in the bacterial community composition several genera such as Sphingomonas, Rhizobium, Pseudomonas, and Variovorax were significantly increased in the rhizosphere of lettuce grown in all three soils. The number of rhizosphere responders was highest 3 weeks after planting. Interestingly, in the soil with the highest numbers of responders the highest shoot dry weights were observed. Heatmap analysis revealed that many dominant operational taxonomic units were shared among rhizosphere samples of lettuce grown in diluvial sand, alluvial loam, and loess loam and that only a subset was increased in relative abundance in the rhizosphere compared to the corresponding bulk soil. The findings of the study provide insights into the effect of soil types on the rhizosphere microbiome of lettuce.

  18. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce

    PubMed Central

    Schreiter, Susanne; Ding, Guo-Chun; Heuer, Holger; Neumann, Günter; Sandmann, Martin; Grosch, Rita; Kropf, Siegfried; Smalla, Kornelia

    2014-01-01

    The complex and enormous diversity of microorganisms associated with plant roots is important for plant health and growth and is shaped by numerous factors. This study aimed to unravel the effects of the soil type on bacterial communities in the rhizosphere of field-grown lettuce. We used an experimental plot system with three different soil types that were stored at the same site for 10 years under the same agricultural management to reveal differences directly linked to the soil type and not influenced by other factors such as climate or cropping history. Bulk soil and rhizosphere samples were collected 3 and 7 weeks after planting. The analysis of 16S rRNA gene fragments amplified from total community DNA by denaturing gradient gel electrophoresis and pyrosequencing revealed soil type dependent differences in the bacterial community structure of the bulk soils and the corresponding rhizospheres. The rhizosphere effect differed depending on the soil type and the plant growth developmental stage. Despite the soil type dependent differences in the bacterial community composition several genera such as Sphingomonas, Rhizobium, Pseudomonas, and Variovorax were significantly increased in the rhizosphere of lettuce grown in all three soils. The number of rhizosphere responders was highest 3 weeks after planting. Interestingly, in the soil with the highest numbers of responders the highest shoot dry weights were observed. Heatmap analysis revealed that many dominant operational taxonomic units were shared among rhizosphere samples of lettuce grown in diluvial sand, alluvial loam, and loess loam and that only a subset was increased in relative abundance in the rhizosphere compared to the corresponding bulk soil. The findings of the study provide insights into the effect of soil types on the rhizosphere microbiome of lettuce. PMID:24782839

  19. Pyrolysis-mass spectrometry/pattern recognition on a well-characterized suite of humic samples

    USGS Publications Warehouse

    MacCarthy, P.; DeLuca, S.J.; Voorhees, K.J.; Malcolm, R.L.; Thurman, E.M.

    1985-01-01

    A suite of well-characterized humic and fulvic acids of freshwater, soil and plant origin was subjected to pyrolysis-mass spectrometry and the resulting data were analyzed by pattern recognition and factor analysis. A factor analysis plot of the data shows that the humic acids and fulvic acids can be segregated into two distinct classes. Carbohydrate and phenolic components are more pronounced in the pyrolysis products of the fulvic acids, and saturated and unsaturated hydrocarbons contribute more to the humic acid pyrolysis products. A second factor analysis plot shows a separation which appears to be based primarily on whether the samples are of aquatic or soil origin. ?? 1985.

  20. 3D soil structure characterization of Biological Soil Crusts from Alpine Tarfala Valley

    NASA Astrophysics Data System (ADS)

    Mele, Giacomo; Gargiulo, Laura; Zucconi, Laura; D'Acqui, Luigi; Ventura, Stefano

    2017-04-01

    Cyanobacteria filaments, microfungal hyphae, lichen rhizinae and anchoring rhizoids of bryophytes all together contribute to induce formation of structure in the thin soil layer beneath the Biological Soil Crusts (BSCs). Quantitative assessment of the soil structure beneath the BSCs is primarily hindered by the fragile nature of the crusts. Therefore, the role of BSCs in affecting such soil physical property has been rarely addressed using direct measurements. In this work we applied non-destructive X-ray microtomography imaging on five different samples of BSCs collected in the Alpine Tarfala Valley (northern Sweden), which have already been characterized in terms of fungal biodiversity in a previous work. We obtained images of the 3D spatial organization of the soil underneath the BSCs and characterized its structure by applying procedures of image analysis allowing to determine pore size distribution, pore connectivity and aggregate size distribution. Results has then been correlated with the different fungal assemblages of the samples.

Top