Sample sizes to control error estimates in determining soil bulk density in California forest soils
Youzhi Han; Jianwei Zhang; Kim G. Mattson; Weidong Zhang; Thomas A. Weber
2016-01-01
Characterizing forest soil properties with high variability is challenging, sometimes requiring large numbers of soil samples. Soil bulk density is a standard variable needed along with element concentrations to calculate nutrient pools. This study aimed to determine the optimal sample size, the number of observation (n), for predicting the soil bulk density with a...
NASA Astrophysics Data System (ADS)
Negassa, Wakene; Guber, Andrey; Kravchenko, Alexandra; Rivers, Mark
2014-05-01
Soil's potential to sequester carbon (C) depends not only on quality and quantity of organic inputs to soil but also on the residence time of the applied organic inputs within the soil. Soil pore structure is one of the main factors that influence residence time of soil organic matter by controlling gas exchange, soil moisture and microbial activities, thereby soil C sequestration capacity. Previous attempts to investigate the fate of organic inputs added to soil did not allow examining their decomposition in situ; the drawback that can now be remediated by application of X-ray computed micro-tomography (µ-CT). The non-destructive and non-invasive nature of µ-CT gives an opportunity to investigate the effect of soil pore size distributions on decomposition of plant residues at a new quantitative level. The objective of this study is to examine the influence of pore size distributions on the decomposition of plant residue added to soil. Samples with contrasting pore size distributions were created using aggregate fractions of five different sizes (<0.05, 0.05-0.1, 0.10-05, 0.5-1.0 and 1.0-2.0 mm). Weighted average pore diameters ranged from 10 µm (<0.05 mm fraction) to 104 µm (1-2 mm fraction), while maximum pore diameter were in a range from 29 µm (<0.05 mm fraction) to 568 µm (1-2 mm fraction) in the created soil samples. Dried pieces of maize leaves 2.5 mg in size (equivalent to 1.71 mg C g-1 soil) were added to half of the studied samples. Samples with and without maize leaves were incubated for 120 days. CO2 emission from the samples was measured at regular time intervals. In order to ensure that the observed differences are due to differences in pore structure and not due to differences in inherent properties of the studied aggregate fractions, we repeated the whole experiment using soil from the same aggregate size fractions but ground to <0.05 mm size. Five to six replicated samples were used for intact and ground samples of all sizes with and without leaves. Two replications of the intact aggregate fractions of all sizes with leaves were subjected to µ-CT scanning before and after incubation, whereas all the remaining replications of both intact and ground aggregate fractions of <0.05, 0.05-0.1, and 1.0-2.0 mm sizes with leaves were scanned with µ-CT after the incubation. The µ-CT image showed that approximately 80% of the leaves in the intact samples of large aggregate fractions (0.5-1.0 and 1.0-2.0 mm) was decomposed during the incubation, while only 50-60% of the leaves were decomposed in the intact samples of smaller sized fractions. Even lower percent of leaves (40-50%) was decomposed in the ground samples, with very similar leaf decomposition observed in all ground samples regardless of the aggregate fraction size. Consistent with µ-CT results, the proportion of decomposed leaf estimated with the conventional mass loss method was 48% and 60% for the <0.05 mm and 1.0-2.0 mm soil size fractions of intact aggregates, and 40-50% in ground samples, respectively. The results of the incubation experiment demonstrated that, while greater C mineralization was observed in samples of all size fractions amended with leaf, the effect of leaf presence was most pronounced in the smaller aggregate fractions (0.05-0.1 mm and 0.05 mm) of intact aggregates. The results of the present study unequivocally demonstrate that differences in pore size distributions have a major effect on the decomposition of plant residues added to soil. Moreover, in presence of plant residues, differences in pore size distributions appear to also influence the rates of decomposition of the intrinsic soil organic material.
Kim, Gibaek; Kwak, Jihyun; Kim, Ki-Rak; Lee, Heesung; Kim, Kyoung-Woong; Yang, Hyeon; Park, Kihong
2013-12-15
A laser induced breakdown spectroscopy (LIBS) coupled with the chemometric method was applied to rapidly discriminate between soils contaminated with heavy metals or oils and clean soils. The effects of the water contents and grain sizes of soil samples on LIBS emissions were also investigated. The LIBS emission lines decreased by 59-75% when the water content increased from 1.2% to 7.8%, and soil samples with a grain size of 75 μm displayed higher LIBS emission lines with lower relative standard deviations than those with a 2mm grain size. The water content was found to have a more pronounced effect on the LIBS emission lines than the grain size. Pelletizing and sieving were conducted for all samples collected from abandoned mining areas and military camp to have similar water contents and grain sizes before being analyzed by the LIBS with the chemometric analysis. The data show that three types of soil samples were clearly discerned by using the first three principal components from the spectral data of soil samples. A blind test was conducted with a 100% correction rate for soil samples contaminated with heavy metals and oil residues. Copyright © 2013 Elsevier B.V. All rights reserved.
Hakjun Rhee; Randy B. Foltz; James L. Fridley; Finn Krogstad; Deborah S. Page-Dumroese
2014-01-01
Measurement of particle-size distribution (PSD) of soil with large-sized particles (e.g., 25.4 mm diameter) requires a large sample and numerous particle-size analyses (PSAs). A new method is needed that would reduce time, effort, and cost for PSAs of the soil and aggregate material with large-sized particles. We evaluated a nested method for sampling and PSA by...
Neighborhood size of training data influences soil map disaggregation
USDA-ARS?s Scientific Manuscript database
Soil class mapping relies on the ability of sample locations to represent portions of the landscape with similar soil types; however, most digital soil mapping (DSM) approaches intersect sample locations with one raster pixel per covariate layer regardless of pixel size. This approach does not take ...
Shiau, Yo-Jin; Chen, Jenn-Shing; Chung, Tay-Lung; Tian, Guanglong; Chiu, Chih-Yu
2017-12-01
Soil organic carbon (SOC) and carbon (C) functional groups in different particle-size fractions are important indicators of microbial activity and soil decomposition stages under wildfire disturbances. This research investigated a natural Tsuga forest and a nearby fire-induced grassland along a sampling transect in Central Taiwan with the aim to better understand the effect of forest wildfires on the change of SOC in different soil particle scales. Soil samples were separated into six particle sizes and SOC was characterized by solid-state 13 C nuclear magnetic resonance spectroscopy in each fraction. The SOC content was higher in forest than grassland soil in the particle-size fraction samples. The O-alkyl-C content (carbohydrate-derived structures) was higher in the grassland than the forest soils, but the alkyl-C content (recalcitrant substances) was higher in forest than grassland soils, for a higher humification degree (alkyl-C/O-alkyl-C ratio) in forest soils for all the soil particle-size fractions. High humification degree was found in forest soils. The similar aromaticity between forest and grassland soils might be attributed to the fire-induced aromatic-C content in the grassland that offsets the original difference between the forest and grassland. High alkyl-C content and humification degree and low C/N ratios in the fine particle-size fractions implied that undecomposed recalcitrant substances tended to accumulate in the fine fractions of soils.
Terahertz Spectroscopy for Proximal Soil Sensing: An Approach to Particle Size Analysis
Dworak, Volker; Mahns, Benjamin; Selbeck, Jörn; Weltzien, Cornelia
2017-01-01
Spatially resolved soil parameters are some of the most important pieces of information for precision agriculture. These parameters, especially the particle size distribution (texture), are costly to measure by conventional laboratory methods, and thus, in situ assessment has become the focus of a new discipline called proximal soil sensing. Terahertz (THz) radiation is a promising method for nondestructive in situ measurements. The THz frequency range from 258 gigahertz (GHz) to 350 GHz provides a good compromise between soil penetration and the interaction of the electromagnetic waves with soil compounds. In particular, soil physical parameters influence THz measurements. This paper presents investigations of the spectral transmission signals from samples of different particle size fractions relevant for soil characterization. The sample thickness ranged from 5 to 17 mm. The transmission of THz waves was affected by the main mineral particle fractions, sand, silt and clay. The resulting signal changes systematically according to particle sizes larger than half the wavelength. It can be concluded that THz spectroscopic measurements provide information about soil texture and penetrate samples with thicknesses in the cm range. PMID:29048392
The sample handling system for the Mars Icebreaker Life mission: from dirt to data.
Davé, Arwen; Thompson, Sarah J; McKay, Christopher P; Stoker, Carol R; Zacny, Kris; Paulsen, Gale; Mellerowicz, Bolek; Glass, Brian J; Willson, David; Bonaccorsi, Rosalba; Rask, Jon
2013-04-01
The Mars Icebreaker Life mission will search for subsurface life on Mars. It consists of three payload elements: a drill to retrieve soil samples from approximately 1 m below the surface, a robotic sample handling system to deliver the sample from the drill to the instruments, and the instruments themselves. This paper will discuss the robotic sample handling system. Collecting samples from ice-rich soils on Mars in search of life presents two challenges: protection of that icy soil--considered a "special region" with respect to planetary protection--from contamination from Earth, and delivery of the icy, sticky soil to spacecraft instruments. We present a sampling device that meets these challenges. We built a prototype system and tested it at martian pressure, drilling into ice-cemented soil, collecting cuttings, and transferring them to the inlet port of the SOLID2 life-detection instrument. The tests successfully demonstrated that the Icebreaker drill, sample handling system, and life-detection instrument can collectively operate in these conditions and produce science data that can be delivered via telemetry--from dirt to data. Our results also demonstrate the feasibility of using an air gap to prevent forward contamination. We define a set of six analog soils for testing over a range of soil cohesion, from loose sand to basalt soil, with angles of repose of 27° and 39°, respectively. Particle size is a key determinant of jamming of mechanical parts by soil particles. Jamming occurs when the clearance between moving parts is equal in size to the most common particle size or equal to three of these particles together. Three particles acting together tend to form bridges and lead to clogging. Our experiments show that rotary-hammer action of the Icebreaker drill influences the particle size, typically reducing particle size by ≈ 100 μm.
Pye, Kenneth; Blott, Simon J
2004-08-11
Particle size is a fundamental property of any sediment, soil or dust deposit which can provide important clues to nature and provenance. For forensic work, the particle size distribution of sometimes very small samples requires precise determination using a rapid and reliable method with a high resolution. The Coulter trade mark LS230 laser granulometer offers rapid and accurate sizing of particles in the range 0.04-2000 microm for a variety of sample types, including soils, unconsolidated sediments, dusts, powders and other particulate materials. Reliable results are possible for sample weights of just 50 mg. Discrimination between samples is performed on the basis of the shape of the particle size curves and statistical measures of the size distributions. In routine forensic work laser granulometry data can rarely be used in isolation and should be considered in combination with results from other techniques to reach an overall conclusion.
Contribution of ants in modifying of soil acidity and particle size distribution
NASA Astrophysics Data System (ADS)
Morgun, Alexandra; Golichenkov, Maxim
2015-04-01
Being a natural body, formed by the influence of biota on the upper layers of the Earth's crust, the soil is the most striking example of biogenic-abiogenic interactions in the biosphere. Invertebrates (especially ants that build soil nests) are important agents that change soil properties in well developed terrestrial ecosystems. Impact of soil microorganisms on soil properties is particularly described in numerous literature and concerns mainly chemical properties and general indicators of soil biological activity. Influence of ants (as representatives of the soil mesofauna) mostly appears as mechanical movement of soil particles and aggregates, and chemical effects caused by concentration of organic matter within the ant's nest. The aim of this research was to evaluate the effect of ants on physical and chemical soil attributes such as particle size distribution and soil acidity. The samples were taken from aerial parts of Lasius niger nests, selected on different elements of the relief (summit position, slope, terrace and floodplain) in the Arkhangelsk region (north of the European part of Russia) and compared with the specimens of the upper horizons of the reference soils. Particle size distribution was determined by laser diffraction method using laser diffraction particle size analyzer «Analysette 22 comfort» (FRITSCH, Germany). The acidity (pH) was determined by potentiometry in water suspension. Particle size distribution of the samples from the nests is more variable as compared to the control samples. For example, the content of 5-10 μm fraction ranges from 9% to 12% in reference soils, while in the anthill samples the variation is from 8% to 15%. Similarly, for 50-250 μm fraction - it ranges from 15% to 18% in reference soils, whereas in anthills - from 6% to 29%. The results of particle size analysis showed that the reference sample on the terrace has silty loam texture and nests soil L. niger are medium loam. The reference soil on the slope is characterized as medium loam, and ant's nest material has silty loam texture. The control samples of soil and ants nests on the summit position are similar and have medium loam texture. Generally we outline that the particle size distribution of anthill samples shows more variability. We assume that ants operate with small soil aggregates, in which fine fractions may link together coarser particles. pH measurements show that the reference soils have a strongly acidic reaction on the summit position (pH 4.6), slightly acidic on the slope (pH 5.5) and neutral on the terrace and on the floodplain (pH 7.2). While the material of the anthills tends to be slightly alkalinized on the summit (pH 4.8) and alkalinized on the slope (pH 7.2), but acidified to neutral on the floodplain and terrace (pH 6.4 and 5.7). Therefore, the ants form specific physico-chemical conditions that are different from the surrounding (native) soil, significantly increasing the complexity of soil cover structure. This is a clear example of ecosystem engineering functions of ants in nature. Increased complexity of soil pattern is the result of variations in pH and particle size distribution. Both cause the preconditions for the formation of new environmental niches and enhance biodiversity in natural ecosystems.
Penton, C. Ryan; Gupta, Vadakattu V. S. R.; Yu, Julian; Tiedje, James M.
2016-01-01
We examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5, and 10 g using MoBIO kits and from 10 and 100 g sizes using a bead-beating method (SARDI) were used as templates for high-throughput sequencing of 16S and 28S rRNA gene amplicons for bacteria and fungi, respectively, on the Illumina MiSeq and Roche 454 platforms. Sample size significantly affected overall bacterial and fungal community structure, replicate dispersion and the number of operational taxonomic units (OTUs) retrieved. Richness, evenness and diversity were also significantly affected. The largest diversity estimates were always associated with the 10 g MoBIO extractions with a corresponding reduction in replicate dispersion. For the fungal data, smaller MoBIO extractions identified more unclassified Eukaryota incertae sedis and unclassified glomeromycota while the SARDI method retrieved more abundant OTUs containing unclassified Pleosporales and the fungal genera Alternaria and Cercophora. Overall, these findings indicate that a 10 g soil DNA extraction is most suitable for both soil bacterial and fungal communities for retrieving optimal diversity while still capturing rarer taxa in concert with decreasing replicate variation. PMID:27313569
NASA Astrophysics Data System (ADS)
Guzmán, G.; Gómez, J. A.; Giráldez, J. V.
2010-05-01
Soil particle size distribution has been traditionally determined by the hydrometer or the sieve-pipette methods, both of them time consuming and requiring a relatively large soil sample. This might be a limitation in situations, such as for instance analysis of suspended sediment, when the sample is small. A possible alternative to these methods are the optical techniques such as laser diffractometry. However the literature indicates that the use of this technique as an alternative to traditional methods is still limited, because the difficulty in replicating the results obtained with the standard methods. In this study we present the percentages of soil grain size determined using laser diffractometry within ranges set between 0.04 - 2000 μm. A Beckman-Coulter ® LS-230 with a 750 nm laser beam and software version 3.2 in five soils, representative of southern Spain: Alameda, Benacazón, Conchuela, Lanjarón and Pedrera. In three of the studied soils (Alameda, Benacazón and Conchuela) the particle size distribution of each aggregate size class was also determined. Aggregate size classes were obtained by dry sieve analysis using a Retsch AS 200 basic ®. Two hundred grams of air dried soil were sieved during 150 s, at amplitude 2 mm, getting nine different sizes between 2000 μm and 10 μm. Analyses were performed by triplicate. The soil sample preparation was also adapted to our conditions. A small amount each soil sample (less than 1 g) was transferred to the fluid module full of running water and disaggregated by ultrasonication at energy level 4 and 80 ml of sodium hexametaphosphate solution during 580 seconds. Two replicates of each sample were performed. Each measurement was made for a 90 second reading at a pump speed of 62. After the laser diffractometry analysis, each soil and its aggregate classes were processed calibrating its own optical model fitting the optical parameters that mainly depends on the color and the shape of the analyzed particle. As a second alternative a unique optical model valid for a broad range of soils developed by the Department of Soil, Water, and Environmental Science of the University of Arizona (personal communication, already submitted) was tested. The results were compared with the particle size distribution measured in the same soils and aggregate classes using the hydrometer method. Preliminary results indicate a better calibration of the technique using the optical model of the Department of Soil, Water, and Environmental Science of the University of Arizona, which obtained a good correlations (r2>0.85). This result suggests that with an appropriate calibration of the optical model laser diffractometry might provide a reliable soil particle characterization.
NASA Technical Reports Server (NTRS)
Rao, R. G. S.; Ulaby, F. T.
1977-01-01
The paper examines optimal sampling techniques for obtaining accurate spatial averages of soil moisture, at various depths and for cell sizes in the range 2.5-40 acres, with a minimum number of samples. Both simple random sampling and stratified sampling procedures are used to reach a set of recommended sample sizes for each depth and for each cell size. Major conclusions from statistical sampling test results are that (1) the number of samples required decreases with increasing depth; (2) when the total number of samples cannot be prespecified or the moisture in only one single layer is of interest, then a simple random sample procedure should be used which is based on the observed mean and SD for data from a single field; (3) when the total number of samples can be prespecified and the objective is to measure the soil moisture profile with depth, then stratified random sampling based on optimal allocation should be used; and (4) decreasing the sensor resolution cell size leads to fairly large decreases in samples sizes with stratified sampling procedures, whereas only a moderate decrease is obtained in simple random sampling procedures.
Major and trace element chemistry of Luna 24 samples from Mare Crisium
NASA Technical Reports Server (NTRS)
Blanchard, D. P.; Brannon, J. C.; Aaboe, E.; Budahn, J. R.
1978-01-01
Atomic absorption spectrometry and instrumental neutron activation analysis were employed to analyze six Luna 24 soils for major and trace elements. The analysis revealed well-mixed soils, though size fractions of each of the soils showed quite dissimilar compositions. Thus the regolith apparently has not been extensively reworked. Noritic breccia admixed preferentially to the finest size fractions and differential comminution of one or more other soil components accounted for the observed elemental distributions as a function of grain size. The ferrobasalt composition and one or more components with higher MgO contents have been identified in the samples.
[Effects of soil trituration size on adsorption of oxytetracycline on soils].
Qi, Rui-Huan; Li, Zhao-Jun; Long, Jian; Fan, Fei-Fei; Liang, Yong-Chao
2011-02-01
In order to understand the effects of soil trituration size on adsorption of oxytetracycline (OTC) on soils, two contrasting soils including moisture soil and purplish soil were selected to investigate adsorption of OTC on these soils, at the scales of no more than 0.20 mm, 0.84 mm, 0.25 mm and 0.15 mm, using the method of batch equilibrium experiments respectively. The results presented as the following: (1) Adsorption amount of OTC on moisture soil and purplish soil increased with the sampling time, and reached to equilibration at 24 h. First-order kinetic model, second-order kinetic model, parabolic-diffusion kinetic model, Elovich kinetic model, and two-constant kinetic model could be used to fit the changes in adsorption on soils with sampling time. Adsorption of OTC on two soils consisted of two processes such as quick adsorption and slow adsorption. Quick adsorption process happened during the period of 0-0.5 h. The adsorption rates of OTC on soils were higher at the small trituration size than those at the large trituration size, and at the same trituration size, the k(f) of purplish soil was about two times higher than those of moisture soil. (2) Adsorption isotherms of OTC on two soils with different trituration sizes were deviated from the linear model. The data were fitted well to Freundlich and Langmuir models, with the correlation coefficients between 0.956 and 0.999. The values of k(f) and q(m) for purplish soil were higher than those for moisture soil. At the same soil, adsorption amount of OTC increased with the decreases of soil trituration size. The results suggested that it is important to select the appropriate trituration size, based on the physical and chemical properties such as soil particle composition and so on, when the fate of antibiotics on soils was investigated.
NASA Astrophysics Data System (ADS)
Mockford, T.; Zobeck, T. M.; Lee, J. A.; Gill, T. E.; Dominguez, M. A.; Peinado, P.
2012-12-01
Understanding the controls of mineral dust emissions and their particle size distributions during wind-erosion events is critical as dust particles play a significant impact in shaping the earth's climate. It has been suggested that emission rates and particle size distributions are independent of soil chemistry and soil texture. In this study, 45 samples of wind-erodible surface soils from the Southern High Plains and Chihuahuan Desert regions of Texas, New Mexico, Colorado and Chihuahua were analyzed by the Lubbock Dust Generation, Analysis and Sampling System (LDGASS) and a Beckman-Coulter particle multisizer. The LDGASS created dust emissions in a controlled laboratory setting using a rotating arm which allows particle collisions. The emitted dust was transferred to a chamber where particulate matter concentration was recorded using a DataRam and MiniVol filter and dust particle size distribution was recorded using a GRIMM particle analyzer. Particle size analysis was also determined from samples deposited on the Mini-Vol filters using a Beckman-Coulter particle multisizer. Soil textures of source samples ranged from sands and sandy loams to clays and silts. Initial results suggest that total dust emissions increased with increasing soil clay and silt content and decreased with increasing sand content. Particle size distribution analysis showed a similar relationship; soils with high silt content produced the widest range of dust particle sizes and the smallest dust particles. Sand grains seem to produce the largest dust particles. Chemical control of dust emissions by calcium carbonate content will also be discussed.
Penton, C. Ryan; Gupta, Vadakattu V. S. R.; Yu, Julian; ...
2016-06-02
We examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5, and 10 g using MoBIO kits and from 10 and 100 g sizes using a bead-beating method (SARDI) were used as templates for high-throughput sequencing of 16S and 28S rRNA gene amplicons for bacteria and fungi, respectively, on the Illumina MiSeq and Roche 454 platforms. Sample size significantly affected overall bacterial and fungalmore » community structure, replicate dispersion and the number of operational taxonomic units (OTUs) retrieved. Richness, evenness and diversity were also significantly affected. The largest diversity estimates were always associated with the 10 g MoBIO extractions with a corresponding reduction in replicate dispersion. For the fungal data, smaller MoBIO extractions identified more unclassified Eukaryota incertae sedis and unclassified glomeromycota while the SARDI method retrieved more abundant OTUs containing unclassified Pleosporales and the fungal genera Alternaria and Cercophora. Overall, these findings indicate that a 10 g soil DNA extraction is most suitable for both soil bacterial and fungal communities for retrieving optimal diversity while still capturing rarer taxa in concert with decreasing replicate variation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penton, C. Ryan; Gupta, Vadakattu V. S. R.; Yu, Julian
We examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5, and 10 g using MoBIO kits and from 10 and 100 g sizes using a bead-beating method (SARDI) were used as templates for high-throughput sequencing of 16S and 28S rRNA gene amplicons for bacteria and fungi, respectively, on the Illumina MiSeq and Roche 454 platforms. Sample size significantly affected overall bacterial and fungalmore » community structure, replicate dispersion and the number of operational taxonomic units (OTUs) retrieved. Richness, evenness and diversity were also significantly affected. The largest diversity estimates were always associated with the 10 g MoBIO extractions with a corresponding reduction in replicate dispersion. For the fungal data, smaller MoBIO extractions identified more unclassified Eukaryota incertae sedis and unclassified glomeromycota while the SARDI method retrieved more abundant OTUs containing unclassified Pleosporales and the fungal genera Alternaria and Cercophora. Overall, these findings indicate that a 10 g soil DNA extraction is most suitable for both soil bacterial and fungal communities for retrieving optimal diversity while still capturing rarer taxa in concert with decreasing replicate variation.« less
40 CFR 796.2750 - Sediment and soil adsorption isotherm.
Code of Federal Regulations, 2011 CFR
2011-07-01
... size analysis” is the determination of the various amounts of the different particle sizes in a sample... °C. (iii) Replications. Three replications of the experimental treatments shall be used. (iv) Soil...) Decrease the water content, air or oven-dry soils at or below 50 °C. (B) Reduce aggregate size before and...
40 CFR 796.2750 - Sediment and soil adsorption isotherm.
Code of Federal Regulations, 2010 CFR
2010-07-01
... size analysis” is the determination of the various amounts of the different particle sizes in a sample... °C. (iii) Replications. Three replications of the experimental treatments shall be used. (iv) Soil...) Decrease the water content, air or oven-dry soils at or below 50 °C. (B) Reduce aggregate size before and...
Computed Tomography to Estimate the Representative Elementary Area for Soil Porosity Measurements
Borges, Jaqueline Aparecida Ribaski; Pires, Luiz Fernando; Belmont Pereira, André
2012-01-01
Computed tomography (CT) is a technique that provides images of different solid and porous materials. CT could be an ideal tool to study representative sizes of soil samples because of the noninvasive characteristic of this technique. The scrutiny of such representative elementary sizes (RESs) has been the target of attention of many researchers related to soil physics field owing to the strong relationship between physical properties and size of the soil sample. In the current work, data from gamma-ray CT were used to assess RES in measurements of soil porosity (ϕ). For statistical analysis, a study on the full width at a half maximum (FWHM) of the adjustment of distribution of ϕ at different areas (1.2 to 1162.8 mm2) selected inside of tomographic images was proposed herein. The results obtained point out that samples with a section area corresponding to at least 882.1 mm2 were the ones that provided representative values of ϕ for the studied Brazilian tropical soil. PMID:22666133
PIXE Analysis of Aerosol and Soil Samples Collected in the Adirondack Mountains
NASA Astrophysics Data System (ADS)
Yoskowitz, Joshua; Ali, Salina; Nadareski, Benjamin; Labrake, Scott; Vineyard, Michael
2014-09-01
We have performed an elemental analysis of aerosol and soil samples collected at Piseco Lake in Upstate New York using proton induced X-ray emission spectroscopy (PIXE). This work is part of a systematic study of airborne pollution in the Adirondack Mountains. Of particular interest is the sulfur content that can contribute to acid rain, a well-documented problem in the Adirondacks. We used a nine-stage cascade impactor to collect the aerosol samples near Piseco Lake and distribute the particulate matter onto Kapton foils by particle size. The soil samples were also collected at Piseco Lake and pressed into cylindrical pellets for experimentation. PIXE analysis of the aerosol and soil samples were performed with 2.2-MeV proton beams from the 1.1-MV Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. There are higher concentrations of sulfur at smaller particle sizes (0.25-1 μm), suggesting that it could be suspended in the air for days and originate from sources very far away. Other elements with significant concentrations peak at larger particle sizes (1-4 μm) and are found in the soil samples, suggesting that these elements could originate in the soil. The PIXE analysis will be described and the resulting data will be presented.
NASA Astrophysics Data System (ADS)
Asefaw Berhe, Asmeret; Kaiser, Michael; Ghezzehei, Teamrat; Myrold, David; Kleber, Markus
2013-04-01
The effectiveness of charcoal and calcium carbonate applications to improve soil conditions has been well documented. However, their influence on the formation of silt-sized aggregates and the amount and protection of associated organic matter (OM) against microbial decomposition is still largely unknown. For sustainable management of agricultural soils, silt-sized aggregates (2-53 µm) are of particularly large importance because they store up to 60% of soil organic carbon with mean residence times between 70 and 400 years. The objectives are i) to analyze the ability of CaCO3 and/or charcoal application to increase the amount of silt-sized aggregates and associated OM, ii) vary soil mineral conditions to establish relevant boundary conditions for amendment-induced aggregation processes, iii) to determine how amendment-induced changes in formation of silt-sized aggregates relate to microbial decomposition of OM. We set up artificial high reactive (HR, clay: 40%, sand: 57%, OM: 3%) and low reactive soils (LR, clay: 10%, sand: 89%, OM: 1%) and mixed them with charcoal (CC, 1%) and/or calcium carbonate (Ca, 0.2%). The samples were adjusted to a water potential of 0.3 bar and sub samples were incubated with microbial inoculum (MO). After a 16-weeks aggregation experiment, size fractions were separated by wet-sieving and sedimentation. Since we did not use mineral compounds in the artificial mixtures within the size range of 2 to 53 µm, we consider material recovered in this fraction as silt-sized aggregates, which was confirmed by SEM analyses. For the LR mixtures, we detected increasing N concentrations within the 2-53 µm fractions of the charcoal amended samples (CC, CC+Ca, and CC+Ca+MO) as compared to the Control sample with the strongest effect for the CC+Ca+MO sample. This indicates an association of N-containing microbial derived OM with silt-sized aggregates. For the charcoal amended LR and HR mixtures, the C concentrations of the 2-53 µm fractions are larger than those of the respective fractions of the Control samples but the effect is several times stronger for the LR mixtures. The C concentrations of the 2-53 µm fractions relative to the total C amount of the LR and HR mixtures are between 30 and 50%. The charcoal amended samples show generally larger relative C amounts associated with the 2-53 µm fractions than the Control samples. Benefits for aggregate formation and OM storage were larger for sand (LR) than for clay soil (HR). The gained data are similar to respective data for natural soils. Consequently, the suggested microcosm experiments are suitable to analyze mechanisms within soil aggregation processes.
Lunar soils grain size catalog
NASA Technical Reports Server (NTRS)
Graf, John C.
1993-01-01
This catalog compiles every available grain size distribution for Apollo surface soils, trench samples, cores, and Luna 24 soils. Original laboratory data are tabled, and cumulative weight distribution curves and histograms are plotted. Standard statistical parameters are calculated using the method of moments. Photos and location comments describe the sample environment and geological setting. This catalog can help researchers describe the geotechnical conditions and site variability of the lunar surface essential to the design of a lunar base.
Identification of dust storm origin in South -West of Iran.
Broomandi, Parya; Dabir, Bahram; Bonakdarpour, Babak; Rashidi, Yousef
2017-01-01
Deserts are the main sources of emitted dust, and are highly responsive to wind erosion. Low content of soil moisture and lack of vegetation cover lead to fine particle's release. One of the semi-arid bare lands in Iran, located in the South-West of Iran in Khoozestan province, was selected to investigate Sand and Dust storm potential. This paper focused on the metrological parameters of the sampling site, their changes and the relationship between these changes and dust storm occurrence, estimation of Reconaissance Drought Index, the Atterberg limits of soil samples and their relation with soil erosion ability, the chemical composition, size distribution of soil and airborne dust samples, and estimation of vertical mass flux by COMSALT through considering the effect of saffman force and interparticle cohesion forces during warm period (April-September) in 2010. The chemical compositions are measured with X-ray fluorescence, Atomic absorption spectrophotometer and X-ray diffraction. The particle size distribution analysis was conducted by using Laser particle size and sieve techniques. There was a strong negative correlation between dust storm occurrence and annual and seasonal rainfall and relative humidity. Positive strong correlation between annual and seasonal maximum temperature and dust storm frequency was seen. Estimation of RDI st in the studied period showed an extremely dry condition. Using the results of particle size distribution and soil consistency, the weak structure of soil was represented. X-ray diffraction analyses of soil and dust samples showed that soil mineralogy was dominated mainly by Quartz and calcite. X-ray fluorescence analyses of samples indicated that the most important major oxide compositions of the soil and airborne dust samples were SiO 2 , Al 2 O 3 , CaO, MgO, Na 2 O, and Fe 2 O 3 , demonstrating similar percentages for soil and dust samples. Estimation of Enrichment Factors for all studied trace elements in soil samples showed Br, Cl, Mo, S, Zn, and Hg with EF values higher than 10. The findings, showed the possible correlation between the degree of anthropogenic soil pollutants, and the remains of Iraq-Iran war. The results expressed sand and dust storm emission potential in this area, was illustrated with measured vertical mass fluxes by COMSALT.
NASA Astrophysics Data System (ADS)
Lai, Xiaoming; Zhu, Qing; Zhou, Zhiwen; Liao, Kaihua
2017-12-01
In this study, seven random combination sampling strategies were applied to investigate the uncertainties in estimating the hillslope mean soil water content (SWC) and correlation coefficients between the SWC and soil/terrain properties on a tea + bamboo hillslope. One of the sampling strategies is the global random sampling and the other six are the stratified random sampling on the top, middle, toe, top + mid, top + toe and mid + toe slope positions. When each sampling strategy was applied, sample sizes were gradually reduced and each sampling size contained 3000 replicates. Under each sampling size of each sampling strategy, the relative errors (REs) and coefficients of variation (CVs) of the estimated hillslope mean SWC and correlation coefficients between the SWC and soil/terrain properties were calculated to quantify the accuracy and uncertainty. The results showed that the uncertainty of the estimations decreased as the sampling size increasing. However, larger sample sizes were required to reduce the uncertainty in correlation coefficient estimation than in hillslope mean SWC estimation. Under global random sampling, 12 randomly sampled sites on this hillslope were adequate to estimate the hillslope mean SWC with RE and CV ≤10%. However, at least 72 randomly sampled sites were needed to ensure the estimated correlation coefficients with REs and CVs ≤10%. Comparing with all sampling strategies, reducing sampling sites on the middle slope had the least influence on the estimation of hillslope mean SWC and correlation coefficients. Under this strategy, 60 sites (10 on the middle slope and 50 on the top and toe slopes) were enough to ensure the estimated correlation coefficients with REs and CVs ≤10%. This suggested that when designing the SWC sampling, the proportion of sites on the middle slope can be reduced to 16.7% of the total number of sites. Findings of this study will be useful for the optimal SWC sampling design.
Hg Storage and Mobility in Tundra Soils of Northern Alaska
NASA Astrophysics Data System (ADS)
Olson, C.; Obrist, D.
2017-12-01
Atmospheric mercury (Hg) can be transported over long distances to remote regions such as the Arctic where it can then deposit and temporarily be stored in soils. This research aims to improve the understanding of terrestrial Hg storage and mobility in the arctic tundra, a large receptor area for atmospheric deposition and a major source of Hg to the Arctic Ocean. We aim to characterize spatial Hg pool sizes across various tundra sites and to quantify the mobility of Hg from thawing tundra soils using laboratory mobility experiments. Active layer and permafrost soil samples were collected in the summer of 2014 and 2015 at the Toolik Field Station in northern Alaska (68° 38' N) and along a 200 km transect extending from Toolik to the Arctic Ocean. Soil samples were analyzed for total Hg concentration, bulk density, and major and trace elements. Hg pool sizes were estimated by scaling up Hg soil concentrations using soil bulk density measurements. Mobility of Hg in tundra soils was quantified by shaking soil samples with ultrapure Milli-Q® water as an extracting solution for 24 and 72 hours. Additionally, meltwater samples were collected for analysis when present. The extracted supernatant was analyzed for total Hg, dissolved organic carbon, cations and anions, redox, and ph. Mobility of Hg from soil was calculated using Hg concentrations determined in solid soil samples and in supernatant of soil solution samples. Results of this study show Hg levels in tundra mineral soils that are 2-5 times higher than those observed at temperate sites closer to pollution sources. Most of the soil Hg was located in mineral horizons where Hg mass accounted for 72% of the total soil pool. Soil Hg pool sizes across the tundra sites were highly variable (166 - 1,365 g ha-1; avg. 419 g ha-1) due to the heterogeneity in soil type, bulk density, depth to frozen layer, and soil Hg concentration. Preliminary results from the laboratory experiment show higher mobility of Hg in mineral soils of active layer samples (0.062%) than in permafrost soils (0.026%) where soil Hg concentrations were lower. Mobilization of Hg stored in thawing permafrost soils could lead to accelerated export of Hg to aquatic systems, with major implications to Arctic wildlife and human health.
NASA Astrophysics Data System (ADS)
Zeraatpisheh, Mojtaba; Ayoubi, Shamsollah; Jafari, Azam; Finke, Peter
2017-05-01
The efficiency of different digital and conventional soil mapping approaches to produce categorical maps of soil types is determined by cost, sample size, accuracy and the selected taxonomic level. The efficiency of digital and conventional soil mapping approaches was examined in the semi-arid region of Borujen, central Iran. This research aimed to (i) compare two digital soil mapping approaches including Multinomial logistic regression and random forest, with the conventional soil mapping approach at four soil taxonomic levels (order, suborder, great group and subgroup levels), (ii) validate the predicted soil maps by the same validation data set to determine the best method for producing the soil maps, and (iii) select the best soil taxonomic level by different approaches at three sample sizes (100, 80, and 60 point observations), in two scenarios with and without a geomorphology map as a spatial covariate. In most predicted maps, using both digital soil mapping approaches, the best results were obtained using the combination of terrain attributes and the geomorphology map, although differences between the scenarios with and without the geomorphology map were not significant. Employing the geomorphology map increased map purity and the Kappa index, and led to a decrease in the 'noisiness' of soil maps. Multinomial logistic regression had better performance at higher taxonomic levels (order and suborder levels); however, random forest showed better performance at lower taxonomic levels (great group and subgroup levels). Multinomial logistic regression was less sensitive than random forest to a decrease in the number of training observations. The conventional soil mapping method produced a map with larger minimum polygon size because of traditional cartographic criteria used to make the geological map 1:100,000 (on which the conventional soil mapping map was largely based). Likewise, conventional soil mapping map had also a larger average polygon size that resulted in a lower level of detail. Multinomial logistic regression at the order level (map purity of 0.80), random forest at the suborder (map purity of 0.72) and great group level (map purity of 0.60), and conventional soil mapping at the subgroup level (map purity of 0.48) produced the most accurate maps in the study area. The multinomial logistic regression method was identified as the most effective approach based on a combined index of map purity, map information content, and map production cost. The combined index also showed that smaller sample size led to a preference for the order level, while a larger sample size led to a preference for the great group level.
Laboratory and Airborne BRDF Analysis of Vegetation Leaves and Soil Samples
NASA Technical Reports Server (NTRS)
Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.
2008-01-01
Laboratory-based Bidirectional Reflectance Distribution Function (BRDF) analysis of vegetation leaves, soil, and leaf litter samples is presented. The leaf litter and soil samples, numbered 1 and 2, were obtained from a site located in the savanna biome of South Africa (Skukuza: 25.0degS, 31.5degE). A third soil sample, number 3, was obtained from Etosha Pan, Namibia (19.20degS, 15.93degE, alt. 1100 m). In addition, BRDF of local fresh and dry leaves from tulip tree (Liriodendron tulipifera) and acacia tree (Acacia greggii) were studied. It is shown how the BRDF depends on the incident and scatter angles, sample size (i.e. crushed versus whole leaf,) soil samples fraction size, sample status (i.e. fresh versus dry leaves), vegetation species (poplar versus acacia), and vegetation s biochemical composition. As a demonstration of the application of the results of this study, airborne BRDF measurements acquired with NASA's Cloud Absorption Radiometer (CAR) over the same general site where the soil and leaf litter samples were obtained are compared to the laboratory results. Good agreement between laboratory and airborne measured BRDF is reported.
A New Model of Size-graded Soil Veneer on the Lunar Surface
NASA Technical Reports Server (NTRS)
Basu, Abhijit; McKay, David S.
2005-01-01
Introduction. We propose a new model of distribution of submillimeter sized lunar soil grains on the lunar surface. We propose that in the uppermost millimeter or two of the lunar surface, soil-grains are size graded with the finest nanoscale dust on top and larger micron-scale particles below. This standard state is perturbed by ejecta deposition of larger grains at the lunar surface, which have a coating of dusty layer that may not have substrates of intermediate sizes. Distribution of solar wind elements (SWE), agglutinates, vapor deposited nanophase Fe0 in size fractions of lunar soils and ir spectra of size fractions of lunar soils are compatible with this model. A direct test of this model requires bringing back glue-impregnated tubes of lunar soil samples to be dissected and examined on Earth.
Worldwide Organic Soil Carbon and Nitrogen Data (1986) (NDP-018)
Zinke, P. J. [Univ. of California, Berkeley, CA (United States); Stangenberger, A. G. [Univ. of California, Berkeley, CA (United States); Post, W. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Emanuel, W. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Olson, J. S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Millemann, R. E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, T. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
1986-01-01
This data base was begun with the collection and analysis of soil samples from California. Additional data came from soil surveys of Italy, Greece, Iran, Thailand, Vietnam, various tropical Amazonian areas, and U.S. forests and from the soil-survey literature. The analyzed samples were collected at uniform soil-depth increments and included bulk-density determinations. The data on each sample are soil profile number; soil profile carbon content; soil profile nitrogen content; sampling site latitude and longitude; site elevation; profile literature reference source; and soil profile codes for Holdridge life zone, Olson ecosystem type, and parent material. These data may be used to estimate the size of the soil organic carbon and nitrogen pools at equilibrium with natural soil-forming factors.
Moran, Anthony R; Hettiarachchi, Hiroshan
2011-07-01
Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling.
Moran, Anthony R.; Hettiarachchi, Hiroshan
2011-01-01
Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling. PMID:21845150
Adequacy of laser diffraction for soil particle size analysis
Fisher, Peter; Aumann, Colin; Chia, Kohleth; O'Halloran, Nick; Chandra, Subhash
2017-01-01
Sedimentation has been a standard methodology for particle size analysis since the early 1900s. In recent years laser diffraction is beginning to replace sedimentation as the prefered technique in some industries, such as marine sediment analysis. However, for the particle size analysis of soils, which have a diverse range of both particle size and shape, laser diffraction still requires evaluation of its reliability. In this study, the sedimentation based sieve plummet balance method and the laser diffraction method were used to measure the particle size distribution of 22 soil samples representing four contrasting Australian Soil Orders. Initially, a precise wet riffling methodology was developed capable of obtaining representative samples within the recommended obscuration range for laser diffraction. It was found that repeatable results were obtained even if measurements were made at the extreme ends of the manufacturer’s recommended obscuration range. Results from statistical analysis suggested that the use of sample pretreatment to remove soil organic carbon (and possible traces of calcium-carbonate content) made minor differences to the laser diffraction particle size distributions compared to no pretreatment. These differences were found to be marginally statistically significant in the Podosol topsoil and Vertosol subsoil. There are well known reasons why sedimentation methods may be considered to ‘overestimate’ plate-like clay particles, while laser diffraction will ‘underestimate’ the proportion of clay particles. In this study we used Lin’s concordance correlation coefficient to determine the equivalence of laser diffraction and sieve plummet balance results. The results suggested that the laser diffraction equivalent thresholds corresponding to the sieve plummet balance cumulative particle sizes of < 2 μm, < 20 μm, and < 200 μm, were < 9 μm, < 26 μm, < 275 μm respectively. The many advantages of laser diffraction for soil particle size analysis, and the empirical results of this study, suggest that deployment of laser diffraction as a standard test procedure can provide reliable results, provided consistent sample preparation is used. PMID:28472043
Determination of hydrogen abundance in selected lunar soils
NASA Technical Reports Server (NTRS)
Bustin, Roberta
1987-01-01
Hydrogen was implanted in lunar soil through solar wind activity. In order to determine the feasibility of utilizing this solar wind hydrogen, it is necessary to know not only hydrogen abundances in bulk soils from a variety of locations but also the distribution of hydrogen within a given soil. Hydrogen distribution in bulk soils, grain size separates, mineral types, and core samples was investigated. Hydrogen was found in all samples studied. The amount varied considerably, depending on soil maturity, mineral types present, grain size distribution, and depth. Hydrogen implantation is definitely a surface phenomenon. However, as constructional particles are formed, previously exposed surfaces become embedded within particles, causing an enrichment of hydrogen in these species. In view of possibly extracting the hydrogen for use on the lunar surface, it is encouraging to know that hydrogen is present to a considerable depth and not only in the upper few millimeters. Based on these preliminary studies, extraction of solar wind hydrogen from lunar soil appears feasible, particulary if some kind of grain size separation is possible.
A comparison of bacterial and fungal biomass in several cultivated soils.
Kaczmarek, W
1984-01-01
Bacterial and fungal biomass was estimated in incubated samples of three cultivated soils, the influence of glucose, ammonium nitrate and cattle slurry on its formation being studied. The microbial biomass was determined in stained microscopic preparations of soil suspension. Bacterial biomass in the control samples was from 0.17 to 0.66 mg dry wt per 1 g dry soil and independently of the applied supplements was on the average two times larger in muck soils than in sand. Fungal biomass in the control soils ranged from 0.013 to 0.161 mg dry wt per 1 g dry soil, no relationship being found between its size and the soil type. As a result, the ratio of the size of fungal to bacterial biomass was dependent on the soil type; in sand the fungal biomass corresponded to 1/3 of the bacterial biomass, and in muck soils--only to 1/7.
USDA-ARS?s Scientific Manuscript database
Developing national wind erosion models for the continental United States requires a comprehensive spatial representation of continuous soil particle size distributions (PSD) for model input. While the current coverage of soil survey is nearly complete, the most detailed particle size classes have c...
NASA Astrophysics Data System (ADS)
Smits, K. M.; Sakaki, T.; Limsuwat, A.; Illangasekare, T. H.
2009-05-01
It is widely recognized that liquid water, water vapor and temperature movement in the subsurface near the land/atmosphere interface are strongly coupled, influencing many agricultural, biological and engineering applications such as irrigation practices, the assessment of contaminant transport and the detection of buried landmines. In these systems, a clear understanding of how variations in water content, soil drainage/wetting history, porosity conditions and grain size affect the soil's thermal behavior is needed, however, the consideration of all factors is rare as very few experimental data showing the effects of these variations are available. In this study, the effect of soil moisture, drainage/wetting history, and porosity on the thermal conductivity of sandy soils with different grain sizes was investigated. For this experimental investigation, several recent sensor based technologies were compiled into a Tempe cell modified to have a network of sampling ports, continuously monitoring water saturation, capillary pressure, temperature, and soil thermal properties. The water table was established at mid elevation of the cell and then lowered slowly. The initially saturated soil sample was subjected to slow drainage, wetting, and secondary drainage cycles. After liquid water drainage ceased, evaporation was induced at the surface to remove soil moisture from the sample to obtain thermal conductivity data below the residual saturation. For the test soils studied, thermal conductivity increased with increasing moisture content, soil density and grain size while thermal conductivity values were similar for soil drying/wetting behavior. Thermal properties measured in this study were then compared with independent estimates made using empirical models from literature. These soils will be used in a proposed set of experiments in intermediate scale test tanks to obtain data to validate methods and modeling tools used for landmine detection.
Geochemical and radiological characterization of soils from former radium processing sites
Landa, E.R.
1984-01-01
Soil samples were collected from former radium processing sites in Denver, CO, and East Orange, NJ. Particle-size separations and radiochemical analyses of selected samples showed that while the greatest contents of both 226Ra and U were generally found in the finest (< 45 ??m) fraction, the pattern was not always of progressive increase in radionuclide content with decreasing particle size. Leaching tests on these samples showed a large portion of the 225Ra and U to be soluble in dilute hydrochloric acid. Radon-emanation coefficients measured for bulk samples of contaminated soil were about 20%. Recovery of residual uranium and vanadium, as an adjunct to any remedial action program, appears unlikely due to economic considerations.
Method for analyzing soil structure according to the size of structural elements
NASA Astrophysics Data System (ADS)
Wieland, Ralf; Rogasik, Helmut
2015-02-01
The soil structure in situ is the result of cropping history and soil development over time. It can be assessed by the size distribution of soil structural elements such as air-filled macro-pores, aggregates and stones, which are responsible for important water and solute transport processes, gas exchange, and the stability of the soil against compacting and shearing forces exerted by agricultural machinery. A method was developed to detect structural elements of the soil in selected horizontal slices of soil core samples with different soil structures in order for them to be implemented accordingly. In the second step, a fitting tool (Eureqa) based on artificial programming was used to find a general function to describe ordered sets of detected structural elements. It was shown that all the samples obey a hyperbolic function: Y(k) = A /(B + k) , k ∈ { 0 , 1 , 2 , … }. This general behavior can be used to develop a classification method based on parameters {A and B}. An open source software program in Python was developed, which can be downloaded together with a selection of soil samples.
Effects of biochar amendment on geotechnical properties of landfill cover soil.
Reddy, Krishna R; Yaghoubi, Poupak; Yukselen-Aksoy, Yeliz
2015-06-01
Biochar is a carbon-rich product obtained when plant-based biomass is heated in a closed container with little or no available oxygen. Biochar-amended soil has the potential to serve as a landfill cover material that can oxidise methane emissions for two reasons: biochar amendment can increase the methane retention time and also enhance the biological activity that can promote the methanotrophic oxidation of methane. Hydraulic conductivity, compressibility and shear strength are the most important geotechnical properties that are required for the design of effective and stable landfill cover systems, but no studies have been reported on these properties for biochar-amended landfill cover soils. This article presents physicochemical and geotechnical properties of a biochar, a landfill cover soil and biochar-amended soils. Specifically, the effects of amending 5%, 10% and 20% biochar (of different particle sizes as produced, size-20 and size-40) to soil on its physicochemical properties, such as moisture content, organic content, specific gravity and pH, as well as geotechnical properties, such as hydraulic conductivity, compressibility and shear strength, were determined from laboratory testing. Soil or biochar samples were prepared by mixing them with 20% deionised water based on dry weight. Samples of soil amended with 5%, 10% and 20% biochar (w/w) as-is or of different select sizes, were also prepared at 20% initial moisture content. The results show that the hydraulic conductivity of the soil increases, compressibility of the soil decreases and shear strength of the soil increases with an increase in the biochar amendment, and with a decrease in biochar particle size. Overall, the study revealed that biochar-amended soils can possess excellent geotechnical properties to serve as stable landfill cover materials. © The Author(s) 2015.
Geochemical and radiological characterization of soils from former radium processing sites.
Landa, E R
1984-02-01
Soil samples were collected from former radium processing sites in Denver, CO, and East Orange, NJ. Particle-size separations and radiochemical analyses of selected samples showed that while the greatest contents of both 226Ra and U were generally found in the finest (less than 45 micron) fraction, the pattern was not always of progressive increase in radionuclide content with decreasing particle size. Leaching tests on these samples showed a large portion of the 226Ra and U to be soluble in dilute hydrochloric acid. Radon-emanation coefficients measured for bulk samples of contaminated soil were about 20%. Recovery of residual uranium and vanadium, as an adjunct to any remedial action program, appears unlikely due to economic considerations.
NASA Astrophysics Data System (ADS)
Zhang, X.; Zhao, W.; Liu, Y.; Fang, X.
2017-12-01
Soil water overconsumption is threatening the sustainability of regional vegetation rehabilitation in the Loess Plateau of China. The use of fractal geometry theory in describing soil quality improves the accuracy of the relevant research. Typical grasslands, shrublands, forests, cropland and orchards under different precipitation regimes were selected, and in this study, the spatial distribution of the relationship between soil moisture and soil particle size in typical slopes on Loess Plateau were investigated to provide support for the predict of soil moisture by using soil physical characteristics in the Loess Plateau. During the sampling year, the mean annual precipitation gradients were divided at an interval of 70 mm from 370mm to 650mm. Grasslands with Medicago sativa L. or Stipa bungeana Trin., shrublands with Caragana Korshinskii Kom. or Hippophae rhamnoides L., forests with Robinia pseudoacacia Linn., orchards with apple trees and croplands with corn or potatoes were chosen to represent the natural grassland. A soil auger with a diameter of 5 cm was used to obtain soil samples at depths of 0-5 m at intervals of 20 cm.The Van Genuchten model, fractal theory and redundancy analysis (RDA) were used to estimate and analyze the soil water characteristic curve, soil particle size distribution, and fractal dimension and the correlations between the relevant parameters. The results showed that (1) the change of the singular fractal dimension is positively correlated with soil water content, while D0 (capacity dimension) is negatively correlated with soil water content as the depth increases; (2) the relationship between soil moisture and soil particle size shows differences under different plants and precipitation gradient.
NASA Technical Reports Server (NTRS)
Ruschmeyer, O. R.; Pflug, I. J.; Gove, R.; Heisserer, Y.
1975-01-01
Research efforts were concentrated on attempts to obtain data concerning the dry heat resistance of particle microflora in Kennedy Space Center soil samples. The in situ dry heat resistance profiles at selected temperatures for the aggregate microflora on soil particles of certain size ranges were determined. Viability profiles of older soil samples were compared with more recently stored soil samples. The effect of increased particle numbers on viability profiles after dry heat treatment was investigated. These soil particle viability data for various temperatures and times provide information on the soil microflora response to heat treatment and are useful in making selections for spacecraft sterilization cycles.
Overestimation of Crop Root Biomass in Field Experiments Due to Extraneous Organic Matter.
Hirte, Juliane; Leifeld, Jens; Abiven, Samuel; Oberholzer, Hans-Rudolf; Hammelehle, Andreas; Mayer, Jochen
2017-01-01
Root biomass is one of the most relevant root parameters for studies of plant response to environmental change, soil carbon modeling or estimations of soil carbon sequestration. A major source of error in root biomass quantification of agricultural crops in the field is the presence of extraneous organic matter in soil: dead roots from previous crops, weed roots, incorporated above ground plant residues and organic soil amendments, or remnants of soil fauna. Using the isotopic difference between recent maize root biomass and predominantly C3-derived extraneous organic matter, we determined the proportions of maize root biomass carbon of total carbon in root samples from the Swiss long-term field trial "DOK." We additionally evaluated the effects of agricultural management (bio-organic and conventional), sampling depth (0-0.25, 0.25-0.5, 0.5-0.75 m) and position (within and between maize rows), and root size class (coarse and fine roots) as defined by sieve mesh size (2 and 0.5 mm) on those proportions, and quantified the success rate of manual exclusion of extraneous organic matter from root samples. Only 60% of the root mass that we retrieved from field soil cores was actual maize root biomass from the current season. While the proportions of maize root biomass carbon were not affected by agricultural management, they increased consistently with soil depth, were higher within than between maize rows, and were higher in coarse (>2 mm) than in fine (≤2 and >0.5) root samples. The success rate of manual exclusion of extraneous organic matter from root samples was related to agricultural management and, at best, about 60%. We assume that the composition of extraneous organic matter is strongly influenced by agricultural management and soil depth and governs the effect size of the investigated factors. Extraneous organic matter may result in severe overestimation of recovered root biomass and has, therefore, large implications for soil carbon modeling and estimations of the climate change mitigation potential of soils.
Field sampling of loose erodible material: A new method to consider the full particle-size range
NASA Astrophysics Data System (ADS)
Klose, Martina; Gill, Thomas E.
2017-04-01
The aerodynamic entrainment of sand and dust is determined by the atmospheric forces exerted onto the soil surface and by the soil-surface condition. If aerodynamic forces are strong enough to generate sand and dust lifting, the entrained sediment amount still critically depends on the supply of loose particles readily available for lifting. This loose erodible material (LEM) is sometimes defined as the thin layer of loose particles on top of a crusted surface. Here, we more generally define LEM as loose particles or particle aggregates available for entrainment, which may or may not overlay a soil crust. Field sampling of LEM is difficult and only few attempts have been made. Motivated by saltation as the most efficient process to generate dust emission, methods have focused on capturing LEM in the sand-size range or on determining the potential of a soil surface to be eroded by aerodynamic forces and particle impacts. Here, our focus is to capture the full particle-size distribution of LEM in situ, including the dust and sand-size range, to investigate the potential and likelihood of dust emission mechanisms (aerodynamic entrainment, saltation bombardment, aggregate disintegration) to occur. A new vacuum method is introduced and its capability to sample LEM without significant alteration of the LEM particle-size distribution is investigated.
Particle Size Distribution of Heavy Metals and Magnetic Susceptibility in an Industrial Site.
Ayoubi, Shamsollah; Soltani, Zeynab; Khademi, Hossein
2018-05-01
This study was conducted to explore the relationships between magnetic susceptibility and some soil heavy metals concentrations in various particle sizes in an industrial site, central Iran. Soils were partitioned into five fractions (< 28, 28-75, 75-150, 150-300, and 300-2000 µm). Heavy metals concentrations including Zn, Pb, Fe, Cu, Ni and Mn and magnetic susceptibility were determined in bulk soil samples and all fractions in 60 soil samples collected from the depth of 0-5 cm. The studied heavy metals except for Pb and Fe displayed a substantial enrichment in the < 28 µm. These two elements seemed to be independent of the selected size fractions. Magnetic minerals are specially linked with medium size fractions including 28-75, 75-150 and 150-300 µm. The highest correlations were found for < 28 µm and heavy metals followed by 150-300 µm fraction which are susceptible to wind erosion risk in an arid environment.
Role of CaCO3 and Charcoal Application on Organic Matter Retention in Silt-sized Aggregates
NASA Astrophysics Data System (ADS)
Berhe, A. A.; Kaiser, M.; Ghezzehei, T.; Myrold, D.; Kleber, M.
2011-12-01
The effectiveness of charcoal and calcium carbonate (CaCO3) applications to improve soil conditions has been well documented. However, their influence on the formation of silt-sized aggregates and the amount and protection of associated organic matter (OM) against microbial decomposition under differing soil mineralogical and microbiological conditions are still unknown. For sustainable management of agricultural soils, silt-sized aggregates (2-50 μm) are of particularly large importance because they store up to 60% of soil organic carbon and with mean residence times between 70 and 400 years. The objectives of this study are i) to analyze the ability of soil amendments (CaCO3, charcoal and their combined application) to increase the amount of silt-sized aggregates and associated organic matter, ii) vary soil mineral conditions to establish relevant boundary conditions for amendment-induced aggregation process, iii) to determine how amendment-induced changes in formation of silt-sized aggregates relate to microbial decomposition of OM. We set up artificial high reactive (clay: 40%, sand: 57%, SOM: 3%) and low reactive soils (clay: 10%, sand: 89%, SOM: 1%) and mixed them with charcoal (1%) and/or CaCO3 (0.2%). The samples were adjusted to a water potential of 0.3 bar using a nutrient solution and sub samples were incubated with microbial innoculum. After four months, silt-sized aggregates are separated by a combination of wet-sieving and sedimentation. We hypothesize that the relative increase in amount of silt-sized aggregates and associated OM is larger for less reactive soils than for high reactive soils because of a relative larger increase in binding agents by addition of charcoal and/or CaCO3 in less reactive soils. The effect of charcoal and/or CaCO3 application on the amount of silt-sized aggregates and associated OM is expected to increases with an increase in microbial activity. Between different treatments, we expect the incubated 'charcoal+CaCO3' combination to have the largest effect on silt-size scale aggregation processes because the amount of microbial derived cementing agents, charcoal derived functional groups containing OM, and Ca2+ ions are enhanced at the same time.
Effect of sulfate and carbonate minerals on particle-size distributions in arid soils
Goossens, Dirk; Buck, Brenda J.; Teng, Yuazxin; Robins, Colin; Goldstein, Harland L.
2014-01-01
Arid soils pose unique problems during measurement and interpretation of particle-size distributions (PSDs) because they often contain high concentrations of water-soluble salts. This study investigates the effects of sulfate and carbonate minerals on grain-size analysis by comparing analyses in water, in which the minerals dissolve, and isopropanol (IPA), in which they do not. The presence of gypsum, in particular, substantially affects particle-size analysis once the concentration of gypsum in the sample exceeds the mineral’s solubility threshold. For smaller concentrations particle-size results are unaffected. This is because at concentrations above the solubility threshold fine particles cement together or bind to coarser particles or aggregates already present in the sample, or soluble mineral coatings enlarge grains. Formation of discrete crystallites exacerbates the problem. When soluble minerals are dissolved the original, insoluble grains will become partly or entirely liberated. Thus, removing soluble minerals will result in an increase in measured fine particles. Distortion of particle-size analysis is larger for sulfate minerals than for carbonate minerals because of the much higher solubility in water of the former. When possible, arid soils should be analyzed using a liquid in which the mineral grains do not dissolve, such as IPA, because the results will more accurately reflect the PSD under most arid soil field conditions. This is especially important when interpreting soil and environmental processes affected by particle size.
Size distributions of manure particles released under simulated rainfall.
Pachepsky, Yakov A; Guber, Andrey K; Shelton, Daniel R; McCarty, Gregory W
2009-03-01
Manure and animal waste deposited on cropland and grazing lands serve as a source of microorganisms, some of which may be pathogenic. These microorganisms are released along with particles of dissolved manure during rainfall events. Relatively little if anything is known about the amounts and sizes of manure particles released during rainfall, that subsequently may serve as carriers, abode, and nutritional source for microorganisms. The objective of this work was to obtain and present the first experimental data on sizes of bovine manure particles released to runoff during simulated rainfall and leached through soil during subsequent infiltration. Experiments were conducted using 200 cm long boxes containing turfgrass soil sod; the boxes were designed so that rates of manure dissolution and subsequent infiltration and runoff could be monitored independently. Dairy manure was applied on the upper portion of boxes. Simulated rainfall (ca. 32.4 mm h(-1)) was applied for 90 min on boxes with stands of either live or dead grass. Electrical conductivity, turbidity, and particle size distributions obtained from laser diffractometry were determined in manure runoff and soil leachate samples. Turbidity of leachates and manure runoff samples decreased exponentially. Turbidity of manure runoff samples was on average 20% less than turbidity of soil leachate samples. Turbidity of leachate samples from boxes with dead grass was on average 30% less than from boxes with live grass. Particle size distributions in manure runoff and leachate suspensions remained remarkably stable after 15 min of runoff initiation, although the turbidity continued to decrease. Particles had the median diameter of 3.8 microm, and 90% of particles were between 0.6 and 17.8 microm. The particle size distributions were not affected by the grass status. Because manure particles are known to affect transport and retention of microbial pathogens in soil, more information needs to be collected about the concurrent release of pathogens and manure particles during rainfall events.
Li, Baozhen; Ge, Tida; Xiao, Heai; Zhu, Zhenke; Li, Yong; Shibistova, Olga; Liu, Shoulong; Wu, Jinshui; Inubushi, Kazuyuki; Guggenberger, Georg
2016-04-01
Red soils are the major land resource in subtropical and tropical areas and are characterized by low phosphorus (P) availability. To assess the availability of P for plants and the potential stability of P in soil, two pairs of subtropical red soil samples from a paddy field and an adjacent uncultivated upland were collected from Hunan Province, China. Analysis of total P and Olsen P and sequential extraction was used to determine the inorganic and organic P fractions in different aggregate size classes. Our results showed that the soil under paddy cultivation had lower proportions of small aggregates and higher proportions of large aggregates than those from the uncultivated upland soil. The portion of >2-mm-sized aggregates increased by 31 and 20 % at Taoyuan and Guiyang, respectively. The total P and Olsen P contents were 50-150 and 50-300 % higher, respectively, in the paddy soil than those in the upland soil. Higher inorganic and organic P fractions tended to be enriched in both the smallest and largest aggregate size classes compared to the middle size class (0.02-0.2 mm). Furthermore, the proportion of P fractions was higher in smaller aggregate sizes (<2 mm) than in the higher aggregate sizes (>2 mm). In conclusion, soils under paddy cultivation displayed improved soil aggregate structure, altered distribution patterns of P fractions in different aggregate size classes, and to some extent had enhanced labile P pools.
Modeling the transport of engineered nanoparticles in saturated porous media - an experimental setup
NASA Astrophysics Data System (ADS)
Braun, A.; Neukum, C.; Azzam, R.
2011-12-01
The accelerating production and application of engineered nanoparticles is causing concerns regarding their release and fate in the environment. For assessing the risk that is posed to drinking water resources it is important to understand the transport and retention mechanisms of engineered nanoparticles in soil and groundwater. In this study an experimental setup for analyzing the mobility of silver and titanium dioxide nanoparticles in saturated porous media is presented. Batch and column experiments with glass beads and two different soils as matrices are carried out under varied conditions to study the impact of electrolyte concentration and pore water velocities. The analysis of nanoparticles implies several challenges, such as the detection and characterization and the preparation of a well dispersed sample with defined properties, as nanoparticles tend to form agglomerates when suspended in an aqueous medium. The analytical part of the experiments is mainly undertaken with Flow Field-Flow Fractionation (FlFFF). This chromatography like technique separates a particulate sample according to size. It is coupled to a UV/Vis and a light scattering detector for analyzing concentration and size distribution of the sample. The advantage of this technique is the ability to analyze also complex environmental samples, such as the effluent of column experiments including soil components, and the gentle sample treatment. For optimization of the sample preparation and for getting a first idea of the aggregation behavior in soil solutions, in sedimentation experiments the effect of ionic strength, sample concentration and addition of a surfactant on particle or aggregate size and temporal dispersion stability was investigated. In general the samples are more stable the lower the concentration of particles is. For TiO2 nanoparticles, the addition of a surfactant yielded the most stable samples with smallest aggregate sizes. Furthermore the suspension stability is increasing with electrolyte concentration. Depending on the dispersing medium the results show that TiO2 nanoparticles tend to form aggregates between 100-200 nm in diameter while the primary particle size is given as 21 nm by the manufacturer. Aggregate sizes are increasing with time. The particle size distribution of the silver nanoparticle samples is quite uniform in each medium. The fresh samples show aggregate sizes between 40 and 45 nm while the primary particle size is 15 nm according to the manufacturer. Aggregate size is only slightly increasing with time during the sedimentation experiments. These results are used as a reference when analyzing the effluent of column experiments.
Nickel speciation in several serpentine (ultramafic) topsoils via bulk synchrotron-based techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siebecker, Matthew G.; Chaney, Rufus L.; Sparks, Donald L.
2017-07-01
Serpentine soils have elevated concentrations of trace metals including nickel, cobalt, and chromium compared to non-serpentine soils. Identifying the nickel bearing minerals allows for prediction of potential mobility of nickel. Synchrotron-based techniques can identify the solid-phase chemical forms of nickel with minimal sample treatment. Element concentrations are known to vary among soil particle sizes in serpentine soils. Sonication is a useful method to physically disperse sand, silt and clay particles in soils. Synchrotron-based techniques and sonication were employed to identify nickel species in discrete particle size fractions in several serpentine (ultramafic) topsoils to better understand solid-phase nickel geochemistry. Nickel commonlymore » resided in primary serpentine parent material such as layered-phyllosilicate and chain-inosilicate minerals and was associated with iron oxides. In the clay fractions, nickel was associated with iron oxides and primary serpentine minerals, such as lizardite. Linear combination fitting (LCF) was used to characterize nickel species. Total metal concentration did not correlate with nickel speciation and is not an indicator of the major nickel species in the soil. Differences in soil texture were related to different nickel speciation for several particle size fractionated samples. A discussion on LCF illustrates the importance of choosing standards based not only on statistical methods such as Target Transformation but also on sample mineralogy and particle size. Results from the F-test (Hamilton test), which is an underutilized tool in the literature for LCF in soils, highlight its usefulness to determine the appropriate number of standards to for LCF. EXAFS shell fitting illustrates that destructive interference commonly found for light and heavy elements in layered double hydroxides and in phyllosilicates also can occur in inosilicate minerals, causing similar structural features and leading to false positive results in LCF.« less
New Measurements of the Particle Size Distribution of Apollo 11 Lunar Soil 10084
NASA Technical Reports Server (NTRS)
McKay, D.S.; Cooper, B.L.; Riofrio, L.M.
2009-01-01
We have initiated a major new program to determine the grain size distribution of nearly all lunar soils collected in the Apollo program. Following the return of Apollo soil and core samples, a number of investigators including our own group performed grain size distribution studies and published the results [1-11]. Nearly all of these studies were done by sieving the samples, usually with a working fluid such as Freon(TradeMark) or water. We have measured the particle size distribution of lunar soil 10084,2005 in water, using a Microtrac(TradeMark) laser diffraction instrument. Details of our own sieving technique and protocol (also used in [11]). are given in [4]. While sieving usually produces accurate and reproducible results, it has disadvantages. It is very labor intensive and requires hours to days to perform properly. Even using automated sieve shaking devices, four or five days may be needed to sieve each sample, although multiple sieve stacks increases productivity. Second, sieving is subject to loss of grains through handling and weighing operations, and these losses are concentrated in the finest grain sizes. Loss from handling becomes a more acute problem when smaller amounts of material are used. While we were able to quantitatively sieve into 6 or 8 size fractions using starting soil masses as low as 50mg, attrition and handling problems limit the practicality of sieving smaller amounts. Third, sieving below 10 or 20microns is not practical because of the problems of grain loss, and smaller grains sticking to coarser grains. Sieving is completely impractical below about 5- 10microns. Consequently, sieving gives no information on the size distribution below approx.10 microns which includes the important submicrometer and nanoparticle size ranges. Finally, sieving creates a limited number of size bins and may therefore miss fine structure of the distribution which would be revealed by other methods that produce many smaller size bins.
Magnetic properties of alluvial soils polluted with heavy metals
NASA Astrophysics Data System (ADS)
Dlouha, S.; Petrovsky, E.; Boruvka, L.; Kapicka, A.; Grison, H.
2012-04-01
Magnetic properties of soils, reflecting mineralogy, concentration and grain-size distribution of Fe-oxides, proved to be useful tool in assessing the soil properties in terms of various environmental conditions. Measurement of soil magnetic properties presents a convenient method to investigate the natural environmental changes in soils as well as the anthropogenic pollution of soils with several risk elements. The effect of fluvial pollution with Cd, Cu, Pb and Zn on magnetic soil properties was studied on highly contaminated alluvial soils from the mining/smelting district (Příbram; CZ) using a combination of magnetic and geochemical methods. The basic soil characteristics, the content of heavy metals, oxalate, and dithionite extractable iron were determined in selected soil samples. Soil profiles were sampled using HUMAX soil corer and the magnetic susceptibility was measured in situ, further detailed magnetic analyses of selected distinct layers were carried out. Two types of variations of magnetic properties in soil profiles were observed corresponding to indentified soil types (Fluvisols, and Gleyic Fluvisols). Significantly higher values of topsoil magnetic susceptibility compared to underlying soil are accompanied with high concentration of heavy metals. Sequential extraction analysis proved the binding of Pb, Zn and Cd in Fe and Mn oxides. Concentration and size-dependent parameters (anhysteretic and isothermal magnetization) were measured on bulk samples in terms of assessing the origin of magnetic components. The results enabled to distinguish clearly topsoil layers enhanced with heavy metals from subsoil samples. The dominance of particles with pseudo-single domain behavior in topsoil and paramagnetic/antiferromagnetic contribution in subsoil were observed. These measurements were verified with room temperature hysteresis measurement carried out on bulk samples and magnetic extracts. Thermomagnetic analysis of magnetic susceptibility measured on magnetic extracts indicated the presence of magnetite/maghemite in the uppermost layers, and strong mineralogical transformation of iron oxyhydroxides during heating. Magnetic techniques give valuable information about the soil Fe oxides, which are useful for investigation of the environmental effects in soil. Key words: magnetic methods, Fe oxides, pollution, alluvial soils.
FIELD SAMPLING OF RESIDUAL AVIATION GASOLINE IN SANDY SOIL
Two complimentary field sampling methods for the determination of residual aviation gasoline content in the contaminated capillary fringe of a fine, uniform, sandy soil were investigated. The first method featured filed extrusion of core barrels into pint size Mason jars, while ...
Koarashi, Jun; Nishimura, Syusaku; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sato, Tsutomu; Nagao, Seiya
2018-08-01
The Fukushima Daiichi nuclear power plant accident caused serious radiocesium ( 137 Cs) contamination in soils in a range of terrestrial ecosystems. It is well documented that the interaction of 137 Cs with soil constituents, particularly clay minerals, in surface soil layers exerts strong control on the behavior of this radionuclide in the environment; however, there is little understanding of how soil aggregation-the binding of soil particles together into aggregates-can affect the mobility and bioavailability of 137 Cs in soils. To explore this, soil samples were collected at seven sites under different land-use conditions in Fukushima and were separated into four aggregate-size fractions: clay-sized (<2 μm); silt-sized (2-20 μm); sand-sized (20-212 μm); and macroaggregates (212-2000 μm). The fractions were then analyzed for 137 Cs content and extractability and mineral composition. In forest soils, aggregate formation was significant, and 69%-83% of 137 Cs was associated with macroaggregates and sand-sized aggregates. In contrast, there was less aggregation in agricultural field soils, and approximately 80% of 137 Cs was in the clay- and silt-sized fractions. Across all sites, the 137 Cs extractability was higher in the sand-sized aggregate fractions than in the clay-sized fractions. Mineralogical analysis showed that, in most soils, clay minerals (vermiculite and kaolinite) were present even in the larger-sized aggregate fractions. These results demonstrate that larger-sized aggregates are a significant reservoir of potentially mobile and bioavailable 137 Cs in organic-rich (forest and orchard) soils. Our study suggests that soil aggregation reduces the mobility of particle-associated 137 Cs through erosion and resuspension and also enhances the bioavailability of 137 Cs in soils. Copyright © 2018 Elsevier Ltd. All rights reserved.
Laser Diffraction Techniques Replace Sieving for Lunar Soil Particle Size Distribution Data
NASA Technical Reports Server (NTRS)
Cooper, Bonnie L.; Gonzalez, C. P.; McKay, D. S.; Fruland, R. L.
2012-01-01
Sieving was used extensively until 1999 to determine the particle size distribution of lunar samples. This method is time-consuming, and requires more than a gram of material in order to obtain a result in which one may have confidence. This is demonstrated by the difference in geometric mean and median for samples measured by [1], in which a 14-gram sample produced a geometric mean of approx.52 micrometers, whereas two other samples of 1.5 grams resulted in gave means of approx.63 and approx.69 micrometers. Sample allocations for sieving are typically much smaller than a gram, and many of the sample allocations received by our lab are 0.5 to 0.25 grams in mass. Basu [2] has described how the finest fraction of the soil is easily lost in the sieving process, and this effect is compounded when sample sizes are small.
QA/QC requirements for physical properties sampling and analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Innis, B.E.
1993-07-21
This report presents results of an assessment of the available information concerning US Environmental Protection Agency (EPA) quality assurance/quality control (QA/QC) requirements and guidance applicable to sampling, handling, and analyzing physical parameter samples at Comprehensive Environmental Restoration, Compensation, and Liability Act (CERCLA) investigation sites. Geotechnical testing laboratories measure the following physical properties of soil and sediment samples collected during CERCLA remedial investigations (RI) at the Hanford Site: moisture content, grain size by sieve, grain size by hydrometer, specific gravity, bulk density/porosity, saturated hydraulic conductivity, moisture retention, unsaturated hydraulic conductivity, and permeability of rocks by flowing air. Geotechnical testing laboratories alsomore » measure the following chemical parameters of soil and sediment samples collected during Hanford Site CERCLA RI: calcium carbonate and saturated column leach testing. Physical parameter data are used for (1) characterization of vadose and saturated zone geology and hydrogeology, (2) selection of monitoring well screen sizes, (3) to support modeling and analysis of the vadose and saturated zones, and (4) for engineering design. The objectives of this report are to determine the QA/QC levels accepted in the EPA Region 10 for the sampling, handling, and analysis of soil samples for physical parameters during CERCLA RI.« less
Hu, Ning; Ma, Zhi-min; Lan, Jia-cheng; Wu, Yu-chun; Chen, Gao-qi; Fu, Wa-li; Wen, Zhi-lin; Wang, Wen-jing
2015-09-01
In order to illuminate the impact on soil nitrogen accumulation and supply in karst rocky desertification area, the distribution characteristics of soil nitrogen pool for each class of soil aggregates and the relationship between aggregates nitrogen pool and soil nitrogen mineralization were analyzed in this study. The results showed that the content of total nitrogen, light fraction nitrogen, available nitrogen and mineral nitrogen in soil aggregates had an increasing tendency along with the descending of aggregate-size, and the highest content was occurred in < 0. 25 mm. The content of nitrogen fractions for all aggregate-classes followed in the order of abandoned land < grass land < brush land < brush-arbor land < arbor land in different sample plots. Artificial forest lands had more effects on the improvement of the soil nitrogen than honeysuckle land. In this study it also showed the nitrogen stockpiling quantity of each aggregate-size class was differed in all aggregate-size classes, in which the content of nitrogen fraction in 5-10 mm and 2-5 mm classes of soil aggregate-size were the highest. And it meant that soil nutrient mainly was stored in large size aggregates. Large size aggregates were significant to the storage of soil nutrient. For each class of soil aggregate-size, the contribution of the nitrogen stockpiling quantity of 0. 25-1 mm class to soil net nitrogen mineralization quantity was the biggest, and following >5mm and 2-5 mm classes, and the others were the smallest. With the positive vegetation succession, the weight percentage of > 5 mm aggregate-size classes was improved and the nitrogen storage of macro-aggregates also was increased. Accordingly, the capacity of soil supply mineral nitrogen and storage organic nitrogen were intensified.
3D soil structure characterization of Biological Soil Crusts from Alpine Tarfala Valley
NASA Astrophysics Data System (ADS)
Mele, Giacomo; Gargiulo, Laura; Zucconi, Laura; D'Acqui, Luigi; Ventura, Stefano
2017-04-01
Cyanobacteria filaments, microfungal hyphae, lichen rhizinae and anchoring rhizoids of bryophytes all together contribute to induce formation of structure in the thin soil layer beneath the Biological Soil Crusts (BSCs). Quantitative assessment of the soil structure beneath the BSCs is primarily hindered by the fragile nature of the crusts. Therefore, the role of BSCs in affecting such soil physical property has been rarely addressed using direct measurements. In this work we applied non-destructive X-ray microtomography imaging on five different samples of BSCs collected in the Alpine Tarfala Valley (northern Sweden), which have already been characterized in terms of fungal biodiversity in a previous work. We obtained images of the 3D spatial organization of the soil underneath the BSCs and characterized its structure by applying procedures of image analysis allowing to determine pore size distribution, pore connectivity and aggregate size distribution. Results has then been correlated with the different fungal assemblages of the samples.
NASA Astrophysics Data System (ADS)
Rita, Joice Cleide O.; Gama-Rodrigues, Emanuela Forestieri; Gama-Rodrigues, Antonio Carlos; Polidoro, Jose Carlos; Machado, Regina Cele R.; Baligar, Virupax C.
2011-07-01
Agroforestry systems (AFSs) have an important role in capturing above and below ground soil carbon and play a dominant role in mitigation of atmospheric CO2. Attempts has been made here to identify soil organic matter fractions in the cacao-AFSs that have different susceptibility to microbial decomposition and further represent the basis of understanding soil C dynamics. The objective of this study was to characterize the organic matter density fractions and soil size fractions in soils of two types of cacao agroforestry systems and to compare with an adjacent natural forest in Bahia, Brazil. The land-use systems studied were: (1) a 30-year-old stand of natural forest with cacao (cacao cabruca), (2) a 30-year-old stand of cacao with Erythrina glauca as shade trees (cacao + erythrina), and (3) an adjacent natural forest without cacao. Soil samples were collected from 0-10 cm depth layer in reddish-yellow Oxisols. Soil samples was separated by wet sieving into five fraction-size classes (>2000 μm, 1000-2000 μm, 250-1000 μm, 53-250 μm, and <53 μm). C and N accumulated in to the light (free- and intra-aggregate density fractions) and heavy fractions of whole soil and soil size fraction were determined. Soil size fraction obtained in cacao AFS soils consisted mainly (65 %) of mega-aggregates (>2000 μm) mixed with macroaggregates (32-34%), and microaggregates (1-1.3%). Soil organic carbon (SOC) and total N content increased with increasing soil size fraction in all land-use systems. Organic C-to-total N ratio was higher in the macroaggregate than in the microaggregate. In general, in natural forest and cacao cabruca the contribution of C and N in the light and heavy fractions was similar. However, in cacao + erythrina the heavy fraction was the most common and contributed 67% of C and 63% of N. Finding of this study shows that the majority of C and N in all three systems studied are found in macroaggregates, particularly in the 250-1000 μm size aggregate class. The heavy fraction was the most common organic matter fraction in these soils. Thus, in mature cacao AFS on highly weathered soils the main mechanisms of C stabilization could be the physical protection within macroaggregate structures thereby minimizing the impact of conversion of forest to cacao AFS.
Rita, Joice Cleide O; Gama-Rodrigues, Emanuela Forestieri; Gama-Rodrigues, Antonio Carlos; Polidoro, Jose Carlos; Machado, Regina Cele R; Baligar, Virupax C
2011-07-01
Agroforestry systems (AFSs) have an important role in capturing above and below ground soil carbon and play a dominant role in mitigation of atmospheric CO(2). Attempts has been made here to identify soil organic matter fractions in the cacao-AFSs that have different susceptibility to microbial decomposition and further represent the basis of understanding soil C dynamics. The objective of this study was to characterize the organic matter density fractions and soil size fractions in soils of two types of cacao agroforestry systems and to compare with an adjacent natural forest in Bahia, Brazil. The land-use systems studied were: (1) a 30-year-old stand of natural forest with cacao (cacao cabruca), (2) a 30-year-old stand of cacao with Erythrina glauca as shade trees (cacao + erythrina), and (3) an adjacent natural forest without cacao. Soil samples were collected from 0-10 cm depth layer in reddish-yellow Oxisols. Soil samples was separated by wet sieving into five fraction-size classes (>2000 μm, 1000-2000 μm, 250-1000 μm, 53-250 μm, and <53 μm). C and N accumulated in to the light (free- and intra-aggregate density fractions) and heavy fractions of whole soil and soil size fraction were determined. Soil size fraction obtained in cacao AFS soils consisted mainly (65 %) of mega-aggregates (>2000 μm) mixed with macroaggregates (32-34%), and microaggregates (1-1.3%). Soil organic carbon (SOC) and total N content increased with increasing soil size fraction in all land-use systems. Organic C-to-total N ratio was higher in the macroaggregate than in the microaggregate. In general, in natural forest and cacao cabruca the contribution of C and N in the light and heavy fractions was similar. However, in cacao + erythrina the heavy fraction was the most common and contributed 67% of C and 63% of N. Finding of this study shows that the majority of C and N in all three systems studied are found in macroaggregates, particularly in the 250-1000 μm size aggregate class. The heavy fraction was the most common organic matter fraction in these soils. Thus, in mature cacao AFS on highly weathered soils the main mechanisms of C stabilization could be the physical protection within macroaggregate structures thereby minimizing the impact of conversion of forest to cacao AFS.
Space Weathering of Intermediate-Size Soil Grains in Immature Apollo 17 Soil 71061
NASA Technical Reports Server (NTRS)
Wentworth, S. J.; Robinson, G. A.; McKay, D. S.
2005-01-01
Understanding space weathering, which is caused by micrometeorite impacts, implantation of solar wind gases, radiation damage, chemical effects from solar particles and cosmic rays, interactions with the lunar atmosphere, and sputter erosion and deposition, continues to be a primary objective of lunar sample research. Electron beam studies of space weathering have focused on space weathering effects on individual glasses and minerals from the finest size fractions of lunar soils [1] and patinas on lunar rocks [2]. We are beginning a new study of space weathering of intermediate-size individual mineral grains from lunar soils. For this initial work, we chose an immature soil (see below) in order to maximize the probability that some individual grains are relatively unweathered. The likelihood of identifying a range of relatively unweathered grains in a mature soil is low, and we plan to study grains ranging from pristine to highly weathered in order to determine the progression of space weathering. Future studies will include grains from mature soils. We are currently in the process of documenting splash glass, glass pancakes, craters, and accretionary particles (glass and mineral grains) on plagioclase from our chosen soil using high-resolution field emission scanning electron microscopy (FESEM). These studies are being done concurrently with our studies of patinas on larger lunar rocks [e.g., 3]. One of our major goals is to correlate the evidence for space weathering observed in studies of the surfaces of samples with the evidence demonstrated at higher resolution (TEM) using cross-sections of samples. For example, TEM studies verified the existence of vapor deposits on soil grains [1]; we do not yet know if they can be readily distinguished by surfaces studies of samples. A wide range of textures of rims on soil grains is also clear in TEM [1]; might it be possible to correlate them with specific characteristics of weathering features seen in SEM?
Carbon Storage in Soil Size Fractions Under Two Cacao Agroforestry Systems in Bahia, Brazil
NASA Astrophysics Data System (ADS)
Gama-Rodrigues, Emanuela F.; Ramachandran Nair, P. K.; Nair, Vimala D.; Gama-Rodrigues, Antonio C.; Baligar, Virupax C.; Machado, Regina C. R.
2010-02-01
Shaded perennial agroforestry systems contain relatively high quantities of soil carbon (C) resulting from continuous deposition of plant residues; however, the extent to which the C is sequestered in soil will depend on the extent of physical protection of soil organic C (SOC). The main objective of this study was to characterize SOC storage in relation to soil fraction-size classes in cacao ( Theobroma cacao L.) agroforestry systems (AFSs). Two shaded cacao systems and an adjacent natural forest in reddish-yellow Oxisols in Bahia, Brazil were selected. Soil samples were collected from four depth classes to 1 m depth and separated by wet-sieving into three fraction-size classes (>250 μm, 250-53 μm, and <53 μm)—corresponding to macroaggregate, microaggregate, and silt-and-clay size fractions—and analyzed for C content. The total SOC stock did not vary among systems (mean: 302 Mg/ha). On average, 72% of SOC was in macroaggregate-size, 20% in microaggregate-size, and 8% in silt-and-clay size fractions in soil. Sonication of aggregates showed that occlusion of C in soil aggregates could be a major mechanism of C protection in these soils. Considering the low level of soil disturbances in cacao AFSs, the C contained in the macroaggregate fraction might become stabilized in the soil. The study shows the role of cacao AFSs in mitigating greenhouse gas (GHG) emission through accumulation and retention of high amounts of organic C in the soils and suggests the potential benefit of this environmental service to the nearly 6 million cacao farmers worldwide.
Carbon storage in soil size fractions under two cacao agroforestry systems in Bahia, Brazil.
Gama-Rodrigues, Emanuela F; Ramachandran Nair, P K; Nair, Vimala D; Gama-Rodrigues, Antonio C; Baligar, Virupax C; Machado, Regina C R
2010-02-01
Shaded perennial agroforestry systems contain relatively high quantities of soil carbon (C) resulting from continuous deposition of plant residues; however, the extent to which the C is sequestered in soil will depend on the extent of physical protection of soil organic C (SOC). The main objective of this study was to characterize SOC storage in relation to soil fraction-size classes in cacao (Theobroma cacao L.) agroforestry systems (AFSs). Two shaded cacao systems and an adjacent natural forest in reddish-yellow Oxisols in Bahia, Brazil were selected. Soil samples were collected from four depth classes to 1 m depth and separated by wet-sieving into three fraction-size classes (>250 microm, 250-53 microm, and <53 microm)-corresponding to macroaggregate, microaggregate, and silt-and-clay size fractions-and analyzed for C content. The total SOC stock did not vary among systems (mean: 302 Mg/ha). On average, 72% of SOC was in macroaggregate-size, 20% in microaggregate-size, and 8% in silt-and-clay size fractions in soil. Sonication of aggregates showed that occlusion of C in soil aggregates could be a major mechanism of C protection in these soils. Considering the low level of soil disturbances in cacao AFSs, the C contained in the macroaggregate fraction might become stabilized in the soil. The study shows the role of cacao AFSs in mitigating greenhouse gas (GHG) emission through accumulation and retention of high amounts of organic C in the soils and suggests the potential benefit of this environmental service to the nearly 6 million cacao farmers worldwide.
NASA Astrophysics Data System (ADS)
Lintz, L.; Werts, S. P.
2014-12-01
The Ninety-Six National Historic Site is located in Greenwood County, SC. Recent geologic mapping of this area has revealed differences in soil properties over short distances within the park. We studied the chemistry of the clay minerals found within the soils to see if there was a correlation between the amounts of soil organic carbon contained in the soil and particle size in individual soil horizons. Three different vegetation areas, including an old field, a deciduous forest, and a pine forest were selected to see what influence vegetation type had on the clay chemistry and carbon levels as well. Four samples containing the O, A, and B horizons were taken from each location and we studied the carbon and nitrogen content using an elemental analyzer, particle size using a Laser Diffraction Particle Size Analyzer, and clay mineralogy with powder X-ray diffraction of each soil sample. Samples from the old field and pine forest gave an overall negative correlation between carbon content and clay percentage, which is against the normal trend for Southern Piedmont Ultisols. The deciduous forest samples gave no correlation at all between its carbon content and clay percentage. Together, all three locations show the same negative relationship, while once separated into vegetation type and A and B horizons it shows even more abnormal relationships of negative while several show no correlation (R2= 0.007403- 0.56268). Using powder XRD, we ran clay samples from each A and B horizon for the clay mineralogy. All three vegetation areas had the same results of containing quartz, kaolinite, and Fe oxides, therefore, clay chemistry is not a reason behind the abnormal trend of a negative correlation between average carbon content and clay percentage. Considering that all three locations have the same climate, topography, and parent material of metagranite, it could be reasonable to assume these results are a factor of environmental and biological influences rather than clay type.
Loescher, Henry; Ayres, Edward; Duffy, Paul; Luo, Hongyan; Brunke, Max
2014-01-01
Soils are highly variable at many spatial scales, which makes designing studies to accurately estimate the mean value of soil properties across space challenging. The spatial correlation structure is critical to develop robust sampling strategies (e.g., sample size and sample spacing). Current guidelines for designing studies recommend conducting preliminary investigation(s) to characterize this structure, but are rarely followed and sampling designs are often defined by logistics rather than quantitative considerations. The spatial variability of soils was assessed across ∼1 ha at 60 sites. Sites were chosen to represent key US ecosystems as part of a scaling strategy deployed by the National Ecological Observatory Network. We measured soil temperature (Ts) and water content (SWC) because these properties mediate biological/biogeochemical processes below- and above-ground, and quantified spatial variability using semivariograms to estimate spatial correlation. We developed quantitative guidelines to inform sample size and sample spacing for future soil studies, e.g., 20 samples were sufficient to measure Ts to within 10% of the mean with 90% confidence at every temperate and sub-tropical site during the growing season, whereas an order of magnitude more samples were needed to meet this accuracy at some high-latitude sites. SWC was significantly more variable than Ts at most sites, resulting in at least 10× more SWC samples needed to meet the same accuracy requirement. Previous studies investigated the relationship between the mean and variability (i.e., sill) of SWC across space at individual sites across time and have often (but not always) observed the variance or standard deviation peaking at intermediate values of SWC and decreasing at low and high SWC. Finally, we quantified how far apart samples must be spaced to be statistically independent. Semivariance structures from 10 of the 12-dominant soil orders across the US were estimated, advancing our continental-scale understanding of soil behavior. PMID:24465377
Viscoelastic Properties of Soil with Different Ammonium Nitrate Addition
NASA Astrophysics Data System (ADS)
Kawecka-Radomska, M.; Tomczyńska-Mleko, M.; Muszyńskic, S.; Wesołowska-Trojanowska, M.; Mleko, S.
2017-12-01
Four different soils samples were taken from not cultivated recreational places. Particle-size distribution and pH (in water and in 1 M KCl) of the soil samples were measured. Soil samples were saturated with deionized water and solution of ammonium nitrate with the concentration of 5, 50 or 500 mM for 3 days. The samples were analyzed using dynamic oscillatory rheometer by frequency and strain sweeps. Soil samples were similar to physical gels, as they presented rheological properties between those of a concentrated biopolymer and a true gel. 50 mM concentration of the salt was enough to make changes in the elasticity of the soils. Small concentration of the fertilizer caused weakening of the soil samples structure. Higher concentration of ammonium nitrate caused the increase in the moduli crossover strain value. For the loam sample taken from a playground, with the highest content of the particles <0.002 mm (clay aluminosilicates), the lowest value of strain was observed at the moduli intersection. Lower strain value was necessary for the sliding shear effect of soil A sample effecting transgression to the "flowing" state. Strain sweep moduli crossover point can be used as a determinant of the rheological properties of soil.
Bottomley, Peter J.; Dughri, Muktar H.
1989-01-01
Bacterial cells small enough to pass through 0.4-μm-pore-size filters made up 5 to 9% of the indigenous bacterial population in 0- to 20-cm-depth samples of Abiqua silty clay loam. Within the same soil samples, cells of a similar dimension were stained with fluorescent antibodies specific to each of four antigenically distinct indigenous serogroups of Rhizobium leguminosarum bv. trifolii and made up 22 to 34% of the soil population of the four serogroups. Despite the extensive contribution of small cells to these soil populations, no evidence of their being capable of either growth or nodulation was obtained. The density of soil bacteria which could be cultured ranged between 0.5 and 8.5% of the >0.4-μm direct count regardless of media, season of sampling, or soil depth. In the same soil samples, the viable nodulating populations of biovar trifolii determined by the plant infection soil dilution technique ranged between 1 and 10% of the >0.4-μm direct-immunofluorescence count of biovar trifolii. The <0.4-μm cell populations of both total soil bacteria and biovar trifolii changed abruptly between the 10- to 15-cm and 15- to 20-cm soil depth increments, increasing from 5 to 20% and from 20 to 50%, respectively, of their direct-count totals. The increase in density of the small-cell population corresponded to a significant increase in soil bulk density (1.07 to 1.21 g cm−3). The percent contribution of the <0.4-μm direct count to individual serogroup totals increased with soil depth by approximately 2-fold (39 to 87%) for serogroups 17 and 21 and by 12-fold (6 to 75%) for serogroups 6 and 36. PMID:16347896
Overestimation of Crop Root Biomass in Field Experiments Due to Extraneous Organic Matter
Hirte, Juliane; Leifeld, Jens; Abiven, Samuel; Oberholzer, Hans-Rudolf; Hammelehle, Andreas; Mayer, Jochen
2017-01-01
Root biomass is one of the most relevant root parameters for studies of plant response to environmental change, soil carbon modeling or estimations of soil carbon sequestration. A major source of error in root biomass quantification of agricultural crops in the field is the presence of extraneous organic matter in soil: dead roots from previous crops, weed roots, incorporated above ground plant residues and organic soil amendments, or remnants of soil fauna. Using the isotopic difference between recent maize root biomass and predominantly C3-derived extraneous organic matter, we determined the proportions of maize root biomass carbon of total carbon in root samples from the Swiss long-term field trial “DOK.” We additionally evaluated the effects of agricultural management (bio-organic and conventional), sampling depth (0–0.25, 0.25–0.5, 0.5–0.75 m) and position (within and between maize rows), and root size class (coarse and fine roots) as defined by sieve mesh size (2 and 0.5 mm) on those proportions, and quantified the success rate of manual exclusion of extraneous organic matter from root samples. Only 60% of the root mass that we retrieved from field soil cores was actual maize root biomass from the current season. While the proportions of maize root biomass carbon were not affected by agricultural management, they increased consistently with soil depth, were higher within than between maize rows, and were higher in coarse (>2 mm) than in fine (≤2 and >0.5) root samples. The success rate of manual exclusion of extraneous organic matter from root samples was related to agricultural management and, at best, about 60%. We assume that the composition of extraneous organic matter is strongly influenced by agricultural management and soil depth and governs the effect size of the investigated factors. Extraneous organic matter may result in severe overestimation of recovered root biomass and has, therefore, large implications for soil carbon modeling and estimations of the climate change mitigation potential of soils. PMID:28298919
Magnetic properties of Apollo samples and implications for regolith formation
NASA Technical Reports Server (NTRS)
Pearce, G. W.; Strangway, D. W.; Gose, W. A.
1974-01-01
The magnetic properties of a number of Apollo 17 samples have been measured and confirm that regoliths of mare sites (Apollo 11, 12, 15 valley, and 17 valley) differ markedly from those of highland sites (Apollo 14, 16, and 17 massif) in the ratio of content of metallic to ferrous iron and in the grain size of metallic iron. The ratio of metallic to ferrous iron is correlated with mean particle size, a parameter representing maturity, for soils of Apollo 16 and roughly correlated with the age of the sites for soils of different sites. It is suggested that the ratio of metallic to ferrous iron may be an effective indicator of relative soil maturity for any one site and of the age of the soil material for any sites.
Uncertainties in detecting decadal change in extractable soil elements in Northern Forests
NASA Astrophysics Data System (ADS)
Bartlett, O.; Bailey, S. W.; Ducey, M. J.
2016-12-01
Northern Forest ecosystems have been or are being impacted by land use change, forest harvesting, acid deposition, atmospheric CO2 enrichment, and climate change. Each of these has the potential to modify soil forming processes, and the resulting chemical stocks. Horizontal and vertical variations in concentrations complicate determination of temporal change. This study evaluates sample design, sample size, and differences among observers as sources of uncertainty when quantifying soil temporal change over regional scales. Forty permanent, northern hardwood, monitoring plots were established on the White Mountain National Forest in central New Hampshire and western Maine. Soil pits were characterized and sampled by genetic horizon at plot center in 2001 and resampled again in 2014 two-meters on contour from the original sampling location. Each soil horizon was characterized by depth, color, texture, structure, consistency, boundaries, coarse fragments, and roots from the forest floor to the upper C horizon, the relatively unaltered glacial till parent material. Laboratory analyses included pH in 0.01 M CaCl2 solution and extractable Ca, Mg, Na, K, Al, Mn, and P in 1 M NH4OAc solution buffered at pH 4.8. Significant elemental differences were identified by genetic horizon from paired t-tests (p ≤ 0.05) indicate temporal change across the study region. Power analysis, 0.9 power (α = 0.05), revealed sampling size was appropriate within this region to detect concentration change by genetic horizon using a stratified sample design based on topographic metrics. There were no significant differences between observers' descriptions of physical properties. As physical properties would not be expected to change over a decade, this suggests spatial variation in physical properties between the pairs of sampling pits did not detract from our ability to detect temporal change. These results suggest that resampling efforts within a site, repeated across a region, to quantify elemental change by carefully described genetic horizons is an appropriate method of detecting soil temporal change in this region. Sample size and design considerations from this project will have direct implications for future monitoring programs to characterize change in soil chemistry.
Instability improvement of the subgrade soils by lime addition at Borg El-Arab, Alexandria, Egypt
NASA Astrophysics Data System (ADS)
El Shinawi, A.
2017-06-01
Subgrade soils can affect the stability of any construction elsewhere, instability problems were found at Borg El-Arab, Alexandria, Egypt. This paper investigates geoengineering properties of lime treated subgrade soils at Borg El-Arab. Basic laboratory tests, such as water content, wet and dry density, grain size, specific gravity and Atterberg limits, were performed for twenty-five samples. Moisture-density (compaction); California Bearing Ratio (CBR) and Unconfined Compression Strength (UCS) were conducted on treated and natural soils. The measured geotechnical parameters of the treated soil shows that 6% lime is good enough to stabilize the subgrade soils. It was found that by adding lime, samples shifted to coarser side, Atterberg limits values of the treated soil samples decreased and this will improve the soil to be more stable. On the other hand, Subgrade soils improved as a result of the bonding fine particles, cemented together to form larger size and reduce the plastiCity index which increase soils strength. The environmental scanning electron microscope (ESEM) is point to the presence of innovative aggregated cement materials which reduce the porosity and increase the strength as a long-term curing. Consequently, the mixture of soil with the lime has acceptable mechanical characteristics where, it composed of a high strength base or sub-base materials and this mixture considered as subgrade soil for stabilizations and mitigation the instability problems that found at Borg Al-Arab, Egypt.
Dullgren extraction of soil mites (Acarina): Effect of refrigeration time on extraction efficiency
Michelle B. Lakly; D.A. Crossley
2000-01-01
Soil microarthropods constitute one of the most species rich communities in . forest ecosystems (Crossley & Blair, 1991). The effects of soil fauna in these systems on decomposition rates, nutrient regeneration and soil structure have been well documented; however, dependable estimates of population size and community structure largely depend upon adequate sampling...
The distribution of microplastics in soil aggregate fractions in southwestern China.
Zhang, G S; Liu, Y F
2018-06-09
Plastic particle accumulation in arable soils is a growing contaminant of concern with unknown consequences for soil productivity and quality. This study aimed to investigate abundance and distribution of plastic particles among soil aggregate fractions in four cropped areas and an established riparian forest buffer zone at Dian Lake, southwestern China. Plastic particles (10-0.05 mm) from fifty soil samples were extracted and then sorted by size, counted, and categorized. Plastic particles were found in all soil samples. The concentration of plastic particles ranges from 7100 to 42,960 particles kg -1 (mean 18,760 particles kg -1 ). 95% of the sampled plastic particles are in the microplastic size (1-0.05 mm) range. The predominant form is plastic fibers, making up on average 92% of each sample followed by fragments and films that contributed with to 8%. Results of this study also show that 72% of plastic particles are associated with soil aggregates, and 28% of plastic particles are dispersed. The abundance of aggregate-associated plastic fibers is significantly greater in the micro-aggregate than that in the macro-aggregate, whereas the less concentrations of plastic films and fragments are found in the micro-aggregate. Compared to the adjacent vegetable soil, the less concentration of plastic particles in the buffer soil implicates that application of soil amendments and irrigation with wastewater must be controlled to reduce accumulation of microplastics in agricultural soils. While the implications of microplastic on ecological and human health are poorly understood, the staggering number of microplastic in agricultural soils should be continually concerned in the future. Copyright © 2018 Elsevier B.V. All rights reserved.
Species richness in soil bacterial communities: a proposed approach to overcome sample size bias.
Youssef, Noha H; Elshahed, Mostafa S
2008-09-01
Estimates of species richness based on 16S rRNA gene clone libraries are increasingly utilized to gauge the level of bacterial diversity within various ecosystems. However, previous studies have indicated that regardless of the utilized approach, species richness estimates obtained are dependent on the size of the analyzed clone libraries. We here propose an approach to overcome sample size bias in species richness estimates in complex microbial communities. Parametric (Maximum likelihood-based and rarefaction curve-based) and non-parametric approaches were used to estimate species richness in a library of 13,001 near full-length 16S rRNA clones derived from soil, as well as in multiple subsets of the original library. Species richness estimates obtained increased with the increase in library size. To obtain a sample size-unbiased estimate of species richness, we calculated the theoretical clone library sizes required to encounter the estimated species richness at various clone library sizes, used curve fitting to determine the theoretical clone library size required to encounter the "true" species richness, and subsequently determined the corresponding sample size-unbiased species richness value. Using this approach, sample size-unbiased estimates of 17,230, 15,571, and 33,912 were obtained for the ML-based, rarefaction curve-based, and ACE-1 estimators, respectively, compared to bias-uncorrected values of 15,009, 11,913, and 20,909.
Resuspension of soil as a source of airborne lead near industrial facilities and highways.
Young, Thomas M; Heeraman, Deo A; Sirin, Gorkem; Ashbaugh, Lowell L
2002-06-01
Geologic materials are an important source of airborne particulate matter less than 10 microm aerodynamic diameter (PM10), but the contribution of contaminated soil to concentrations of Pb and other trace elements in air has not been documented. To examine the potential significance of this mechanism, surface soil samples with a range of bulk soil Pb concentrations were obtained near five industrial facilities and along roadsides and were resuspended in a specially designed laboratory chamber. The concentration of Pb and other trace elements was measured in the bulk soil, in soil size fractions, and in PM10 generated during resuspension of soils and fractions. Average yields of PM10 from dry soils ranged from 0.169 to 0.869 mg of PM10/g of soil. Yields declined approximately linearly with increasing geometric mean particle size of the bulk soil. The resulting PM10 had average Pb concentrations as high as 2283 mg/kg for samples from a secondary Pb smelter. Pb was enriched in PM10 by 5.36-88.7 times as compared with uncontaminated California soils. Total production of PM10 bound Pb from the soil samples varied between 0.012 and 1.2 mg of Pb/kg of bulk soil. During a relatively large erosion event, a contaminated site might contribute approximately 300 ng/m3 of PM10-bound Pb to air. Contribution of soil from contaminated sites to airborne element balances thus deserves consideration when constructing receptor models for source apportionment or attempting to control airborne Pb emissions.
NASA Technical Reports Server (NTRS)
Veldhuis, Hugo; Hall, Forrest G. (Editor); Knapp, David E. (Editor)
2000-01-01
This data set contains the major soil properties of soil samples collected in 1994 at the tower flux sites in the Northern Study Area (NSA). The soil samples were collected by Hugo Veldhuis and his staff from the University of Manitoba. The mineral soil samples were largely analyzed by Barry Goetz, under the supervision of Dr. Harold Rostad at the University of Saskatchewan. The organic soil samples were largely analyzed by Peter Haluschak, under the supervision of Hugo Veldhuis at the Centre for Land and Biological Resources Research in Winnipeg, Manitoba. During the course of field investigation and mapping, selected surface and subsurface soil samples were collected for laboratory analysis. These samples were used as benchmark references for specific soil attributes in general soil characterization. Detailed soil sampling, description, and laboratory analysis were performed on selected modal soils to provide examples of common soil physical and chemical characteristics in the study area. The soil properties that were determined include soil horizon; dry soil color; pH; bulk density; total, organic, and inorganic carbon; electric conductivity; cation exchange capacity; exchangeable sodium, potassium, calcium, magnesium, and hydrogen; water content at 0.01, 0.033, and 1.5 MPascals; nitrogen; phosphorus: particle size distribution; texture; pH of the mineral soil and of the organic soil; extractable acid; and sulfur. These data are stored in ASCII text files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
Ciazela, Jakub; Siepak, Marcin
2016-06-01
We determined the Cd, Cr, Cu, Ni, Pb, and Zn concentrations in soil samples collected along the eight main outlet roads of Poznań. Samples were collected at distances of 1, 5, and 10 m from the roadway edges at depth intervals of 0-20 and 40-60 cm. The metal content was determined in seven grain size fractions. The highest metal concentrations were observed in the smallest fraction (<0.063 mm), which were up to four times higher than those in sand fractions. Soil Pb, Cu, and Zn (and to a lesser extent Ni, Cr, and Cd) all increased in relation to the geochemical background. At most sampling sites, metal concentrations decreased with increasing distance from roadway edges and increasing depth. In some locations, the accumulation of metals in soils appears to be strongly influenced by wind direction. Our survey findings should contribute in predicting the behavior of metals along outlet road, which is important by assessing sources for further migration of heavy metals into the groundwater, plants, and humans.
Bacterial diversity of soil aggregates of different sizes in various land use conditions
NASA Astrophysics Data System (ADS)
Ivanova, Ekaterina; Azida, Thakahova; Olga, Kutovaya
2014-05-01
The patterns of soil microbiome structure may be a universal and very sensitive indicator of soil quality (soil "health") used for optimization and biologization of agricultural systems. The understanding of how microbial diversity influenses, and is influenced by, the environment can only be attained by analyses at scales relevant to those at which processes influencing microbial diversity actually operate. The basic structural and functional unit of the soil is a soil aggregate, which is actually a microcosm of the associative co-existing groups of microorganisms that form characteristic ecological food chains. It is known that many important microbial processes occur in spatially segregated microenvironments in soil leading to a microscale biogeography. The Metagenomic library of typical chernozem in conditions of different land use systems was created. Total genomic DNA was extracted from 0.5 g of the frozen soil after mechanical destruction. Sample preparation and sequencing was performed on a GS Junior ("Roche»", Switzerland) according to manufacturer's recommendations, using the universal primers to the variable regions V4 gene 16S - rRNA - F515 (GTGCCAGCMGCCGCGGTAA) and R806 (GGACT-ACVSGGGTATCTAAT). It is shown that the system of land use is a stronger determinant of the taxonomic composition of the soil microbial community, rather than the size of the structural units. In soil samples from different land use systems the presence of accessory components was revealed. They may be used as indicators of processes of soil recovery, soil degradation or soil exhaustion processes occuring in the agroecosystems. The comparative analysis of microbial communities of chernozem aggregates investigated demonstrates the statistically valuable differences in the amount of bacterial phyla and Archean domain content as well as the species richness in aggregates of various size fractions. The occurrence of specific components in the taxonomic structure of micro-and macro-aggregates may indicate the presence of a certain size fraction in the structure of the investigated soil. The study of soils' metagenome is promising for the development of both soil microbiology, and for the soil processes trends in soils of anthropogenic origin.
Cheng, Zhibo; Zhang, Fenghua; Gale, William Jeffrey; Wang, Weichao; Sang, Wen; Yang, Haichang
2018-01-01
The objective of this study was to evaluate bacterial community structure and diversity in soil aggregate fractions when salinized farmland was reclaimed after >27 years of abandonment and then farmed again for 1, 5, 10, and 15 years. Illumina MiSeq high-throughput sequencing was performed to characterize the soil bacterial communities in 5 aggregate size classes in each treatment. The results indicated that reclamation significantly increased macro-aggregation (>0.25 mm), as well as soil organic C, available N, and available P. The 10-year field had the largest proportion (93.9%) of soil in the macro-aggregate size classes (i.e., >0.25 mm) and the highest soil electrical conductivity. The 5 most dominant phyla in the soil samples were Proteobacteria, Actinobacteria, Gemmatimonadetes, Acidobacteria, and Bacteroidetes. The phylogenetic diversity, Chao1, and Shannon indices increased after the abandoned land was reclaimed for farming, reaching maximums in the 15-year field. Among aggregate size classes, the 1-0.25 mm aggregates generally had the highest phylogenetic diversity, Chao1, and Shannon indices. Soil organic C and soil electrical conductivity were the main environmental factors affecting the soil bacterial communities. The composition and structure of the bacterial communities also varied significantly depending on soil aggregate size and time since reclamation.
Apollo rocks, fines and soil cores
NASA Astrophysics Data System (ADS)
Allton, J.; Bevill, T.
Apollo rocks and soils not only established basic lunar properties and ground truth for global remote sensing, they also provided important lessons for planetary protection (Adv. Space Res ., 1998, v. 22, no. 3 pp. 373-382). The six Apollo missions returned 2196 samples weighing 381.7 kg, comprised of rocks, fines, soil cores and 2 gas samples. By examining which samples were allocated for scientific investigations, information was obtained on usefulness of sampling strategy, sampling devices and containers, sample types and diversity, and on size of sample needed by various disciplines. Diversity was increased by using rakes to gather small rocks on the Moon and by removing fragments >1 mm from soils by sieving in the laboratory. Breccias and soil cores are diverse internally. Per unit weight these samples were more often allocated for research. Apollo investigators became adept at wringing information from very small sample sizes. By pushing the analytical limits, the main concern was adequate size for representative sampling. Typical allocations for trace element analyses were 750 mg for rocks, 300 mg for fines and 70 mg for core subsamples. Age-dating and isotope systematics allocations were typically 1 g for rocks and fines, but only 10% of that amount for core depth subsamples. Historically, allocations for organics and microbiology were 4 g (10% for cores). Modern allocations for biomarker detection are 100mg. Other disciplines supported have been cosmogenic nuclides, rock and soil petrology, sedimentary volatiles, reflectance, magnetics, and biohazard studies . Highly applicable to future sample return missions was the Apollo experience with organic contamination, estimated to be from 1 to 5 ng/g sample for Apollo 11 (Simonheit &Flory, 1970; Apollo 11, 12 &13 Organic contamination Monitoring History, U.C. Berkeley; Burlingame et al., 1970, Apollo 11 LSC , pp. 1779-1792). Eleven sources of contaminants, of which 7 are applicable to robotic missions, were identified and reduced; thus, improving Apollo 12 samples to 0.1 ng/g. Apollo sample documentation preserves the parentage, orientation, and location, packaging, handling and environmental histories of each of the 90,000 subsamples currently curated. Active research on Apollo samples continues today, and because 80% by weight of the Apollo collection remains pristine, researchers have a reservoir of material to support studies well into the future.
Park size and disturbance: impact on soil heterogeneity - a case study Tel-Aviv- Jaffa.
NASA Astrophysics Data System (ADS)
Zhevelev, Helena; Sarah, Pariente; Oz, Atar
2015-04-01
Parks and gardens are poly-functional elements of great importance in urban areas, and can be used for optimization of physical and social components in these areas. This study aimed to investigate alteration of soil properties with land usages within urban park and with area size of park. Ten parks differed by size (2 - 50 acres) were chosen, in random, in Tel-Aviv- Jaffa city. Soil was sampled in four microenvironments ((lawn, path, picnic and peripheral area (unorganized area) of each the park)), in three points and three depth (0-2, 5-10 and 10-20 cm). Penetration depth was measured in all point of sampling. For each soil sample electrical conductivity and organic matter content were determined. Averages of penetration depth drastically increased from the most disturbed microenvironments (path and picnic) to the less disturbed ones (lawn and peripheral). The maximal heterogeneity (by variances and percentiles) of penetration depth was found in the peripheral area. In this area, penetration depth increased with increasing park size, i.e., from 2.6 cm to 3.7 cm in the small and large parks, respectively. Averages of organic matter content and electrical conductivity decreased with soil depth in all microenvironments and increased with decreasing disturbance of microenvironments. Maximal heterogeneity for both of these properties was found in the picnic area. Increase of park size was accompanied by increasing of organic matter content in the upper depth in the peripheral area, i.e., from 2.4% in the small parks to 4.5% in the large ones. In all microenvironments the increasing of averages of all studied soil properties was accompanied by increasing heterogeneity, i.e., variances and upper percentiles. The increase in the heterogeneity of the studied soil properties is attributed to improved ecological soil status in the peripheral area, on the one hand, and to the high anthropogenic pressure in the picnic area, on the other. This means that the urban park offers "islands" with better ecological conditions which improve the urban system.
Utilizing soil polypedons to improve model performance for digital soil mapping
USDA-ARS?s Scientific Manuscript database
Most digital soil mapping approaches that use point data to develop relationships with covariate data intersect sample locations with one raster pixel regardless of pixel size. Resulting models are subject to spurious values in covariate data which may limit model performance. An alternative approac...
NASA Astrophysics Data System (ADS)
Pastukhov, A. V.; Kaverin, D. A.; Shchanov, V. M.
2016-09-01
A digital map of soil carbon pools was created for the forest-tundra ecotone in the Usa River basin with the use of ERDAS Imagine 2014 and ArcGIS 10.2 software. Supervised classification and thematic interpretation of satellite images and digital terrain models with the use of a georeferenced database on soil profiles were applied. Expert assessment of the natural diversity and representativeness of random samples for different soil groups was performed, and the minimal necessary size of the statistical sample was determined.
Magnetic Grain-size Proxies in Loessic Soils and Their Potential use in Paleorainfall Reconstruction
NASA Astrophysics Data System (ADS)
Machac, T. A.; Geiss, C. E.; Zanner, C. W.
2005-05-01
As part of our ongoing rock-magnetic study of loessic soil profiles we sampled over 70 in Nebraska, Iowa, Missouri and Illinois. Our sampling sites are located in stable upland positions and extend along a rainfall gradient which ranges from an average annual precipitation of less than 500 mm/year in southwestern Nebraska to almost 1000 mm/year in central Missouri. Soil cores were obtained with the aid of a hydraulic soil probe, described and subsampled into small plastic bags. Samples were air-dried in the laboratory and the < 2mm fraction was used for magnetic analyses. We measured magnetic susceptibility X and several remanence parameters (ARM, IRM) for all samples. Hysteresis measurements, IRM acquisition curves and time dependence of IRM acquisition were measured for a subset of samples. All samples show magnetically enhanced A- and B-horizons, which results in increased values of X, ARM and IRM. Changes in the ratio of ARM/IRM suggest an increase in the relative abundance of stable single domain (SSD) particles. VRM analyses show that the upper soil horizons are enhanced in ultrafine superparamagnetic (SP) ferrimagnets as well. Changes in the relative abundance of SP and SSD ferrimagnets along our transsect correlates well with the modern precipitation gradient, suggesting the use of grain-size dependent magnetic parameter as a potential paleorainfall proxy when analyzing paleosols.
Barwick, R S; Mohammed, H O; White, M E; Bryant, R B
2003-03-01
A study was conducted to identify factors associated with the likelihood of detecting Giardia spp. and Cryptosporidium spp. in the soil of dairy farms in a watershed area. A total of 37 farms were visited, and 782 soil samples were collected from targeted areas on these farms. The samples were analyzed for the presence of Cryptosporidium spp. oocysts, Giardia spp. cysts, percent moisture content, and pH. Logistic regression analysis was used to identify risk factors associated with the likelihood of the presence of these organisms. The use of the land at the sampling site was associated with the likelihood of environmental contamination with Cryptosporidium spp. Barn cleaner equipment area and agricultural fields were associated with increased likelihood of environmental contamination with Cryptosporidium spp. The risk of environmental contamination decreased with the pH of the soil and with the score of the potential likelihood of Cryptosporidium spp. The size of the sampling site, as determined by the sampling design, in square feet, was associated nonlinearly with the risk of detecting Cryptosporidium spp. The likelihood of the Giardia cyst in the soil increased with the prevalence of Giardia spp. in animals (i.e., 18 to 39%). As the size of the farm increased, there was decreased risk of Giardia spp. in the soil, and sampling sites which were covered with brush or bare soil showed a decrease in likelihood of detecting Giardia spp. when compared to land which had managed grass. The number of cattle on the farm less than 6 mo of age was negatively associated with the risk of detecting Giardia spp. in the soil, and the percent moisture content was positively associated with the risk of detecting Giardia spp. Our study showed that these two protozoan exist in dairy farm soil at different rates, and this risk could be modified by manipulating the pH of the soil.
Unlocking the Physiochemical Controls on Organic Carbon Dynamics from the Soil Pore- to Core-Scale
NASA Astrophysics Data System (ADS)
Smith, A. P.; Tfaily, M. M.; Bond-Lamberty, B. P.; Todd-Brown, K. E.; Bailey, V. L.
2015-12-01
The physical organization of soil includes pore networks of varying size and connectivity. These networks control microbial access to soil organic carbon (C) by spatially separating microorganisms and C by both distance and size exclusion. The extent to which this spatially isolated C is vulnerable to microbial transformation under hydrologically dynamic conditions is unknown, and limits our ability to predict the source and sink capacity of soils. We investigated the effects of shifting hydrologic connectivity and soil structure on greenhouse gas C emissions from surface soils collected from the Disney Wilderness Preserve (Florida, USA). We subjected intact soil cores and re-packed homogenized soil cores to simulated groundwater rise or precipitation, monitoring their CO2 and CH4 emissions over 24 hours. Soil pore water was then extracted from each core using different suctions to sample water retained by pore throats of different sizes and then characterized by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Greater respiration rates were observed from homogenized cores compared to intact cores, and from soils wet from below, in which the wetting front is driven by capillary forces, filling fine pores first. This suggests that C located in fine pores may turn over via diffusion processes that lead to the colocation of this C with other resources and microorganisms. Both the complexity and concentration of soluble-C increased with decreasing pore size domains. Pore water extracted from homogenized cores had greater C concentrations than from intact cores, with the greatest concentrations in pore waters sampled from very fine pores, highlighting the importance of soil structure in physically protecting C. These results suggest that the spatial separation of decomposers from C is a key mechanism stabilizing C in these soils. Further research is ongoing to accurately represent this protection mechanism, and the conditions under which it breaks down, in new and improved Earth system models.
Uncertainty in sample estimates and the implicit loss function for soil information.
NASA Astrophysics Data System (ADS)
Lark, Murray
2015-04-01
One significant challenge in the communication of uncertain information is how to enable the sponsors of sampling exercises to make a rational choice of sample size. One way to do this is to compute the value of additional information given the loss function for errors. The loss function expresses the costs that result from decisions made using erroneous information. In certain circumstances, such as remediation of contaminated land prior to development, loss functions can be computed and used to guide rational decision making on the amount of resource to spend on sampling to collect soil information. In many circumstances the loss function cannot be obtained prior to decision making. This may be the case when multiple decisions may be based on the soil information and the costs of errors are hard to predict. The implicit loss function is proposed as a tool to aid decision making in these circumstances. Conditional on a logistical model which expresses costs of soil sampling as a function of effort, and statistical information from which the error of estimates can be modelled as a function of effort, the implicit loss function is the loss function which makes a particular decision on effort rational. In this presentation the loss function is defined and computed for a number of arbitrary decisions on sampling effort for a hypothetical soil monitoring problem. This is based on a logistical model of sampling cost parameterized from a recent geochemical survey of soil in Donegal, Ireland and on statistical parameters estimated with the aid of a process model for change in soil organic carbon. It is shown how the implicit loss function might provide a basis for reflection on a particular choice of sample size by comparing it with the values attributed to soil properties and functions. Scope for further research to develop and apply the implicit loss function to help decision making by policy makers and regulators is then discussed.
Riemer, Michael F.; Collins, Brian D.; Badger, Thomas C.; Toth, Csilla; Yu, Yat Chun
2015-01-01
This report provides a description of the methods used to obtain and test the intact soil stratigraphy behind the headscarp of the March 22 landslide. Detailed geotechnical index testing results are presented for 24 soil samples representing the stratigraphy at 19 different depths along a 650 ft (198 m) soil profile. The results include (1) the soil's in situ water content and unit weight (where applicable); (2) specific gravity of soil solids; and (3) each sample's grain-size distribution, critical limits for fine-grain water content states (that is, the Atterberg limits), and official Unified Soil Classification System (USCS) designation. In addition, preliminary stratigraphy and geotechnical relations within and between soil units are presented.
29 CFR Appendix A to Subpart P of... - Soil Classification
Code of Federal Regulations, 2010 CFR
2010-07-01
... the particles are held together by a chemical agent, such as calcium carbonate, such that a hand-size sample cannot be crushed into powder or individual soil particles by finger pressure. Cohesive soil means... quantitative and qualitative information as may be necessary to identify properly the properties, factors, and...
NASA Astrophysics Data System (ADS)
Schaumann, G. E.; Jaeger, F.; Bayer, J. V.
2009-04-01
NMR relaxometry is a sensitive, informative and promising method to study pore size distribution in soils as well as many kinds of soil physicochemical processes, among which are wetting, swelling or changes in the macromolecular status. Further, it is a very helpful method to study interactions between molecules in soil organic matter and it can serve to study the state of binding of water or organic chemicals to soil organic matter. The method of Relaxometry excite the nuclei of interest and their relaxation kinetics are observed. The relaxation time is the time constant of this first order relaxation process. Most applications of relaxometry concentrate on protons, addressing water molecules or H-containing organic molecules. In this context, 1H-NMR relaxometry may be used as an analysis method to determine water uptake characteristics of soils, thus gaining information about water distribution and mobility as well as pore size distribution in wet and moist samples. Additionally, it can also serve as a tool to study mobility of molecular segments in biopolymers. Principally, relaxometry is not restricted to protons. In soil science, relaxometry is also applied using deuterium, xenon and other nuclei to study pore size distribution and interactions. The relaxation time depends on numerous parameters like surface relaxivity, diffusion and interactions between nuclei as well as between nuclei and the environment. One- and two-dimensional methods address the relation between relaxation time and diffusion coefficients and can give information about the interconnectivity of pores. More specific information can be gained using field cycling techniques. Although proton NMR relaxometry is a very promising method in soil science, it has been applied scarcely up to now. It was used to assess changes in molecular rigidity of humic substances. A very recent study shows the potential of NMR relaxometry to assess the pore size distribution of soils in a fast and non-destructive way. Recent studies investigated wetting and swelling processes in soil samples, as well as the formation of microbial biofilms in soil the formation. This contribution gives an overview of current applications and the potential of NMR relaxometry in soil science with special emphasis on proton NMR relaxometry. References Bird, N.R.A., Preston, A.R., Randall, E.W., Whalley, W.R. & Whitmore, A.P. 2005. Measurement of the size distribution of water-filled pores at different matric potentials by stray field nuclear magnetic resonance. 56, 135-143. Bryar, T.R. & Knight, R.J. 2002. Sensitivity of Nuclear Magnetic Resonance Relaxation Measurements to Changing Soil Redox Conditions. Geophysical Research Letters, 29, 50/1-50/4. Conte, P., Spaccini, R. & Piccolo, A. 2006. Advanced CPMAS-13C NMR techniques for molecular characterization of size-separated fractions from a soil humic acid. Analytical and Bioanalytical Chemistry, 386, 382-390. Gunasekara, A.S., Simpson, M.I. & Xing, B. 2003. Identification and characterization of sorption domains in soil organic matter using strucuturally modified humic acids. Environmental Science & Technology, 37, 852-858. Jaeger, F., Grohmann, E., Boeckelmann, U. & Schaumann, G.E. 2006. Microbial effects on 1H NMR Relaxometry in soil samples and glass bead reactors. In Humic Substances - Linking Structure to Functions. Proceedings of the 13th Meeting of the International Humic Substances Societyin Karlsruhe eds. F.H. Frimmel & G. Abbt-Braun), pp. 929-932. Universität Karlsruhe, Karlsruhe. Hurraß, J. & Schaumann, G.E. 2007. Hydration kinetics of wettable and water repellent soil samples. Soil Science Society of America Journal, 71, 280-288. Jaeger, F., Grohmann, E. & Schaumann, G.E. 2006. 1H NMR Relaxometry in natural humous soil samples: Insights in microbial effects on relaxation time distributions. Plant and Soil, 280, 209-222. Jaeger, F., Rudolph, N., Lang, F. & Schaumann, G.E. 2008. Effects of soil solution's constituents on proton NMR relaxometry of soil samples. Soil Science Society of America Journal, 72, 1694-1707. Jaeger, F., Bowe, S. & Schaumann, G.E. in preparation. Evaluation of 1H NMR relaxometry for the assessment of pore size distribution in soil samples. European Journal of Soil Science. Jähnert, S., Vaca Chavez, F., Schaumann, G.E., Schreiber, A., Schönhoff, M. & Findenegg, G.H. 2008. Melting and freezing of water in cylindrical silica nanopores. Physical Chemistry Chemical Physics, 39, 6039-6051. Schaumann, G.E., Hurraß, J., Müller, M. & Rotard, W. 2004. Swelling of organic matter in soil and peat samples: insights from proton relaxation, water absorption and PAH extraction. In Humic Substances: Nature's Most Versatile Materials eds. E.A. Ghabbour & G. Davies), pp. 101-117. Taylor and Francis, Inc., New York. Schaumann, G.E., Hobley, E., Hurraß, J. & Rotard, W. 2005. H-NMR Relaxometry to monitor wetting and swelling kinetics in high organic matter soils. Plant and Soil, 275, 1-20. Schaumann, G.E. & Bertmer, M. 2008. Do water molecules bridge soil organic matter molecule segments? European Journal of Soil Science, 59, 423-429. Todoruk, T.R., Langford, C.H. & Kantzas, A. 2003. Pore-Scale Redistribution of Water during Wetting of Air-Dried Soils As Studied by Low-Field NMR Relaxometry. Environmental Science and Technology, 37, 2707-2713. Todoruk, T.R., Litvina, M., Kantzas, A. & Langford, C.H. 2003. Low-Field NMR Relaxometry: A Study of Interactions of Water with Water-Repellant Soils. Environmental Science and Technology, 37, 2878-2882. Van As, H. & van Dusschoten, D. 1997. NMR methods for imaging of transport processes in micro-porous systems. Geoderma, 80, 389-403. Van As, H. & Lens, P. 2001. Use of 1H NMR to study transport processes in porous biosystems. Journal of Industrial Microbiology & Biotechnology, 26, 43-52.
Soil Sampling Techniques For Alabama Grain Fields
NASA Technical Reports Server (NTRS)
Thompson, A. N.; Shaw, J. N.; Mask, P. L.; Touchton, J. T.; Rickman, D.
2003-01-01
Characterizing the spatial variability of nutrients facilitates precision soil sampling. Questions exist regarding the best technique for directed soil sampling based on a priori knowledge of soil and crop patterns. The objective of this study was to evaluate zone delineation techniques for Alabama grain fields to determine which method best minimized the soil test variability. Site one (25.8 ha) and site three (20.0 ha) were located in the Tennessee Valley region, and site two (24.2 ha) was located in the Coastal Plain region of Alabama. Tennessee Valley soils ranged from well drained Rhodic and Typic Paleudults to somewhat poorly drained Aquic Paleudults and Fluventic Dystrudepts. Coastal Plain s o i l s ranged from coarse-loamy Rhodic Kandiudults to loamy Arenic Kandiudults. Soils were sampled by grid soil sampling methods (grid sizes of 0.40 ha and 1 ha) consisting of: 1) twenty composited cores collected randomly throughout each grid (grid-cell sampling) and, 2) six composited cores collected randomly from a -3x3 m area at the center of each grid (grid-point sampling). Zones were established from 1) an Order 1 Soil Survey, 2) corn (Zea mays L.) yield maps, and 3) airborne remote sensing images. All soil properties were moderately to strongly spatially dependent as per semivariogram analyses. Differences in grid-point and grid-cell soil test values suggested grid-point sampling does not accurately represent grid values. Zones created by soil survey, yield data, and remote sensing images displayed lower coefficient of variations (8CV) for soil test values than overall field values, suggesting these techniques group soil test variability. However, few differences were observed between the three zone delineation techniques. Results suggest directed sampling using zone delineation techniques outlined in this paper would result in more efficient soil sampling for these Alabama grain fields.
Distribution of pesticide residues in soil and uncertainty of sampling.
Suszter, Gabriela K; Ambrus, Árpád
2017-08-03
Pesticide residues were determined in about 120 soil cores taken randomly from the top 15 cm layer of two sunflower fields about 30 days after preemergence herbicide treatments. Samples were extracted with acetone-ethyl acetate mixture and the residues were determined with GC-TSD. Residues of dimethenamid, pendimethalin, and prometryn ranged from 0.005 to 2.97 mg/kg. Their relative standard deviations (CV) were between 0.66 and 1.13. The relative frequency distributions of residues in soil cores were very similar to those observed in root and tuber vegetables grown in pesticide treated soils. Based on all available information, a typical CV of 1.00 was estimated for pesticide residues in primary soil samples (soil cores). The corresponding expectable relative uncertainty of sampling is 20% when composite samples of size 25 are taken. To obtain a reliable estimate of the average residues in the top 15 cm layer of soil of a field up to 8 independent replicate random samples should be taken. To obtain better estimate of the actual residue level of the sampled filed would be marginal if larger number of samples were taken.
NASA Astrophysics Data System (ADS)
Fichtner, Thomas; Stefan, Catalin; Goersmeyer, Nora
2015-04-01
Rate and extent of the biological degradation of organic substances during transport through the unsaturated soil zone is decisively influenced by the chemical and physical properties of the pollutants such as water solubility, toxicity and molecular structure. Furthermore microbial degradation processes are also influenced by soil-specific properties. An important parameter is the soil grain size distribution on which the pore volume and the pore size depends. Changes lead to changes in air and water circulation as well as preferred flow paths. Transport capacity of water inclusive nutrients is lower in existing bad-drainable fine pores in soils with small grain size fractions than in well-drainable coarse pores in a soil with bigger grain size fractions. Because fine pores are saturated with water for a longer time than the coarse pores and oxygen diffusion in water is ten thousand times slower than in air, oxygen is replenished much slower in soils with small grain size fractions. As a result life and growth conditions of the microorganisms are negatively affected. This leads to less biological activity, restricted degradation/mineralization of pollutants or altered microbial processes. The aim of conducted laboratory column experiments was to study the correlation between the grain size fractions respectively pore sizes, the oxygen content and the biodegradation rate of infiltrated organic substances. Therefore two columns (active + sterile control) were filled with different grain size fractions (0,063-0,125 mm, 0,2-0,63 mm and 1-2 mm) of soils. The sterile soil was inoculated with a defined amount of a special bacteria culture (sphingobium yanoikuae). A solution with organic substances glucose, oxalic acid, sinaphylic alcohol and nutrients was infiltrated from the top in intervals. The degradation of organic substances was controlled by the measurement of dissolved organic carbon in the in- and outflow of the column. The control of different pore volumes respectively pore sizes in the soil samples occurred by air pycnometer measurement and determination of soil moisture characteristic by evaporation method according to Wind/Schindler. The present study results can be useful to find a correlation between various soil types with different grain size distributions and the suitability of these soils for example for the infiltration of treated wastewater in the context of managed aquifer recharge (MAR) measures.
Multiscale Analysis of Soil Porosity from Hg Injection Curves in Soils from Minas Gerais, Brazil
NASA Astrophysics Data System (ADS)
Vidal Vázquez, E.; Miranda, J. G. V.; Paz-Ferreiro, J.
2012-04-01
The soil pore space is a continuum extremely variable in size, including structures smaller than nanometres and as large as macropores or cracks with millimetres or even centimetres size. Pore size distributions (PSDs) affects important soil functions, such as transmission and storage of water, and root growth. Direct and indirect measurements of PSDs are currently used to characterize soil structure. Mercury injection porosimetry is useful for assessing equivalent pore size diameters in the range from about 0,5 nm to 100 μm. Here, the multifractal formalism was employed to describe Hg injection curves measured in duplicate samples collected on 54 horizons from 19 profiles in Minas Gerais state, Brazil. Ten of the studied profiles were classified as Ferralsols (Latosols, Oxisols). Besides these, other wide different soil groups were sampled, including Nitisol, Acrisol, Alisol, Luvisol, Planosol, Cambisol, Andosol and Leptosol. Clay content varied from 4 to 86% and pore volume in the range from 100 to 0.005 μm was between 5.52 a 53.76 cm3100g-1. All the horizons taken on Ferralsols and Nitisols as well as in Bt argic horizons from Acrisol Alisol, Luvisol and Planosol clearly showed a bimodal pore size distribution. Pore volume in the range from 100 to 0.005 μm and microporosity (0,2-0.005 μm) showed a significant relationship with clay content an Al2O3. All the Hg injection data sets studied soil showed remarkably good scaling trends and could be fitted reasonably well with multifractal models. The capacity dimensions, D0, was not significantly different from the Euclidean dimension. The entropy dimension, D1, varied from 0.590 to 0.946 , whereas the Hölder exponent of order zero, α0was between 1.027 and 1.451, and these two parameters showed a lineal negatives relationship, as expected. The highest D1 values, ranging from 0.913 to 0.980, were obtained for the Leptosol, whereas the lowest D1 values, ranging from 0.641 to 0.766 corresponded to the Nitisol. This results reflect that most of the measure concentrated in a small size domain for the horizons sampled from the Nitisol, whereas for the Leptosol the measure was more evenly distributed. In general, multifractal indices have been found to be useful for assessing differences in pore size distributions of the studied soil types.
The "soil" of Mars (viking 1).
Shorthill, R W; Moore, H J; Scott, R F; Hutton, R E; Liebes, S; Spitzer, C R
1976-10-01
The location of the Viking 1 lander is most ideal for the study of soil properties because it has one footpad in soft material and one on hard material. As each soil sample was acquired, information on soil properties was obtained. Although analysis is still under way, early results on bulk density, particle size, angle of internal friction, cohesion, adhesion, and penetration resistance of the soil of Mars are presented.
Shorthill, R.W.; Moore, H.J.; Scott, R.F.; Hutton, R.E.; Liebes, S.; Spitzer, G.R.
1976-01-01
The location of the Viking 1 lander is most ideal for the study of soil properties because it has one footpad in soft material and one on hard material. As each soil sample was acquired, information on soil properties was obtained. Although analysis is still under way, early results on bulk density, particle size, angle of internal friction, cohesion, adhesion, and penetration resistance of the soil of Mars are presented.
Methodological issues concerning the application of reliable laser particle sizing in soils
NASA Astrophysics Data System (ADS)
de Mascellis, R.; Impagliazzo, A.; Basile, A.; Minieri, L.; Orefice, N.; Terribile, F.
2009-04-01
During the past decade, the evolution of technologies has enabled laser diffraction (LD) to become a much widespread means of particle size distribution (PSD), replacing sedimentation and sieve analysis in many scientific fields mainly due to its advantages of versatility, fast measurement and high reproducibility. Despite such developments of the last decade, the soil scientist community has been quite reluctant to replace the good old sedimentation techniques (ST); possibly because of (i) the large complexity of the soil matrix inducing different types of artefacts (aggregates, deflocculating dynamics, etc.), (ii) the difficulties in relating LD results with results obtained through sedimentation techniques and (iii) the limited size range of most LD equipments. More recently LD granulometry is slowly gaining appreciation in soil science also because of some innovations including an enlarged size dynamic range (0,01-2000 m) and the ability to implement more powerful algorithms (e.g. Mie theory). Furthermore, LD PSD can be successfully used in the application of physically based pedo-transfer functions (i.e., Arya and Paris model) for investigations of soil hydraulic properties, due to the direct determination of PSD in terms of volume percentage rather than in terms of mass percentage, thus eliminating the need to adopt the rough approximation of a single value for soil particle density in the prediction process. Most of the recent LD work performed in soil science deals with the comparison with sedimentation techniques and show the general overestimation of the silt fraction following a general underestimation of the clay fraction; these well known results must be related with the different physical principles behind the two techniques. Despite these efforts, it is indeed surprising that little if any work is devoted to more basic methodological issues related to the high sensitivity of LD to the quantity and the quality of the soil samples. Our work aims to both analyse and to suggest technical solutions to address the following key methodological problems: (i) sample representativeness due to the very small amount of soil sample required by LD (e.g. 0,2 g) as compared to ST (e.g. 40 g for densimetry); (ii) PSD reading variability caused by the large number of instantaneous reading on a very small volume of the solution, (iii) the varying soil mineralogy that in turn produce varying refractive indexes affecting PSD results, (iv) the determination of the mass density of the soil samples to compare results with those obtained from ST. Our results, referring to many different soil types (Vertisols, Regosols, Andosols, Calcisols, Luvisols) show that the listed major technical problems can be successfully addressed by the following set of solutions: (i) adequate subsampling in both solid and liquid phases (including a setup of a dilution system); (ii) preliminary study of the PSD variability to reasonably increase the number of readings per each sample; (iii, iv) preliminary sensitivity analysis of both refractive indexes and mass density in accordance to the specific soil mineralogy.
Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.
2016-01-01
We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2–53 μm) and sand (53–2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg−1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg−1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation. PMID:27251365
NASA Astrophysics Data System (ADS)
Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.
2016-06-01
We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2-53 μm) and sand (53-2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg-1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg-1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation.
NASA Astrophysics Data System (ADS)
Jiménez-Morillo, Nicasio T.; González-Pérez, José A.; González-Vila, Francisco J.; Zavala, Lorena M.; Jordán, Antonio; Jiménez-González, Marco A.
2014-05-01
1. INTRODUCTION It is known that soil water repellency (WR) is induced by organic substances covering the surface of minerals particles and aggregates or present as interstitial substances in the soil matrix. It has also been suggested that the persistence of WR is largely conditioned by specific chemical characteristics of soil organic matter (SOM). Most of these substances are abundant in ecosystems and are released into soils as exudates of roots, organic residues in decomposition, or secretions by fungi and other microorganisms. Soil free lipids correspond to a diverse collection of hydrophobic substances including complex substances as sterols, terpenes, polynuclear hydrocarbons, chlorophylls, fatty acids, waxes, and resins. Some of these organic substances, responsible of soil water repellency may be studied using analytical pyrolisis (de la Rosa et al., 2011; González-Pérez et al., 2011). This research aims to study the relation between soil WR and SOM quantity and quality, assessing the impact of organic fractions and its distribution in soil particles of different size on soil WR from sandy soils. 2. METHODS Soil samples were collected under selected species growing in sandy soils from the Doñana National Park (SW Spain), cork oak (Quercus suber, QS), eagle fern (Pteridium aquilinum, PA), pine (Pinus pinea, PP) and rockrose (Halimium halimifolium, HH). Soil WR and physical chemical characteristics including SOM content were assessed in fine earth soil samples (< 2mm) and in soil sieve fractions (1-2, 0.25-1, 0.05-0.25 and <0.05 mm). The composition of common hydrophobic substances present in SOM (n-alkane/alkene pairs and n-alkanoic acids) was assessed by analytical pyrolysis. Analytical pyrolysis techniques do not need a pre-treatment, is fast and easily reproducible 3. RESULTS The severity of soil WR (determined using the WDPT test) may be ordered according to the sequence QS>PA>PP>HH. A positive correlation was observed between WR from each sieve size fraction and SOM content. The most severe WR was detected in QS for all sieve size fractions, followed by the finer fractions form PA, PP and HH samples, which that also shows the highest SOM content, ranging between 20.9% (PP) and 46.9% (QS). Coarser soil fractions (1-2 mm) under PA, PP and HH showed the highest long-chain-even C numbered fatty acids (LCE-FA) in the order PP>PA>HH. No fatty acids were detected neither in sieve fractions 0.25-1, 0.05-0.25 and <0.05 mm from HH samples nor in PA and PP (0.25-1 mm samples). A significant relation was observed between SOM content and severity of soil WR in QS samples and finer fractions of other samples, which is in agreement with previous findings (GOrdillo-Rivero et al., 2013; Jordán et al., 2011). In contrast, 1-2 mm sieve fractions from PP, PA and HH soils showed high severity of soil WR and relatively low SOM contents. This could be explained by a low degree of evolution of organic residues with higher alkane/alkene CPI values and to the presence of a higher diversity of fatty acid structures. These results suggest that soil WR appears as a consequence of lipid compounds in soil. Some similarities were found in the organic molecular assemblages in PA and PP samples, suggesting a fingerprint of pine residues in PA samples, resulting from ancient pine forests. This finding may be also explained by the existence of exogenous organic inputs associated to fine soil particles from border areas of pine forests. REFERENCES de la Rosa, J.M., González-Pérez, J.A., González-Vila, F.J., Knicker, H., Araújo, M.F. 2011. Characterization of wildfire effects on soil organic matter using analytical pyrolysis. Geoderma 191, 24-30. González-Pérez, J.A., González-Vila, F.J., Arias, M.E., Rodríguez, J., de la Rosa, J.M., Marañón, T., Clemente, L. 2011. Geochemical and ecological significance of soil lipids under Rhododendron ponticum stands. Environmental Chemistry Letters 9, 453-464. Gordillo-Rivero, A.J., García-Moreno, J., Jordán, A., Zavala, L.M. 2013. Monitoring fire impacts in soil water repellency and structure stability during 6 years. Flamma 4, 71-75. Jordán, A., Zavala, L.M., Mataix-Solera, J., Nava, A.L., Alanís, N. 2011. Effect of fire severity on water repellency and aggregate stability on Mexican volcanic soils. Catena 84, 136-147.
Misrepresentation of hydro-erosional processes in rainfall simulations using disturbed soil samples
NASA Astrophysics Data System (ADS)
Thomaz, Edivaldo L.; Pereira, Adalberto A.
2017-06-01
Interrill erosion is a primary soil erosion process which consists of soil detachment by raindrop impact and particle transport by shallow flow. Interill erosion affects other soil erosion sub-processes, e.g., water infiltration, sealing, crusting, and rill initiation. Interrill erosion has been widely studied in laboratories, and the use of a sieved soil, i.e., disturbed soil, has become a standard method in laboratory experiments. The aims of our study are to evaluate the hydro-erosional response of undisturbed and disturbed soils in a laboratory experiment, and to quantify the extent to which hydraulic variables change during a rainstorm. We used a splash pan of 0.3 m width, 0.45 m length, and 0.1 m depth. A rainfall simulation of 58 mm h- 1 lasting for 30 min was conducted on seven replicates of undisturbed and disturbed soils. During the experiment, several hydro-physical parameters were measured, including splashed sediment, mean particle size, runoff, water infiltration, and soil moisture. We conclude that use of disturbed soil samples results in overestimation of interrill processes. Of the nine assessed parameters, four displayed greater responses in the undisturbed soil: infiltration, topsoil shear strength, mean particle size of eroded particles, and soil moisture. In the disturbed soil, five assessed parameters displayed greater responses: wash sediment, final runoff coefficient, runoff, splash, and sediment yield. Therefore, contextual soil properties are most suitable for understanding soil erosion, as well as for defining soil erodibility.
Schematic of Sample Analysis at Mars SAM Instrument
2011-01-18
This schematic illustration for NASA Mars Science Laboratory Sample Analysis at Mars SAM instrument shows major components of the microwave-oven-size instrument, which will examine samples of Martian rocks, soil and atmosphere.
Partitioning of habitable pore space in earthworm burrows.
Gorres, Josef H; Amador, Jose A
2010-03-01
Earthworms affect macro-pore structure of soils. However, some studies suggest that earthworm burrow walls and casts themselves differ greatly in structure from surrounding soils, potentially creating habitat for microbivorours nematodes which accelerate the decomposition and C and N mineralization. In this study aggregates were sampled from the burrow walls of the anecic earthworm Lumbricus terrestris and bulk soil (not altered by earthworms) from mesocosm incubated in the lab for 0, 1, 3, 5 and 16 weeks. Pore volumes and pore sizes were measured in triplicate with Mercury Intrusion Porosimetry (MIP). This method is well suited to establish pore size structure in the context of habitat, because it measures the stepwise intrusion of mercury from the outside of the aggregate into ever smaller pores. The progress of mercury into the aggregate interior thus resembles potential paths of a nematode into accessible habitable pore spaces residing in an aggregate. Total specific pore volume, V(s), varied between 0.13 and 0.18 mL/g and increased from 3 to 16 weeks in both burrow and bulk soil. Differences between total V(s) of bulk and burrow samples were not significant on any sampling date. However, differences were significant for pore size fractions at the scale of nematode body diameter.
Partitioning of habitable pore space in earthworm burrows
Amador, Jose A.
2010-01-01
Earthworms affect macro-pore structure of soils. However, some studies suggest that earthworm burrow walls and casts themselves differ greatly in structure from surrounding soils, potentially creating habitat for microbivorours nematodes which accelerate the decomposition and C and N mineralization. In this study aggregates were sampled from the burrow walls of the anecic earthworm Lumbricus terrestris and bulk soil (not altered by earthworms) from mesocosm incubated in the lab for 0, 1, 3, 5 and 16 weeks. Pore volumes and pore sizes were measured in triplicate with Mercury Intrusion Porosimetry (MIP). This method is well suited to establish pore size structure in the context of habitat, because it measures the stepwise intrusion of mercury from the outside of the aggregate into ever smaller pores. The progress of mercury into the aggregate interior thus resembles potential paths of a nematode into accessible habitable pore spaces residing in an aggregate. Total specific pore volume, Vs, varied between 0.13 and 0.18 mL/g and increased from 3 to 16 weeks in both burrow and bulk soil. Differences between total Vs of bulk and burrow samples were not significant on any sampling date. However, differences were significant for pore size fractions at the scale of nematode body diameter. PMID:22736839
Organic Components and Elemental Carbon in Soils and Ambient Particles near Phoenix, AZ
NASA Astrophysics Data System (ADS)
Fraser, M. P.; Jia, Y.; Clements, A.
2008-12-01
In the desert southwest, fugitive dust emissions contribute significantly to ambient aerosol concentrations. Wind erosion from the arid land is a primary contributor to ambient particulate matter (PM) concentrations but, in regions including Central Arizona, desert lands have been converted for agriculture use and thus agriculture processes constitute another contributor. As the metropolitan Phoenix region expands into these agricultural lands, urban sources and construction also contributes to the ambient PM load. In an effort to identify and access relative contribution of these and other major PM sources in the region, a series of ambient PM samples and soil samples were collected near Higley, AZ, a suburb of Phoenix which has seen rapid urbanization onto agricultural lands between January and May 2008. The soil samples collected were resuspended and samples of resuspended dust were collected to represent particles smaller than 2.5 microns and 10 microns in aerodynamic diameter (PM2.5 and PM10 respectively). The size segregated soil and ambient PM samples were analyzed for bulk mass, elemental and organic carbon content, and a number of specific compounds including ions, metals, alkanes, organic acids, polycyclic aromatic hydrocarbons, and saccharides. The saccharide contribution to soil organic carbon has been studied to elucidate key factors in the soil carbon balance and markers have been developed for tracing fungal metabolites, plant growth and budding and organic matter decay. Using organic markers, the contribution of various sources to PM10 and PM2.5 levels have been determined by positive matrix factorization (PMF) of the ambient aerosol marker concentrations quantified from PM samples. Subsequently, samples of local soil from native and agricultural fields and local roadways wers size- segregated and analyzed in an effort to create a source profile for the dust in the area. A chemical mass balance model has been used to compare with the PMF results where sampled and resuspended agricultural soil, native soil and road dusts are used to characterize direct emissions of these sources to ambient fine and coarse particulate matter.
Background: Soil/dust ingestion rates are important variables in assessing children’s health risks in contaminated environments. Current estimates are based largely on soil tracer methodology, which is limited by analytical uncertainty, small sample size, and short study du...
The purpose of this SOP is to describe the procedures to be followed in splitting and determining the grain size characteristics, electrical conductivity, and pH of the "Composite Soil" and "Foundation Soil" samples. This procedure applies to the general characterization of sedi...
Apollo 16 soils - Grain size analyses and petrography
NASA Technical Reports Server (NTRS)
Heiken, G. H.; Mckay, D. S.; Fruland, R. M.
1973-01-01
Soils from South Ray Crater, North Ray Crater, and the interray area of Station 10 have a similar provenance, containing breccia fragments of low to medium metamorphic grade and low light/dark lithic fragment ratios; these appear to be characteristic of the Cayley Formation. The primary difference between soils possibly derived from North Ray and South Ray craters is in the agglutinate content. A soil from Stone Mountain (Station 4) is characterized by breccia fragments of medium to high metamorphic grade and a high light/dark lithic fragment ratio; this soil may be derived from the Descartes Formation. Differences between the selenomorphic units, the Descartes and Cayley formations, may be lithologic as well as structural. The mean grain size varies from 84 to 280 microns, and all of the samples are poorly to very poorly sorted. There appears to be a relation between the sorting, grain size, and agglutinate content, with the finer-grained, better sorted soils containing more than 30% agglutinates. 'Shadowed' soils, collected close to large boulders, are similar in all respects to the 'reference' soils collected at least 5 m from the boulders.
Pneumatic System for Concentration of Micrometer-Size Lunar Soil
NASA Technical Reports Server (NTRS)
McKay, David; Cooper, Bonnie
2012-01-01
A report describes a size-sorting method to separate and concentrate micrometer- size dust from a broad size range of particles without using sieves, fluids, or other processes that may modify the composition or the surface properties of the dust. The system consists of four processing units connected in series by tubing. Samples of dry particulates such as lunar soil are introduced into the first unit, a fluidized bed. The flow of introduced nitrogen fluidizes the particulates and preferentially moves the finer grain sizes on to the next unit, a flat plate impactor, followed by a cyclone separator, followed by a Nuclepore polycarbonate filter to collect the dust. By varying the gas flow rate and the sizes of various orifices in the system, the size of the final and intermediate particles can be varied to provide the desired products. The dust can be collected from the filter. In addition, electron microscope grids can be placed on the Nuclepore filter for direct sampling followed by electron microscope characterization of the dust without further handling.
Soil Particle Size Analysis by Laser Diffractometry: Result Comparison with Pipette Method
NASA Astrophysics Data System (ADS)
Šinkovičová, Miroslava; Igaz, Dušan; Kondrlová, Elena; Jarošová, Miriam
2017-10-01
Soil texture as the basic soil physical property provides a basic information on the soil grain size distribution as well as grain size fraction representation. Currently, there are several methods of particle dimension measurement available that are based on different physical principles. Pipette method based on the different sedimentation velocity of particles with different diameter is considered to be one of the standard methods of individual grain size fraction distribution determination. Following the technical advancement, optical methods such as laser diffraction can be also used nowadays for grain size distribution determination in the soil. According to the literature review of domestic as well as international sources related to this topic, it is obvious that the results obtained by laser diffractometry do not correspond with the results obtained by pipette method. The main aim of this paper was to analyse 132 samples of medium fine soil, taken from the Nitra River catchment in Slovakia, from depths of 15-20 cm and 40-45 cm, respectively, using laser analysers: ANALYSETTE 22 MicroTec plus (Fritsch GmbH) and Mastersizer 2000 (Malvern Instruments Ltd). The results obtained by laser diffractometry were compared with pipette method and the regression relationships using linear, exponential, power and polynomial trend were derived. Regressions with the three highest regression coefficients (R2) were further investigated. The fit with the highest tightness was observed for the polynomial regression. In view of the results obtained, we recommend using the estimate of the representation of the clay fraction (<0.01 mm) polynomial regression, to achieve a highest confidence value R2 at the depths of 15-20 cm 0.72 (Analysette 22 MicroTec plus) and 0.95 (Mastersizer 2000), from a depth of 40-45 cm 0.90 (Analysette 22 MicroTec plus) and 0.96 (Mastersizer 2000). Since the percentage representation of clayey particles (2nd fraction according to the methodology of Complex Soil Survey done in Slovakia) in soil is the determinant for soil type specification, we recommend using the derived relationships in soil science when the soil texture analysis is done according to laser diffractometry. The advantages of laser diffraction method comprise the short analysis time, usage of small sample amount, application for the various grain size fraction and soil type classification systems, and a wide range of determined fractions. Therefore, it is necessary to focus on this issue further to address the needs of soil science research and attempt to replace the standard pipette method with more progressive laser diffraction method.
NASA Astrophysics Data System (ADS)
Pérez García-Pando, C.; Miller, R. L.; Perlwitz, J. P.; Kok, J. F.; Scanza, R.; Mahowald, N. M.
2014-12-01
Mineral dust created by wind erosion of soil particles is the dominant aerosol by mass in the atmosphere. It exerts significant effects on radiative fluxes, clouds, ocean biogeochemistry, and human health. Models that predict the lifecycle of mineral dust aerosols generally assume a globally uniform mineral composition. However, this simplification limits our understanding of the role of dust in the Earth system, since the effects of dust strongly depend on the particles' physical and chemical properties, which vary with their mineral composition. Hence, not only a detailed understanding of the processes determining the dust emission flux is needed, but also information about its size dependent mineral composition. Determining the mineral composition of dust aerosols is complicated. The largest uncertainty derives from the current atlases of soil mineral composition. These atlases provide global estimates of soil mineral fractions, but they are based upon massive extrapolation of a limited number of soil samples assuming that mineral composition is related to soil type. This disregards the potentially large variability of soil properties within each defined soil type. In addition, the analysis of these soil samples is based on wet sieving, a technique that breaks the aggregates found in the undisturbed parent soil. During wind erosion, these aggregates are subject to partial fragmentation, which generates differences on the size distribution and composition between the undisturbed parent soil and the emitted dust aerosols. We review recent progress on the representation of the mineral and chemical composition of dust in climate models. We discuss extensions of brittle fragmentation theory to prescribe the emitted size-resolved dust composition, and we identify key processes and uncertainties based upon model simulations and an unprecedented compilation of observations.
Dust Composition in Climate Models: Current Status and Prospects
NASA Astrophysics Data System (ADS)
Pérez García-Pando, C.; Miller, R. L.; Perlwitz, J. P.; Kok, J. F.; Scanza, R.; Mahowald, N. M.
2015-12-01
Mineral dust created by wind erosion of soil particles is the dominant aerosol by mass in the atmosphere. It exerts significant effects on radiative fluxes, clouds, ocean biogeochemistry, and human health. Models that predict the lifecycle of mineral dust aerosols generally assume a globally uniform mineral composition. However, this simplification limits our understanding of the role of dust in the Earth system, since the effects of dust strongly depend on the particles' physical and chemical properties, which vary with their mineral composition. Hence, not only a detailed understanding of the processes determining the dust emission flux is needed, but also information about its size dependent mineral composition. Determining the mineral composition of dust aerosols is complicated. The largest uncertainty derives from the current atlases of soil mineral composition. These atlases provide global estimates of soil mineral fractions, but they are based upon massive extrapolation of a limited number of soil samples assuming that mineral composition is related to soil type. This disregards the potentially large variability of soil properties within each defined soil type. In addition, the analysis of these soil samples is based on wet sieving, a technique that breaks the aggregates found in the undisturbed parent soil. During wind erosion, these aggregates are subject to partial fragmentation, which generates differences on the size distribution and composition between the undisturbed parent soil and the emitted dust aerosols. We review recent progress on the representation of the mineral and chemical composition of dust in climate models. We discuss extensions of brittle fragmentation theory to prescribe the emitted size-resolved dust composition, and we identify key processes and uncertainties based upon model simulations and an unprecedented compilation of observations.
The effect of Cs-137 short-range spatial variability on soil after the Chernobyl disaster
NASA Astrophysics Data System (ADS)
Martynenko, Vladimir; Vakulovsky, Sergey; Linnik, Vitaly
2014-05-01
After the Chernobyl accident of 1986, large areas of Russia were contaminated by 137Cs. Post-depositional redistribution of 137Cs fallout across the land surface resulting from mechanical, physical, chemical, and biological processes operating in the soil system and the grain size selectivity associated with soil erosion and sediment transport processes. Therefore of uppermost importance are data on evaluating 137Cs variability at short distances, obtained at the early period after the accident. Measurements of 137Cs deposit at the territory of Russia exposed to radioactive contamination were mainly conducted with the help of air-gamma survey, and were verified by soil sampling on test plots with size 10x10 m with control soil sampling using "envelope" method of fivefold soil sampling (1 sampling at the centre and 4 along the edges of the plot under study). Presented here are evaluation data of 137Cs contamination, obtained in the Bryansk, Yaroslav and Rostov regions in 1991. Test plots were selected at the distance of 50-100 m away from a road on matted areas with undisturbed soil structure. Test routes of sampling were made perpendicularly to directions crossing basic traces of radioactive contamination. Sampling measurements were carried out at Canberra and Ortec gamma spectrometers. Each of the 5 samples of the "envelope" was measured separately, soil mixing was not applied. 137Cs value for the Bryansk Region varied from 2,6 kBq/m2 to 2294 kBq/m2, at the territories of the Yaroslav and Rostov regions 137Cs value varied from 0,44 kBq/m2 to 5,1 kBq/m2 and 0,56 kBq/m2 to 22,2 kBq/m2, respectively. Statistical analysis of 137Cs deposit at different plots is a solid argumentation in favour of nonuniform distribution in various landscapes and at a different distance from the Chernobyl NPP. Such nonuniformity of 137Cs soil contamination in the limits of 10 m of the plot is most likely to be related to initial aerosol contamination nonuniformity at the moment of deposition.
A Model of Thermal Conductivity for Planetary Soils: 1. Theory for Unconsolidated Soils
NASA Technical Reports Server (NTRS)
Piqueux, S.; Christensen, P. R.
2009-01-01
We present a model of heat conduction for mono-sized spherical particulate media under stagnant gases based on the kinetic theory of gases, numerical modeling of Fourier s law of heat conduction, theoretical constraints on the gas thermal conductivity at various Knudsen regimes, and laboratory measurements. Incorporating the effect of the temperature allows for the derivation of the pore-filling gas conductivity and bulk thermal conductivity of samples using additional parameters (pressure, gas composition, grain size, and porosity). The radiative and solid-to-solid conductivities are also accounted for. Our thermal model reproduces the well-established bulk thermal conductivity dependency of a sample with the grain size and pressure and also confirms laboratory measurements finding that higher porosities generally lead to lower conductivities. It predicts the existence of the plateau conductivity at high pressure, where the bulk conductivity does not depend on the grain size. The good agreement between the model predictions and published laboratory measurements under a variety of pressures, temperatures, gas compositions, and grain sizes provides additional confidence in our results. On Venus, Earth, and Titan, the pressure and temperature combinations are too high to observe a soil thermal conductivity dependency on the grain size, but each planet has a unique thermal inertia due to their different surface temperatures. On Mars, the temperature and pressure combination is ideal to observe the soil thermal conductivity dependency on the average grain size. Thermal conductivity models that do not take the temperature and the pore-filling gas composition into account may yield significant errors.
Manies, Kristen L.; Harden, Jennifer W.; Silva, Steven R.; Briggs, Paul H.; Schmid, Brian M.
2004-01-01
The U.S. Geological Survey project Fate of Carbon in Alaskan Landscapes (FOCAL) is studying the effect of fire and soil drainage on soil carbon storage in the boreal forest. This project has selected several sites to study within central Alaska of varying ages (time since fire) and soil drainage types. This report describes the location of these sampling sites, as well as the procedures used to describe, sample, and analyze the soils. This report also contains data tables with this information, including, but not limited to field descriptions, bulk density, particle size distribution, moisture content, carbon (C) concentration, nitrogen (N) concentration, isotopic data for C, and major, minor and trace elemental concentration.
Tamburini, Elena; Vincenzi, Fabio; Costa, Stefania; Mantovi, Paolo; Pedrini, Paola; Castaldelli, Giuseppe
2017-10-17
Near-Infrared Spectroscopy is a cost-effective and environmentally friendly technique that could represent an alternative to conventional soil analysis methods, including total organic carbon (TOC). Soil fertility and quality are usually measured by traditional methods that involve the use of hazardous and strong chemicals. The effects of physical soil characteristics, such as moisture content and particle size, on spectral signals could be of great interest in order to understand and optimize prediction capability and set up a robust and reliable calibration model, with the future perspective of being applied in the field. Spectra of 46 soil samples were collected. Soil samples were divided into three data sets: unprocessed, only dried and dried, ground and sieved, in order to evaluate the effects of moisture and particle size on spectral signals. Both separate and combined normalization methods including standard normal variate (SNV), multiplicative scatter correction (MSC) and normalization by closure (NCL), as well as smoothing using first and second derivatives (DV1 and DV2), were applied to a total of seven cases. Pretreatments for model optimization were designed and compared for each data set. The best combination of pretreatments was achieved by applying SNV and DV2 on partial least squares (PLS) modelling. There were no significant differences between the predictions using the three different data sets ( p < 0.05). Finally, a unique database including all three data sets was built to include all the sources of sample variability that were tested and used for final prediction. External validation of TOC was carried out on 16 unknown soil samples to evaluate the predictive ability of the final combined calibration model. Hence, we demonstrate that sample preprocessing has minor influence on the quality of near infrared spectroscopy (NIR) predictions, laying the ground for a direct and fast in situ application of the method. Data can be acquired outside the laboratory since the method is simple and does not need more than a simple band ratio of the spectra.
Assessing the Potential of Using Biochar as a Soil Conditioner
NASA Astrophysics Data System (ADS)
Glazunova, D. M.; Kuryntseva, P. A.; Selivanovskaya, S. Y.; Galitskaya, P. Y.
2018-01-01
Biochar is a product of pyrolysis of biomass such as plant tissues, manures, sewage sludge, organic fraction of municipal solid wastes etc. Nowadays, biochar is being discussed as an alternative fertilizer that improves the air and water balance of the soil and provides soil microbiota with slow releasing biogenic elements. Many factors such as initial substrate properties, pyrolysis temperature and regime may influence biochar characteristics. In this study, characteristics of the two biochars prepared from chicken manure (ChM) and sewage sludge (SS) at 550 °C were analyzed in order to reveal their agricultural potential. It was found, that the ChM biochar had a pH value of 5.80±0.21, which was 1.6 lower than the pH of the SS sample. The electrical conductivity of the ChM sample was 6 times higher than that of the SS sample, being 6.42±0.30 mS cm-1 and 1.02±0.10 mS·cm-1, respectively. The cation exchange capacity was estimated to be 7.6±0.26 and 45±0.14 cmol·kg-1 in the ChM and SS samples, respectively. In the ChM sample total organic carbon content was 24.93±3.2%, which is nearly twice as large as that in the SS sample (12.36±4.1%), whereas total nitrogen content was estimated to be 0.33±0.03% and 0.10±0.01% for ChM and SS samples, respectively. Using scanning electronic microscopy and laser particle size distribution analysis, it was shown that the SS sample was more homogeneous in its structure and consisted of particles having a lower size of 1 to 200μm with particles of 10 to 100μm being the most frequent, while the ChM sample was nonhomogeneous and its particle size varied between 2 and 2000 μm. To observe the influence on plants, 1% of biochar was added to soil, and wheat seeds were planted. The germination index estimated for soil treated by SS biochar was estimated to be 97%, while that of soil treated by ChM biochar was lower at about 78%.
Carkovic, Athena B; Pastén, Pablo A; Bonilla, Carlos A
2015-04-15
Water erosion is a leading cause of soil degradation and a major nonpoint source pollution problem. Many efforts have been undertaken to estimate the amount and size distribution of the sediment leaving the field. Multi-size class water erosion models subdivide eroded soil into different sizes and estimate the aggregate's composition based on empirical equations derived from agricultural soils. The objective of this study was to evaluate these equations on soil samples collected from natural landscapes (uncultivated) and fire-affected soils. Chemical, physical, and soil fractions and aggregate composition analyses were performed on samples collected in the Chilean Patagonia and later compared with the equations' estimates. The results showed that the empirical equations were not suitable for predicting the sediment fractions. Fine particles, including primary clay, primary silt, and small aggregates (<53 μm) were over-estimated, and large aggregates (>53 μm) and primary sand were under-estimated. The uncultivated and fire-affected soils showed a reduced fraction of fine particles in the sediment, as clay and silt were mostly in the form of large aggregates. Thus, a new set of equations was developed for these soils, where small aggregates were defined as particles with sizes between 53 μm and 250 μm and large aggregates as particles>250 μm. With r(2) values between 0.47 and 0.98, the new equations provided better estimates for primary sand and large aggregates. The aggregate's composition was also well predicted, especially the silt and clay fractions in the large aggregates from uncultivated soils (r(2)=0.63 and 0.83, respectively) and the fractions of silt in the small aggregates (r(2)=0.84) and clay in the large aggregates (r(2)=0.78) from fire-affected soils. Overall, these new equations proved to be better predictors for the sediment and aggregate's composition in uncultivated and fire-affected soils, and they reduce the error when estimating soil loss in natural landscapes. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Strozyk, Joanna
2017-12-01
The paper presents results of laboratory shear strength test conducted on fine-grained soil samples with different grain size distribution and with different geological age and stress history. The Triaxial Isotopic Consolidation Undrained Tests (TXCIU) were performed under different consolidation stress in normal and overconsolidadion stress state on the samples with natural structure. Soil samples were selected from soil series of different age and geological origins: overconsolidated sensu stricto Miopliocene silty clay (siCl) and quasi overconsolidated Pleistocene clayey silt (clSi). Paper pointed out that overconsolidated sensu stricto and quasi overconsolidated fine-grained soil in same stress and environmental condition could show almost similar behaviour, and in other condition could behave significantly different. The correct evaluation of geotechnical parameters, the possibility of predicting their time-correct ability is only possible with appropriately recognized geological past and past processes that accompanied the soil formation.
The Influences of Soil Characteristics on Nest-Site Selection in Painted Turtles (Chrysemys picta)
NASA Astrophysics Data System (ADS)
Page, R.
2017-12-01
A variety of animals dig nests and lay their eggs in soil, leaving them to incubate and hatch without assistance from the parents. Nesting habitat is important for these organisms many of which exhibit temperature dependent sex determination (TSD) whereby the incubation temperature determines the sex of each hatchling. However, suitable nesting habitat may be limited due to anthropogenic activities and global temperature increases. Soil thermal properties are critical to these organisms and are positively correlated with water retention and soil carbon; carbon-rich soils result in higher incubation temperatures. We investigated nest-site selection in painted turtles (Chrysemys picta) inhabiting an anthropogenic pond in south central Pennsylvania. We surveyed for turtle nests and documented location, depth, width, temperature, canopy coverage, clutch size, and hatch success for a total of 31 turtle nests. To address the influence of soil carbon and particle size on nest selection, we analyzed samples collected from: 1) actual nests that were depredated, 2) false nests, incomplete nests aborted during digging prior to nest completion, and 3) randomized locations. Soil samples were separated into coarse, medium, and fine grain size fractions through a stack of sieves. Samples were combusted in a total carbon analyzer to measure weight percent organic carbon. We found that anthropogenic activity at this site has created homogenous, sandy, compacted soils at the uppermost layer that may limit females' access to appropriate nesting habitat. Turtle nesting activity was limited to a linear region north of the pond and was constrained by an impassable rail line. Relative to other studies, turtle nests were notably shallow (5.8±0.9 cm) and placed close to the pond. Compared to false nests and random locations, turtle-selected sites averaged greater coarse grains (35% compared to 20.24 and 20.57%) and less fine grains (47% compared to 59 and 59, respectively). Despite remarkably high soil carbon along the rail line (47.08%) turtles nested here with slightly higher hatch success. We suggest that the turtles are limited to sandy, compact soils with low heat capacities and may compensate for this by also nesting adjacent to the rail line where high soil carbon could increase incubation temperatures.
Jiménez-Morillo, Nicasio T; Spangenberg, Jorge E; Miller, Ana Z; Jordán, Antonio; Zavala, Lorena M; González-Vila, Francisco J; González-Pérez, José A
2017-11-01
Soil water repellency (hydrophobicity) prevents water from wetting or infiltrating soils, triggering changes in the ecosystems. Fire may develop, enhance or destroy hydrophobicity in previously wettable or water-repellent soils. Soil water repellency is mostly influenced by the quality and quantity of soil organic matter, particularly the lipid fraction. Here we report the results of a study on the effect of fire on the distribution of soil lipids and their role in the hydrophobicity grade of six particle size fractions (2-1, 1-0.5, 0.5-0.25, 0.25-0.1, 0.1-0.05 and <0.05mm) of an Arenosol under Quercus suber canopy at the Doñana National Park (SW-Spain). Hydrophobicity was determined using water drop penetration time test. Field emission scanning electron microscopy (FESEM) was used to assess the presence and morphology of the inorganic and organic soil components in the particle size fractions. Soil lipids were Soxhlet extracted with a dichloromethane-methanol mixture. Fatty acids (FAs) and neutral lipids were separated, derivatized, identified and quantified by gas chromatography/mass spectrometry and gas chromatography/flame ionization detection. The hydrophobicity values of soil samples and fractions were statistically different (P < 0.05), for both, the unburnt and burnt soils, and particle size fractions. All samples displayed a similar distribution of FAs, straight-chain saturated acids in the C 14 -C 32 range, and neutral lipids (n-alkan-1-ols, n-alkanes), only differing in their relative abundances. Among possible biogeochemical mechanisms responsible for the changes in soil lipids, the observed depletion of long chain FAs (C ≥24 ) in the coarse fraction is best explained by thermal cracking caused by the heat of the fire. The enrichment of long chain FAs observed in other fractions suggests possible exogenous additions of charred, lipid-rich, material, like cork suberin or other plant-derived macromolecules (cutins). Principal component analysis was used to study the relationships between hydrophobicity with soil organic matter and its different components. Extractable organic matter (EOM) and specifically long chain FAs content were positively correlated to soil hydrophobicity. Therefore, the latter could be used as biomarkers surrogated to hydrophobicity in sandy soils. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cécillon, Lauric; Baudin, François; Chenu, Claire; Houot, Sabine; Jolivet, Romain; Kätterer, Thomas; Lutfalla, Suzanne; Macdonald, Andy; van Oort, Folkert; Plante, Alain F.; Savignac, Florence; Soucémarianadin, Laure N.; Barré, Pierre
2018-05-01
Changes in global soil carbon stocks have considerable potential to influence the course of future climate change. However, a portion of soil organic carbon (SOC) has a very long residence time ( > 100 years) and may not contribute significantly to terrestrial greenhouse gas emissions during the next century. The size of this persistent SOC reservoir is presumed to be large. Consequently, it is a key parameter required for the initialization of SOC dynamics in ecosystem and Earth system models, but there is considerable uncertainty in the methods used to quantify it. Thermal analysis methods provide cost-effective information on SOC thermal stability that has been shown to be qualitatively related to SOC biogeochemical stability. The objective of this work was to build the first quantitative model of the size of the centennially persistent SOC pool based on thermal analysis. We used a unique set of 118 archived soil samples from four agronomic experiments in northwestern Europe with long-term bare fallow and non-bare fallow treatments (e.g., manure amendment, cropland and grassland) as a sample set for which estimating the size of the centennially persistent SOC pool is relatively straightforward. At each experimental site, we estimated the average concentration of centennially persistent SOC and its uncertainty by applying a Bayesian curve-fitting method to the observed declining SOC concentration over the duration of the long-term bare fallow treatment. Overall, the estimated concentrations of centennially persistent SOC ranged from 5 to 11 g C kg-1 of soil (lowest and highest boundaries of four 95 % confidence intervals). Then, by dividing the site-specific concentrations of persistent SOC by the total SOC concentration, we could estimate the proportion of centennially persistent SOC in the 118 archived soil samples and the associated uncertainty. The proportion of centennially persistent SOC ranged from 0.14 (standard deviation of 0.01) to 1 (standard deviation of 0.15). Samples were subjected to thermal analysis by Rock-Eval 6 that generated a series of 30 parameters reflecting their SOC thermal stability and bulk chemistry. We trained a nonparametric machine-learning algorithm (random forests multivariate regression model) to predict the proportion of centennially persistent SOC in new soils using Rock-Eval 6 thermal parameters as predictors. We evaluated the model predictive performance with two different strategies. We first used a calibration set (n = 88) and a validation set (n = 30) with soils from all sites. Second, to test the sensitivity of the model to pedoclimate, we built a calibration set with soil samples from three out of the four sites (n = 84). The multivariate regression model accurately predicted the proportion of centennially persistent SOC in the validation set composed of soils from all sites (R2 = 0.92, RMSEP = 0.07, n = 30). The uncertainty of the model predictions was quantified by a Monte Carlo approach that produced conservative 95 % prediction intervals across the validation set. The predictive performance of the model decreased when predicting the proportion of centennially persistent SOC in soils from one fully independent site with a different pedoclimate, yet the mean error of prediction only slightly increased (R2 = 0.53, RMSEP = 0.10, n = 34). This model based on Rock-Eval 6 thermal analysis can thus be used to predict the proportion of centennially persistent SOC with known uncertainty in new soil samples from different pedoclimates, at least for sites that have similar Rock-Eval 6 thermal characteristics to those included in the calibration set. Our study reinforces the evidence that there is a link between the thermal and biogeochemical stability of soil organic matter and demonstrates that Rock-Eval 6 thermal analysis can be used to quantify the size of the centennially persistent organic carbon pool in temperate soils.
Martin F. Jurgensen; Deborah S. Page-Dumroese; Robert E. Brown; Joanne M. Tirocke; Chris A. Miller; James B. Pickens; Min Wang
2017-01-01
Soils with high rock content are common in many US forests, and contain large amounts of stored C. Accurate measurements of soil bulk density and rock content are critical for calculating and assessing changes in both C and nutrient pool size, but bulk density sampling methods have limitations and sources of variability. Therefore, we evaluated the use of small-...
Yakupoglu, Tugrul; Gundogan, Recep; Dindaroglu, Turgay; Kara, Zekeriya
2017-10-29
Land-use change through degrading natural vegetation for agricultural production adversely affects many of soil properties particularly organic carbon content of soils. The native shrub land and grassland of Gaziantep-Adiyaman plateau that is an important pistachio growing eco-region have been cleared to convert into pistachio orchard for the last 50 to 60 years. In this study, the effects of conversion of natural vegetation into agricultural uses on soil erodibility have been investigated. Soil samples were collected from surface of agricultural fields and adjacent natural vegetation areas, and samples were analyzed for some soil erodibility indices such as dispersion ratio (DR), erosion ratio (ER), structural stability index (SSI), Henin's instability index (I s ), and aggregate size distribution after wet sieving (AggSD). According to the statistical evaluation, these two areas were found as different from each other in terms of erosion indices except for I s index (P < 0.001 for DR and ER or P < 0.01 for SSI). In addition, native shrub land and converted land to agriculture were found different in terms of AggSD in all aggregate size groups. As a contrary to expectations, correlation tests showed that there were no any interaction between soil organic carbon and measured erodibility indices in two areas. In addition, significant relationships were determined between measured variables and soil textural fractions as statistical. These obtaining findings were attributed to changing of textural component distribution and initial aggregate size distribution results from land-use change in the study area. Study results were explained about hierarchical aggregate formation mechanism.
Spatial distribution of soil water repellency in a grassland located in Lithuania
NASA Astrophysics Data System (ADS)
Pereira, Paulo; Novara, Agata
2014-05-01
Soil water repellency (SWR) it is recognized to be very heterogeneous in time in space and depends on soil type, climate, land use, vegetation and season (Doerr et al., 2002). It prevents or reduces water infiltration, with important impacts on soil hydrology, influencing the mobilization and transport of substances into the soil profile. The reduced infiltration increases surface runoff and soil erosion. SWR reduce also the seed emergency and plant growth due the reduced amount of water in the root zone. Positive aspects of SWR are the increase of soil aggregate stability, organic carbon sequestration and reduction of water evaporation (Mataix-Solera and Doerr, 2004; Diehl, 2013). SWR depends on the soil aggregate size. In fire affected areas it was founded that SWR was more persistent in small size aggregates (Mataix-Solera and Doerr, 2004; Jordan et al., 2011). However, little information is available about SWR spatial distribution according to soil aggregate size. The aim of this work is study the spatial distribution of SWR in fine earth (<2 mm) and different aggregate sizes, 2-1 mm, 1-0.5 mm, 0.5-0.25 mm and <0.25 mm. The studied area is located near Vilnius (Lithuania) at 54° 42' N, 25° 08 E, 158 masl. A plot with 400 m2 (20 x 20 m with 5 m space between sampling points) and 25 soil samples were collected in the top soil (0-5 cm) and taken to the laboratory. Previously to SWR assessment, the samples were air dried. The persistence of SWR was analysed according to the Water Drop Penetration Method, which involves placing three drops of distilled water onto the soil surface and registering the time in seconds (s) required for the drop complete penetration (Wessel, 1988). Data did not respected Gaussian distribution, thus in order to meet normality requirements it was log-normal transformed. Spatial interpolations were carried out using Ordinary Kriging. The results shown that SWR was on average in fine earth 2.88 s (Coeficient of variation % (CV%)=44.62), 2-1mm 1.73 s (CV%=45.10), 1-0.5 mm 2.02 s (CV%=93.75), 0.5-0.25 mm 3.12 s (CV%=233.68) and in <0.25 mm 15.54 mm (CV%=240.74). This suggests that SWR persistence and CV% is higher in small size aggregates than in the coarser aggregate sizes. The interpolated maps showed that in fine earth SWR was higher in the western part of the studied plot and lower in the central area. In the 2-1 mm aggregate size it was higher in the southwest and lower at north and northwest area. In the 1-0.5 mm aggregate size it was lower in the central area and higher in the southwest. In the 0.5-0.25 mm aggregate size it was higher in the west part and lower in the north of the plot and. In the <0.25 mm no specific pattern was identified and the SWR was heterogeneously distributed. This suggests that the spatial distribution of SWR is very different according to the aggregate size. Future studies are needed in order to identify the causes and consequences of such dynamic. Acknowledgements The authors appreciated the support of the project "Litfire", Fire effects in Lithuanian soils and ecosystems (MIP-048/2011) funded by the Lithuanian Research Council References Diehl, D. (2013) Soil water repellency: Dynamics of heterogeneous surfaces, Colloids and surfaces A: Physicochem. Eng. Aspects, 432, 8-18. Doerr, S.H., Shakesby, R.A., and Walsh, R.P.D. (2000) Soil water repellency: its causes, characteristics and hydro-geomorphological significance, Earth-Science Reviews, 51, 33-65. Jordan, A., Zavala, L., Mataix-Solera, J., Nava, A.L., Alanis, N. (2011) Effects of fire severity on water repellency and agregate stability on mexican volcanic soils, Catena, 84, 136-147. Mataix-Solera, J., Doerr, S. (2004) hydrophobicity and agregate stability in calcareous topsoils from fire-affected pine forests in south-easthern Spain, Geoderma, 118, 77-88. Wessel, A.T. (1988) On using the effective contact angle and the water drop penetration time for classification of water repellency in dune soils, Earth Surfaces Process. Landforms, 13, 555-562, 1988.
NASA Astrophysics Data System (ADS)
Kaiser, Michael; Grunwald, Dennis; Marhan, Sven; Poll, Christian; Bamminger, Chris; Ludwig, Bernard
2016-04-01
Potential increases in soil temperature due to climate change might result in intensified soil organic matter (SOM) decomposition and thus higher CO2 emissions. Management options to increase and stabilize SOM include the application of biochar. However, the effects of biochar amendments under elevated soil temperatures on SOM dynamics are largely unknown. The objective of this study was to analyze the effect of biochar application and elevated soil temperature on the amount and composition of OM associated with fractions of different turnover kinetics. Samples were taken from four treatments of the Hohenheim Climate Change Experiment with the factors temperature (ambient or elevated by 2.5 °C in 4 cm depth, six years before sampling) and biochar (control and 30 t / ha Miscanthus pyrolysis biochar, one year before sampling) in two depths (0 - 5 and 5 - 15 cm). Basal respiration and microbial biomass C were analyzed within an incubation experiment. Aggregate size-fractions were separated by wet-sieving and the free light, occluded light (oLF), and heavy fractions were isolated by density fractionation. All fractions were analyzed for organic C and δ13C as well as by infrared spectroscopy. Preliminary data suggest that biochar significantly increased basal respiration and that the microbial biomass C was significantly affected by elevated temperature. No biochar-C was found in the microbial biomass. Biochar and elevated temperature had only minor effects on the organic C associated with aggregate-size classes, although biochar was incorporated into all fractions already after one year of application. Biochar application significantly increased the organic C associated with oLF. In most samples affected by biochar, the proportion of C=O groups was significantly increased. The results suggest that already after one year, biochar-mineral interactions were formed leading to an aggregate occlusion of applied biochar. At least in the short-term, the effect of biochar on the amount and composition of OM associated with different aggregate-size and density fractions seem to be independent from soil temperature.
Effect of different kinds of crop residues on aggregate-protected soil organic matter fractions.
NASA Astrophysics Data System (ADS)
Huisz, A.
2009-04-01
Organic matter content of soils determines many important soil properties, such as soil structure, fertility and water-management. To improve its fertility and quality, returning different kinds of organic matter to soil has a long historical tradition. Ameliorating of soil and enhancing its fertility by enhancing its carbon stock with organic matter incorporation (like farmyard manure, crop residues or green manure) are general practices, but the extent of the amelioration depends much on several factors such as quantity, quality of the used organic matters. Quality of soil organic matters is affected by their chemical build-up, which differs by their origin (i.e. plant species); and their decomposability is affected by particle-size, protection by soil aggregates and the extent of their association to mineral surfaces. In our paper we investigated the effect of three different kinds of organic matter incorporation on aggregate-protected organic matter fractions: (1) Maize stem (M), (2) Wheat straw (W), and (3) Maize stem & Wheat straw (MW). Our samples were originated from Keszthely, Western Hungary, where the texture of the investigated soil is Sandy loam, the type of soil is Eutric Cambisol (soil type FAO), or Alfisol (soil type USDA). SOM fractions might be isolated and measured by physical fractionation of soil (Cambardella and Elliott (1992), Jensen et al. (1992)). Firstly, microaggregates were separated according to their particle-size with physical fractionation (i.e. wet sieving) (Six et al. (2000a)). Each sample was pre-treated by capillary wetting and was sieved for 2 min in an analytic sieve shaker machine with the following aperture sizes: 2 mm, 250 μm, 53 μm. Therefore 4 fractions were resulted: (1) the >2000 μm large macro-, (2) the 250-2000 μm small macro-, (3) the 53-250 μm microaggregates, and (4) the
NASA Astrophysics Data System (ADS)
Stumpf, Felix; Schönbrodt-Stitt, Sarah; Schmidt, Karsten; Behrens, Thorsten; Scholten, Thomas
2013-04-01
The Three Gorges Dam at the Yangtze River in Central China outlines a prominent example of human-induced environmental impacts. Throughout one year the water table at the main river fluctuates about 30m due to impoundment and drainage activities. The dynamic water table implicates a range of georisks such as soil erosion, mass movements, sediment transport and diffuse matter inputs into the reservoir. Within the framework of the joint Sino-German project YANGTZE GEO, the subproject "Soil Erosion" deals with soil erosion risks and sediment transport pathways into the reservoir. The study site is a small catchment (4.8 km²) in Badong, approximately 100 km upstream the dam. It is characterized by scattered plots of agricultural landuse and resettlements in a largely wooded, steep sloping and mountainous area. Our research is focused on data acquisition and processing to develop a process-oriented erosion model. Hereby, area-covering knowledge of specific soil properties in the catchment is an intrinsic input parameter. This will be acquired by means of digital soil mapping (DSM). Thereby, soil properties are estimated by covariates. The functions are calibrated by soil property samples. The DSM approach is based on an appropriate sample design, which reflects the heterogeneity of the catchment, regarding the covariates with influence on the relevant soil properties. In this approach the covariates, processed by a digital terrain analysis, are outlined by the slope, altitude, profile curvature, plane curvature, and the aspect. For the development of the sample design, we chose the Conditioned Latin Hypercube Sampling (cLHS) procedure (Minasny and McBratney, 2006). It provides an efficient method of sampling variables from their multivariate distribution. Thereby, a sample size n from multiple variables is drawn such that for each variable the sample is marginally maximally stratified. The method ensures the maximal stratification by two features: First, number of strata equals the sample size n and secondly, the probability of falling in each of the strata is n-¹ (McKay et al., 1979). We extended the classical cLHS with extremes (Schmidt et al., 2012) approach by incorporating legacy data of previous field campaigns. Instead of identifying precise sample locations by CLHS, we demarcate the multivariate attribute space of the samples based on the histogram borders of each stratum. This widens the spatial scope of the actual CLHS sample locations and allows the incorporation of legacy data lying within that scope. Furthermore, this approach provides an extended potential regarding the accessibility of sample sites in the field.
REMEDIATION OF RADIUM FROM CONTAMINATED SOIL
The objective of this study was to demonstrate the application of a physico-chemical separation process for the removal of radium from a sample of contaminated soil at the Ottawa, Illinois, site near Chicago. The size/activity distribution analyzed among the particles coarser tha...
Wei, Yujie; Wu, Xinliang; Xia, Jinwen; Shen, Xue; Cai, Chongfa
2016-01-01
The formation and stabilization of soil aggregates play a key role in soil functions. To date, few studies have been performed on the variation of soil aggregation with increasing soil weathering degree. Here, soil aggregation and its influencing factors along the weathering gradient were investigated. Six typical zonal soils (derived from similar parent materials) were sampled from temperate to tropical regions. Grain size distribution (GSD) in aggregate fragmentation with increasing disruptive forces (air-dried, water dispersion and chemical dispersion) was determined by laser diffraction particle size analyzer. Different forms of sesquioxides were determined by selective chemical extraction and their contributions to soil aggregation were identified by multiple stepwise regression analysis. The high variability of sesquioxides in different forms appeared with increasing free oxide content (Fed and Ald) from the temperate to tropical soils. The transformation of GSD peak to small size varied with increasing disruptive forces (p<0.05). Although in different weathering degrees, zonal soils showed a similar fragmentation process. Aggregate water stability generally increased with increasing soil weathering (p<0.01), with higher stability in eluvium (A) horizon than in illuvium (B) horizon (p<0.01). Crystalline oxides and amorphous iron oxides (Feo), especially (Fed-Feo) contributed to the formation of air-dried macroaggregates and their stability against slaking (R2 = 55%, p<0.01), while fine particles (<50μm) and Feo (excluding the complex form Fep) played a positive role in the formation of water stable aggregates (R2 = 93%, p<0.01). Additionally, water stable aggregates (including stability, size distribution and specific surface area) were closely related with pH, organic matter, cation exchange capacity (CEC), bulk density (BD), and free oxides (including various forms) (p<0.05). The overall results indicate that soil aggregation conforms to aggregate hierarchy theory to some extent along the weathering gradient and different forms of sesquioxides perform their specific roles in the formation and stabilization of different size aggregates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivas-Ubach, Albert; Barbeta, Adrià; Sardans, Jordi
Soils provide physical support, water, and nutrients to terrestrial plants. Upper soil layers are crucial for forest dynamics, especially under drought conditions, because many biological processes occur there and provide support, water and nutrients to terrestrial plants. We postulated that tree size and overall plant function manifested in the metabolome composition, the total set of metabolites, were dependent on the depth of upper soil layers and on water availability. We sampled leaves for stoichiometric and metabolomic analyses once per season from differently sized Quercus ilex trees under natural and experimental drought conditions as projected for the coming decades. Different sizedmore » trees had different metabolomes and plots with shallower soils had smaller trees. Soil moisture of the upper soil did not explain the tree size and smaller trees did not show higher concentrations of biomarker metabolites related to drought stress. However, the impact of drought treatment on metabolomes was higher in smaller trees in shallower soils. Our results suggested that tree size was more dependent on the depth of the upper soil layers, which indirectly affect the metabolomes of the trees, than on the moisture content of the upper soil layers. Metabolomic profiling of Q. ilex supported the premise that water availability in the upper soil layers was not necessarily correlated with tree size. The higher impact of drought on trees growing in shallower soils nevertheless indicates a higher vulnerability of small trees to the future increase in frequency, intensity, and duration of drought projected for the Mediterranean Basin and other areas. Metabolomics has proven to be an excellent tool detecting significant metabolic changes among differently sized individuals of the same species and it improves our understanding of the connection between plant metabolomes and environmental variables such as soil depth and moisture content.« less
Wu, Xinliang; Xia, Jinwen; Shen, Xue; Cai, Chongfa
2016-01-01
The formation and stabilization of soil aggregates play a key role in soil functions. To date, few studies have been performed on the variation of soil aggregation with increasing soil weathering degree. Here, soil aggregation and its influencing factors along the weathering gradient were investigated. Six typical zonal soils (derived from similar parent materials) were sampled from temperate to tropical regions. Grain size distribution (GSD) in aggregate fragmentation with increasing disruptive forces (air-dried, water dispersion and chemical dispersion) was determined by laser diffraction particle size analyzer. Different forms of sesquioxides were determined by selective chemical extraction and their contributions to soil aggregation were identified by multiple stepwise regression analysis. The high variability of sesquioxides in different forms appeared with increasing free oxide content (Fed and Ald) from the temperate to tropical soils. The transformation of GSD peak to small size varied with increasing disruptive forces (p<0.05). Although in different weathering degrees, zonal soils showed a similar fragmentation process. Aggregate water stability generally increased with increasing soil weathering (p<0.01), with higher stability in eluvium (A) horizon than in illuvium (B) horizon (p<0.01). Crystalline oxides and amorphous iron oxides (Feo), especially (Fed-Feo) contributed to the formation of air-dried macroaggregates and their stability against slaking (R2 = 55%, p<0.01), while fine particles (<50μm) and Feo (excluding the complex form Fep) played a positive role in the formation of water stable aggregates (R2 = 93%, p<0.01). Additionally, water stable aggregates (including stability, size distribution and specific surface area) were closely related with pH, organic matter, cation exchange capacity (CEC), bulk density (BD), and free oxides (including various forms) (p<0.05). The overall results indicate that soil aggregation conforms to aggregate hierarchy theory to some extent along the weathering gradient and different forms of sesquioxides perform their specific roles in the formation and stabilization of different size aggregates. PMID:27529618
NASA Astrophysics Data System (ADS)
Blanco-Moure, Nuria; López, M. Victoria; Moret, David
2010-05-01
The evaluation of changes in soil moisture retention characteristics associated to alterations in soil structure is of great interest in tillage studies. Most of these studies have evaluated soil properties in samples of total soil but not in individual aggregates. However, soil behavior at a macroscale level depends on the aggregate properties. A better knowledge of aggregate characteristics, as the water retention properties, will help to explain, for example, the response of soil to tillage, compaction and crop growth, and hence, to plan adequate soil management practices. In this study we determine the water retention curve of soil aggregates of different sizes from a soil under two tillage systems (conventional and no tillage). The study was carried out in a silty clay loam soil of semiarid Aragon (NE Spain). Two tillage systems were compared: no tillage (NT) and conventional tillage with mouldboard plough (CT). Water retention curves (WRC) were determined for soil surface aggregates (0-5 cm) of three different sizes (8-4, 4-2 and 2-1 mm in diameter) by using the TDR-pressure cell (Moret et al. 2008. Soil Till. Res, 100, 114-119). The TDR-pressure cell is a non-destructive method which permits determining WRC with the only one and same soil sample. Thus, the pressure cell was filled with aggregates up to 4 cm height, weighted and wetted to saturation from the bottom. Pressure steps were sequentially applied at -0.5, -1.5, -3, -5, -10, -33, -100, -300 kPa, and water content of each aggregate sample was measured gravimetrically and by TDR 24 h after starting each pressure head step. The volume of the sample within the cell was also determined at this moment in order to obtain the bulk density and thus calculate the volumetric water content. A good relationship was obtained between the volumetric water content calculated from the gravimetric water content and the corresponding values measured by TDR (r2=0.907; p≤0.05). Within the same tillage treatment, no significant differences in WRC were found among soil aggregate sizes. Soil aggregates under CT retained more water at lower pressure heads in all aggregate sizes; in contrast the retention was more effective in those from NT at high pressure level. The extensive structural degradation of the CT aggregates observed during wetting with the consequent decrease in the soil volume within the transparent cell, can help to explain the different behaviour of both soils. The CT aggregates were probably disintegrated by slaking, causing a reduction in water drainage and, therefore, an increase in soil water content at low pressure heads. This idea was also confirmed with the application of the double exponential function proposed by Dexter et al. (2008. Geoderma 173, 243-253). The WRC curves measured by TDR were successfully fitted to the theoretical model proposed by Dexter (r2=0.986; p≤0.05). Thus, the model estimated that the large porosity between aggregates retain slightly more water under CT (0.36-0.39 m3 m-3) than under NT (0.31-0.35 m3 m-3). On the contrary, pores inside the aggregates tend to storage more water in NT (0.16-0.20 m3 m-3vs. 0.13-0.17 m3 m-3 in CT). These results show the suitability of NT to reduce the risk of soil crusting and compaction in agricultural lands of Aragón.
Pore space connectivity and porosity using CT scans of tropical soils
NASA Astrophysics Data System (ADS)
Previatello da Silva, Livia; de Jong Van Lier, Quirijn
2015-04-01
Microtomography has been used in soil physics for characterization and allows non-destructive analysis with high-resolution, yielding a three-dimensional representation of pore space and fluid distribution. It also allows quantitative characterization of pore space, including pore size distribution, shape, connectivity, porosity, tortuosity, orientation, preferential pathways and is also possible predict the saturated hydraulic conductivity using Darcy's equation and a modified Poiseuille's equation. Connectivity of pore space is an important topological property of soil. Together with porosity and pore-size distribution, it governs transport of water, solutes and gases. In order to quantify and analyze pore space (quantifying connectivity of pores and porosity) of four tropical soils from Brazil with different texture and land use, undisturbed samples were collected in São Paulo State, Brazil, with PVC ring with 7.5 cm in height and diameter of 7.5 cm, depth of 10 - 30 cm from soil surface. Image acquisition was performed with a CT system Nikon XT H 225, with technical specifications of dual reflection-transmission target system including a 225 kV, 225 W high performance Xray source equipped with a reflection target with pot size of 3 μm combined with a nano-focus transmission module with a spot size of 1 μm. The images were acquired at specific energy level for each soil type, according to soil texture, and external copper filters were used in order to allow the attenuation of low frequency X-ray photons and passage of one monoenergetic beam. This step was performed aiming minimize artifacts such as beam hardening that may occur during the attenuation in the material interface with different densities within the same sample. Images were processed and analyzed using ImageJ/Fiji software. Retention curve (tension table and the pressure chamber methods), saturated hydraulic conductivity (constant head permeameter), granulometry, soil density and particle density were also performed in laboratory and results were compared with images analyzes.
Wang, Huifang; Xiao, Bo; Wang, Mingyu; Shao, Ming'an
2013-01-01
Soil water retention parameters are critical to quantify flow and solute transport in vadose zone, while the presence of rock fragments remarkably increases their variability. Therefore a novel method for determining water retention parameters of soil-gravel mixtures is required. The procedure to generate such a model is based firstly on the determination of the quantitative relationship between the content of rock fragments and the effective saturation of soil-gravel mixtures, and then on the integration of this relationship with former analytical equations of water retention curves (WRCs). In order to find such relationships, laboratory experiments were conducted to determine WRCs of soil-gravel mixtures obtained with a clay loam soil mixed with shale clasts or pebbles in three size groups with various gravel contents. Data showed that the effective saturation of the soil-gravel mixtures with the same kind of gravels within one size group had a linear relation with gravel contents, and had a power relation with the bulk density of samples at any pressure head. Revised formulas for water retention properties of the soil-gravel mixtures are proposed to establish the water retention curved surface models of the power-linear functions and power functions. The analysis of the parameters obtained by regression and validation of the empirical models showed that they were acceptable by using either the measured data of separate gravel size group or those of all the three gravel size groups having a large size range. Furthermore, the regression parameters of the curved surfaces for the soil-gravel mixtures with a large range of gravel content could be determined from the water retention data of the soil-gravel mixtures with two representative gravel contents or bulk densities. Such revised water retention models are potentially applicable in regional or large scale field investigations of significantly heterogeneous media, where various gravel sizes and different gravel contents are present.
Wang, Huifang; Xiao, Bo; Wang, Mingyu; Shao, Ming'an
2013-01-01
Soil water retention parameters are critical to quantify flow and solute transport in vadose zone, while the presence of rock fragments remarkably increases their variability. Therefore a novel method for determining water retention parameters of soil-gravel mixtures is required. The procedure to generate such a model is based firstly on the determination of the quantitative relationship between the content of rock fragments and the effective saturation of soil-gravel mixtures, and then on the integration of this relationship with former analytical equations of water retention curves (WRCs). In order to find such relationships, laboratory experiments were conducted to determine WRCs of soil-gravel mixtures obtained with a clay loam soil mixed with shale clasts or pebbles in three size groups with various gravel contents. Data showed that the effective saturation of the soil-gravel mixtures with the same kind of gravels within one size group had a linear relation with gravel contents, and had a power relation with the bulk density of samples at any pressure head. Revised formulas for water retention properties of the soil-gravel mixtures are proposed to establish the water retention curved surface models of the power-linear functions and power functions. The analysis of the parameters obtained by regression and validation of the empirical models showed that they were acceptable by using either the measured data of separate gravel size group or those of all the three gravel size groups having a large size range. Furthermore, the regression parameters of the curved surfaces for the soil-gravel mixtures with a large range of gravel content could be determined from the water retention data of the soil-gravel mixtures with two representative gravel contents or bulk densities. Such revised water retention models are potentially applicable in regional or large scale field investigations of significantly heterogeneous media, where various gravel sizes and different gravel contents are present. PMID:23555040
Monitoring aggregate disintegration with laser diffraction: A tool for studying soils as sediments
NASA Astrophysics Data System (ADS)
Mason, Joseph; Kasmerchak, Chase; Liang, Mengyu
2016-04-01
One of the more important characteristics of soil that becomes hillslope, fluvial, or aeolian sediment is the presences of aggregates, which disintegrate at varying rates and to varying degrees during transport. Laser diffraction particle size analyzers allow monitoring of aggregate disintegration as a sample of soil or sediment suspended in water is circulated continuously through the measurement cell (Bieganowski et al., 2010, Clay Minerals 45-23-34; Mason et al., Catena 87:107-118). Mason et al. (2011) applied this approach to aeolian sedimentary aggregates (e.g. clay pellets eroded from dry lakebeds), immersing dry samples in DI water and circulating them through a Malvern Mastersizer 2000 particle size analyzer for three hours while repeated size distribution (SD) measurements were made. A final measurement was made after sonication and treatment with Na-metaphosphate. In that study, most samples approached a steady SD within three hours, which included both primary mineral grains and persistent aggregates. The disintegration process could be modeled with a first-order rate law representing the disintegration of a single population of aggregates. A wide range of model parameters were observed among the samples studied, and it was suggested that they could be useful in predicting the behavior of these aggregates, under rainfall impact and during slopewash or fluvial transport. Addition of Ca++ to the suspension altered aggregate behavior in some but not all cases. We applied the same method to dry, unground material from upper horizons of soils sampled along a bioclimatic gradient in northern Minnesota, USA, all formed in lithologically similar glacigenic sediment. These ranged from Alfisols (Luvisols) formed under forest since the last deglaciation, to Alfisols under forest that more recently replaced grassland, and Mollisols (Chernozems) that formed entirely under grassland vegetation. Few of these soil samples approached a steady SD within three hours, and modeling aggregate disintegration required the assumption of at least two aggregate populations. Upper horizons of soils formed under grassland displayed relatively slow disintegration throughout the procedure, with a large proportion of aggregates remaining after three hours. E horizons from forest soils, with low organic matter (OM) and clay content, displayed rapid early distintegration of a large portion of the aggregates, followed by much slower breakdown of the remainder (i.e. the two populations modeled had very different rate constants). OM content is clearly the overriding control on aggregate behavior, but we are also exploring effects of clay content and mineralogy, cation chemistry, and other factors. The differences in aggregate behavior are likely to be relevant to transport and deposition of sediment eroded from these soils, and possibly to the transport of OM or nutrients with eroded soil. We hope to incorporate this method into ongoing field studies of soil erosion with colleagues at UW-Madison.
Rock pushing and sampling under rocks on Mars
Moore, H.J.; Liebes, S.; Crouch, D.S.; Clark, L.V.
1978-01-01
Viking Lander 2 acquired samples on Mars from beneath two rocks, where living organisms and organic molecules would be protected from ultraviolet radiation. Selection of rocks to be moved was based on scientific and engineering considerations, including rock size, rock shape, burial depth, and location in a sample field. Rock locations and topography were established using the computerized interactive video-stereophotogrammetric system and plotted on vertical profiles and in plan view. Sampler commands were developed and tested on Earth using a full-size lander and surface mock-up. The use of power by the sampler motor correlates with rock movements, which were by plowing, skidding, and rolling. Provenance of the samples was determined by measurements and interpretation of pictures and positions of the sampler arm. Analytical results demonstrate that the samples were, in fact, from beneath the rocks. Results from the Gas Chromatograph-Mass Spectrometer of the Molecular Analysis experiment and the Gas Exchange instrument of the Biology experiment indicate that more adsorbed(?) water occurs in samples under rocks than in samples exposed to the sun. This is consistent with terrestrial arid environments, where more moisture occurs in near-surface soil un- der rocks than in surrounding soil because the net heat flow is toward the soil beneath the rock and the rock cap inhibits evaporation. Inorganic analyses show that samples of soil from under the rocks have significantly less iron than soil exposed to the sun. The scientific significance of analyses of samples under the rocks is only partly evaluated, but some facts are clear. Detectable quantities of martian organic molecules were not found in the sample from under a rock by the Molecular Analysis experiment. The Biology experiments did not find definitive evidence for Earth-like living organisms in their sample. Significant amounts of adsorbed water may be present in the martian regolith. The response of the soil from under a rock to the aqueous nutrient in the Gas Exchange instrument indicates that adsorbed water and hydrates play an important role in the oxidation potential of the soil. The rock surfaces are strong, because they did not scratch, chip or spall when the sampler pushed them. Fresh surfaces of soil and the undersides of rocks were exposed so that they could be imaged in color. A ledge of soil adhered to one rock that tilted, showing that a crust forms near the surface of Mars. The reason for low amounts of iron in the sampIes from under the rocks is not known at this time.
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Knapp, David E. (Editor); Nerbas, Tim; Anderson, Darwin
2000-01-01
This data set was collected by TE-1 to provide a set of soil properties for BOREAS investigators in the SSA. The soil samples were collected at sets of soil pits in 1993 and 1994. Each set of soil pits was in the vicinity of one of the five flux towers in the BOREAS SSA. The collected soil samples were sent to a lab, where the major soil properties were determined. These properties include, but are not limited to, soil horizon; dry soil color; pH; bulk density; total, organic, and inorganic carbon; electric conductivity; cation exchange capacity; exchangeable sodium, potassium, calcium, magnesium, and hydrogen; water content at 0.01, 0.033, and 1.5 MPascals; nitrogen; phosphorus; particle size distribution; texture; pH of the mineral soil and of the organic soil; extractable acid; and sulfur. The data are stored in tabular ASCII text files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
Shen, You-xin; Liu, Wei-li; Li, Yu-hui; Guan, Hui-lin
2014-01-01
A large number of small-sized samples invariably shows that woody species are absent from forest soil seed banks, leading to a large discrepancy with the seedling bank on the forest floor. We ask: 1) Does this conventional sampling strategy limit the detection of seeds of woody species? 2) Are large sample areas and sample sizes needed for higher recovery of seeds of woody species? We collected 100 samples that were 10 cm (length) × 10 cm (width) × 10 cm (depth), referred to as larger number of small-sized samples (LNSS) in a 1 ha forest plot, and placed them to germinate in a greenhouse, and collected 30 samples that were 1 m × 1 m × 10 cm, referred to as small number of large-sized samples (SNLS) and placed them (10 each) in a nearby secondary forest, shrub land and grass land. Only 15.7% of woody plant species of the forest stand were detected by the 100 LNSS, contrasting with 22.9%, 37.3% and 20.5% woody plant species being detected by SNLS in the secondary forest, shrub land and grassland, respectively. The increased number of species vs. sampled areas confirmed power-law relationships for forest stand, the LNSS and SNLS at all three recipient sites. Our results, although based on one forest, indicate that conventional LNSS did not yield a high percentage of detection for woody species, but SNLS strategy yielded a higher percentage of detection for woody species in the seed bank if samples were exposed to a better field germination environment. A 4 m2 minimum sample area derived from power equations is larger than the sampled area in most studies in the literature. Increased sample size also is needed to obtain an increased sample area if the number of samples is to remain relatively low.
NASA Astrophysics Data System (ADS)
Gorbacheva, M.
2012-04-01
M.A. Gorbacheva,L.M. Polyanskaya The Faculty of Soil Science, Moscow State University, Leninskie Gory, GSP-1, Moscow,119991,Russia In recent years there's been particular attention paid to the smallest life's forms- bacteria which size can be measured in nanometer. These are the forms of bacteria with diameter of 5-200 nm. Theoretical calculations based on the content of the minimum number of DNA, enzyme, lipids in and ribosome in cells indicates impossibility of existence of a living cells within diameter less than 300 nm. It is theoretically possible for a living cell to exist within possible diameter of approximately 140 nm. Using a fluorescence microscope there's been indicated in a number of samples from lakes, rivers, soil, snow and rain water that 200 nm is the smallest diameter of a living cell. Supposingly, such a small size of bacteria in soil is determined by natural conditions which limit their development by nutritious substances and stress-factors. Rejuvenescence of nanobacteria under unfavourable natural conditions and stress-factors is studied in laboratory environment. The object of the current study has become the samples of typical arable chernozem of the Central Chernozem State Biosphere Reserve in Kursk. The detailed morphological description of the soil profile and its basic analytical characteristics are widely represented in scientific publications. The soil is characterized by a high carbon content which makes up 3,96% ,3,8% , and 2,9% for the upper layers of the A horizon, and 0,79% for the layer of the B horizon. A microbial succession was studied under aerobic and anaerobic conditions by means of experiments with microcosms in upper A horizons and B horizon of a chernozem. The final aim is to identify the cells size of bacteria in aerobic and anaerobic soil conditions in chernozem during the microbial succession, by dampening and application of chitin by means of «cascade filtration» method. The study of the microcosms is important for understanding natural mechanisms in soil and will be useful for the development of new soil models in laboratory. Thus, by means of «cascade filtration» method there've been made some results on true size, quantity and biomass of bacteria. Development of a bacteria in various soil horizons and their layers in aerobic and anaerobic conditions and calculations of biomass of bacteria in upper layer horizon A and lower layer horizon B have also become the subjects of the studies. It was identified that the quantity of bacteria in aerobic conditions increase during the microbial succession while bacteria sized 230 and 380 nm were dominating. In anaerobic conditions the process of connecting cells sized 170 nm and bacteria is observed. Biomass of bacteria is higher in anaerobic conditions in upper layer horizon A because of elevated variety of bacteria. In horizon B in anaerobic conditions it is of maximum because of anaerobic situation in situ. Thus, distribution of bacteria's size depends on aeration of soil. That helps to acknowledge the receipt of theory of a great number of researchers about that fact that the size of bacteria in the soil in anaerobic conditions decrease under stress-factors. This work touches upon such a poorly investigated subject as nanobacteria in the soil. But this knowledge plays a significant role in land reclamation oil-cut and prognostication pollution of the soil by pathogenic bacteria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murarik, T.M.; Wenstrand, T.K.; Rogers, L.A.
An initial soil characterization study was conducted to help identify possible remediation methods to remove plutonium from the Nevada Test Site and Tonapah Test Range surface soils. Results from soil samples collected across various isopleths at five sites indicate that the size-fraction distribution patterns of plutonium remain similar to findings from the Nevada Applied Ecology Group (NAEG) (1970's). The plutonium remains in the upper 10--15 cm of soils, as indicated in previous studies. Distribution of fine particles downwind'' of ground zero at each site is suggested. Whether this pattern was established immediately after each explosion or this resulted from post-shotmore » wind movement of deposited material is unclear. Several possible soil treatment scenarios are presented. Removal of plutonium from certain size fractions of the soils would alleviate the sites of much of the plutonium burden. However, the nature of association of plutonium with soil components will determine which remediation methods will most likely succeed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murarik, T.M.; Wenstrand, T.K.; Rogers, L.A.
An initial soil characterization study was conducted to help identify possible remediation methods to remove plutonium from the Nevada Test Site and Tonapah Test Range surface soils. Results from soil samples collected across various isopleths at five sites indicate that the size-fraction distribution patterns of plutonium remain similar to findings from the Nevada Applied Ecology Group (NAEG) (1970`s). The plutonium remains in the upper 10--15 cm of soils, as indicated in previous studies. Distribution of fine particles ``downwind`` of ground zero at each site is suggested. Whether this pattern was established immediately after each explosion or this resulted from post-shotmore » wind movement of deposited material is unclear. Several possible soil treatment scenarios are presented. Removal of plutonium from certain size fractions of the soils would alleviate the sites of much of the plutonium burden. However, the nature of association of plutonium with soil components will determine which remediation methods will most likely succeed.« less
Mercury content of Illinois soils
Dreher, G.B.; Follmer, L.R.
2004-01-01
For a survey of Illinois soils, 101 cores had been collected and analyzed to determine the current and background elemental compositions of Illinois soils. Mercury and other elements were determined in six samples per core, including a surface sample from each core. The mean mercury content in the surface samples was 33 ?? 20 ??g/kg soil, and the background content was 20 ?? 9 ??g/kg. The most probable sources of mercury in these soils were the parent material, and wet and dry deposition of Hg0 and Hg2+ derived from coal-burning power plants, other industrial plants, and medical and municipal waste incinerators. Mercury-bearing sewage sludge or other fertilizers applied to agricultural fields could have been the local sources of mercury. Although the mercury content correlated with organic carbon content or clay content in individual cores, when all the data were considered, there was no strong correlation between mercury and either the organic carbon or the clay-size content.
Manies, K.L.; Harden, J.W.; Veldhuis, Hugo; Trumbore, Sue
2006-01-01
The U.S. Geological Survey project Fate of Carbon in Alaskan Landscapes (FOCAL) is studying the effect of fire and soil drainage on soil carbon storage in the boreal forest. As such this group was invited to be a part of a NSF-funded project (Fire, Ecosystem and Succession - Experiment Boreal or FIRES-ExB) to study the carbon balance of sites that varied in age (time since fire) and soil drainage in the Thompson, Manitoba, Canada region. This report describes the location of our FIRES-ExB sampling sites as well as the procedures used to describe, sample, and analyze the soils. This report also contains data tables with sample related information including, but not limited to, field descriptions, bulk density, particle size distribution, moisture content, carbon (C) concentration, nitrogen (N) concentration, isotopic data for C, and major, minor and trace elemental concentration.
Filter Membrane Effects on Water-Extractable Phosphorus Concentrations from Soil.
Norby, Jessica; Strawn, Daniel; Brooks, Erin
2018-03-01
To accurately assess P concentrations in soil extracts, standard laboratory practices for monitoring P concentrations are needed. Water-extractable P is a common analytical test to determine P availability for leaching from soils, and it is used to determine best management practices. Most P analytical tests require filtration through a filter membrane with 0.45-μm pore size to distinguish between particulate and dissolved P species. However, filter membrane type is rarely specified in method protocols, and many different types of membranes are available. In this study, three common filter membrane materials (polyether sulfone, nylon, and nitrocellulose), all with 0.45-μm pore sizes, were tested for analytical differences in total P concentrations and dissolved reactive P (DRP) concentrations in water extracts from six soils sampled from two regions. Three of the extracts from the six soil samples had different total P concentrations for all three membrane types. The other three soil extracts had significantly different total P results from at least one filter membrane type. Total P concentration differences were as great as 35%. The DRP concentrations in the extracts were dependent on filter type in five of the six soil types. Results from this research show that filter membrane type is an important parameter that affects concentrations of total P and DRP from soil extracts. Thus, membrane type should be specified in soil extraction protocols. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Particle-size distribution models for the conversion of Chinese data to FAO/USDA system.
Shangguan, Wei; Dai, YongJiu; García-Gutiérrez, Carlos; Yuan, Hua
2014-01-01
We investigated eleven particle-size distribution (PSD) models to determine the appropriate models for describing the PSDs of 16349 Chinese soil samples. These data are based on three soil texture classification schemes, including one ISSS (International Society of Soil Science) scheme with four data points and two Katschinski's schemes with five and six data points, respectively. The adjusted coefficient of determination r (2), Akaike's information criterion (AIC), and geometric mean error ratio (GMER) were used to evaluate the model performance. The soil data were converted to the USDA (United States Department of Agriculture) standard using PSD models and the fractal concept. The performance of PSD models was affected by soil texture and classification of fraction schemes. The performance of PSD models also varied with clay content of soils. The Anderson, Fredlund, modified logistic growth, Skaggs, and Weilbull models were the best.
Phoenix Mars Lander's Chemistry Lab in a Box
NASA Technical Reports Server (NTRS)
2007-01-01
The wet chemistry laboratory on NASA's Phoenix Mars Lander has four teacup-size beakers. This photograph shows one of them. The laboratory is part of the spacecraft's Microscopy, Electrochemistry and Conductivity Analyzer. Each beaker will be used only once, for assessing soluble chemicals in a sample of Martian soil by mixing water with the sample to a soupy consistency and keeping it warm enough to remain liquid during the analysis. On the inner surface of the beaker are 26 sensors, mostly electrodes behind selectively permeable membranes or gels. Some sensors will give information about the acidity or alkalinity of the soil sample. Others will gauge concentrations of such ions as chlorides, bromides, magnesium, calcium and potassium. Comparisons of the concentrations of water-soluble ions in soil samples from different depths below the surface of the landing site may provide clues to the history of the water in the soil.Timescales of carbon turnover in soils with mixed crystalline mineralogies
NASA Astrophysics Data System (ADS)
Khomo, Lesego; Trumbore, Susan; Bern, Carleton R.; Chadwick, Oliver A.
2017-01-01
Organic matter-mineral associations stabilize much of the carbon (C) stored globally in soils. Metastable short-range-order (SRO) minerals such as allophane and ferrihydrite provide one mechanism for long-term stabilization of organic matter in young soil. However, in soils with few SRO minerals and a predominance of crystalline aluminosilicate or Fe (and Al) oxyhydroxide, C turnover should be governed by chemisorption with those minerals. Here, we correlate mineral composition from soils containing small amounts of SRO minerals with mean turnover time (TT) of C estimated from radiocarbon (14C) in bulk soil, free light fraction and mineral-associated organic matter. We varied the mineral amount and composition by sampling ancient soils formed on different lithologies in arid to subhumid climates in Kruger National Park (KNP), South Africa. Mineral contents in bulk soils were assessed using chemical extractions to quantify Fe oxyhydroxides and SRO minerals. Because of our interest in the role of silicate clay mineralogy, particularly smectite (2 : 1) and kaolinite (1 : 1), we separately quantified the mineralogy of the clay-sized fraction using X-ray diffraction (XRD) and measured 14C on the same fraction. Density separation demonstrated that mineral associated C accounted for 40-70 % of bulk soil organic C in A and B1 horizons for granite, nephelinite and arid-zone gabbro soils, and > 80 % in other soils. Organic matter strongly associated with the isolated clay-sized fraction represented only 9-47 % of the bulk soil C. The mean TT of C strongly associated with the clay-sized fraction increased with the amount of smectite (2 : 1 clays); in samples with > 40 % smectite it averaged 1020 ± 460 years. The C not strongly associated with clay-sized minerals, including a combination of low-density C, the C associated with minerals of sizes between 2 µm and 2 cm (including Fe oxyhydroxides as coatings), and C removed from clay-sized material by 2 % hydrogen peroxide had TTs averaging 190 ± 190 years in surface horizons. Summed over the bulk soil profile, we found that smectite content correlated with the mean TT of bulk soil C across varied lithologies. The SRO mineral content in KNP soils was generally very low, except for the soils developed on gabbros under more humid climate that also had very high Fe and C contents with a surprisingly short, mean C TTs. In younger landscapes, SRO minerals are metastable and sequester C for long timescales. We hypothesize that in the KNP, SRO minerals represent a transient stage of mineral evolution and therefore lock up C for a shorter time. Overall, we found crystalline Fe-oxyhydroxides (determined as the difference between Fe in dithionate citrate and oxalate extractions) to be the strongest predictor for soil C content, while the mean TT of soil C was best predicted from the amount of smectite, which was also related to more easily measured bulk properties such as cation exchange capacity or pH. Combined with previous research on C turnover times in 2 : 1 vs. 1 : 1 clays, our results hold promise for predicting C inventory and persistence based on intrinsic timescales of specific carbon-mineral interactions.
NASA Technical Reports Server (NTRS)
Taylor, Lawrence A.; Patchen, Allan; Taylor, Dong-Hwa S.; Pieters, Carle; Morris, Richard V.; Keller, Lindsay P.; McKay, David S.
2010-01-01
With reflectance spectroscopy, one is measuring only properties of the fine-grained regolith, most affected by space weathering. The Lunar Soil Characterization Consortium has undertaken the task of coordinated characterization of lunar soils, with respect to their mineralogical and chemical makeup. It is these lunar soils that are being used as "ground-truth" for all air30 less bodies. Modal abundances and chemistries of minerals and glasses in the finest size fractions (20-45, 10-20, and <10 microns) of four Apollo 14 and six Apollo 16 highland soils have been determined, as well as their bulk chemistry and IS/FeO values. Bi-directional reflectance measurements (0.3-2.6 microns) of all samples were performed in the RELAB. A significant fraction of nanophase Fe(sup 0) (np-Fe(sup 0)) appears to reside in agglutinitic glasses. However, as grain size of a soil decreases, the percentage of total iron present as np-Fe0 increases significantly, whereas the agglutinitic glass content rises only slightly; this is evidence for a large contribution to the IS/FeO values from the surface-correlated nanophase Fe(sup 0), particularly in the <10 micron size fraction. The compositions of the agglutinitic glasses in these fine fractions of the highland soils are different from the bulk-chemistry of that size; however, compositional trends of the glasses are not the same as those observed for mare soils. It is apparent that the glasses in the highland soils contain chemical components from outside their terrains. It is proposed that the Apollo 16 soils have been adulterated by the addition of impact-transported soil components from surrounding maria.
As part of the Desert Southwest Coarse Particulate Matter Study which characterized the composition of fine and coarse particulate matter in Pinal County, AZ, several source samples were collected from several different soil types to assist in source apportionment analysis of the...
Roundup Ready soybean gene concentrations in field soil aggregate size classes.
Levy-Booth, David J; Gulden, Robert H; Campbell, Rachel G; Powell, Jeff R; Klironomos, John N; Pauls, K Peter; Swanton, Clarence J; Trevors, Jack T; Dunfield, Kari E
2009-02-01
Roundup Ready (RR) soybeans containing recombinant Agrobacterium spp. CP4 5-enol-pyruvyl-shikimate-3-phosphate synthase (cp4 epsps) genes tolerant to the herbicide glyphosate are extensively grown worldwide. The concentration of recombinant DNA from RR soybeans in soil aggregates was studied due to the possibility of genetic transformation of soil bacteria. This study used real-time PCR to examine the concentration of cp4 epsps in four field soil aggregate size classes (>2000 microm, 2000-500 microm, 500-250 microm and <250 microm). Aggregates over 2000 microm in diameter had significantly greater gene concentrations than those with diameters under 2000 microm. The >2000 mum fraction contained between 66.62% and 99.18% of total gene copies, although it only accounted for about 30.00% of the sampled soil. Aggregate formation may facilitate persistence of recombinant DNA.
A new device to estimate abundance of moist-soil plant seeds
Penny, E.J.; Kaminski, R.M.; Reinecke, K.J.
2006-01-01
Methods to sample the abundance of moist-soil seeds efficiently and accurately are critical for evaluating management practices and determining food availability. We adapted a portable, gasoline-powered vacuum to estimate abundance of seeds on the surface of a moist-soil wetland in east-central Mississippi and evaluated the sampler by simulating conditions that researchers and managers may experience when sampling moist-soil areas for seeds. We measured the percent recovery of known masses of seeds by the vacuum sampler in relation to 4 experimentally controlled factors (i.e., seed-size class, sample mass, soil moisture class, and vacuum time) with 2-4 levels per factor. We also measured processing time of samples in the laboratory. Across all experimental factors, seed recovery averaged 88.4% and varied little (CV = 0.68%, n = 474). Overall, mean time to process a sample was 30.3 ? 2.5 min (SE, n = 417). Our estimate of seed recovery rate (88%) may be used to adjust estimates for incomplete seed recovery, or project-specific correction factors may be developed by investigators. Our device was effective for estimating surface abundance of moist-soil plant seeds after dehiscence and before habitats were flooded.
Oba, Yurika; Yamada, Toshihiro
2017-05-01
We estimated the sample size (the number of samples) required to evaluate the concentration of radiocesium ( 137 Cs) in Japanese fir (Abies firma Sieb. & Zucc.), 5 years after the outbreak of the Fukushima Daiichi Nuclear Power Plant accident. We investigated the spatial structure of the contamination levels in this species growing in a mixed deciduous broadleaf and evergreen coniferous forest stand. We sampled 40 saplings with a tree height of 150 cm-250 cm in a Fukushima forest community. The results showed that: (1) there was no correlation between the 137 Cs concentration in needles and soil, and (2) the difference in the spatial distribution pattern of 137 Cs concentration between needles and soil suggest that the contribution of root uptake to 137 Cs in new needles of this species may be minor in the 5 years after the radionuclides were released into the atmosphere. The concentration of 137 Cs in needles showed a strong positive spatial autocorrelation in the distance class from 0 to 2.5 m, suggesting that the statistical analysis of data should consider spatial autocorrelation in the case of an assessment of the radioactive contamination of forest trees. According to our sample size analysis, a sample size of seven trees was required to determine the mean contamination level within an error in the means of no more than 10%. This required sample size may be feasible for most sites. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rapid Method of Determining Factors Limiting Bacterial Growth in Soil
Aldén, L.; Demoling, F.; Bååth, E.
2001-01-01
A technique to determine which nutrients limit bacterial growth in soil was developed. The method was based on measuring the thymidine incorporation rate of bacteria after the addition of C, N, and P in different combinations to soil samples. First, the thymidine incorporation method was tested in two different soils: an agricultural soil and a forest humus soil. Carbon (as glucose) was found to be the limiting substance for bacterial growth in both of these soils. The effect of adding different amounts of nutrients was studied, and tests were performed to determine whether the additions affected the soil pH and subsequent bacterial activity. The incubation time required to detect bacterial growth after adding substrate to the soil was also evaluated. Second, the method was used in experiments in which three different size fractions of straw (1 to 2, 0.25 to 1, and <0.25 mm) were mixed into the agricultural soil in order to induce N limitation for bacterial growth. When the straw fraction was small enough (<0.25 mm), N became the limiting nutrient for bacterial growth after about 3 weeks. After the addition of the larger straw fractions (1 to 2 and 0.25 to 1 mm), the soil bacteria were C limited throughout the incubation period (10 weeks), although an increase in the thymidine incorporation rate after the addition of C and N together compared with adding them separately was seen in the sample containing the size fraction from 0.25 to 1 mm. Third, soils from high-pH, limestone-rich areas were examined. P limitation was observed in one of these soils, while tendencies toward P limitation were seen in some of the other soils. PMID:11282640
Akbari, Ali; Ghoshal, Subhasis
2015-12-15
We evaluated the role of soil aggregate pore size on biodegradation of essentially insoluble petroleum hydrocarbons that are biodegraded primarily at the oil-water interface. The size and spatial distribution of pores in aggregates sampled from biodegradation experiments of a clayey, aggregated, hydrocarbon-contaminated soil with relatively high bioremediation end point were characterized by image analyses of X-ray micro-CT scans and N2 adsorption. To determine the bioaccessible pore sizes, we performed separate experiments to assess the ability of hydrocarbon degrading bacteria isolated from the soil to pass through membranes with specific sized pores and to access hexadecane (model insoluble hydrocarbon). Hexadecane biodegradation occurred only when pores were 5 μm or larger, and did not occur when pores were 3 μm and smaller. In clayey aggregates, ∼ 25% of the aggregate volume was attributed to pores larger than 4 μm, which was comparable to that in aggregates from a sandy, hydrocarbon-contaminated soil (~23%) scanned for comparison. The ratio of volumes of inaccessible pores (<4 μm) to bioaccessible pores (>4 μm) in the clayey aggregates was 0.32, whereas in the sandy aggregates it was approximately 10 times lower. The role of soil microstructure on attainable bioremediation end points could be qualitatively assessed in various soils by the aggregate characterization approach outlined herein.
Measurement of variation in soil solute tracer concentration across a range of effective pore sizes
Harvey, Judson W.
1993-01-01
Solute transport concepts in soil are based on speculation that solutes are distributed nonuniformly within large and small pores. Solute concentrations have not previously been measured across a range of pore sizes and examined in relation to soil hydrological properties. For this study, modified pressure cells were used to measure variation in concentration of a solute tracer across a range of pore sizes. Intact cores were removed from the site of a field tracer experiment, and soil water was eluted from 10 or more discrete classes of pore size. Simultaneous changes in water content and unsaturated hydraulic conductivity were determined on cores using standard pressure cell techniques. Bromide tracer concentration varied by as much as 100% across the range of pore sizes sampled. Immediately following application of the bromide tracer on field plots, bromide was most concentrated in the largest pores; concentrations were lower in pores of progressively smaller sizes. After 27 days, bromide was most dilute in the largest pores and concentrations were higher in the smaller pores. A sharp, threefold decrease in specific water capacity during elution indicated separation of two major pore size classes at a pressure of 47 cm H2O and a corresponding effective pore diameter of 70 μm. Variation in tracer concentration, on the other hand, was spread across the entire range of pore sizes investigated in this study. A two-porosity characterization of the transport domain, based on water retention criteria, only broadly characterized the pattern of variation in tracer concentration across pore size classes during transport through a macroporous soil.
Potentially toxic elements contamination in urban soils: a comparison of three European cities.
Biasioli, M; Grcman, H; Kralj, T; Madrid, F; Díaz-Barrientos, E; Ajmone-Marsan, F
2007-01-01
Studies on several cities around the world confirm that urban soils are subject to heavy anthropogenic disturbance. However, these surveys are difficult to compare due to a lack of common sampling and analytical protocols. In this study the soils of Ljubljana (Slovenia), Sevilla (Spain), and Torino (Italy) were extensively sampled and analyzed using common procedures. Results highlighted similarities across the cities, despite their differences in geography, size, climate, etc. Potentially toxic elements (PTE) showed a wide range in concentration reflecting a diffuse contamination. Among the "urban" elements Pb exceeded the legislation threshold in 45% of Ljubljana, 43% of Torino, and 11% of Sevilla samples while Zn was above the limits in 20, 43, and 2% of the soils of Ljubljana, Torino, and Sevilla, respectively. The distribution of PTE showed no depth-dependant changes, while general soil properties seemed more responsive to anthropogenic influences. Multivariate statistics revealed similar associations between PTE in the three cities, with Cu, Pb, and Zn in a group, and Ni and Cr in another, suggesting an anthropogenic origin for the former group and natural one for the latter. Chromium and Ni were unaffected by land use, except for roadside soils, while Cu, Pb, and Zn distribution appeared to be more dependent on the distance from emission sources. Regardless of the location, climate, and size, the "urban" factor--integrating type and intensity of contaminant emission and anthropogenic disturbance--seems to prevail in determining trends of PTE contamination.
Heavy metals in the gold mine soil of the upstream area of a metropolitan drinking water source.
Ding, Huaijian; Ji, Hongbing; Tang, Lei; Zhang, Aixing; Guo, Xinyue; Li, Cai; Gao, Yang; Briki, Mergem
2016-02-01
Pinggu District is adjacent to the county of Miyun, which contains the largest drinking water source of Beijing (Miyun Reservoir). The Wanzhuang gold field and tailing deposits are located in Pinggu, threatening Beijing's drinking water security. In this study, soil samples were collected from the surface of the mining area and the tailings piles and analyzed for physical and chemical properties, as well as heavy metal contents and particle size fraction to study the relationship between degree of pollution degree and particle size. Most metal concentrations in the gold mine soil samples exceeded the background levels in Beijing. The spatial distribution of As, Cd, Cu, Pb, and Zn was the same, while that of Cr and Ni was relatively similar. Trace element concentrations increased in larger particles, decreased in the 50-74 μm size fraction, and were lowest in the <2 μm size fraction. Multivariate analysis showed that Cu, Cd, Zn, and Pb originated from anthropogenic sources, while Cr, Ni, and Sc were of natural origin. The geo-accumulation index indicated serious Pb, As, and Cd pollution, but moderate to no Ni, Cr, and Hg pollution. The Tucker 3 model revealed three factors for particle fractions, metals, and samples. There were two factors in model A and three factors for both the metals and samples (models B and C, respectively). The potential ecological risk index shows that most of the study areas have very high potential ecological risk, a small portion has high potential ecological risk, and only a few sampling points on the perimeter have moderate ecological risk, with higher risk closer to the mining area.
On soil textural classifications and soil-texture-based estimations
NASA Astrophysics Data System (ADS)
Ángel Martín, Miguel; Pachepsky, Yakov A.; García-Gutiérrez, Carlos; Reyes, Miguel
2018-02-01
The soil texture representation with the standard textural fraction triplet sand-silt-clay
is commonly used to estimate soil properties. The objective of this work was to test the hypothesis that other fraction sizes in the triplets may provide a better representation of soil texture for estimating some soil parameters. We estimated the cumulative particle size distribution and bulk density from an entropy-based representation of the textural triplet with experimental data for 6240 soil samples. The results supported the hypothesis. For example, simulated distributions were not significantly different from the original ones in 25 and 85 % of cases when the sand-silt-clay and very coarse+coarse + medium sand - fine + very fine sand - silt+clay
were used, respectively. When the same standard and modified triplets were used to estimate the average bulk density, the coefficients of determination were 0.001 and 0.967, respectively. Overall, the textural triplet selection appears to be application and data specific.
History and progress of the North American Soil Geochemical Landscapes Project, 2001-2010
Smith, David B.; Cannon, William F.; Woodruff, Laurel G.; Rivera, Francisco Moreira; Rencz, Andrew N.; Garrett, Robert G.
2012-01-01
In 2007, the U.S. Geological Survey, the Geological Survey of Canada, and the Mexican Geological Survey initiated a low-density (1 site per 1600 km2, 13323 sites) geochemical and mineralogical survey of North American soils (North American Soil Geochemical Landscapes Project). Sampling and analytical protocols were developed at a series of workshops in 20032004 and pilot studies were conducted from 20042007. The ideal sampling protocol at each site includes a sample from 05 cm depth, a composite of the soil A horizon, and a sample from the soil C horizon. The 3, HClO4, and HF. Separate methods are used for As, Hg, Se, and total C on this same size fraction. The major mineralogical components are determined by a quantitative X-ray diffraction method. Sampling in the conterminous U.S. was completed in 2010 (c. 4800 sites) with chemical and mineralogical analysis currently underway. In Mexico, approximately 66% of the sampling (871 sites) had been done by the end of 2010 with completion expected in 2012. After completing sampling in the Maritime provinces and portions of other provinces (472 sites, 7.6% of the total), Canada withdrew from the project in 2010. Preliminary results for a swath from the central U.S. to Florida clearly show the effects of soil parent material and climate on the chemical and mineralogical composition of soils. A sample archive will be established and made available for future investigations.
Turrión, María-Belén; Bueis, Teresa; Lafuente, Francisco; López, Olga; San José, Esther; Eleftheriadis, Alexandros; Mulas, Rafael
2018-06-12
The main aim of this research was to assess the effects of municipal solid waste compost (MSWC) addition to a burnt and unburnt calcareous soil, on the distribution of soil P forms in particle-size and extractable fractions. Three MSWC doses (1, 2 and 4% w/w) were added to burnt and unburnt soil samples and were incubated for 92 days at 29 °C and 75% of field capacity moisture. A particle-size fractionation followed by a sequential P extraction procedure was carried out. The burnt soil showed significantly lower concentrations of organic P forms (P org ) and significantly higher concentrations of stable P forms than the unburnt soil. Besides, in both burnt and unburnt soils, most P-forms presented higher concentrations in the clay fractions than in the sand and silt fractions, possibly due to the different proportions of microbial synthesized and plant-derived substances in the different particle-size fractions. Finer fractions of MSWC showed higher total P and P org concentrations than coarser fractions. Our results showed that the highest dose of MSWC was the most effective one for the rehabilitation of the burnt soil. MSWC amendment also caused an increase in soil P availability in the unburnt soil which initially contained relatively low levels of P. During the incubation process, a high proportion of organic P contained in the MSWC was mineralized into inorganic P forms. These forms were precipitated with Ca cations which are very abundant in these calcareous soils, significantly increasing the P fraction extracted by HCl in both amended soils. Hence, adding compost to the soil involved an increase in the available P reservoir in the long term. The combination of particle-size fractionation, chemical sequential extraction and incubation experiments can be a valuable tool for splitting soil phosphorus into different fractions regarding their availability in relation to short and long-term transformations in soil. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jordán López, Antonio; García-Moreno, Jorge; Gordillo-Rivero, Ángel J.; Zavala, Lorena M.; Cerdà, Artemi; Alanís, Nancy; Jiménez-Compán, Elizabeth
2015-04-01
Water repellency (WR) is a property of some soils that inhibits or delays water infiltration between a few seconds and days or weeks. Inhibited or delayed infiltration contributes to ponding and increases runoff flow generation, often increasing soil erosion risk. In water-repellent soils, water infiltrates preferentially through cracks or macropores, causing irregular soil wetting patterns, the development of preferential flow paths and accelerated leaching of nutrients. Although low inputs of hydrophobic organic substances and high mineralization rates lead to low degrees of WR in cropped soils, it has been reported that conservative agricultural practices may induce soil WR. Although there are many studies at catchment, slope or plot scales very few studies have been carried out at particle or aggregate scale. Intra-aggregate heterogeneity of physical, biological and chemical properties conditions the transport of substances, microbial activity and biochemical processes, including changes in the amount, distribution and chemical properties of organic matter. Some authors have reported positive relationships between soil WR and aggregate stability, since it may delay the entry of water into aggregates, increase structural stability and contribute to reduce soil erosion risk. Organic C (OC) content, aggregate stability and WR are therefore strongly related parameters. In the case of agricultural soils, where both the type of management as crops can influence all these parameters, it is important to evaluate the interactions among them and their consequences. Studies focused on the intra-aggregate distribution of OC and WR are necessary to shed light on the soil processes at a detailed scale. It is extremely important to understand how the spatial distribution of OC in soil aggregates can protect against rapid water entry and help stabilize larger structural units or lead to preferential flow. The objectives of this research are to study [i] the OC content and the intensity of WR in aggregates of different sizes. [ii] the intra-aggregate distribution of OC and the intensity of WR and [iii] the structural stability of soil aggregates relative to the OC content and the intensity of WR in soils under different crops (apricot, citrus and wheat) and different treatments (conventional tilling and mulching). Soil samples were collected from an experimental area (Luvic Calcisols and Calcic Luvisols) in the province of Sevilla (Southern Spain) under different crops (apricot, citrus and wheat) and different management types (conventional tillage with moldboard plow) and mulching (no-tilling and addition of wheat residues at rates varying between 5 and 8 Mg/ha/year). At each sampling site, soil blocks (50 cm long × 50 cm wide × 10 cm deep) were carefully collected to avoid disturbance of aggregates as much as possible and transported to the laboratory. At field moist condition, undisturbed soil aggregates were separated by hand. In order to avoid possible interferences due to disturbance by handling, aggregates broken during this process were discarded. Individual aggregates were arranged in paper trays and air-dried during 7 days under laboratory standard conditions. After air-drying, part of each sample was carefully divided for different analyses: [i] part of the original samples was sieved (2 mm) to eliminate coarse soil particles and homogenized for characterization of OC and N contents, C/N ratio and texture; [ii] part of the aggregates were dry-sieved (0.25-0.5, 0.5-1 and 1-2 mm) or measured with a caliper (2-5, 5-10 and 10-15 mm) and separated in different sieve-size classes for determination of WR and OC content; [iii] aggregates 10-15 mm in size were selected for obtaining aggregate layers using a soil aggregate erosion (SAE) apparatus and WR and OC content were determined at each layer; finally, [iv] in order to study the relation between stability to slaking, WR and OC, these properties were determined in 90 air-dried aggregates (about 10 mm in size) selected per treatment (mulched or conventional tillage) and crop (apricot, citrus and wheat). In this case, every set of aggregates was randomly divided in three groups (n = 30) for assessing stability to slaking, WR and OC, respectively. OC content in the fine earth fraction of soils under different crops did not show important variations, although it increased significantly from conventionally tilled to mulched soils. The distribution of OC content in aggregates with different size varied among soils under different crops, generally increasing with decreasing size. At the intra-aggregate level, OC concentrated preferably in the exterior layer of differently sized aggregates and of aggregate coatings and interior from conventionally tilled soils, probably because of recent organic inputs or leachates. In the case of mulched soils, higher concentrations were observed, but no significant differences among aggregate regions were found. The intensity of water repellency, determined by the ethanol method, did not show great variations among differently sized aggregates under different crops in the 0-10 cm layer, but increased significantly from conventionally tilled to mulched soils. Coarser aggregates were generally wettable, while finer aggregates showed slight water repellency. Regardless of variations in the distribution of OC in different layers of aggregate from conventionally tilled soils, great or significant differences in the distribution of water repellency at the intra-aggregate level were not found. In case of mulched soils such differences were not significant. Finally, the intensity of water repellency was much more important than the concentration of OC in the stability to slaking of aggregates.
Determination of complex electromechanical coefficients for piezoelectric materials
NASA Astrophysics Data System (ADS)
Du, Xiao-Hong
Sugar maple decline, a result of many possible biotic and abiotic causes, has been a problem in northern Pennsylvania since the early 1980s. Several studies have focused on specific causes, yet few have tried to look at a wide array. The purpose of this research was to investigate stresses in sugar maple forest plots in northern Pennsylvania. Three studies were undertaken. The first study examined the spatial extent of sugar maple on 248 plots in Bailey's ecoregions 212F and 212G, which are glaciated and unglaciated regions, respectively. In addition, a health assessment of sugar maple in Pennsylvania was made, with a resulting separation in population between healthy and unhealthy stands occurring at 20 percent dead sugar maple basal area. The second study was conducted to evaluate a statistical sampling design of 28 forested plots, from the above studies population of plots (248), and to provide data on physical and chemical soil variability and sample size estimation for other researchers. The variability of several soil parameters was examined within plots and between health classes of sugar maple and sample size estimations were derived for these populations. The effect of log-normal transformations on reducing variability and sample sizes was examined and soil descriptions of the plots sampled in 1998 were compared to the USDA Soil Survey mapping unit series descriptions for the plot location. Lastly, the effect of sampling intensity on the detection of significant differences between health class treatments was examined. The last study addressed sugar maple decline in northern Pennsylvania during the same period as the first study (approximately 1979-1989) but on 28 plots chosen from the first studies population. These were the same plots used in the second study on soil variability. Recent literature on sugar maple decline has focused on specific causes and few have tried to look at a wide array. This paper investigates stresses in sugar maple plots related to moisture and how these interact with other stresses such as chemistry, insect defoliation, geology, aspect, slope, topography, and atmospheric deposition.
Siciliano, Steven D; James, K; Zhang, Guiyin; Schafer, Alexis N; Peak, J Derek
2009-08-15
Human exposure to contaminated soils drives clean up criteria at many urban brownfields. Current risk assessment guidelines assume that humans ingest some fraction of soil smaller than 4 mm but have no estimates of what fraction of soil is ingested by humans. Here, we evaluated soil adherence to human hands for 13 agricultural soils from Saskatchewan, Canada and 17 different soils from a brownfield located in Iqaluit, Nunavut, Canada. In addition, we estimated average particle size adhering to human hands for residents of a northern urban setting. Further, we estimated how metal concentrations differed between the adhered and bulk (< 4 mm) fraction of soil. The average particle size for adhered agricultural soils was 34 microm, adhered brownfield soils was 105 microm, and particles adhered to human residentswas 36 microm. Metals were significantly enriched in these adhered fractions with an average enrichment [(adhered-bulk)/bulk] in metal concentration of 184% (113% median) for 24 different elements. Enrichment was greater for key toxicological elements of concern such as chromium (140%), copper (140%), nickel (130%), lead (110%), and zinc (130%) and was highest for silver (810%), mercury (630%), selenium (500%), and arsenic (420%). Enrichment were positively correlated with carbonate complexation constants (but not bulk solubility products) and suggests that the dominant mechanism controlling metal enrichment in these samples is a precipitation of carbonate surfaces that subsequently adsorb metals. Our results suggest that metals of toxicological concern are selectively enriched in the fraction of soil that humans incidentally ingest. Investigators should likely process soil samples through a 45 microm sieve before estimating the risk associated with contaminated soils to humans. The chemical mechanisms resulting in metal enrichment likely differ between sites but at our site were linked to surface complexation with carbonates.
Biophysical Controls over Carbon and Nitrogen Stocks in Desert Playa Wetlands
NASA Astrophysics Data System (ADS)
McKenna, O. P.; Sala, O. E.
2014-12-01
Playas are ephemeral desert wetlands situated at the bottom of closed catchments. Desert playas in the Southwestern US have not been intensively studied despite their potential importance for the functioning of desert ecosystems. We want to know which geomorphic and ecological variables control of the stock size of soil organic carbon, and soil total nitrogen in playas. We hypothesize that the magnitude of carbon and nitrogen stocks depends on: (a) catchment size, (b) catchment slope, (d) catchment vegetation cover, (e) bare-ground patch size, and (f) catchment soil texture. We chose thirty playas from across the Jornada Basin (Las Cruces, NM) ranging from 0.5-60ha in area and with varying catchment characteristics. We used the available 5m digital elevation map (DEM) to calculate the catchment size and catchment slope for these thirty playas. We measured percent cover, and patch size using the point-intercept method with three 10m transects in each catchment. We used the Bouyoucos-hydrometer soil particle analysis to determine catchment soil texture. Stocks of organic carbon and nitrogen were measured from soil samples at four depths (0-10 cm, 10-30 cm, 30-60 cm, 60-100 cm) using C/N combustion analysis. In terms of nitrogen and organic carbon storage, we found soil nitrogen values in the top 10cm ranging from 41.963-214.365 gN/m2, and soil organic carbon values in the top 10cm ranging from 594.339-2375.326 gC/m2. The results of a multiple regression analysis show a positive relationship between catchment slope and both organic carbon and nitrogen stock size (nitrogen: y= 56.801 +47.053, R2=0.621; organic carbon: y= 683.200 + 499.290x, R2= 0.536). These data support our hypothesis that catchment slope is one of factors controlling carbon and nitrogen stock in desert playas. We also applied our model to the 69 other playas of the Jornada Basin and estimated stock sizes (0-10cm) between 415.07-447.97 Mg for total soil nitrogen and 4627.99-5043.51 Mg for soil organic carbon.
Impact of land use change on soil organic matter dynamics in subalpine grassland
NASA Astrophysics Data System (ADS)
Meyer, Stefanie; Leifeld, Jens; Bahn, Michael; Fuhrer, Jürg
2010-05-01
Information regarding the response of soil organic matter (SOM) in soils to past and expected future land use changes in the European Alps is scarce. Understanding this response requires knowledge of size and residence times of SOM fractions with distinct stabilities. In order to quantify differences between types of land use in the amount, distribution and turnover rates of soil organic carbon (SOC) in subalpine grassland soils, we used soil aggregate and SOM density fractionation in combination with 14C dating. Samples were taken along gradients of different types of land use from meadow (M) to pasture (P) and to abandoned grassland (A) in the Stubai Valley and in the Matsch Valley. Sampling sites in both areas were located at equal altitude (1880 m and 1820 m, respectively) with the same parent material and soil type, but the Matsch Valley receives 400-500 mm less annual rainfall. SOC stocks in the top 10 cm were 2.47 ± 0.32 (M), 2.75 ± 0.32 (P), and 2.50 ± 0.31 kg C/m2 (A) in the Stubai Valley and 2.25 ± 0.14 (M), 3.45 ± 0.22 (P), 3.16 ± 0.27 kg C/m2(A) in the Matsch Valley. Three aggregate size classes were separated by wet sieving: 2 mm. The light floating fraction (wPOM, ρ >1 g/cm3) was included in the analysis. Free (f-) and occluded particulate organic matter (oPOM) were isolated from each aggregate size class (ρ >1.6 g/cm3). At both locations, more than 80% of SOC was stored in small (0.25-2 mm) and large (>2 mm) macroaggregates, but no trend in relation to the different types of land use could be detected. The fraction of C in fPOM and in oPOM in all aggregate size classes was highest for soil from abandoned grasslands. The bulk soil of the abandoned site in the Stubai Valley showed a significantly higher share of fPOM-C and oPOM-C and a higher amount of wPOM-C as compared to the soil from managed grassland, whereas in the Matsch Valley pasture soil had a significantly higher wPOM-C content. At both sites, 13C natural abundance analyses revealed a gradient in 13C between density fractions. wPOM was particularly useful to reveal differences between sampling sites. Radiocarbon values emphasized the importance of this fraction for the calculation of the turnover of bulk soil C. wPOM turned out to be the most active fraction turning over in 2-4 years. Bulk SOC turnover time was approximately 46 years for pasture soil and 78 years for meadow soil. In conclusion, density fractionation produced homogenous fractions allowing detection of differences between different land use types. However, C distribution among aggregates did not systematically differ.
Antibiotic resistance of microorganisms in agricultural soils in Russia
NASA Astrophysics Data System (ADS)
Danilova, Natasha; Galitskaya, Polina; Selivanovskaya, Svetlana
2017-04-01
Antibiotics are medicines widely used to treat and prevent bacterial infections not only in human medicine but also in veterinary. Besides, in animal husbandry antibiotics are often used in for stimulation of animal's growth. Many antibiotics used for veterinary purposes are weakly absorbed in the animal's gut. So up to 90% of the administered antibiotics are excreted with manure and urine. Therefore use of manure as an organic fertilizer leads to formation and spreading of antibiotic resistance among soil microbes. Another reason of such spreading is the horizontal transfer of genes encoding antibiotic resistance from manure to soil microflora. The level of antibiotic resistance genes pollution of soils has not been properly studied yet. The aim of this study was to estimate the contamination of agricultural soils by antibiotic resistant genes. 30 samples of agricultural soils were selected around of Kazan city (Tatarstan Republic) with 1.3 Mio citizens. Since tetracycline is reported to be the most wide spread veterinary antibiotic in Russia, we estimated the level of soil contamination by tet(X) gene encoding tetracycline decomposition in microbial cell. Real time PCR method with specific primers was used as a method of investigation. Particle size type distribution of 31% of soil samples was estimated to be sandy clay, and 69% of soil samples - to silty clay. Content of dissoluble organic carbon ranged from 0,02 mg g -1 (sample 20) to 0,46 mg g -1 (sample 16). Respiration activity and microbial biomass of soils were estimated to be 0,80-5,28 CO2 C mg g -1 h-1 and 263,51-935,77 µg kg - 1 respectively. The values presented are typical for soils of Tatarstan Republic. In terms of the antibiotic resistant gene content, 27 of 30 samples investigated contained tet(X) gene, while 52% of the samples were highly contaminated, 34% of samples were middle contaminated and 14% of samples - weakly contaminated.
NASA Astrophysics Data System (ADS)
Durner, Wolfgang; Iden, Sascha C.; von Unold, Georg
2017-01-01
The particle-size distribution (PSD) of a soil expresses the mass fractions of various sizes of mineral particles which constitute the soil material. It is a fundamental soil property, closely related to most physical and chemical soil properties and it affects almost any soil function. The experimental determination of soil texture, i.e., the relative amounts of sand, silt, and clay-sized particles, is done in the laboratory by a combination of sieving (sand) and gravitational sedimentation (silt and clay). In the latter, Stokes' law is applied to derive the particle size from the settling velocity in an aqueous suspension. Traditionally, there are two methodologies for particle-size analysis from sedimentation experiments: the pipette method and the hydrometer method. Both techniques rely on measuring the temporal change of the particle concentration or density of the suspension at a certain depth within the suspension. In this paper, we propose a new method which is based on the pressure in the suspension at a selected depth, which is an integral measure of all particles in suspension above the measuring depth. We derive a mathematical model which predicts the pressure decrease due to settling of particles as function of the PSD. The PSD of the analyzed sample is identified by fitting the simulated time series of pressure to the observed one by inverse modeling using global optimization. The new method yields the PSD in very high resolution and its experimental realization completely avoids any disturbance by the measuring process. A sensitivity analysis of different soil textures demonstrates that the method yields unbiased estimates of the PSD with very small estimation variance and an absolute error in the clay and silt fraction of less than 0.5%.
NASA Astrophysics Data System (ADS)
Durner, Wolfgang; Iden, Sascha C.; von Unold, Georg
2017-04-01
The particle-size distribution (PSD) of a soil expresses the mass fractions of various sizes of mineral particles which constitute the soil material. It is a fundamental soil property, closely related to most physical and chemical soil properties and it affects almost any soil function. The experimental determination of soil texture, i.e., the relative amounts of sand, silt, and clay-sized particles, is done in the laboratory by a combination of sieving (sand) and gravitational sedimentation (silt and clay). In the latter, Stokes' law is applied to derive the particle size from the settling velocity in an aqueous suspension. Traditionally, there are two methodologies for particle-size analysis from sedimentation experiments: the pipette method and the hydrometer method. Both techniques rely on measuring the temporal change of the particle concentration or density of the suspension at a certain depth within the suspension. In this paper, we propose a new method which is based on the pressure in the suspension at a selected depth, which is an integral measure of all particles in suspension above the measuring depth. We derive a mathematical model which predicts the pressure decrease due to settling of particles as function of the PSD. The PSD of the analyzed sample is identified by fitting the simulated time series of pressure to the observed one by inverse modeling using global optimization. The new method yields the PSD in very high resolution and its experimental realization completely avoids any disturbance by the measuring process. A sensitivity analysis of different soil textures demonstrates that the method yields unbiased estimates of the PSD with very small estimation variance and an absolute error in the clay and silt fraction of less than 0.5%
Ye, Chen; Li, Siyue; Yang, Yuyi; Shu, Xiao; Zhang, Jiaquan; Zhang, Quanfa
2015-01-01
The ~350 km2 water level fluctuation zone (WLFZ) in the Three Gorges Reservoir (TGR) of China, situated at the intersection of terrestrial and aquatic ecosystems, experiences a great hydrological change with prolonged winter inundation. Soil samples were collected in 12 sites pre- (September 2008) and post submergence (June 2009) in the WLFZ and analyzed for soil nutrients. Self-organizing map (SOM) and statistical analysis including multi-way ANOVA, paired-T test, and stepwise least squares multiple regression were employed to determine the spatio-temporal variations of soil nutrients in relation to submergence, and their correlations with soil physical characteristics. Results showed significant spatial variability in nutrients along ~600 km long shoreline of the TGR before and after submergence. There were higher contents of organic matter, total nitrogen (TN), and nitrate (NO3-) in the lower reach and total phosphorus (TP) in the upper reach that were primarily due to the spatial variations in soil particle size composition and anthropogenic activities. Submergence enhanced soil available potassium (K), while significantly decreased soil N, possibly due to the alterations of soil particle size composition and increase in soil pH. In addition, SOM analysis determined important roles of soil pH value, bulk density, soil particle size (i.e., silt and sand) and nutrients (TP, TK, and AK) on the spatial and temporal variations in soil quality. Our results suggest that urban sewage and agricultural runoffs are primary pollutants that affect soil nutrients in the WLFZ of TGR. PMID:25789612
Dermatas, Dimitris; Chrysochoou, Maria
2007-08-01
Six firing range soils were analyzed, representing different environments, firing conditions, and maintenance practices. The particle size distribution and lead (Pb) concentration in each soil fraction were determined for samples obtained from the backstop berms. The main factors that were found to influence Pb fragment size were the type of soil used to construct the berms and the type of weapon fired. The firing of high velocity weapons, i.e., rifles, onto highly angular soils induced significant fragmentation of the bullets and/or pulverization of the soil itself. This resulted in the accumulation of Pb in the finer soil fractions and the spread of Pb contamination beyond the vicinity of the backstop berm. Conversely, the use of clay as backstop and the use of low velocity pistols proved to be favorable for soil clean-up and range maintenance, since Pb was mainly present as large metallic fragments that can be recovered by a simple screening process. Other factors that played important roles in Pb particle size distribution were soil chemistry, firing distance, and maintenance practices, such as the use of water spray for dust suppression and deflectors prior to impact. Overall, coarse Pb particles provide much easier and more cost-effective maintenance, soil clean-up, and remediation via physical separation. Fine Pb particles release Pb more easily, pose an airborne Pb hazard, and require the application of stabilization/solidification treatment methods. Thus, to ensure sustainable firing range operations by means of cost-effective design, maintenance, and clean-up, especially when high velocity weapons are used, the above mentioned factors should be carefully considered.
soil organic matter fractionation
NASA Astrophysics Data System (ADS)
Osat, Maryam; Heidari, Ahmad
2010-05-01
Carbon is essential for plant growth, due to its effects on other soil properties like aggregation. Knowledge of dynamics of organic matter in different locations in the soil matrix can provide valuable information which affects carbon sequestration and soil the other soil properties. Extraction of soil organic matter (SOM) fractions has been a long standing approach to elucidating the roles of soil organic matter in soil processes. Several kind fractionation methods are used and all provide information on soil organic matter function. Physical fractionation capture the effects on SOM dynamics of the spatial arrangement of primary and secondary organomineral particles in soil while chemical fractionation can not consider the spatial arrangement but their organic fractions are suitable for advanced chemical characterization. Three method of physical separation of soil have been used, sieving, sedimentation and densitometry. The distribution of organic matter within physical fractions of the soil can be assessed by sieving. Sieving separates soil particles based strictly on size. The study area is located on north central Iran, between 35° 41'- 36° 01' N and 50° 42'- 51° 14' E. Mean annual precipitation about 243.8 mm and mean annual air temperature is about 14.95 °C. The soil moisture and temperature regime vary between aridic-thermic in lower altitudes to xeric-mesic in upper altitudes. More than 36 surface soil samples (0-20 cm) were collected according to land-use map units. After preliminary analyzing of samples 10 samples were selected for further analyses in five size fractions and three different time intervals in September, January and April 2008. Fractionation carried out by dry sieving in five classes, 1-2 mm, 0.5-1 mm, 270 μm-0.5mm, 53-270 μm and <53 μm. Organic matter and C/N ratio were determined for all fractions at different time intervals. Chemical fractionation of organic matter also carried out according to Tan (2003), also Mineralogical studies were carried out to illustrate the relationship between clay mineral series and organic matter. According to the results the amount of organic carbon increases by decreasing size fractions and reaches to its maximum in <250μ classes, also 2:1 and expanding clays which have the ability to maintain larger amounts of organic carbon were the dominant clay minerals. Chemical fractionation of soil organic matter to humic acid and fulvic acid shows that there is a better correlation between humic acid contents and soil organic matter (R2 = 0.86) than fulvic acid and organic matter (R2=0.5). The amount of humic and fulvic acids varies in different size fractions and reaches to its minimum in the E fraction in all three stages. The relationships between fulvic and humic acids with organic matter content, demonstrating that at the lower organic matter content, humification is slow, thus humic acid content is rather low than the fulvic acid content. By increasing the organic matter content biological activity increases and followed by humification process proceeds so that the humic acid content locates over the fulvic acid content.
DNA analysis of soil extracts can be used to investigate fine root depth distribution of trees
Bithell, Sean L.; Tran-Nguyen, Lucy T. T.; Hearnden, Mark N.; Hartley, Diana M.
2015-01-01
Understanding the root distribution of trees by soil coring is time-consuming as it requires the separation of roots from soil and classification of roots into particular size classes. This labour-intensive process can limit sample throughput and therefore sampling intensity. We investigated the use of quantitative polymerase chain reaction (qPCR) on soil DNA extractions to determine live fine root DNA density (RDD, mg DNA m−2) for mango (Mangifera indica) trees. The specificity of the qPCR was tested against DNA extracted from 10 mango cultivars and 14 weed species. All mango cultivars and no weeds were detected. Mango DNA was successfully quantified from control soil spiked with mango roots and weed species. The DNA yield of mango root sections stored in moist soil at 23–28 °C declined after 15 days to low concentrations as roots decayed, indicating that dead root materials in moist soil would not cause false-positive results. To separate large roots from samples, a root separation method for field samples was used to target the root fragments remaining in sieved (minimum 2 mm aperture) soil for RDD comparisons. Using this method we compared the seasonal RDD values of fine roots for five mango rootstock cultivars in a field trial. The mean cultivar DNA yields by depth from root fragments in the sieved soil samples had the strongest relationship (adjusted multiple R2 = 0.9307, P < 0.001) with the dry matter (g m−2) of fine (diameter <0.64 mm) roots removed from the soil by sieving. This method provides a species-specific and rapid means of comparing the distribution and concentration of live fine roots of trees in orchards using soil samples up to 500 g. PMID:25552675
Soil and surface layer type affect non-rainfall water inputs
NASA Astrophysics Data System (ADS)
Agam, Nurit; Berliner, Pedro; Jiang, Anxia
2017-04-01
Non-rainfall water inputs (NRWIs), which include fog deposition, dew formation, and direct water vapor adsorption by the soil, play a vital role in arid and semiarid regions. Environmental conditions, namely radiation, air temperature, air humidity, and wind speed, largely affect the water cycle driven by NRWIs. The substrate type (soil type and the existence/absence of a crust layer) may as well play a major role. Our objective was to quantify the effects of soil type (loess vs. sand) and surface layer (bare vs. crusted) on the gain and posterior evaporation of NRWIs in the Negev Highlands throughout the dry summer season. Four undisturbed soil samples (20 cm diameter and 50 cm depth) were excavated and simultaneously introduced into a PVC tube. Two samples were obtained in the Negev's Boker plain (loess soil) and two in the Nizzana sand dunes in the Western Negev. On one sample from each site the crust was removed while on the remaining one the natural crust was left in place. The samples were brought to the research site at the Jacob Bluestein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel (31˚08' N, 34˚53' E, 400 meter above the sea level) where they were exposed to the same environmental conditions. The four samples in their PVC tubes were placed on top of scales and the samples mass was continuously monitored. Soil temperatures were monitored at depths of 1, 2, 3, 5 and10 cm in each microlysimeter (ML) using Copper-Constantan thermocouples. The results of particle size distribution indicated that the crust of the loess soil is probably a physical crust, i.e., a crust that forms due to raindroplets impact; while the crust on the sand soil is biological. On most days, the loess soils adsorbed more water than their corresponding sand soil samples. For both soils, the samples for which the crust was removed adsorbed more water than the samples for which it was intact. The difference in daily water adsorption amount between crusted and non-crusted sandy soils often exceeded that between crusted and non-crusted loess soils.
Mashburn, Shana L.; Smith, S. Jerrod
2007-01-01
The U.S. Geological Survey, in cooperation with the Absentee Shawnee Tribe of Oklahoma, began a reconnaissance study of a site in Pottawatomie County, Oklahoma, in 2005 by testing soil, shallow ground water, and plant material for the presence of trace elements and semivolatile organic compounds. Chemical analysis of plant material at the site was investigated as a preliminary tool to determine the extent of contamination at the site. Thirty soil samples were collected from 15 soil cores during October 2005 and analyzed for trace elements and semivolatile organic compounds. Five small-diameter, polyvinyl-chloride-cased wells were installed and ground-water samples were collected during December 2005 and May 2006 and analyzed for trace elements and semivolatile organic compounds. Thirty Johnsongrass samples and 16 Coralberry samples were collected during September 2005 and analyzed for 53 constituents, including trace elements. Results of the soil, ground-water, and plant data indicate that the areas of trace element and semivolatile organic compound contamination are located in the shallow (A-horizon) soils near the threading barn. Most of the trace-element concentrations in the soils on the study site were either similar to or less than trace-element concentrations in background soils. Several trace elements and semivolatile organic compounds exceeded the U.S. Environmental Protection Agency, Region 6, Human Health Medium-Specific Screening Levels 2007 for Tap Water, Residential Soils, Industrial Indoor Soils, and Industrial Outdoor Soils. There was little or no correlation between the plant and soil sample concentrations and the plant and ground-water concentrations based on the current sample size and study design. The lack of correlation between trace-element concentrations in plants and soils, and plants and ground water indicate that plant sampling was not useful as a preliminary tool to assess contamination at the study site.
NASA Astrophysics Data System (ADS)
Menenti, Massimo; Akdim, Nadia; Alfieri, Silvia Maria; Labbassi, Kamal; De Lorenzi, Francesca; Bonfante, Antonello; Basile, Angelo
2014-05-01
Frequent and contiguous observations of soil water content such as the ones to be provided by SMAP are potentially useful to improve distributed models of soil water balance. This requires matching of observations and model estimates provided both sample spatial patterns consistently. The spatial resolution of SMAP soil water content data products ranges from 3 km X 3 km to 40 km X 40 km. Even the highest spatial resolution may not be sufficient to capture the spatial variability due to terrain, soil properties and precipitation. We have evaluated the SMAP spatial resolution against spatial variability of soil water content in two Mediterranean landscapes: a hilly area dominated by vineyards and olive orchards in Central Italy and a large irrigation schemes (Doukkala) in Morocco. The "Valle Telesina" is a 20,000 ha complex landscape located in South Italy in the Campania region, which has a complex geology and geomorphology and it is characterised by an E-W elongated graben where the Calore river flows. The main crops are grapevine (6,448 ha) and olive (3,390 ha). Soil information was mainly derived from an existing soil map at 1:50 000 scale (Terribile et al., 1996). The area includes 47 SMUs (Soil Mapping Units) and about 60 soil typological units (STUs). (Bonfante et al., 2011). In Doukkala, the soil water retention and unsaturated capillary conductivity were estimated from grain size distribution of a number of samples (22 pilot points, each one sampled in 3 horizons of 20cm), and combined with a soil map. The land use classification was carried out using a NDVI time series at high spatial resolution (Landsat TM and SPOT HRV). We have calculated soil water content for each soil unit in each area in response to several climate cases generating daily maps of soil water content at different depths. To reproduce spatial sampling by SMAP we have filtered these spatial patterns by calculating box averages with grid sizes of 1 km X 1 km and 5 km X 5 km. We have repeated this procedure for soil water content in the 0 to 5 cm and 0 to 10 cm depths. For each case we have compared the variance of filtered soil water content with the expected accuracy of SMAP soil water content. The two areas are very different as regards morphology and soil formation. The Valle Telesina is characterized by a very significant variability of soil hydrological properties leading to complex patterns in soil water content. Contrariwise, the soil properties estimated for all soil mapping units in the Dhoukkala collapse into just two pairs of water retention and hydraulic conductivity characteristics, leading to smoother patterns of soil water content.
Effect of bovine manure on fecal coliform attachment to soil and soil particles of different sizes.
Guber, Andrey K; Pachepsky, Yakov A; Shelton, Daniel R; Yu, Olivia
2007-05-01
Manure-borne bacteria can be transported in runoff as free cells, cells attached to soil particles, and cells attached to manure particles. The objectives of this work were to compare the attachment of fecal coliforms (FC) to different soils and soil fractions and to assess the effect of bovine manure on FC attachment to soil and soil fractions. Three sand fractions of different sizes, the silt fraction, and the clay fraction of loam and sandy clay loam soils were separated and used along with soil samples in batch attachment experiments with water-FC suspensions and water-manure-FC suspensions. In the absence of manure colloids, bacterial attachment to soil, silt, and clay particles was much higher than the attachment to sand particles having no organic coating. The attachment to the coated sand particles was similar to the attachment to silt and clay. Manure colloids in suspensions decreased bacterial attachment to soils, clay and silt fractions, and coated sand fractions, but did not decrease the attachment to sand fractions without the coating. The low attachment of bacteria to silt and clay particles in the presence of manure colloids may cause predominantly free-cell transport of manure-borne FC in runoff.
Soil mechanics on the Moon, Mars, and Mulberry
NASA Technical Reports Server (NTRS)
Carrier, W. D., III
1988-01-01
From a soil mechanics point of view, the Moon is a relatively simple place. Without any water, organics, or clay minerals, the geotechnical properties of the lunar soil are confined to a fairly limited range. Furthermore, the major soil-forming agent is meteorite impact, which breaks the big particles into little particles; and simultaneously, cements the little particles back together again with molten glass. After about a hundred million years of exposure to meteorite impact, the distribution of particle sizes in the soil achieves a sort of steady state. The majority of the returned lunar soil samples have been found to be well-graded silty-sand to sandy-silt (SM in the Unified Soil Classification System). Each of the particle size distributions plots within a relatively narrow band, which appears to be uniform over the entire lunar surface. This further restricts the range of physical properties of the lunar surface. In contrast, Martian soils should exhibit an extremely wide range of properties. We already know that there is a small amount of water in the soil, greater than in the Martian atmosphere. Furthermore, the soil is suspected to be smectitic clay. That makes two out of the three factors that greatly affect the properties of terrestrial soils.
Aggregate distribution and associated organic carbon influenced by cover crops
NASA Astrophysics Data System (ADS)
Barquero, Irene; García-González, Irene; Benito, Marta; Gabriel, Jose Luis; Quemada, Miguel; Hontoria, Chiquinquirá
2013-04-01
Replacing fallow with cover crops during the non-cropping period seems to be a good alternative to diminish soil degradation by enhancing soil aggregation and increasing organic carbon. The aim of this study was to analyze the effect of replacing fallow by different winter cover crops (CC) on the aggregate distribution and C associated of an Haplic Calcisol. The study area was located in Central Spain, under semi-arid Mediterranean climate. A 4-year field trial was conducted using Barley (Hordeum vulgare L.) and Vetch (Vicia sativa L.) as CC during the intercropping period of maize (Zea mays L.) under irrigation. All treatments were equally irrigated and fertilized. Maize was directly sown over CC residues previously killed in early spring. Composite samples were collected at 0-5 and 5-20 cm depths in each treatment on autumn of 2010. Soil samples were separated by wet sieving into four aggregate-size classes: large macroaggregates ( >2000 µm); small macroaggregates (250-2000 µm); microaggregates (53-250 µm); and < 53 µm (silt + clay size). Organic carbon associated to each aggregate-size class was measured by Walkley-Black Method. Our preliminary results showed that the aggregate-size distribution was dominated by microaggregates (48-53%) and the <53 µm fraction (40-44%) resulting in a low mean weight diameter (MWD). Both cover crops increased aggregate size resulting in a higher MWD (0.28 mm) in comparison with fallow (0.20 mm) in the 0-5 cm layer. Barley showed a higher MWD than fallow also in 5-20 cm layer. Organic carbon concentrations in aggregate-size classes at top layer followed the order: large macroaggregates > small macroaggregates > microaggregates > silt + clay size. Treatments did not influence C concentration in aggregate-size classes. In conclusion, cover crops improved soil structure increasing the proportion of macroaggregates and MWD being Barley more effective than Vetch at subsurface layer.
Assessing the stability of soil organic matter by fractionation and 13C isotope techniques
NASA Astrophysics Data System (ADS)
Larionova, A. A.; Zolotareva, B. N.; Kvitkina, A. K.; Evdokimov, I. V.; Bykhovets, S. S.; Stulin, A. F.; Kuzyakov, Ya. V.; Kudeyarov, V. N.
2015-02-01
Carbon pools of different stabilities have been separated from the soil organic matter of agrochernozem and agrogray soil samples. The work has been based on the studies of the natural abundance of the carbon isotope composition by C3-C4 transition using the biokinetic, size-density, and chemical fractionation (6 M HCl hydrolysis) methods. The most stable pools with the minimum content of new carbon have been identified by particle-size and chemical fractionation. The content of carbon in the fine fractions has been found to be close to that in the nonhydrolyzable residue. This pool makes up 65 and 48% of Corg in the agrochernozems and agrogray soils, respectively. The combination of the biokinetic approach with particle-size fractionation or 6 M HCl hydrolysis has allowed assessing the size of the medium-stable organic carbon pool with a turnover time of several years to several decades. The organic matter pool with this turnover rate is usually identified from the variation in the 13C abundance by C3-C4 transition. In the agrochernozems and agrogray soils, the medium-stable carbon pool makes up 35 and 46% of Corg, respectively. The isotope indication may be replaced by a nonisotope method to significantly expand the study of the inert and mediumstable organic matter pools in the geographical aspect, but this requires a comparative analysis of particle-size and chemical fractionation data for all Russian soils.
[Identification of using organic carbon isotopic composition of soil pollution process].
Guo, Qing-Jun; Chen, Tong-Bin; Yang, Jun; Strauss, Harald; Lei, Mei; Zhu, Guang-Xu; Li, Yan-Mei; Zhou, Xiao-Yong; Li, Xiao-Yan
2011-10-01
This study has taken advantage of the characteristics of concentration of soil organic matter (SOC) and delta13 C(SOC) values to provide proofs for environment quality assessment and to know more about polluted sources, sizes and processes in Beijing steel company area. delta13C values of SOC is good for tracing sources and documenting shifts in community composition and distribution. Two sections (Beijing steel company area and Yongledian, Tongzhou) which belong to two different soil types collected in Beijing, and organic carbon isotopic composition and total soil organic carbon were analyzed. These results shows that SOC of soil samples from Beijing steel company area are quite high, and even 9.7% at the surface sample, however SOC from unpolluted area (Yongledian area) is lower than those of industrial area. delta13 C(SOC) from soils of Beijing steel company area and Yongledian area respectively vary from -24.8 per thousand to -23.1 per thousand and -26.4 per thousand to -20.5 per thousand, the results are quite different. The results reflect that there are different organic carbon sources in different types' soil: Organic carbon from Beijing steel company area has been mainly affected by coal burning, soil organic carbon concentrations are quite high, and pollution can affect on soils 70 cm deep underground; and soils from Yongledian area, have been not polluted, and organic matter is from natural litter (C3 plants). Although there are different soil organic carbon concentrations and isotope compositions, two soil sections have similar variation trends. This study provides proofs for environment quality assessment and know more about polluted and natural sources, sizes in Beijing.
NASA Astrophysics Data System (ADS)
Kramer, M. G.; Yuen, W.
2013-12-01
The mechanisms governing soil carbon stabilization in Mediterranean grasslands are poorly understood. Consequently, how soil carbon will respond to climate change in these ecosystems, remains uncertain. We examined the distribution of carbon and it's relationship to soil mineralogy with depth across a sequence of topographic positions of grassland soils in the Central Valley of Northern California. We sampled representative 2 m deep soil cores at mid slope topopositions (resulting in 4 detailed 20 cm interval depth profiles), in conjunction with replicated 1 m deep soil profiles under two types of parent material; marine sandstone and loamy marine clay deposits. For sequentially deeper samples, we measured bulk density, particle size, soil pH, oxalate and citrate-dithionite extractable Fe, Al and Si. Inorganic and organic carbon content were determined by measuring bulk C and in the various size fractions with and without carbonate removal using a hydrochloric acid vacuum fumigation technique. C and N stable isotope ratios were also measured for both bulk and organic carbon. We found significant differences in total C storage, inorganic and organic C amount between topographic positions. Differences in pedogenic materials (oxalate and citrate-dithionate extractable Al, Fe and Si) and particle size distribution were also found. All topographic positions showed a decline in organic carbon content down to the measured depth of 2 m. South facing slopes contained a greater proportion of inorganic carbon throughout the depth profiles, declining with depth, whereas total C storage was greater on north facing slopes, where total annual above ground biomass was greater. Overall, carbon storage varied between inorganic to organic C form across the toposequence and with more or less direct association with pedogenic materials (oxalate and citrate-diothionite extractable) depending on landform position. We conclude that inorganic carbon storage may increase in these grassland soils, as climate warming occurs in the region, although the fate of organic C loss or storage remains less clear.
Liu, Jie; Gao, Meixiang; Liu, Jinwen; Guo, Yuxi; Liu, Dong; Zhu, Xinyu; Wu, Donghui
2018-01-01
Spatial distribution is an important topic in community ecology and a key to understanding the structure and dynamics of populations and communities. However, the available information related to the spatial patterns of soil mite communities in long-term tillage agroecosystems remains insufficient. In this study, we examined the spatial patterns of soil mite communities to explain the spatial relationships between soil mite communities and soil parameters. Soil fauna were sampled three times (August, September and October 2015) at 121 locations arranged regularly within a 400 m × 400 m monitoring plot. Additionally, we estimated the physical and chemical parameters of the same sampling locations. The distribution patterns of the soil mite community and the edaphic parameters were analyzed using a range of geostatistical tools. Moran's I coefficient showed that, during each sampling period, the total abundance of the soil mite communities and the abundance of the dominant mite populations were spatially autocorrelated. The soil mite communities demonstrated clear patchy distribution patterns within the study plot. These patterns were sampling period-specific. Cross-semivariograms showed both negative and positive cross-correlations between soil mite communities and environmental factors. Mantel tests showed a significant and positive relationship between soil mite community and soil organic matter and soil pH only in August. This study demonstrated that in the cornfield, the soil mite distribution exhibited strong or moderate spatial dependence, and the mites formed patches with sizes less than one hundred meters. In addition, in this long-term tillage agroecosystem, soil factors had less influence on the observed pattern of soil mite communities. Further experiments that take into account human activity and spatial factors should be performed to study the factors that drive the spatial distribution of soil microarthropods.
Effects of the soil pore network architecture on the soil's physical functionalities
NASA Astrophysics Data System (ADS)
Smet, Sarah; Beckers, Eléonore; Léonard, Angélique; Degré, Aurore
2017-04-01
The soil fluid movement's prediction is of major interest within an agricultural or environmental scope because many processes depend ultimately on the soil fluids dynamic. It is common knowledge that the soil microscopic pore network structure governs the inner-soil convective fluids flow. There isn't, however, a general methodthat consider the pore network structure as a variable in the prediction of thecore scale soil's physical functionalities. There are various possible representations of the microscopic pore network: sample scale averaged structural parameters, extrapolation of theoretic pore network, or use of all the information available by modeling within the observed pore network. Different representations implydifferent analyzing methodologies. To our knowledge, few studies have compared the micro-and macroscopic soil's characteristics for the same soil core sample. The objective of our study is to explore the relationship between macroscopic physical properties and microscopic pore network structure. The saturated hydraulic conductivity, the air permeability, the retention curve, and others classical physical parameters were measured for ten soil samples from an agricultural field. The pore network characteristics were quantified through the analyses of X-ray micro-computed tomographic images(micro-CT system Skyscan-1172) with a voxel size of 22 µm3. Some of the first results confirmed what others studies had reported. Then, the comparison between macroscopic properties and microscopic parameters suggested that the air movements depended mostly on the pore connectivity and tortuosity than on the total porosity volume. We have also found that the fractal dimension calculated from the X-ray images and the fractal dimension calculated from the retention curve were significantly different. Our communication will detailthose results and discuss the methodology: would the results be similar with a different voxel size? What are the calculated and measured parameters uncertainties? Sarah Smet, as a research fellow, acknowledges the support of the National Fund for Scientific Research (Brussels, Belgium).
NASA Technical Reports Server (NTRS)
Via, W. N.; Taylor, L. A.
1976-01-01
Attention is centered on the nature and intensity of geochemical fractionation accompanying agglutination of several size fractions of the immature Apollo-16 soil sample 67460, from North Ray Crater. The soil features coarse mean grain size about 150 microns, low (20 wt.%) magnetic agglutinate content, and a bimodal grain size distribution. The magnetic fraction included both agglutinates and magnetic non-agglutinates (glass-free microbreccias with 30-60 micron native FeNi grains hosted in a matrix of pyroxene, ilmenite, and olivine). The separation process residue contained nonmagnetic agglutinates with compositions near pure plagioclase. The magnetic agglutinate fraction appears selectively enriched in ferromagnesian elements to the partial exclusion of plagioclase elements. Agglutinate glass chemistry based solely on magnetic separation is deprecated on the basis of the results.
PHOTOMICROGRAPH - SPHERE FRAGMENTS - "ORANGE" SOIL - APOLLO 17 - MSC
1973-01-04
S73-15171 (4 Jan. 1973) --- These orange glass spheres and fragments are the finest particles ever brought back from the moon. Ranging in size from 20 to 45 microns (about 1/1000 of an inch) the particles are magnified 160 times in this photomicrograph made in the Lunar Receiving Laboratory at the Manned Spacecraft Center. The orange soil was brought back from the Taurus-Littrow landing site by the Apollo 17 crewmen. Scientist-astronaut Harrison H. "Jack" Schmitt discovered the orange soil at Shorty Crater during the second Apollo 17 extravehicular activity (EVA). This lunar material is being studied and analyzed by scientists in the LRL. The orange particles in this photomicrograph, which are intermixed with black and black-speckled grains, are about the same size as the particles that compose silt on Earth. Chemical analysis of the orange soil material has shown the sample to be similar to some of the samples brought back from the Apollo 11 (Sea of Tranquility) site several hundred miles to the southwest. Like those samples, it is rich in titanium (8%) and iron oxide (22%). But unlike the Apollo 11 samples, the orange soil is unexplainably rich in zinc ? an anomaly that has scientists in a quandary. This Apollo 17 sample is not high in volatile elements, nor do the minerals contain substantial amounts of water. These would have provided strong evidence of volcanic activity. On the other hand, the lack of agglutinates (rocks made up of a variety of minerals cemented together) indicates that the orange glass is probably not the product of meteorite impact -- strengthening the argument that the glass was produced by volcanic activity.
Soil carbon storage in silvopasture and related land-use systems in the brazilian cerrado.
Tonucci, Rafael G; Nair, P K Ramachandran; Nair, Vimala D; Garcia, Rasmo; Bernardino, Fernando S
2011-01-01
Silvopastoral management of fast-growing tree plantations is becoming popular in the Brazilian Cerrado (savanna). To understand the influence of such systems on soil carbon (C) storage, we studied C content in three aggregate size classes in six land-use systems (LUS) on Oxisols in Minas Gerais, Brazil. The systems were a native forest, a treeless pasture, 24- and 4-yr-old eucalyptus ( sp.) plantations, and 15- and 4-yr-old silvopastures of fodder grass plus animals under eucalyptus. From each system, replicated soil samples were collected from four depths (0-10, 10-20, 20-50, and 50-100 cm), fractionated into 2000- to 250-, 250- to 53-, and <53-μm size classes representing macroaggregates, microaggregates, and silt + clay, respectively, and their C contents determined. Macroaggregate was the predominant size fraction under all LUS, especially in the surface soil layers of tree-based systems. In general, C concentrations (g kg soil) in the different aggregate size fractions did not vary within the same depth. The soil organic carbon (SOC) stock (Mg C ha) to 1-m depth was highest under pasture compared with other LUS owing to its higher soil bulk density. The soils under all LUS had higher C stock compared with other reported values for managed tropical ecosystems: down to 1 m, total SOC stock values ranged from 461 Mg ha under pasture to 393 Mg ha under old eucalyptus. Considering the possibility for formation and retention of microaggregates within macroggregates in low management-intensive systems such as silvopasture, the macroaggregate dynamics in the soil seem to be a good indicator of its C storage potential. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
Timescales of carbon turnover in soils with mixed crystalline mineralogies
Khomo, Lesego; Trumbore, Susan E.; Bern, Carleton R.; Chadwick, Oliver A.
2017-01-01
Organic matter–mineral associations stabilize much of the carbon (C) stored globally in soils. Metastable short-range-order (SRO) minerals such as allophane and ferrihydrite provide one mechanism for long-term stabilization of organic matter in young soil. However, in soils with few SRO minerals and a predominance of crystalline aluminosilicate or Fe (and Al) oxyhydroxide, C turnover should be governed by chemisorption with those minerals. Here, we correlate mineral composition from soils containing small amounts of SRO minerals with mean turnover time (TT) of C estimated from radiocarbon (14C) in bulk soil, free light fraction and mineral-associated organic matter. We varied the mineral amount and composition by sampling ancient soils formed on different lithologies in arid to subhumid climates in Kruger National Park (KNP), South Africa. Mineral contents in bulk soils were assessed using chemical extractions to quantify Fe oxyhydroxides and SRO minerals. Because of our interest in the role of silicate clay mineralogy, particularly smectite (2 : 1) and kaolinite (1 : 1), we separately quantified the mineralogy of the clay-sized fraction using X-ray diffraction (XRD) and measured 14C on the same fraction. Density separation demonstrated that mineral associated C accounted for 40–70 % of bulk soil organic C in A and B1 horizons for granite, nephelinite and arid-zone gabbro soils, and > 80 % in other soils. Organic matter strongly associated with the isolated clay-sized fraction represented only 9–47 % of the bulk soil C. The mean TT of C strongly associated with the clay-sized fraction increased with the amount of smectite (2 : 1 clays); in samples with > 40 % smectite it averaged 1020 ± 460 years. The C not strongly associated with clay-sized minerals, including a combination of low-density C, the C associated with minerals of sizes between 2 µm and 2 cm (including Fe oxyhydroxides as coatings), and C removed from clay-sized material by 2 % hydrogen peroxide had TTs averaging 190 ± 190 years in surface horizons. Summed over the bulk soil profile, we found that smectite content correlated with the mean TT of bulk soil C across varied lithologies. The SRO mineral content in KNP soils was generally very low, except for the soils developed on gabbros under more humid climate that also had very high Fe and C contents with a surprisingly short, mean C TTs. In younger landscapes, SRO minerals are metastable and sequester C for long timescales. We hypothesize that in the KNP, SRO minerals represent a transient stage of mineral evolution and therefore lock up C for a shorter time. Overall, we found crystalline Fe-oxyhydroxides (determined as the difference between Fe in dithionate citrate and oxalate extractions) to be the strongest predictor for soil C content, while the mean TT of soil C was best predicted from the amount of smectite, which was also related to more easily measured bulk properties such as cation exchange capacity or pH. Combined with previous research on C turnover times in 2 : 1 vs. 1 : 1 clays, our results hold promise for predicting C inventory and persistence based on intrinsic timescales of specific carbon–mineral interactions.
Soil sedimentology at Gusev Crater from Columbia Memorial Station to Winter Haven
Cabrol, N.A.; Herkenhoff, K. E.; Greeley, R.; Grin, E.A.; Schroder, C.; d'Uston, C.; Weitz, C.; Yingst, R.A.; Cohen, B. A.; Moore, J.; Knudson, A.; Franklin, B.; Anderson, R.C.; Li, R.
2008-01-01
A total of 3140 individual particles were examined in 31 soils along Spirit's traverse. Their size, shape, and texture were quantified and classified. They represent a unique record of 3 years of sedimentologic exploration from landing to sol 1085 covering the Plains Unit to Winter Haven where Spirit spent the Martian winter of 2006. Samples in the Plains Unit and Columbia Hills appear as reflecting contrasting textural domains. One is heterogeneous, with a continuum of angular-to-round particles of fine sand to pebble sizes that are generally dust covered and locally cemented in place. The second shows the effect of a dominant and ongoing dynamic aeolian process that redistributes a uniform population of medium-size sand. The texture of particles observed in the samples at Gusev Crater results from volcanic, aeolian, impact, and water-related processes. Copyright 2008 by the American Geophysical Union.
Mizgajska-Wiktor, Hanna; Jarosz, Wojciech
2007-01-01
The aim of the studies was to compare the degree of soil contamination with Toxocara canis and T. cati eggs in rural and urban areas depending on time of sampling and type of places examined. Material and methods. Over 2000-2005 a total of 538 soil samples from 3 villages and 368 from Poznań city (Poland) areas were examined for Toxocara spp. eggs. In spring 418 samples in rural areas and 184 samples in urban areas were collected and in autumn 120 and 184 respectively. The samples were examined using flotation technique in saturated sodium nitrate. The discrimination of T. canis and T. cati eggs was based on the size of eggs and transparency of shell layers. Results. The contamination of soil with Toxocara eggs was higher in the urban areas (19.8% positive samples) than in the rural ones (15.6% positive samples) and city or village-backyards were most heavily contaminated. Both, in the villages and in the city, the degree of soil contamination with eggs in spring and autumn was similar (17.6 and 14.8% positive samples respectively). T. cati eggs were much more prevalent in urban areas (97% of all eggs recovered) while T. canis in rural areas (84% of all recovered eggs). The share of T. canis and T. cati eggs in soil contamination did not depend on the time of sampling.
NASA Astrophysics Data System (ADS)
Baisden, W. T.
2011-12-01
Time-series radiocarbon measurements have substantial ability to constrain the size and residence time of the soil C pools commonly represented in ecosystem models. Radiocarbon remains unique in the ability to constrain the large stabilized C pool with decadal residence times. Radiocarbon also contributes usefully to constraining the size and turnover rate of the passive pool, but typically struggles to constrain pools with residence times less than a few years. Overall, the number of pools and associated turnover rates that can be constrained depends upon the number of time-series samples available, the appropriateness of chemical or physical fractions to isolate unequivocal pools, and the utility of additional C flux data to provide additional constraints. In New Zealand pasture soils, we demonstrate the ability to constrain decadal turnover times with in a few years for the stabilized pool and reasonably constrain the passive fraction. Good constraint is obtained with two time-series samples spaced 10 or more years apart after 1970. Three or more time-series samples further improve the level of constraint. Work within this context shows that a two-pool model does explain soil radiocarbon data for the most detailed profiles available (11 time-series samples), and identifies clear and consistent differences in rates of C turnover and passive fraction in Andisols vs Non-Andisols. Furthermore, samples from multiple horizons can commonly be combined, yielding consistent residence times and passive fraction estimates that are stable with, or increase with, depth in different sites. Radiocarbon generally fails to quantify rapid C turnover, however. Given that the strength of radiocarbon is estimating the size and turnover of the stabilized (decadal) and passive (millennial) pools, the magnitude of fast cycling pool(s) can be estimated by subtracting the radiocarbon-based estimates of turnover within stabilized and passive pools from total estimates of NPP. In grazing land, these estimates can be derived primarily from measured aboveground NPP and calculated belowground NPP. Results suggest that only 19-36% of heterotrophic soil respiration is derived from the soil C with rapid turnover times. A final logical step in synthesis is the analysis of temporal variation in NPP, primarily due to climate, as driver of changes in plant inputs and resulting in dynamic changes in rapid and decadal soil C pools. In sites with good time series samples from 1959-1975, we examine the apparent impacts of measured or modelled (Biome-BGC) NPP on soil Δ14C. Ultimately, these approaches have the ability to empirically constrain, and provide limited verification, of the soil C cycle as commonly depicted ecosystem biogeochemistry models.
Fatoyinbo, Henry O; McDonnell, Martin C; Hughes, Michael P
2014-07-01
Detection of pathogens from environmental samples is often hampered by sensors interacting with environmental particles such as soot, pollen, or environmental dust such as soil or clay. These particles may be of similar size to the target bacterium, preventing removal by filtration, but may non-specifically bind to sensor surfaces, fouling them and causing artefactual results. In this paper, we report the selective manipulation of soil particles using an AC electrokinetic microfluidic system. Four heterogeneous soil samples (smectic clay, kaolinitic clay, peaty loam, and sandy loam) were characterised using dielectrophoresis to identify the electrical difference to a target organism. A flow-cell device was then constructed to evaluate dielectrophoretic separation of bacteria and clay in a continous flow through mode. The average separation efficiency of the system across all soil types was found to be 68.7% with a maximal separation efficiency for kaolinitic clay at 87.6%. This represents the first attempt to separate soil particles from bacteria using dielectrophoresis and indicate that the technique shows significant promise; with appropriate system optimisation, we believe that this preliminary study represents an opportunity to develop a simple yet highly effective sample processing system.
NASA Astrophysics Data System (ADS)
Thaw, M.; Gao, F.; Yu, Z.; Acharya, K.
2012-12-01
Over the past two decades, an increase of nutrients to Lake Taihu, China has resulted in hyper-eutrophication and the production of severe cyanobacterial blooms. While many past studies have focused on how surface water transports nutrients to the lake, this study seeks to characterize the concentration of nutrients in different media, including rainwater, soil and groundwater from two different watersheds. These two watersheds varied in overall land use, and agricultural sites within each watershed varied by crop type and growing method. Samples were collected from the Meilin watershed, a mix of forest and agricultural land and the Zhangjiagang watershed, which consisted of industrial, urban and agricultural lands. Samples included soils, groundwater and rain water. Soils from each site were characterized by aggregate size class and analyzed for total nitrogen and total phosphorus. Rainwater and groundwater samples were analyzed for total nitrogen and total phosphorus.
Magnetic and dielectric properties of lunar samples
NASA Technical Reports Server (NTRS)
Strangway, D. W.; Pearce, G. W.; Olhoeft, G. R.
1977-01-01
Dielectric properties of lunar soil and rock samples showed a systematic character when careful precautions were taken to ensure there was no moisture present during measurement. The dielectric constant (K) above 100,000 Hz was directly dependent on density according to the formula K = (1.93 + or - 0.17) to the rho power where rho is the density in g/cc. The dielectric loss tangent was only slightly dependent on density and had values less than 0.005 for typical soils and 0.005 to 0.03 for typical rocks. The loss tangent appeared to be directly related to the metallic ilmenite content. It was shown that magnetic properties of lunar samples can be used to study the distribution of metallic and ferrous iron which shows systematic variations from soil type to soil type. Other magnetic characteristics can be used to determine the distribution of grain sizes.
NASA Astrophysics Data System (ADS)
Mabit, Lionel; Meusburger, Katrin; Iurian, Andra-Rada; Owens, Philip N.; Toloza, Arsenio; Alewell, Christine
2014-05-01
Soil and sediment related research for terrestrial agri-environmental assessments requires accurate depth incremental sampling of soil and exposed sediment profiles. Existing coring equipment does not allow collecting soil/sediment increments at millimetre resolution. Therefore, the authors have designed an economic, portable, hand-operated surface soil/sediment sampler - the Fine Increment Soil Collector (FISC) - which allows extensive control of soil/sediment sampling process and easy recovery of the material collected by using a simple screw-thread extraction system. In comparison with existing sampling tools, the FISC has the following advantages and benefits: (i) it permits sampling of soil/sediment samples at the top of the profile; (ii) it is easy to adjust so as to collect soil/sediment at mm resolution; (iii) it is simple to operate by one single person; (iv) incremental samples can be performed in the field or at the laboratory; (v) it permits precise evaluation of bulk density at millimetre vertical resolution; and (vi) sample size can be tailored to analytical requirements. To illustrate the usefulness of the FISC in sampling soil and sediments for 7Be - a well-known cosmogenic soil tracer and fingerprinting tool - measurements, the sampler was tested in a forested soil located 45 km southeast of Vienna in Austria. The fine resolution increments of 7Be (i.e. 2.5 mm) affects directly the measurement of the 7Be total inventory but above all impacts the shape of the 7Be exponential profile which is needed to assess soil movement rates. The FISC can improve the determination of the depth distributions of other Fallout Radionuclides (FRN) - such as 137Cs, 210Pbexand239+240Pu - which are frequently used for soil erosion and sediment transport studies and/or sediment fingerprinting. Such a device also offers great potential to investigate FRN depth distributions associated with fallout events such as that associated with nuclear emergencies. Furthermore, prior to remediation activities - such as topsoil removal - in contaminated soils and sediments (e.g. by heavy metals, pesticides or nuclear power plant accident releases), basic environmental assessment often requires the determination of the extent and the depth penetration of the different contaminants, precision that can be provided by using the FISC.
Visual assessment of soil structure quality in an agroextractivist system in Southeastern Amazonia
NASA Astrophysics Data System (ADS)
Fernanda Simões da Silva, Laura; Stuchi Boschi, Raquel; Ortega Gomes, Matheus; Cooper, Miguel
2016-04-01
Soil structure is considered a key factor in the functioning of soil, affecting its ability to support plant and animal life, and moderate environmental quality. Numerous methods are available to evaluate soil structure based on physical, chemical and biological indicators. Among the physical indicators, the attributes most commonly used are soil bulk density, porosity, soil resistance to penetration, tensile strength of aggregates, soil water infiltration, and available water. However, these methods are expensive and generally time costly for sampling and laboratorial procedures. Recently, evaluations using qualitative and semi-quantitative indicators of soil structure quality have gained importance. Among these methods, the method known as Visual Evaluation of Soil Structure (VESS) (Ball et al., 2007; Guimarães et al., 2011) can supply this necessity in temperate and tropical regions. The study area is located in the Piranheira Praialta Agroextrativist Settlement Project in the county of Nova Ipixuna, Pará, Brazil. Two toposequences were chosen, one under native forest and the other under pasture. Pits were opened in different landscape positions (upslope, midslope and downslope) for soil morphological, micromorphological and physical characterization. The use of the soil visual evaluation method (SVE) consisted in collecting an undisturbed soil sample of approximately 25 cm in length, 20 cm in width and 10 cm in depth. 12 soil samples were taken for each land use. The samples were manually fragmented, respecting the fracture planes between the aggregates. The SVE was done comparing the fragmented sample with a visual chart and scores were given to the soil structure. The categories that define the soil structure quality (Qe) vary from 1 to 5. Lower scores mean better soil structure. The final score calculation was done using the classification key of Ball et al. (2007) adapted by Guimarães (2011). A change in soil structure was observed between forest and pasture. The presence of layers of different depths, and size and shape of aggregates resulted in a lower Qe in the forest soils (Qe= 2,04 ±0,4), followed by the pasture (Qe= 3,09 ± 1,3). These results indicate certain degradation in the soil structure in the pasture. The variability of the soil structure in the forest samples was lower. The pasture samples presented a worse soil structure when compared to the forest, although their Qe values can be considered good.
NASA Astrophysics Data System (ADS)
Lamorski, Krzysztof; Šimūnek, Jiří; Sławiński, Cezary; Lamorska, Joanna
2017-02-01
In this paper, we estimated using the machine learning methodology the main wetting branch of the soil water retention curve based on the knowledge of the main drying branch and other, optional, basic soil characteristics (particle size distribution, bulk density, organic matter content, or soil specific surface). The support vector machine algorithm was used for the models' development. The data needed by this algorithm for model training and validation consisted of 104 different undisturbed soil core samples collected from the topsoil layer (A horizon) of different soil profiles in Poland. The main wetting and drying branches of SWRC, as well as other basic soil physical characteristics, were determined for all soil samples. Models relying on different sets of input parameters were developed and validated. The analysis showed that taking into account other input parameters (i.e., particle size distribution, bulk density, organic matter content, or soil specific surface) than information about the drying branch of the SWRC has essentially no impact on the models' estimations. Developed models are validated and compared with well-known models that can be used for the same purpose, such as the Mualem (1977) (M77) and Kool and Parker (1987) (KP87) models. The developed models estimate the main wetting SWRC branch with estimation errors (RMSE = 0.018 m3/m3) that are significantly lower than those for the M77 (RMSE = 0.025 m3/m3) or KP87 (RMSE = 0. 047 m3/m3) models.
Soil contamination from lead battery manufacturing and recycling in seven African countries.
Gottesfeld, Perry; Were, Faridah Hussein; Adogame, Leslie; Gharbi, Semia; San, Dalila; Nota, Manti Michael; Kuepouo, Gilbert
2018-02-01
Lead battery recycling is a growing hazardous industry throughout Africa. We investigated potential soil contamination inside and outside formal sector recycling plants in seven countries. We collected 118 soil samples at 15 recycling plants and one battery manufacturing site and analyzed them for total lead. Lead levels in soils ranged from < 40-140,000mg/kg. Overall mean lead concentrations were ~23,200mg/kg but, average lead levels were 22-fold greater for soil samples from inside plant sites than from those collected outside these facilities. Arithmetic mean lead concentrations in soil samples from communities surrounding these plants were ~2600mg/kg. As the lead battery industry in Africa continues to expand, it is expected that the number and size of lead battery recycling plants will grow to meet the forecasted demand. There is an immediate need to address ongoing exposures in surrounding communities, emissions from this industry and to regulate site closure financing procedures to ensure that we do not leave behind a legacy of lead contamination that will impact millions in communities throughout Africa. Copyright © 2017 Elsevier Inc. All rights reserved.
Wakelin, Steven; Tillard, Guyléne; van Ham, Robert; Ballard, Ross; Farquharson, Elizabeth; Gerard, Emily; Geurts, Rene; Brown, Matthew; Ridgway, Hayley; O'Callaghan, Maureen
2018-01-01
Biological nitrogen fixation through the legume-rhizobia symbiosis is important for sustainable pastoral production. In New Zealand, the most widespread and valuable symbiosis occurs between white clover (Trifolium repens L.) and Rhizobium leguminosarum bv. trifolii (Rlt). As variation in the population size (determined by most probable number assays; MPN) and effectiveness of N-fixation (symbiotic potential; SP) of Rlt in soils may affect white clover performance, the extent in variation in these properties was examined at three different spatial scales: (1) From 26 sites across New Zealand, (2) at farm-wide scale, and (3) within single fields. Overall, Rlt populations ranged from 95 to >1 x 108 per g soil, with variation similar at the three spatial scales assessed. For almost all samples, there was no relationship between rhizobia population size and ability of the population to fix N during legume symbiosis (SP). When compared with the commercial inoculant strain, the SP of soils ranged between 14 to 143% efficacy. The N-fixing ability of rhizobia populations varied more between samples collected from within a single hill country field (0.8 ha) than between 26 samples collected from diverse locations across New Zealand. Correlations between SP and calcium and aluminium content were found in all sites, except within a dairy farm field. Given the general lack of association between SP and MPN, and high spatial variability of SP at single field scale, provision of advice for treating legume seed with rhizobia based on field-average MPN counts needs to be carefully considered.
Tillard, Guyléne; van Ham, Robert; Ballard, Ross; Farquharson, Elizabeth; Gerard, Emily; Geurts, Rene; Brown, Matthew; Ridgway, Hayley; O’Callaghan, Maureen
2018-01-01
Biological nitrogen fixation through the legume-rhizobia symbiosis is important for sustainable pastoral production. In New Zealand, the most widespread and valuable symbiosis occurs between white clover (Trifolium repens L.) and Rhizobium leguminosarum bv. trifolii (Rlt). As variation in the population size (determined by most probable number assays; MPN) and effectiveness of N-fixation (symbiotic potential; SP) of Rlt in soils may affect white clover performance, the extent in variation in these properties was examined at three different spatial scales: (1) From 26 sites across New Zealand, (2) at farm-wide scale, and (3) within single fields. Overall, Rlt populations ranged from 95 to >1 x 108 per g soil, with variation similar at the three spatial scales assessed. For almost all samples, there was no relationship between rhizobia population size and ability of the population to fix N during legume symbiosis (SP). When compared with the commercial inoculant strain, the SP of soils ranged between 14 to 143% efficacy. The N-fixing ability of rhizobia populations varied more between samples collected from within a single hill country field (0.8 ha) than between 26 samples collected from diverse locations across New Zealand. Correlations between SP and calcium and aluminium content were found in all sites, except within a dairy farm field. Given the general lack of association between SP and MPN, and high spatial variability of SP at single field scale, provision of advice for treating legume seed with rhizobia based on field-average MPN counts needs to be carefully considered. PMID:29489845
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, B.B.; Ripp, J.; Sims, R.C.
The Electric Power Research Institute (EPRI) is studying the environmental impact of preservatives associated with in-service utility poles. As part of this endeavor, two EPRI contractors, META Environmental, Inc. (META) and Atlantic Environmental Services, Inc. (Atlantic), have collected soil samples from around wood utility poles nationwide, for various chemical and physical analyses. This report covers the results for 107 pole sites in the US. These pole sites included a range of preservative types, soil types, wood types, pole sizes, and in-service ages. The poles in this study were preserved with one of two types of preservative: pentachlorophenol (PCP) or creosote.more » Approximately 40 to 50 soil samples were collected from each wood pole site in this study. The soil samples collected from the pole sites were analyzed for chlorinated phenols and total petroleum hydrocarbons (TPH) if the pole was preserved with PCP, or for polycyclic aromatic hydrocarbons (PAHs) if the pole was preserved with creosote. The soil samples were also analyzed for physical/chemical parameters, such as pH, total organic carbon (TOC), and cationic exchange capacity (CEC). Additional samples were used in studies to determine biological degradation rates, and soil-water distribution and retardation coefficients of PCP in site soils. Methods of analysis followed standard EPA and ASTM methods, with some modifications in the chemical analyses to enable the efficient processing of many samples with sufficiently low detection limits for this study. All chemical, physical, and site-specific data were stored in a relational computer database.« less
NASA Astrophysics Data System (ADS)
Wu, A. M.; Nater, E. A.; Dalzell, B. J.; Perry, C. H.
2014-12-01
The USDA Forest Service's Forest Inventory Analysis (FIA) program is a national effort assessing current forest resources to ensure sustainable management practices, to assist planning activities, and to report critical status and trends. For example, estimates of carbon stocks and stock change in FIA are reported as the official United States submission to the United Nations Framework Convention on Climate Change. While the main effort in FIA has been focused on aboveground biomass, soil is a critical component of this system. FIA sampled forest soils in the early 2000s and has remeasurement now underway. However, soil sampling is repeated on a 10-year interval (or longer), and it is uncertain what magnitude of changes in soil organic carbon (SOC) may be detectable with the current sampling protocol. We aim to identify the sensitivity and variability of SOC in the FIA database, and to determine the amount of SOC change that can be detected with the current sampling scheme. For this analysis, we attempt to answer the following questions: 1) What is the sensitivity (power) of SOC data in the current FIA database? 2) How does the minimum detectable change in forest SOC respond to changes in sampling intervals and/or sample point density? Soil samples in the FIA database represent 0-10 cm and 10-20 cm depth increments with a 10-year sampling interval. We are investigating the variability of SOC and its change over time for composite soil data in each FIA region (Pacific Northwest, Interior West, Northern, and Southern). To guide future sampling efforts, we are employing statistical power analysis to examine the minimum detectable change in SOC storage. We are also investigating the sensitivity of SOC storage changes under various scenarios of sample size and/or sample frequency. This research will inform the design of future FIA soil sampling schemes and improve the information available to international policy makers, university and industry partners, and the public.
Jho, Eun Hea; Im, Jinwoo; Yang, Kyung; Kim, Young-Jin; Nam, Kyoungphile
2015-01-01
This study was set to investigate the changes in the toxicity of arsenic (As)-contaminated soils after washing with phosphate solutions. The soil samples collected from two locations (A: rice paddy and B: forest land) of a former smelter site were contaminated with a similar level of As. Soil washing (0.5 M phosphate solution for 2 h) removed 24.5% As, on average, in soil from both locations. Regardless of soil washing, Location A soil toxicities, determined using Microtox, were greater than that of Location B and this could be largely attributed to different soil particle size distribution. With soils from both locations, the changes in As chemical forms resulted in either similar or greater toxicities after washing. This emphasizes the importance of considering ecotoxicological aspects, which are likely to differ depending on soil particle size distribution and changes in As chemical forms, in addition to the total concentration based remedial goals, in producing ecotoxicologically-sound soils for reuse. In addition, calcium phosphate used as the washing solution seemed to contribute more on the toxic effects of the washed soils than potassium phosphate and ammonium phosphate. Therefore, it would be more appropriate to use potassium or ammonium phosphate than calcium phosphate for phosphate-aided soil washing of the As-contaminated soils. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wildfire impacts on soil-water retention in the Colorado Front Range, United States
Ebel, Brian A.
2012-01-01
This work examined the plot-scale differences in soil-water retention caused by wildfire in the area of the 2010 Fourmile Canyon Fire in the Colorado Front Range, United States. We measured soil-water retention curves on intact cores and repacked samples, soil particle-size distributions, and organic matter content. Estimates were also made of plant-available water based on the soil-water retention curves. Parameters for use in soil-hydraulic property models were estimated; these parameters can be used in unsaturated flow modeling for comparing burned and unburned watersheds. The primary driver for measured differences in soil-water retention in burned and unburned soils was organic matter content and not soil-particle size distribution. The tendency for unburned south-facing soils to have greater organic matter content than unburned north-facing soils in this field area may explain why unburned south-facing soils had greater soil-water retention than unburned north-facing soils. Our results suggest that high-severity wildfire can “homogenize” soil-water retention across the landscape by erasing soil-water retention differences resulting from organic matter content, which for this site may be affected by slope aspect. This homogenization could have important implications for ecohydrology and plant succession/recovery in burned areas, which could be a factor in dictating the window of vulnerability of the landscape to flash floods and erosion that are a common consequence of wildfire.
Wildfire impacts on soil-water retention in the Colorado Front Range, United States
NASA Astrophysics Data System (ADS)
Ebel, Brian A.
2012-12-01
This work examined the plot-scale differences in soil-water retention caused by wildfire in the area of the 2010 Fourmile Canyon Fire in the Colorado Front Range, United States. We measured soil-water retention curves on intact cores and repacked samples, soil particle-size distributions, and organic matter content. Estimates were also made of plant-available water based on the soil-water retention curves. Parameters for use in soil-hydraulic property models were estimated; these parameters can be used in unsaturated flow modeling for comparing burned and unburned watersheds. The primary driver for measured differences in soil-water retention in burned and unburned soils was organic matter content and not soil-particle size distribution. The tendency for unburned south-facing soils to have greater organic matter content than unburned north-facing soils in this field area may explain why unburned south-facing soils had greater soil-water retention than unburned north-facing soils. Our results suggest that high-severity wildfire can "homogenize" soil-water retention across the landscape by erasing soil-water retention differences resulting from organic matter content, which for this site may be affected by slope aspect. This homogenization could have important implications for ecohydrology and plant succession/recovery in burned areas, which could be a factor in dictating the window of vulnerability of the landscape to flash floods and erosion that are a common consequence of wildfire.
NASA Astrophysics Data System (ADS)
Liu, Cenwei; Lobb, David; Li, Sheng; Owens, Philip; Kuzyk, ZouZou
2014-05-01
Lake Winnipeg has recently brought attention to the deteriorated water quality due to in part to nutrient and sediment input from agricultural land. Improving water quality in Lake Winnipeg requires the knowledge of the sediment sources within this ecosystem. There are a variety of environmental fingerprinting techniques have been successfully used in the assessment of sediment sources. In this study, we used particle size distribution to evaluate spatial and temporal variations of suspended sediment and potential sediment sources collected in the Tobacco Creek Watershed in Manitoba, Canada. The particle size distribution of suspended sediment can reflect the origin of sediment and processes during sediment transport, deposition and remobilization within the watershed. The objectives of this study were to quantify visually observed spatial and temporal changes in sediment particles, and to assess the sediment source using a rapid and cost-effective fingerprinting technique based on particle size distribution. The suspended sediment was collected by sediment traps twice a year during rainfall and snowmelt periods from 2009 to 2012. The potential sediment sources included the top soil of cultivated field, riparian area and entire profile from stream banks. Suspended sediment and soil samples were pre-wet with RO water and sieved through 600 μm sieve before analyzing. Particle size distribution of all samples was determined using a Malvern Mastersizer 2000S laser diffraction with the measurement range up to 600μm. Comparison of the results for different fractions of sediment showed significant difference in particle size distribution of suspended sediment between snowmelt and rainfall events. An important difference of particle size distribution also found between the cultivated soil and forest soil. This difference can be explained by different land uses which provided a distinct fingerprint of sediment. An overall improvement in water quality can be achieved by managing sediment according to the identified sediment sources in the watershed.
Using Remote Sensing Platforms to Estimate Near-Surface Soil Properties
NASA Technical Reports Server (NTRS)
Sullivan, D. G.; Shaw, J. N.; Rickman, D.; Mask, P. L.; Wersinger, J. M.; Luvall, J.
2003-01-01
Evaluation of near-surface soil properties via remote sensing (RS) could facilitate soil survey mapping, erosion prediction, fertilization regimes, and allocation of agrochemicals. The objective of this study was to evaluate the relationship between soil spectral signature and near surface soil properties in conventionally managed row crop systems. High resolution RS data were acquired over bare fields in the Coastal Plain, Appalachian Plateau, and Ridge and Valley provinces of Alabama using the Airborne Terrestrial Applications Sensor (ATLAS) multispectral scanner. Soils ranged from sandy Kandiudults to fine textured Rhodudults. Surface soil samples (0-1 cm) were collected from 163 sampling points for soil water content, soil organic carbon (SOC), particle size distribution (PSD), and citrate dithionite extractable iron (Fed) content. Surface roughness, soil water content, and crusting were also measured at sampling. Results showed RS data acquired from lands with less than 4 % surface soil water content best approximated near-surface soil properties at the Coastal Plain site where loamy sand textured surfaces were predominant. Utilizing a combination of band ratios in stepwise regression, Fed (r2 = 0.61), SOC (r2 = 0.36), sand (r2 = 0.52), and clay (r2 = 0.76) were related to RS data at the Coastal Plain site. In contrast, the more clayey Ridge and Valley soils had r-squares of 0.50, 0.36, 0.17, and 0.57. for Fed, SOC, sand and clay, respectively. Use of estimated eEmissivity did not generally improve estimates of near-surface soil attributes.
Zhang, Yaxian; Li, Hua; Gong, Libo; Dong, Guowen; Shen, Liang; Wang, Yuanpeng; Li, Qingbiao
2017-07-01
The purpose of this study is to investigate the effects of nano-sized or submicro Fe 2 O 3 /Fe 3 O 4 on the bioreduction of hexavalent chromium (Cr(VI)) and to evaluate the effects of nano-sized Fe 2 O 3 /Fe 3 O 4 on the microbial communities from the anaerobic flooding soil. The results indicated that the net decreases upon Cr(VI) concentration from biotic soil samples amended with nano-sized Fe 2 O 3 (317.1±2.1mg/L) and Fe 3 O 4 (324.0±22.2mg/L) within 21days, which were approximately 2-fold of Cr(VI) concentration released from blank control assays (117.1±5.6mg/L). Furthermore, the results of denaturing gradient gel electrophoresis (DGGE) and high-throughput sequencing indicated a greater variety of microbes within the microbial community in amendments with nano-sized Fe 2 O 3 /Fe 3 O 4 than the control assays. Especially, Proteobacteria occupied a predominant status on the phylum level within the indigenous microbial communities from chromium-contaminated soils. Besides, some partial decrease of soluble Cr(VI) in abiotic nano-sized Fe 2 O 3 /Fe 3 O 4 amendments was responsible for the adsorption of nano-sized Fe 2 O 3 /Fe 3 O 4 to soluble Cr(VI). Hence, the presence of nano-sized Fe 2 O 3 /Fe 3 O 4 could largely facilitate the mobilization and biotransformation of Cr(VI) from flooding soils by adsorption and bio-mediated processes. Copyright © 2017. Published by Elsevier B.V.
Martins, Guilherme; Lauga, Béatrice; Miot-Sertier, Cécile; Mercier, Anne; Lonvaud, Aline; Soulas, Marie-Louise; Soulas, Guy; Masneuf-Pomarède, Isabelle
2013-01-01
Despite its importance in plant health and crop quality, the diversity of epiphytic bacteria on grape berries and other plant parts, like leaves and bark, remains poorly described, as does the role of telluric bacteria in plant colonization. In this study, we compare the bacterial community size and structure in vineyard soils, as well as on grapevine bark, leaves and berries. Analyses of culturable bacteria revealed differences in the size and structure of the populations in each ecosystem. The highest bacteria population counts and the greatest diversity of genera were found in soil samples, followed by bark, grapes and leaves. The identification of isolates revealed that some genera – Pseudomonas, Curtobacterium, and Bacillus – were present in all ecosystems, but in different amounts, while others were ecosystem-specific. About 50% of the genera were common to soil and bark, but absent from leaves and grapes. The opposite was also observed: grape and leaf samples presented 50% of genera in common that were absent from trunk and soil. The bacterial community structure analyzed by T-RFLP indicated similarities between the profiles of leaves and grapes, on the one hand, and bark and soil, on the other, reflecting the number of shared T-RFs. The results suggest an interaction between telluric bacterial communities and the epiphytic bacteria present on the different grapevine parts. PMID:24023666
Ray, Sharmila; Khillare, Pandit Sudan; Kim, Ki-Hyun; Brown, Richard J.C.
2012-01-01
Abstract Soil samples were collected over a year-long period along a background–urban–rural transect in Delhi, India for the analysis of polycyclic aromatic hydrocarbons (PAHs), black carbon (BC), and total organic carbon (TOC) in five grain size fractions, x, in μm of 0≤x<53 (I), 53≤x<250 (II), 250≤x<500 (III), 500≤x<2000 (IV), and their sum (total: T). Maximum concentrations of PAH, BC, and TOC were observed in the smallest fraction (I) comprising silt and clay, irrespective of site or season. Results of the molecular diagnostic ratios and principal component analysis (PCA) identified coal, wood, biomass burning, and vehicular emissions as major sources of PAHs at all the three sites, while BC/TOC ratios pointed toward biomass combustion as the chief source of carbonaceous species. This work presents the first such rural-urban transect study considering PAH, BC, and TOC in soil. PMID:23133309
Saatkamp, Arne; Affre, Laurence; Dutoit, Thierry; Poschlod, Peter
2009-09-01
Seed survival in the soil contributes to population persistence and community diversity, creating a need for reliable measures of soil seed bank persistence. Several methods estimate soil seed bank persistence, most of which count seedlings emerging from soil samples. Seasonality, depth distribution and presence (or absence) in vegetation are then used to classify a species' soil seed bank into persistent or transient, often synthesized into a longevity index. This study aims to determine if counts of seedlings from soil samples yield reliable seed bank persistence estimates and if this is correlated to seed production. Seeds of 38 annual weeds taken from arable fields were buried in the field and their viability tested by germination and tetrazolium tests at 6 month intervals for 2.5 years. This direct measure of soil seed survival was compared with indirect estimates from the literature, which use seedling emergence from soil samples to determine seed bank persistence. Published databases were used to explore the generality of the influence of reproductive capacity on seed bank persistence estimates from seedling emergence data. There was no relationship between a species' soil seed survival in the burial experiment and its seed bank persistence estimate from published data using seedling emergence from soil samples. The analysis of complementary data from published databases revealed that while seed bank persistence estimates based on seedling emergence from soil samples are generally correlated with seed production, estimates of seed banks from burial experiments are not. The results can be explained in terms of the seed size-seed number trade-off, which suggests that the higher number of smaller seeds is compensated after germination. Soil seed bank persistence estimates correlated to seed production are therefore not useful for studies on population persistence or community diversity. Confusion of soil seed survival and seed production can be avoided by separate use of soil seed abundance and experimental soil seed survival.
Soil carbon inventories under a bioenergy crop (switchgrass): Measurement limitations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garten, C.T. Jr.; Wullschleger, S.D.
Approximately 5 yr after planting, coarse root carbon (C) and soil organic C (SOC) inventories were compared under different types of plant cover at four switchgrass (Panicum virgatum L.) production field trials in the southeastern USA. There was significantly more coarse root C under switchgrass (Alamo variety) and forest cover than tall fescue (Festuca arundinacea Schreb.), corn (Zea mays L.), or native pastures of mixed grasses. Inventories of SOC under switchgrass were not significantly greater than SOC inventories under other plant covers. At some locations the statistical power associated with ANOVA of SOC inventories was low, which raised questions aboutmore » whether differences in SOC could be detected statistically. A minimum detectable difference (MDD) for SOC inventories was calculated. The MDD is the smallest detectable difference between treatment means once the variation, significance level, statistical power, and sample size are specified. The analysis indicated that a difference of {approx}50 mg SOC/cm{sup 2} or 5 Mg SOC/ha, which is {approx}10 to 15% of existing SOC, could be detected with reasonable sample sizes and good statistical power. The smallest difference in SOC inventories that can be detected, and only with exceedingly large sample sizes, is {approx}2 to 3%. These measurement limitations have implications for monitoring and verification of proposals to ameliorate increasing global atmospheric CO{sub 2} concentrations by sequestering C in soils.« less
NASA Astrophysics Data System (ADS)
Ivanova, E. A.; Kutovaya, O. V.; Tkhakakhova, A. K.; Chernov, T. I.; Pershina, E. V.; Markina, L. G.; Andronov, E. E.; Kogut, B. M.
2015-11-01
The taxonomic structure of microbiomes in aggregates of different sizes from typical chernozems was investigated using sequencing of the 16S rRNA gene. The aggregate fractions of <0.25, 2-5, and >7 mm obtained by sieving of the soil samples at natural moisture were used for analysis. The highest prokaryote biomass (bacteria, archaea) was determined in the fractions <0.25 and aggregates 2-5 mm; the bacterial and archaeal biomass decreased in the following series: fallow > permanent black fallow > permanent winter wheat. The greatest number of fungi was recorded in the fraction <0.25 mm from the soils of the permanent black fallow and in all the studied aggregate fractions in the variant with permanent wheat. The system of agricultural use affected more significantly the structure of the prokaryote community in the chernozem than the size of aggregate fractions did. The most diverse microbial community was recorded in the soil samples of the fallow; the statistically significant maximums of the Shannon diversity indices and indices of phylogenetic diversity (PD) were recorded in the fractions <0.25 and 2-5 mm from the fallow soil. On the whole, the fine soil fractions (<0.25 mm) were characterized by higher diversity indices in comparison with those of the coarser aggregate fractions.
Smith, Jennifer L.; Sturrock, Hugh J. W.; Assefa, Liya; Nikolay, Birgit; Njenga, Sammy M.; Kihara, Jimmy; Mwandawiro, Charles S.; Brooker, Simon J.
2015-01-01
Transmission assessment surveys (TAS) for lymphatic filariasis have been proposed as a platform to assess the impact of mass drug administration (MDA) on soil-transmitted helminths (STHs). This study used computer simulation and field data from pre- and post-MDA settings across Kenya to evaluate the performance and cost-effectiveness of the TAS design for STH assessment compared with alternative survey designs. Variations in the TAS design and different sample sizes and diagnostic methods were also evaluated. The district-level TAS design correctly classified more districts compared with standard STH designs in pre-MDA settings. Aggregating districts into larger evaluation units in a TAS design decreased performance, whereas age group sampled and sample size had minimal impact. The low diagnostic sensitivity of Kato-Katz and mini-FLOTAC methods was found to increase misclassification. We recommend using a district-level TAS among children 8–10 years of age to assess STH but suggest that key consideration is given to evaluation unit size. PMID:25487730
MOELCULAR SIZE EXCLUSION BY SOIL ORGANIC MATERIALS ESTIMATED FROM THEIR SWELLING IN ORGANIC SOLVENTS
A published method previously developed to measure the swelling characteristics of pow dered coal samples has been adapted for swelling measurements on various peat, pollen, chain, and cellulose samples The swelling of these macromolecular materials is the volumetric manifestatio...
MOLECULAR SIZE EXCLUSION BY SOIL ORGANIC MATERIALS ESTIMATED FROM THEIR SWELLING IN ORGANIC SOLVENTS
A published method previously developed to measure the swelling characteristics of powdered coal samples has been adapted for swelling measurements on various peat, pollen, chitin, and cellulose samples. he swelling of these macromolecular materials is the volumetric manifestatio...
Visible-near infrared spectroscopy as a tool to improve mapping of soil properties
NASA Astrophysics Data System (ADS)
Evgrafova, Alevtina; Kühnel, Anna; Bogner, Christina; Haase, Ina; Shibistova, Olga; Guggenberger, Georg; Tananaev, Nikita; Sauheitl, Leopold; Spielvogel, Sandra
2017-04-01
Spectroscopic measurements, which are non-destructive, precise and rapid, can be used to predict soil properties and help estimate the spatial variability of soil properties at the pedon scale. These estimations are required for quantifying soil properties with higher precision, identifying the changes in soil properties and ecosystem response to climate change as well as increasing the estimation accuracy of soil-related models. Our objectives were to (i) predict soil properties for nested samples (n = 296) using the laboratory-based visible-near infrared (vis-NIR) spectra of air-dried (<2 mm) soil samples and values of measured soil properties for gridded samples (n = 174) as calibration and validation sets; (ii) estimate the precision and predictive accuracy of an empirical spectral model using (a) our own spectral library and (b) the global spectral library; (iii) support the global spectral library with obtained vis-NIR spectral data on permafrost-affected soils. The soil samples were collected from three permafrost-affected soil profiles underlain by permafrost at various depths between 23 cm to 57.5 cm below the surface (Cryosols) and one soil profile with no presence of permafrost within the upper 100 cm layer (Cambisol) in order to characterize the spatial distribution and variability of soil properties. The gridded soil samples (n = 174) were collected using an 80 cm wide grid with a mesh size of 10 cm on both axes. In addition, 300 nested soil samples were collected using a grid of 12 cm by 12 cm (25 samples per grid) from a hole of 1 cm in a diameter with a distance from the next sample of 1 cm. Due to a small amount of available soil material (< 1.5 g), 296 nested soil samples were analyzed only using vis-NIR spectroscopy. The air-dried mineral gridded soil samples (n = 174) were sieved through a 2-mm sieve and ground with an agate mortar prior to the elemental analysis. The soil organic carbon and total nitrogen concentrations (in %) were determined using a dry combustion method on the Vario EL cube analyzer (Elementar Analysensysteme GmbH, Germany). Inorganic C was removed from the mineral soil samples with pH values higher than 7 prior to the elemental analysis using the volatilization method (HCl, 6 hours). The pH of soil samples was measured in 0.01 M CaCl2 using a 1:2 soil:solution ratio. However, for soil sample with a high in organic matter content, a 1:10 ratio was applied. We also measured oxalate and dithionite extracted iron, aluminum and manganese oxides and hydroxides using inductively coupled plasma optical emission spectroscopy (Varian Vista MPX ICP-OES, Agilent Technologies, USA). We predicted the above-mentioned soil properties for all nested samples using partial least squares regression, which was performed using R program. We can conclude that vis-NIR spectroscopy can be used effectively in order to describe, estimate and further map the spatial patterns of soil properties using geostatistical methods. This research could also help to improve the global soil spectral library taking into account that only few previous applications of vis-NIR spectroscopy were conducted on permafrost-affected soils of Northern Siberia. Keywords: Visible-near infrared spectroscopy, vis-NIR, permafrost-affected soils, Siberia, partial least squares regression.
NASA Technical Reports Server (NTRS)
Gooding, J. L.
1987-01-01
Many geomorphic features on Mars were attributed to Earth-analogous, cold-climate processes involving movement of water or ice lubricated debris. Clearly, knowledge of the behavior of water in regolith materials under Martian conditions is essential to understanding the postulated geomorphic processes. Experiments were performed with sand-sized samples of natural basaltic regoliths in order to further elucidate how water/regolith interactions depend upon grain size and mineralogy. The data reveal important contrasts with data for clay-mineral substrates and suggest that the microphysics of water/mineral interactions might affect Martian geomorphic processes in ways that are not fully appreciated. Sand and silt sized fractions of two soils from the summit of Mauna Kea were used as Mars-analogous regolith materials. Temperatures were measured for water/ice phase transitions as wet slurries of individual soil fractions which were cooled or heated at controlled rates under a carbon dioxide atmosphere. Freezing and melting of ice was studied as a function of water/soil mass ratio, soil particle size, and thermal-cycle rate. Comparison tests were done under the same conditions with U.S. Geological Survey standard rock powders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasmussen,P.; Beauchemin, S.; Nugent, M.
2008-01-01
This study examines factors affecting oral bioaccessibility of metals in household dust, in particular metal speciation, organic carbon content, and particle size, with the goal of addressing risk assessment information requirements. Investigation of copper (Cu) and zinc (Zn) speciation in two size fractions of dust (< 36 {mu} m and 80-150 {mu} m) using synchrotron X-ray absorption spectroscopy (XAS) indicates that the two metals are bound to different components of the dust: Cu is predominately associated with the organic phase of the dust, while Zn is predominately associated with the mineral fraction. Total and bioaccessible Cu, nickel (Ni), and Znmore » were determined (on dry weight basis) in the < 150 {mu} m size fraction of a set of archived indoor dust samples (n = 63) and corresponding garden soil samples (n = 66) from the City of Ottawa, Canada. The median bioaccessible Cu content is 66 {mu} g g-1 in dust compared to 5 {mu} g g-1 in soil; the median bioaccessible Ni content is 16 {mu} g g-1 in dust compared to 2 {mu} g g-1 in soil; and the median bioaccessible Zn content is 410 {mu} g g-1 in dust compared to 18 {mu} g g-1 in soil. For the same data set, the median total Cu content is 152 {mu} g g-1 in dust compared to 17 {mu} g g-1 in soil; the median total Ni content is 41 {mu} g g-1 in dust compared to 13 {mu} g g-1 in soil; and the median total Zn content is 626 {mu} g g-1 in dust compared to 84 {mu} g g-1 in soil. Organic carbon is elevated in indoor dust (median 28%) compared to soil (median 5%), and is a key factor controlling metal partitioning and therefore bioaccessibility. The results show that house dust and soil have distinct geochemical signatures and should not be treated as identical media in exposure and risk assessments. Separate measurements of the indoor and outdoor environment are essential to improve the accuracy of residential risk assessments.« less
Biogeography of soil organic matter molecular structure across multiple soil size fractions
NASA Astrophysics Data System (ADS)
Meier, C. L.; Neff, J.
2009-12-01
Recent work suggests that there is a common soil decomposition sequence whereby plant inputs are metabolized into a physiologically constrained set of compounds originating from microbes that may persist in soil over relatively long time-scales. Plant inputs tend to be found in coarse particulate fractions (>180 μm) with relatively fast turnover times, while microbially derived compounds tend to accrue in the finer silt + clay fractions (<53 μm) with relatively long turnover times. To investigate whether a common decomposition sequence exists, we used pyrolysis gas chromatography/mass spectrometry (py-GC/MS) to characterize the molecular structure of soil organic matter (SOM) in three size fractions (590-180 μm, 180-53 μm, and <53 μm), using soils sampled from multiple biomes (alpine tundra, sub-alpine forest, boreal forest, temperate coniferous, temperate deciduous, dry desert/savannah, and tropical forest). We hypothesized that: 1) regardless of biome, fractions >180 μm would be chemically similar, and would be characterized by lignin and other plant-derived compounds; and 2) fractions <53 μm would also be similar across biomes but would be dominated by microbially-derived compounds like polysaccharides. Across all biomes, we found that there was significantly less lignin in <53 μm fractions compared to >180 μm fractions (p<0.0001), providing some support for the idea that plant material is not incorporated into soil C pools with relatively long turnover times. However, a principal components analysis (PCA) showed that the >180 μm coarse particulate fractions also contained compounds associated with microbial origins, indicating that microbial C is not limited to <53 μm size fractions. The PCA also revealed that samples within each of the three size fractions did not cluster together (i.e. they did not share a common molecular structure), but we did note that: 1) cold alpine and sub-alpine sites were unique and chemically similar; and 2) tropical forest soils were unique and chemically similar. Moreover, we observed large differences in molecular structure for dry desert/savannah sites with varying vegetation types (trees vs. grass) and varying geologic substrates. Taken together, these observations argue that temperature, vegetation, and underlying geology influence soil molecular structure, but support for a common decomposition sequence is mixed.
Spatial Variation in Anaerobic Microbial Communities in Wetland Margin Soils
NASA Astrophysics Data System (ADS)
Rich, H.; Kannenberg, S.; Ludwig, S.; Nelson, L. C.; Spawn, S.; Porterfield, J.; Schade, J. D.
2012-12-01
Climate change is predicted to increase the severity and frequency of precipitation and drought events, which may result in substantial temporal variation in the size of wetlands. Wetlands are the world's largest natural emitter of methane, a greenhouse gas that is 20 times more effective at trapping heat than carbon dioxide. Changes in the dynamics of wetland size may lead to changes in the extent and timing of inundation of soils in ephemeral margins, which is likely to influence microbes that rely on anoxic conditions. The impact on process rates may depend on the structure of the community of microbes present in the soil, however, the link between microbial structure and patterns in process rates in soils is not well understood. Our goal was to use molecular techniques to compare microorganism communities in two wetlands that differ in the extent and duration of inundation of marginal soils to assess how these communities may change with changes in climate, and the potential consequences for methane production. This will allow us to examine how community composition changes with soil conditions such as moisture content, frequency of drought and abundance of available carbon. The main focus of this project was to determine the presence or absence of acetoclastic (AC) and hydrogenotrophic (HT) methanogens. AC methanogens use acetate as their main substrate, while HT methanogens use Hydrogen and Carbon dioxide. The relative proportion of these pathways depends on soil conditions, such as competition with other anaerobic microbes and the amount of labile carbon, and spatial patterns in the presence of each can give insight into the soil conditions of a wetland site. We sampled soil from three different wetland ponds of varying permanence in the St Olaf Natural Lands in Northfield, Minnesota, and extracted DNA from these soil samples with a MoBio PowerSoil DNA Isolation Kit. With PCR and seven different primer sets, we tested the extracted DNA for the presence of four different methanogen taxa as well as denitrifying, iron reducing and sulfate reducing bacteria. We used the percentage of soil replicates that tested positive for a primer as an indicator of the population size of each microorganism at each site. The results of the presence/absence test suggested a relationship between soil moisture and abundance of methanogens. The sites with over 25% moisture content showed a higher percent presence than the soil sites with under 25% moisture content for all taxa except for sulfate reducing bacteria. The impact of soil moisture is likely due to negative effects of oxygen on methanogens. However, the presence of methanogens in drier soils shows that methanogens can still exist in a dormant state in aerobic environments. Methanogens may be ubiquitous but vary in population size and activity depending on soil conditions. With changes in wetland soil moisture in response to changes in precipitation patterns, the populations of methanogens may change, affecting the amount of methane production and ultimately the amount of heat trapped by the atmosphere.
NASA Astrophysics Data System (ADS)
Schelker, J.; Grabs, T. J.; Bishop, K. H.; Laudon, H.
2012-12-01
Concentrations of dissolved organic carbon (DOC) in stream water show large variations as a response to disturbances such as forestry operations. We used a paired catchment experiment in northern Sweden which shows well quantified increases of DOC concentrations and C-exports as a result of forest harvesting. To identify the drivers of these increases, a physically-based process model (Riparian Flow Integration Model, RIM) was used to inversely simulate the DOC availability in the peat-rich riparian soils of the catchments. DOC availability in soils followed a seasonal signal paralleling the seasonality of soil-temperatures (min: February; max: August) during 2005-2011. Further, high-frequency event sampling of DOC during spring and summer seasons of 2007, 2008 and 2009, respectively, revealed that event size acted as a secondary control of DOC in streams: Spring snowmelt events (as well as one major event in 2009) showed clockwise hysteresis, whereas minor runoff episodes during summer (when DOC availability in soils was highest) were characterized by a counterclockwise behavior. The higher hydro-meteorological forcing consisting of increases of soil temperature and soil moisture after the forest removal governed additional increases in DOC availability in soils. The higher DOC concentrations observed in streams after forest harvesting can therefore be ascribed to i) the increased climatic forcing comprising higher water flows through riparian soils, ii) increased soil temperatures and soil moisture, respectively, favoring an increased production of DOC, and iii) additional variation by event size. Overall these results underline the large impact of forestry operations on stream water quality as well as DOC exports leaving managed boreal forests. Simulated and measured soil water TOC concentration profiles within the three Balsjö catchments (CC-4 = clear-cut with 67% harvest; NO-5 = 35% harvest; NR-7 = northern reference). The simulated curves represent the inversely modeled soil profiles using the average f-parameter calculated for August 2009 for each catchment. Measured values represent TOC concentrations of soil water sampled in mid August 2009. Sample numbers (soil depth in bracket) are given as: n (-0.2m) = 16; n (-0.6m) = 17; n (-0.9m) = 15. Horizontal whiskers indicate the standard deviation of measured values for each soil depth.
NASA Astrophysics Data System (ADS)
Józefowska, Agnieszka; Zaleski, Tomasz; Sokołowska, Justyna; Dzierwa, Agata
2017-04-01
The study area was located in the Pieniny National Park (PNP) in the Carpathian Mountain (Southern Poland). Investigated soil belonged to Eutric Cambisols and had silt or silt loam texture. The purpose of this research was to investigated relationship between soil biota, such as microbial activity, soil Oligochaeta (Lumbricidae and Enchytraeidae) and soil physical properties, such as water retention or aggregates stability. This research was conducted at six forest monitoring areas of the PNP. Sampling was collected in the September 2016. For each of the 6 places, undisturbed and disturbed soil samples were taken from the 0-15-cm and 15-30-cm layer in 3 to 5 replicates. Undisturbed soil was taken: i) into Kopecky cylinders to determined soil physical properties; ii) a soil cores to determined enchytraeids and fine roots biomass (RB). Disturbed soil was collected in 3 reps and homogenized. Next such soil samples were divided into three parts: i) fresh one to determined dehydrogenase activity (ADh), microbial carbon biomass (MC) and labile carbon (LC); ii) air-dried, passed through a sieve (2-mm mesh size) and used for analysis: pH, organic carbon and bulk density; iii) last part air dried was used to determined stability of different size aggregates. In field, earthworms were collected in 3 reps using hand sorting method. Investigated soils were strongly acidic to neutral (pH 4.8-6.8). Organic carbon (Corg) content was varied from 0.8% to 4.5% and was higher in 0-15-cm layers than in 15-30-cm layers. Higher Corgcontent was connected with lower bulk density. Enchytraeids density was ranged from 1807 ind. m-2 to 88855 ind. m-2 and was correlated with microbial activity (ADh and MB) and RB. Earthworms density (ED) was ranged from 7 ind. m-2to 507 ind. m-2. In investigated soil was 6 genus and 7 species (Octolasion lacteum, Aporrectodea caliginosa, Aporrectodea rosea, Aporrectodea jassyensis, Lumbricus rubellus, Eisenia lucens, and Fitzingeria platyura depressa). ED was closely related with soil moisture and water field capacity. This Research was financed by the Ministry of Science and Higher Education of the Republic of Poland, No. BM - 4175/16
Lavado Contador, J F; Maneta, M; Schnabel, S
2006-10-01
The capability of Artificial Neural Network models to forecast near-surface soil moisture at fine spatial scale resolution has been tested for a 99.5 ha watershed located in SW Spain using several easy to achieve digital models of topographic and land cover variables as inputs and a series of soil moisture measurements as training data set. The study methods were designed in order to determining the potentials of the neural network model as a tool to gain insight into soil moisture distribution factors and also in order to optimize the data sampling scheme finding the optimum size of the training data set. Results suggest the efficiency of the methods in forecasting soil moisture, as a tool to assess the optimum number of field samples, and the importance of the variables selected in explaining the final map obtained.
NASA Astrophysics Data System (ADS)
Vodyanitskii, Yu. N.; Shoba, S. A.
2016-07-01
Ferrihydrite—an ephemeral mineral—is the most active Fe-hydroxide in soils. According to modern data, the ferrihydrite structure contains tetrahedral lattice in addition to the main octahedral lattice, with 10-20% of Fe being concentrated in the former. The presence of Fe tetrahedrons influences the surface properties of this mineral. The chemical composition of ferrihydrite samples depends largely on the size of lattice domains ranging from 2 to 6 nm. Chemically pure ferrihydrite rarely occurs in the soil; it usually contains oxyanion (SiO14 4-, PO4 3-) and cation (Al3+) admixtures. Aluminum replace Fe3+ in the structure with a decrease in the mineral particle size. Oxyanions slow down polymerization of Fe3+ aquahydroxomonomers due to the films at the surface of mineral nanoparticles. Si- and Al-ferrihydrites are more resistant to the reductive dissolution than the chemically pure ferrihydrite. In addition, natural ferrihydrite contains organic substance that decreases the grain size of the mineral. External organic ligands favor ferrihydrite dissolution. In the European part of Russia, ferrihydrite is more widespread in the forest soils than in the steppe soils. Poorly crystallized nanoparticles of ferrihydrite adsorb different cations (Zn, Cu) and anions (phosphate, uranyl, arsenate) to immobilize them in soils; therefore, ferrihydrite nanoparticles play a significant role in the biogeochemical cycle of iron and other elements.
Effect of aggregate structure on VOC gas adsorption onto volcanic ash soil.
Hamamoto, Shoichiro; Seki, Katsutoshi; Miyazaki, Tsuyoshi
2009-07-15
The understanding of the gaseous adsorption process and the parameters of volatile organic compounds such as organic solvents or fuels onto soils is very important in the analysis of the transport or fate of these chemicals in soils. Batch adsorption experiments with six different treatments were conducted to determine the adsorption of isohexane, a gaseous aliphatic, onto volcanic ash soil (Tachikawa loam). The measured gas adsorption coefficient for samples of Tachikawa loam used in the first three treatments, Control, AD (aggregate destroyed), and AD-OMR (aggregate destroyed and organic matter removed), implied that the aggregate structure of volcanic ash soil as well as organic matter strongly enhanced gas adsorption under the dry condition, whereas under the wet condition, the aggregate structure played an important role in gas adsorption regardless of the insolubility of isohexane. In the gas adsorption experiments for the last three treatments, soils were sieved in different sizes of mesh and were separated into three different aggregate or particle size fractions (2.0-1.0mm, 1.0-0.5mm, and less than 0.5mm). Tachikawa loam with a larger size fraction showed higher gas adsorption coefficient, suggesting the higher contributions of macroaggregates to isohexane gas adsorption under dry and wet conditions.
NASA Astrophysics Data System (ADS)
Stern, C.; Pavao-Zuckerman, M.
2014-12-01
Rain basins have been an increasingly popular Green Infrastructure (GI) solution to the redistribution of water flow caused by urbanization. This study was conducted to examine how different approaches to basin design, specifically mulching (gravel vs. compost and gravel), influence the water availability of rain basins and the effects this has on the soil microbial activity of the basins. Soil microbes are a driving force of biogeochemical process and may impact the carbon and nitrogen dynamics of rain basin GI. In this study we sampled 12 different residential-scale rain basins, differing in design established at Biosphere 2, Arizona in 2013. Soil samples and measurements were collected before and after the onset of the monsoon season in 2014 to determine how the design of basins mediates the transition from dry to wet conditions. Soil abiotic factors were measured, such as moisture content, soil organic matter (SOM) content, texture and pH, and were related to the microbial biomass size within the basins. Field and lab potential N-mineralization and soil respiration were measured to determine how basin design influences microbial activity and N dynamics. We found that pre-monsoon basins with compost had higher moisture contents and that there was a positive correlation between the moisture content and the soil microbial biomass size of the basins. Pre-monsoon data also suggests that N-mineralization rates for basins with compost were higher than those with only gravel. These design influences on basin-scale biogeochemical dynamics and nitrogen retention may have important implications for urban biogeochemistry at neighborhood and watershed scales.
Tatzber, Michael; Stemmer, Michael; Spiegel, Heide; Katzlberger, Christian; Landstetter, Claudia; Haberhauer, Georg; Gerzabek, Martin H.
2012-01-01
Knowledge about the stabilization of organic matter input to soil is essential for understanding the influence of different agricultural practices on turnover characteristics in agricultural soil systems. In this study, soil samples from a long-term field experiment were separated into silt- and clay-sized particles. In 1967, 14C labeled farmyard manure was applied to three different cropping systems: crop rotation, monoculture and permanent bare fallow. Humic acids (HAs) were extracted from silt- and clay-sized fractions and characterized using photometry, mid-infrared and fluorescence spectroscopy. Remaining 14C was determined in size fractions as well as in their extracted HAs. Yields of carbon and remaining 14C in HAs from silt-sized particles and Corg in clay-sized particles decreased significantly in the order: crop rotation > monoculture ≫ bare fallow. Thus, crop rotation not only had the largest overall C-pool in the experiment, but it also best stabilized the added manure. Mid-infrared spectroscopy could distinguish between HAs from different particle size soil fractions. With spectroscopic methods significant differences between the cropping systems were detectable in fewer cases compared to quantitative results of HAs (yields, 14C, Corg and Nt). The trends, however, pointed towards increased humification of HAs from bare fallow systems compared to crop rotation and monoculture as well as of HAs from clay-sized particles compared to silt-sized particles. Our study clearly shows that the largest differences were observed between bare fallow on one hand and monoculture and crop rotation on the other. PMID:23482702
Tatzber, Michael; Stemmer, Michael; Spiegel, Heide; Katzlberger, Christian; Landstetter, Claudia; Haberhauer, Georg; Gerzabek, Martin H
2012-05-01
Knowledge about the stabilization of organic matter input to soil is essential for understanding the influence of different agricultural practices on turnover characteristics in agricultural soil systems. In this study, soil samples from a long-term field experiment were separated into silt- and clay-sized particles. In 1967, 14 C labeled farmyard manure was applied to three different cropping systems: crop rotation, monoculture and permanent bare fallow. Humic acids (HAs) were extracted from silt- and clay-sized fractions and characterized using photometry, mid-infrared and fluorescence spectroscopy. Remaining 14 C was determined in size fractions as well as in their extracted HAs. Yields of carbon and remaining 14 C in HAs from silt-sized particles and C org in clay-sized particles decreased significantly in the order: crop rotation > monoculture ≫ bare fallow. Thus, crop rotation not only had the largest overall C-pool in the experiment, but it also best stabilized the added manure. Mid-infrared spectroscopy could distinguish between HAs from different particle size soil fractions. With spectroscopic methods significant differences between the cropping systems were detectable in fewer cases compared to quantitative results of HAs (yields, 14 C, C org and N t ). The trends, however, pointed towards increased humification of HAs from bare fallow systems compared to crop rotation and monoculture as well as of HAs from clay-sized particles compared to silt-sized particles. Our study clearly shows that the largest differences were observed between bare fallow on one hand and monoculture and crop rotation on the other.
NASA Astrophysics Data System (ADS)
Wacha, K.; Papanicolaou, T.; Hatfield, J.; Cambardella, C.; Abban, B. K.; Wilson, C. G.; Filley, T. R.; Hou, T.; Dold, C.
2017-12-01
The abundance and distribution of surface soil size fractions has been shown to be reflective of changes in management practices and landscape position. Soil size fractions exist in both un-aggregated and aggregated forms that differ in textural and biological composition, which can impact soil hydrology and aggregation processes. Soils with higher stocks of soil organic matter (SOM) promote higher biological activity, infiltration, and soil structure due to stronger, more resilient aggregates. Within ag-systems, intensive cultivation and steep gradients can negatively impact the formation/stability of aggregates and amplify erosion processes, which redistributes material along downslope flowpathways to varying degrees, based on the amount of available surface cover during a rainfall event. The innate variability in SOM composition found amongst the size fractions combined with these highly active flowpathways, produces a symphony of interactive biogeochemical and hydrologic processes, which promote spatial landscape heterogeneity. Due to this intricacy, accurately assessing changes in SOM stocks within high energy ag-systems is extremely challenging, and could greatly impact soil carbon budgets at the hillslope and greater spatial scales. To address this, in part, we utilize a systematic approach that isolates the role of management in building aggregate resilience to hydrologic forcing. Soil samples were collected from farm fields with varying slopes (1-20%) and management conditions, and then isolated into seven aggregate size fractions. Each aggregate fraction was tested for resilience to raindrop impact with corresponding SOM composition and biological activity. Rainfall simulations were conducted on plots under representative management and gradient to capture the dynamicity of the size fractions being transported during an applied rainfall event. Results found that small macroaggregate fractions were most indicative of changes in management, and erosion rates from plots were inversely proportional to SOM enrichment. These experiments not only promote our fundamental understanding on the dynamics of surface soil and SOM redistribution but also can provide guidance into best management practices that promote aggregate stability, decrease soil loss, and enhance soil health.
Space Weathering in the Fine Size Fractions of Lunar Soils: Soil Maturity Effects
NASA Technical Reports Server (NTRS)
Keller, L. P.; Wentworth, S. J.; McKay, D. S.; Taylor, L. A.; Pieters, C.; Morris, R. V.
1999-01-01
The effects of space weathering on the optical properties of lunar materials have been well documented. These effects include a reddened continuum slope, lowered albedo, and attenuated absorption features in reflectance spectra of lunar soils as compared to finely comminuted rocks from the same Apollo sites. However, the regolith processes that cause these effects are not well known, nor is the petrographic setting of the products of these processes fully understood. A Lunar Soil Characterization Consortium has been formed with the purpose of systematically integrating chemical and mineralogical data with the optical properties of lunar soils. Understanding space-weathering effects is critical in order to fully integrate the lunar sample collection with remotely-sensed data from recent robotic missions (e.g., Lunar Prospector, Clementine, and Galileo) We have shown that depositional processes (condensation of impact-derived vapors, sputter deposits, accreted impact material, e.g., splash glass, spherules, etc.) are a major factor in the modification of the optical surfaces of lunar regolith materials. In mature soils, it is the size and distribution of the nanophase metal in the soil grains that has the major effect on optical properties. In this report, we compare and contrast the space-weathering effects in an immature and a mature soil with similar elemental compositions. For this study, we analyzed <10 micron sieve fractions of two Apollo 17 soils, 79221 (mature, Is/FeO = 81) and 71061 (immature, Is/FeO = 14). Details of the sieving procedures and allocation scheme are given else where. The results of other detailed chemical, mineralogical, and spectroscopic analyses of these soil samples are reported elsewhere. A representative sample of each soil was embedded in low-viscosity epoxy, and thin sections (about 70nm thick) were obtained through ultra microtomy. The thin sections used for these analyses typically contained cross sections of up to 500 individual grains. The thin sections were studied using a JEOL 2010 transmission electron microscope (TEM) equipped with a thin window energy-dispersive X-ray (EDX) spectrometer. An individual thin section was selected from each soil, and for each grain in the section we determined (1) the elemental composition by EDX; (2) whether the grain was crystalline or glassy using electron diffraction and darkfield imaging; (3) the presence or absence of rims and accreted material; and (4) the distribution of nanophase Fe where present. Most of the categories are self-evident; however, we divide the agglutinate derived material into agglutinitic glass (glass with approximately the same composition as the bulk soil that contains nanophase Fe with or without vesicles) and agglutinate fragments, which are composed of crystalline grains and agglutinitic glass. Lithic fragments are defined as polymineralic grains with no glass. Pyroxene grains have been divided into high- and low-Ca groups. As expected, there are a number of differences in the petrography of the <10-microns fractions of 79221 and 71061 given the great difference in their respective maturities, but we focus here on two major distinctions: agglutinate content and the number of grains with micropatina. Slightly over 50% of the particles in 79221 consist of agglutinitic glass and agglutinate fragments, while the remainder are predominantly crystalline mineral grains. The agglutinic glass particles contain abundant nanophase Fe and vesicles. Angular particles are rare, with most showing smooth, rounded exteriors, Of the mineral grains analyzed thus far, over 90% of the grains have amorphous rims that contain nanophase Fe (these rims are believed to have formed by vapor deposition and irradiation effects). The nanophase Fe in these rims probably accounts for a significant fraction of the increase in Is/FeO measured in these size fractions. In addition to the rims, the majority of particles also show abundant accreted material in the form of glass splashes and spherules that also contain nanophase Fe. In stark contrast, the surfaces of the mineral grains in the 71061 sample are relatively prisitine, as only about 14% of the mineral grains in the sample exhibited amorphous rims. Furthermore, the mineral particles are more angular and show greater surface roughness than in the mature sample. Accreted material on particle surfaces is rare. Agglutinitic material is a major component of the 71061 sample; however, nanophase Fe and vesicles are not as well developed as in the 79221 sample. It is now recognized that nanophase Fe is probably the main agent in modifying the optical properties of lunar soil grains. The most important result of this study is the observation that in the fine size fractions of mature soils, nearly every grain has nanophase Fe within 100 run of the particle surface. (Additional Information contained in original)
NASA Astrophysics Data System (ADS)
Pszenny, A.; Keene, W. C.; Sander, R.; Bearekman, R.; Deegan, B.; Maben, J. R.; Warrick-Wriston, C.; Young, A.
2011-12-01
Bulk and size-segregated aerosol samples were collected 22 m AGL at the Boulder Atmospheric Observatory (40°N, 105°W, 1563 m ASL) from 18 February to 13 March 2011. Total concentrations of Na, Mg, Al, Cl, V, Mn, Br and I in bulk samples were determined by neutron activation analysis. Ionic composition of all size-segregated and a subset of bulk samples was determined by ion chromatography of aqueous extracts. Mg, Al, V and Mn mass concentrations were highly correlated and present in ratios similar to those in Denver area surface soils. Na and Cl were less well correlated with these soil elements but, after correction for soil contributions, highly correlated with each other. Linear regression of non-soil Cl vs. non-soil Na yielded a slope of 1.69 ± 0.09 (95% C.I.; n = 173), a value between the mass ratios of sea salt (1.80) and halite (1.54). The median Na and Cl concentrations (6.8 and 6.6 nmol m-3 STP, respectively) were factors of 25 to 35 less than those typically measured in the marine boundary layer. Br and I were somewhat correlated and appeared to represent a third aerosol component. The average bulk Cl-:total Cl ratio was 0.99 ± 0.03 (n = 44) suggesting that essentially all aerosol chlorine was water-soluble. Na+ and Cl- mass distributions were bimodal with most of the masses (medians 75% and 78%, respectively, n = 45) in supermicrometer particles. Possible origins of the "salt" component will be discussed based on consideration of 5-day HYSPLIT back trajectories and other information on sampled air mass characteristics.
Speciation of Se and DOC in soil solution and their relation to Se bioavailability.
Weng, Liping; Vega, Flora Alonso; Supriatin, Supriatin; Bussink, Wim; Van Riemsdijk, Willem H
2011-01-01
A 0.01 M CaCl(2) extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium (Se) in the soil extraction and Se content in grass. The recently developed anion Donnan membrane technique was used to analyze chemical speciation of Se in the 0.01 M CaCl(2) extractions of grassland soils and fractionation of DOC (dissolved organic carbon). The results show that most of Se (67-86%) in the extractions (15 samples) are colloidal-sized Se. Only 13-34% of extractable Se are selenate, selenite and small organic Se (<1 nm). Colloidal Se is, most likely, Se bound to or incorporated in colloidal-sized organic matter. The dominant form of small Se compounds (selenate, selenite/small organic compounds) depends on soil. A total of 47-85% of DOC is colloidal-sized and 15-53% are small organic molecules (<1 nm). In combination with soluble S (sulfur) and/or P (phosphor), concentration of small DOC can explain most of the variability of Se content in grass. The results indicate that mineralization of organic Se is the most important factor that controls Se availability in soils. Competition with sulfate and phosphate needs to be taken into account. Further research is needed to verify if concentration of small DOC is a good indicator of mineralization of soil organic matter.
14CO2 analysis of soil gas: Evaluation of sample size limits and sampling devices
NASA Astrophysics Data System (ADS)
Wotte, Anja; Wischhöfer, Philipp; Wacker, Lukas; Rethemeyer, Janet
2017-12-01
Radiocarbon (14C) analysis of CO2 respired from soils or sediments is a valuable tool to identify different carbon sources. The collection and processing of the CO2, however, is challenging and prone to contamination. We thus continuously improve our handling procedures and present a refined method for the collection of even small amounts of CO2 in molecular sieve cartridges (MSCs) for accelerator mass spectrometry 14C analysis. Using a modified vacuum rig and an improved desorption procedure, we were able to increase the CO2 recovery from the MSC (95%) as well as the sample throughput compared to our previous study. By processing series of different sample size, we show that our MSCs can be used for CO2 samples of as small as 50 μg C. The contamination by exogenous carbon determined in these laboratory tests, was less than 2.0 μg C from fossil and less than 3.0 μg C from modern sources. Additionally, we tested two sampling devices for the collection of CO2 samples released from soils or sediments, including a respiration chamber and a depth sampler, which are connected to the MSC. We obtained a very promising, low process blank for the entire CO2 sampling and purification procedure of ∼0.004 F14C (equal to 44,000 yrs BP) and ∼0.003 F14C (equal to 47,000 yrs BP). In contrast to previous studies, we observed no isotopic fractionation towards lighter δ13C values during the passive sampling with the depth samplers.
NASA Astrophysics Data System (ADS)
Navas, A.; Laute, K.; Beylich, A. A.; Gaspar, L.
2014-06-01
In the Erdalen and Bødalen drainage basins located in the inner Nordfjord in western Norway the soils were formed after deglaciation. The climate in the uppermost valley areas is sub-arctic oceanic, and the lithology consists of Precambrian granitic orthogneisses on which Leptosols and Regosols are the most common soils. The Little Ice Age glacier advance affected parts of the valleys with the maximum glacier extent around AD 1750. In this study five sites on moraine and colluvium materials were selected to examine main soil properties, grain size distribution, soil organic carbon and pH to assess if soil profile characteristics and patterns of fallout radionuclides (FRNs) and environmental radionuclides (ERNs) are affected by different stages of ice retreat. The Leptosols on the moraines are shallow, poorly developed and vegetated with moss and small birches. The two selected profiles show different radionuclide activities and grain size distribution. The sampled soils on the colluviums outside the LIA glacier limit became ice-free during the Preboral. The Regosols present better-developed profiles, thicker organic horizons and are fully covered by grasses. Activity of 137Cs and 210Pbex concentrate at the topsoil and decrease sharply with depth. The grain size distribution of these soils also reflects the difference in geomorphic processes that have affected the colluvium sites. Significantly lower mass activities of FRNs were found in soils on the moraines than on colluviums. Variations of ERN activities in the valleys were related to characteristics of soil mineralogical composition. These results indicate differences in soil development that are consistent with the age of ice retreat. In addition, the pattern distribution of 137Cs and 210Pbex activities differs in the soils related to the LIA glacier limits in the drainage basins.
NASA Astrophysics Data System (ADS)
Chang, W.; Kim, J.; Zhu, N.; McBeth, J. M.
2015-12-01
Microbial hydrocarbon degradation is environmentally significant and applicable to contaminated site remediation practices only when hydrocarbons (substrates) are physically bioaccessible to bacteria in soil matrices. Powerful X-rays are produced by synchrotron radiation, allowing for bioaccessible pores in soil (larger than 4 microns), where bacteria can be accommodated, colonize and remain active, can be visualized at a much higher resolution. This study visualized and quantified such bioaccessible pores in intact field-aged, oil-contaminated unsaturated soil fractions, and examined the relationship between the abundance of bioaccessible pores and hydrocarbon biodegradation. Using synchrotron-based X-ray Computed Tomography (CT) at the Canadian Light Source, a large dataset of soil particle characteristics, such as pore volumes, surface areas, number of pores and pore size distribution, was generated. Duplicate samples of five different soil fractions with different soil aggregate sizes and water contents (13, 18 and 25%) were examined. The method for calculating the number and distribution of bioaccessible pores using CT images was validated using the known porosity of Ottawa sand. This study indicated that the distribution of bioaccessible pore sizes in soil fractions are very closely related to microbial enhancement. A follow-up aerobic biodegradation experiment for the soils at 17 °C (average site temperature) over 90 days confirmed that a notable decrease in hydrocarbon concentrations occurred in soils fractions with abundant bioaccessible pores and with a larger number of pores between 10 and 100 μm. The hydrocarbon degradation in bioactive soil fractions was extended to relatively high-molecular-weight hydrocarbons (C16-C34). This study provides quantitative information about how internal soil pore characteristics can influence bioremediation performance.
Hysteretic sediment fluxes in rainfall-driven soil erosion
NASA Astrophysics Data System (ADS)
Cheraghi, Mohsen; Jomaa, Seifeddine; Sander, Graham C.; Barry, D. Andrew
2017-04-01
Hysteresis patterns of different sediment particle sizes were studied via a detailed laboratory study and modelling. Seven continuous rainfall events with stepwise- varying rainfall intensities (30, 37.5, 45, 60, 45, 37.5 and 30 mm h-1, each 20 min duration) were conducted using a 5-m × 2-m erosion flume. Flow rates and sediment concentration data were measured using flume discharge samples, and interpreted using the Hairsine and Rose (HR) soil erosion model. The total sediment concentration and concentrations of seven particle size classes (< 2, 2-20, 20-50, 50-100, 100-315, 315-1000 and > 1000 μm) were measured. For the total eroded soil and the finer particle sizes (< 2, 2-20 and 20-50 μm), there was a clockwise pattern in the sediment concentration versus discharge curves. However, as the particle size increased, concentrations tended to vary linearly with discharge. The HR model predictions for the total eroded soil and the finer particle size classes (up to 100 μm) were in good agreement with the experimental results. For the larger particles, the model provided qualitative agreement with the measurements but concentration values were different. In agreement with previous investigations using the HR model, these differences were attributed to the HR model's assumption of suspended sediment flow, which does not account for saltation and rolling motions. Keywords: Hysteresis effects, Sediment transport, Flume experiment, Splash soil erosion, Hairsine and Rose model, Particle Swarm Optimization.
Variable temperature sensitivity of soil organic carbon in North American forests
Cinzia Fissore; Christian P. Giardina; Christopher W. Swanston; Gary M. King; Randall K. Kolka
2009-01-01
We investigated mean residence time (MRT) for soil organic carbon (SOC) sampled from paired hardwood and pine forests located along a 22 °C mean annual temperature (MAT) gradient in North America. We used acid hydrolysis fractionation, radiocarbon analyses, long-term laboratory incubations (525-d), and a three-pool model to describe the size and kinetics of...
The Impact of Fire on Mercury Cycling in Watershed Systems
NASA Astrophysics Data System (ADS)
Lopez, S.; Mendez, C.; Hogue, T.; Jay, J.
2006-12-01
Mercury methylation is a process by which the less-toxic inorganic mercury is transformed into methylmercury (MeHg). MeHg is a potent neurotoxin with a strong tendency to biomagnify within the food chain. Limited studies suggest that wildfires change the soil characteristics and contribute to Hg transport and possibly methylation in downstream ecosystems. We propose that post-fire Hg cycling can be related to various soil properties and burn characteristics. In order to better understand the effects of wildfires on Hg cycling, studies were undertaken within a burned watershed and a neighboring unburned site, Malibu Creek and Cold Creek, respectively. Soil sampling of the burned and control (unburned) regions were composed of 25 square foot grids with nine equidistant sampling points. Sediment samples for soil sieve analysis were collected at all grid points to determine the particle size distribution of the fine and coarse grain aggregates. Total Hg sediments were collected from the three middle points of the grid at two soil horizons to provide a vertical profile. Total Hg concentrations of the sediment samples were measured using the Direct Mercury Analyzer (DMA80). Initial analysis of the soil profiles reveals a decrease in Hg concentration at the soil surface (89 percent loss). Preliminary results indicate sites with the lowest concentration of Hg are characterized by a higher percentage of finer grain aggregates. Runoff from the first post-fire storm was extremely turbid and dark gray in color due to high levels of suspended solids (3980 mg/L). Total Hg concentrations in unfiltered and filtered samples (0.2 micron) were 196 and 4.7 ng/L, respectively, compared to the control which had unfiltered and filtered Hg levels of 6.1 and 2.3 ng/L, respectively, and 450 mg/L total suspended solids. The concentration of Hg on the particles was six times higher than the Hg content of suspended particles at the control site. Results also show much stronger partitioning (three-fold higher Kd's) to the solid phase in the fire- impacted site. On-going work includes: 1) analysis of Hg and ancillary geochemical parameters overlying water and porewater from samples collected in the streambed downstream of the fire, 2) analysis of Hg concentrations in various particle size fractions of soil; and 3) preliminary characterization of recovery through analysis of soil properties and Hg levels at the burned and control sites, one-year post-fire.
K/Ar dating of lunar soils. II
NASA Technical Reports Server (NTRS)
Alexander, E. C., Jr.; Bates, A.; Coscio, M. R., Jr.; Dragon, J. C.; Murthy, V. R.; Pepin, R. O.; Venkatesan, T. R.
1976-01-01
An attempt is made to identify those K/Ar techniques which extract the most reliable chronological information from lunar soils and to define the situations in which the best data are obtainable. Results are presented for determinations of the exposure and K/Ar ages of five lunar soil samples, which were performed by applying correlation techniques for a two-component argon structure to stepwise-heated and neutron-irradiated aliquots of grain-sized separates. It is found that ages deduced from Ar-40/surface-correlated Ar-36 vs K-40/surface-correlated Ar-36 and analogous plots of data from grain-sized separates appear to be the best available K/Ar ages of submature to mature lunar soils, that ages deduced from Ar-40 vs Ar-36 and analogous plots which assume a uniform K content can be significantly in error, and that stepwise-heating (Ar-40)-(Ar-39) experiments yield useful information only for simple immature soils where the K-Ar systematics are dominated by a single component.
Influences of composted hazelnut husk on some physical properties of soils.
Zeytin, Serhat; Baran, Abdullah
2003-07-01
Some physical properties of clay loam and sandy loam soils amended with hazelnut husk (HH) were investigated. HH collected from hazelnut trees were dried, ground and composted for four months. Before use the composted material obtained was separated to three different aggregate sizes, smaller than 0.84 mm, 0.84-2.38 mm and bigger than 2.38 mm. Then these fractions were mixed with soil samples, at 0%, 1%, 2%, 4% and 8% by weight. Huzelnut husk compost-soil mixtures were placed to plastic pots and kept in an incubator at 25+/-5 degrees C for 45 and 90 days. At the end of incubation periods, water stable aggregate (WSA), hydraulic conductivity, total porosity, aeration porosity and macro- and micro-pore percentages of the mixtures were determined. Results obtained showed that composted HH increased the WSA, hydraulic conductivity, total porosity and macro-pore percentage in both clay loam and sandy loam soils depending on the incubation time and aggregate sizes.
NASA Astrophysics Data System (ADS)
Samuel, Y. M.; Saad, R.; Muztaza, N. M.; Saidin, M. M.; Muhammad, S. B.
2018-04-01
Magnetic and geotechnical methods were used for shallow subsurface soil characterization at Sungai Batu, Kedah, (Malaysia). Ground magnetic data were collected along a survey line of length 160 m long at 2 m constant station spacing, while soil drilling using hand auger was conducted at 21 m on the survey line using 0.2 m sampling interval drilled to a depth of 5 m. Result from the processed magnetic profile data shows distribution of magnetic residuals in the range of -4.55 to 1.61 nT, with magnetic low (-4.55 nT to -0.058 nT) and were identified at distances 4 m, 10 to 16 m, 20 to 26 m, 58 m, 82 m, 104 to 106 m, 118 m, and 124 to 140 m. The magnetic lows are attributes of sediments. The result from the soil drilling shows sticky samples with variable sizes, greyish to brownish / reddish in colour, and some of the samples show the presence of shiny and black spots. The characteristics of the samples suggest the soil as a by-product of completely weathered rock; weak with high water content and classified as Grade V soil. The study concludes; integration of geophysical and geotechnical methods aided in characterizing the subsurface soil at Sungai Batu. The result was correlated with previous studies and confirms the importance of integrated approach in minimising ambiguity in interpretation.
NASA Astrophysics Data System (ADS)
Kim, Gibaek; Yoon, Young-Jun; Kim, Hyun-A.; Cho, Hee-joo; Park, Kihong
2017-08-01
Two laser-induced breakdown spectroscopy (LIBS) systems (soil LIBS and aerosol LIBS) were used to determine the elemental composition of soils and ambient aerosols less than 2.5 μm in Ny-Ålesund, Svalbard (the world's most northerly human settlement). For soil LIBS measurements, matrix effects such as moisture content, soil grain size, and surrounding gas on the LIBS response were minimized. When Ar gas was supplied onto the soil sample surfaces, a significant enhancement in LIBS emission lines was observed. Arctic soil samples were collected at 10 locations, and various elements (Al, Ba, C, Ca, Cu, Fe, H, K, Mg, Mn, N, Na, O, Pb, and Si) were detected in soils. The elemental distribution in arctic soils was clearly distinguishable from those in urban and abandoned mining soils in Korea. Moreover, the concentrations of most of anthropogenic metals were fairly low, and localized sources in extremely close proximity affected the elevated level of Cu in the soil samples derived from Ny-Ålesund. The number of elements detected in aerosols (C, Ca, H, K, Mg, Na, and O) was lower than those determined in soils. The elements in aerosols can mainly originate from minerals and sea salts. The elemental distribution in aerosols was also clearly distinguishable from that in soils, suggesting that the resuspension of local soil particles by wind erosion into aerosols was minimal. The daily variation of particle number concentration (RSD = 71%) and the elements in aerosols (RSD = 25%) varied substantially, possibly due to fluctuating air masses and meteorological conditions.
Uranium speciation in Fernald soils. Progress report, January 1--May 31, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, D.E.; Conradson, S.D.; Tait, C.D.
1992-05-31
This report details progress made from January 1 to May 31, 1992 in this analytical support task to determine the speciation of uranium in contaminated soil samples from the Fernald Environmental Management Project site under the auspices of the Uranium in Soils Integrated Demonstration funded through the US DOE`s Office of Technology Development. The authors` efforts have focused on characterization of soil samples collected by S.Y. Lee (Oak Ridge National Laboratory) from five locales at the Fernald site. These were chosen to sample a broad range of uranium source terms. On the basis of x-ray absorption spectroscopy data, they havemore » determined that the majority of uranium (> 80--90%) exists in the hexavalent oxidation state for all samples examined. This is a beneficial finding from the perspective of remediation, because U(VI) species are more soluble in general than uranium species in other oxidation states. Optical luminescence data from many of the samples show the characteristic structured yellow-green emission from the uranyl (UO{sub 2}{sup 2+}) moiety. The luminescence data also suggest that much of the uranium in these soils is present as well-crystallized UO{sub 2}{sup 2+} species. Some clear spectroscopic distinctions have been noted for several samples that illustrate significant differences in the speciation (1) from site to site, (2) within different horizons at the same site, and (3) within different size fractions of the soils in the same horizon at the same site. This marked heterogeneity in uranyl speciation suggests that several soil washing strategies may be necessary to reduce the total uranium concentrations within these soils to regulatory limits.« less
NASA Technical Reports Server (NTRS)
Perlwitz, J. P.; Garcia-Pando, C. Perez; Miller, R. L.
2015-01-01
A global compilation of nearly sixty measurement studies is used to evaluate two methods of simulating the mineral composition of dust aerosols in an Earth system model. Both methods are based upon a Mean Mineralogical Table (MMT) that relates the soil mineral fractions to a global atlas of arid soil type. The Soil Mineral Fraction (SMF) method assumes that the aerosol mineral fractions match the fractions of the soil. The MMT is based upon soil measurements after wet sieving, a process that destroys aggregates of soil particles that would have been emitted from the original, undisturbed soil. The second method approximately reconstructs the emitted aggregates. This model is referred to as the Aerosol Mineral Fraction (AMF) method because the mineral fractions of the aerosols differ from those of the wet-sieved parent soil, partly due to reaggregation. The AMF method remedies some of the deficiencies of the SMF method in comparison to observations. Only the AMF method exhibits phyllosilicate mass at silt sizes, where they are abundant according to observations. In addition, the AMF quartz fraction of silt particles is in better agreement with measured values, in contrast to the overestimated SMF fraction. Measurements at distinct clay and silt particle sizes are shown to be more useful for evaluation of the models, in contrast to the sum over all particles sizes that is susceptible to compensating errors, as illustrated by the SMF experiment. Model errors suggest that allocation of the emitted silt fraction of each mineral into the corresponding transported size categories is an important remaining source of uncertainty. Evaluation of both models and the MMT is hindered by the limited number of size-resolved measurements of mineral content that sparsely sample aerosols from the major dust sources. The importance of climate processes dependent upon aerosol mineral composition shows the need for global and routine mineral measurements.
Perlwitz, J. P.; Perez Garcia-Pando, C.; Miller, R. L.
2015-10-21
A global compilation of nearly sixty measurement studies is used to evaluate two methods of simulating the mineral composition of dust aerosols in an Earth system model. Both methods are based upon a Mean Mineralogical Table (MMT) that relates the soil mineral fractions to a global atlas of arid soil type. The Soil Mineral Fraction (SMF) method assumes that the aerosol mineral fractions match the fractions of the soil. The MMT is based upon soil measurements after wet sieving, a process that destroys aggregates of soil particles that would have been emitted from the original, undisturbed soil. The second methodmore » approximately reconstructs the emitted aggregates. This model is referred to as the Aerosol Mineral Fraction (AMF) method because the mineral fractions of the aerosols differ from those of the wet-sieved parent soil, partly due to reaggregation. The AMF method remedies some of the deficiencies of the SMF method in comparison to observations. Only the AMF method exhibits phyllosilicate mass at silt sizes, where they are abundant according to observations. In addition, the AMF quartz fraction of silt particles is in better agreement with measured values, in contrast to the overestimated SMF fraction. Measurements at distinct clay and silt particle sizes are shown to be more useful for evaluation of the models, in contrast to the sum over all particles sizes that is susceptible to compensating errors, as illustrated by the SMF experiment. Model errors suggest that allocation of the emitted silt fraction of each mineral into the corresponding transported size categories is an important remaining source of uncertainty. Evaluation of both models and the MMT is hindered by the limited number of size-resolved measurements of mineral content that sparsely sample aerosols from the major dust sources. In conclusion, the importance of climate processes dependent upon aerosol mineral composition shows the need for global and routine mineral measurements.« less
Modal petrology of six soils from Apollo 16 double drive tube core 64002
NASA Technical Reports Server (NTRS)
Houck, K. J.
1982-01-01
Petrographic data form six size fractions for six samples of Apollo 16 drive tube section 64002 show source rocks similar to those of core 60009. Analysis of modal data from the 64002 core show that the upper three and lowest core soils are mature and have similar maturation histories, while the two middle soils are submature and have histories that are similar to each other but unlike those from the aforementioned soils. In all of these soils, mixing has dominated over reworking, and appears to involve two mature soils distinguished by differing source rocks and an immature, plagioclase-rich soil which is correlated with larger clasts of chalky, friable breccia. These breccias and the plagioclase-rich soil are tentatively associated with the Descartes Formation.
NASA Astrophysics Data System (ADS)
Fry, D. C.; Ayers, J. C.
2014-12-01
In the coastal areas of Southwest Bangladesh polders are surrounded by tidal channels filled with brackish water. In the wet season, farmers create openings in the embankments to irrigate rice paddies. In the dry season, farmers do the same to create saline shrimp ponds. Residents on Polder 32, located within the Ganges-Brahmaputra-Meghna delta system, practice these seasonal farming techniques. Soils in the area are entisols, being sediment recently deposited, and contain mostly silt-sized particles. Brackish water in brine shrimp ponds may deposit salt in the soil, causing soil salinization. However, saline connate groundwater could also be contributing to soil salinization. Groundwater, surface water (fresh water pond, rice paddy and tidal channel water) and soil samples have been analyzed via inductively coupled plasma optical emission spectroscopy, inductively coupled plasma mass spectroscopy and ion chromatography in an attempt to correlate salinity measurements with each other in order to determine major sources of soil salinity. Multiple parameters, including distances of samples from tidal channels, inland streams, shrimp ponds and tube wells were measured to see if spatial correlations exist. Similarly, values from wet and dry seasons were compared to quantify temporal variations. Salt content in many soil samples were found to be high enough to significantly decrease rice yields. Continued soil salinization can decrease these yields even more, leading to farmers not producing enough food to sustain their families.
Gmur, Stephan; Vogt, Daniel; Zabowski, Darlene; Moskal, L. Monika
2012-01-01
The characterization of soil attributes using hyperspectral sensors has revealed patterns in soil spectra that are known to respond to mineral composition, organic matter, soil moisture and particle size distribution. Soil samples from different soil horizons of replicated soil series from sites located within Washington and Oregon were analyzed with the FieldSpec Spectroradiometer to measure their spectral signatures across the electromagnetic range of 400 to 1,000 nm. Similarity rankings of individual soil samples reveal differences between replicate series as well as samples within the same replicate series. Using classification and regression tree statistical methods, regression trees were fitted to each spectral response using concentrations of nitrogen, carbon, carbonate and organic matter as the response variables. Statistics resulting from fitted trees were: nitrogen R2 0.91 (p < 0.01) at 403, 470, 687, and 846 nm spectral band widths, carbonate R2 0.95 (p < 0.01) at 531 and 898 nm band widths, total carbon R2 0.93 (p < 0.01) at 400, 409, 441 and 907 nm band widths, and organic matter R2 0.98 (p < 0.01) at 300, 400, 441, 832 and 907 nm band widths. Use of the 400 to 1,000 nm electromagnetic range utilizing regression trees provided a powerful, rapid and inexpensive method for assessing nitrogen, carbon, carbonate and organic matter for upper soil horizons in a nondestructive method. PMID:23112620
Control of Mercury Accumulation And Mobility in a Forest Soil as Indicated by δ13C
NASA Astrophysics Data System (ADS)
Bajracharya, U.; Jackson, B.; Feng, X.
2015-12-01
Mobility and cycling of mercury (Hg) in soils is important. Hg leaching results in its transport to wetlands, where Hg methylates and bioaccumulates through aquatic food webs. It has been shown that Hg cycle in soil is controlled by organic matter (OM) quantity as well as quality. The latter is indicated by increase of Hg/C ratio as C/N decreases by decomposition. Here we investigate the Hg-C relationship in a temperate forest soil in Hanover, NH, with a focus of examining the control of OM quality on soil Hg accumulation and mobility. We use δ13C as an indicator of carbon quality. The soil samples from A, B and C horizons were separated into six particle size fractionations from <25 µm to 1 mm. Both the bulk soil and particle size separates were analyzed for Hg concentrations, carbon content (C%), δ13C, and Hg partition coefficient (Kd =mg gSoil-1/mg Lsolution-1). We found that the bulk Hg concentration decreases significantly with increasing δ13C (R2=0.90, p <0.0001), but Hg/C increases with δ13C (R2=0.59, p =0.009). Both Hg/C and δ13C increase with soil depth, and at a given horizon, they both increase with decreasing particle size. These results indicate that high Hg/C ratios are associated with aged, decomposed, and low quality OM. Mostly likely, this accumulation of Hg in older OM is a result of retention of Hg upon carbon loss during soil respiration. However, the relationship between particle size and Hg/C is significantly different among different horizons; the most prominent relationship occurs at the deepest C horizon. This cross effect of horizon and particle size cannot be explained by normal aging of the OM through decomposition, pointing to mechanisms of changing in Hg bonding characteristics with OM aging or particle aggregation. The measured Kd value decreased with increasing δ13C (R2=0.43, p =0.0031), indicating that Hg associated with older OM is more subject to leaching compared to younger, fresher OM. This association can also be partitioned into effects of of both soil horizon and particle size. This work demonstrates that soil δ13C is a useful tool for studying coupled Hg and C cycles in soils. Linking other methods characterizing bonding characteristics of Hg may bring additional insights to accumulation and mobility of Hg in association with changing chemical and physical properties of OM.
Apollo 17 Soil Characterization for Reflectance Spectroscopy
NASA Technical Reports Server (NTRS)
Taylor, L. A.; Pieters, C.; Patchen, A.; Morris, R. V.; Keller, L. P.; Wentworth, S.; McKay, D. S.
1999-01-01
It is the fine fractions that dominate the observed spectral signatures of bulk lunar soil, and the next to the smallest size fractions are the most similar to the overall properties of the bulk soil. Thus, our Lunar Soil Characterization Consortium has concentrated on understanding the inter-relations of compositional, mineralogical, and optical properties of the <45-micron size fraction and its component sizes (20-44 micron, 10-20 micron, and <10 micron size fractions). To be able to generalize our results beyond the particular sample set studied, it is necessary to quantitatively identify the observed effects of space weathering and evaluate the processes involved. For this, it is necessary to know the chemistry of each size fraction, modal abundances of each phase, average compositions of the minerals and glasses, I(sub s)/FeO values, reflectance spectra, and the physical makeup of the individual particles and their patinas. This characterization includes the important dissection of the pyroxene minerals into four separate populations, with data on both modes and average chemical compositions. Armed with such data, it should be possible to effectively isolate spectral effects of space weathering from spectral properties related to mineral and glass chemistry. Four mare soils from the Apollo 17 site were selected for characterization based upon similarities in bulk composition and their contrasting maturities, ranging from immature to submature to mature. The methodology of our characterization has been discussed previously. Results of the Apollo 17 mare soils, outlined herein, are being prepared for publication in MAPS. As shown, with decreasing grain size, the agglutinitic (impact) glass content profoundly increases. This is the most impressive change for the mare soils. In several soils we have examined, there is an over two-fold increase in the agglutinitic glass contents between the 90-150- micron and the 10-20-micron size fractions. Accompanying this increase in agglutinitic glass is a definite decrease in pyroxenes and to lesser extents, the oxides (ilmenite), volcanic glass, and olivine. Unexpectedly, however, the absolute plagioclase abundances stay relatively constant throughout the different grain sizes, although the abundance of plagioclase relative to the mafic minerals increases with decreasing particle size. These soils were chosen for study based upon their similarities in FeO and Ti02 content, allowing for direct comparisons between evolutions of chemistry between size fractions and among different maturities of soils. The bulk chemistry of these fractions was determined by EMP analyses of fused glass beads. In contrast to the systematic variations in bulk chemistry discussed below, the relatively uniform composition of agglutinitic glass with grain size and soil maturity is illustrated. The composition of the bulk fraction of each size fraction becomes more feldspathic with increasing maturity, with the effect being most pronounced for the finest fractions. The composition of the agglutinitic glass, however, is relatively invariant and more feldspathic (i.e., rich in Al2O3) than even the <10-micron fraction. This relation not only strengthens the "fusion of the finest fraction" (F(sup 3)) hypothesis, but also highlights the important role of plagioclase in the formation of agglutinitic glass. With decreasing grain size, FeO, MgO, and TiO2 contents decrease, whereas CaO, Na2O, and Al2O3 (plag components) increase for all soils. These chemical variations would appear to be coupled with the significant increase in agglutinitic glass and decrease in oxide (ilmenite),pyroxene, and volcanic glass. These changes in chemistry do not appear to be due to distinct changes in the compositions of individual phases but to their abundances. Values of I(sub s)/FeO increase with decreasing grain size, even though the bulk FeO contents decrease. That is, the percentage of the total Fe that is present as nanophase Fe(sup O) has increased substantially in the smaller size fraction. Note that the increase in nanophase FeO in smaller size fractions is significantly greater than the increase in agglutinitic glass content, with its single-domain FeO component. This would seem to indicate that at least some of the FeO is surface correlated. To illustrate this effect, if it is assumed that the nanophase FeO is entirely surface correlated, then equal masses of 15-micron and 6-micron spheres should have about 3x as much FeO in the finer fraction. The recent findings of Kelleret al. of the major role of vapor-deposited, nanophase FeO-containing patinas on most soil particles is a major breakthrough in our understanding of the distribution of FeO within agglutinitic glass and upon grain surfaces. Bidirectional reflectance spectra for a representative Apollo 17 soil (70181) are shown. The size separates all have similar albedo in the blue and follow a regular sequence in which the continuum slope increases, ferrous bands weaken, and albedo, increases with decreasing particle size. The bulk <45-micron soil is typically close to the 10-20 micron spectrum. It is important to note that although the finest fraction (<10 micron) is close in composition to the abundant agglutinitic glass in each size fraction, this size fraction is relatively featureless and does not dominate the spectrum of the bulk <45-micron soil. It has long been suspected that agglutinitic glass, to a large extent, is the product of melting of the finest fraction of the soils, with a dominance of plagioclase. Given the low abundance of pyroxene in the finest fractions of each soil the source of the FeO in these Apollo 17 agglutinitic glasses is not fully identified. We suspect the abundant volcanic glass in these samples may be a significant contributor and this hypothesis will be tested with the suite under study from other Apollo sites.
NASA Astrophysics Data System (ADS)
Zacher, Gerhard; Eickhorst, Thilo; Schmidt, Hannes; Halisch, Matthias
2016-04-01
Today's high-resolution X-ray CT with its powerful tubes and great detail detectability lends itself naturally to geological and pedological applications. Those include the non-destructive interior examination and textural analysis of rock and soil samples and their permeability and porosity - to name only a few. Especially spatial distribution and geometry of pores, mineral phases and fractures are important for the evaluation of hydrologic and aeration properties in soils as well as for root development in the soil matrix. The possibility to visualize a whole soil aggregate or root tissue in a non-destructive way is undoubtedly the most valuable feature of this type of analysis and is a new area for routine application of high resolution X-ray micro-CT. The paper outlines recent developments in hard- and software requirements for high resolution CT. It highlights several pedological applications which were performed with the phoenix nanotom m, the first 180 kV nanofocus CT system tailored specifically for extremely high-resolution scans of variable sized samples with voxel-resolutions down to < 300 nm. In addition very good contrast resolution can be obtained as well which is necessary to distinguish biogenic material in soil aggregates amongst others. We will address visualization and quantification of porous networks in 3D in different environmental samples ranging from clastic sedimentary rock to soil cores and individual soil aggregates. As several processes and habitat functions are related to various pore sizes imaging of the intact soil matrix will be presented on different scales of interest - from the mm-scale representing the connectivity of macro-pores down to the micro-scale representing the space of microbial habitats. Therefore, soils were impregnated with resin and scanned via X-ray CT. Scans at higher resolution were obtained from sub-volumes cut from the entire resin impregnated block and from crop roots surrounded by rhizosphere soil. Within the scanned structures we will highlight interfaces i.e. pore-solid interface and soil-root interface. The latter will be linked to examples of fluorescent microscopy and scanning electron microscopy obtained from 2D sections revealing additional biological and chemical information in the respective microenvironment. Based on the combination of all 3D and 2D imaging data habitat features of soils can be characterized and combined with studies analyzing microbial rhizosphere colonization.
Sierra, C; Menéndez-Aguado, J M; Afif, E; Carrero, M; Gallego, J R
2011-11-30
Soils in abandoned mining sites generally present high concentrations of trace elements, such as As and Hg. Here we assessed the feasibility of washing procedures to physically separate these toxic elements from soils affected by a considerable amount of mining and metallurgical waste ("La Soterraña", Asturias, NW Spain). After exhaustive soil sampling and subsequent particle-size separation via wet sieving, chemical and mineralogical analysis revealed that the finer fractions held very high concentrations of As (up to 32,500 ppm) and Hg (up to 1600 ppm). These elements were both associated mainly with Fe/Mn oxides and hydroxides. Textural and geochemical data were correlated with the geological substrate by means of a multivariate statistical analysis. In addition, the Hg liberation size (below 200 μm) was determined to be main factor conditioning the selection of suitable soil washing strategies. These studies were finally complemented with a specific-gravity study performed with a C800 Mozley separator together with a grindability test, both novel approaches in soil washing feasibility studies. The results highlighted the difficulties in treating "La Soterraña" soils. These difficulties are attributed to the presence of contaminants embedded in the soil and spoil heap aggregates, caused by the meteorization of gangue and ore minerals. As a result of these two characteristics, high concentrations of the contaminants accumulate in all grain-size fractions. Therefore, the soil washing approach proposed here includes the grinding of particles above 125 μm. Copyright © 2011 Elsevier B.V. All rights reserved.
Sources of particulate organic matter discharged by the Lena River using lignin phenols
NASA Astrophysics Data System (ADS)
Winterfeld, M.; Trojahn, S.; Hefter, J.; Pittauer, D.; Zubrzycki, S.; Han, P.; Rethemeyer, J.; Mollenhauer, G.
2016-12-01
Particulate organic matter (POM) discharged by rivers and deposited offshore their mouths is generally assumed to record an integrated signal from the watershed and therefore provides an archive of past environmental changes. Yet, in large river systems the riverine POM might be trapped in flood plains and the lower reaches resulting in an inefficient transport of POM particularly from the distal parts of the watershed. Further, the POM likely undergoes degradation during transport from source to sink. The Lena River is one of these large river systems stretching from 53°N to 71°N in central Siberia. The watershed can be broadly divided into two different biomes, taiga in the south and tundra in the northernmost part. The relative contribution of these biomes to the POM load of the river and its discharge to the ocean as well as the changes it is undergoing during transport are not well understood. Here we present the lignin phenol composition of different grain size fractions (bulk, 2mm-63µm, <63µm) of soil samples taken along a latitudinal transect (63°N to 72°N) as well as in marine surface sediments and two short sediment cores covering the last 120 years offshore the main Lena discharge channels. The lignin phenol composition of the soil samples (bulk, 2mm-63µm, <63µm) reflects the change in vegetation from south to north with increasing contribution of tundra vegetation. The degree of degradation between the soil sample locations as well as grain size fractions was very heterogeneous and did not show a clear trend. However, the POM seems to be slightly more degraded in the tundra, which is unexpected as the summer period when degradation in the upper thawed part of the soil can take place is shorter in the tundra compared to the southern taiga region. The marine surface sediments were dominated by gymnosperm-derived POM, particularly close to the river mouth and in the <63µm fraction. Because of the large heterogeneity of organic matter degradation in the soil samples and their grain size fractions, it is not quite clear to which degree the POM gets mineralized within the soils and during transport in the river compared to degradation occurring during cross shelf transport.
Major and trace element geochemistry and background concentrations for soils in Connecticut
Brown, Craig; Thomas, Margaret A.
2014-01-01
Soil samples were collected throughout Connecticut (CT) to determine the relationship of soil chemistry with the underlying geology and to better understand background concentrations of major and trace elements in soils. Soil samples were collected (1) from the upper 5 cm of surficial soil at 100 sites, (2) from the A horizon at 86 of these sites, and (3) from the deeper horizon, typically the C horizon, at 79 of these sites. The <2-millimeter fraction of each sample was analyzed for 44 elements by methods that yield the total or near-total elemental content. Sample sites were characterized by glacial setting, underlying bedrock geology, and soil type. These spatial data were used with element concentrations in the C-horizon to relate geologic factors to soil chemistry. Concentrations of elements in C-horizon soils varied with grain size in surficial glacial materials and with underlying rock types, as determined using nonparametric statistical procedures. Concentrations of most elements in C-horizon soils showed a positive correlation with silt and (or) clay content and were higher in surficial materials mapped as till, thick till, and (or) fines. Element concentrations in C-horizon soils showed significant differences among the underlying geologic provinces and were highest overlying the Grenville Belt and (or) the Grenville Shelf Sequence Provinces in western CT. These rocks consist mainly of carbonates and the relatively high element concentrations in overlying soils likely result from less influence of dilution by quartz compared to other provinces. Element concentrations in C-horizon soils in CT were compared with those in samples from other New England states overlying similar lithologic bedrock types. The upper range of As concentrations in C-horizon soils overlying the New Hampshire-Maine (NH-ME) Sequence in CT was 15 mg/kg, lower than the upper range of 24 mg/kg in C-horizon soils overlying the same sequence in ME. In CT, U concentration means were significantly higher in C-horizon soils overlying Avalonian granites, and U concentrations ranged as high as 14 mg/kg, compared to those in C-horizon soil samples collected from other New England states, which ranged as high as 6.1 mg/kg in a sample in NH overlying the NH-ME Sequence. Element concentrations in C-horizon soils in CT were compared with those in samples collected from shallower depths. Concentrations of most major elements were highest in C-horizon soil samples, including Al, Ca, Fe, K, Na, and Ti, but element concentrations showed a relatively similar pattern in A-horizon and surficial soil samples among the underlying geologic provinces. Trace element concentrations, including Ba, W, Ga, Ni, Cs, Rb, Sr, Th, Sc, and U, also were higher in C-horizon soil samples than in overlying soil samples. Concentrations of Mg, and several trace elements, including Mn, P, As, Nb, Sn, Be, Bi, Hg, Se, Sb, La, Co, Cr, Pb, V, Y, Cu, Pb, and Zn were highest in some A-horizon or surficial soils, and indicate possible contributions from anthropogenic sources. Because element concentrations in soils above the C horizon are more likely to be affected by anthropogenic factors, concentration ranges in C-horizon soils and their spatially varying geologic associations should be considered when estimating background concentrations of elements in CT soils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe, M.H.; Kelly, J.M.; Wolt, J.D.
Stemflow influence on the distribution of soil (NaH/sub 2/PO/sub 4/ extractable) SO/sub 4/-S and pH was evaluated as a function of tree size class and distance from the stem for red maple (Acer rubrum L.) and scarlet oak (Quercus coccinea Muenchh.) at two locations in Tennessee which have received different historical inputs of S from atmospheric sources. Soil profiles around the base of each study tree were sampled by horizon at 25, 50, 100, and 200 cm from the stem along four transects radiating from the stem at 90/sup 0/ angles. Distance from the stem influenced soil pH of Amore » horizons at 25 cm from the stem of red maple and scarlet oak at both sites. Species had an effect on Bt2 and Bt3 soil SO/sub 4/-S concentrations. The Bt2 (0.49 cmol kg/sup -1/) and Bt3 (0.67 cmol kg/sup -1/) horizons beneath scarlet oaks had greater SO/sub 4/-S concentrations than corresponding horizons beneath red maple (0.29 and 0.43 cmol kg/sup -1/, respectively). The results of this study indicate that increased sampling intensity combined with tracer studies will be need to clearly determine the effect of stemflow, tree species, and tree size on subtlety-manifested soil properties such as pH and SO/sub 4/-S as well as other elements of interest.« less
Zhaoyong, Zhang; Xiaodong, Yang; Simay, Zibibula; Mohammed, Anwar
2018-02-01
Here, we sampled, tested, and analyzed heavy metals in soil obtained from green land in urban parks of Urumqi. Analysis included soil nutrient contents, particle size distribution, and health risks of heavy metal contaminants. Results showed that (1) organic matter and rapidly available phosphorus contents of all samples ranged from 6.07-58.34 and 6.52-116.15 mg/kg, with average values of 31.26 and 36.24 mg/kg, respectively; (2) silt (particle size 20-200 μm) comprised most of the particle distribution, accounting for 46.56-87.38% of the total, and the remaining particles were clay particles (0-20 μm) and sand (200-2000 μm); (3) calculations of HQ ing , HQ inh , and HQ derm for eight heavy metals in three exposure patterns revealed values less than 1 for children and adults, indicating a level of carcinogenic risk for these heavy metals; and (4) calculating the carcinogenic risks of nickel, chromium, and cadmium through breathing pathway indicating no potential carcinogenic risk for any of the three. This research showed high soil nutrient content, providing fertile ground for plant growth in the green land of these urban parks. However, measures such as using sprinklers and increased green vegetation areas have been proposed to improve soil texture. This research can serve as a reference point for soil environmental protection efforts as well as future plant growth in urban Urumqi parks.
Effect of Periodic Burning on Soil Nitrogen Concentrations in Ponderosa Pine
W. W. Covington; S. S. Sackett
1986-01-01
To determine the effects of different burning intervals on soil N status in substands of sapling-, pole-, and sawtimber-sized ponderosa pine (Pinus ponderosa Laws.) we sampled plots burned at 1-, 2-, and 4-yr intervals by three strata at two depths (0-5 and 5-15 cm). Generally, NH4 +; and NO3 - concentrations were higher on plots repeatedly burned than on unburned...
Surface features of soil particles of three types of soils under different land use strategies
NASA Astrophysics Data System (ADS)
Matveeva, Nataliy; Kotelnikova, Anna; Rogova, Olga; Proskurnin, Mikhail
2017-04-01
Nowadays, there is a clear need in a deep investigation of molecular composition of soils and of its influence on surface characteristics of soil particles. The aim of this study is to evaluate the composition and properties of physical fractions in different soil types in determining functional specificity of soil solid-phase surface. The experiments were carried out with three different types of Russian soils—Sod-Podzolic, Chestnut, and Chernozem soils—under various treatments (fallow, different doses of mineral fertilizers and their aftereffects). The samples were separated into three fractions: silt (SF) with a particle size of <2 μm, light fraction (LF) with a density of <2 g/cm3, and residual fraction (RF) with a size >2 μm and the density >2 g/cm3. We measured specific surface area, surface hydrophobicity (contact angle, CA), ζ-potential, and the point of zero charge (PZC). For Chernozem and Chestnut soils and their fractions of we observed an increase in hydrophobicity for SF and RF under fertilizer treatment. At the sites not treated with fertilizers and aftereffect sites, the hydrophobicity of fractions was lower compared to the sites under treatment. The CA of the original soils and fractions were different: in 35% of cases CA was higher for SF and RF by 12-16%. The rest of samples demonstrated CA of all three physical fractions lower than CA of the original soil. The variability of the mean CA indicates considerable differences in ζ-potential and PZC between different types of soils and soil fractions. The results of potentiometric titration of PZC for Sod-Podzolic soil showed that all values are in acidic range, which suggests predominance of acidic functional groups at the surface of soil particles. Specific surface area determines soil sorption processes, bioavailability of nutrients, water etc. Here, specific surface area of Sod-Podzolic soil was low and SF-dependent. We calculated specific surface charge from obtained data on specific surface area and PZC. The results suggested considerable differences between sorption features of both soils and fractions under different land use strategies.
Stability of Soil Carbon Fractions - from molecules to aggregates
NASA Astrophysics Data System (ADS)
Mueller, C. W.; Mueller, K. E.; Freeman, K. H.; Eissenstat, D.; Kögel-Knabner, I.
2009-12-01
The turnover of soil organic matter (SOM) is controlled both by its chemical composition, its spatial bioavailability and the association with the mineral phase. Separation by physical fractionation of bulk soils and subsequent chemical analysis of these fractions should give insights to how compositional differences in SOM drive turnover rates of different size-defined carbon pools. The main objective of the study was to elucidate the relative abundance and recalcitrance of lignin and plant lipids (e.g. cutin and suberin) in the course of SOM decomposition within aggregated bulk soils and SOM fractions. By the parallel incubation of physically-separated size fractions and bulk soils of the Ah horizon from a forested soil (Picea abies L.Karst) over a period of 400 days, a unique set of samples was created to study SOM dynamics. We used solid-state 13C-CPMAS NMR spectroscopy and GC-MS (after copper oxide oxidation and solvent extraction) to analyze the composition of the incubated samples. The abundance and isotopic composition (including 13C and 14C) of respired CO2 further enabled us to monitor the dynamics of SOM mineralization. This approach allowed for differentiating between C stabilization of soil fractions due to accessibility/aggregation and to recalcitrance at different scales of resolution (GC-MS, NMR). A relative enrichment of alkyl C and decreasing lignin contents in the order of sand < silt < clay were observed by 13C-NMR and GC-MS within soils and fractions before the incubation, resulting in increased lipid to lignin ratios with decreasing particle size. A relative enrichment of lignin in the incubated fractions compared to the incubated bulk soils clearly indicated the preferential mineralization of less recalcitrant C compounds that were spatially inaccessible in aggregates of the bulk soil. Differences in the abundance of various lignin, cutin, and suberin monomers measured by GC-MS before and after the incubation indicate selective degradation and preservation patterns at the molecular scale that are rarely observed and are unresolved by NMR analyses. We suggest that the monomer-specific patterns of lignin, cutin, and suberin decomposition facilitate better understanding and modelling of SOM dynamics by providing a tool to potentially separate the influence of input rates from selective preservation on the abundance of these bipolymers in soil.
NASA Technical Reports Server (NTRS)
Eglinton, G.; Gowar, A. P.; Jull, A. J. T.; Pillinger, C. T.; Agrell, S. O.; Agrell, J. E.; Long, J. V. P.; Bowie, S. H. U.; Simpson, P. R.; Beckinsale, R. D.
1977-01-01
Samples of Luna 16 and 20 have been separated according to size, visual appearance, density, and magnetic susceptibility. Selected aliquots were examined in eight British laboratories. The studies included mineralogy and petrology, selenochronology, magnetic characteristics, Mossbauer spectroscopy, oxygen isotope ratio determinations, cosmic ray track and thermoluminescence investigations, and carbon chemistry measurements. Luna 16 and 20 are typically mare and highland soils, comparing well with their Apollo counterparts, Apollo 11 and 16, respectively. Both soils are very mature (high free iron, carbide, and methane and cosmogenic Ar), while Luna 16, but not Luna 20, is characterized by a high content of glassy materials. An aliquot of anorthosite fragments, handpicked from Luna 20, had a gas retention age of about 4.3 plus or minus 0.1 Gy.
Magnesium and Silicon Isotopes in HASP Glasses from Apollo 16 Lunar Soil 61241
NASA Technical Reports Server (NTRS)
Herzog, G. F.; Delaney, J. S.; Lindsay, F.; Alexander, C. M. O'D; Chakrabarti, R.; Jacobsen, S. B.; Whattam, S.; Korotev, R.; Zeigler, R. A.
2012-01-01
The high-Al (>28 wt %), silica-poor (<45 wt %) (HASP) feldspathic glasses of Apollo 16 are widely regarded as the evaporative residues of impacts in the lunar regolith [1-3]. By virtue of their small size, apparent homogeneity, and high inferred formation temperatures, the HASP glasses appear to be good samples in which to study fractionation processes that may accompany open system evaporation. Calculations suggest that HASP glasses with present-day Al2O3 concentrations of up to 40 wt% may have lost 19 wt% of their original masses, calculated as the oxides of iron and silicon, via evaporation [4]. We report Mg and Si isotope abundances in 10 HASP glasses and 2 impact-glass spherules from a 64-105 m grain-size fraction taken from Apollo 16 soil sample 61241.
Dust emissions of organic soils observed in the field and laboratory
NASA Astrophysics Data System (ADS)
Zobeck, T. M.; Baddock, M. C.; Guo, Z.; Van Pelt, R.; Acosta-Martinez, V.; Tatarko, J.
2011-12-01
According to the U.S. Soil Taxonomy, Histosols (also known as organic soils) are soils that are dominated by organic matter (>20% organic matter) in half or more of the upper 80 cm. These soils, when intensively cropped, are subject to wind erosion resulting in loss in crop productivity and degradation of soil, air, and water quality. Estimating wind erosion on Histosols has been determined by USDA-Natural Resources Conservation Service as a critical need for the Wind Erosion Prediction System (WEPS) model. WEPS has been developed to simulate wind erosion on agricultural land in the US, including soils with organic soil material surfaces. However, additional field measurements are needed to calibrate and validate estimates of wind erosion of organic soils using WEPS. In this study, we used a field portable wind tunnel to generate suspended sediment (dust) from agricultural surfaces for soils with a range of organic contents. The soils were tilled and rolled to provide a consolidated, friable surface. Dust emissions and saltation were measured using an isokinetic vertical slot sampler aspirated by a regulated suction source. Suspended dust was collected on filters of the dust slot sampler and sampled at a frequency of once every six seconds in the suction duct using a GRIMM optical particle size analyzer. In addition, bulk samples of airborne dust were collected using a sampler specifically designed to collect larger dust samples. The larger dust samples were analyzed for physical, chemical, and microbiological properties. In addition, bulk samples of the soils were tested in a laboratory wind tunnel similar to the field wind tunnel and a laboratory dust generator to compare field and laboratory results. For the field wind tunnel study, there were no differences between the highest and lowest organic content soils in terms of their steady state emission rate under an added abrader flux, but the soil with the mid-range of organic matter had less emission by one third. In the laboratory wind tunnel, samples with the same ratio of erodible to non-erodible aggregates as the field soils were abraded and dust emissions were observed with the same sampling system as used in the field wind tunnel. In the dust generator, 5 gm samples < 8 mm diameter of each organic soil were rotated in a 50 cm long tube and the dust generated was observed with the GRIMM during a 20 minute run. Comparisons of the field dust emission rates with the laboratory results will be presented.
NASA Astrophysics Data System (ADS)
Hohmann, Audrey; Dufréchou, Grégory; Grandjean, Gilles; Bourguignon, Anne
2014-05-01
Swelling soils contain clay minerals that change volume with water content and cause extensive and expensive damage on infrastructures. Based on spatial distribution of infrastructure damages and existing geological maps, the Bureau de Recherches Géologiques et Minières (BRGM, i.e. the French Geological Survey) published in 2010 a 1:50 000 swelling hazard map of France, indexing the territory to low, moderate, or high swelling risk. This study aims to use SWIR (1100-2500 nm) reflectance spectra of soils acquired under laboratory controlled conditions to estimate the swelling potential of soils and improve the swelling risk map of France. 332 samples were collected at the W of Orléans (France) in various geological formations and swelling risk areas. Comparisons of swelling potential of soil samples and swelling risk areas of the map show several inconsistent associations that confirm the necessity to redraw the actual swelling risk map of France. New swelling risk maps of the sampling area were produce from soil samples using three interpolation methods. Maps produce using kriging and Natural neighbour interpolation methods did not permit to show discrete lithological units, introduced unsupported swelling risk zones, and did not appear useful to refine swelling risk map of France. Voronoi polygon was also used to produce map where swelling potential estimated from each samples were extrapolated to a polygon and all polygons were thus supported by field information. From methods tested here, Voronoi polygon appears thus the most adapted method to produce expansive soils maps. However, size of polygon is highly dependent of the samples spacing and samples may not be representative of the entire polygon. More samples are thus needed to provide reliable map at the scale of the sampling area. Soils were also sampled along two sections with a sampling interval of ca. 260 m and ca. 50 m. Sample interval of 50 m appears more adapted for mapping of smallest lithological units. The presence of several samples close to themselves indicating the same swelling potential is a good indication of the presence of a zone with constant swelling potential. Combination of Voronoi method and sampling interval of ca. 50 m appear adapted to produce local swelling potential maps in areas where doubt remain or where infrastructure damages attributed to expansive soils are knew.
Chang, Xiaofeng; Bao, Xiaoying; Wang, Shiping; Zhu, Xiaoxue; Luo, Caiyun; Zhang, Zhenhua; Wilkes, Andreas
2016-05-15
The effects of climate change and human activities on grassland degradation and soil carbon stocks have become a focus of both research and policy. However, lack of research on appropriate sampling design prevents accurate assessment of soil carbon stocks and stock changes at community and regional scales. Here, we conducted an intensive survey with 1196 sampling sites over an area of 190 km(2) of degraded alpine meadow. Compared to lightly degraded meadow, soil organic carbon (SOC) stocks in moderately, heavily and extremely degraded meadow were reduced by 11.0%, 13.5% and 17.9%, respectively. Our field survey sampling design was overly intensive to estimate SOC status with a tolerable uncertainty of 10%. Power analysis showed that the optimal sampling density to achieve the desired accuracy would be 2, 3, 5 and 7 sites per 10 km(2) for lightly, moderately, heavily and extremely degraded meadows, respectively. If a subsequent paired sampling design with the optimum sample size were performed, assuming stock change rates predicted by experimental and modeling results, we estimate that about 5-10 years would be necessary to detect expected trends in SOC in the top 20 cm soil layer. Our results highlight the utility of conducting preliminary surveys to estimate the appropriate sampling density and avoid wasting resources due to over-sampling, and to estimate the sampling interval required to detect an expected sequestration rate. Future studies will be needed to evaluate spatial and temporal patterns of SOC variability. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Snehota, Michal; Jelinkova, Vladimira; Sacha, Jan; Cislerova, Milena
2015-04-01
Recently, a number of infiltration experiments have not proved the validity of standard Richards' theory of the flow in soils with wide pore size distribution. Water flow in such soils under near-saturated conditions often exhibits preferential flow and temporal instability of the saturated hydraulic conductivity. An intact sample of coarse sandy loam from Cambisol series containing naturally developed vertically connected macropore was investigated during recurrent ponding infiltration (RPI) experiments conducted during period of 30 hours. RPI experiment consisted of two ponded infiltration runs, each followed by free gravitational draining of the sample. Three-dimensional neutron tomography (NT) image of the dry sample was acquired before the infiltration begun. The dynamics of the wetting front advancement was investigated by a sequence of neutron radiography (NR) images. Analysis of NR showed that water front moved preferentially through the macropore at the approximate speed of 2 mm/sec, which was significantly faster pace than the 0.3 mm/sec wetting advancement in the surrounding soil matrix. After the water started to flow out of the sample, changes in the local water content distribution were evaluated quantitatively by subtracting the NT image of the dry sample from subsequent tomography images. As a next stage, the experiment was repeated on a composed sample packed of ceramic and coarse sand. Series of infiltration runs was conducted in the sample with different initial water contents. The neutron tomography data quantitatively showed that both in natural soil sample containing the macropore and in the composed sample air was gradually transported from the region of fine soil matrix to the macropores or to the coarser material. The accumulation of the air bubbles in the large pores affected the hydraulic conductivity of the sample reducing it up to 50% of the initial value. This supports the hypothesis on strong influence of entrapped air amount and spatial distribution on infiltration into heterogeneous soils. The research was supported by the Czech Science Foundation Project No. 14-03691S.
Tuininga, Amy R; Miller, Jessica L; Morath, Shannon U; Daniels, Thomas J; Falco, Richard C; Marchese, Michael; Sahabi, Sadia; Rosa, Dieshia; Stafford, Kirby C
2009-05-01
Entomopathogenic fungi are commonly found in forested soils that provide tick habitat, and many species are pathogenic to Ixodes scapularis Say, the blacklegged tick. As a first step to developing effective biocontrol strategies, the objective of this study was to determine the best methods to isolate entomopathogenic fungal species from field-collected samples of soils and ticks from an Eastern deciduous forest where I. scapularis is common. Several methods were assessed: (1) soils, leaf litter, and ticks were plated on two types of media; (2) soils were assayed for entomopathogenic fungi using the Galleria bait method; (3) DNA from internal transcribed spacer (ITS) regions of the nuclear ribosomal repeat was extracted from pure cultures obtained from soils, Galleria, and ticks and was amplified and sequenced; and (4) DNA was extracted directly from ticks, amplified, and sequenced. We conclude that (1) ticks encounter potentially entomopathogenic fungi more often in soil than in leaf litter, (2) many species of potentially entomopathogenic fungi found in the soil can readily be cultured, (3) the Galleria bait method is a sufficiently efficient method for isolation of these fungi from soils, and (4) although DNA extraction from ticks was not possible in this study because of small sample size, DNA extraction from fungi isolated from soils and from ticks was successful and provided clean sequences in 100 and 73% of samples, respectively. A combination of the above methods is clearly necessary for optimal characterization of entomopathogenic fungi associated with ticks in the environment.
NIR & MIR spectroscopy as an effective tool for detecting urban influences on soils
NASA Astrophysics Data System (ADS)
Brook, Anna; Kopel, Daniella; Wittenberg, Lea
2016-04-01
Soil supports ecosystem functions and services, sustains ecosystems and biodiversity, yet in the urban spreading world of today, soil as a resource is in constant danger. Human society takes for granted the services provided by open green patches allocated within and nearby cities, with no consideration of ramifications of urban development on those areas. The urban ecology science recognizes the need to learn, identify and monitor the soils of cities - urban soils. The definitions of those soils are mainly descriptive, since urban soils do not submitted to the pedological process as natural soils. The main objective of this paper is to characterize urban soils in open green undisturbed patches by mineralogical composition. This goal was achieved using field and laboratory spectroscopy across visible near, short wave infrared regions and laboratory thermal mid infrared region. The majority of the studies on urban soils concentrate on identifying and mapping of pollution mostly heavy metals. In this study a top-down analysis (a simple and intuitive spectral feature for detecting the presence of minerals, organic matter and pollutants in mixed soil samples) is applied. This method uses spectral activity (SA) detection in a structured hierarchical approach to quickly and, more importantly, correctly identify dominant spectral features. The applied method is adopted by multiple in-production tools including continuum removal normalization, guided by polynomial generalization, and spectral-likelihood algorithms: orthogonal subspace projection (OSP) and iterative spectral mixture analysis (ISMA) were compared to feature likelihood methods. A total of 70 soil samples were collected at different locations: in remnant area within the city (edge and core), on the borders of the neighborhoods (edge) and in the fringe zone and in 2 locations in the protected park. The park samples were taken in locations found more than 100m from roads or direct anthropogenic disturbances. The samples were collected outside the setback of the residential areas (edge), and the fringe samples were taken away from the edge, where construction debris or waste was no longer visible - approximately 18 m-50 m down the slopes. The samples were taken from the upper layer of the soils, after the course organic or trash residues were removed. A soil sample drill, 5 cm in diameter and 10 cm deep, was used collecting up to 100 ml sample caps. The samples were air-dried, sifted through a 2 mm sieve to remove large particles and rock fragments and ground to <200 nm samples for spectral analysis across 400-2500 nm and laboratory mid-IR analysis. A ratio between the spectral features of soils' aliphatic and aromatic groups and calcite or hydroxyls to estimate the total organic matter via method proposed by Dlapa et al., 2014; base on the ratio indices between aliphatic hydrocarbons (3000-2800cm-1) to calcite mineral (peak area at 875cm-1, central wave length) and between carboxyl aromatic groups (1800-1200cm-1) to calcite mineral, were calculated for soil total carbon estimation. Results of the proposed top-down unmixing method suggest that the analysis is made very fast due to the simplified hierarchy which avoids the high-learning curve associated with unmixing algorithms showed that the most abundant components found in the all the samples taken within city boundaries were organic matter. In the "organic matter" category, we summarized all forms of vegetation endmembers including coarse vegetation and organic carbon. The second component was concrete followed by plastic and bricks. We found traces of concrete in all the urban study samples, even samples taken as far as 150 m from the edge of patches. In the park soils, we found a low diversity of materials and only two identifications of anthropogenic substances. The results of the soils pH, measured electrometrically and the particle size distribution, measured by Laser diffraction, indicate there is no difference between the samples particle size distribution and the pH values of the samples but they are not significantly different from the expected, except for the OM percentage. The suggested method was very effective for tracing the man-made substances, we could find concrete and asphalt, plastic and synthetic polymers after they were assimilated, broken down and decomposed into soil particles. By the top-down unmixing method we did not limit the substances we characterize and so we could detect unexpected materials and contaminants.
Ishizuka, Masahide; Mikami, Masao; Tanaka, Taichu Y; Igarashi, Yasuhito; Kita, Kazuyuki; Yamada, Yutaka; Yoshida, Naohiro; Toyoda, Sakae; Satou, Yukihiko; Kinase, Takeshi; Ninomiya, Kazuhiko; Shinohara, Atsushi
2017-01-01
A size-resolved, one-dimensional resuspension scheme for soil particles from the ground surface is proposed to evaluate the concentration of radioactivity in the atmosphere due to the secondary emission of radioactive material. The particle size distributions of radioactive particles at a sampling point were measured and compared with the results evaluated by the scheme using four different soil textures: sand, loamy sand, sandy loam, and silty loam. For sandy loam and silty loam, the results were in good agreement with the size-resolved atmospheric radioactivity concentrations observed at a school ground in Tsushima District, Namie Town, Fukushima, which was heavily contaminated after the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011. Though various assumptions were incorporated into both the scheme and evaluation conditions, this study shows that the proposed scheme can be applied to evaluate secondary emissions caused by aeolian resuspension of radioactive materials associated with mineral dust particles from the ground surface. The results underscore the importance of taking soil texture into account when evaluating the concentrations of resuspended, size-resolved atmospheric radioactivity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Variability of 137Cs inventory at a reference site in west-central Iran.
Bazshoushtari, Nasim; Ayoubi, Shamsollah; Abdi, Mohammad Reza; Mohammadi, Mohammad
2016-12-01
137 Cs technique has been widely used for the evaluation rates and patterns of soil erosion and deposition. This technique requires an accurate estimate of the values of 137 Cs inventory at the reference site. This study was conducted to evaluate the variability of the inventory of 137 Cs regarding to the sampling program including sample size, distance and sampling method at a reference site located in vicinity of Fereydan district in Isfahan province, west-central Iran. Two 3 × 8 grids were established comprising large grid (35 m length and 8 m width), and small grid (24 m length and 6 m width). At each grid intersection two soil samples were collected from 0 to 15 cm and 15-30 cm depths, totally 96 soil samples from 48 sampling points. Coefficients of variation for 137 Cs inventory in the soil samples was relatively low (CV = 15%), and the sampling distance and methods used did not significantly affect the 137 Cs inventories across the studied reference site. To obtain a satisfactory estimate of the mean 137 Cs activity in the reference sites, particularly those located in the semiarid regions, it is recommended to collect at least four samples along in a grid pattern 3 m apart. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gravuer, Kelly; Eskelinen, Anu
2017-01-01
Microbial traits related to ecological responses and functions could provide a common currency facilitating synthesis and prediction; however, such traits are difficult to measure directly for all taxa in environmental samples. Past efforts to estimate trait values based on phylogenetic relationships have not always distinguished between traits with high and low phylogenetic conservatism, limiting reliability, especially in poorly known environments, such as soil. Using updated reference trees and phylogenetic relationships, we estimated two phylogenetically conserved traits hypothesized to be ecologically important from DNA sequences of the 16S rRNA gene from soil bacterial and archaeal communities. We sampled these communities from an environmental change experiment in California grassland applying factorial addition of late-season precipitation and soil nutrients to multiple soil types for 3 years prior to sampling. Estimated traits were rRNA gene copy number, which contributes to how rapidly a microbe can respond to an increase in resources and may be related to its maximum growth rate, and genome size, which suggests the breadth of environmental and substrate conditions in which a microbe can thrive. Nutrient addition increased community-weighted mean estimated rRNA gene copy number and marginally increased estimated genome size, whereas precipitation addition decreased these community means for both estimated traits. The effects of both treatments on both traits were associated with soil properties, such as ammonium, available phosphorus, and pH. Estimated trait responses within several phyla were opposite to the community mean response, indicating that microbial responses, although largely consistent among soil types, were not uniform across the tree of life. Our results show that phylogenetic estimation of microbial traits can provide insight into how microbial ecological strategies interact with environmental changes. The method could easily be applied to any of the thousands of existing 16S rRNA sequence data sets and offers potential to improve our understanding of how microbial communities mediate ecosystem function responses to global changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, E.J.; Hoffman, G.L.; Duce, R.A.
1980-10-20
Three cascade impactor samples were collected from a 20-m-high tower on the southeastern coast of Bermuda. These samples were analyzed for Na, K, Ca, Mg, and Fe by atomic absorption spectrophotometry. When the alkali-alkakine earth metal concentrations are corrected for a soil-derived component, utilizing the atmospheric Fe concentrations, Mg, Ca, and Na are found to be present in the same relative abundances as in seawater for all particle sizes sampled. Potassium also shows no deviation from a bulk seawater composition for particles with radii greater than approx.0.5 ..mu..m. However, excess K above that expected from either a bulk seawater ormore » soil source is observed on particles with radii less than approx.0.5 ..mu..m. While oceanic chemical fractionation processes during bubble bursting may be responsible for this excess small particle K, it is most likely due to long-range transport of K-rich particles of terrestrial vegetative origin.« less
The Mars Environmental Compatibility Assessment (MECA)
NASA Technical Reports Server (NTRS)
Meloy, Thomas P.; Marshall, John; Hecht, Michael
1999-01-01
The Mars Environmental Compatibility Assessment (MECA) will evaluate the Martian environment for soil and dust-related hazards to human exploration as part of the Mars Surveyor Program 2001 Lander. Sponsored by the Human Exploration and Development of Space (HEDS) enterprise, MECA's goal is to evaluate potential geochemical and environmental hazards that may confront future martian explorers, and to guide HEDS scientists in the development of high fidelity Mars soil simulants. In addition to objectives related to human exploration, the MECA data set will be rich in information relevant to basic geology, paleoclimate, and exobiology issues. The integrated MECA payload contains a wet-chemistry laboratory, a microscopy station, an electrometer to characterize the electrostatics of the soil and its environment, and arrays of material patches to study the abrasive and adhesive properties of soil grains. MECA is allocated a mass of 10 kg and a peak power usage of 15 W within an enclosure of 35 x 25 x 15 cm (figures I and 2). The Wet Chemistry Laboratory (WCL) consists of four identical cells that will accept samples from surface and subsurface regions accessible to the Lander's robotic arm, mix them with water, and perform extensive analysis of the solution. Using an array of ion-specific electrodes (ISEs), cyclic voltammetry, and electrochemical techniques, the chemistry cells will wet soil samples for measurement of basic soil properties of pH, redox potential, and conductivity. Total dissolved material, as well as targeted ions will be detected to the ppm level, including important exobiological ions such as Na, K+, Ca++, Mg++, NH4+, Cl, S04-, HC03, as well as more toxic ions such as Cu++, Pb++, Cd++, Hg++, and C104-. MECA's microscopy station combines optical and atomic-force microscopy (AFM) to image dust and soil particles from millimeters to nanometers in size. Illumination by red, green, and blue LEDs is augmented by an ultraviolet LED intended to excite fluorescence in the sample. Substrates were chosen to allow experimental study of size distribution, adhesion, abrasion, hardness, color, shape, aggregation, magnetic and other properties. To aid in the detection of potentially dangerous quartz dust, an abrasion tool measures sample hardness relative to quartz and a hard glass (Zerodur).
NASA Astrophysics Data System (ADS)
Scarciglia, Fabio; Morrone, Fabio; Pelle, Teresa; Buttafuoco, Gabriele; Conforti, Massimo; Muto, Francesco; Critelli, Salvatore; Fabbricatore, Davide; Filomena, Luciana; Rago, Valeria; Robustelli, Gaetano; Tripodi, Vincenzo; Versace, Pasquale
2015-04-01
Effects of chemical and physical weathering processes on different rock types as predisposing factors of a number of landslides are often investigated in detail. Conversely, very few research studies on triggering mechanisms of shallow landslides and related risk assessment are focused on evaluation of morphological and physical discontinuities caused by pedogenetic processes affecting parent materials. Also sampling strategies for geotechnical or hydrological laboratory analyses can be biased by the lack of detailed information about the soil spatial variability and of a consequent horizon-wise selection of samples from soil profiles. In this work we summarize the main results on the assessment of shallow landslide susceptibility along the A3 highway section between Cosenza Sud and Altilia in northern Calabria (southern Italy). This research is part of a wider project (PON01-01503: "Integrated systems for hydrogeological risk monitoring, early warning and mitigation along the main lifelines"), aimed at hydro-geological risk mitigation and early warning along three highway sections of southern Italy. Based on a detailed geological and geomorphological survey, the main lithological, structural and relief features of the landscape were mapped, with a special emphasis on active, dormant and inactive landslides and their geo-lithological control factors. A soil survey was also carried out in the field, showing a dominance of Entisols and Inceptisols on steep slopes, and Mollisols and Alfisols on gentle landforms. Soil observations were focused on the identification of pedological discontinuities as potential factors that might trigger shallow landslides. A number of soil profiles, often close to landslide scarps, evidenced significant morphological changes of the parent materials, such as texture, pedogenic structure, dry consistence and moisture, or hydromorphic features caused by transient water-logging conditions, and clay-illuviated horizons. Buried soils were recognized, often truncated by erosion, and overlain by younger soils developed on colluvia, debris flows and detrital slope deposits. Five representative soil profiles were selected and sampled for pedological, geotechnical and hydrological laboratory analyses. Bulk and undisturbed samples were collected for chemical and physical soil analyses (particle size distribution, organic and inorganic carbon, pH, electrical conductivity, soluble salts), for determining bulk density, Atterberg limits, cohesive strength, angle of internal friction, water retention and for thin sections to be observed under an optical polarizing microscope, respectively. Preliminary results of laboratory analyses showed irregular patterns of pedological (particle size distribution, organic matter content, bulk density), geotechnical (Atterberg limits) and hydrological data (water content, pore distribution) along the soil profiles, coherently with field observations.
Bailey, Vanessa L.; Smith, A. P.; Tfaily, Malak; ...
2017-01-11
Spatial isolation of soil organic carbon (SOC) in different sized pores may be a mechanism by which otherwise labile carbon (C) could be protected in soils. When soil water content increases, the hydrologic connectivity of soil pores also increases, allowing greater transport of SOC and other resources from protected locations, to microbially colonized locations more favorable to decomposition. The heterogeneous distribution of specialized decomposers, C, and other resources throughout the soil indicates that the metabolism or persistence of soil C compounds is highly dependent on short-distance transport processes. The objective of this research was to characterize the complexity of Cmore » in pore waters held at weak and strong water tensions (effectively soil solution held behind coarse- and fine-pore throats, respectively) and evaluate the microbial decomposability of these pore waters. We saturated intact soil cores and extracted pore waters with increasing suction pressures to sequentially sample pore waters from increasingly fine pore domains. Ultrahigh resolution mass spectrometry of the SOC was used to profile the major biochemical classes (i.e., lipids, proteins, lignin, carbohydrates, and condensed aromatics) of compounds present in the pore waters; some of these samples were then used as substrates for growth of Cellvibrio japonicus (DSMZ 16018), Streptomyces cellulosae (ATCC ® 25439™), and Trichoderma reseei (QM6a) in 7 day incubations. The soluble C in finer pores was more complex than the soluble C in coarser pores, and the incubations revealed that the more complex C in these fine pores is not recalcitrant. The decomposition of this complex C led to greater losses of C through respiration than the simpler C from coarser pore waters. Our research suggests that soils that experience repeated cycles of drying and wetting may be accompanied by repeated cycles of increased CO 2 fluxes that are driven by i) the transport of C from protected pools into active, ii) the chemical quality of the potentially soluble C, and iii) the type of microorganisms most likely to metabolize this C.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Vanessa L.; Smith, A. P.; Tfaily, Malak
Spatial isolation of soil organic carbon (SOC) in different sized pores may be a mechanism by which otherwise labile carbon (C) could be protected in soils. When soil water content increases, the hydrologic connectivity of soil pores also increases, allowing greater transport of SOC and other resources from protected locations, to microbially colonized locations more favorable to decomposition. The heterogeneous distribution of specialized decomposers, C, and other resources throughout the soil indicates that the metabolism or persistence of soil C compounds is highly dependent on short-distance transport processes. The objective of this research was to characterize the complexity of Cmore » in pore waters held at weak and strong water tensions (effectively soil solution held behind coarse- and fine-pore throats, respectively) and evaluate the microbial decomposability of these pore waters. We saturated intact soil cores and extracted pore waters with increasing suction pressures to sequentially sample pore waters from increasingly fine pore domains. Ultrahigh resolution mass spectrometry of the SOC was used to profile the major biochemical classes (i.e., lipids, proteins, lignin, carbohydrates, and condensed aromatics) of compounds present in the pore waters; some of these samples were then used as substrates for growth of Cellvibrio japonicus (DSMZ 16018), Streptomyces cellulosae (ATCC ® 25439™), and Trichoderma reseei (QM6a) in 7 day incubations. The soluble C in finer pores was more complex than the soluble C in coarser pores, and the incubations revealed that the more complex C in these fine pores is not recalcitrant. The decomposition of this complex C led to greater losses of C through respiration than the simpler C from coarser pore waters. Our research suggests that soils that experience repeated cycles of drying and wetting may be accompanied by repeated cycles of increased CO 2 fluxes that are driven by i) the transport of C from protected pools into active, ii) the chemical quality of the potentially soluble C, and iii) the type of microorganisms most likely to metabolize this C.« less
Basunia, S; Landsberger, S
2001-10-01
Pantex firing range soil samples were analyzed for Pb, Cu, Sb, Zn, and As. One hundred ninety-seven samples were collected from the firing range and vicinity area. There was a lack of knowledge about the distribution of Pb in the firing range, so a random sampling with proportional allocation was chosen. Concentration levels of Pb and Cu in the firing range were found to be in the range of 11-4675 and 13-359 mg/kg, respectively. Concentration levels of Sb were found to be in the range of 1-517 mg/kg. However, the Zn and As concentration levels were close to average soil background levels. The Sn concentration level was expected to be higher in the Pantex firing range soil samples. However, it was found to be below the neutron activation analysis (NAA) detection limit of 75 mg/kg. Enrichment factor analysis showed that Pb and Sb were highly enriched in the firing range with average magnitudes of 55 and 90, respectively. Cu was enriched approximately 6 times more than the usual soil concentration levels. Toxicity characteristic leaching procedure (TCLP) was carried out on size-fractionated homogeneous soil samples. The concentration levels of Pb in leachates were found to be approximately 12 times higher than the U.S. Environmental Protection Agency (EPA) regulatory concentration level of 5 mg/L. Sequential extraction (SE) was also performed to characterize Pb and other trace elements into five different fractions. The highest Pb fraction was found with organic matter in the soil.
Modelling Furrow Irrigation-Induced Erosion on a Sandy Loam Soil in Samaru, Northern Nigeria
Dibal, Jibrin M.; Igbadun, H. E.; Ramalan, A. A.; Mudiare, O. J.
2014-01-01
Assessment of soil erosion and sediment yield in furrow irrigation is limited in Samaru-Zaria. Data was collected in 2009 and 2010 and was used to develop a dimensionless model for predicting furrow irrigation-induced erosion (FIIE) using the dimensional analyses approach considering stream size, furrow length, furrow width, soil infiltration rate, hydraulic shear stress, soil erodibility, and time flow of water in the furrows as the building components. One liter of water-sediment samples was collected from the furrows during irrigations from which sediment concentrations and soil erosion per furrow were calculated. Stream sizes Q (2.5, 1.5, and 0.5 l/s), furrow lengths X (90 and 45 m), and furrow widths W (0.75 and 0.9 m) constituted the experimental factors randomized in a split plot design with four replications. Water flow into and out of the furrows was measured using cutthroat flumes. The model produced reasonable predictions relative to field measurements with coefficient of determination R 2 in the neighborhood of 0.8, model prediction efficiency NSE (0.7000), high index of agreement (0.9408), and low coefficient of variability (0.4121). The model is most sensitive to water stream size. The variables in the model are easily measurable; this makes it better and easily adoptable. PMID:27471748
M.A. Callaham; D.A. Crossley; D.C. Coleman
2012-01-01
The macroarthropods are those large enough to be sampled as individuals, in contrast to the microarthropods that are sampled by extraction from a fragment of habitat (Section 25.3; Dindal, 1990; Borror et al., 1992; Arnett, 1993). Although smaller macroarthropods overlap in size with the larger microarthropods (Figure 25.2), the distinction between them is a practical...
A stratified two-stage sampling design for digital soil mapping in a Mediterranean basin
NASA Astrophysics Data System (ADS)
Blaschek, Michael; Duttmann, Rainer
2015-04-01
The quality of environmental modelling results often depends on reliable soil information. In order to obtain soil data in an efficient manner, several sampling strategies are at hand depending on the level of prior knowledge and the overall objective of the planned survey. This study focuses on the collection of soil samples considering available continuous secondary information in an undulating, 16 km²-sized river catchment near Ussana in southern Sardinia (Italy). A design-based, stratified, two-stage sampling design has been applied aiming at the spatial prediction of soil property values at individual locations. The stratification based on quantiles from density functions of two land-surface parameters - topographic wetness index and potential incoming solar radiation - derived from a digital elevation model. Combined with four main geological units, the applied procedure led to 30 different classes in the given test site. Up to six polygons of each available class were selected randomly excluding those areas smaller than 1ha to avoid incorrect location of the points in the field. Further exclusion rules were applied before polygon selection masking out roads and buildings using a 20m buffer. The selection procedure was repeated ten times and the set of polygons with the best geographical spread were chosen. Finally, exact point locations were selected randomly from inside the chosen polygon features. A second selection based on the same stratification and following the same methodology (selecting one polygon instead of six) was made in order to create an appropriate validation set. Supplementary samples were obtained during a second survey focusing on polygons that have either not been considered during the first phase at all or were not adequately represented with respect to feature size. In total, both field campaigns produced an interpolation set of 156 samples and a validation set of 41 points. The selection of sample point locations has been done using ESRI software (ArcGIS) extended by Hawth's Tools and later on its replacement the Geospatial Modelling Environment (GME). 88% of all desired points could actually be reached in the field and have been successfully sampled. Our results indicate that the sampled calibration and validation sets are representative for each other and could be successfully used as interpolation data for spatial prediction purposes. With respect to soil textural fractions, for instance, equal multivariate means and variance homogeneity were found for the two datasets as evidenced by significant (P > 0.05) Hotelling T²-test (2.3 with df1 = 3, df2 = 193) and Bartlett's test statistics (6.4 with df = 6). The multivariate prediction of clay, silt and sand content using a neural network residual cokriging approach reached an explained variance level of 56%, 47% and 63%. Thus, the presented case study is a successful example of considering readily available continuous information on soil forming factors such as geology and relief as stratifying variables for designing sampling schemes in digital soil mapping projects.
Fingerprinting: Modelling and mapping physical top soil properties with the Mole
NASA Astrophysics Data System (ADS)
Loonstra, Eddie; van Egmond, Fenny
2010-05-01
The Mole is a passive gamma ray soil sensor system. It is designed for the mobile collection of radioactive energy stemming from soil. As the system is passive, it only measures energy that reaches the surface of soil. In general, this energy comes from upto 30 to 40 cm deep, which can be considered topsoil. The gathered energy spectra are logged every second, are processed with the method of Full Spectrum Analysis. This method uses all available spectral data and processes it with a Chi square optimalisation using a set of standard spectra into individual nuclide point data. A standard spectrum is the measured full spectrum of a specific detector derived when exposed to 1 Bq/kg of a nuclide. With this method the outcome of the surveys become quantitative.The outcome of a field survey with the Mole results in a data file containing point information of position, Total Counts and the decay products of 232Th, 238U, 40K and 137Cs. Five elements are therefor available for the modelling of soil properties. There are several ways for the modelling of soil properties with sensor derived gamma ray data. The Mole generates ratio scale output. For modelling a quantitative deterministic approach is used based on sample locations. This process is called fingerprinting. Fingerprinting is a comparison of the concentration of the radioactive trace elements and the lab results (pH, clay content, etc.) by regression analysis. This results in a mathematical formula describing the relationship between a dependent and independent property. The results of the sensor readings are interpolated into a nuclide map with GIS software. With the derived formula a soil property map is composed. The principle of fingerprinting can be applied on large geographical areas for physical soil properties such as clay, loam or sand (50 micron), grain size and organic matter. Collected sample data of previous field surveys within the same region can be used for the prediction of soil properties elsewhere when adding a relatively small number of new calibration samples. For this purpose stratification of data is necessary. All radioactive trace elements play a part in the fingerprinting process for the mapping of physical soil properties. Clay content is best predicted with 232Th. It has a general R2 of 0.75 up to 0,9. The correlation is positive and basically linear. The variation of loam (or sand) content is very well described by 232Th or the combination of 232Th and 238U. It has a comparable R2 to clay. Grain size can be well modelled with 40K, probably due to the fact that this nuclide is positively correlated with matter. 40K is therefor negatively correlated to grain size. The R2 is good: 0,7 to 0,8 on average. The combination of 40K and 137Cs is generally applied for modelling organic matter content with a quality comparable with that of grain size models. Finally, Total Counts turns out to be a very useful parameter for the identification of different types of parent material and of unnatural or non-parent material. Passive gamma ray soil sensors as the Mole are very suitable for high resolution mapping of physical soil properties. The FSA method has the advantage that data from previous surveys becomes applicable in the fingerprinting procedure of new fields. Being able to model the physical soil properties with gamma ray sensors opens the possibility to run pedotransfer function models for a particular survey.
Malek, Md Abdul; Kim, Bowha; Jung, Hae-Jin; Song, Young-Chul; Ro, Chul-Un
2011-10-15
Our previous work on the speciation of individual mineral particles of micrometer size by the combined use of attenuated total reflectance FT-IR (ATR-FT-IR) imaging and a quantitative energy-dispersive electron probe X-ray microanalysis technique (EPMA), low-Z particle EPMA, demonstrated that the combined use of these two techniques is a powerful approach for looking at the single-particle mineralogy of externally heterogeneous minerals. In this work, this analytical methodology was applied to characterize six soil samples collected at arid areas in China, in order to identify mineral types present in the samples. The six soil samples were collected from two types of soil, i.e., loess and desert soils, for which overall 665 particles were analyzed on a single particle basis. The six soil samples have different mineralogical characteristics, which were clearly differentiated in this work. As this analytical methodology provides complementary information, the ATR-FT-IR imaging on mineral types, and low-Z particle EPMA on the morphology and elemental concentrations, on the same individual particles, more detailed information can be obtained using this approach than when either low-Z particle EPMA or ATR-FT-IR imaging techniques are used alone, which has a great potential for the characterization of Asian dust and mineral dust particles. © 2011 American Chemical Society
NASA Technical Reports Server (NTRS)
Pellett, G. L.; Spangler, L. W.; Storey, R. W.; Bendura, R. J.
1982-01-01
Soil samples were fractionated and analyzed in order to assess the physical and chemical interactions of entrained soil with solid-rocket exhaust clouds. The sandy soil consisted primarily of quartz (silica) particles, 30 to 500 microns in diameter, and also contained seashell fragments. Differential and cumulative soil-mass size distributions are presented along with mineralogy, elemental compositions, and solution pH histories. About 90 percent of the soil mass consisted of particles 165 microns in diameter. Characteristic reaction times in aqueous HC1 slurries varied from a few minutes to several days, and capacities for reaction under acidic conditions varied from 10 to 40 g HCl/kg soil, depending on particle size. Airborne lifetimes of particles 165 microns are conservatively 30 min, and this major grouping is predicted to represent a small short-term chemical sink for up to 5% of the total HC1. The smaller and more minor fractions, below a 165 micron diameter, may act as giant cloud condensation nuclei over much longer airborne lifetimes. Finally, the demonstrated time dependency of neutralization is a complicating factor; it can influence the ability to deduce in-cloud HCl scavenging with reaction and can affect the accuracy of measured chemical compositions of near-field wet deposition.
NASA Astrophysics Data System (ADS)
Liu, Yalong; Wang, Ping; Ding, Yuanjun; Lu, Haifei; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Filley, Timothy; Zhang, Xuhui; Zheng, Jinwei; Pan, Genxing
2016-12-01
While soil organic carbon (SOC) accumulation and stabilization has been increasingly the focus of ecosystem properties, how it could be linked to soil biological activity enhancement has been poorly assessed. In this study, topsoil samples were collected from a series of rice soils shifted from salt marshes for 0, 50, 100, 300 and 700 years from a coastal area of eastern China. Soil aggregates were fractioned into different sizes of coarse sand (200-2000 µm), fine sand (20-200 µm), silt (2-20 µm) and clay (< 2 µm), using separation with a low-energy dispersion protocol. Soil properties were determined to investigate niche specialization of different soil particle fractions in response to long-term rice cultivation, including recalcitrant and labile organic carbon, microbial diversity of bacterial, archaeal and fungal communities, soil respiration and enzyme activity. The results showed that the mass proportion both of coarse-sand (2000-200 µm) and clay (< 2 µm) fractions increased with prolonged rice cultivation, but the aggregate size fractions were dominated by fine-sand (200-20 µm) and silt (20-2 µm) fractions across the chronosequence. SOC was highly enriched in coarse-sand fractions (40-60 g kg-1) and moderately in clay fractions (20-25 g kg-1), but was depleted in silt fractions (˜ 10 g kg-1). The recalcitrant carbon pool was higher (33-40 % of SOC) in both coarse-sand and clay fractions than in fine-sand and silt fractions (20-29 % of SOC). However, the ratio of labile organic carbon (LOC) to SOC showed a weakly decreasing trend with decreasing size of aggregate fractions. Total soil DNA (deoxyribonucleic acid) content in the size fractions followed a similar trend to that of SOC. Despite the largely similar diversity between the fractions, 16S ribosomal gene abundance of bacteria and of archaeal were concentrated in both coarse-sand and clay fractions. Being the highest generally in coarse-sand fractions, 18S rRNA gene abundance of fungi decreased sharply but the diversity gently, with decreasing size of the aggregate fractions. The soil respiration quotient (ratio of respired CO2-C to SOC) was the highest in the silt fraction, followed by the fine-sand fraction, but the lowest in coarse-sand and clay fractions in the rice soils cultivated over 100 years, whereas the microbial metabolic quotient was lower in coarse-sand-sized fractions than in other fractions. Soil respiration was higher in the silt fraction than in other fractions for the rice soils. For the size fractions other than the clay fraction, enzyme activity was increased with prolonged rice cultivation, whereas soil respiration appeared to have a decreasing trend. Only in the coarse-sand fraction was both microbial gene abundance and enzyme activity well correlated to SOC and LOC content, although the chemical stability and respiratory of SOC were similar between coarse-sand and clay fractions. Thus, biological activity was generally promoted with LOC accumulation in the coarse-sand-sized macroaggregates of the rice soils, positively responding to prolonged rice cultivation management. The finding here provides a mechanistic understanding of soil organic carbon turnover and microbial community succession at fine scale of soil aggregates that have evolved along with anthropogenic activity of rice cultivation in the field.
Pore size distribution of a deeply excavated Oxisol after 19 years reclamation
NASA Astrophysics Data System (ADS)
dos Santos Batista Bonini, Carolina; de Cássia Marchini, Débora; Alves, Marlene Cristina; García de Arruda, Otton; Paz-Ferreiro, Jorge
2013-04-01
Digging of the local soil and using it as a raw material for construction purposes has been identified as a non-negligible source of land degradation. Techniques aimed at soil profile reconstruction and ecological restoration of soils truncated by mechanical excavation using heavy machinery have been investigated Both, total soil porosity and pore size distribution are important properties for soil management as well as for assessing the recovery of soil function after land degradation. In this way, macropores are responsible for aeration, whereas water storage depends on soil meso- and micropores in the soil and the optimal pore-size distribution is also an indicator of soil quality. We investigated the changes in the pore size distribution of a soil that was beheaded to extract raw materials after a 19 year period of reclamation, which involved the use of green manures, gypsum and pasture for the purpose of profile recovery. The studied area is located in Mato Grosso do Sul State, Brzil. A field trial was performed following a completely randomized experimental design with seven treatments and four replications. Starting 1992, the initial treatments were: 1) control (tilled bare soil), 2)Stizolobium aterrium, 3)Cajanus cajan, 4)lime+S. aterrimum, 5) lime+C. cajan, 6) lime + gypsum + S. aterrimum, 7) lime + gypsum+C. cajan. In 1994, all treatments with C. cajan were replaced by Canavalia ensiformis and in 1999, Brachiaria decumbens was implanted in all the experimental plots. Data from vegetated treatments were compared with bare soil (control) and native vegetation (Savannah). Soil samples were collected in 2011 at the 0.00-0.10, 0.10-0.20, and 0.20-0.40 m depths. Treatment differences were assessed by analysis of variance, following the Scott-Knott test (5%) of probability to compare averages. Macroporosity of the 0.00-0.10 m top layer was above the 0.10 m3m-3 threshold considered as critical for plant growth. On the 0.10-0.20 m layer only treatments with C. cajan later on followed by C. ensiformis reached macroporosities over the 0.10 m3m-3 threshold, and on the 0.20-0.40 m no treatment was above this critical value. In spite of the positive development of macroporosity in the restored soil profile, this physical attribute was far from the typical values corresponding to local soils under native Savannah vegetation.
Magnetic studies on Apollo 15 and 16 lunar samples
NASA Technical Reports Server (NTRS)
Pearce, G. W.; Gose, W. A.; Strangway, D. W.
1973-01-01
The magnetic properties of lunar samples are almost exclusively due to rather pure metallic iron. The mare basalt contains about 0.06 wt.% Fe, the soils 0.5-0.6 wt.%, and the breccias 0.3-1.0 wt.%. Most of the additional iron in the soils and breccias is believed to be the result of reduction processes operating on the lunar surface. Whereas the total metallic iron content of the soils from all landing sites is rather constant, the Fe(0)/Fe(++) ratio and the average iron grain size increase with the age of the landing site, reflecting increasing maturity. The crystalline rocks studied from Apollo 16 have highly variable, but generally, very high metallic Fe content (up to 1.7 wt.% Fe). It is suggested that these rocks are either breccias or igneous samples which have been severely thermally metamorphosed in a highly reducing environment.
The Apollo 14 regolith - Chemistry of cores 14210/14211 and 14220 and soils 14141, 14148, and 14149
NASA Technical Reports Server (NTRS)
Laul, J. C.; Papike, J. J.; Simon, S. B.
1982-01-01
Neutron activation analysis was performed on bulk and size fractions from drive tube specimens from 39 cm and 16.5 cm depths, and soil samples taken at the Apollo 14 landing site. Chemical data were obtained for 31 major, minor, and trace elements in the KREEPy soils. The cores were homogeneous in chemical composition, containing 20% LKFM, 15% mare basalt, 6% ANT, and 59% high-K KREEP, according to the classifications of Laul and Papike (1980). The meteoritic fraction was 3-7% for both cores, while the chemical compositions of both cores and soils were similar. Differences were detected in the fractions finer than 10 microns, which were more feldspathic than the coarser samples. The similarities between the grains 1000-90 micron in diam and less than 10 micron in diam, in terms of chemical contents, indicates that the observed agglutinates were derived from fusion of the finest grained fraction. The dominant soil-forming processes were comminution and vertical mixing of the regolith.
Piccinni, Florencia; Murua, Yanina; Ghio, Silvina; Talia, Paola; Rivarola, Máximo
2016-01-01
Cellulomonas sp. strain B6 was isolated from a subtropical forest soil sample and presented (hemi)cellulose-degrading activity. We report here its draft genome sequence, with an estimated genome size of 4 Mb, a G+C content of 75.1%, and 3,443 predicted protein-coding sequences, 92 of which are glycosyl hydrolases involved in polysaccharide degradation. PMID:27563050
Kinetics of hydrogen release from lunar soil
NASA Technical Reports Server (NTRS)
Bustin, Roberta
1990-01-01
With increasing interest in a lunar base, there is a need for extensive examination of possible lunar resources. Hydrogen will be needed on a lunar base for many activities including providing fuel, making water, and serving as a reducing agent in the extraction of oxygen from its ores. Previous studies have shown the solar wind has implanted hydrogen in the lunar regolith and that hydrogen is present not only in the outer layer of soil but to considerable depths, depending on the sampling site. If this hydrogen is to be mined and used on the lunar surface, a number of questions need to be answered. How much energy must be expended in order to release the hydrogen from the soil. What temperatures must be attained, and how long must the soil be heated. This study was undertaken to provide answers to practical questions such as these. Hydrogen was determined using a Pyrolysis/GC technique in which hydrogen was released by heating the soil sample contained in a quartz tube in a resistance wire furnace, followed by separation and quantitative determination using a gas chromatograph with a helium ionization detector. Heating times and temperatures were varied, and particle separates were studied in addition to bulk soils. The typical sample size was 10 mg of lunar soil. All of the soils used were mature soils with similar hydrogen abundances. Pre-treatments with air and steam were used in an effort to find a more efficient way of releasing hydrogen.
A novel method for soil aggregate stability measurement by laser granulometry with sonication
NASA Astrophysics Data System (ADS)
Rawlins, B. G.; Lark, R. M.; Wragg, J.
2012-04-01
Regulatory authorities need to establish rapid, cost-effective methods to measure soil physical indicators - such as aggregate stability - which can be applied to large numbers of soil samples to detect changes of soil quality through monitoring. Limitations of sieve-based methods to measure the stability of soil macro-aggregates include: i) the mass of stable aggregates is measured, only for a few, discrete sieve/size fractions, ii) no account is taken of the fundamental particle size distribution of the sub-sampled material, and iii) they are labour intensive. These limitations could be overcome by measurements with a Laser Granulometer (LG) instrument, but this technology has not been widely applied to the quantification of aggregate stability of soils. We present a novel method to quantify macro-aggregate (1-2 mm) stability. We measure the difference between the mean weight diameter (MWD; μm) of aggregates that are stable in circulating water of low ionic strength, and the MWD of the fundamental particles of the soil to which these aggregates are reduced by sonication. The suspension is circulated rapidly through a LG analytical cell from a connected vessel for ten seconds; during this period hydrodynamic forces associated with the circulating water lead to the destruction of unstable aggregates. The MWD of stable aggregates is then measured by LG. In the next step, the aggregates - which are kept in the vessel at a minimal water circulation speed - are subject to sonication (18W for ten minutes) so the vast majority of the sample is broken down into its fundamental particles. The suspension is then recirculated rapidly through the LG and the MWD measured again. We refer to the difference between these two measurements as disaggregation reduction (DR) - the reduction in MWD on disaggregation by sonication. Soil types with more stable aggregates have larger values of DR. The stable aggregates - which are resistant to both slaking and mechanical breakdown by the hydrodynamic forces during circulation - are disrupted only by sonication. We used this method to compare macro-aggregate (1-2 mm) stability of air-dried agricultural topsoils under conventional tillage developed from two contrasting parent material types and compared the results with an alternative sieve-based technique. The first soil from the Midlands of England (developed from sedimentary mudstone; mean soil organic carbon (SOC) 2.5%) contained a substantially larger amount of illite/smectite (I/S) minerals compared to the second from the Wensum catchment in eastern England (developed from sands and glacial deposits; mean SOC=1.7%). The latter soils are prone to large erosive losses of fine sediment. Both sets of samples had been stored air-dried for 6 months prior to aggregate analyses. The mean values of DR (n=10 repeated subsample analyses) for the Midlands soil was 178μm; mean DR (n=10 repeat subsample analyses) for the Wensum soil was 30μm. The large difference in DR is most likely due to differences in soil mineralogy. The coefficient of variation of mean DR for duplicate analyses of sub-samples from the two topsoil types is around 10%. The majority of this variation is likely to be related to the difference in composition of the sub-samples. A standard, aggregated material could be included in further analyses to determine the relative magnitude of sub-sampling and analytical variance for this measurement technique. We then used the technique to investigate whether - as previously observed - variations (range 1000 - 4000 mg kg-1) in the quantity of amorphous (oxalate extractable) iron oxyhydroxides in a variety of soil samples (n=30) from the Wensum area (range SOC 1 - 2%) could account for differences in aggregate stability of these samples.
NASA Astrophysics Data System (ADS)
Ivanov, Konstantin; Pinchuk, Irina; Gorodnichev, Roman; Polyanskaya, Lubov
2016-04-01
Methods establishment of soil microbial cells size estimation called from the importance of current needs of research in microbial ecology. Some of the methods need to be improved for more detailed view of changes happen in microbiome of terrestrial ecosystems. The combination of traditional microscopy methods, fluorescence and filtration in addition to cutting-edge DNA analysis gives a wide range of the approaches for soil microbial ecologists in their research questions. In the most of the cases the bacterial cells size is limited of the natural conditions such as lack of nutrients or stress factors due to heterogeneity of soil system. In the samples of soils, lakes and rivers sediments, snow and rain water the bacterial cells were detected minimally of 0.2 microns. We established the combination of the cascade filtration and fluorescent microscopy for complex analysis of different terrestrial ecosystems and various soil types. Our modification based on the use of successively filtered soil suspension for collection of microbes by the membrane pores decrease. Combination with fluorescence microscopy and DNA analysis via FISH method gave the presentation of microbial interactions and review of ecological strategies of soil microorganisms. Humus horizons of primitive arctic soil were the most favorable for bacterial growth. Quantified biomass of soil bacteria depends on the dominance of cells with specific dimensions caused of stress factors. The average bacterial size of different soil varied from 0.23 to 0.38 microns, however in humus horizons of arctic soil we detected the contrast dominance of the bigger bacterial cells sized of 1.85 microns. Fungi in this case contributed to increase the availability of organic matter for bacteria because the fungal mycelium forms the appreciable part of microbial biomass of primitive arctic soil. The dominant content of bigger bacterial cells in forest and fallow soil as well as the opposite situation in arable soils caused by the availability of nutrients (glucose) and the degree of agricultural anthropogenic stress. Various combinations of factors such as stressful conditions (anaerobiosis, acidity and temperature) influenced on bacterial size. The decrease of these stress factors resulted in return to the original bacterial cell size in soil. Furthermore the modification of gram-negative bacteria quantification was performed and combined with FISH method and DNA extraction. We established the methodological comparison of gram-negative bacteria groups in aerobic and anaerobic conditions. Due to absence of significant difference between the most frequent soil gram-negative bacteria groups we concluded the important ecological role of gram-negative bacteria as common group of microorganisms in natural polymer degradation. Depending on nutrient (glucose, cellulose, chitin) gram-negative bacteria competed with actinomyces for available nutrients at the different time, what explained by the ecological flexibility of this soil bacteria group. The experiments showed expressed faster chitinolytic activity of soil gram-negative bacteria compare to actinomyces. Thus our approaches to use the combination both traditional and cutting-edge methods, forms the unique basement for various research and mostly open the wide doors to design new scientific experiments in ecology of terrestrial ecosystems and especially in soil microbial ecology.
Using the raindrop size distribution to quantify the soil detachment rate at the laboratory scale
NASA Astrophysics Data System (ADS)
Jomaa, S.; Jaffrain, J.; Barry, D. A.; Berne, A.; Sander, G. C.
2010-05-01
Rainfall simulators are beneficial tools for studying soil erosion processes and sediment transport for different circumstances and scales. They are useful to better understand soil erosion mechanisms and, therefore, to develop and validate process-based erosion models. Simulators permit experimental replicates for both simple and complex configurations. The 2 m × 6 m EPFL erosion flume is equipped with a hydraulic slope control and a sprinkling system located on oscillating bars 3 m above the surface. It provides a near-uniform spatial rainfall distribution. The intensity of the precipitation can be adjusted by changing the oscillation interval. The flume is filled to a depth of 0.32 m with an agricultural loamy soil. Raindrop detachment is an important process in interrill erosion, the latter varying with the soil properties as well as the raindrop size distribution and drop velocity. Since the soil detachment varies with the kinetic energy of raindrops, an accurate characterization of drop size distribution (DSD, measured, e.g., using a laser disdrometer) can potentially support erosion calculations. Here, a laser disdrometer was used at different rainfall intensities in the EPFL flume to quantify the rainfall event in terms of number of drops, diameter and velocity. At the same time, soil particle motion was measured locally using splash cups. These cups measured the detached material rates into upslope and downslope compartments. In contrast to previously reported splash cup experiments, the cups used in this study were equipped at the top with upside-down funnels, the upper part having the same diameter as the soil sampled at the bottom. This ensured that the soil detached and captured by the device was not re-exposed to rainfall. The experimental data were used to quantify the relationship between the raindrop distribution and the splash-driven sediment transport.
Kravchenko, Alexandra; Falconer, Ruth E; Grinev, Dmitri; Otten, Wilfred
2011-06-01
Despite the importance of fungi in soil functioning they have received comparatively little attention, and our understanding of fungal interactions and communities is lacking. This study aims to combine a physiologically based model of fungal growth with digitized images of internal pore volume of samples of undisturbed soil from contrasting management practices to determine the effect of physical structure on fungal growth dynamics. We quantified pore geometries of the undisturbed-soil samples from two contrasting agricultural practices, conventionally plowed (chisel plow) (CT) and no till (NT), and from native-species vegetation land use on land that was taken out of production in 1989 (NS). Then we modeled invasion of a fungal species within the soil samples and evaluated the role of soil structure on the progress of fungal colonization of the soil pore space. The size of the studied pores was > or =110 microm. The dynamics of fungal invasion was quantified through parameters of a mathematical model fitted to the fungal invasion curves. Results indicated that NT had substantially lower porosity and connectivity than CT and NS soils. For example, the largest connected pore volume occupied 79% and 88% of pore space in CT and NS treatments, respectively, while it only occupied 45% in NT. Likewise, the proportion of pore space available to fungal colonization was much greater in NS and CT than in NT treatment, and the dynamics of the fungal invasion differed among the treatments. The relative rate of fungal invasion at the onset of simulation was higher in NT samples, while the invasion followed a more sigmoidal pattern with relatively slow invasion rates at the initial time steps in NS and CT samples. Simulations allowed us to elucidate the contribution of physical structure to the rates and magnitudes of fungal invasion processes. It appeared that fragmented pore space disadvantaged fungal invasion in soils under long-term no-till, while large connected pores in soils under native vegetation or in tilled agriculture promoted the invasion.
NASA Astrophysics Data System (ADS)
Ovreas, L.; Quince, C.; Sloan, W.; Lanzen, A.; Davenport, R.; Green, J.; Coulson, S.; Curtis, T.
2012-12-01
Arctic microbial soil communities are intrinsically interesting and poorly characterised. We have inferred the diversity and species abundance distribution of 6 Arctic soils: new and mature soil at the foot of a receding glacier, Arctic Semi Desert, the foot of bird cliffs and soil underlying Arctic Tundra Heath: all near Ny-Ålesund, Spitsbergen. Diversity, distribution and sample sizes were estimated using the rational method of Quince et al., (Isme Journal 2 2008:997-1006) to determine the most plausible underlying species abundance distribution. A log-normal species abundance curve was found to give a slightly better fit than an inverse Gaussian curve if, and only if, sequencing error was removed. The median estimates of diversity of operational taxonomic units (at the 3% level) were 3600-5600 (lognormal assumed) and 2825-4100 (inverse Gaussian assumed). The nature and origins of species abundance distributions are poorly understood but may yet be grasped by observing and analysing such distributions in the microbial world. The sample size required to observe the distribution (by sequencing 90% of the taxa) varied between ~ 106 and ~105 for the lognormal and inverse Gaussian respectively. We infer that between 5 and 50 GB of sequencing would be required to capture 90% or the metagenome. Though a principle components analysis clearly divided the sites into three groups there was a high (20-45%) degree of overlap in between locations irrespective of geographical proximity. Interestingly, the nearest relatives of the most abundant taxa at a number of most sites were of alpine or polar origin. Samples plotted on first two principal components together with arbitrary discriminatory OTUs
NASA Technical Reports Server (NTRS)
Basu, A.; Mckay, D. S.
1984-01-01
Petrologic aspects of the Cayley and Descartes formations are reviewed in the light of new data on Apollo 16 soils. Specific comparison of the modal abundances of lithic fragments in drive tube sample 64001/2 from the slopes of Stone Mountain (station 4) and in soil 67941 from the North Ray Crater rim (station 11) shows that melt rocks, especially poikilitic rocks, are more abundant at station 4 than at station 11; the reverse is true for fragmental breccias. Such lithologic differences suggest that stations 4 and 11 do not belong to the same geologic formation. Metamorphosed breccias are pervasive in both the formations and may represent a local component that has been reworked and diluted as fresh materials were added. Lithologic compositions inferred from the study of soil samples are different from lithologic compositions inferred from the study of rake samples or breccia clasts. This difference may be related to a mixing of material of different grain size distributions. The petrology of soils at the Apollo 16 site may not accurately reflect original material associated with either the Descartes or the Cayley formation because of extensive mixing with local material.
NASA Astrophysics Data System (ADS)
Makovníková, Jarmila; Širáň, Miloš; Houšková, Beata; Pálka, Boris; Jones, Arwyn
2017-10-01
Soil bulk density is one of the main direct indicators of soil health, and is an important aspect of models for determining agroecosystem services potential. By way of applying multi-regression methods, we have created a distributed prediction of soil bulk density used subsequently for topsoil carbon stock estimation. The soil data used for this study were from the Slovakian partial monitoring system-soil database. In our work, two models of soil bulk density in an equilibrium state, with different combinations of input parameters (soil particle size distribution and soil organic carbon content in %), have been created, and subsequently validated using a data set from 15 principal sampling sites of Slovakian partial monitoring system-soil, that were different from those used to generate the bulk density equations. We have made a comparison of measured bulk density data and data calculated by the pedotransfer equations against soil bulk density calculated according to equations recommended by Joint Research Centre Sustainable Resources for Europe. The differences between measured soil bulk density and the model values vary from -0.144 to 0.135 g cm-3 in the verification data set. Furthermore, all models based on pedotransfer functions give moderately lower values. The soil bulk density model was then applied to generate a first approximation of soil bulk density map for Slovakia using texture information from 17 523 sampling sites, and was subsequently utilised for topsoil organic carbon estimation.
Graham, Frances F; Harte, David Jg
2017-05-12
To investigate a possible link between liquefaction dust exposure and the noticeable increase in legionellosis cases in response to major earthquakes in 2010 and 2011 that resulted in widespread soil disturbance (liquefaction) in parts of Christchurch, New Zealand. We culture tested liquefaction-affected soil for Legionella spp. in the six months following the first earthquake in 2010. Thirty silt samples were collected randomly from locations within Christchurch's metropolitan area that were affected by liquefaction. The samples were tested to determine the presence of Legionella using qualitative and quantitative methods. Liquefaction-affected soil samples from three sites were further subjected to particle size distribution analysis and determination of major oxides. A controlled field study was established using six silt samples and one control (commercial compost), seeded with a wild-type strain of Legionella bozemanae serogroup (sg) 1 and persistence monitored over a 60-day period by culturing for the presence of Legionella. Dry matter determinations were undertaken so that total Legionella could be calculated on a dry weight basis. Legionella bacteria were undetectable after day one in the silt samples. However, L. bozemanae sg1 was detected in the control sample for the entire study period. This study showed that the liquefaction-affected soil could not contribute directly to the observed increase in legionellosis cases after the earthquakes due to its inability to support growth and survival of the Legionella bacteria.
NASA Astrophysics Data System (ADS)
Sedaghat, A.; Bayat, H.; Safari Sinegani, A. A.
2016-03-01
The saturated hydraulic conductivity ( K s ) of the soil is one of the main soil physical properties. Indirect estimation of this parameter using pedo-transfer functions (PTFs) has received considerable attention. The Purpose of this study was to improve the estimation of K s using fractal parameters of particle and micro-aggregate size distributions in smectitic soils. In this study 260 disturbed and undisturbed soil samples were collected from Guilan province, the north of Iran. The fractal model of Bird and Perrier was used to compute the fractal parameters of particle and micro-aggregate size distributions. The PTFs were developed by artificial neural networks (ANNs) ensemble to estimate K s by using available soil data and fractal parameters. There were found significant correlations between K s and fractal parameters of particles and microaggregates. Estimation of K s was improved significantly by using fractal parameters of soil micro-aggregates as predictors. But using geometric mean and geometric standard deviation of particles diameter did not improve K s estimations significantly. Using fractal parameters of particles and micro-aggregates simultaneously, had the most effect in the estimation of K s . Generally, fractal parameters can be successfully used as input parameters to improve the estimation of K s in the PTFs in smectitic soils. As a result, ANNs ensemble successfully correlated the fractal parameters of particles and micro-aggregates to K s .
Effects of Land Use on Concentrations and Chemical Forms of Phosphorus in Different-Size Aggregates
NASA Astrophysics Data System (ADS)
Ahmad, E. H.; Demisie, W.; Zhang, M.
2017-12-01
Land use has been recognized as an important driver of environmental change on all spatial and temporal scales. This study was conducted to determine the effects of land uses on phosphorus concentration in bulk soil and in water-stable aggregates in different soils. The study was conducted on three soil types (Ferrosols, Cambosols, and Primosols), which were collected from three different locations from southeast China and under three land uses (Uncultivated, Vegetable and forest land) the region is characterized as a hill and plain area. Accordingly, a total of 24 soil samples were collected. The results showed that average contents of total P were 0.55-1.55 g/kg, 0.28-1.03 g/kg and 0.14-0.8 g/kg for the soils: Cambosols, Ferrosols and Primosols respectively. Vegetable and forest land led to higher total phosphorus contents in these soils than in the uncultivated land. An aggregate fraction of >2 mm under forest land made up the largest percentage (30 up to 70%), whereas the size fraction <0.106 mm made the least contribution (5 up to 20%) in all soil types. Vegetable land increased the total phosphorus, organic phosphorus and Olsen P and phosphorus forms in the soils. It implies that the conversion of natural ecosystem to vegetable land increased the phosphorus proportion in the soils, which could have negative impact on the environmental quality.
Estimating Vegetation Structure in African Savannas using High Spatial Resolution Imagery
NASA Astrophysics Data System (ADS)
Axelsson, C.; Hanan, N. P.
2016-12-01
High spatial resolution satellite imagery allows for detailed mapping of trees in savanna landscapes, including estimates of woody cover, tree densities, crown sizes, and the spatial pattern of trees. By linking these vegetation parameters to rainfall and soil properties we gain knowledge of how the local environment influences vegetation. A thorough understanding of the underlying ecosystem processes is key to assessing the future productivity and stability of these ecosystems. In this study, we have processed and analyzed hundreds of sites sampled from African savannas across a wide range of rainfall and soil conditions. The vegetation at each site is classified using unsupervised classification with manual assignment into woody, herbaceous and bare cover classes. A crown delineation method further divides the woody areas into individual tree crowns. The results show that rainfall, soil, and topography interactively influence vegetation structure. We see that both total rainfall and rainfall seasonality play important roles and that soil type influences woody cover and the sizes of tree crowns.
NASA Astrophysics Data System (ADS)
Gargiulo, Laura; Mele, Giacomo; Moradi, Jabbar; Kukla, Jaroslav; Jandová, Kateřina; Frouz, Jan
2016-04-01
The restoration of the soil functions is essential for the recovery of highly degraded sites and, consequently, the study of the soil fauna role in the soil development in such environments has great potential from a practical point of view. The soils of the post-mining sites represent unique models for the study of the natural ecological succession because mining creates similar environments characterized by the same substrate, but by different ages according to the year of closure of mines. The aim of this work was to assess the contribution of different species of macrofauna on the evolution of soil structure and on the composition and activity of the microbial community in soil samples subjected to ecological restoration or characterized by spontaneous ecological succession. For this purpose, an experimental test was carried out in two sites characterized by different post-mining conditions: 1) natural succession, 2) reclamation with planting trees. These sites are located in the post-mining area of Sokolov (Czech Republic). For the experimental test repacked soil cores were prepared in laboratory with sieved soil sampled from the two sites. The soil cores were prepared maintaining the sequence of soil horizons present in the field. These samples were inoculated separately with two genera of earthworms (Lumbricus and Aporrectodea) and two of centipedes (Julida and Polydesmus). In particular, based on their body size, were inoculated for each cylinder 2 individuals of millipedes, 1 individual of Lumbricus and 4 individuals of Aporrectodea. For each treatment and for control samples 5 replicates were prepared and all samples were incubated in field for 1 month in the two original sampling sites. After the incubation the samples were removed from the field and transported in laboratory in order to perform the analysis of microbial respiration, of PLFA (phospholipid-derived fatty acids) and ergosterol contents and finally for the characterization of soil structure. All replicates were subjected to soil respiration measurement by means of chemical titration method. Then some replicates were destructively analyzed for PLFA and ergosterol and others were used for the 3D soil image analysis of the soil pore system. The soil cores were imaged using X-ray microtomography and three-dimensional image processing was performed in order to obtain 3D reconstructions and preliminary analysis of the identified biopores. The experimental approach used in this multidisciplinary study showed a promising potential to provide new useful information about the widely differentiated contribution of many types of macrofauna to the formation of the soil pore system and to the development of the soil microbial functions in different types of environments.
Does Aggregation Affect the Redistribution and Quality of Eroded SOC?
NASA Astrophysics Data System (ADS)
Hu, Yaxian; Kuhn, Nikolaus
2015-04-01
A substantial amount of literature has discussed the impacts of soil erosion on global carbon cycling. However, numerous gaps in our knowledge remain unaddressed, for instance, the biogeochemical fate of displaced SOC during transport being one of them. The transport distance and the quality of eroded SOC are the two major factors that determine its fate. Previous laboratory-based research had demonstrated that the effects of aggregation can potentially shorten the transport distance of eroded SOC. The mineralization potential of SOC also differs in sediment fractions of different likely transport distances. It is therefore essential to examine the transport distance and quality of eroded SOC under field conditions with natural rainfall as the agent of erosion. Soil samples from a silty clay soil from Switzerland and a sandy soil from Denmark, were collected in the field this summer after natural rainfall events. The soil from Switzerland was sampled from a field of maize in St. Ursanne (47°20' N 7°09' E) on August 6th, 2014 after a natural rainfall event. A depositional fan consisting of aggregated sediment was formed outside the lower edge of the field. The sandy soil from Denmark was sampled from a farm in Foulum (56°30' N, 9°35' W) on September 4, 2014, after a series of natural rainfall events. Soil samples were collected at different topographic positions along the two slopes. All the soil samples from the two farms were fractionated by a settling tube. Bulk soil from Switzerland and Denmark was also dispersed by ultrasound. The SOC contents of all bulk soils and associated fractions were determined using a carbon analyzer Leco 612 at 1000°C. The quality of SOC in different settling fractions collected from various topographic positions were also determined by stable isotopes of C and N (13C and 15N). Our results show that 1) the aggregate specific SOC distribution evidently differs from the mineral particle specific SOC distribution, indicating that re-distribution of eroded SOC is determined by actual aggregate size distribution rather than mineral particle size distribution. 2) The aggregate specific distributions of SOC content from different positions along hillslopes demonstrate that preferential deposition of SOC-enrich sediment along hillslopes is much more pronounced than the mineral particle specific SOC would suggest. 3) The quality of SOC differs significantly in various settling fractions. The fast settling fractions consist of more of labile SOC, and thus is very likely to be mineralized during transport across landscapes, thereby likely contributing as a source of atmospheric CO2. Overall, effects of aggregation can potentially change the transport distance of eroded SOC and thus skew its redistribution towards the terrestrial deposition.
Classification problems of Mount Kenya soils
NASA Astrophysics Data System (ADS)
Mutuma, Evans; Csorba, Ádám; Wawire, Amos; Dobos, Endre; Michéli, Erika
2017-04-01
Soil sampling on the agricultural lands covering 1200 square kilometers in the Eastern part of Mount Kenya was carried out to assess the status of soil organic carbon (SOC) as a soil fertility indicator, and to create an up-to-date soil classification map. The geology of the area consists of volcanic rocks and recent superficial deposits. The volcanic rocks are related to the Pliocene time; mainly: lahars, phonolites, tuffs, basalt and ashes. A total of 28 open profiles and 49 augered profiles with 269 samples were collected. The samples were analyzed for total carbon, organic carbon, particle size distribution, percent bases, cation exchange capacity and pH among other parameters. The objective of the study was to evaluate the variability of SOC in different Reference Soil Groups (RGS) and to compare the determined classification units with the KENSOTER database. Soil classification was performed based on the World Reference Base (WRB) for Soil Resources 2014. Based on the earlier surveys, geological and environmental setting, Nitisols were expected to be the dominant soils of the sampled area. However, this was not the case. The major differences to earlier survey data (KENSOTER database) are the presence of high activity clays (CEC value range 27.6 cmol/kg - 70 cmol/kg), high silt content (range 32.6 % - 52.4 %) and silt/clay ratio (range of 0.6 - 1.4) keeping these soils out of the Nitisols RSG. There was good accordance in the morphological features with the earlier survey but failed the silt/clay ratio criteria for Nitisols. This observation calls attention to set new classification criteria for Nitisols and other soils of warm, humid regions with variable rate of weathering to avoid difficulties in interpretation. To address the classification problem, this paper further discusses the taxonomic relationships between the studied soils. On the contrary most of the diagnostic elements (like the presence Umbric horizon, Vitric and Andic properties) and the some qualifiers (Humic, Dystric, Clayic, Skeletic, Leptic, etc) represent useful information for land use and management in the area.
Estimating Children's Soil/Dust Ingestion Rates through ...
Background: Soil/dust ingestion rates are important variables in assessing children’s health risks in contaminated environments. Current estimates are based largely on soil tracer methodology, which is limited by analytical uncertainty, small sample size, and short study duration. Objectives: The objective was to estimate site-specific soil/dust ingestion rates through reevaluation of the lead absorption dose–response relationship using new bioavailability data from the Bunker Hill Mining and Metallurgical Complex Superfund Site (BHSS) in Idaho, USA. Methods: The U.S. Environmental Protection Agency (EPA) in vitro bioavailability methodology was applied to archived BHSS soil and dust samples. Using age-specific biokinetic slope factors, we related bioavailable lead from these sources to children’s blood lead levels (BLLs) monitored during cleanup from 1988 through 2002. Quantitative regression analyses and exposure assessment guidance were used to develop candidate soil/dust source partition scenarios estimating lead intake, allowing estimation of age-specific soil/dust ingestion rates. These ingestion rate and bioavailability estimates were simultaneously applied to the U.S. EPA Integrated Exposure Uptake Biokinetic Model for Lead in Children to determine those combinations best approximating observed BLLs. Results: Absolute soil and house dust bioavailability averaged 33% (SD ± 4%) and 28% (SD ± 6%), respectively. Estimated BHSS age-specific soil/du
Representative Elementary Length to Measure Soil Mass Attenuation Coefficient
Borges, J. A. R.; Pires, L. F.; Costa, J. C.
2014-01-01
With increasing demand for better yield in agricultural areas, soil physical property representative measurements are more and more essential. Nuclear techniques such as computerized tomography (CT) and gamma-ray attenuation (GAT) have been widely employed with this purpose. The soil mass attenuation coefficient (μ s) is an important parameter for CT and GAT analysis. When experimentally determined (μ es), the use of suitable sized samples enable to evaluate it precisely, as well as to reduce measurement time and costs. This study investigated the representative elementary length (REL) of sandy and clayey soils for μ es measurements. Two radioactive sources were employed (241Am and 137Cs), three collimators (2–4 mm diameters), and 14 thickness (x) samples (2–15 cm). Results indicated ideal thickness intervals of 12–15 and 2–4 cm for the sources 137Cs and 241Am, respectively. The application of such results in representative elementary area (REA) evaluations in clayey soil clods via CT indicated that μ es average values obtained for x > 4 cm and source 241Am might induce to the use of samples which are not large enough for soil bulk density evaluations (ρ s). As a consequence, ρ s might be under- or overestimated, generating inaccurate conclusions about the physical quality of the soil under study. PMID:24672338
NASA Astrophysics Data System (ADS)
Giniyatullin, K. G.; Valeeva, A. A.; Smirnova, E. V.
2017-08-01
Particle-size distribution in soddy-podzolic and light gray forest soils of the Botanical Garden of Kazan Federal University has been studied. The cluster analysis of data on the samples from genetic soil horizons attests to the lithological heterogeneity of the profiles of all the studied soils. It is probable that they are developed from the two-layered sediments with the upper colluvial layer underlain by the alluvial layer. According to the discriminant analysis, the major contribution to the discrimination of colluvial and alluvial layers is that of the fraction >0.25 mm. The results of canonical analysis show that there is only one significant discriminant function that separates alluvial and colluvial sediments on the investigated territory. The discriminant function correlates with the contents of fractions 0.05-0.01, 0.25-0.05, and >0.25 mm. Classification functions making it possible to distinguish between alluvial and colluvial sediments have been calculated. Statistical assessment of particle-size distribution data obtained for the plow horizons on ten plowed fields within the garden indicates that this horizon is formed from colluvial sediments. We conclude that the contents of separate fractions and their ratios cannot be used as a universal criterion of the lithological heterogeneity. However, adequate combination of the cluster and discriminant analyses makes it possible to give a comprehensive assessment of the lithology of soil samples from data on the contents of sand and silt fractions, which considerably increases the information value and reliability of the results.
Tuininga, Amy R.; Miller, Jessica L.; Morath, Shannon U.; Daniels, Thomas J.; Falco, Richard C.; Marchese, Michael; Sahabi, Sadia; Rosa, Dieshia; Stafford, Kirby C.
2009-01-01
Entomopathogenic fungi are commonly found in forested soils that provide tick habitat, and many species are pathogenic to Ixodes scapularis Say, the blacklegged tick. As a first step to developing effective biocontrol strategies, the objective of this study was to determine the best methods to isolate entomopathogenic fungal species from field-collected samples of soils and ticks from an Eastern deciduous forest where I. scapularis is common. Several methods were assessed: (1) soils, leaf litter, and ticks were plated on two types of media; (2) soils were assayed for entomopathogenic fungi using the Galleria bait method; (3) DNA from internal transcribed spacer (ITS) regions of the nuclear ribosomal repeat was extracted from pure cultures obtained from soils, Galleria, and ticks and was amplified and sequenced; and (4) DNA was extracted directly from ticks, amplified, and sequenced. We conclude that (1) ticks encounter potentially entomopathogenic fungi more often in soil than in leaf litter, (2) many species of potentially entomopathogenic fungi found in the soil can readily be cultured, (3) the Galleria bait method is a sufficiently efficient method for isolation of these fungi from soils, and (4) although DNA extraction from ticks was not possible in this study because of small sample size, DNA extraction from fungi isolated from soils and from ticks was successful and provided clean sequences in 100 and 73% of samples, respectively. A combination of the above methods is clearly necessary for optimal characterization of entomopathogenic fungi associated with ticks in the environment. PMID:19496427
Extraction Methods in Soil Phosphorus Characterisation
NASA Astrophysics Data System (ADS)
Soinne, Helena
2010-05-01
Extraction methods are widely used to assess the bioavailability of P and to characterise soil P reserves. Even though new and more sophisticated methods to characterise soil P are constantly developed the use of extraction methods is not likely to be replaced because of the relatively simple analytical equipment needed for the analysis. However, the large variety of extractants, pre-treatments and sample preparation procedures complicate the comparison of published results. In order to improve our understanding of the behaviour and cycling of P in soil, it is important to know the role of extracted P in the soil P cycle. The knowledge of the factors affecting the analytical outcome is a prerequisite for justified interpretation of the results. In this study, the effect of sample pre-treatment and properties of the used extractant on extractable molybdate-reactive phosphorus (MRP) and molybdate-unreactive phosphorus (MUP) was studied. Furthermore, the effect of sample preparation procedures prior the analysis on measured MRP and MUP was studied. Two widely used sequential extraction procedures were compared on their ability to show management induced differences on soil P. These results revealed that pre-treatments changed soil properties and air-drying was found to affect soil P, particularly extractable MUP, thought to represent organic P, by disrupting organic matter. This was evidenced by an increase in the water-extractable small-sized (<0.2 µm) P that, at least partly, took place at the expense of the large-sized (>0.2 µm) P. In addition to the effects of sample pre-treatment, the results showed that extractable organic P was sensitive to the chemical nature of the used extractant and to the sample preparation procedures employed prior to P analysis, including centrifugation and filtering of soil suspensions. Filtering may remove a major proportion of extractable MUP; therefore filtering cannot be recommended in the characterisation of solubilised MUP. However, extractants having high ionic strength may cause the organic molecules to collapse during centrifugation and thus affect the recovered concentration of MUP. These findings highlight the importance of characterising the nature of the MUP extracted with different extractants and acknowledging the sensitivity of MUP to analytical procedures when comparing published results. Widely used sequential fractionation procedures proved to be able to detect land-use -derived differences in the distribution of P among fractions of different solubilities. The results of this study demonstrate that, although the extraction methods do not reveal the biogeochemical function of a given P pool in soil, the extraction methods can be used to detect changes in soil P pools with different solubilities. To obtain the most benefit from extraction methods, we need a better understanding of the biological availability of P and the role of extracted P fraction in the P cycle in soils from different environments (climatic and weather) and land-uses.
Using Remote Sensing Data to Evaluate Surface Soil Properties in Alabama Ultisols
NASA Technical Reports Server (NTRS)
Sullivan, Dana G.; Shaw, Joey N.; Rickman, Doug; Mask, Paul L.; Luvall, Jeff
2005-01-01
Evaluation of surface soil properties via remote sensing could facilitate soil survey mapping, erosion prediction and allocation of agrochemicals for precision management. The objective of this study was to evaluate the relationship between soil spectral signature and surface soil properties in conventionally managed row crop systems. High-resolution RS data were acquired over bare fields in the Coastal Plain, Appalachian Plateau, and Ridge and Valley provinces of Alabama using the Airborne Terrestrial Applications Sensor multispectral scanner. Soils ranged from sandy Kandiudults to fine textured Rhodudults. Surface soil samples (0-1 cm) were collected from 163 sampling points for soil organic carbon, particle size distribution, and citrate dithionite extractable iron content. Surface roughness, soil water content, and crusting were also measured during sampling. Two methods of analysis were evaluated: 1) multiple linear regression using common spectral band ratios, and 2) partial least squares regression. Our data show that thermal infrared spectra are highly, linearly related to soil organic carbon, sand and clay content. Soil organic carbon content was the most difficult to quantify in these highly weathered systems, where soil organic carbon was generally less than 1.2%. Estimates of sand and clay content were best using partial least squares regression at the Valley site, explaining 42-59% of the variability. In the Coastal Plain, sandy surfaces prone to crusting limited estimates of sand and clay content via partial least squares and regression with common band ratios. Estimates of iron oxide content were a function of mineralogy and best accomplished using specific band ratios, with regression explaining 36-65% of the variability at the Valley and Coastal Plain sites, respectively.
Soil texture analysis revisited: Removal of organic matter matters more than ever
Schjønning, Per; Watts, Christopher W.; Christensen, Bent T.; Munkholm, Lars J.
2017-01-01
Exact estimates of soil clay (<2 μm) and silt (2–20 μm) contents are crucial as these size fractions impact key soil functions, and as pedotransfer concepts based on clay and silt contents are becoming increasingly abundant. We examined the effect of removing soil organic matter (SOM) by H2O2 before soil dispersion and determination of clay and silt. Soil samples with gradients in SOM were retrieved from three long-term field experiments each with uniform soil mineralogy and texture. For soils with less than 2 g C 100 g-1 minerals, clay estimates were little affected by SOM. Above this threshold, underestimation of clay increased dramatically with increasing SOM content. Silt contents were systematically overestimated when SOM was not removed; no lower SOM threshold was found for silt, but the overestimation was more pronounced for finer textured soils. When exact estimates of soil particles <20 μm are needed, SOM should always be removed before soil dispersion. PMID:28542416
Soil texture analysis revisited: Removal of organic matter matters more than ever.
Jensen, Johannes Lund; Schjønning, Per; Watts, Christopher W; Christensen, Bent T; Munkholm, Lars J
2017-01-01
Exact estimates of soil clay (<2 μm) and silt (2-20 μm) contents are crucial as these size fractions impact key soil functions, and as pedotransfer concepts based on clay and silt contents are becoming increasingly abundant. We examined the effect of removing soil organic matter (SOM) by H2O2 before soil dispersion and determination of clay and silt. Soil samples with gradients in SOM were retrieved from three long-term field experiments each with uniform soil mineralogy and texture. For soils with less than 2 g C 100 g-1 minerals, clay estimates were little affected by SOM. Above this threshold, underestimation of clay increased dramatically with increasing SOM content. Silt contents were systematically overestimated when SOM was not removed; no lower SOM threshold was found for silt, but the overestimation was more pronounced for finer textured soils. When exact estimates of soil particles <20 μm are needed, SOM should always be removed before soil dispersion.
Guo, Jia; Jiang, Xianjun; Zhou, Xue; Meng, Yao; Jia, Zhongjun
2016-06-04
This study was aimed to elucidate the effect of periodic flooding-drying to ecological processes of ammonia oxidizers in the hydro-fluctuation belt of the Three Gorges Reservoir. Soil samples were collected at thee altitudes in regions of Wanzhou, Fengdu and Changshou, representing 8, 5 and 0 times floodingdrying management, respectively. Soil physiochemical properties were analyzed and microcosms were constructed to monitor nitrification activity by fertilizing soils with ammonium substrate. Real-time PCR was used to quantify the population size of ammonia-oxidizing archaea (AOA) and bacteria (AOB). DGGE fingerprints and clone libraries were conducted to study the shift of AOA and AOB compositions in nitrifying soils. Among the physiochemical characteristics of the soils, soil organic matter and total phosphates increased along with cycle increasing. After incubation for 13 days, the net nitrification rates of the samples with 8 cycles exceeded those with 5 cycles. The quantities of both AOA and AOB have increased during the incubation. Phylogenetic analysis showed that AOA were placed within the soil group 1.1b and soil group 1.1a, while bacterial ammonia oxidizers were closely related to Nitrosospira and Cluster 0. Periodical flooding-drying increased soil organic matter, enhanced soil nitrification activity and likely played important roles in shaping community structures of soil ammonia oxidizers.
Estimation of Length-Scales in Soils by MRI
NASA Technical Reports Server (NTRS)
Daidzic, N. E.; Altobelli, S.; Alexander, J. I. D.
2004-01-01
Soil can be best described as an unconsolidated granular media that forms porous structure. The present macroscopic theory of water transport in porous media rests upon the continuum hypothesis that the physical properties of porous media can be associated with continuous, twice-differentiable field variables whose spatial domain is a set of centroids of Representative Elementary Volume (REV) elements. MRI is an ideal technique to estimate various length-scales in porous media. A 0.267 T permanent magnet at NASA GRC was used for this study. A 2D or 3D spatially-resolved porosity distribution were obtained from the NMR signal strength from each voxel and the spin-lattice relaxation time. A classical spin-warp imaging with Multiple Spin Echos (MSE) was used to evaluate proton density in each voxel. Initial resolution of 256 x 256 was subsequently reduced by averaging neighboring voxels and the porosity convergence was observed. A number of engineered "space candidate" soils such as Isolite(trademark), Zeoponics(trademark), Turface(trademark), and Profile(trademark) were used. Glass beads in the size range between 50 microns to 2 mm were used as well. Initial results with saturated porous samples have shown a good estimate of the average porosity consistent with the gravimetric porosity measurement results. For Profile(trademark) samples with particle sizes ranging between 0.25 to 1 mm and characteristic interparticle pore size of 100 microns the characteristic Darcy scale was estimated to be about delta(sub REV) = 10 mm. Glass beads porosity show clear convergence toward a definite REV which stays constant throughout homogeneous sample. Additional information is included in the original extended abstract.
Piccinni, Florencia; Murua, Yanina; Ghio, Silvina; Talia, Paola; Rivarola, Máximo; Campos, Eleonora
2016-08-25
Cellulomonas sp. strain B6 was isolated from a subtropical forest soil sample and presented (hemi)cellulose-degrading activity. We report here its draft genome sequence, with an estimated genome size of 4 Mb, a G+C content of 75.1%, and 3,443 predicted protein-coding sequences, 92 of which are glycosyl hydrolases involved in polysaccharide degradation. Copyright © 2016 Piccinni et al.
Fernández-Ugalde, Oihane; Gartzia-Bengoetxea, Nahia; Arostegi, Javier; Moragues, Lur; Arias-González, Ander
2017-06-01
Biochar can largely contribute to enhance organic carbon (OC) stocks in soil and improve soil quality in forest and agricultural lands. Its contribution depends on its recalcitrance, but also on its interactions with minerals and other organic compounds in soil. Thus, it is important to study the link between minerals, natural organic matter and biochar in soil. In this study, we investigated the incorporation of biochar-derived carbon (biochar-C) into various particle-size fractions with contrasting mineralogy and the effect of biochar on the storage of total OC in the particle-size fractions in an acid loamy soil under Pinus radiata (C3 type) in the Spanish Atlantic area. We compared plots amended with biochar produced from Miscanthus sp. (C4 type) with control plots (not amended). We separated sand-, silt-, and clay-size fractions in samples collected from 0 to 20-cm depth. In each fraction, we analyzed clay minerals, metallic oxides and oxy-hydroxides, total OC and biochar-C. The results showed that 51% of the biochar-C was in fractions <20μm one year after the application of biochar. Biochar-C stored in clay-size fractions (0.2-2μm, 0.05-0.2μm, <0.05μm) was only 14%. Even so, we observed that biochar-C increased with decreasing particle-size in clay-size fractions, as it occurred with the vermiculitic phases and metallic oxides and oxy-hydroxides. Biochar also affected to the distribution of total OC among particle-size fractions. Total OC concentration was greater in fractions 2-20μm, 0.2-2μm, 0.05-0.2μm in biochar-amended plots than in control plots. This may be explained by the adsorption of dissolved OC from fraction <0.05μm onto biochar particles. The results suggested that interactions between biochar, minerals and pre-existing organic matter already occurred in the first year. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Zhiyong; Zhang, Xiaoke; Mahamood, Md.; Zhang, Shuiqing; Huang, Shaomin; Liang, Wenju
2016-01-01
A long-term fertilization experiment was conducted to examine the effects of different fertilization practices on nematode community composition within aggregates in a wheat-maize rotation system. The study was a randomized complete block design with three replicates. The experiment involved the following four treatments: no fertilizer, inorganic N, P and K fertilizer (NPK), NPK plus manure (NPKM) and NPK plus maize straw (NPKS). Soil samples were taken at 0–20 cm depth during the wheat harvest stage. Based on our results, NPKS contributed to soil aggregation and moisture retention, with a positive effect on soil total nitrogen accumulation, particularly within small macroaggregates (0.25–1 mm) and microaggregates (<0.25 mm). The C/N ratio was correlated to the distribution of the soil nematode community. Both manure application and straw incorporation increased the nematode functional metabolic footprints within all aggregates. Additionally, the functional metabolic footprints decreased with a decline in aggregate size. The accumulation of total nitrogen within <1 mm aggregates under NPKS might play a key role in maintaining the survival of soil nematodes. In our study, both crop straw incorporation and inorganic fertilizer application effectively improved soil physicochemical properties and were also beneficial for nematode survival within small aggregate size fractions. PMID:27502433
Zhang, Zhiyong; Zhang, Xiaoke; Mahamood, Md; Zhang, Shuiqing; Huang, Shaomin; Liang, Wenju
2016-08-09
A long-term fertilization experiment was conducted to examine the effects of different fertilization practices on nematode community composition within aggregates in a wheat-maize rotation system. The study was a randomized complete block design with three replicates. The experiment involved the following four treatments: no fertilizer, inorganic N, P and K fertilizer (NPK), NPK plus manure (NPKM) and NPK plus maize straw (NPKS). Soil samples were taken at 0-20 cm depth during the wheat harvest stage. Based on our results, NPKS contributed to soil aggregation and moisture retention, with a positive effect on soil total nitrogen accumulation, particularly within small macroaggregates (0.25-1 mm) and microaggregates (<0.25 mm). The C/N ratio was correlated to the distribution of the soil nematode community. Both manure application and straw incorporation increased the nematode functional metabolic footprints within all aggregates. Additionally, the functional metabolic footprints decreased with a decline in aggregate size. The accumulation of total nitrogen within <1 mm aggregates under NPKS might play a key role in maintaining the survival of soil nematodes. In our study, both crop straw incorporation and inorganic fertilizer application effectively improved soil physicochemical properties and were also beneficial for nematode survival within small aggregate size fractions.
Saygın, Selen Deviren; Basaran, Mustafa; Ozcan, Ali Ugur; Dolarslan, Melda; Timur, Ozgur Burhan; Yilman, F Ebru; Erpul, Gunay
2011-09-01
Land degradation by soil erosion is one of the most serious problems and environmental issues in many ecosystems of arid and semi-arid regions. Especially, the disturbed areas have greater soil detachability and transportability capacity. Evaluation of land degradation in terms of soil erodibility, by using geostatistical modeling, is vital to protect and reclaim susceptible areas. Soil erodibility, described as the ability of soils to resist erosion, can be measured either directly under natural or simulated rainfall conditions, or indirectly estimated by empirical regression models. This study compares three empirical equations used to determine the soil erodibility factor of revised universal soil loss equation prediction technology based on their geospatial performances in the semi-arid catchment of the Saraykoy II Irrigation Dam located in Cankiri, Turkey. A total of 311 geo-referenced soil samples were collected with irregular intervals from the top soil layer (0-10 cm). Geostatistical analysis was performed with the point values of each equation to determine its spatial pattern. Results showed that equations that used soil organic matter in combination with the soil particle size better agreed with the variations in land use and topography of the catchment than the one using only the particle size distribution. It is recommended that the equations which dynamically integrate soil intrinsic properties with land use, topography, and its influences on the local microclimates, could be successfully used to geospatially determine sites highly susceptible to water erosion, and therefore, to select the agricultural and bio-engineering control measures needed.
Mapping Soil Organic Matter with Hyperspectral Imaging
NASA Astrophysics Data System (ADS)
Moni, Christophe; Burud, Ingunn; Flø, Andreas; Rasse, Daniel
2014-05-01
Soil organic matter (SOM) plays a central role for both food security and the global environment. Soil organic matter is the 'glue' that binds soil particles together, leading to positive effects on soil water and nutrient availability for plant growth and helping to counteract the effects of erosion, runoff, compaction and crusting. Hyperspectral measurements of samples of soil profiles have been conducted with the aim of mapping soil organic matter on a macroscopic scale (millimeters and centimeters). Two soil profiles have been selected from the same experimental site, one from a plot amended with biochar and another one from a control plot, with the specific objective to quantify and map the distribution of biochar in the amended profile. The soil profiles were of size (30 x 10 x 10) cm3 and were scanned with two pushbroomtype hyperspectral cameras, one which is sensitive in the visible wavelength region (400 - 1000 nm) and one in the near infrared region (1000 - 2500 nm). The images from the two detectors were merged together into one full dataset covering the whole wavelength region. Layers of 15 mm were removed from the 10 cm high sample such that a total of 7 hyperspectral images were obtained from the samples. Each layer was analyzed with multivariate statistical techniques in order to map the different components in the soil profile. Moreover, a 3-dimensional visalization of the components through the depth of the sample was also obtained by combining the hyperspectral images from all the layers. Mid-infrared spectroscopy of selected samples of the measured soil profiles was conducted in order to correlate the chemical constituents with the hyperspectral results. The results show that hyperspectral imaging is a fast, non-destructive technique, well suited to characterize soil profiles on a macroscopic scale and hence to map elements and different organic matter quality present in a complete pedon. As such, we were able to map and quantify biochar in our profile. Smaller interesting regions can also easily be selected from the hyperspectral images for more detailed study at microscopic scale.
Shan, Jiajia; Zhao, Junbo; Liu, Lifen; Zhang, Yituo; Wang, Xue; Wu, Fengchang
2018-07-01
Hyperspectral imaging technology has been investigated as a possible way to detect microplastics contamination in soil directly and efficiently in this study. Hyperspectral images with wavelength range between 400 and 1000 nm were obtained from soil samples containing different materials including microplastics, fresh leaves, wilted leaves, rocks and dry branches. Supervised classification algorithms such as support vector machine (SVM), mahalanobis distance (MD) and maximum likelihood (ML) algorithms were used to identify microplastics from the other materials in hyperspectral images. To investigate the effect of particle size and color, white polyethylene (PE) and black PE particles extracted from soil with two different particle size ranges (1-5 mm and 0.5-1 mm) were studied in this work. The results showed that SVM was the most applicable method for detecting white PE in soil, with the precision of 84% and 77% for PE particles in size ranges of 1-5 mm and 0.5-1 mm respectively. The precision of black PE detection achieved by SVM were 58% and 76% for particles of 1-5 mm and 0.5-1 mm respectively. Six kinds of household polymers including drink bottle, bottle cap, rubber, packing bag, clothes hanger and plastic clip were used to validate the developed method, and the classification precision of polymers were obtained from 79% to 100% and 86%-99% for microplastics particle 1-5 mm and 0.5-1 mm respectively. The results indicate that hyperspectral imaging technology is a potential technique to determine and visualize the microplastics with particle size from 0.5 to 5 mm on soil surface directly. Copyright © 2018 Elsevier Ltd. All rights reserved.
A strategy for the survey of urban garden soils
NASA Astrophysics Data System (ADS)
Schwartz, C.; Chenot, E. D.; Cortet, J.; Douay, F.; Dumat, C.; Pernin, C.; Pourrut, B.
2012-04-01
In France and all over the world, there is no systematic data available on the quality (fertility and contamination) of garden soils. Nevertheless, there is a growing need for a typology and for a method dedicated to national and international garden soil survey. This inventory is much needed in the context of environmental risk assessment, to predict the potential impact on human health of the direct contact with garden soils and of the consumption of vegetables from gardens. The state of the art on the international knowledge on garden soils, gardening practices and food production, shows that gardens remain poorly known and very complex ecological, economical and social systems. Their global quality is the result of a wide number of factors including environment, history, specific characteristics of the gardens, gardeners and their practices, plant and/or animal productions and socio-economic context. The aim is then to better know the determinism of the agronomic, environmental and sanitary properties of gardens as a function of gardening practices and their impact on the quality of soils and plants. We propose a definition of "garden" and more generally of all the field "garden". The system "garden" is represented by attributes (soil and plant characteristics) and factors with various impacts (e.g. environment > soil parent material > former land uses > age and sex of gardener > gardening practices > socio-professional group > type and proportion of productions > climate > age of the garden > size of the garden > education, information > cultural origin > functions of the garden > regulations). A typology of gardens including 7 selected factors and associated categories and a method for describing, sampling and characterizing a population of gardens representative (for a country) are proposed. Based on the statistical analysis on regional databases, we have determined and proposed an optimum size for the collected population of garden soils. The discussion of the results highlights the main indicators of soil quality and the method for a survey of garden soils is proposed. These results and the resulting approach might be validated and used on a worldwide scale to collect garden soil samples with the objective of agronomic, environmental and sanitary studies adapted to this type of urban agriculture.
Progress, Potential and Pitfalls in the Use of Bomb 14C to Constrain Soil Carbon Dynamics
NASA Astrophysics Data System (ADS)
Baisden, W. T.
2007-12-01
Forty four years have passed since atmospheric testing of thermonuclear weapons injected a major 14C spike into the atmosphere-biosphere-hydrosphere system. The use of bomb 14C, in combination with millennial decay of 14C, remains the most effective empirical tool for constraining rates of carbon (C) cycling in soils at timescales beyond experimental manipulations (>5 years). In the last 20 years, accelerator mass spectrometry has greatly increased the potential and throughput of soil 14C studies. At present, atmospheric Δ14C appears to be stabilizing at more constant values as a result of reinjection of bomb 14C from decadal storage in forests and soils. This means that current and future studies using bomb 14C have different sensitivities and uncertainties compared to those carried out during periods of rapid Δ14C decline such as the 1970s, 80s and 90s. Bomb 14C proves most effective when archived soil samples are available: simply using bulk Δ14C from samples collected at two or more times can surpass single time point Δ14C from soil fractions in providing robust C cycling rates. Of course, measurement of Δ14C in soil fractions from time series samples can significantly improve estimates of C cycling parameters. Samples collected between ca. 1965 and 1995 have now greatly surpassed pre-bomb samples in utility, although pre-bomb samples retain considerable usefulness for estimating the size of inert (millennial) C pools. Major pitfalls in the use of bomb 14C, particularly for single time point samples and fractions, are mainly associated with model assumptions. For example, calculated residence times can be highly sensitive to a minor component of old C (<10% of total C). Similarly, calculated residence times are also highly dependent upon rates of soil C accumulation or loss. A final key source of error is lag times between C fixation from atmospheric CO2 and incorporation in the measured soil C pool, either due to long-lived plant tissue, or residence times in other soil pools/horizons. All work using Δ14C should consider sensitivity and uncertainty related to these issues. Major potential exists in the use of Δ14C to constrain soil C dynamics as a function of soil depth, in relation to major unexplained losses of soil C, and to probe the mechanisms and rates of soil organic matter stabilization. These areas of major potential all lay outside conventional use of Δ14C to calculate simple residence times.
NASA Astrophysics Data System (ADS)
Pan, Genxing; Liu, Yalong; Wang, Ping; Li, Lianqinfg; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Bian, Rongjun; Ding, Yuanjun; Ma, Chong
2016-04-01
Recent studies have shown soil carbon sequestration through physical protection of relative labile carbon intra micro-aggregates with formation of large sized macro-aggregates under good management of soil and agricultural systems. While carbon stabilization had been increasingly concerned as ecosystem properties, the mechanisms underspin bioactivity of soil carbon with increased carbon stability has been still poorly understood. In this study, topsoil samples were collected from rice soils derived from salt marsh under different length of rice cultivation up to 700 years from eastern China. Particle size fractions (PSF) of soil aggregates were separated using a low energy dispersion protocol. Carbon fractions in the PSFs were analyzed either with FTIR spectroscopy. Soil microbial community of bacterial, fungal and archaeal were analyzed with molecular fingerprinting using specific gene primers. Soil respiration and carbon gain from amended maize as well as enzyme activities were measured using lab incubation protocols. While the PSFs were dominated by the fine sand (200-20μm) and silt fraction (20-2μm), the mass proportion both of sand (2000-200μm) and clay (<2μm) fraction increased with prolonged rice cultivation, giving rise to an increasing trend of mean weight diameter of soil aggregates (also referred to aggregate stability). Soil organic carbon was found most enriched in coarse sand fraction (40-60g/kg), followed by the clay fraction (20-24.5g/kg), but depleted in the silt fraction (~10g/kg). Phenolic and aromatic carbon as recalcitrant pool were high (33-40% of total SOC) in both coarse sand and clay fractions than in both fine sand and silt fractions (20-29% of total SOC). However, the ratio of LOC/total SOC showed a weak decreasing trend with decreasing size of the aggregate fractions. Total gene content in the size fractions followed a similar trend to that of SOC. Bacterial and archaeal gene abundance was concentrated in both sand and clay fractions but that of fungi in sand fraction, and sharply decreased with the decreasing size of aggregate fraction. Gene abundance of archaeal followed a similar trend to that of bacterial but showing an increasing trend with prolonged rice cultivation in both sand and clay fractions. Change in community diversity with sizes of aggregate fractions was found of fungi and weakly of bacterial but not of archaeal. Soil respiration ratio (Respired CO2-C to SOC) was highest in silt fraction, followed by the fine sand fraction but lowest in sand and clay fractions in the rice soils cultivated over 100 years. Again, scaled by total gen concentration, respiration was higher in silt fraction than in other fractions for these rice soils. For the size fractions other than clay fraction, soil gene concentration, Archaeal gen abundance, normalized enzyme activity and carbon sequestration was seen increased but SOC- and gene- scaled soil respiration decreased, more or less with prolonged rice cultivation. As shown with regression analysis, SOC content was positively linearly correlated to recalcitrant carbon proportion but negatively linearly correlated to labile carbon, in both sand and clay fractions. However, soil respiration was found positively logarithmically correlated to total DNA contents and bacterial gen abundance in both sand and clay fractions. Total DNA content was found positively correlated to SOC and labile carbon content, recalcitrant carbon proportion and normalized enzyme activity but negatively to soil respiration, in sand fraction only. Our findings suggested that carbon accumulation and stabilization was prevalent in both sand and clay fraction, only the coarse sand fraction was found responsible for bioactivity dynamics in the rice soils. Thus, soil carbon sequestration was primarily by formation of the macro-aggregates, which again mediated carbon stability and bioactivity in the rice soils under long term rice cultivation.
Narr, Anja; Nawaz, Ali; Wick, Lukas Y.; Harms, Hauke; Chatzinotas, Antonis
2017-01-01
Environmental surveys on soil viruses are still rare and mostly anecdotal, i. e., they mostly report on viruses at one location or for only a few sampling dates. Detailed time-series analysis with multiple samples can reveal the spatio-temporal dynamics of viral communities and provide important input as to how viruses interact with their potential hosts and the environment. Such surveys, however, require fast, easy-to-apply and reliable methods. In the present study we surveyed monthly across 13 months the abundance of virus-like particles (VLP) and the structure of the viral communities in soils along a land use transect (i.e., forest, pasture, and cropland). We evaluated 32 procedures to extract VLP from soil using different buffers and mechanical methods. The most efficient extraction was achieved with 1× saline magnesium buffer in combination with 20 min vortexing. For community structure analysis we developed an optimized fingerprinting approach (fluorescent RAPD-PCR; fRAPD) by combining RAPD-PCR with fluorescently labeled primers in order to size the obtained fragments on a capillary sequencing machine. With the concomitantly collected data of soil specific factors and weather data, we were able to find correlations of viral abundance and community structure with environmental variables and sampling site. More specifically, we found that soil specific factors such as pH and total nitrogen content played a significant role in shaping both soil viral abundance and community structure. The fRAPD analysis revealed high temporal changes and clustered the viral communities according to sampling sites. In particular we observed that temperature and rainfall shaped soil viral communities in non-forest sites. In summary our findings suggest that sampling site was a key factor for shaping the abundance and community structure of soil viruses, and when site vegetation was reduced, temperature and rainfall were also important factors. PMID:29067022
Investigation of soil properties for identifying recharge characteristics in the Lake Chad Basin
NASA Astrophysics Data System (ADS)
Banks, M. L.; Ndunguru, G. G.; Adisa, S. J.; Lee, J.; Adegoke, J. O.; Goni, I. B.; Grindley, J.; Mulugeta, V.
2009-12-01
Lake Chad was once labeled as one of the largest fresh water lakes in the world, providing water and livelihood to over 20 million people. The lake is shared by six different countries; Chad Nigeria, Niger, Cameroon, Central African Republic, and Sudan. Since the 1970 to date, a significant decrease in the size of the lake has been observed with the use of satellite imagery. This shrinking of the lake has been blamed on global warming, population increase and poor water management by the agriculture industry for farming purpose for both plants and animals. While these can be all valid reasons for the decrease of Lake Chad, we see the need to examine environmental and hydrological evidence around the Lake Chad basin. This study was carried out from upper stream to lower stream leading from Kano to the Damatru region which is one of several water bodies that supply Lake Chad. Over seventy six sites were sampled for soil texture, bulk density and other physical properties to investigate recharge capacity of the basin especially along the stream. Soils were collected using a soil core and properly stored at 4 degrees Celsius. Soils were weighed and put to dry at 105 degrees for twenty four hours. Dry weight was recorded and bulk density was calculated. The wet sieve method was used to determine the particle size analysis. Soils were weighed to 10 grams and hydrogen peroxide added to separate particles. Samples were washed with water and put to dry overnight. Soils were reweighed and sieved to separate as course sand, fine sand and silt and clay. The data revealed that in the upstream, coarse sand continuously decreased while silt and clay continuously increased down toward the lake. At mid stream silt and clay had significantly higher values when compared to coarse sand and fine sand. In the lower stream, bulk density clearly decreased compared to the upper and mid streams. Correlations will be carried out to investigate the particle size analysis and bulk density with recharge capacity of the lake Chad Basin.
Malik, Ashish; Scheibe, Andrea; LokaBharathi, P A; Gleixner, Gerd
2012-09-18
Stable isotopic content of dissolved organic carbon (δ(13)C-DOC) provides valuable information on its origin and fate. In an attempt to get additional insights into DOC cycling, we developed a method for δ(13)C measurement of DOC size classes by coupling high-performance liquid chromatography (HPLC)-size exclusion chromatography (SEC) to online isotope ratio mass spectrometry (IRMS). This represents a significant methodological contribution to DOC research. The interface was evaluated using various organic compounds, thoroughly tested with soil-water from a C3-C4 vegetation change experiment, and also applied to riverine and marine DOC. δ(13)C analysis of standard compounds resulted in excellent analytical precision (≤0.3‰). Chromatography resolved soil DOC into 3 fractions: high molecular weight (HMW; 0.4-10 kDa), low molecular weight (LMW; 50-400 Da), and retained (R) fraction. Sample reproducibility for measurement of δ(13)C-DOC size classes was ±0.25‰ for HMW fraction, ± 0.54‰ for LMW fraction, and ±1.3‰ for R fraction. The greater variance in δ(13)C values of the latter fractions was due to their lower concentrations. The limit of quantification (SD ≤0.6‰) for each size fraction measured as a peak is 200 ng C (2 mg C/L). δ(13)C-DOC values obtained in SEC mode correlated significantly with those obtained without column in the μEA mode (p < 0.001, intercept 0.17‰), which rules out SEC-associated isotopic effects or DOC loss. In the vegetation change experiment, fractions revealed a clear trend in plant contribution to DOC; those in deeper soils and smaller size fractions had less plant material. It was also demonstrated that the technique can be successfully applied to marine and riverine DOC without further sample pretreatment.
Amelung, W; Bol, R; Friedrich, C
1999-01-01
During the decay of 13C enriched dung patches, the; delta 13C signal of surface soil (1-5 cm) increased with a temporary maximum after 42 d. To understand the underlying processes, we investigated the incorporation of dung-derived C into soil particle-size fractions. Dung, collected from beef steers fed on maize (delta 13C = -15.36/1000) or ryegrass (delta 13C = -25.67/1000), was applied in circular patches to a C3 pasture at North Wyke, UK. Triplicates were sampled from surface soil (1-5 cm) at 14, 28, 42, and 70 d after application, pooled, separated into fine (< 0.2 micron) and coarse clay (0.2-2 microns), silt plus fine sand (2-250 microns), and coarse sand (250-2000 microns), and analyzed for total C, N, and delta 13C. As particle-size diameter decreased, the C/N ratios decreased and delta 13C values increased at all plots due to increasing microbial alteration of soil organic matter. After dung application, ca. 60% of dung-derived C in soil was recovered in the 0.2-250 microns fractions during the whole experiment. The proportion of dung-derived C in the fine clay peaked 42 d after dung application, coinciding with the delta 13C maximum in the bulk soil and the maximum leaching rate measured in lysimeters at this time in another study at the same sites. The percentage of dung-derived C as particulate C in the coarse sand fraction increased until the end of the experiment. We conclude that incorporation of C into soil from decomposing dung patches involved both temporary sorption of leached dung C to < 0.2 micron fractions and continuous accumulation of particulate C (> 250 microns).
NASA Astrophysics Data System (ADS)
Munroe, J. S.
2013-12-01
Modern eolian sediment was collected at four locations in the alpine zone of the Uinta Mountains (Utah, USA) between July 2011 and July 2012. Collectors were a passive design based on the classic marble dust trap, but modified for use in this high-precipitation environment. On average the collectors accumulated 1.5 gm of dust, corresponding to an annual flux of 4.4 g/m2. This result is similar to values measured from snowpack samples in the Wind River (Wyoming) and San Juan (Colorado) Mountains. Dust flux was 3 to 5x higher during the winter compared with summer at the two sites featuring continuous vegetation, but was consistent between the seasons at the two collectors surrounded by a greater area of exposed soil. XRD analysis reveals that dust samples are dominated by quartz, potassium feldspar, plagioclase, and illite. Some samples contain amphibole and chlorite. In contrast, samples of fine sediment collected from the surface of modern snowbanks are dominated by clay with no feldspar or quartz, suggesting that these minerals are derived from the surrounding soil surface, which is snow-covered in the winter. ICP-MS analysis reveals that the geochemistry of the coarse (>63-μm) fraction of the dust resembles that of the underlying bedrock, confirming a local origin for this sediment. In contrast, the fine (<63-μm) fraction of the dust closely matches the fine fraction of the soil A horizon, supporting an eolian origin for the ubiquitous layer of fines that mantles soil profiles throughout the Uinta Mountains. Grain size analysis with laser scattering reveals that modern dust is very well-sorted, with a median size of 8 μm (7.0 Φ). Using the annual dust flux and mean grain size, and taking into account the measured bulk density (0.95 gm/cm3), organic matter content (20%), and silt content (32%) of this loess cap, the extrapolated loess accretion rate is ~18 cm per 10,000 years. Given that prior studies (Bockheim et al., 2000 Catena; Munroe, 2007, Arctic, Antarctic, and Alpine Research) have reported mean loess thickness from 16 to 25 cm throughout the alpine zone, this result suggests that the loess cap is a post-glacial feature.
NASA Astrophysics Data System (ADS)
Zhao, Pei; Shao, Ming-an; Horton, Robert
2011-02-01
Soil particle-size distributions (PSD) have been used to estimate soil hydraulic properties. Various parametric PSD models have been proposed to describe the soil PSD from sparse experimental data. It is important to determine which PSD model best represents specific soils. Fourteen PSD models were examined in order to determine the best model for representing the deposited soils adjacent to dams in the China Loess Plateau; these were: Skaggs (S-1, S-2, and S-3), fractal (FR), Jaky (J), Lima and Silva (LS), Morgan (M), Gompertz (G), logarithm (L), exponential (E), log-exponential (LE), Weibull (W), van Genuchten type (VG) as well as Fredlund (F) models. Four-hundred and eighty samples were obtained from soils deposited in the Liudaogou catchment. The coefficient of determination (R 2), the Akaike's information criterion (AIC), and the modified AIC (mAIC) were used. Based upon R 2 and AIC, the three- and four-parameter models were both good at describing the PSDs of deposited soils, and the LE, FR, and E models were the poorest. However, the mAIC in conjunction with R 2 and AIC results indicated that the W model was optimum for describing PSD of the deposited soils for emphasizing the effect of parameter number. This analysis was also helpful for finding out which model is the best one. Our results are applicable to the China Loess Plateau.
In situ detection of tree root distribution and biomass by multi-electrode resistivity imaging.
Amato, Mariana; Basso, Bruno; Celano, Giuseppe; Bitella, Giovanni; Morelli, Gianfranco; Rossi, Roberta
2008-10-01
Traditional methods for studying tree roots are destructive and labor intensive, but available nondestructive techniques are applicable only to small scale studies or are strongly limited by soil conditions and root size. Soil electrical resistivity measured by geoelectrical methods has the potential to detect belowground plant structures, but quantitative relationships of these measurements with root traits have not been assessed. We tested the ability of two-dimensional (2-D) DC resistivity tomography to detect the spatial variability of roots and to quantify their biomass in a tree stand. A high-resolution resistivity tomogram was generated along a 11.75 m transect under an Alnus glutinosa (L.) Gaertn. stand based on an alpha-Wenner configuration with 48 electrodes spaced 0.25 m apart. Data were processed by a 2-D finite-element inversion algorithm, and corrected for soil temperature. Data acquisition, inversion and imaging were completed in the field within 60 min. Root dry mass per unit soil volume (root mass density, RMD) was measured destructively on soil samples collected to a depth of 1.05 m. Soil sand, silt, clay and organic matter contents, electrical conductivity, water content and pH were measured on a subset of samples. The spatial pattern of soil resistivity closely matched the spatial distribution of RMD. Multiple linear regression showed that only RMD and soil water content were related to soil resistivity along the transect. Regression analysis of RMD against soil resistivity revealed a highly significant logistic relationship (n = 97), which was confirmed on a separate dataset (n = 67), showing that soil resistivity was quantitatively related to belowground tree root biomass. This relationship provides a basis for developing quick nondestructive methods for detecting root distribution and quantifying root biomass, as well as for optimizing sampling strategies for studying root-driven phenomena.
NASA Astrophysics Data System (ADS)
Rasmussen, C.; Meding, S. M.; Vazquez, A.; Chorover, J.
2011-12-01
Soil genesis in volcanic terrain may be controlled by complex assemblages of parent materials and local topography. The objective of this work was to quantify topographic and parent material controls on soil and catchment evolution in a mixed conifer, montane catchment in the Valles Caldera, New Mexico, as part of the Jemez River Basin Critical Zone Observatory. The field site is a 16 ha catchment at an elevation of 3,000 m, with a frigid soil temperature regime (0-8*C), ustic soil moisture regime with bimodal precipitation of winter snowfall and convective summer rainfall (880 mm/yr), and an overstory dominated by spruce and fir with dense grass cover in open areas. The catchment is located on the resurgent Redondo Dome that uplifted shortly after the last major eruption of the Valles Caldera 1.2 My ago. The dome includes a complex assemblage of pre-eruptive caldera materials and extant sedimentary rocks embedded within a welded, hydrothermally altered rhyolitic tuff. We sampled a transect of seven soil profiles spanning the dominant east-west aspect of the catchment across a catena with profiles located in summit, backslope, footslope, and toeslope positions. Soil morphology was described in the field and soil samples analyzed using a range of geochemical and mineralogical techniques including quantitative and qualitative x-ray diffraction of bulk samples and particle size fractions, elemental analysis by x-ray fluorescence, and laser particle size analysis. The data indicated strong landscape position control on soil drainage, grading from well-drained summits to poorly-drained toeslope positions based on the presence/absence of redoximorphic features. The drainage patterns were coupled with downslope thickening of dark, organic matter rich surface horizons, likely a function of both in situ organic matter production and downslope colluvial transport of carbon rich surface materials. Mineralogical and geochemical data indicated clear within profile lithologic discontinuities in backslope, footslope and toeslope positions that suggest post dome resurgence ash deposition and redistribution via physical erosion. Additionally, the majority of sites contained a modern dust signal in the upper 5 to 10 cm of the soil profile based on Ti:Zr, mica content, and particle size distribution. The dominant weathering patterns include feldspar transformation to kaolinite and alteration of volcanic glass and/or 2:1 primary minerals to smectite. Smectite is a combination of both authigenic smectite formed during hydrothermal alteration of the tuff and neogenic smectite as suggested by Si-rich soil solution and surface waters. The data indicate a sequence of dome uplift followed by periods of pedogenesis and ash input, subsequent ash redistribution via physical erosion, and modern mass input via eolian dust. The timing and magnitude of these events and impacts on chemical weathering are the subjects of ongoing model and measurement activities.
NASA Astrophysics Data System (ADS)
Rasmussen, C.; Meding, S. M.; Vazquez, A.; Chorover, J.
2012-12-01
Soil genesis in volcanic terrain may be controlled by complex assemblages of parent materials and local topography. The objective of this work was to quantify topographic and parent material controls on soil and catchment evolution in a mixed conifer, montane catchment in the Valles Caldera, New Mexico, as part of the Jemez River Basin Critical Zone Observatory. The field site is a 16 ha catchment at an elevation of 3,000 m, with a frigid soil temperature regime (0-8 *C), ustic soil moisture regime with bimodal precipitation of winter snowfall and convective summer rainfall (880 mm yr-1), and an overstory dominated by spruce and fir with dense grass cover in open areas. The catchment is located on the resurgent Redondo Dome that uplifted shortly after the last major eruption of the Valles Caldera 1.2 My ago. The dome includes a complex assemblage of pre-eruptive caldera materials and extant sedimentary rocks embedded within a welded, hydrothermally altered rhyolitic tuff. We sampled a transect of seven soil profiles spanning the dominant east-west aspect of the catchment across a catena with profiles located in summit, backslope, footslope, and toeslope positions. Soil morphology was described in the field and soil samples analyzed using a range of geochemical and mineralogical techniques including quantitative and qualitative x-ray diffraction of bulk samples and particle size fractions, elemental analysis by x-ray fluorescence, and laser particle size analysis. The data indicated strong landscape position control on soil drainage, grading from well-drained summits to poorly-drained toeslope positions based on the presence/absence of redoximorphic features. The drainage patterns were coupled with downslope thickening of dark, organic matter rich surface horizons, likely a function of both in situ organic matter production and downslope colluvial transport of carbon rich surface materials. Mineralogical and geochemical data indicated clear within profile lithologic discontinuities in backslope, footslope and toeslope positions that suggest post dome resurgence ash deposition and redistribution via physical erosion. Additionally, the majority of sites contained a modern dust signal in the upper 5 to 10 cm of the soil profile based on Ti:Zr, mica content, and particle size distribution. The dominant weathering patterns include feldspar transformation to kaolinite and alteration of volcanic glass and/or 2:1 primary minerals to smectite. Smectite is a combination of both authigenic smectite formed during hydrothermal alteration of the tuff and neogenic smectite as suggested by Si-rich soil solution and surface waters. The data indicate a sequence of dome uplift followed by periods of pedogenesis and ash input, subsequent ash redistribution via physical erosion, and modern mass input via eolian dust. The timing and magnitude of these events and impacts on chemical weathering are the subjects of ongoing model and measurement activities.
NASA Astrophysics Data System (ADS)
Lewis, R. A.
2017-07-01
Terahertz radiation has been proposed as a useful tool in the study of soils and related materials from such diverse perspectives as detection of non-metallic landmines to improving soil fertility by agricultural charcoals produced by pyrolysis of organic material. The main barrier to such applications is that soils are rather opaque at terahertz frequencies. In this article, the main findings to date on the interaction of terahertz radiation with soils are reviewed, organized around the four phenomena of terahertz: transmission, scattering, reflection, and absorption. Terahertz transmission through soils is generally low and decreases with frequency. Terahertz scattering is evident in many THz-soil interactions, as the wavelength of the radiation is of the order of the particle size. Terahertz reflection is important to communications as these develop from the GHz into the THz band. Terahertz absorption on diluted soil samples has been demonstrated to be effective in identifying soil constituents, such as aromatic compounds, and soil contaminants, such as pesticides.
NASA Astrophysics Data System (ADS)
Al-Bared, Mohammed Ali Mohammed; Marto, Aminaton; Sati Hamonangan Harahap, Indra; Kasim, Fauziah
2018-03-01
Recycled blended ceramic tiles (RBT) is a waste material produced from ceramic tile factories and construction activities. RBT is found to be cost effective, sustainable, environmental-friendly and has the potential to be used as an additive in soft soil stabilization. Recent reports show that massive amounts of RBT are dumped into legal or illegal landfills every year consuming very large spaces and creating major environmental problems. On the other hand, dredged marine clay obtained from Nusajaya, Johor, Malaysia has weak physical and engineering characteristics to be considered as unsuitable soft soil that is usually excavated, dumped into landfills and replaced by stiff soil. Hence, this study investigates the suitability of possible uses of RBT to treat marine clay. Laboratory tests included Standard proctor tests and Atterberg limits tests. The plasticity of marine clay was evaluated by adding 10%, 20%, 30% and 40% of 0.3 mm RBT. In addition, the compaction behaviour of treated marine clay was compared by adding two different sizes (0.3 mm and 1.18 mm diameter) of RBT. For both coarse and fine sizes of RBT, 10%, 20%, 30% and 40% of the dry weight of the soft clay were added. The mixture of each combination was examined in order to evaluate the Maximum Dry Density (MDD) and the optimum moisture content (OMC) for the treated soft clay. MDD and OMC for soft untreated samples were 1.59 Mg/m3 and 22%, respectively. Treated samples with 10%, 20%, 30% and 40% of 0.30 mm size RBT resulted in a significant reduction of OMC ranged from 19 to 15% while MDD resulted in increment ranged from 1.69 to 1.77 Mg/m3. In addition, samples treated with 10%, 20%, 30% and 40% of 1.18 mm size RBT resulted in major reduction of OMC ranged from 15 to 13.5% while MDD increased effectively from 1.75 to 1.82 Mg/m3. For all mix designs of soft clay-RBT, MDD was gradually increasing and OMC was sharply reducing with further increments of both sizes of RBT.
Measurement of effective air diffusion coefficients for trichloroethene in undisturbed soil cores.
Bartelt-Hunt, Shannon L; Smith, James A
2002-06-01
In this study, we measure effective diffusion coefficients for trichloroethene in undisturbed soil samples taken from Picatinny Arsenal, New Jersey. The measured effective diffusion coefficients ranged from 0.0053 to 0.0609 cm2/s over a range of air-filled porosity of 0.23-0.49. The experimental data were compared to several previously published relations that predict diffusion coefficients as a function of air-filled porosity and porosity. A multiple linear regression analysis was developed to determine if a modification of the exponents in Millington's [Science 130 (1959) 100] relation would better fit the experimental data. The literature relations appeared to generally underpredict the effective diffusion coefficient for the soil cores studied in this work. Inclusion of a particle-size distribution parameter, d10, did not significantly improve the fit of the linear regression equation. The effective diffusion coefficient and porosity data were used to recalculate estimates of diffusive flux through the subsurface made in a previous study performed at the field site. It was determined that the method of calculation used in the previous study resulted in an underprediction of diffusive flux from the subsurface. We conclude that although Millington's [Science 130 (1959) 100] relation works well to predict effective diffusion coefficients in homogeneous soils with relatively uniform particle-size distributions, it may be inaccurate for many natural soils with heterogeneous structure and/or non-uniform particle-size distributions.
Preliminary examination of lunar samples from apollo 14.
1971-08-20
The major findings of the preliminary examination of the lunar samples are as follows: 1) The samples from Fra Mauro base may be contrasted with those from Tranquillity base and the Ocean of Storms in that about half the Apollo 11 samples consist of basaltic rocks, and all but three Apollo 12 rocks are basaltic, whereas in the Apollo 14 samples only two rocks of the 33 rocks over 50 grams have basaltic textures. The samples from Fra Mauro base consist largely of fragmental rocks containing clasts of diverse lithologies and histories. Generally the rocks differ modally from earlier lunar samples in that they contain more plagioclase and contain orthopyroxene. 2) The Apollo 14 samples differ chemically from earlier lunar rocks and from their closest meteorite and terrestrial analogs. The lunar material closest in composition is the KREEP component (potassium, rare earth elements, phosphorus), "norite," "mottled gray fragments" (9) from the soil samples (in particular, sample 12033) from the Apollo 12 site, and the dark portion of rock 12013 (10). The Apollo 14 material is richer in titanium, iron, magnesium, and silicon than the Surveyor 7 material, the only lunar highlands material directly analyzed (11). The rocks also differ from the mare basalts, having much lower contents of iron, titanium, manganese, chromium, and scandium and higher contents of silicon, aluminum, zirconium, potassium, uranium, thorium, barium, rubidium, sodium, niobium, lithium, and lanthanum. The ratios of potassium to uranium are lower than those of terrestrial rocks and similar to those of earlier lunar samples. 3) The chemical composition of the soil closely resembles that of the fragmental rocks and the large basaltic rock (sample 14310) except that some elements (potassium, lanthanum, ytterbium, and barium) may be somewhat depleted in the soil with respect to the average rock composition. 4) Rocks display characteristic surface features of lunar material (impact microcraters, rounding) and shock effects similar to those observed in rocks and soil from the Apollo 11 and Apollo 12 missions. The rocks show no evidence of exposure to water, and their content of metallic iron suggests that they, like the Apollo 11 and Apollo 12 material, were formed and have remained in an environment with low oxygen activity. 5) The concentration of solar windimplanted material in the soil is large, as was the case for Apollo 11 and Apollo 12 soil. However, unlike previous fragmental rocks, Apollo 14 fragmental rocks possess solar wind contents ranging from approximately that of the soil to essentially zero, with most rocks investigated falling toward one extreme of this range. A positive correlation appears to exist between the solar wind components, carbon, and (20)Ne, of fragmental rocks and their friability (Fig. 12). 6) Carbon contents lie within the range of carbon contents for Apollo 11 and Apollo 12 samples. 7) Four fragmental rocks show surface exposure times (10 x 10(6) to 20 x 10(6) years) about an order of magnitude less than typical exposure times of Apollo 11 and Apollo 12 rocks. 8) A much broader range of soil mechanics properties was encountered at the Apollo 14 site than has been observed at the Apollo 11, Apollo 12, and Surveyor landing sites. At different points along the traverses of the Apollo 14 mission, lesser cohesion, coarser grain size, and greater resistance to penetration was found than at the Apollo 11 and Apollo 12 sites. These variations are indicative of a very complex, heterogeneous deposit. The soils are more poorly sorted, but the range of grain size is similar to those of the Apollo 11 and Apollo 12 soils. 9) No evidence of biological material has been found in the samples to date.
Sun, Yan-Wei; Li, Sheng-Yu; Xu, Xin-Wen; Zhang, Jian-Guo; Li, Ying
2009-08-01
By using mcirolysimeter, a laboratory simulation experiment was conducted to study the effects of the grain size and thickness of dust deposits on the soil water evaporation and salt movement in the hinterland of the Taklimakan Desert. Under the same initial soil water content and deposition thickness condition, finer-textured (<0.063 mm) deposits promoted soil water evaporation, deeper soil desiccation, and surface soil salt accumulation, while coarse-textured (0.063-2 mm) deposits inhibited soil water evaporation and decreased deeper soil water loss and surface soil salt accumulation. The inhibition effect of the grain size of dust deposits on soil water evaporation had an inflection point at the grain size 0.20 mm, i. e., increased with increasing grain size when the grain size was 0.063-0.20 mm but decreased with increasing grain size when the grain size was > 0.20 mm. With the increasing thickness of dust deposits, its inhibition effect on soil water evaporation increased, and there existed a logarithmic relationship between the dust deposits thickness and water evaporation. Surface soil salt accumulation had a negative correlation with dust deposits thickness. In sum, the dust deposits in study area could affect the stability of arid desert ecosystem.
NASA Technical Reports Server (NTRS)
Jolliff, Bradley L.; Rockow, Kaylynn M.; Korotev, Randy L.; Haskin, Larry A.
1996-01-01
Through analysis by instrumental neutron activation (INAA) of 789 individual lithic fragments from the 2 mm-4 mm grain-size fractions of five Apollo 17 soil samples (72443, 72503, 73243, 76283, and 76503) and petrographic examination of a subset, we have determined the diversity and proportions of rock types recorded within soils from the highland massifs. The distribution of rock types at the site, as recorded by lithic fragments in the soils, is an alternative to the distribution inferred from the limited number of large rock samples. The compositions and proportions of 2 mm-4 mm fragments provide a bridge between compositions of less than 1 mm fines and types and proportions of rocks observed in large collected breccias and their clasts. The 2 mm-4 mm fraction of soil from South Massif, represented by an unbiased set of lithic fragments from station-2 samples 72443 and 72503, consists of 71% noritic impact-melt breccia, 7% Incompatible-Trace-Element-(ITE)-poor highland rock types (mainly granulitic breccias), 19% agglutinates and regolith breccias, 1% high-Ti mare basalt, and 2% others (very-low-Ti (VLT) basalt, monzogabbro breccia, and metal). In contrast, the 2 mm - 4 mm fraction of a soil from the North Massif, represented by an unbiased set of lithic fragments from station-6 sample 76503, has a greater proportion of ITE-poor highland rock types and mare-basalt fragments: it consists of 29% ITE-poor highland rock types (mainly granulitic breccias and troctolitic anorthosite), 25% impact-melt breccia, 13% high-Ti mare basalt, 31 % agglutinates and regolith breccias, 1% orange glass and related breccia, and 1% others. Based on a comparison of mass- weighted mean compositions of the lithic fragments with compositions of soil fines from all Apollo 17 highland stations, differences between the station-2 and station-6 samples are representative of differences between available samples from the two massifs. From the distribution of different rock types and their compositions, we conclude the following: (1) North-Massif and South-Massif soil samples differ significantly in types and proportions of ITE-poor highland components and ITE-rich impact-melt-breccia components. These differences reflect crudely layered massifs and known local geology. The greater percentage of impact-melt breccia in the South- Massif light-mantle soil stems from derivation of the light mantle from the top of the massif, which apparently is richer in noritic impact-melt breccia than are lower parts of the massifs. (2) At station 2, the 2 mm-4 mm grain-size fraction is enriched in impact-melt breccias compared to the less than 1 mm fraction, suggesting that the <1 mm fraction within the light mantle has a greater proportion of lithologies such as granulitic breccias which are more prevalent lower in the massifs and which we infer to be older (pre-basin) highland components. (3) Soil from station 6, North Massif, contains magnesian troctolitic anorthosite, which is a component that is rare in station-2 South-Massif,contains magnesian troctolitic in impact-melt breccia interpreted by most investigators to be ejecta from the Serenitatis basin.
An evaluation of soil sampling for 137Cs using various field-sampling volumes.
Nyhan, J W; White, G C; Schofield, T G; Trujillo, G
1983-05-01
The sediments from a liquid effluent receiving area at the Los Alamos National Laboratory and soils from an intensive study area in the fallout pathway of Trinity were sampled for 137Cs using 25-, 500-, 2500- and 12,500-cm3 field sampling volumes. A highly replicated sampling program was used to determine mean concentrations and inventories of 137Cs at each site, as well as estimates of spatial, aliquoting, and counting variance components of the radionuclide data. The sampling methods were also analyzed as a function of soil size fractions collected in each field sampling volume and of the total cost of the program for a given variation in the radionuclide survey results. Coefficients of variation (CV) of 137Cs inventory estimates ranged from 0.063 to 0.14 for Mortandad Canyon sediments, whereas CV values for Trinity soils were observed from 0.38 to 0.57. Spatial variance components of 137Cs concentration data were usually found to be larger than either the aliquoting or counting variance estimates and were inversely related to field sampling volume at the Trinity intensive site. Subsequent optimization studies of the sampling schemes demonstrated that each aliquot should be counted once, and that only 2-4 aliquots out of as many as 30 collected need be assayed for 137Cs. The optimization studies showed that as sample costs increased to 45 man-hours of labor per sample, the variance of the mean 137Cs concentration decreased dramatically, but decreased very little with additional labor.
Mössbauer studies on some Argentinian soil: Mollisols from Bahia Blanca
NASA Astrophysics Data System (ADS)
Saragovi, C.; Labenski, F.; Duhalde, S. M.; Acebal, S.; Venegas, R.
1994-12-01
Clay fractions of a Mollisol sample as is, treated with ammonium oxalate (AO), with dithionite-citrate-bicarbonate (DCB) and with dithionite-ethilene-diamine-tetraacetic acid (D-EDTA) methods, were studied. Illite-montmorillonites together with hematites, goethites and maghemites, all of the AI-substituted and with a wide range of sizes, were identified. It is found that the AO attack extracts little iron, whereas the other two attacks extract the magnetic signal. Furthermore, the DCB attack facilitates the reduction of the Fe3+ ions, while the D-EDTA method does not. Instead, this attack extracts more clay mineral Fe ions. A comparison with large grain soil samples is made.
Site and soil characterization of hazardous waste sites using an expert system guide
NASA Astrophysics Data System (ADS)
Cameron, Roy E.
1993-03-01
An expert system guide (knowledge book) has been devised to assist field personnel who must identify, describe, sample, and interpret size and soil characteristics of hazardous waste sites. The guide takes an approach that will be unfamiliar to most soil and environmental scientists and is directed to on-scene coordinators and project managers and others who may have little soil science training. It meets the need of the U.S. Environmental Protection Agency for standard procedures, guidelines, or protocols that address soil and site contamination, particularly heavy metals. The guide is organized to include: (1) general considerations and processes for collecting and using site and soils data, (2) detailed knowledge frames (descriptive profiles) of likely site and soil conditions, (3) a citation of references, (4) an appendix listing common sources of characterization data, and (5) a glossary of more than 900 general definitions.
New Model for Agglutinitic Glass Formation from LSCC Data
NASA Technical Reports Server (NTRS)
Pieters, C. M.; Taylor, L. A.
2003-01-01
Since the return of the first lunar samples it has been well known that glass-welded aggregates (agglutinates) accumulate in lunar soil as the result of multiple processes, many of which are driven by micrometeorite impacts. The proportion of agglutinates increases with increasing exposure to the space environment, and for an individual soil the proportion of agglutinates also increases with decreasing particle size. Detailed chemical and petrographic analyses of a suite of mare soils and their agglutinate constituents prepared by the Lunar Soil Characterization Consortium appeared to confirm the "Fusion of the Finest Fraction" model for agglutinate formation (or F3) proposed by Papike et al. However, recent LSCC data for highland soils are not consistent with the F3 model and alternate models for agglutinate formation must be revisited. Instead, we suggest differential melting of soil species may be more consistent with the full range of soil data to date.
Background concentrations of metals in soils from selected regions in the State of Washington
Ames, K.C.; Prych, E.A.
1995-01-01
Soil samples from 60 sites in the State of Washington were collected and analyzed to determine the magnitude and variability of background concen- trations of metals in soils of the State. Samples were collected in areas that were relatively undisturbed by human activity from the most pre- dominant soils in 12 different regions that are representative of large areas of Washington State. Concentrations of metals were determined by five different laboratory methods. Concentrations of mercury and nickel determined by both the total and total-recoverable methods displayed the greatest variability, followed by chromium and copper determined by the total-recoverable method. Concentrations of other metals, such as aluminum and barium determined by the total method, varied less. Most metals concentrations were found to be more nearly log-normally than normally distributed. Total metals concentrations were not significantly different among the different regions. However, total-recoverable metals concentrations were not as similar among different regions. Cluster analysis revealed that sampling sites in three regions encompassing the Puget Sound could be regrouped to form two new regions and sites in three regions in south-central and southeastern Washington State could also be regrouped into two new regions. Concentrations for 7 of 11 total-recoverable metals correlated with total metals concentrations. Concen- trations of six total metals also correlated positively with organic carbon. Total-recoverable metals concentrations did not correlate with either organic carbon or particle size. Concentrations of metals determined by the leaching methods did not correlate with total or total-recoverable metals concentrations, nor did they correlate with organic carbon or particle size.
Schnecker, Jörg; Borken, Werner; Schindlbacher, Andreas; Wanek, Wolfgang
2016-12-01
Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and thereby increase the soil CO 2 efflux. Elevated decomposition rates might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition. To investigate the effect of soil warming on functionally different soil organic matter pools, we here investigated the chemical and isotopic composition of bulk soil and three density fractions (free particulate organic matter, fPOM; occluded particulate organic matter, oPOM; and mineral associated organic matter, MaOM) of a C-rich soil from a long-term warming experiment in a spruce forest in the Austrian Alps. At the time of sampling, the soil in this experiment had been warmed during the snow-free period for seven consecutive years. During that time no thermal adaptation of the microbial community could be identified and CO 2 release from the soil continued to be elevated by the warming treatment. Our results, which included organic carbon content, total nitrogen content, δ 13 C, Δ 14 C, δ 15 N and the chemical composition, identified by pyrolysis-GC/MS, showed no significant differences in bulk soil between warming treatment and control. Surprisingly, the differences in the three density fractions were mostly small and the direction of warming induced change was variable with fraction and soil depth. Warming led to reduced N content in topsoil oPOM and subsoil fPOM and to reduced relative abundance of N-bearing compounds in subsoil MaOM. Further, warming increased the δ 13 C of MaOM at both sampling depths, reduced the relative abundance of carbohydrates while it increased the relative abundance of lignins in subsoil oPOM. As the size of the functionally different SOM pools did not significantly change, we assume that the few and small modifications in SOM chemistry result from an interplay of enhanced microbial decomposition of SOM and increased root litter input in the warmed plots. Overall, stable functional SOM pool sizes indicate that soil warming had similarly affected easily decomposable and stabilized SOM of this C-rich forest soil.
NASA Technical Reports Server (NTRS)
Mauersberger, Konrad; Mahaffy, Paul; Niemann, Hasso
1992-01-01
Results from the Viking mission will form the foundation for future in-depth investigations of atmosphere-surface interactions on Mars. The two Viking landers carried impressive instrumentation to obtain and analyze soil samples: the sites were observed by cameras, and the collector head was located on a long boom and allowed the collection of large samples at various depths. A selection of grain sizes was possible and a distribution system supplied a number of experiments with soil material. Despite stationary vehicles, a wide sampling field was reachable. The GCMS system, responsible for atmospheric as well as surface soil analysis, worked well on both landers. Atmospheric measurements resulted in the determination of the abundance of noble gases as well as of other molecular species. Isotopic composition measurements included the important ratios of C-13/C-12, N-15/N-14, and Ar-36/Ar-40. To verify these past results and to advance detailed studies of noble gas isotope ratios and minor constituents, better instrument sensitivities, higher precision, and lower background contributions are required in future Mars missions. Soil analysis during the Viking mission concentrated on organic material. Heating cycles were performed to 500 C and only water and carbon dioxide were identified. Higher pyrolysis temperatures are of primary importance to advance our understanding of the mineralogy and gas loading of surface material and atmospheric exchange.
SoilJ - An ImageJ plugin for semi-automatized image-processing of 3-D X-ray images of soil columns
NASA Astrophysics Data System (ADS)
Koestel, John
2016-04-01
3-D X-ray imaging is a formidable tool for quantifying soil structural properties which are known to be extremely diverse. This diversity necessitates the collection of large sample sizes for adequately representing the spatial variability of soil structure at a specific sampling site. One important bottleneck of using X-ray imaging is however the large amount of time required by a trained specialist to process the image data which makes it difficult to process larger amounts of samples. The software SoilJ aims at removing this bottleneck by automatizing most of the required image processing steps needed to analyze image data of cylindrical soil columns. SoilJ is a plugin of the free Java-based image-processing software ImageJ. The plugin is designed to automatically process all images located with a designated folder. In a first step, SoilJ recognizes the outlines of the soil column upon which the column is rotated to an upright position and placed in the center of the canvas. Excess canvas is removed from the images. Then, SoilJ samples the grey values of the column material as well as the surrounding air in Z-direction. Assuming that the column material (mostly PVC of aluminium) exhibits a spatially constant density, these grey values serve as a proxy for the image illumination at a specific Z-coordinate. Together with the grey values of the air they are used to correct image illumination fluctuations which often occur along the axis of rotation during image acquisition. SoilJ includes also an algorithm for beam-hardening artefact removal and extended image segmentation options. Finally, SoilJ integrates the morphology analyses plugins of BoneJ (Doube et al., 2006, BoneJ Free and extensible bone image analysis in ImageJ. Bone 47: 1076-1079) and provides an ASCII file summarizing these measures for each investigated soil column, respectively. In the future it is planned to integrate SoilJ into FIJI, the maintained and updated edition of ImageJ with selected plugins.
Soil carbon stabilization and turnover at alley-cropping systems, Eastern Germany
NASA Astrophysics Data System (ADS)
Medinski, T.; Freese, D.
2012-04-01
Alley-cropping system is seen as a viable land-use practice for mitigation of greenhouse gas CO2, energy-wood production and soil carbon sequestration. The extent to which carbon is stored in soil varies between ecosystems, and depends on tree species, soil types and on the extent of physical protection of carbon within soil aggregates. This study investigates soil carbon sequestration at alley-cropping systems presented by alleys of fast growing tree species (black locust and poplar) and maize, in Brandenburg, Eastern Germany. Carbon accumulation and turnover are assessed by measuring carbon fractions differing in decomposition rates. For this purpose soil samples were fractionated into labile and recalcitrant soil-size fractions by wet-sieving: macro (>250 µm), micro (53-250 µm) and clay + silt (<53 µm), followed by determination of organic carbon and nitrogen by gas-chromatography. Soil samples were also analysed for the total C&N content, cold-water extractable OC, and microbial C. Litter decomposition was evaluated by litter bags experiment. Soil CO2 flux was measured by LiCor automated device LI-8100A. No differences for the total and stable (clay+silt, <53 µm) carbon fraction were observed between treatment. While cold water-extractable carbon was significantly higher at maize alley compared to black locust alley. This may indicate faster turnover of organic matter at maize alley due to tillage, which influenced greater incorporation of plant residues into the soil, greater soil respiration and microbial activity.
Multisensor on-the-go mapping of readily dispersible clay, particle size and soil organic matter
NASA Astrophysics Data System (ADS)
Debaene, Guillaume; Niedźwiecki, Jacek; Papierowska, Ewa
2016-04-01
Particle size fractions affect strongly the physical and chemical properties of soil. Readily dispersible clay (RDC) is the part of the clay fraction in soils that is easily or potentially dispersible in water when small amounts of mechanical energy are applied to soil. The amount of RDC in the soil is of significant importance for agriculture and environment because clay dispersion is a cause of poor soil stability in water which in turn contributes to soil erodibility, mud flows, and cementation. To obtain a detailed map of soil texture, many samples are needed. Moreover, RDC determination is time consuming. The use of a mobile visible and near-infrared (VIS-NIR) platform is proposed here to map those soil properties and obtain the first detailed map of RDC at field level. Soil properties prediction was based on calibration model developed with 10 representative samples selected by a fuzzy logic algorithm. Calibration samples were analysed for soil texture (clay, silt and sand), RDC and soil organic carbon (SOC) using conventional wet chemistry analysis. Moreover, the Veris mobile sensor platform is also collecting electrical conductivity (EC) data (deep and shallow), and soil temperature. These auxiliary data were combined with VIS-NIR measurement (data fusion) to improve prediction results. EC maps were also produced to help understanding RDC data. The resulting maps were visually compared with an orthophotography of the field taken at the beginning of the plant growing season. Models were developed with partial least square regression (PLSR) and support vector machine regression (SVMR). There were no significant differences between calibration using PLSR or SVMR. Nevertheless, the best models were obtained with PLSR and standard normal variate (SNV) pretreatment and the fusion with deep EC data (e.g. for RDC and clay content: RMSECV = 0,35% and R2 = 0,71; RMSECV = 0,32% and R2 = 0,73 respectively). The best models were used to predict soil properties from the field spectra collected with the VIS-NIR platform. Maps of soil properties were generated using natural neighbour (NN) interpolation. Calibration results were satisfactory for all soil properties and allowed for the generation of detailed maps. The spatial variability of RDC was in accordance with the field orthophotography. Areas of high RDC content were corresponding to area of bad plant development. Soil texture has been correctly predicted by VIS-NIR spectroscopy (laboratory or on-the-go) before. However, readily dispersible clay (an important parameter for soil stability) has never been investigated before. This study introduces the possibility of using VIS-NIR for predicting readily dispersible clay at field level. The results obtained could be used in preventing soil erosion. Acknowledgement: This research was financed by a National Science Centre grant (NCN - Poland) with decision number UMO-2012/07/B/ST10/04387
NASA Astrophysics Data System (ADS)
Shougrakpam, Sangeeta; Sarkar, Rupak; Dutta, Subashisa
2010-10-01
Saturated macropore flow is the dominant hydrological process in tropical and subtropical hilly watersheds of northeast India. The process of infiltration into saturated macroporous soils is primarily controlled by size, network, density, connectivity, saturation of surrounding soil matrix, and depthwise distribution of macropores. To understand the effects of local land use, land cover and management practices on soil macroporosity, colour dye infiltration experiments were conducted with ten soil columns (25 × 25 × 50 cm) collected from different watersheds of the region under similar soil and agro-climatic zones. The sampling sites included two undisturbed forested hillslopes, two conventionally cultivated paddy fields, two forest lands abandoned after Jhum cultivation, and two paddy fields, one pineapple plot and one banana plot presently under active cultivation stage of the Jhum cycle. Digital image analyses of the obtained dye patterns showed that the infiltration patterns differed significantly for different sites with varying land use, land cover, and cultivation practices. Undisturbed forest soils showed high degree of soil macroporosity throughout the soil profile, paddy fields revealed sealing of macropores at the topsoil due to hard pan formation, and Jhum cultivated plots showed disconnected subsoil macropores. The important parameters related to soil macropores such as maximum and average size of macropores, number of active macropores, and depthwise distribution of macropores were estimated to characterise the soil macroporosity for the sites. These experimentally derived quantitative data of soil macroporosity can have wide range of applications in the region such as water quality monitoring and groundwater pollution assessment due to preferential leaching of solutes and pesticides, study of soil structural properties and infiltration behaviour of soils, investigation of flash floods in rivers, and hydrological modelling of the watersheds.
Field and laboratory procedures used in a soil chronosequence study
Singer, Michael J.; Janitzky, Peter
1986-01-01
In 1978, the late Denis Marchand initiated a research project entitled "Soil Correlation and Dating at the U.S. Geological Survey" to determine the usefulness of soils in solving geologic problems. Marchand proposed to establish soil chronosequences that could be dated independently of soil development by using radiometric and other numeric dating methods. In addition, by comparing dated chronosequences in different environments, rates of soil development could be studied and compared among varying climates and mineralogical conditions. The project was fundamental in documenting the value of soils in studies of mapping, correlating, and dating late Cenozoic deposits and in studying soil genesis. All published reports by members of the project are included in the bibliography.The project demanded that methods be adapted or developed to ensure comparability over a wide variation in soil types. Emphasis was placed on obtaining professional expertise and on establishing consistent techniques, especially for the field, laboratory, and data-compilation methods. Since 1978, twelve chronosequences have been sampled and analyzed by members of this project, and methods have been established and used consistently for analysis of the samples.The goals of this report are to:Document the methods used for the study on soil chronosequences,Present the results of tests that were run for precision, accuracy, and effectiveness, andDiscuss our modifications to standard procedures.Many of the methods presented herein are standard and have been reported elsewhere. However, we assume less prior analytical knowledge in our descriptions; thus, the manual should be easy to follow for the inexperienced analyst. Each chapter presents one or more references of the basic principle, an equipment and reagents list, and the detailed procedure. In some chapters this is followed by additional remarks or example calculations.The flow diagram in figure 1 outlines the step-by-step procedures used to obtain and analyze soil samples for this study. The soils analyzed had a wide range of characteristics (such as clay content, mineralogy, salinity, and acidity). Initially, a major task was to test and select methods that could be applied and interpreted similarly for the various types of soils. Tests were conducted to establish the effectiveness and comparability of analytical techniques, and the data for such tests are included in figures, tables, and discussions. In addition, many replicate analyses of samples have established a "standard error" or "coefficient of variance" which indicates the average reproducibility of each laboratory procedure. These averaged errors are reported as percentage of a given value. For example, in particle-size determination, 3 percent error for 10 percent clay content equals 10 ± 0.3 percent clay. The error sources were examined to determine, for example, if the error in particle-size determination was dependent on clay content. No such biases were found, and data are reported as percent error in the text and in tables of reproducibility.
NASA Astrophysics Data System (ADS)
Soucemarianadin, Laure; Barré, Pierre; Baudin, François; Chenu, Claire; Houot, Sabine; Kätterer, Thomas; Macdonald, Andy; van Oort, Folkert; Plante, Alain F.; Cécillon, Lauric
2017-04-01
The organic carbon reservoir of soils is a key component of climate change, calling for an accurate knowledge of the residence time of soil organic carbon (SOC). Existing proxies of the size of SOC labile pool such as SOC fractionation or respiration tests are time consuming and unable to consistently predict SOC mineralization over years to decades. Similarly, models of SOC dynamics often yield unrealistic values of the size of SOC kinetic pools. Thermal analysis of bulk soil samples has recently been shown to provide useful and cost-effective information regarding the long-term in-situ decomposition of SOC. Barré et al. (2016) analyzed soil samples from long-term bare fallow sites in northwestern Europe using Rock-Eval 6 pyrolysis (RE6), and demonstrated that persistent SOC is thermally more stable and has less hydrogen-rich compounds (low RE6 HI parameter) than labile SOC. The objective of this study was to predict SOC loss over a 20-year period (i.e. the size of the SOC pool with a residence time lower than 20 years) using RE6 indicators. Thirty-six archive soil samples coming from 4 long-term bare fallow chronosequences (Grignon, France; Rothamsted, Great Britain; Ultuna, Sweden; Versailles, France) were used in this study. For each sample, the value of bi-decadal SOC mineralization was obtained from the observed SOC dynamics of its long-term bare fallow plot (approximated by a spline function). Those values ranged from 0.8 to 14.3 gC·kg-1 (concentration data), representing 8.6 to 50.6% of total SOC (proportion data). All samples were analyzed using RE6 and simple linear regression models were used to predict bi-decadal SOC loss (concentration and proportion data) from 4 RE6 parameters: HI, OI, PC/SOC and T50 CO2 oxidation. HI (the amount of hydrogen-rich effluents formed during the pyrolysis phase of RE6; mgCH.g-1SOC) and OI (the CO2 yield during the pyrolysis phase of RE6; mgCO2.g-1SOC) parameters describe SOC bulk chemistry. PC/SOC (the amount of organic C evolved during the pyrolysis phase of RE6; % of total SOC) and T50 CO2 oxidation (the temperature at which 50% of the residual organic C was oxidized to CO2 during the RE6 oxidation phase; °C) parameters represent SOC thermal stability. The RE6 HI parameter yielded the best predictions of bi-decadal SOC mineralization, for both concentration (R2 = 0.75) and proportion (R2 = 0.66) data. PC/SOC and T50 CO2 oxidation parameters also yielded significant regression models with R2 = 0.68 and 0.42 for concentration data and R2 = 0.59 and 0.26 for proportion data, respectively. The OI parameter was not a good predictor of bi-decadal SOC loss, with non-significant regression models. The RE6 thermal analysis method can predict in-situ SOC biogeochemical stability. SOC chemical composition, and to a lesser SOC thermal stability, are related to its bi-decadal dynamics. RE6 appears to be a more accurate and convenient proxy of the size of the bi-decadal labile SOC pool than other existing methodologies. Future developments include the validation of these RE6 models of bi-decadal SOC loss on soils from contrasted pedoclimatic conditions. Reference: Barré et al., 2016. Biogeochemistry 130, 1-12
In situ experimental formation and growth of Fe nanoparticles and vesicles in lunar soil
NASA Astrophysics Data System (ADS)
Thompson, Michelle S.; Zega, Thomas J.; Howe, Jane Y.
2017-03-01
We report the results of the first dynamic, in situ heating of lunar soils to simulate micrometeorite impacts on the lunar surface. We performed slow- and rapid-heating experiments inside the transmission electron microscope to understand the chemical and microstructural changes in surface soils resulting from space-weathering processes. Our slow-heating experiments show that the formation of Fe nanoparticles begins at 575 °C. These nanoparticles also form as a result of rapid-heating experiments, and electron energy-loss spectroscopy measurements indicate the Fe nanoparticles are composed entirely of Fe0, suggesting this simulation accurately mimics micrometeorite space-weathering processes occurring on airless body surfaces. In addition to Fe nanoparticles, rapid-heating experiments also formed vesiculated textures in the samples. Several grains were subjected to repeated thermal shocks, and the measured size distribution and number of Fe nanoparticles evolved with each subsequent heating event. These results provide insight into the formation and growth mechanisms for Fe nanoparticles in space-weathered soils and could provide a new methodology for relative age dating of individual soil grains from within a sample population.
NASA Astrophysics Data System (ADS)
Guerrero, C.; Zornoza, R.; Gómez, I.; Mataix-Solera, J.; Navarro-Pedreño, J.; Mataix-Beneyto, J.; García-Orenes, F.
2009-04-01
Near infrared (NIR) reflectance spectroscopy offers important advantages because is a non-destructive technique, the pre-treatments needed in samples are minimal, and the spectrum of the sample is obtained in less than 1 minute without the needs of chemical reagents. For these reasons, NIR is a fast and cost-effective method. Moreover, NIR allows the analysis of several constituents or parameters simultaneously from the same spectrum once it is obtained. For this, a needed steep is the development of soil spectral libraries (set of samples analysed and scanned) and calibrations (using multivariate techniques). The calibrations should contain the variability of the target site soils in which the calibration is to be used. Many times this premise is not easy to fulfil, especially in libraries recently developed. A classical way to solve this problem is through the repopulation of libraries and the subsequent recalibration of the models. In this work we studied the changes in the accuracy of the predictions as a consequence of the successive addition of samples to repopulation. In general, calibrations with high number of samples and high diversity are desired. But we hypothesized that calibrations with lower quantities of samples (lower size) will absorb more easily the spectral characteristics of the target site. Thus, we suspect that the size of the calibration (model) that will be repopulated could be important. For this reason we also studied this effect in the accuracy of predictions of the repopulated models. In this study we used those spectra of our library which contained data of soil Kjeldahl Nitrogen (NKj) content (near to 1500 samples). First, those spectra from the target site were removed from the spectral library. Then, different quantities of samples of the library were selected (representing the 5, 10, 25, 50, 75 and 100% of the total library). These samples were used to develop calibrations with different sizes (%) of samples. We used partial least squares regression, and leave-one-out cross validation as methods of calibration. Two methods were used to select the different quantities (size of models) of samples: (1) Based on Characteristics of Spectra (BCS), and (2) Based on NKj Values of Samples (BVS). Both methods tried to select representative samples. Each of the calibrations (containing the 5, 10, 25, 50, 75 or 100% of the total samples of the library) was repopulated with samples from the target site and then recalibrated (by leave-one-out cross validation). This procedure was sequential. In each step, 2 samples from the target site were added to the models, and then recalibrated. This process was repeated successively 10 times, being 20 the total number of samples added. A local model was also created with the 20 samples used for repopulation. The repopulated, non-repopulated and local calibrations were used to predict the NKj content in those samples from the target site not included in repopulations. For the measurement of the accuracy of the predictions, the r2, RMSEP and slopes were calculated comparing predicted with analysed NKj values. This scheme was repeated for each of the four target sites studied. In general, scarce differences can be found between results obtained with BCS and BVS models. We observed that the repopulation of models increased the r2 of the predictions in sites 1 and 3. The repopulation caused scarce changes of the r2 of the predictions in sites 2 and 4, maybe due to the high initial values (using non-repopulated models r2 >0.90). As consequence of repopulation, the RMSEP decreased in all the sites except in site 2, where a very low RMESP was obtained before the repopulation (0.4 g×kg-1). The slopes trended to approximate to 1, but this value was reached only in site 4 and after the repopulation with 20 samples. In sites 3 and 4, accurate predictions were obtained using the local models. Predictions obtained with models using similar size of samples (similar %) were averaged with the aim to describe the main patterns. The r2 of predictions obtained with models of higher size were not more accurate than those obtained with models of lower size. After repopulation, the RMSEP of predictions using models with lower sizes (5, 10 and 25% of samples of the library) were lower than RMSEP obtained with higher sizes (75 and 100%), indicating that small models can easily integrate the variability of the soils from the target site. The results suggest that calibrations of small size could be repopulated and "converted" in local calibrations. According to this, we can focus most of the efforts in the obtainment of highly accurate analytical values in a reduced set of samples (including some samples from the target sites). The patterns observed here are in opposition with the idea of global models. These results could encourage the expansion of this technique, because very large data based seems not to be needed. Future studies with very different samples will help to confirm the robustness of the patterns observed. Authors acknowledge to "Bancaja-UMH" for the financial support of the project "NIRPROS".
Electrical Imaging of Infiltration in Agricultural Soils on Long Island, New York
NASA Astrophysics Data System (ADS)
Lampousis, A.; Kenyon, P. M.; Sanwald, K.; Steiner, N.
2007-12-01
High resolution electrical resistivity imaging of vadose zone infiltration experiments was conducted on agricultural soils by the City College and Graduate Center of CUNY, in cooperation with Cornell University's Agricultural Stewardship Program and Long Island Horticultural Research and Extension Center (LIHREC) in Riverhead, New York. Measurements were made in active vineyards with a commercial resistivity imaging system, using a half- meter electrode spacing. Soils considered were Riverhead sandy loam (RdA), Haven loam (HaA), and Bridgehampton silty loam (BgA). The Riverhead and Haven soils are the most common types found on eastern Long Island. The Bridgehampton is considered the most fertile. Soil samples and measurements of soil compaction were collected at the same time as the geophysical measurements. In addition, remote sensing data were obtained for the three sites and processed to produce normalized difference vegetation index (NDVI) data to evaluate potential correlations between vegetation vigor, soil texture and water migration patterns. Applications of this study include continuous water content monitoring in high value cash crops (precision agriculture). Changes in electrical resistivity during infiltration are clearly visible at all three locations. Preliminary analysis of the results shows correlations of baseline resistivity with particle size distributions and correlations between changes in resistivity during infiltration and soil compaction data. Time-lapse electrical images of the three sites will also be compared with published properties for these soils, including particle size distribution, saturated hydraulic conductivity, available water capacity, and surface texture.
Relating soil pore geometry to soil water content dynamics decomposed at multiple frequencies
NASA Astrophysics Data System (ADS)
Qin, Mingming; Gimenez, Daniel; Cooper, Miguel
2016-04-01
Soil structure is a critical factor determining the response of soil water content to meteorological inputs such as precipitation. Wavelet analysis can be used to filter a signal into several wavelet components, each characterizing a given frequency. The purpose of this research was to investigate relationships between the geometry of soil pore systems and the various wavelet components derived from soil water content dynamics. The two study sites investigated were located in the state of São Paulo, Brazil. Each site was comprised of five soil profiles, the first site was situated along a 300-meter transect with about 10% slope in a tropical semi-deciduous forest, while the second one spanned 230-meter over a Brazilian savanna with a slope of about 6%. For each profile, between two to four Water Content Reflectometer CS615 (Campbell Scientific, Inc.) probes were installed according to horizonation at depths varying between 0.1 m and 2.3 m. Bulk soil, three soil cores, and one undisturbed soil block were sampled from selected horizons for determining particle size distributions, water retention curves, and pore geometry, respectively. Pore shape and size were determined from binary images obtained from resin-impregnated blocks and used to characterize pore geometry. Soil water contents were recorded at a 20-minute interval over a 4-month period. The Mexican hat wavelet was used to decompose soil water content measurements into wavelet components. The responses of wavelet components to wetting and drying cycles were characterized by the median height of the peaks in each wavelet component and were correlated with particular pore shapes and sizes. For instance, large elongated and irregular pores, largely responsible for the transmission of water, were significantly correlated with wavelet components at high frequencies (40 minutes to 48 hours) while rounded pores, typically associated to water retention, were only significantly correlated to lower frequency ranges (48 hours and two months). These results will be further discussed in the context of the location of the soil horizons within the toposequence.
Bertiller, M B; Ares, J O
2011-08-01
Domestic animals potentially affect the reproductive output of plants by direct removal of aboveground plant parts but also could alter the structure and fertility of the upper soil and the integrity of biological crusts through trampling. We asked whether sheep selectivity of plant patches along grazing paths could lead to negative changes in biological crusts and soil seed banks. We randomly selected ten floristically homogeneous vegetation stands distributed across an area (1250 ha) grazed by free ranging sheep. Vegetation stands were differently selected by sheep as estimated through sheep-collaring techniques combined with remote imagery mapping. At each stand, we extracted 15 paired cylindrical soil cores from biological crusts and from neighboring soil without crusts. We evaluated the crust cover enclosed in each core and incubated the soil samples at field capacity at alternating 10-18 °C during 24 months. We counted the emerged seedlings and identified them by species. Sheep selectivity along grazing paths was largest at mid-distances to the watering point of the paddock. Increasing sheep selectivity was associated with the reduction of the cover of biological crusts and the size and species number of the soil seed bank of preferred perennial grasses under biological crusts. The size of the soil seed bank of annual grasses was reduced with increasing sheep selectivity under both crust and no crust soil conditions. We did not detect changes in the soil seed banks of less- and non- preferred species (shrubs and forbs) related to sheep selectivity. Our findings highlight the negative effects of sheep selectivity on biological crusts and the soil seed bank of preferred plant species and the positive relationship between biological crusts and the size of the soil seed bank of perennial grasses. Accordingly, the state of conservation of biological crusts could be useful to assess the state of the soil seed banks of perennial grasses for monitoring, conservation and planning the sustainable management of grazing lands. Copyright © 2011 Elsevier Ltd. All rights reserved.
A Model for Hydraulic Properties Based on Angular Pores with Lognormal Size Distribution
NASA Astrophysics Data System (ADS)
Durner, W.; Diamantopoulos, E.
2014-12-01
Soil water retention and unsaturated hydraulic conductivity curves are mandatory for modeling water flow in soils. It is a common approach to measure few points of the water retention curve and to calculate the hydraulic conductivity curve by assuming that the soil can be represented as a bundle of capillary tubes. Both curves are then used to predict water flow at larger spatial scales. However, the predictive power of these curves is often very limited. This can be very easily illustrated if we measure the soil hydraulic properties (SHPs) for a drainage experiment and then use these properties to predict the water flow in the case of imbibition. Further complications arise from the incomplete wetting of water at the solid matrix which results in finite values of the contact angles between the solid-water-air interfaces. To address these problems we present a physically-based model for hysteretic SHPs. This model is based on bundles of angular pores. Hysteresis for individual pores is caused by (i) different snap-off pressures during filling and emptying of single angular pores and (ii) by different advancing and receding contact angles for fluids that are not perfectly wettable. We derive a model of hydraulic conductivity as a function of contact angle by assuming flow perpendicular to pore cross sections and present closed-form expressions for both the sample scale water retention and hydraulic conductivity function by assuming a log-normal statistical distribution of pore size. We tested the new model against drainage and imbibition experiments for various sandy materials which were conducted with various liquids of differing wettability. The model described both imbibition and drainage experiments very well by assuming a unique pore size distribution of the sample and a zero contact angle for the perfectly wetting liquid. Eventually, we see the possibility to relate the particle size distribution with a model which describes the SHPs.
Geostatistical Interpolation of Particle-Size Curves in Heterogeneous Aquifers
NASA Astrophysics Data System (ADS)
Guadagnini, A.; Menafoglio, A.; Secchi, P.
2013-12-01
We address the problem of predicting the spatial field of particle-size curves (PSCs) from measurements associated with soil samples collected at a discrete set of locations within an aquifer system. Proper estimates of the full PSC are relevant to applications related to groundwater hydrology, soil science and geochemistry and aimed at modeling physical and chemical processes occurring in heterogeneous earth systems. Hence, we focus on providing kriging estimates of the entire PSC at unsampled locations. To this end, we treat particle-size curves as cumulative distribution functions, model their densities as functional compositional data and analyze them by embedding these into the Hilbert space of compositional functions endowed with the Aitchison geometry. On this basis, we develop a new geostatistical methodology for the analysis of spatially dependent functional compositional data. Our functional compositional kriging (FCK) approach allows providing predictions at unsampled location of the entire particle-size curve, together with a quantification of the associated uncertainty, by fully exploiting both the functional form of the data and their compositional nature. This is a key advantage of our approach with respect to traditional methodologies, which treat only a set of selected features (e.g., quantiles) of PSCs. Embedding the full PSC into a geostatistical analysis enables one to provide a complete characterization of the spatial distribution of lithotypes in a reservoir, eventually leading to improved predictions of soil hydraulic attributes through pedotransfer functions as well as of soil geochemical parameters which are relevant in sorption/desorption and cation exchange processes. We test our new method on PSCs sampled along a borehole located within an alluvial aquifer near the city of Tuebingen, Germany. The quality of FCK predictions is assessed through leave-one-out cross-validation. A comparison between hydraulic conductivity estimates obtained via FCK approach and those predicted by classical kriging of effective particle diameters (i.e., quantiles of the PSCs) is finally performed.
Pyrosequencing of microbial community of typical chernozem in contrast land use conditions
NASA Astrophysics Data System (ADS)
Ivanova, Ekaterina; Olga, Kutovaya; Azida, Tkhakakhova
2015-04-01
Chernozems are the principal soil resourse of Russia, so the sustainable use of these fertile soils in the intensive agriculturural production is of great importance, especially in terms of agro-ecological security of the country. The increase in agricultural inputs - intensive cropping, soil fallowing application accompanied with high frequency of mechanical treatment, result in decrease in soil organic matter content as well as soil structure degradation and, finally, lead to the loss of soil fertility. Soil microorganisms can serve as bioindicators of anthropogenic stress experienced by the soil during its agricultural use, so they may be universal indicators of soil quality (soil health) used for optimization and biologization of agricultural systems. The way to study the relationship between the structural status of the soil, its microbial communities and the organic matter content is the comparative analysis of soil aggregates in conditions of different land use practices. The objects of our research were soil samples of soil with permanent wheat cropping (50 years), continuous dead fallow (50 years) soil, and recovering soil (for 18 years under native steppe vegetation, fallowed in previous). The analysis of 16 S rRNA gene amplicon libraries of typical chernozem in conditions of different land use systems revealed that the way of agricultural use is a strong determinant of soil microbiome taxonomic composition. It was shown that the continuous «dead fallowing» application (for 50 years) lead to the establishment of olygothrophic components of microbial community, including spore-forming members of phylum Firmicutes. The increase of Acidobacteria lineages in this variant may be an indicator of some acidification of soil during long-time fallowing application. The variant of continuous wheat cropping lead to increasing in Proteobacteria lineages. The variant of soil under native steppe vegetation was characterized by the highest values of biodiversity indices - species richness and eveness, which can indicate the occurrence of soil recovering. This variant was also characterized by the maximum content of agricultural valuable aggregate fraction of 2-5 mm size. In soil samples from different aggregate fractions the presence of accessory components was revealed. It was determined that Actinobacteria lineages preferred microaggregates (less than 0.25 mm) rather than coarse aggregate fractions (more than 7 mm). The opposite trend was determined for Proteobacteria: the amount was maximum in aggregates more than 7 mm in diameter. The occurrence of specific components in the taxonomic structure of micro-and macro-aggregates may indicate the presence of a certain size fraction in the structure of the investigated soil. The study of soils' metagenome is promising for the development of both soil microbiology, and for the soil processes trends in soils of anthropogenic origin. The study was supported by Russian Scientific Fund (14-26-00079 and 14-26-00094)
Structural changes of green roof growing substrate layer studied by X-ray CT
NASA Astrophysics Data System (ADS)
Jelinkova, Vladimira; Sacha, Jan; Dohnal, Michal; Snehota, Michal
2017-04-01
Increasing interest in green infrastructure linked with newly implemented legislation/rules/laws worldwide opens up research potential for field of soil hydrology. A better understanding of function of engineered soils involved in green infrastructure solutions such as green roofs or rain garden is needed. A soil layer is considered as a highly significant component of the aforesaid systems. In comparison with a natural soil, the engineered soil is assumed to be the more challenging case due to rapid structure changes early stages after its build-up. The green infrastructure efficiency depends on the physical and chemical properties of the soil, which are, in the case of engineered soils, a function of its initial composition and subsequent soil formation processes. The project presented in this paper is focused on fundamental processes in the relatively thick layer of engineered soil. The initial structure development, during which the pore geometry is altered by the growth of plant roots, water influx, solid particles translocation and other soil formation processes, is investigated with the help of noninvasive imaging technique X-ray computed tomography. The soil development has been studied on undisturbed soil samples taken periodically from green roof test system during early stages of its life cycle. Two approaches and sample sizes were employed. In the first approach, undisturbed samples (volume of about 63 cm3) were taken each time from the test site and scanned by X-ray CT. In the second approach, samples (volume of about 630 cm3) were permanently installed at the test site and has been repeatedly removed to perform X-ray CT imaging. CT-derived macroporosity profiles reveal significant temporal changes of soil structure. Clogging of pores by fine particles and fissures development are two most significant changes that would affect the green roof system efficiency. This work has been supported by the Ministry of Education, Youth and Sports within National Sustainability Programme I, project number LO1605 and with financial support from the Czech Science Foundation under project number GAČR 17-21011S.
Letter Report for Characterization of Biochar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amonette, James E.
2013-04-09
On 27 November 2012, a bulk biochar sample was received for characterization of selected physical and chemical properties. The main purpose of the characterization was to help determine the degree to which biochar would be suitable as a soil amendment to aid in growth of plants. Towards this end, analyses to determine specific surface, pH, cation-exchange capacity, water retention, and wettability (i.e. surface tension) were conducted. A second objective was to determine how uniform these properties were in the sample. Towards this end, the sample was separated into fractions based on initial particle size and on whether the material wasmore » from the external surface or the internal portion of the particle. Based on the results, the biochar has significant liming potentials, significant cation-retention capacities, and highly variable plant-available moisture retention properties that, under the most favorable circumstances, could be helpful to plants. As a consequence, it would be quite suitable for addition to acidic soils and should enhance the fertility of those soils.« less
Adsorption coefficients for TNT on soil and clay minerals
NASA Astrophysics Data System (ADS)
Rivera, Rosángela; Pabón, Julissa; Pérez, Omarie; Muñoz, Miguel A.; Mina, Nairmen
2007-04-01
To understand the fate and transport mechanisms of TNT from buried landmines is it essential to determine the adsorption process of TNT on soil and clay minerals. In this research, soil samples from horizons Ap and A from Jobos Series at Isabela, Puerto Rico were studied. The clay fractions were separated from the other soil components by centrifugation. Using the hydrometer method the particle size distribution for the soil horizons was obtained. Physical and chemical characterization studies such as cation exchange capacity (CEC), surface area, percent of organic matter and pH were performed for the soil and clay samples. A complete mineralogical characterization of clay fractions using X-ray diffraction analysis reveals the presence of kaolinite, goethite, hematite, gibbsite and quartz. In order to obtain adsorption coefficients (K d values) for the TNT-soil and TNT-clay interactions high performance liquid chromatography (HPLC) was used. The adsorption process for TNT-soil was described by the Langmuir model. A higher adsorption was observed in the Ap horizon. The Freundlich model described the adsorption process for TNT-clay interactions. The affinity and relative adsorption capacity of the clay for TNT were higher in the A horizon. These results suggest that adsorption by soil organic matter predominates over adsorption on clay minerals when significant soil organic matter content is present. It was found that, properties like cation exchange capacity and surface area are important factors in the adsorption of clayey soils.
Ma, Jian Ye; Tong, Xiao Gang; Li, Zhan Bin; Fu, Guang Jun; Li, Jiao; Hasier
2016-11-18
The aim of this study was to investigate the effects of carbon sequestration in soil particle-sized fractions during reversion of desertification at Mu Us Sand Land, soil samples were collected from quicksand land, semifixed sand and fixed sand lands that were established by the shrub for 20-55 year-old and the arbor for 20-50 year-old at sand control region of Yulin in Northern Shaanxi Province. The dynamics and sequestration rate of soil organic carbon (SOC) associated with sand, silt and clay were measured by physical fractionation method. The results indicated that, compared with quicksand area, the carbon content in total SOC and all soil particle-sized fractions at bothsand-fixing sand forest lands showed a significant increasing trend, and the maximum carbon content was observed in the top layer of soils. From quicksand to fixed sand land with 55-year-old shrub and 50-year-old arbor, the annual sequestration rate of carbon stock in 0-5 cm soil depth was same in silt by 0.05 Mg·hm -2 ·a -1 . The increase rate of carbon sequestration in sand was 0.05 and 0.08 Mg·hm -2 ·a -1 , and in clay was 0.02 and 0.03 Mg·hm -2 ·a -1 at shrubs and arbors land, respectively. The increase rate of carbon sequestration in 0-20 cm soil layer for all the soil particles was averagely 2.1 times as that of 0-5 cm. At the annual increase rate of carbon, the stock of carbon in sand, silt and clay at the two fixed sand lands were increased by 6.7, 18.1 and 4.4 times after 50-55 year-old reversion of quicksand land to fixed sand. In addition, the average percentages that contributed to accumulation of total SOC by different particles in 0-20 cm soil were in the order of silt carbon (39.7%)≈sand carbon (34.6%) > clay carbon (25.6%). Generally, the soil particle-sized fractions had great carbon sequestration potential during reversion of desertification in Mu Us Sand Land, and the slit and sand were the main fractions for carbon sequestration at both fixed sand lands.
Soil factors of ecosystems' disturbance risk reduction under the impact of rocket fuel
NASA Astrophysics Data System (ADS)
Krechetov, Pavel; Koroleva, Tatyana; Sharapova, Anna; Chernitsova, Olga
2016-04-01
Environmental impacts occur at all stages of space rocket launch. One of the most dangerous consequences of a missile launch is pollution by components of rocket fuels ((unsymmetrical dimethylhydrazine (UDMH)). The areas subjected to falls of the used stages of carrier rockets launched from the Baikonur cosmodrome occupy thousands of square kilometers of different natural landscapes: from dry steppes of Kazakhstan to the taiga of West Siberia and mountains of the Altai-Sayany region. The study aims at assessing the environmental risk of adverse effects of rocket fuel on the soil. Experimental studies have been performed on soil and rock samples with specified parameters of the material composition. The effect of organic matter, acid-base properties, particle size distribution, and mineralogy on the decrease in the concentration of UDMH in equilibrium solutions has been studied. It has been found that the soil factors are arranged in the following series according to the effect on UDMH mobility: acid-base properties > organic matter content >clay fraction mineralogy > particle size distribution. The estimation of the rate of self-purification of contaminated soil is carried out. Experimental study of the behavior of UDMH in soil allowed to define a model for calculating critical loads of UDMH in terrestrial ecosystems.
Century scale char and non-char C co-stabilization in soil free C fractions
NASA Astrophysics Data System (ADS)
Vasilyeva, N. A.; Chenu, C.
2012-04-01
Fate of char particles and reasons of char C stabilization in soils is not well understood especially due to difficulties of its quantification. In this study we showed how char C content could be estimated from elemental analysis along with its size redistribution and co-stabilization with non-char C in long-term. We studied C dynamics in the size and density fractons of soil samples from a historical collection of 80 years bare fallow (no plant input plus tillage) experiment in Versailles, France (1929, 1939, 1949, 1962, 1972, 1991, 2008 years). Coarse char particles were observed in the soil substantially contributing to total organic C. Thus, char C study in this soil was carried out as a nessessary step for estimation of non-char C dynamics. Physical fraction allowed us to follow separately the dynamics of mineral-associated and free C. We analyzed bulk soils, fractions and picked out char particles for C, N and 13C contents. Total organic carbon concentrations in fractions pointed to char C input during 1939-1949 years. After that patterns of C and C/N and δ 13C changes in all fractions suggested redistribution of char C from coarse to finer fractions. Evolution of C/N and δ 13C suggested that all free C fractions, although enriched in char, still contained non-char C in the end of the 80 years C depletion chronosequence. Especially high proportion of non-char C was observed in the silt-size free C fraction. Linear combinations of contrasting char and non-char C C/N values allowed estimation of their proportions from the C/N evolution in the fractions. No substantial admixture of char C was observed for mineral-associated C fractions. Stable C pool in 2008 comprised of 4.6 g C kg-1 soil and was composed of mineral-associated C (3.5 g C kg-1 soil) and char-associated C (1.1 g C kg-1 soil). In both cases organic matter could be stabilized through adsorption and/or occlusion with solid particles (mineral or char). Stabilization capacities of different size class minerals reflected in C concentrations of fractions were 1.2 g C kg-1 for silt-size minerals and 19.4 g C kg-1 for clay-size minerals, contrastingly three orders of magnitude more C was associated with char particles or about 1.2 kg non-char C kg-1 sand-size char and about 1.4 to 3.5 kg non-char C kg-1 silt-size char. Such a high capacity of stabilization by char particles could not be explained by adorbtion alone. In conclusion, combination of C/N and δ13C signature allowed estimation of char content in this soil. Total char C content (sum up of redistributed char C in free fractions) remained not significantly different in the C depletion experiment during five decades after char input. Century scale char and non-char C co-stabilization in this soil could be explained by combination of adsorption and physical protection in microaggregates constructed of mineral and char particles.
Detection and Identification of potentially toxic elements in urban soil using in situ spectroscopy
NASA Astrophysics Data System (ADS)
Brook, Anna; Kopel, Daniella; Wittenberg, Lea
2017-04-01
Anthropogenic urban soils are the foundation of the urban green infrastructure, the green net quality is as good as each of its patches. In early days of pedology urban soil has been recognized with respect to contamination and the risks for human health but in study performed since the 70s, the importance of urban soil for the urban ecology became increasingly significant. Urban soils are highly disturbed land that was created by the process of urbanization. The dominant agent in the creation of urban soils is human activity which modifies the natural soil through mixing, filling or by contamination of land surfaces so as to create a layer of urban soil which can be more than 50 cm thick. The objective of this study is to determine the extent to which field spectroscopy methods can be used to extend the knowledge of toxic elements in urban soils. The majority of the studies on urban soils concentrate on identifying and mapping of known pollution mostly certain heavy metals, we are focusing on almost non disturbed soils where no direct disturbance occurred but the urban matrix inflicted on it. The elements in those soils where an-knowns features. In this study a top-down analysis is applied for detecting the presence of minerals, organic matter and pollutants in mixed soil samples. Results of the proposed top-down unmixing method suggest that the analysis is made very fast due to the simplified hierarchy which avoids the high-learning curve associated with unmixing algorithms showed that the most abundant components were coarse organic matter 12% followed by concrete dust, plastic crumbs, other man made materials, clay and other minerals. The results of the soils pH, measured electrometrically and the particle size distribution, measured by Laser diffraction, indicate there is no big different between the samples particle size distribution and the pH values of the samples but they are not significantly different from the expected, except for the OM percentage which is significantly higher in most samples. The suggested method was very effective for tracing the man-made substances, we could find concrete and asphalt, plastic and synthetic polymers after they were assimilated, broken down and decomposed into soil particles. By the top-down un-mixing method we did not limit the substances we characterize and so we could detect unexpected materials and contaminants. In five location we have traces of cyanide cadmium Cd(CN)2 probably residues of old television scenes, traces of schwertmannite Fe8O8(OH)6(SO4)·nH2O or Fe3+16O16(OH,SO4)12-13·10-12H2O acid drainage were found in four sites and the most alarmingly the detecting of actinolite Ca2(Mg4.5-2.5Fe2+0.5-2.5)Si8O22(OH)2 and tremolite Ca2(Mg5.0-4.5Fe2+0.0-0.5)Si8O22(OH), asbestos minerals, originate from the construction debris in almost all of the sites.
NASA Technical Reports Server (NTRS)
McKay, David
2009-01-01
The lunar regolith consists of about 90% submillimeter particles traditionally termed lunar soil. The remainder consists of larger particles ranging up to boulder size rocks. At the lower size end, soil particles in the 10s of nanometer sizes are present in all soil samples. Lunar regolith overlies bedrock which consists of either lava flows in mare regions or impact-produced megaregolith in highland regions. Lunar regolith has been produced over billions of years by a combination of breaking and communition of bedrock by meteorite bombardment coupled with a variety of complex space weathering processes including solar wind implantation, solar flare and cosmic ray bombardment with attendant radiation damage, melting, vaporization, and vapor condensation driven by impact, and gardening and turnover of the resultant soil. Lunar regolith is poorly sorted compared to most terrestrial soils, and has interesting engineering properties including strong grain adhesion, over-compacted soil density, an abundance of agglutinates with sharp corners, and a variety of properties related to soil maturity. The NASA program has supported a variety of engineering test research projects, the production of bricks by solar or microwave sintering, the production of concrete, the in situ sintering and glazing of regolith by microwave, and the extraction of useful resources such as oxygen, hydrogen, iron, aluminum, silicon and other products. Future requirements for a lunar surface base or outpost will include construction of protective berms, construction of paved roadways, construction of shelters, movement and emplacement of regolith for radiation shielding and thermal control, and extraction of useful products. One early need is for light weight but powerful digging, trenching, and regolith-moving equipment.
NASA Astrophysics Data System (ADS)
Flores, A. N.; Entekhabi, D.; Bras, R. L.
2007-12-01
Soil hydraulic and thermal properties (SHTPs) affect both the rate of moisture redistribution in the soil column and the volumetric soil water capacity. Adequately constraining these properties through field and lab analysis to parameterize spatially-distributed hydrology models is often prohibitively expensive. Because SHTPs vary significantly at small spatial scales individual soil samples are also only reliably indicative of local conditions, and these properties remain a significant source of uncertainty in soil moisture and temperature estimation. In ensemble-based soil moisture data assimilation, uncertainty in the model-produced prior estimate due to associated uncertainty in SHTPs must be taken into account to avoid under-dispersive ensembles. To treat SHTP uncertainty for purposes of supplying inputs to a distributed watershed model we use the restricted pairing (RP) algorithm, an extension of Latin Hypercube (LH) sampling. The RP algorithm generates an arbitrary number of SHTP combinations by sampling the appropriate marginal distributions of the individual soil properties using the LH approach, while imposing a target rank correlation among the properties. A previously-published meta- database of 1309 soils representing 12 textural classes is used to fit appropriate marginal distributions to the properties and compute the target rank correlation structure, conditioned on soil texture. Given categorical soil textures, our implementation of the RP algorithm generates an arbitrarily-sized ensemble of realizations of the SHTPs required as input to the TIN-based Realtime Integrated Basin Simulator with vegetation dynamics (tRIBS+VEGGIE) distributed parameter ecohydrology model. Soil moisture ensembles simulated with RP- generated SHTPs exhibit less variance than ensembles simulated with SHTPs generated by a scheme that neglects correlation among properties. Neglecting correlation among SHTPs can lead to physically unrealistic combinations of parameters that exhibit implausible hydrologic behavior when input to the tRIBS+VEGGIE model.
NASA Astrophysics Data System (ADS)
Bornemann, L.; Welp, G.; Amelung, W.
2009-04-01
Comprising more than 60 % of the terrestrial carbon pool, soil organic carbon (SOC) is one of the principal factors regulating the global C-cycle. Against the background of worldwide increasing CO2 emissions, much effort has been put to the modelling of soil-C turnover in order to evaluate its potential for mitigation of climate change. Soil organic matter is an ever changing assemblage of various organic components that interact with the mineral matrix and in dependence of its ecological environment. Carbon storage is thereby assumed to propagate by hierarchical saturation of different carbon pools. A homogeneous distribution of the respective pools within natural environments is unlikely as the controlling soil parameters are subject to spatial and temporal heterogeneity. Several attempts to operationalize this complex soil compartment have been proposed, most of them resting upon a concept of pools with different stability and varying turnover times. Among these pools, particulate organic matter (POM) is considered to be most sensitive to environmental changes and has been shown to explain major parts of the SOC variations. Until today, rather laborious physical and physico-chemical fractionation procedures are most commonly applied for the initialization and validation of POM in C-turnover models. Mid-infrared spectroscopy (MIRS) in combination with partial least squares regression (PLSR) could overcome this problem. The technique is fast, cheap, and requires little sample preparation. All the same, it is an appropriate technique not only for the determination of gross parameters like total soil organic carbon contents, but also for the determination and characterization of minor constituents like black carbon in soils. Basically, the infrared radiation is absorbed by molecules that express a dipole-moment during vibration. As virtually all constituents of soil organic matter and also a multitude of inorganic soil constituents express such a dipole-moment, plentiful chemical information can be extracted from absorption spectra of soil samples. In this work we present the development of calibration models for POM quantification via MIRS-PLSR, and the compilation of a raster data set including SOC and POM of three size classes for the testsite of the SFB-TR32 at Selhausen near Jülich (Germany). The studied test site is an orthic luvisol which has been sampled in a ten times ten meter raster from 0-30 cm depth (n=131). For POM fractionation samples were gently sonicated and material from 2000-250 µm was gained by wet sieving. After a second, more intense sonication, intermediate (250-53 µm) and fine (53-20 µm) material was also gained by wet sieving. All fractions were dried at 40 °C, carbon contents were determined by elemental analysis. For calibration of MIRS-PLSR, SOC contents of 87 bulk soil samples were determined by elemental analysis. Contributions of the different POM fractions to bulk SOC as well as the SOC contents within the particular POM fraction were determined for 36 soil samples by physical particle size fractionation as described above. MIRS-PLSR based predictions for the contribution of POM fractions to bulk soil proved to be satisfactory (R² >0.77) and improved with decreasing particle size. For the predictions of SOC contents in bulk soil and the different POM fractions R² even reached values ≥0.97. Root mean squared errors of the cross validations were in the range of standard deviations of the lab analysis or smaller. As physical fractionation methods are intrinsically susceptible to measurement errors, determination of POM fractions by MIRS analysis may even improve data sets for modelling. Apart from the generally convincing statistical parameters, further evidence for reliable predictions of the contributions of the different POM fractions to bulk SOC could be drawn from the spectral information itself. The spectral features utilized for the determination of the contribution of the different POM fractions to bulk SOC were matching the features for the prediction of the absolute SOC concentrations within the particular fractions. As these predictions were conducted with independent sample sets (bulk soil for the POM contribution and soil fractions for the SOC content within the fraction) the matching structural information for both features of the individual POM fraction indirectly validates the prediction for the POM pools. The latter is especially true as the observed features coincide with the actual knowledge on chemistry and stabilization of POM in soils. For the compilation of a complete raster data-set, the developed calibrations were applied to all of the 131 topsoil samples taken at the SFB-TR32 testsite. Correlation analysis indicated that the coarse and the intermediate POM fractions are related to each other, to bulk SOC content and textural parameters respectively, while the fine POM fraction seems to be independent from these factors. The observed coherences and the applicability of a C-saturation concept will be discussed by visual map-comparison and geostatistical analysis of the determined parameters.
Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes.
Wilde, Petra; Manal, Astrid; Stodden, Marc; Sieverding, Ewald; Hildebrandt, Ulrich; Bothe, Hermann
2009-06-01
The occurrence of arbuscular mycorrhizal fungi (AMF) was assessed by both morphological and molecular criteria in two salt marshes: (i) a NaCl site of the island Terschelling, Atlantic Coast, the Netherlands and (ii) a K(2)CO(3) marsh at Schreyahn, Northern Germany. The overall biodiversity of AMF, based on sequence analysis, was comparably low in roots at both sites. However, the morphological spore analyses from soil samples of both sites exhibited a higher AMF biodiversity. Glomus geosporum was the only fungus of the Glomerales that was detected both as spores in soil samples and in roots of the AMF-colonized salt plants Aster tripolium and Puccinellia sp. at both saline sites and on all sampling dates (one exception). In roots, sequences of Glomus intraradices prevailed, but this fungus could not be identified unambiguously from DNA of soil spores. Likewise, Glomus sp. uncultured, only deposited as sequence in the database, was widely detected by DNA sequencing in root samples. All attempts to obtain the corresponding sequences from spores isolated from soil samples failed consistently. A small sized Archaeospora sp. was detected, either/or by morphological and molecular analyses, in roots or soil spores, in dead AMF spores or orobatid mites. The study noted inconsistencies between morphological characterization and identification by DNA sequencing of the 5.8S rDNA-ITS2 region or part of the 18S rDNA gene. The distribution of AMF unlikely followed the salt gradient at both sites, in contrast to the zone formation of plant species. Zygotes of the alga Vaucheria erythrospora (Xanthophyceae) were retrieved and should not be misidentified with AMF spores.
Chang, Xiaofeng; Wang, Shiping; Cui, Shujuan; Zhu, Xiaoxue; Luo, Caiyun; Zhang, Zhenhua; Wilkes, Andreas
2014-01-01
Alpine grassland of the Tibetan Plateau is an important component of global soil organic carbon (SOC) stocks, but insufficient field observations and large spatial heterogeneity leads to great uncertainty in their estimation. In the Three Rivers Source Region (TRSR), alpine grasslands account for more than 75% of the total area. However, the regional carbon (C) stock estimate and their uncertainty have seldom been tested. Here we quantified the regional SOC stock and its uncertainty using 298 soil profiles surveyed from 35 sites across the TRSR during 2006–2008. We showed that the upper soil (0–30 cm depth) in alpine grasslands of the TRSR stores 2.03 Pg C, with a 95% confidence interval ranging from 1.25 to 2.81 Pg C. Alpine meadow soils comprised 73% (i.e. 1.48 Pg C) of the regional SOC estimate, but had the greatest uncertainty at 51%. The statistical power to detect a deviation of 10% uncertainty in grassland C stock was less than 0.50. The required sample size to detect this deviation at a power of 90% was about 6–7 times more than the number of sample sites surveyed. Comparison of our observed SOC density with the corresponding values from the dataset of Yang et al. indicates that these two datasets are comparable. The combined dataset did not reduce the uncertainty in the estimate of the regional grassland soil C stock. This result could be mainly explained by the underrepresentation of sampling sites in large areas with poor accessibility. Further research to improve the regional SOC stock estimate should optimize sampling strategy by considering the number of samples and their spatial distribution. PMID:24819054
A new water retention and hydraulic conductivity model accounting for contact angle
NASA Astrophysics Data System (ADS)
Diamantopoulos, Efstathios; Durner, Wolfgang
2013-04-01
The description of soil water transport in the unsaturated zone requires the knowledge of the soil hydraulic properties, i.e. the water retention and the hydraulic conductivity function. A great amount of parameterizations for this can be found in the literature, the majority of which represent the complex pore space of soils as a bundle of cylindrical capillary tubes of various sizes. The assumption of zero contact angles between water and surface of the grains is also made. However, these assumptions limit the predictive capabilities of these models, leading often to enormous errors in the prediction of water dynamics in soils. We present a pore scale analysis for equilibrium liquid configurations (retention) in angular pores taking the effect of contact angle into account. Furthermore, we propose an alternative derivation of the hydraulic conductivity function, again as a function of the contact angle, assuming flow perpendicular to pore cross sections. Finally, we upscale our model from the pore to the sample scale by assuming a gamma statistical distribution of the pore sizes. Closed form expressions are derived for both sample water retention and conductivity functions. The new model was tested against experimental data from multistep inflow/outflow (MSI/MSO) experiments for a sandy material. They were conducted using ethanol and water as the wetting liquid. Ethanol was assumed to form a zero contact angle with the soil grains. The proposed model described both imbibition and drainage of water and ethanol very well. Lastly, the consideration of the contact angle allowed the description of the observed hysteresis.
Distribution and characteristics of gravelly soil liquefaction in the Wenchuan M s 8.0 earthquake
NASA Astrophysics Data System (ADS)
Cao, Zhenzhong; Hou, Longqing; Xu, Hongmei; Yuan, Xiaoming
2010-06-01
In this paper, a distribution map of gravelly soil liquefaction that was caused by the Wenchuan M s 8.0 earthquake in China is proposed based on a detailed field investigation and an analysis of geological soil profiles. The geological background of the earthquake disaster region is summarized by compiling geological cross sections and borehole logs. Meanwhile, four typical liquefied sites were selected to conduct sample drillings, dynamic penetration tests (DPT), and shear wave velocity tests, to understand the features of liquefied gravelly soil. One hundred and eighteen (118) liquefied sites were investigated shortly after the earthquake. The field investigation showed: (1) sandboils and waterspouts occurred extensively, involving thousands of miles of farmland, 120 villages, eight schools and five factories, which caused damage to some rural houses, schools, manufacturing facilities and wells, etc.; (2) the Chengdu plain is covered by a gravelly soil layer with a thickness of 0 m to 541 m according to the geological cross sections; (3) there were 80 gravelly soil liquefied sites in the Chengdu plain, shaped as five belt areas that varied from 20 km to 40 km in length, and about ten gravelly soil liquefied sites distributed within Mianyang area; and (4) the grain sizes of the sampled soil were relative larger than the ejected soil on the ground, thus the type of liquefied soil cannot be determined by the ejected soil. The gravelly soil liquefied sites are helpful in enriching the global database of gravelly soil liquefaction and developing a corresponding evaluation method in further research efforts.
Osborne, Catherine A.; Peoples, Mark B.; Janssen, Peter H.
2010-01-01
Soil is exposed to hydrogen when symbiotic rhizobia in legume root nodules cannot recycle the hydrogen that is generated during nitrogen fixation. The hydrogen emitted is most likely taken up by free-living soil bacteria that use hydrogen as an energy source, though the bacteria that do this in situ remain unclear. In this study, we investigated the effect of hydrogen exposure on the bacteria of two different soils in a microcosm setup designed to simulate hydrogen-emitting root nodules. Although the size and overall composition of the soil bacterial community did not significantly alter after hydrogen exposure, one ribotype increased in relative abundance within each soil. This single-ribotype shift was identified by generating multiple terminal restriction fragment length polymorphism (T-RFLP) profiles of 16S rRNA genes from each soil sample, with gene sequence confirmation to identify terminal restriction fragments. The increased abundance of a single ribotype after hydrogen exposure, within an otherwise similar community, was found in replicate samples taken from each microcosm and was reproducible across replicate experiments. Similarly, only one member of the soil bacterial community increased in abundance in response to hydrogen exposure in soil surrounding the root nodules of field-grown soybean (Glycine max). The ribotypes that increased after hydrogen exposure in each soil system tested were all from known hydrogen-oxidizing lineages within the order Actinomycetales. We suggest that soil actinomycetes are important utilizers of hydrogen at relevant concentrations in soil and could be key contributors to soil's function as a sink in the global hydrogen cycle. PMID:20061453
Microbial biomass carbon and enzyme activities of urban soils in Beijing.
Wang, Meie; Markert, Bernd; Shen, Wenming; Chen, Weiping; Peng, Chi; Ouyang, Zhiyun
2011-07-01
To promote rational and sustainable use of soil resources and to maintain the urban soil quality, it is essential to assess urban ecosystem health. In this study, the microbiological properties of urban soils in Beijing and their spatial distribution patterns across the city were evaluated based on measurements of microbial biomass carbon and urease and invertase activities of the soils for the purpose of assessing the urban ecosystem health of Beijing. Grid sampling design, normal Kriging technique, and the multiple comparisons among different land use types were used in soil sampling and data treatment. The inherent chemical characteristics of urban soils in Beijing, e.g., soil pH, electronic conductivity, heavy metal contents, total N, P and K contents, and soil organic matter contents were detected. The size and diversity of microbial community and the extent of microbial activity in Beijing urban soils were measured as the microbial biomass carbon content and the ratio of microbial biomass carbon content to total soil organic carbon. The microbial community health measured in terms of microbial biomass carbon, urease, and invertase activities varied with the organic substrate and nutrient contents of the soils and were not adversely affected by the presence of heavy metals at p < 0.01. It was shown that the older and the biologically more stable part of city exhibited higher microbial activity levels than the more recently developed part of the city and the road areas of heavy traffic. It was concluded that the land use patterns in Beijing urban soils influenced the nature and activities of the microbial communities.
NASA Astrophysics Data System (ADS)
Jia, Y.; Clements, A.; Fraser, M.
2009-04-01
The desert southwestern United States routinely exceeds health-based standards for coarse particulate matter [1]. PM10 concentrations are high in both urban and rural areas and are believed to originate from fugitive dust emissions from agricultural fields and roads and soil erosion from the surrounding desert locations. Soil together with its associated biota contains a complex mixture of biogenic detritus, including plant detritus, airborne microbes comprised of bacteria, viruses, spores of lichens and fungi, small algae, and protozoan cysts [4][5], which can mostly become airborne when winds are strong enough and soil dry enough to be re-entrained into the atmosphere [3]. Other potential sources to PM10 may include primary biological aerosol particles (PBAPs), given a multitude of flower, grass, and fungal species that thrive in the Sonoran desert and actively release pollens and spores throughout the year [2]. However, because soil and fugitive dust is also believed to contain a large number of these biological particles and is considered as a secondary host of PBAPs [3] [4], the role and contribution of PBAPs as a direct ambient PM source in the desert southwest have not been clearly stated or investigated. In an effort to identify and assess the relative contribution of these and other major PM sources in the southwestern US region, and particularly to assess the contribution from soil and fugitive dust, a series of ambient PM samples and soil samples were collected in Higley, AZ, USA, a suburb of the Phoenix metropolitan area which has seen rapid urban sprawl onto agricultural lands. Because of their suggested ability to track biologically important organic materials from natural environment [4][6][7][8][9][10], saccharides were chosen as the key compounds to trace the release of soil dusts into the atmosphere, and to elucidate other major sources that contribute to the PM levels in this location in the arid southwestern US. To this end, saccharide compounds were analyzed in size segregated soil and ambient PM samples at Higley; intra- and inter- comparisons were made between the ambient PM and three types of soil dust samples (agricultural soil, native soil, road dust) based on the particle size (fine vs. coarse), seasonality, and relative composition of 12 saccharide compounds. Based on the ambient concentrations of major saccharides and a number of other specific compounds (including elemental and organic carbon, ions, metals, alkanes, organic acids, and polycyclic aromatic hydrocarbons) that are simultaneously resolved in Higley PM samples, a Positive Matrix Factorization (PMF) model was performed to determine the key contributors to PM10 and PM2.5 levels. Six distinct factors were isolated, with two factors dominated by the enrichment of saccharide compounds. There was not consistency between the source profiles of these two saccharide rich source factors with the saccharide composition of the local size-segregated soil samples, which implies that there may be other major sources contributing to ambient PM saccharides. One possible alternative is that PBAPs that are injected directly into the atmosphere instead of residing in the surface soil and being re-entrained through soil erosion or agricultural processing. To our knowledge, this study is the first of its kind to compare the saccharide composition between the fine and coarse fraction of different soils types in two seasons, and to relate the contribution from soil dust to ambient PM using saccharide species. REFERENCE [1] AirData: Access to Air Pollution data. [cited 2009 Jan 11, 2009]; Available from: http://www.epa.gov/air/data/index.html [2] Allergy and Asthma in the Southwestern United States. [cited 2009 Jan 11, 2009]; Available from: http://allergy.peds.arizona.edu/southwest/swpollen.html [3] Cox, C.S., Wathes, C.M., 1995. Bioaerosols Handbook, Lewis Publishers, NY [4] Simoneit, B.R.T., Elias, V.O., et al., 2004. "Sugars - Dominant water-soluble organic compounds in soils and characterization as tracers in atmospheric particulate matter", Environmental Science and Technology (38): 5939-5949. [5] Simoneit, B.R.T., Mazurek, M.A., 1981. "Air Pollution - the Organic-Components", Crc Critical Reviews in Environmental Control (11): 219-276. [6] Medeiros, P.M., Simoneit, B.R.T, 2007. "Analysis of sugars in environmental samples by gas chromatography-mass spectrometry", Jouranl of Chromatography A (1141): 271-278. [7] Rogge, W.F., Medeiros, P.M, et al., 2007. ‘Organic marker compounds in surface soils of crop fields from the San Joaquin Valley fugitive dust characterization study", Atmospheric Environment (41): 8183-8204. [8] Bauer, H., Claeys, M., et al., 2008. "Arabitol and mannitol as tracers for the quantification of airborne fungal spores", Atmospheric Environment (42): 588-593. [9] Elbert, W., Taylor, P.E., et al., 2007. "Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions", Atmospheric Chemistry and Physics (7): 4569-4588. [10] Graham, B., Guyon, P., et al., 2003. "Organic compounds present in the natural Amazonian aerosol: Characterization by gas chromatography-mass spectrometry", Journal of Geophysical Research (108): 4766, doi:10.1029/2003JD003990.
Investigation of radionuclide distribution in soil particles in different landscapes
NASA Astrophysics Data System (ADS)
Shkinev, V. M.; Korobova, E. M.; Linnik, V. G.
2012-04-01
Russian and foreign publications have been analyzed for understanding the role of micro- and nano- particles in distribution and migration of technogenic elements in soils in different landscape conditions. A technique for application of various fractionation methods to separate and study -particles of different size down to micro- and nano-level has been developed. The dry sit method on the first stage of particle separation is recommend to be followed by the membrane filtration method. For obtaining more comprehensive information, combinations of fractionation technique should be chosen taking into account that (1) the efficiency of particles' separation using subsequent technique would be higher than using the preceding one; (2) separation methods should preferably be based on different principles (separation according size, density, charge etc.); (3) initial fractionation should separate particles according to their size, that makes possible to create an even scale for various samples. A study of distribution and balance of technogenic radionuclides' in soil particles of the size intervals 1.0—0.25, 0.25-0.1, 0.1-0.05, 0.05-0.01, 0.01-0.005, 0.005-0.001 and <0.001 mm in the Yenisey flood plain landscapes proved a significant role of both the particle size and the portion of contaminated fraction in contribution to the total radionuclide inventory in the soil layers. Contribution of the silt particles (0,05-0,01 mm) to Cs-137 contamination ranged from 26 to 33,8%, 45% maximum due to "optimal" combination of both factors. Clay fraction was responsible for approximately 30% of Cs-137 contained in soil horizons due to higher sorption capacity. Relatively high correlation between the activity of 152,154Eu and 60 and the content of silt and clay allowed suggesting their incorporation mainly in clay fraction. Selected experimental plots near the Kola NPP (northern taiga) were used to compare soil particles (fractions 140-71; 71-40 and < 40 µm) in their ability to concentrate technogenic radionuclides and heavy metals. Maximum radioactivity found in soil litter appeared to be related to the Chernobyl contamination. Concentration of s-137 was higher in small size fractions. Obtained results were considered to be useful for understanding of radionuclide migration in the environment and decision making on radioecological monitoring, rehabilitation and landuse in the contaminated areas.
NASA Astrophysics Data System (ADS)
Jiménez-Morillo, Nicasio T.; González-Vila, Francisco J.; Jordán, Antonio; Zavala, Lorena M.; de la Rosa, José M.; González-Pérez, José A.
2015-04-01
This research deals with the assessment of organic matter structural differences in soil physical fractions before and after lipid extractions. Soil samples were collected in sandy soils, Arenosols (WRB 2006) from the Doñana National Park (SW Spain) under different vegetation cover: cork oak (Quercus suber, QS), eagle fern (Pteridium aquilinum, PA), pine (Pinus pinea, PP) and rockrose (Halimium halimifolium, HH). Two size fractions; coarse (C: 1-2 mm) and fine (F: 0.05-0.25 mm) were studied from each soil. . In addition, the two fractions from each soil were exhaustively Soxhlet extracted with a Dichlorometane-Methanol (3:1) mixture to obtain the lipid-free fractions (LF) from each size fraction (LFC and LFF). The composition of the organic matter at a molecular level in the different soil fractions was approached by analytical pyrolysis (Py-GC/MS) and FT-IR spectroscopy. These techniques are complementary and have been found suitable for the structural characterization of complex organic matrices (Moldoveanu, 1998; Piccolo and Stevenson, 1982); whereas Py-GC/MS provides detailed structural information of individual compounds present and a finger-printing of soil organic matter, FT-IR is informative about major functional groups present. The advantages of these techniques are well known: no need for pretreatment are fast to perform, highly reproducible and only small amount of samples are needed. Soil size fractions show contrasting differences in organic matter content (C 4-7 % and F > 40 %) and conspicuous differences were found in the pyrolysis products released by the fractions studied. The main families of pyrolysis compounds have well defined macromolecular precursors, such as lignin, polypeptides, polysaccharides and lipids (González-Vila et al., 2001). The C fractions yield higher relative abundance of lignin and polysaccharide derived pyrolysis compounds. Regarding the differences in the soil organic matter as affected by the different vegetation covers, the C fraction from the PA soil presented a higher abundance of lignin derived pyrolysis products than the soils under the other vegetation. This is somehow unexpected since PA is a pteridophyte, not arboreal vegetation, i.e. low lignin content and, these lignin moieties probably remain in the soil from past vegetation or originate from surrounding woody arboreal vegetation. In contrast the F fractions released mainly lipids and aromatic compound of unspecific origin. Series of alkane/alkene pairs were present in all the pyrograms with varying abundance and composition. Lignin and polysaccharide derived pyrolysis compounds were scarce in the F fractions in all the cases, in fact, no sugar derived compounds were found in the HH sample. Regarding the composition of the LF soil fractions, the pyrolytic behavior of the LFC fractions was quite similar to the not extracted corresponding C soil fraction, showing a high proportion of lignin and sugar derived pyrolysis compounds. The LFF fractions also showed the same behavior as the C fraction, but with no lipid derived compounds which effectively indicates the occurrence of a selective and efficient removal of soil free lipids. Agreement was found between analytical pyrolysis results and FT-IR spectral features highlighting functional differences between fractions i.e. a decrease of OH- groups and an increase in aliphatics in the F fraction. With respect to the LF fractions, FT-IR spectra analysis was also consistent with the pyrolysis results with a slight increase in the lignin signals for LFF soil fractions under PA, PP and HH. For the soil under QS no differences were found between the LFF fractions and the whole organic matter in the F fraction, probably due to the high amount of organic matter in this fraction. In conclusion, despite the "a priori" low organic complexity of the collection of soils studied here, ostensible differences were found in the organic matter present in C and F soil size fractions under different vegetation covers, and not only in its intimate chemical composition, but also in its functionality. Whereas the C soil size fractions are composed mainly by relatively well recognized lignocellulosic plant residues, the F soil size fractions have a clearly distinct type of organic matter, more mature/evolved that clearly resembles the characteristics of customary wet extracted humic materials as characterized elsewhere (Stevenson, 1994; González-Pérez et al., 2013). REFERENCES: González-Pérez JA, González-Vila FJ, Almendros G, Knicker H, De la Rosa JM, Hernández Z. 2013. Revisiting Structural insights provided by analytical pyrolysis about humic substances and related bio- and geopolymers. Functions of Natural Organic Matter in Changing Environment, 3-6. DOI: 10.1007/978-94-007-5634-21 González-Vila FJ, Tinoco P, Almendros G, Martin F. 2001. Pyrolysis-GCMS analysis of the formation and degradation stages of charred residues from lignocellulosic biomass. Journal of Agricultural and Food Chemistry 49: 1128-1131. DOI: 10.1021/jf0006325. Moldoveanu SC. 1998. Analytical pyrolysis of natural organic polymers. Techniques and Instrumentation in Analytical Chemistry 20: 3-496. ISBN: 978-0-444-82203-1 Piccolo A, Stevenson FJ. 1982. Infrared-spectra of Cu2+, Pb2+, and Ca2+ complexes of soil humic substances. Geoderma 27: 195-208. DOI: 10.1016/0016-7061(82)90030-1 Stevenson, FJ. 1994. Humus chemistry. Genesis, composition, reactions (2nd edn.), John Wiley & Sons, Inc.: New York, NY, 166-187. DOI: 10.1021/ed072pA93.6. WRB 2006. World Reference Base for Soil Resources. Rome 2006 ACKNOWLEDGMENTS: This study is part of the results of the GEOFIRE Project (CGL2012-38655-C04-01) (BES-2013-062573), funded by the Spanish Ministry for Economy and Competitiveness. Dr. J.M. de la Rosa is the recipient of a fellowship from the JAE-Doc subprogram financed by the CSIC and the European Social Fund.
NASA Astrophysics Data System (ADS)
Navas, Ana; Laute, Katja; Beylich, Achim A.; Gaspar, Leticia
2013-04-01
In the Erdalen and Bødalen drainage basins located in the inner Nordfjord in western Norway the soils have been formed after deglaciation. The climate in the upper valley part is sub-arctic oceanic with an annual areal precipitation of ca 1500 mm. The lithology in Erdalen and Bødalen consists of Precambrian granitic orthogneisses on which Leptosols and Regosols are the most common soils. Parts of the valleys were affected by the Little Ice Age glacier advance with the maximum glacier extent around 1750 BP. In this study five sites on moraine and colluvium materials were selected to examine the main soil properties of the most representative soils found in the region. The objective was to assess if soil profile characteristics and pattern of fallout radionuclides (FRN's) and environmental radionuclides (ERN's) are affected by different stages of ice retreat. Soil profiles were sampled at 5 cm depth interval increments until 20 cm depth. The Leptosols on the moraines are shallow, poorly developed and vegetated with moss and small birches. The two selected profiles show different radionuclide activities and grain size distribution. At P2 profile where ice retreated earlier (ca., 1767) depth profile activities of FRŃs are more homogenous than in P1 that became ice-free since ca. 1930. The sampled soils on the colluviums outside the LIA glacier limit became ice free during the Preboral. The Regosols present better developed profiles, thicker organic horizons and are fully covered by grasses. Activity of 137Cs and 210Pbex concentrate at the topsoil and decrease sharply with depth. The grain size distribution of these soils also reflects the difference in geomorphic processes that have affected the colluvium sites. Lower activities of FRŃs in soils on the moraines are related to the predominant sand material that has less capacity to fix the radionuclides. Lower 40K activities in Erdalen as compared to Bødalen are likely related to soil mineralogical composition. All profiles show disequilibrium in the uranium and thorium series. These results indicate differences in soil development that are consistent with the age of ice retreat. In addition, the pattern distribution of 137Cs and 210Pbexactivities differs in the soils related to the LIA glacier limits in the drainage basins.
Morgan, T J; Herod, A A; Brain, S A; Chambers, F M; Kandiyoti, R
2005-11-18
Soil from a redundant coke oven site has been examined by extraction of soluble materials using 1-methyl-2-pyrrolidinone (NMP) followed by size exclusion chromatography (SEC) of the extracted material. The extracted material was found to closely resemble a high temperature coal tar pitch. Standard humic and fulvic acids were also examined since these materials are very soluble in NMP and would be extracted with pitch if present in the soil. Humic substances derived from peat samples and NMP-extracts of peats were also examined. The results show that the humic and fulvic substances were not extracted directly by NMP from peats. They were extracted using caustic soda solution and were different from the peat extracts in NMP. These results indicate that humic and fulvic acids were soluble in NMP in the protonated polyelectrolyte form but not in the original native polyelectrolyte form. The extraction of soil using NMP followed by SEC appears to be a promising method for identifying contamination by coal-based industries.
NASA Astrophysics Data System (ADS)
Kravchenko, Alexandra; Negassa, Wakene; Guber, Andrey; Schmidt, Sonja
2014-05-01
Particulate soil organic matter (POM) is biologically and chemically active fraction of soil organic matter. It is a source of many agricultural and ecological benefits, among which are POM's contribution to C sequestration. Most of conventional research methods for studying organic matter dynamics involve measurements conducted on pre-processed i.e., ground and sieved soil samples. Unfortunately, grinding and sieving completely destroys soil structure, the component crucial for soil functioning and C protection. Importance of a better understanding of the role of soil structure and of the physical protection that it provides to soil C cannot be overstated; and analysis of quantities, characteristics, and decomposition rates of POM in soil samples with intact structure is among the key elements of gaining such understanding. However, a marked difficulty hindering the progress in such analyses is a lack of tools for identification and quantitative analysis of POM in intact soil samples. Recent advancement in applications of X-ray computed micro-tomography (μ-CT) to soil science has given an opportunity to conduct such analyses. The objective of the current study is to develop a procedure for identification and quantitative characterization of POM within intact soil samples using X-ray μ-CT images and to test performance of the proposed procedure on a set of multiple intact soil macro-aggregates. We used 16 4-6 mm soil aggregates collected at 0-15 cm depth from a Typic Hapludalf soil at multiple field sites with diverse agricultural management history. The aggregates have been scanned at SIMBIOS Centre, Dundee, Scotland at 10 micron resolution. POM was determined from the aggregate images using the developed procedure. The procedure was based on combining image pre-processing steps with discriminant analysis classification. The first component of the procedure consisted of image pre-processing steps based on the range of gray values (GV) along with shape and size of POM pieces. That was followed by discriminant analysis conducted using statistical and geostatistical characteristics of POM pieces. POM identified in the intact individual soil aggregates using the proposed procedure was in good agreement with POM measured in the studied aggregates using conventional lab method (R2=0.75). Of particular importance for accurate identification of POM in the images was the information on spatial characteristics of POM's GVs. Since this is the first attempt of POM determination, future work will be needed to explore how the proposed procedure performs under a variety of potentially influential factors, such as POM's origin and decomposition stage, X-ray scanning settings, image filtering and segmentation methods.
Dielectric Constant Measurements on Lunar Soils and Terrestrial Minerals
NASA Technical Reports Server (NTRS)
Anderson, R. C.; Buehler, M. G.; Seshardri, S.; Schaap, M. G.
2004-01-01
The return to the Moon has ignited the need to characterize the lunar regolith using in situ methods. An examination of the lunar regolith samples collected by the Apollo astronauts indicates that only a few minerals (silicates and oxides) need be considered for in situ resource utilization (ISRU). This simplifies the measurement requirements and allows a detailed analysis using simple methods. Characterizing the physical properties of the rocks and soils is difficult because of many complex parameters such as soil temperature, mineral type, grain size, porosity, and soil conductivity. In this presentation, we will show that the dielectric constant measurement can provide simple detection for oxides such as TiO2, FeO, and water. Their presence is manifest by an unusually large imaginary permittivity.
Moulatlet, Gabriel Massaine; Zuquim, Gabriela; Figueiredo, Fernando Oliveira Gouvêa; Lehtonen, Samuli; Emilio, Thaise; Ruokolainen, Kalle; Tuomisto, Hanna
2017-10-01
Amazonia combines semi-continental size with difficult access, so both current ranges of species and their ability to cope with environmental change have to be inferred from sparse field data. Although efficient techniques for modeling species distributions on the basis of a small number of species occurrences exist, their success depends on the availability of relevant environmental data layers. Soil data are important in this context, because soil properties have been found to determine plant occurrence patterns in Amazonian lowlands at all spatial scales. Here we evaluate the potential for this purpose of three digital soil maps that are freely available online: SOTERLAC, HWSD, and SoilGrids. We first tested how well they reflect local soil cation concentration as documented with 1,500 widely distributed soil samples. We found that measured soil cation concentration differed by up to two orders of magnitude between sites mapped into the same soil class. The best map-based predictor of local soil cation concentration was obtained with a regression model combining soil classes from HWSD with cation exchange capacity (CEC) from SoilGrids. Next, we evaluated to what degree the known edaphic affinities of thirteen plant species (as documented with field data from 1,200 of the soil sample sites) can be inferred from the soil maps. The species segregated clearly along the soil cation concentration gradient in the field, but only partially along the model-estimated cation concentration gradient, and hardly at all along the mapped CEC gradient. The main problems reducing the predictive ability of the soil maps were insufficient spatial resolution and/or georeferencing errors combined with thematic inaccuracy and absence of the most relevant edaphic variables. Addressing these problems would provide better models of the edaphic environment for ecological studies in Amazonia.
Removal of Two High Molecular Weight PAHs from Soils with Different Water Content.
Corona, Lilia; Dendooven, Luc; Chicken, Anaí; Hernández, Omar; Iturbe, Rosario
2017-11-01
Polycyclic aromatic hydrocarbons (PAHs) such as benz[a]anthracene (BA) and dibenz[a,h]anthracene (DBA), which are considered toxic, are frequently found in contaminated soils in Mexico. A laboratory-scale study monitored the degradation of the mixture of these two PAHs in three soils from different Mexican states (Tabasco, Morelos and Veracruz), each with different organic matter content, particle size distribution and incubated under different water content conditions. The hydrocarbons were extracted using microwave digestion and quantified by GC/MS. The removal of the PAHs, the growth of aerobic bacteria and microbial activity were determined in soil samples with and without a bacterial growth inhibitor (HgCl 2 ). The conclusion is that more than 90% of both contaminants was removed from the three soils, independently of the soil water content or the application of a bacterial growth inhibitor. Biological properties of the soils showed changes at the end of the experiment, but the results of the removal of PAHs were similar in the three soils.
Li, Zhong-Wu; Guo, Wang; Wang, Xiao-Yan; Shen, Wei-Ping; Zhang, Xue; Chen, Xiao-Lin; Zhang, Yue-Nan
2012-04-01
The changes in organic carbon content in different sized soil particles under different land use patterns partly reflect the variation of soil carbon, being of significance in revealing the process of soil organic carbon cycle. Based on the long-term monitoring of soil erosion, and by the methods of soil particle size fractionation, this paper studied the effects of different land use types (wasteland, pinewood land, and grassland) on the distribution of organic carbon content in different sized soil particles and its relationships to the herb biomass. Land use type and slope position had obvious effects on the organic carbon content in different sized soil particles, and the organic carbon content was in the order of grassland > pinewood land > wasteland. The proportion of the organic carbon in different sized soil particles was mainly depended on the land use type, and had little relationships with slope position. According to the analysis of the ratio of particle-associated organic carbon to mineral-associated organic carbon (POC/MOC), the soil organic carbon in grassland was easily to be mineralized, whereas that in wasteland and pinewood land was relatively stable. On the slopes mainly in hilly red soil region, the soil organic carbon in sand fraction had great effects on herb biomass.
Quantification of soil structure based on Minkowski functions
NASA Astrophysics Data System (ADS)
Vogel, H.-J.; Weller, U.; Schlüter, S.
2010-10-01
The structure of soils and other geologic media is a complex three-dimensional object. Most of the physical material properties including mechanical and hydraulic characteristics are immediately linked to the structure given by the pore space and its spatial distribution. It is an old dream and still a formidable challenge to relate structural features of porous media to their functional properties. Using tomographic techniques, soil structure can be directly observed at a range of spatial scales. In this paper we present a scale-invariant concept to quantify complex structures based on a limited set of meaningful morphological functions. They are based on d+1 Minkowski functionals as defined for d-dimensional bodies. These basic quantities are determined as a function of pore size or aggregate size obtained by filter procedures using mathematical morphology. The resulting Minkowski functions provide valuable information on the size of pores and aggregates, the pore surface area and the pore topology having the potential to be linked to physical properties. The theoretical background and the related algorithms are presented and the approach is demonstrated for the pore structure of an arable soil and the pore structure of a sand both obtained by X-ray micro-tomography. We also analyze the fundamental problem of limited resolution which is critical for any attempt to quantify structural features at any scale using samples of different size recorded at different resolutions. The results demonstrate that objects smaller than 5 voxels are critical for quantitative analysis.
Origin and modal petrography of Luna 24 soils
NASA Technical Reports Server (NTRS)
Basu, A.; Mckay, D. S.; Fruland, R. M.
1978-01-01
Petrographic modal analyses of polished grain mounts of fractions in the 20 to 250 micron size range from Luna 24 soil samples are presented and used to infer the nature and relative contributions of source rocks. It is found that more than 90% of the identifiable rock fragments are mare basalts, with about 11% of the soil consisting of the crystalline form. Soil breccias, which make up nearly 10% of the soil, are found to be immature. Electron probe analysis of glass particles reveals principle clusters conforming to anorthosite, anorthositic gabbro and mare basalts. More than half of the soil is composed of monomineralic particles, with pyroxene as the most abundant mineral. It is concluded that 85% of the regolith is derived from local mare basalts and gabbros and about 10% is derived from early cumulates of local mare basalt magma. Highland sources are considered to contribute not more than 3% of the regolith.
Actinide migration in Johnston Atoll soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, S. F.; Bates, J. K.; Buck, E. C.
1997-02-01
Characterization of the actinide content of a sample of contaminated coral soil from Johnston Atoll, the site of three non-nuclear destructs of nuclear warhead-carrying THOR missiles in 1962, revealed that >99% of the total actinide content is associated with discrete bomb fragments. After removal of these fragments, there was an inverse correlation between actinide content and soil particle size in particles from 43 to 0.4 {micro}m diameter. Detailed analyses of this remaining soil revealed no discrete actinide phase in these soil particles, despite measurable actinide content. Observations indicate that exposure to the environment has caused the conversion of relatively insolublemore » actinide oxides to the more soluble actinyl oxides and actinyl carbonate coordinated complexes. This process has led to dissolution of actinides from discrete particles and migration to the surrounding soil surfaces, resulting in a dispersion greater than would be expected by physical transport of discrete particles alone.« less
NASA Astrophysics Data System (ADS)
Piccoli, Ilaria; Camarotto, Carlo; Lazzaro, Barbara; Furlan, Lorenzo; Morari, Francesco
2017-04-01
Soil structure plays a pivotal role in soil functioning and can inform of the degradation of the soil ecosystem. Intensive and repeated tillage operations have been known to negatively affect the soil structure characteristics while conservation agriculture (CA) practices were demonstrated to improve soil structure and related ecosystem services. The aim of this study is to evaluate the effect of conservation agriculture practices on total porosity, pore size distribution, pore architecture and morphology on silty soils of Veneto low-lying plain (North-Eastern Italy). Experimental design was established in 2010 on 4 farms in North-Eastern Italy to compare conventional intensive tillage system "IT" versus conservation agriculture "CA" (no-tillage, cover-crop and residue retention). 96 samples were collected in 2015 at four depths down to 50 cm depth, and investigated for porosity from micro to macro by coupling mercury intrusion porosimetry (MIP) (0.0074-100 µm) and x-ray computed microtomography (µCT) (>26 µm). Pore morphology and architecture were studied from 3D images analysis and MIP pore size curve. Ultramicroporosity class (0.1-5 μm) positively responded to CA after 5-yr of practices adoption while no significant effects were observed in the x-ray µCT domain (> 26 µm). Silty soils of Veneto plain showed a slow reaction to conservation agriculture because of the low soil organic carbon content and poor aggregate stability. Nevertheless the positive influence of CA on ultramicroporosity, which is strictly linked to soil organic carbon (SOC) stabilization, indicated that a virtuous cycle was initiated between SOC and porosity, hopefully leading to well-developed macropore systems and, in turn, enhanced soil functions and ecosystem services.
NASA Astrophysics Data System (ADS)
Fernandez-Ugalde, O.; Barré, P.; Hubert, F.; Virto, I.; Girardin, C.; Ferrage, E.; Caner, L.; Chenu, C.
2012-04-01
Aggregation is a key process for soil functioning as it influences C storage, vulnerability to erosion and water holding capacity. While the influence of soil C content or tillage on aggregation has been documented, much less is known about the role of soil mineralogy. The aim of this study is to determine quantitatively if different clay minerals of a temperate soil contribute differently to aggregation and if their contribution is modulated by soil management. We compared the aggregate-size distribution of three cropping systems in a silt loam soil in Versailles (France): organic cropping system (ORG, tilled yearly), direct seeding mulch-based cropping system (DMC, tilled every 4 years), both from a long-term trial, and a nearby grassland. Soil samples from 0-5 cm were wet-sieved to 5 mm and air-dried before aggregate-size separation. For each aggregate class, fraction <2 µm was separated and analysed using X-ray diffraction. Organic C content was determined both in aggregates and <2-µm fractions. C content was lower in ORG than in the two other treatments. The proportion of large-macroaggregates (500-5000 µm) was greater in DMC and grassland; while microaggregates (50-250 µm) showed greater proportions in ORG. In the three treatments, microaggregates had the greatest amount of clays, with preferential accumulation of smectitic phases. In grassland, clays from all aggregated fractions showed more smectitic phases than free-clay fraction. The results indicate that smectitic phases contributed particularly to the microaggregates dynamics. Their contribution to aggregation was lower for larger aggregate sizes where the influence of organic matter was preponderant. Moreover, it was observed that cultivation (ORG and DMC treatments) reduced the relative enrichment of smectitic phases in stable aggregates which makes them more vulnerable to slaking erosion and alters their physico-chemical functions.
Fate of lignin, cutin and suberin in soil organic matter fractions - an incubation experiment
NASA Astrophysics Data System (ADS)
Mueller, Carsten W.; Mueller, Kevin E.; Freeman, Katherine H.; Ingrid, Kögel-Knabner
2010-05-01
The turnover of soil organic matter (SOM) is controlled by its chemical composition, its spatial accessibility and the association with the mineral phase. Separation of bulk soils by physical fractionation and subsequent chemical analysis of these fractions should give insights to how compositional differences in SOM drive turnover rates of different size-defined carbon pools. The main objective of this study was to elucidate the relative abundance and recalcitrance of lignin, cutin and suberin in aggregated bulk soils and SOM fractions in the course of SOM decomposition. Bulk soils and physically-separated size fractions (sand, silt and clay) of the Ah horizon of a forest soil (under Picea abies L.Karst) were parallel incubated over a period of one year. In order to differentiate between particulate OM (POM) and mineral-associated SOM the particle size fractions were additionally separated by density after the incubation experiment. We used solid-state 13C-CPMAS NMR spectroscopy and GC-MS (after copper oxide oxidation and solvent extraction) to analyze the composition of the incubated samples. The abundance and isotopic composition (including 13C and 14C) of the respired CO2 further enabled us to monitor the dynamics of SOM mineralization. This approach allowed for differentiating between C stabilization of soil fractions due to accessibility/aggregation and to biochemical recalcitrance at different scales of resolution (GC-MS, NMR). We found a relative enrichment of alkyl C and decreasing lignin contents in the order of sand < silt < clay by 13C-NMR spectroscopy and GC-MS within soils and fractions before the incubation, resulting in increased lipid to lignin ratios with decreasing particle size. An accumulation of aliphatic C compounds was especially found for the small silt and clay sized particulate OM (POM). For the fresh particulate OM (POM) of the sand fraction a clear decay of lignin was observed in the course of the incubation experiment, indicated by decreasing C/V and increasing ac/alV ratios. A relative decrease of aliphatic C in the incubated fractions compared to the incubated bulk soils showed the preferential mineralization of less recalcitrant C compounds that were spatially inaccessible in aggregates of the bulk soil. Differences in the abundance of lignin monomers, hydroxyl acids, n-alkanols and n-fatty acid methyl esters measured by GC MS before and after the incubation indicated selective degradation and preservation patterns at the molecular scale.
NASA Astrophysics Data System (ADS)
Tang, J.; Wang, Y.
2013-12-01
Red soils, a typical Udic Ferrosols, widespread throughout the subtropical and tropical region in southern China, support the majority of grain production in this region. The red soil is naturally low in pH values, cation exchange capacity, fertility, and compaction, resulting in low organic matter contents and soil aggregation. Application of chemical fertilizers and a combination of organic-chemical fertilizers are two basic approaches to improve soil structure and organic matter contents. We studied the soil aggregation and the distribution of aggregate-associated organic carbon in red soils with a long-term fertilization experiment during 1988-2009. We established treatments including 1) NPK and NK in the chemical fertilizer plots, 2) CK (Control), and 3) CK+ Peanut Straw (PS), CK+ Rice Straw (RS), CK+ Fresh Radish (FR), and CK + Pig Manure (PM) in the organic-chemical fertilizer plots. Soil samples were fractionated into 6 different sized aggregate particles through the dry-wet sieving method according to the hierarchical model of aggregation. Organic carbon in the aggregate/size classes was analyzed. The results showed that the distribution of mechanically stable aggregates in red soils after long-term fertilization decreased with the size, from > 5mm, 5 ~ 2 mm, 2 ~ 1 mm, 1~ 0.25 mm, to < 0.25 mm, but the distribution of water-stable aggregates did not follow this pattern. Compared with the chemical fertilizer application alone, the addition of pig manure and green manure can significantly improve the distribution of aggregates in the 5-2 mm, 2-1 mm and 1-0.25 mm classes. The organic carbon (OC) contents in red soils were all increased after the long-term fertilization. Compared with Treatment NK, soil OC in Treatment NPK was increased by 45.4%. Compared with Treatment CK (low chemical fertilizer), organic fertilizer addition increased soil OC. The OC in the different particle of water-stable aggregates were all significantly increased after long-term fertilization. OC mainly existed in the macroaggregate (> 0.25 mm) of red soils after the long-term fertilization, and the organic matter was the most important colloid material for macroaggregates. We conclude that the long-term, appropriate application of chemical fertilizer and the combination with organic manure were the most effective measures to improve soil structure and organic carbon contents in red soil regions.
Grace Sun; Rebecca E. Ibach; Meghan Faillace; Marek Gnatowski; Jessie A. Glaeser; John Haight
2016-01-01
After exposure in the field and laboratory soil block culture testing, the void content of woodâplastic composite (WPC) decking boards was compared to unexposed samples. A void volume analysis was conducted based on calculations of sample density and from micro-computed tomography (microCT) data. It was found that reference WPC contains voids of different sizes from...
NASA Astrophysics Data System (ADS)
Dathe, A.; Nemes, A.; Bloem, E.; Patterson, M.; Gimenez, D.; Angyal, A.; Koestel, J. K.; Jarvis, N.
2017-12-01
Soil spatial heterogeneity plays a critical role for describing water and solute transport processes in the unsaturated zone. Although we have a sound understanding of the physical properties underlying this heterogeneity (like macropores causing preferential water flow), their quantification in a spatial context is still a challenge. To improve existing knowledge and modelling approaches we established a field experiment on an agriculturally used silty clay loam (Stagnosol) in SE Norway. Centimeter to decimeter scale heterogeneities were investigated in the field using electrical resistivity tomography (ERT) in a quasi-3D and a real 3D approach. More than 100 undisturbed soil samples were taken in the 2x1x1 m3plot investigated with 3D ERT to determine soil water retention, saturated and unsaturated hydraulic conductivities and bulk density in the laboratory. A subset of these samples was scanned at the computer tomography (CT) facility at the Swedish University of Agricultural Sciences in Uppsala, Sweden, with special emphasis on characterizing macroporosity. Results show that the ERT measurements captured the spatial distribution of bulk densities and reflected soil water contents. However, ERT could not resolve the large variation observed in saturated hydraulic conductivities from the soil samples. Saturated hydraulic conductivity was clearly related to the macroporosity visible in the CT scans obtained from the respective soil cores. Hydraulic conductivities close to saturation mainly changed with depths in the soil profile and therefore with bulk density. In conclusion, to quantify the spatial heterogeneity of saturated hydraulic conductivities scanning methods with a resolution smaller than the size of macropores have to be used. This is feasible only when the information obtained from for example CT scans of soil cores would be upscaled in a meaningful way.
Soil carbon in Australian fire-prone forests determined by climate more than fire regimes.
Sawyer, Robert; Bradstock, Ross; Bedward, Michael; Morrison, R John
2018-10-15
Knowledge of global C cycle implications from changes to fire regime and climate are of growing importance. Studies on the role of the fire regime in combination with climate change on soil C pools are lacking. We used Bayesian modelling to estimate the soil % total C (% C Tot ) and % recalcitrant pyrogenic C (% RPC) from field samples collected using a stratified sampling approach. These observations were derived from the following scenarios: 1. Three fire frequencies across three distinctive climate regions in a homogeneous dry sclerophyll forest in south-eastern Australia over four decades. 2. The effects of different fire intensity combinations from successive wildfires. We found climate had a stronger effect than fire frequency on the size of the estimated mineral soil C pool. The largest soil C pool was estimated to occur under a wet and cold (WC) climate, via presumed effects of high precipitation, an adequate growing season temperature (i.e. resulting in relatively high NPP) and winter conditions sufficiently cold to retard seasonal soil respiration rates. The smallest soil C pool was estimated in forests with lower precipitation but warmer mean annual temperature (MAT). The lower precipitation and higher temperature was likely to have retarded NPP and litter decomposition rates but may have had little effect on relative soil respiration. Small effects associated with fire frequency were found, but both their magnitude and direction were climate dependent. There was an increase in soil C associated with a low intensity fire being followed by a high intensity fire. For both fire frequency and intensity the response of % RPC mirrored that of % C Tot : i.e. it was effectively a constant across all combinations of climate and fire regimes sampled. Copyright © 2018. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Gose, W. A.
1974-01-01
Numerous studies on the properties of the moon based on Apollo findings and samples are presented. Topics treated include ages of the lunar nearside light plains and maria, orange material in the Sulpicius Gallus formation at the southwestern edge of Mare Serenitatis, impact-induced fractionation in the lunar highlands, igneous rocks from Apollo 16 rake samples, experimental liquid line of descent and liquid immiscibility for basalt 70017, ion microprobe mass analysis of plagioclase from 'non-mare' lunar samples, grain size and the evolution of lunar soils, chemical composition of rocks and soils at Taurus-Littrow, the geochemical evolution of the moon, U-Th-Pb systematics of some Apollo 17 lunar samples and implications for a lunar basin excavation chronology, volatile-element systematics and green glass in Apollo 15 lunar soils, solar wind nitrogen and indigenous nitrogen in Apollo 17 lunar samples, lunar trapped xenon, solar flare and lunar surface process characterization at the Apollo 17 site, and the permanent and induced magnetic dipole moment of the moon. Individual items are announced in this issue.
After Sample-Delivery Attempt, Sol 62
NASA Technical Reports Server (NTRS)
2008-01-01
NASA's Phoenix Mars Lander collected a soil sample and attempted to deliver some of it to a laboratory oven on the deck during the mission's 62nd Martian day, or sol, (July 28, 2008). The sample came from a hard layer at the bottom of the 'Snow White' trench and might have contained water ice mixed with the soil. This image taken after the attempt to deliver the sample through the open doors to cell number zero on the Thermal and Evolved-Gas Analyzer shows that very little of the soil fell onto the screened opening. Not enough material reached the oven, through a funnel under the screen, to proceed with analysis of the sample material. Phoenix's Robotic Arm Camera took this image at 7:54 a.m. local solar time on Sol 62. The size of the screened opening is about 10 centimeters (4 inches) long by 4 centimeters (1.5 inches) wide. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.2012-10-30
This charged couple device CCD is part of the CheMin instrument on NASA Curiosity rover. When CheMin directs X-rays at a sample of soil, this imager, which is the size of a postage stamp, detects both the position and energy of each X-ray photon.
NASA Technical Reports Server (NTRS)
Hecht, M. H.; Meloy, T. P.; Anderson, M. S.; Buehler, M. G.; Frant, M. A.; Grannan, S. M.; Fuerstenau, S. D.; Keller, H. U.; Markiewicz, W. J.; Marshall, J.
1999-01-01
The Mars Environmental Compatibility Assessment (MECA) will evaluate the Martian environment for soil and dust-related hazards to human exploration as part of the Mars Surveyor Program 2001 Lander. The integrated MECA payload contains a wet-chemistry laboratory, a microscopy station, an electrometer to characterize the electrostatic environment, and arrays of material patches to study abrasion and adhesion. Heritage will be all-important for low cost micro-missions, and adaptations of instruments developed for the Pathfinder, '98 and '01 Landers should be strong contenders for '03 flights. This talk has three objectives: (1) Familiarize the audience with MECA instrument capabilities; (2) present concepts for stand-alone and/or mobile versions of MECA instruments; and (3) broaden the context of the MECA instruments from human exploration to a comprehensive scientific survey of Mars. Due to time limitations, emphasis will be on the chemistry and microscopy experiments. Ion-selective electrodes and related sensors in MECA's wet-chemistry laboratory will evaluate total dissolved solids, redox potential, pH, and the concentration of many soluble ions and gases in wet Martian soil. These electrodes can detect potentially dangerous heavy-metal ions, emitted pathogenic gases, and the soil's corrosive potential, and experiments will include cyclic voltammetry and anodic stripping. For experiments beyond 2001, enhancements could allow multiple use of the cells (for mobile experiments) and reagent addition (for quantitative mineralogical and exobiological analysis). MECA's microscopy station combines optical and atomic-force microscopy (AFM) in an actively focused, controlled illumination environment to image particles from millimeters to nanometers in size. Careful selection of substrates allows controlled experiments in adhesion, abrasion, hardness, aggregation, magnetic and other properties. Special tools allow primitive manipulation (brushing and scraping) of samples. Soil particle properties including size, shape, color, hardness, adhesive potential (electrostatic and magnetic), will be determined using an array of sample receptacles and collection substrates. The simple, rugged atomic-force microscope will image in the submicron size range and has the capability of performing a particle-by-particle analysis of the dust and soil. Future implementations might enhance the optical microscopy with spectroscopy, or incorporate advanced AFM techniques for thermogravimetric and chemical analysis.
Rahmawati, Nanda Yuli; Harisna, Azza Hanief; Khoirunnisa, Wulida; Yasvinawati, Niarisandi; Sumitro, Sutiman Bambang
2016-06-01
Bagasse has a potential as natural resource of nanosilica. Nanosilica biosynthetic production method is better than chemical or physical methods. The aim of this study is to determine the potential of Lactobacillus bulgaricus in nanosilica synthesis, the effect of the long incubation, and the effect of freeze drying to the nanosilica quality. The method consists of two steps. The first is performing biosynthesize using bagasse and Lactobacillus bulgaricus in dark place with temperature of 37 degress C for the period of 24 hours, 48 hours, and 72 hours. The second is analyzing particles and chemical of nanosilica characterization using Fourier Transformer Infrared Spectroscopy (FTIR), Particle Size Analyzer (PSA), X-ray Diffraction (XRD), some microscopes namely stereo, fluorescence, polarizing, Scanning Electron Microscope (SEM) and Energy Dispersive X-ray (EDX). The results show that nanosilica has spherical shaped, amorphous, and able to fluoresce when exposed by UV. The average size of particles are 104.6 nm in the 24 hours length incubated, 67.3 nm in the 48 hours length incubation, and 30.5 nm in the 72 hours length incubation. Samples using freeze drying have more complex and smaller structure than samples using air drying. The lengths of incubation influence the size and shape of nanosilica. Samples using freeze drying enable change the soil structure, and has beneficiary effect to improve soil fertility, as nanofertilizer. Whereas, the samples using air drying may use for glass or biofilm materials.
Analysis of the typical small watershed of warping dams in the sand properties
NASA Astrophysics Data System (ADS)
Li, Li; Yang, Ji Shan; Sun, Wei Ying; Shen, Sha Sha
2018-06-01
Coarse sediment with a particle size greater than 0.05mm is the main deposit of riverbed in the lower Yellow River, the Loess Plateau is one of the concentrated source of coarse sediment, warping dam is one of the important engineering measures for gully control. Jiuyuangou basin is a typical small basin in the first sub region of hilly-gullied loess region, twenty warping dams in Jiuyuangou basin was selected as research object, samples of sediment along the main line of dam from upper, middle to lower reaches of dam fields and samples of undisturbed soil in slope of dam control basin were taken to carry out particle gradation analysis, in the hope of clearing reducing capacity on coarse sediment of different types of warping dam through the experimental data. The results show that the undisturbed soil in slope of dam control basin has characteristics of standard loess, the particle size are mainly distributed in 0.025 0.05mm, and the 0.05mm particle size of Jiuyuangou basinof loess is an obvious boundary; Particle size of sediment in 15 warping dam of Jiuyuangou basin are mainly distributed in 0.031 0.05mm with the dam tail is greater than dam front in general. The separation effect of horizontal pipe drainage is better than shaft drainage for which particle size greater than 0.05mm, notch dam is for particle size between 0.025 0.1 mm, and fill dam is for particle size between 0.016 0.1 mm, they all have a certain function in the sediment sorting.
Stepanauskas, Ramunas; Fergusson, Elizabeth A; Brown, Joseph; Poulton, Nicole J; Tupper, Ben; Labonté, Jessica M; Becraft, Eric D; Brown, Julia M; Pachiadaki, Maria G; Povilaitis, Tadas; Thompson, Brian P; Mascena, Corianna J; Bellows, Wendy K; Lubys, Arvydas
2017-07-20
Microbial single-cell genomics can be used to provide insights into the metabolic potential, interactions, and evolution of uncultured microorganisms. Here we present WGA-X, a method based on multiple displacement amplification of DNA that utilizes a thermostable mutant of the phi29 polymerase. WGA-X enhances genome recovery from individual microbial cells and viral particles while maintaining ease of use and scalability. The greatest improvements are observed when amplifying high G+C content templates, such as those belonging to the predominant bacteria in agricultural soils. By integrating WGA-X with calibrated index-cell sorting and high-throughput genomic sequencing, we are able to analyze genomic sequences and cell sizes of hundreds of individual, uncultured bacteria, archaea, protists, and viral particles, obtained directly from marine and soil samples, in a single experiment. This approach may find diverse applications in microbiology and in biomedical and forensic studies of humans and other multicellular organisms.Single-cell genomics can be used to study uncultured microorganisms. Here, Stepanauskas et al. present a method combining improved multiple displacement amplification and FACS, to obtain genomic sequences and cell size information from uncultivated microbial cells and viral particles in environmental samples.
Combining Neutron and Magnetic Resonance Imaging to Study the Interaction of Plant Roots and Soil
NASA Astrophysics Data System (ADS)
Oswald, Sascha E.; Tötzke, Christian; Haber-Pohlmeier, Sabina; Pohlmeier, Andreas; Kaestner, Anders P.; Lehmann, Eberhard
The soil in direct vicinity of the roots, the root-soil interface or so called rhizosphere, is heavily modified by the activity of roots, compared to bulk soil, e.g. in respect to microbiology and soil chemistry. It has turned out that the root-soil interface, though small in size, also plays a decisive role in the hydraulics controlling the water flow from bulk soil into the roots. A promising approach for the non-invasive investigation of water dynamics, water flow and solute transport is the combination of the two imaging techniques magnetic resonance imaging (MRI) and neutron imaging (NI). Both methods are complementary, because NI maps the total proton density, possibly amplified by NI tracers, which usually corresponds to total water content, and is able to detect changes and spatial patterns with high resolution. On the other side, nuclear magnetic resonance relaxation times reflect the interaction between fluid and matrix, while also a mapping of proton spin density and thus water content is possible. Therefore MRI is able to classify different water pools via their relaxation times additionally to the water distribution inside soil as a porous medium. We have started such combined measurements with the approach to use the same samples and perform tomography with each imaging method at different location and short-term sample transfer.
Eichorst, Stephanie A.; Strasser, Florian; Woyke, Tanja; ...
2015-08-31
The combined approach of incubating environmental samples with stable isotope-labeled substrates followed by single-cell analyses through high-resolution secondary ion mass spectrometry (NanoSIMS) or Raman microspectroscopy provides insights into the in situ function of microorganisms. This approach has found limited application in soils presumably due to the dispersal of microbial cells in a large background of particles. We developed a pipeline for the efficient preparation of cell extracts from soils for subsequent single-cell methods by combining cell detachment with separation of cells and soil particles followed by cell concentration. The procedure was evaluated by examining its influence on cell recoveries andmore » microbial community composition across two soils. This approach generated a cell fraction with considerably reduced soil particle load and of sufficient small size to allow single-cell analysis by NanoSIMS, as shown when detecting active N2-fixing and cellulose-responsive microorganisms via 15N2 and 13C-UL-cellulose incubations, respectively. The same procedure was also applicable for Raman microspectroscopic analyses of soil microorganisms, assessed via microcosm incubations with a 13C-labeled carbon source and deuterium oxide (D2O, a general activity marker). Lastly, the described sample preparation procedure enables single-cell analysis of soil microorganisms using NanoSIMS and Raman microspectroscopy, but should also facilitate single-cell sorting and sequencing.« less
Schröder, Winfried; Nickel, Stefan; Schönrock, Simon; Meyer, Michaela; Wosniok, Werner; Harmens, Harry; Frontasyeva, Marina V; Alber, Renate; Aleksiayenak, Julia; Barandovski, Lambe; Carballeira, Alejo; Danielsson, Helena; de Temmermann, Ludwig; Godzik, Barbara; Jeran, Zvonka; Karlsson, Gunilla Pihl; Lazo, Pranvera; Leblond, Sebastien; Lindroos, Antti-Jussi; Liiv, Siiri; Magnússon, Sigurður H; Mankovska, Blanka; Martínez-Abaigar, Javier; Piispanen, Juha; Poikolainen, Jarmo; Popescu, Ion V; Qarri, Flora; Santamaria, Jesus Miguel; Skudnik, Mitja; Špirić, Zdravko; Stafilov, Trajce; Steinnes, Eiliv; Stihi, Claudia; Thöni, Lotti; Uggerud, Hilde Thelle; Zechmeister, Harald G
2016-06-01
For analysing element input into ecosystems and associated risks due to atmospheric deposition, element concentrations in moss provide complementary and time-integrated data at high spatial resolution every 5 years since 1990. The paper reviews (1) minimum sample sizes needed for reliable, statistical estimation of mean values at four different spatial scales (European and national level as well as landscape-specific level covering Europe and single countries); (2) trends of heavy metal (HM) and nitrogen (N) concentrations in moss in Europe (1990-2010); (3) correlations between concentrations of HM in moss and soil specimens collected across Norway (1990-2010); and (4) canopy drip-induced site-specific variation of N concentration in moss sampled in seven European countries (1990-2013). While the minimum sample sizes on the European and national level were achieved without exception, for some ecological land classes and elements, the coverage with sampling sites should be improved. The decline in emission and subsequent atmospheric deposition of HM across Europe has resulted in decreasing HM concentrations in moss between 1990 and 2010. In contrast, hardly any changes were observed for N in moss between 2005, when N was included into the survey for the first time, and 2010. In Norway, both, the moss and the soil survey data sets, were correlated, indicating a decrease of HM concentrations in moss and soil. At the site level, the average N deposition inside of forests was almost three times higher than the average N deposition outside of forests.
Quantification of soil water retention parameters using multi-section TDR-waveform analysis
NASA Astrophysics Data System (ADS)
Baviskar, S. M.; Heimovaara, T. J.
2017-06-01
Soil water retention parameters are important for describing flow in variably saturated soils. TDR is one of the standard methods used for determining water content in soil samples. In this study, we present an approach to estimate water retention parameters of a sample which is initially saturated and subjected to an incremental decrease in boundary head causing it to drain in a multi-step fashion. TDR waveforms are measured along the height of the sample at assumed different hydrostatic conditions at daily interval. The cumulative discharge outflow drained from the sample is also recorded. The saturated water content is obtained using volumetric analysis after the final step involved in multi-step drainage. The equation obtained by coupling the unsaturated parametric function and the apparent dielectric permittivity is fitted to a TDR wave propagation forward model. The unsaturated parametric function is used to spatially interpolate the water contents along TDR probe. The cumulative discharge outflow data is fitted with cumulative discharge estimated using the unsaturated parametric function. The weight of water inside the sample estimated at the first and final boundary head in multi-step drainage is fitted with the corresponding weights calculated using unsaturated parametric function. A Bayesian optimization scheme is used to obtain optimized water retention parameters for these different objective functions. This approach can be used for samples with long heights and is especially suitable for characterizing sands with a uniform particle size distribution at low capillary heads.
Li, Hui; Gao, Qiang; Wang, Shuai; Zhu, Ping; Zhang, Jin-jing; Zhao, Yi-dong
2015-07-01
Nitrogen (N) is a common limiting nutrient in crop production. The N content of soil has been used as an important soil fertility index. Organic N is the major form of N in soil. In most agricultural surface soils, more than 90% of total N occurs in organic forms. Therefore, understanding the compositional characteristics of soil organic N functional groups can provide the scientific basis for formulating the reasonable farmland management strategies. Synchrotron radiation soft X-ray absorption near-edge structure (N K-edge XANES) spectroscopy is the most powerful tool to characterize in situ organic N functional groups compositions in soil. However, to our most knowledge, no studies have been conducted to examine the organic N functional groups compositions of soil using N K-edge XANES spectroscopy under long-term fertilization practices. Based on a long-term field experiment (started in 1990) in a black soil (Gongzhuling, Northeast China), we investigated the differences in organic N functional groups compositions in bulk soil and clay-size soil fraction among fertilization patterns using synchrotron-based N K- edge XANES spectroscopy. Composite soil samples (0-20 cm) were collected in 2008. The present study included six treatments: farmland fallow (FALL), no-fertilization control (CK), chemical nitrogen, phosphorus, and potassium fertilization (NPK), NPK in combination with organic manure (NPKM), 1.5 times of NPKM (1.5 NPKM), and NPK in combination with maize straw (NPKS). The results showed that N K-edge XANES spectra of all the treatments under study exhibited characteristic absorption peaks in the ranges of 401.2-401.6 and 402.7-403.1 eV, which were assigned as amides/amine-N and pyrrole-N, respectively. These characteristic absorption peaks were more obvious in clay-size soil fraction than in bulk soil. The results obtained from the semi-quantitative analysis of N K-edge XANES spectra indicated that the relative proportion of amides/amine-N was the highest in both bulk soil and clay-size soil fraction, and it was the most major forms in soil organic nitrogen functional groups. Compared with the FALL treatment, the relative proportion of amide/amine-N was lower whereas that of Pyrrole-N was higher in the CK treatment. In the treatments with combined chemical fertilizers and organic manure, the relative proportion of amide/amine-N decreased with increasing application rates of organic manure, while that of Pyrrole-N had an opposite trend. In bulk soil, the relative proportion of amide/amine-N was the highest for the NPKS treatment than for the other treatments. On the other hand, the relative proportion of nitrile/aromatic-N was the highest for the Fallow treatment than for the other treatments in clay-size soil fraction. It is feasible to use N K-edge XANES spectroscopy for characterizing in situ the changes of organic N functional groups in soil under different fertilization practices.
Deep horizons: Soil Carbon sequestration and storage potential in grassland soils
NASA Astrophysics Data System (ADS)
Torres-Sallan, Gemma; Schulte, Rogier; Lanigan, Gary J.; Byrne, Kenneth A.; Reidy, Brian; Creamer, Rachel
2016-04-01
Soil Organic Carbon (SOC) enhances soil fertility, holding nutrients in a plant-available form. It also improves aeration and water infiltration. Soils are considered a vital pool for C (Carbon) sequestration, as they are the largest pool of C after the oceans, and contain 3.5 more C than the atmosphere. SOC models and inventories tend to focus on the top 30 cm of soils, only analysing total SOC values. Association of C with microaggregates (53-250 μm) and silt and clay (<53 μm) is considered C sequestration as these fractions offer the greatest protection against mineralization. This study assessed the role of aggregation in C sequestration throughout the profile, down to 1 m depth, of 30 grassland sites divided in 6 soil types. One kg sample was collected for each horizon, sieved at 8 mm and dried at 40 °C. Through a wet sieving procedure, four aggregate sizes were isolated: large macroaggregates (>2000 μm); macroaggregates (250-2000 μm); microaggregates and silt & clay. Organic C associated to each aggregate fraction was analysed on a LECO combustion analyser. Sand-free C was calculated for each aggregate size. For all soil types, 84% of the SOC located in the first 30 cm was contained inside macroaggregates and large macroaggregates. Given that this fraction has a turnover time of 1 to 10 years, sampling at that depth only provides information on the labile fraction in soil, and does not consider the longer term C sequestration potential. Only when looking at the whole profile, two clear trends could be observed: 1) soils with a clay increase at depth had most of their C located in the silt and clay fractions, which indicate their enhanced C sequestration capacity, 2) free-draining soils had a bigger part of their SOC located in the macroaggregate fractions. These results indicate that current C inventories and models that focus on the top 30 cm, do not accurately measure soil C sequestration potential in soils, but rather the more labile fraction. However, at depth soil forming processes have been identified as a major factor influencing C sequestration potential in soils. This has a major impact in further quantifying and sustaining C sequestration into the future. Soils with a high sequestration potential at depth need to be managed to enhance the residence time to contribute to future off-setting of greenhouse gas emissions.
William T. Plass; Willis G. Vogel
1973-01-01
A survey of 39 surface-mine sites in southern West Virginia showed that most of the spoils from current mining operations had a pH of 5.0 or higher. Soil-size material averaged 37 percent of the weight of the spoils sampled. A major problem for the establishment of vegetation was a deficiency of nitrogen and phosphorus. This can be corrected with additions of...
NASA Astrophysics Data System (ADS)
Navas, A.; Laute, K.; Beylich, A. A.; Gaspar, L.
2014-01-01
In the Erdalen and Bødalen drainage basins located in the inner Nordfjord in western Norway the soils have been formed after deglaciation. The climate in the uppermost valley areas is sub-arctic oceanic and the lithology consists of Precambrian granitic orthogneisses on which Leptosols and Regosols are the most common soils. The Little Ice Age glacier advance affected parts of the valleys with the maximum glacier extent around AD 1750. In this study five sites on moraine and colluvium materials were selected to examine the main soil properties to assess if soil profile characteristics and pattern of fallout radionuclides (FRNs) and environmental radionuclides (ERNs) are affected by different stages of ice retreat. The Leptosols on the moraines are shallow, poorly developed and vegetated with moss and small birches. The two selected profiles show different radionuclide activities and grain size distribution. The sampled soils on the colluviums outside the LIA glacier limit became ice-free during the Preboral. The Regosols present better-developed profiles, thicker organic horizons and are fully covered by grasses. Activity of 137Cs and 210Pbex concentrate at the topsoil and decrease sharply with depth. The grain size distribution of these soils also reflects the difference in geomorphic processes that have affected the colluvium sites. Significant lower mass activities of FRNs are found in soils on the moraines than on colluviums. Variations of ERNs activities in the valleys are related to characteristics soil mineralogical composition. These results indicate differences in soil development that are consistent with the age of ice retreat. In addition, the pattern distribution of 137Cs and 210Pbex activities differs in the soils related to the LIA glacier limits in the drainage basins.
Mars Environmental Compatibility Assessment (MECA): Identifying the Hazards of the Martian Soil
NASA Technical Reports Server (NTRS)
Meloy, T. P.; Hecht, M. H.; Anderson, M. S.; Frant, M. A.; Fuerstenau, S. D.; Keller, H. U.; Markiewicz, W. J.; Marshall, J.; Pike, W. T.; Quate, C. F.
1999-01-01
Sometime in the next decade NASA will decide whether to send a human expedition to explore the planet Mars. The Mars Environmental Compatibility Assessment (MECA) has been selected by NASA to evaluate the Martian environment for soil and dust hazards to human exploration. The integrated MECA payload contains three elements: a wet-chemistry laboratory, a microscopy station, and enhancements to a lander robot-arm system incorporating arrays of material patches and an electrometer to identify triboelectric charging during soil excavation. The wet-chemistry laboratory will evaluate samples of Martian soil in water to determine the total dissolved solids, redox potential, pH, and quantify the concentration of many soluble ions using ion-selective electrodes. These electrodes can detect potentially dangerous heavy-metal ions, emitted pathogenic gases, and the soil's corrosive potential. MECA's microscopy station combines optical and atomic-force microscopy with a robot-arm camera to provide imaging over nine orders of magnitude, from meters to nanometers. Soil particle properties including size, shape, color, hardness, adhesive potential (electrostatic and magnetic), will be determined on the microscope stage using an ar-ray of sample receptacles and collection substrates, and an abrasion tool,. The simple, rugged atomic-force microscope will image in the submicron size range and has the capability of performing a particle-by-particle analysis of the dust and soil. Although selected by NASA's Human Exploration and Development of Space Enterprise, the MECA instrument suite also has the capability to address basic geology, paleoclimate, and exobiology issues. To understand both contemporaneous and ancient processes on Mars, the mineralogical, petrological, and reactivity of Martian surface materials should be constrained: the NMCA experiment will shed light on these quantities through its combination of chemistry and microscopy. On Earth, the earliest forms of life are preserved as microfossils. The atomic-force microscope will have the required resolution to image down to the scale of terrestrial microfossils and beyond.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lou Ziyang; State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092; Chai Xiaoli
2009-01-15
Leachate was collected from an anaerobic lagoon at Shanghai Laogang refuse landfill, the largest landfill in China, and the sample was separated into six fractions using micro-filtration membranes, followed by ultra-filtration membranes. Several parameters of the samples were measured, including chemical oxygen demand (COD), total organic carbon (TOC), total solids (TS), pH, total phosphate (TP), total nitrogen (TN), fixed solids (FS), NH{sub 4}{sup +}, orthophosphate, color, turbidity, and conductivity. These parameters were then quantitatively correlated with the molecular weight cutoff of the membrane used. Organic matter in the dissolved fraction (MW < 1 kDa) predominated in the leachate, accounting formore » 65% of TOC. Thermal infrared spectroscopy was used to characterize the filter residues. Asymmetric and symmetric stretching of methyl and methylene groups, and of functional groups containing nitrogen and oxygen atoms, were observed. In addition, the ability of two different samples to adsorb heavy metals was tested. Cu{sup 2+} was chosen as the representative heavy metal in this study, and the samples were soil; aged refuse, which had spent 8 years in a conventional sanitary landfill; and samples of soil and aged refuse treated for 48 h with leachate in the ratio of 5 g of sample per 50 ml of leachate. Cu{sup 2+} uptake by the raw soil was {approx}4.60 {mu}g/g, while uptake by the leachate-contacted soil and leachate-contacted aged refuse were 5.66 and 5.11 {mu}g/g, respectively. These results show that the organic matter in the leachate enhanced the capacity of aqueous solutions to adsorb Cu{sup 2+}.« less
Bonetti, Jennifer; Quarino, Lawrence
2014-05-01
This study has shown that the combination of simple techniques with the use of multivariate statistics offers the potential for the comparative analysis of soil samples. Five samples were obtained from each of twelve state parks across New Jersey in both the summer and fall seasons. Each sample was examined using particle-size distribution, pH analysis in both water and 1 M CaCl2 , and a loss on ignition technique. Data from each of the techniques were combined, and principal component analysis (PCA) and canonical discriminant analysis (CDA) were used for multivariate data transformation. Samples from different locations could be visually differentiated from one another using these multivariate plots. Hold-one-out cross-validation analysis showed error rates as low as 3.33%. Ten blind study samples were analyzed resulting in no misclassifications using Mahalanobis distance calculations and visual examinations of multivariate plots. Seasonal variation was minimal between corresponding samples, suggesting potential success in forensic applications. © 2014 American Academy of Forensic Sciences.
Olson, Paul E; Castro, Ana; Joern, Mark; DuTeau, Nancy M; Pilon-Smits, Elizabeth A H; Reardon, Kenneth F
2007-01-01
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous, recalcitrant, and potentially carcinogenic pollutants. Plants and their associated rhizosphere microbes can promote PAH dissipation, offering an economic and ecologically attractive remediation technique. This study focused on the effects of different types of vegetation on PAH removal and on the interaction between the plants and their associated microorganisms. Aged PAH-polluted soil with a total PAH level of 753 mg kg(-1) soil dry weight was planted with 18 plant species representing eight families. The levels of 17 soil PAHs were monitored over 14 mo. The size of soil microbial populations of PAH degraders was also monitored. Planting significantly enhanced the dissipation rates of all PAHs within the first 7 mo, but this effect was not significant after 14 mo. Although the extent of removal of lower-molecular-weight PAHs was similar for planted and unplanted control soils after 14 mo, the total mass of five- and six-ring PAHs removed was significantly greater in planted soils at the 7- and 14-mo sampling points. Poaceae (grasses) were the most effective of the families tested, and perennial ryegrass was the most effective species; after 14 mo, soils planted with perennial ryegrass contained 30% of the initial total PAH concentration (compared with 51% of the initial concentrations in unplanted control soil). Although the presence of some plant species led to higher populations of PAH degraders, there was no correlation across plant species between PAH dissipation and the size of the PAH-degrading population. Research is needed to understand differences among plant families for stimulating PAH dissipation.
NASA Astrophysics Data System (ADS)
Hamalainen, Sampsa; Geng, Xiaoyuan; He, Juanxia
2017-04-01
Latin Hypercube Sampling (LHS) at variable resolutions for enhanced watershed scale Soil Sampling and Digital Soil Mapping. Sampsa Hamalainen, Xiaoyuan Geng, and Juanxia, He. AAFC - Agriculture and Agr-Food Canada, Ottawa, Canada. The Latin Hypercube Sampling (LHS) approach to assist with Digital Soil Mapping has been developed for some time now, however the purpose of this work was to complement LHS with use of multiple spatial resolutions of covariate datasets and variability in the range of sampling points produced. This allowed for specific sets of LHS points to be produced to fulfil the needs of various partners from multiple projects working in the Ontario and Prince Edward Island provinces of Canada. Secondary soil and environmental attributes are critical inputs that are required in the development of sampling points by LHS. These include a required Digital Elevation Model (DEM) and subsequent covariate datasets produced as a result of a Digital Terrain Analysis performed on the DEM. These additional covariates often include but are not limited to Topographic Wetness Index (TWI), Length-Slope (LS) Factor, and Slope which are continuous data. The range of specific points created in LHS included 50 - 200 depending on the size of the watershed and more importantly the number of soil types found within. The spatial resolution of covariates included within the work ranged from 5 - 30 m. The iterations within the LHS sampling were run at an optimal level so the LHS model provided a good spatial representation of the environmental attributes within the watershed. Also, additional covariates were included in the Latin Hypercube Sampling approach which is categorical in nature such as external Surficial Geology data. Some initial results of the work include using a 1000 iteration variable within the LHS model. 1000 iterations was consistently a reasonable value used to produce sampling points that provided a good spatial representation of the environmental attributes. When working within the same spatial resolution for covariates, however only modifying the desired number of sampling points produced, the change of point location portrayed a strong geospatial relationship when using continuous data. Access to agricultural fields and adjacent land uses is often "pinned" as the greatest deterrent to performing soil sampling for both soil survey and soil attribute validation work. The lack of access can be a result of poor road access and/or difficult geographical conditions to navigate for field work individuals. This seems a simple yet continuous issue to overcome for the scientific community and in particular, soils professionals. The ability to assist with the ease of access to sampling points will be in the future a contribution to the Latin Hypercube Sampling (LHS) approach. By removing all locations in the initial instance from the DEM, the LHS model can be restricted to locations only with access from the adjacent road or trail. To further the approach, a road network geospatial dataset can be included within spatial Geographic Information Systems (GIS) applications to access already produced points using a shortest-distance network method.
Space Weathering of Lunar Rocks and Regolith Grains
NASA Technical Reports Server (NTRS)
Keller, L. P.
2013-01-01
The exposed surfaces of lunar soil grains and lunar rocks become modified and coated over time with a thin rind of material (patina) through complex interactions with the space environment. These interactions encompass many processes including micrometeorite impacts, vapor and melt deposition, and solar wind implantation/sputtering effects that collectively are referred to as "space weathering". Studies of space weathering effects in lunar soils and rocks provide important clues to understanding the origin and evolution of the lunar regolith as well as aiding in the interpretation of global chemical and mineralogical datasets obtained by remote-sensing missions. The interpretation of reflectance spectra obtained by these missions is complicated because the patina coatings obscure the underlying rock mineralogy and compositions. Much of our understanding of these processes and products comes from decades of work on remote-sensing observations of the Moon, the analysis of lunar samples, and laboratory experiments. Space weathering effects collectively result in a reddened continuum slope, lowered albedo, and attenuated absorption features in reflectance spectra of lunar soils as compared to finely comminuted rocks from the same Apollo sites. Space weathering effects are largely surface-correlated, concentrated in the fine size fractions, and occur as amorphous rims on individual soil grains. Rims on lunar soil grains are highly complex and span the range between erosional surfaces modified by solar wind irradiation to depositional surfaces modified by the condensation of sputtered ions and impact-generated vapors. The optical effects of space weathering effects are directly linked to the production of nanophase Fe metal in lunar materials]. The size of distribution of nanophase inclusions in the rims directly affect optical properties given that large Fe(sup o) grains (approx 10 nm and larger) darken the sample (lower albedo) while the tiny Fe(sup o) grains (<5nm) are the primary agent in spectral "reddening". More recent work has focused on the nature and abundance of OH/H2O in the lunar regolith using orbital data and samples analyses. Advances in sample preparation techniques have made possible detailed analyses of patina-coated rock surfaces. Major advances are occurring in quantifying the rates and efficiency of space weathering processes through laboratory experimentation.
Phenanthrene sorption with heterogeneous organic matter in a landfill aquifer material
Karapanagioti, H.K.; Sabatini, D.A.; Kleineidam, S.; Grathwohl, P.; Ligouis, B.
1999-01-01
Phenanthrene was used as a model chemical to study the sorption properties of Canadian River Alluvium aquifer material. Both equilibrium and kinetic sorption processes were evaluated through batch studies. The bulk sample was divided into subsamples with varying properties such as particle size, organic content, equilibration time, etc. in order to determine the effect of these properties on resulting sorption parameters. The data have been interpreted and the effect of experimental variables was quantified using the Freundlich isotherm model and a numerical solution of Fick's 2nd law in porous media. Microscopic organic matter characterization proved to be a valuable tool for explaining the results. Different organic matter properties and sorption mechanisms were observed for each soil subsample. Samples containing coal particles presented high Koc values. Samples with organic matter dominated by organic coatings on quartz grains presented low Koc values and contained a high percentage of fast sorption sites. The numerical solution of Fick's 2ndlaw requires the addition of two terms (fast and slow) in order to fit the kinetics of these heterogeneous samples properly. These results thus demonstrate the need for soil organic matter characterization in order to predict and explain the sorption properties of a soil sample containing heterogeneous organic matter and also the difficulty and complexity of modeling sorption in such samples.
Adaptability of laser diffraction measurement technique in soil physics methodology
NASA Astrophysics Data System (ADS)
Barna, Gyöngyi; Szabó, József; Rajkai, Kálmán; Bakacsi, Zsófia; Koós, Sándor; László, Péter; Hauk, Gabriella; Makó, András
2016-04-01
There are intentions all around the world to harmonize soils' particle size distribution (PSD) data by the laser diffractometer measurements (LDM) to that of the sedimentation techniques (pipette or hydrometer methods). Unfortunately, up to the applied methodology (e. g. type of pre-treatments, kind of dispersant etc.), PSDs of the sedimentation methods (due to different standards) are dissimilar and could be hardly harmonized with each other, as well. A need was arisen therefore to build up a database, containing PSD values measured by the pipette method according to the Hungarian standard (MSZ-08. 0205: 1978) and the LDM according to a widespread and widely used procedure. In our current publication the first results of statistical analysis of the new and growing PSD database are presented: 204 soil samples measured with pipette method and LDM (Malvern Mastersizer 2000, HydroG dispersion unit) were compared. Applying usual size limits at the LDM, clay fraction was highly under- and silt fraction was overestimated compared to the pipette method. Subsequently soil texture classes determined from the LDM measurements significantly differ from results of the pipette method. According to previous surveys and relating to each other the two dataset to optimizing, the clay/silt boundary at LDM was changed. Comparing the results of PSDs by pipette method to that of the LDM, in case of clay and silt fractions the modified size limits gave higher similarities. Extension of upper size limit of clay fraction from 0.002 to 0.0066 mm, and so change the lower size limit of silt fractions causes more easy comparability of pipette method and LDM. Higher correlations were found between clay content and water vapor adsorption, specific surface area in case of modified limit, as well. Texture classes were also found less dissimilar. The difference between the results of the two kind of PSD measurement methods could be further reduced knowing other routinely analyzed soil parameters (e.g. pH(H2O), organic carbon and calcium carbonate content).
Downie, H F; Adu, M O; Schmidt, S; Otten, W; Dupuy, L X; White, P J; Valentine, T A
2015-07-01
The morphology of roots and root systems influences the efficiency by which plants acquire nutrients and water, anchor themselves and provide stability to the surrounding soil. Plant genotype and the biotic and abiotic environment significantly influence root morphology, growth and ultimately crop yield. The challenge for researchers interested in phenotyping root systems is, therefore, not just to measure roots and link their phenotype to the plant genotype, but also to understand how the growth of roots is influenced by their environment. This review discusses progress in quantifying root system parameters (e.g. in terms of size, shape and dynamics) using imaging and image analysis technologies and also discusses their potential for providing a better understanding of root:soil interactions. Significant progress has been made in image acquisition techniques, however trade-offs exist between sample throughput, sample size, image resolution and information gained. All of these factors impact on downstream image analysis processes. While there have been significant advances in computation power, limitations still exist in statistical processes involved in image analysis. Utilizing and combining different imaging systems, integrating measurements and image analysis where possible, and amalgamating data will allow researchers to gain a better understanding of root:soil interactions. © 2014 John Wiley & Sons Ltd.
A simple method for the extraction and identification of light density microplastics from soil.
Zhang, Shaoliang; Yang, Xiaomei; Gertsen, Hennie; Peters, Piet; Salánki, Tamás; Geissen, Violette
2018-03-01
This article introduces a simple and cost-saving method developed to extract, distinguish and quantify light density microplastics of polyethylene (PE) and polypropylene (PP) in soil. A floatation method using distilled water was used to extract the light density microplastics from soil samples. Microplastics and impurities were identified using a heating method (3-5s at 130°C). The number and size of particles were determined using a camera (Leica DFC 425) connected to a microscope (Leica wild M3C, Type S, simple light, 6.4×). Quantification of the microplastics was conducted using a developed model. Results showed that the floatation method was effective in extracting microplastics from soils, with recovery rates of approximately 90%. After being exposed to heat, the microplastics in the soil samples melted and were transformed into circular transparent particles while other impurities, such as organic matter and silicates were not changed by the heat. Regression analysis of microplastics weight and particle volume (a calculation based on image J software analysis) after heating showed the best fit (y=1.14x+0.46, R 2 =99%, p<0.001). Recovery rates based on the empirical model method were >80%. Results from field samples collected from North-western China prove that our method of repetitive floatation and heating can be used to extract, distinguish and quantify light density polyethylene microplastics in soils. Microplastics mass can be evaluated using the empirical model. Copyright © 2017 Elsevier B.V. All rights reserved.
Automated fluid analysis apparatus and techniques
Szecsody, James E.
2004-03-16
An automated device that couples a pair of differently sized sample loops with a syringe pump and a source of degassed water. A fluid sample is mounted at an inlet port and delivered to the sample loops. A selected sample from the sample loops is diluted in the syringe pump with the degassed water and fed to a flow through detector for analysis. The sample inlet is also directly connected to the syringe pump to selectively perform analysis without dilution. The device is airtight and used to detect oxygen-sensitive species, such as dithionite in groundwater following a remedial injection to treat soil contamination.
NASA Astrophysics Data System (ADS)
Hiemstra, Tjisse; Antelo, Juan; Rahnemaie, Rasoul; van Riemsdijk, Willem H.
2010-01-01
Information on the particle size and reactive surface area of natural samples is essential for the application of surface complexation models (SCM) to predict bioavailability, toxicity, and transport of elements in the natural environment. In addition, this information will be of great help to enlighten views on the formation, stability, and structure of nanoparticle associations of natural organic matter (NOM) and natural oxide particles. Phosphate is proposed as a natively present probe ion to derive the effective reactive surface area of natural samples. In the suggested method, natural samples are equilibrated (⩾10 days) with 0.5 M NaHCO 3 (pH = 8.5) at various solid-solution ratios. This matrix fixes the pH and ionic strength, suppresses the influence of Ca 2+ and Mg 2+ ions by precipitation these in solid carbonates, and removes NOM due to the addition of activated carbon in excess, collectively leading to the dominance of the PO 4-CO 3 interaction in the system. The data have been interpreted with the charge distribution (CD) model, calibrated for goethite, and the analysis results in an effective reactive surface area (SA) and a reversibly bound phosphate loading Γ for a series of top soils. The oxidic SA varies between about 3-30 m 2/g sample for a large series of representative agricultural top soils. Scaling of our data to the total iron and aluminum oxide content (dithionite-citrate-bicarbonate extractable), results in the specific surface area between about 200-1200 m 2/g oxide for most soils, i.e. the oxide particles are nano-sized with an equivalent diameter in the order of ˜1-10 nm if considered as non-porous spheres. For the top soils, the effective surface area and the soil organic carbon fraction are strongly correlated. The oxide particles are embedded in a matrix of organic carbon (OC), equivalent to ˜1.4 ± 0.2 mg OC/m 2 oxide for many soils of the collection, forming a NOM-mineral nanoparticle association with an average NOM volume fraction of ˜80%. The average mass density of such a NOM-mineral association is ˜1700 ± 100 kg/m 3 (i.e. high-density NOM). The amount of reversibly bound phosphate is rather close to the amount of phosphate that is extractable with oxalate. The phosphate loading varies remarkably ( Γ ≈ 1-3 μmol/m 2 oxide) in the samples. As discussed in part II of this paper series ( Hiemstra et al., 2010), the phosphate loading ( Γ) of field samples is suppressed by surface complexation of NOM, where hydrophilic, fulvic, and humic acids act as a competitor for (an)ions via site competition and electrostatic interaction.
Particle size and X-ray analysis of Feldspar, Calvert, Ball, and Jordan soils
NASA Technical Reports Server (NTRS)
Chapman, R. S.
1977-01-01
Pipette analysis and X-ray diffraction techniques were employed to characterize the particle size distribution and clay mineral content of the feldspar, calvert, ball, and jordan soils. In general, the ball, calvert, and jordan soils were primarily clay size particles composed of kaolinite and illite whereas the feldspar soil was primarily silt-size particles composed of quartz and feldspar minerals.
Size Matters: FTIR Spectral Analysis of Apollo Regolith Samples Exhibits Grain Size Dependence.
NASA Astrophysics Data System (ADS)
Martin, Dayl; Joy, Katherine; Pernet-Fisher, John; Wogelius, Roy; Morlok, Andreas; Hiesinger, Harald
2017-04-01
The Mercury Thermal Infrared Spectrometer (MERTIS) on the upcoming BepiColombo mission is designed to analyse the surface of Mercury in thermal infrared wavelengths (7-14 μm) to investigate the physical properties of the surface materials [1]. Laboratory analyses of analogue materials are useful for investigating how various sample properties alter the resulting infrared spectrum. Laboratory FTIR analysis of Apollo fine (<1mm) soil samples 14259,672, 15401,147, and 67481,96 have provided an insight into how grain size, composition, maturity (i.e., exposure to space weathering processes), and proportion of glassy material affect their average infrared spectra. Each of these samples was analysed as a bulk sample and five size fractions: <25, 25-63, 63-125, 125-250, and <250 μm. Sample 14259,672 is a highly mature highlands regolith with a large proportion of agglutinates [2]. The high agglutinate content (>60%) causes a 'flattening' of the spectrum, with reduced reflectance in the Reststrahlen Band region (RB) as much as 30% in comparison to samples that are dominated by a high proportion of crystalline material. Apollo 15401,147 is an immature regolith with a high proportion of volcanic glass pyroclastic beads [2]. The high mafic mineral content results in a systematic shift in the Christiansen Feature (CF - the point of lowest reflectance) to longer wavelength: 8.6 μm. The glass beads dominate the spectrum, displaying a broad peak around the main Si-O stretch band (at 10.8 μm). As such, individual mineral components of this sample cannot be resolved from the average spectrum alone. Apollo 67481,96 is a sub-mature regolith composed dominantly of anorthite plagioclase [2]. The CF position of the average spectrum is shifted to shorter wavelengths (8.2 μm) due to the higher proportion of felsic minerals. Its average spectrum is dominated by anorthite reflectance bands at 8.7, 9.1, 9.8, and 10.8 μm. The average reflectance is greater than the other samples due to a lower proportion of glassy material. In each soil, the smallest fractions (0-25 and 25-63 μm) have CF positions 0.1-0.4 μm higher than the larger grain sizes. Also, the bulk-sample spectra mostly closely resemble the 0-25 μm sieved size fraction spectrum, indicating that this size fraction of each sample dominates the bulk spectrum regardless of other physical properties. This has implications for surface analyses of other Solar System bodies where some mineral phases or components could be concentrated in a particular size fraction. For example, the anorthite grains in 67481,96 are dominantly >25 μm in size and therefore may not contribute proportionally to the bulk average spectrum (compared to the <25 μm fraction). The resulting bulk spectrum of 67481,96 has a CF position 0.2 μm higher than all size fractions >25 microns and therefore does not represent a true average composition of the sample. Further investigation of how grain size and composition alters the average spectrum is required to fully understand infrared spectra of planetary surfaces. [1] - Hiesinger H., Helbert J., and MERTIS Co-I Team. (2010). The Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) for the BepiColombo Mission. Planetary and Space Science. 58, 144-165. [2] - NASA Lunar Sample Compendium. https://curator.jsc.nasa.gov/lunar/lsc/
Particle size effects on bioaccessible amounts of ingestible soil-borne toxic elements.
Qin, Junhao; Nworie, Obinna Elijah; Lin, Chuxia
2016-09-01
The unified BARGE method was used to examine the effects of soil particle size on the bioaccessible amounts of potentially toxic elements in multi-contaminated soils from a closed landfill site. The results show that bioaccessible As, Al, Cd, Cr, Cu, Mn, Ni, Pb and Zn increased with decreasing soil particle size and the <0.002 mm soil fraction contained much greater amounts of the bioaccessible elements, as compared to other soil fractions (0.002-0.063 mm, 0.063-0.125 mm, and 0.125-0.250 mm). As, Al and Cr had much lower bioaccessibility, as compared to the six cationic heavy metals. In contrast with other elements, As bioaccessibility tended to be higher in the gastrointestinal phase than in the gastric phase. There was a significant soil particle size effect on bioaccessibility of As and Al in the gastrointestinal phase: As bioaccessibility decreased with decreasing particle size, and the finer soil fractions tended to have a higher Al bioaccessibility, as compared to the coarser soil fractions. The research findings prompt the need for further division of soil particle size fractions in order to more accurately assess the bioaccessible amounts of soil-borne potentially toxic elements in contaminated lands. Copyright © 2016 Elsevier Ltd. All rights reserved.
Callejas-Chavero, Alicia; Castaño-Meneses, Gabriela; Razo-González, María; Pérez-Velázquez, Daniela; Palacios-Vargas, José G.; Flores-Martínez, Arturo
2015-01-01
Soil fauna is essential for ecosystem dynamics as it is involved in biogeochemical processes, promotes nutrient availability, and affects the animal communities associated with plants. In this study, we examine the possible relationship between the soil microarthropod community on foliage production and quality of the shrub Pittocaulon praecox. We also examine the arthropods associated to its foliage, particularly the size of the main herbivores and of their natural enemies, at two sites with contrasting vegetation cover and productivity. The diversity of soil microarthropods was assessed from soil samples collected monthly under P. praecox individuals over 13 mo. Specimens collected were identified to species or morphospecies. Shrub foliage productivity was evaluated through the amount of litter produced. Resource quality was assessed by the mean content (percentage by weight) of N, C, S, and P of 30 leaves from each shrub. The mean size of herbivores and their natural enemies were determined by measuring 20 adult specimens of each of the most abundant species. We found a higher species richness of soil microarthropods and foliar arthropods in the open site, although the diversity of foliage arthropods was lower in the closed site. Shrubs growing in the closed site tend to produce more, larger, and nutritionally poorer (lower nitrogen content) leaves than open site. Herbivores and their natural enemies were also larger in the closed site. We found a significant positive relationship between the diversity and species richness of foliar arthropods and the nitrogen content of leaves. In general, species richness and diversity of both the foliar and soil fauna, as well as the size of organisms belonging to higher trophic levels, were affected by vegetation cover and primary productivity at each site. These findings highlight the need to simultaneously consider at least four trophic levels (soil organisms, plants, herbivores, and natural enemies) to better understand the functioning of these systems and their responses to environmental changes. PMID:25978999
Contamination of water and soil by the Erdenet copper-molybdenum mine in Mongolia
NASA Astrophysics Data System (ADS)
Battogtokh, B.; Lee, J.; Woo, N. C.; Nyamjav, A.
2013-12-01
As one of the largest copper-molybdenum (Cu-Mo) mines in the world, the Erdenet Mine in Mongolia has been active since 1978, and is expected to continue operations for at least another 30 years. In this study, the potential impacts of mining activities on the soil and water environments have been evaluated. Water samples showed high concentrations of sulfate, calcium, magnesium, Mo, and arsenic, and high pH values in the order of high to low as follows: tailing water > Khangal River > groundwater. Statistical analysis and the δ2H and δ18O values of water samples indicate that the tailing water directly affects the stream water and indirectly affects groundwater through recharge processes. Soil and stream sediments are highly contaminated with Cu and Mo, which are major elements of ore minerals. Based on the contamination factor (CF), the pollution load index (PLI), and the degree of contamination (Cd), soil appears to be less contaminated than stream sediments. The soil particle size is similar to that of tailing materials, but stream sediments have much coarser particles, implying that the materials have different origins. Contamination levels in stream sediments display a tendency to decrease with distance from the mine, but no such changes are found in soil. Consequently, soil contamination by metals is attributable to wind-blown dusts from the tailing materials, and stream sediment contamination is caused by discharges from uncontained subgrade ore stock materials. Considering the evident impact on the soil and water environment, and the human health risk from the Erdenet Mine, measures to mitigate its environmental impact should be taken immediately including source control, the establishment of a systematic and continuous monitoring system, and a comprehensive risk assessment. Sampling locations around the Erdenet Mine
Palumbo, J D; O'Keeffe, T L; Fidelibus, M W
2016-12-01
Identification of populations of Aspergillus section Nigri species in environmental samples using traditional methods is laborious and impractical for large numbers of samples. We developed species-specific primers and probes for quantitative droplet digital PCR (ddPCR) to improve sample throughput and simultaneously detect multiple species in each sample. The ddPCR method was used to distinguish Aspergillus niger, Aspergillus welwitschiae, Aspergillus tubingensis and Aspergillus carbonarius in mixed samples of total DNA. Relative abundance of each species measured by ddPCR agreed with input ratios of template DNAs. Soil samples were collected at six time points over two growing seasons from two raisin vineyards in Fresno County, California. Aspergillus section Nigri strains were detected in these soils in the range of 10 2 -10 5 CFU g -1 . Relative abundance of each species varied widely among samples, but in 52 of 60 samples, A. niger was the most abundant species, ranging from 38 to 88% of the total population. In combination with total plate counts, this ddPCR method provides a high-throughput method for describing population dynamics of important potential mycotoxin-producing species in environmental samples. This is the first study to demonstrate the utility of ddPCR as a means to quantify species of Aspergillus section Nigri in soil. This method eliminates the need for isolation and sequence identification of individual fungal isolates, and allows for greater throughput in measuring relative population sizes of important (i.e. mycotoxigenic) Aspergillus species within a population of morphologically indistinguishable species. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Soil grain analyses at Meridiani Planum, Mars
Weitz, C.M.; Anderson, R.C.; Bell, J.F.; Farrand, W. H.; Herkenhoff, K. E.; Johnson, J. R.; Jolliff, B.L.; Morris, R.V.; Squyres, S. W.; Sullivan, R.J.
2006-01-01
Grain-size analyses of the soils at Meridiani Planum have been used to identify rock souces for the grains and provide information about depositional processes under past and current conditions. Basaltic sand, dust, millimeter-size hematite-rich spherules interpreted as concretions, spherule fragments, coated partially buried spherules, basalt fragments, sedimentary outcrop fragments, and centimeter-size cobbles are concentrated on the upper surfaces of the soils as a lag deposit, while finer basaltic sands and dust dominate the underlying soils. There is a bimodal distribution of soil grain sizes with one population representing grains <125 ??m and the other falling between 1-4.5 mm. Soils within craters like Eagle and Endurance show a much greater diversity of grain morphologies compared to the plains. The spherules found in the plains soils are approximately 1-2 mm smaller in size than those seen embedded in the outcrop rocks of Eagle and Endurance craters. The average major axis for all unfractured spherules measured in the soils and outcrop rocks is 2.87 ?? 1.18 mm, with a trend toward decreasing spherule sizes in both the soils and outcrop rocks as the rover drove southward. Wind ripples seen across the plains of Meridiani are dominated by similar size (1.3-1.7 mm) hematite-rich grains, and they match in size the larger grains on plains ripples at Gusev Crater. Larger clasts and centimeter-size cobbles that are scattered on the soils have several spectral and compositional types, reflecting multiple origins. The cobbles tend to concentrate within ripple troughs along the plains and in association with outcrop exposures. Copyright 2006 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Angst, Gerrit; John, Stephan; Rethemeyer, Janet; Kögel-Knabner, Ingrid; Mueller, Carsten W.
2014-05-01
Subsoils can significantly contribute to the terrestrial C pool. While processes of C turnover and storage in topsoils are generally well understood, little is known about subsoils. Our project, embedded within the DFG research group FOR 1806, aims to contribute to the knowledge about subsoil C by differentiating soil organic matter (SOM) in terms of its origin and its composition. In order to obtain a meaningful sample set we studied three soil ditches, 3.15 m in length and 2.15 m in depth, in a podzolic Cambisol under European beech (Fagus sylvatica L.) north of Hannover, Germany. In a to date unique sampling approach we took 64 soil samples in a regular vertical grid in each of the soil profiles, thus identifying possible gradients between top- and subsoil. The samples were subjected to a combined density and particle size fractionation to separate particulate organic matter (POM) from mineral compartments. We especially aimed at obtaining the combined fine silt and clay fraction which is thought to be most important in the long term stabilization of SOM. The chemical composition of the so obtained fractions and the bulk soil was revealed by C, N and 13C CPMAS NMR measurements. The source of OM in the soil was investigated by tracing the biopolymers cutin and suberin across the soil profile. Cutin occurs mainly in the cuticula of leaves while suberin mainly constitutes the endodermal cell walls of plant roots. In soils the two polymers can thus be used as proxies for above and belowground OM input respectively. To release the constituting monomers of the two biopolymers from the soil samples the latter were pretreated with organic solvents to extract free lipids. The soil residues were subsequently subjected to a base hydrolysis and the so obtained extracts were measured with GC/MS. The organic C contents of the bulk soil decrease significantly with depth in all transects from around 15 mg g-1 to 2 mg g-1. This is likely associated with the very high sand and low clay concentrations and the decreasing POM content at greater depths in the soil profiles. The highest C contents were found in the POM fractions with 400 mg g-1 and the combined fine silt and clay fractions with 6 mg g-1. Interestingly the NMR spectra display an already highly processed POM in the uppermost soil horizon as indicated by high alkyl/O-alkyl C ratios. This, together with the absence of POM in greater depths, points towards a decomposition of aboveground OM predominantly in the upper zones of the soil and a confined root input to deeper soil regions.
A user-friendly modified pore-solid fractal model
Ding, Dian-yuan; Zhao, Ying; Feng, Hao; Si, Bing-cheng; Hill, Robert Lee
2016-01-01
The primary objective of this study was to evaluate a range of calculation points on water retention curves (WRC) instead of the singularity point at air-entry suction in the pore-solid fractal (PSF) model, which additionally considered the hysteresis effect based on the PSF theory. The modified pore-solid fractal (M-PSF) model was tested using 26 soil samples from Yangling on the Loess Plateau in China and 54 soil samples from the Unsaturated Soil Hydraulic Database. The derivation results showed that the M-PSF model is user-friendly and flexible for a wide range of calculation point options. This model theoretically describes the primary differences between the soil moisture desorption and the adsorption processes by the fractal dimensions. The M-PSF model demonstrated good performance particularly at the calculation points corresponding to the suctions from 100 cm to 1000 cm. Furthermore, the M-PSF model, used the fractal dimension of the particle size distribution, exhibited an accepted performance of WRC predictions for different textured soils when the suction values were ≥100 cm. To fully understand the function of hysteresis in the PSF theory, the role of allowable and accessible pores must be examined. PMID:27996013
Cesium-137 Fallout in Indiana Soil
NASA Astrophysics Data System (ADS)
Whitman, Richard T.
Atomic weapons testing during the Cold War and accidents at nuclear power plants have resulted in the release of radioactive fallout over great distances. Little is known about levels of fallout deposited in Indiana. The reported study sampled soil in all 92 Indiana counties to determine the present level of cesium-137 from the 2 to 12 centimeter depth from previous nuclear tests and other nuclear releases. A total of 67 samples were collected from forested areas and 25 from grasslands, both undisturbed since 1940, along with four controls from crawl spaces. Greater Cs-137 retention occurred in the forested areas at approximately a 2:1 ratio. Other parameters investigated included soil clay content, rate of rainfall, and soil pH. Each variable was examined for possible statistical correlation with Cs-137 retention. Both clay content and combined clay content/rainfall were significantly (p < 0.05) correlated with soil Cs-137 levels. The four controls showed very low values of Cs-137 indicating the movement of sub-micron sized fallout into areas considered safe from fallout. The Cs-137 data from this study will serve as a reliable baseline of Cs-137 levels in the event of a future release of fallout.
NASA Technical Reports Server (NTRS)
Bish, D. L.; Blake, D. F.; Vaniman, D. T.; Chipera, S. J.; Sarrazin, P.; Morris, R. V.; Ming, D. W.; Treiman, A. H.; Downs, R. T.; Morrison, S. M.;
2013-01-01
Numerous orbital and landed observations of the martian surface suggest a reasonably uniform martian soil composition, likely as a result of global aeolian mixing [1, 2]. Chemical data for martian soils are abundant [e.g., 2, 3], and phase information has been provided by lander thermal emission and Moessbauer spectroscopic measurements [3, 4, 5, 6]. However, until now no X-ray diffraction (XRD) data were available for martian soil nor has XRD ever been used on another body apart from Earth. XRD is generally considered the most definitive method for determining the crystalline phases in solid samples, and it is the method of choice for determining mineralogy. CheMin s first XRD analysis on Mars coincided with the 100th anniversary of the discovery of X-ray diffraction by von Laue. Curiosity delivered scooped samples of loose, unconsolidated material ("soil") acquired from an aeolian bedform at the Rocknest locality to instruments in the body of the rover (the laboratory). Imaging shows that the soil has a range of particle sizes, of 1-2 mm and smaller, presumably representing contributions from global, regional, and local sources.
NASA Astrophysics Data System (ADS)
Szabó, Judit Alexandra; Szabó, Boglárka; Centeri, Csaba; Józsa, Sándor; Szalai, Zoltán; Jakab, Gergely
2017-04-01
Soil surface conditions changes dynamically during a precipitation event. The changes involve compaction, aggregate detachment and of course transportation by runoff or drop erosion. Those processes together have an effect on the transport process of the soil particles and aggregates, and influences the roughness of the soil surface as well. How does surface roughness have an effect on the aggregate and particle size distribution of the sediment? How does the sediment connectivity change from precipitation event to precipitation event? Beside the previous questions on of the main aim of the present research is to apply rainfall simulators for the built-up of a complex approach, rather than to concentrate only on one of two factors. Hence four types of sample were collected during the simulation experiment sequences: 1) photos were taken about the surface before and after the rain, in order to build digital surface models; 2) all the runoff and eroded sediment was collected; 3) soil loss due to drop erosion was also sampled separately; and 4) undisturbed crust samples were collected for thin section analyses. Though the runoff ratio was smaller than what, the preliminary results suggest that the sediment connectivity covered bigger area on crusty surface, than on a rough one. These ambiguous data may be connected to the soil crust development. J. A. Szabó wish to acknowledge the support of NTP-NFTÖ-16-0203. G. Jakab wish to acknowledge the support of János Bolyai Fellowship.
NASA Technical Reports Server (NTRS)
Hapke, Bruce; DiMucci, Dominick; Nelson, Robert; Smythe, William
1996-01-01
Two different mechanisms, shadow-hiding and coherent backscatter, can cause a hot spot, or opposition effect, in the bidirectional reflectance of vegetation and soils. Because the two mechanisms sample different properties, it is important to know which one is primarily responsible in a given medium. This question can be answered by measuring the bidirectional reflectance in circularly polarized light. If the results of the limited experiments reported here can be extrapolated to a wider range of materials, it appears that the primary cause of the hot spot in most vegetation canopies and in moist, clumpy soils is shadow-hiding. However, in vegetation with large numbers of wavelength-sized structures, such as mosses, and in dry, fine-grained soils, the hot spot is dominated by coherent backscatter.
Knoth de Zarruk, K; Scholer, G; Dudal, Y
2007-09-01
Land spreading of organic materials introduces large amounts of dissolved organic matter (DOM) into the soil. DOM has the ability to form stable complexes with heavy metals and can facilitate their transport towards the groundwater. The effects on soil processes are difficult to assess, because different DOM components might react differently towards metal ions. The objective of this study was to investigate the fluorescence signature and the Cu2+-binding capacity of individual molecular size fractions of DOM from various sources. DOM extracted from leaf compost, chicken manure, sugar cane vinasse and a fulvic hypercalcaric cambisol was fractionated by the means of dialysis into four molecular size classes: MW<500, 500
Ritchie, S A; Addison, D S; van Essen, F
1992-03-01
The distribution of Aedes taeniorhynchus eggshells in Florida mangrove basin forests was determined and used to design a sampling plan. Eggshells were found in 10/11 sites (91%), with a mean +/- SE density of 1.45 +/- 0.75/cc; density did not change significantly year to year. Highest densities were located on the sloping banks of hummocks, ponds and potholes. Eggshells were less clumped in distribution than eggs and larvae and thus required a smaller sample size for a given precision level. While eggshells were flushed from compact soil that was subject to runoff during heavy rain, mangrove peat, the dominant soil of eggshell-bearing sites, was less dense and had little runoff or eggshell flushing. We suggest that eggshell surveys could be used to identify Ae. taeniorhynchus oviposition sites and oviposition patterns.
Fraser, F C; Todman, L C; Corstanje, R; Deeks, L K; Harris, J A; Pawlett, M; Whitmore, A P; Ritz, K
2016-12-01
Factors governing the turnover of organic matter (OM) added to soils, including substrate quality, climate, environment and biology, are well known, but their relative importance has been difficult to ascertain due to the interconnected nature of the soil system. This has made their inclusion in mechanistic models of OM turnover or nutrient cycling difficult despite the potential power of these models to unravel complex interactions. Using high temporal-resolution respirometery (6 min measurement intervals), we monitored the respiratory response of 67 soils sampled from across England and Wales over a 5 day period following the addition of a complex organic substrate (green barley powder). Four respiratory response archetypes were observed, characterised by different rates of respiration as well as different time-dependent patterns. We also found that it was possible to predict, with 95% accuracy, which type of respiratory behaviour a soil would exhibit based on certain physical and chemical soil properties combined with the size and phenotypic structure of the microbial community. Bulk density, microbial biomass carbon, water holding capacity and microbial community phenotype were identified as the four most important factors in predicting the soils' respiratory responses using a Bayesian belief network. These results show that the size and constitution of the microbial community are as important as physico-chemical properties of a soil in governing the respiratory response to OM addition. Such a combination suggests that the 'architecture' of the soil, i.e. the integration of the spatial organisation of the environment and the interactions between the communities living and functioning within the pore networks, is fundamentally important in regulating such processes.
NASA Astrophysics Data System (ADS)
Nikodem, Antonín; Kodešová, Radka; Jakšík, Ondřej; Fér, Miroslav; Klement, Aleš
2016-04-01
This study was carried out in Southern Moravia, in the Czech Republic. The original soil unit in the wider area is a Haplic Chernozem developed on loess. The intensive agricultural exploitation in combination with terrain morphology has resulted in a highly diversified soil spatial pattern. Nowadays the original soil unit is preserved only on top of relatively flat parts, and is gradually transformed by water erosion up to Regosols on the steepest slopes, while colluvial soils are formed in terrain depressions and at toe slopes due to sedimentation of previously eroded material. Soils within this area has been intensively investigated during the last several years (e.g. Jakšík et al., 2015; Vašát et al., 2014, 2015a,b). Soil sampling (disturbed and undisturbed 100-cm3 soil samples) was performed at 5 points of one elevation transect in November 2010 (after wheat sowing) and August 2011 (after wheat harvest). Disturbed soil samples were used to determine basic soil properties (grain size distribution and organic carbon content etc.). Undisturbed soil samples were used to determine the soil water retention curves and the hydraulic conductivity functions using the multiple outflow tests in Tempe cells and a numerical inversion with HYDRUS 1-D. Scaling factors (alpha-h for pressure head, alpha-theta for soil water contents and alpha-k for hydraulic conductivities) were used here to express soil hydraulic properties variability. Evaluated scaling factors reflected position within the elevation transect as well as time of soil sampling. In general large values of alpha-h, lower values of alpha-k and similar values of alpha-theta were obtained in 2010 in comparison to values obtained in 2011, which indicates development of soil structure during the vegetation season. Jakšík, O., Kodešová, R., Kubiš, A., Stehlíková, I., Drábek, O., Kapička, A. (2015): Soil aggregate stability within morphologically diverse areas. Catena, 127, 287-299. Vašát, R., Kodešová, R., Borůvka, L., Jakšík, O., Klement, A., Drábek, O. (2015a): Absorption features in soil spectra assessment. Applied Spectroscopy, 69(12), 1425-1431. Vašát, R., Kodešová, R., Borůvka, L., Klement, A., Jakšík, O., Gholizadeh, A. (2014): Consideration of peak parameters derived from continuum-removed spectra to predict extractable nutrients in soils with visible and near-infrared diffuse reflectance spectroscopy (VNIR-DRS). Geoderma, 232-234, 208-218. Vašát, R., Kodešová, R., Klement, A., Jakšík, O. (2015b): Predicting oxidizable carbon content via visible- and near-infrared diffuse reflectance spectroscopy in soils heavily affected by water erosion. Soil and Water Research, 10 (2), 74-77.
Choate, LaDonna M; Ranville, James F; Bunge, Annette L; Macalady, Donald L
2006-10-01
In the evaluation of soil particle-size effects on environmental processes, particle-size distributions are measured by either wet or dry sieving. Commonly, size distributions determined by wet and dry sieving differ because some particles disaggregate in water. Whereas the dry-sieve distributions are most relevant to the study of soil adherence to skin, soil can be recovered from skin only by washing with the potential for disaggregation whether or not it is subsequently wet or dry sieved. Thus, the possibility exists that wet-sieving measurements of the particle sizes that adhered to the skin could be skewed toward the smaller fractions. This paper provides a method by which dry-sieve particle-size distributions can be reconstructed from wet-sieve particle-size distributions for the same soil. The approach combines mass balances with a series of experiments in which wet sieving was applied to dry-sieve fractions from the original soil. Unless the soil moisture content is high (i.e., greater than or equal to the water content after equilibration with water-saturated air), only the soil particles of diameters less than about 63 microm adhere to the skin. Because of this, the adhering particle-size distribution calculated using the reconstruction method was not significantly different from the wet-sieving determinations.
[Humus composition of black soil and its organo-mineral complexes under different fertility level].
Zhao, Lanpo; Wang, Jie; Liu, Jingshuan; Liu, Shuxia; Wang, Yanling; Wang, Hongbin; Zhang, Zhidan
2005-01-01
Determinations by Kumada method showed that with the improvement of black soil fertility, the free and combined humus contents in soil and its different size organo-mineral complexes increased, but the humification degree of free humus decreased, which was more obvious in silt and fine sand size complexes. The organic carbon content in complexes, humus extraction rate, free humus content, and humification degree of free humic acid decreased with the increasing particle size of complexes. All free humic acids in fertile soil were Rp type, while in unfertile soil, they were Rp and B type. With the increasing particle size of complexes, the type of free humic acids changed in the sequence A type (clay)-->B type (silt)-->Rp type (fine sand). Combined form humic acid mainly belonged to A type, no matter what particle size the complex was. The improvement of soil fertility could make the humification degree of free humus in soil and its complexes decrease, and furthermore, result in type change. In black soil, the type change of free humic acid mainly occurred in silt size complex, and that of combined form humic acid mainly occurred in fine sand size complex.
NASA Astrophysics Data System (ADS)
Grison, Hana; Petrovsky, Eduard; Stejskalova, Sarka; Kapicka, Ales
2015-05-01
Identification of Andosols is primarily based upon the content of their colloidal constituents—clay and metal-humus complexes—and on the determining of andic properties. This needs time and cost-consuming geochemical analyses. Our primary aim of this study is to describe the magnetic and geochemical properties of soils rich in iron oxides derived from strongly magnetic volcanic basement (in this case Andosols). Secondary aim is to explore links between magnetic and chemical parameters of andic soils with respect to genesis factors: parent material age, precipitation, and thickness of the soil profile. Six pedons of andic properties, developed on basaltic lavas, were analyzed down to parent rock by a set of magnetic and geochemical methods. Magnetic data of soil and rock samples reflect the type, concentration, and particle-size distribution of ferrimagnetic minerals. Geochemical data include soil reaction (pH in H2O), cation exchange capacity, organic carbon, and different forms of extractable iron and aluminum content. Our results suggest the following: (1) magnetic measurements of low-field mass-specific magnetic susceptibility can be a reliable indicator for estimating andic properties, and in combination with thermomagnetic curves may be suitable for discriminating between alu-andic and sil-andic subtypes. (2) In the studied Andosols, strong relationships were found between (a) magnetic grain-size parameters, precipitation, and exchangeable bases; (b) concentration of ferrimagnetic particles and degree of crystallization of free iron; and (c) parameters reflecting changes in magneto-mineralogy and soil genesis (parent material age + soil depth).
NASA Astrophysics Data System (ADS)
Zacháry, Dóra; Szalai, Zoltán; Jakab, Gergely; Németh, Tibor; Sipos, Péter; Filep, Tibor
2016-04-01
Fine textured soils generally considered containing more microbial biomass, and having a lower rate of biomass turnover and organic matter decomposition than coarse textured soils. In spite of this, several recent studies have shown contradicting trends. For example, the relative importance of different clay minerals for stabilizing SOM remains an open question. The aim of this study is to evaluate soil mineralological effect on the turnover of SOM by identifying and quantifying soil phyllosilicates. Our samples are derived from C3 forests and C3 croplands from different sites of Hungary. C4 maize residues are added to the soils in order to get natural 13C enrichment as tracer for the young carbon. Bulk samples of the soils from 0 to 20 cm depth were collected. The samples were dried at room temperature and preincubated in the dark for 4 months at 20 °C. The basic soil properties (pH, cation exchange capacity) were analysed after 2 mm sieving and homogenization. The amount of total C and N in the soils and maize residues were analysed using NDIR-chemiluminescent analyzer (Tekmar Dohrman Apollo 9000N). Particle size distribution was determined by laser diffraction (Fritsch Analysette MicroTec 22 plus) and particle imaging method (Malvern Morphologi G3-ID). The mineralological composition of the samples was determined by X-ray diffraction (Philips PW 1730 X-ray diffractometer). Moist soil equivalent to 400 g dry soil mixed with 2 g maize leaves is kept in air tight glass chambers for 183 days at 20°C. The leaves had previously been dried at 60 °C, were cut into pieces and sieved through a 2 mm mesh. The evolved CO2 is trapped by 10 mL 2 M NaOH, which is exchanged on day 1, 3, 5, 7, 10, 14, 21, 28 and subsequently every 31 days. The fractional abundance of 13C of the soils, the plant material and the evolved CO2 is measured with isotope ratio mass spectrometer (Thermo Scientific Delta V IRMS). Our work show the preliminary results on the link between phyllosilicate mineralogy and soil C dynamic by reporting a quantified phyllosilicate data in connection with SOM turnover and stabilization. Acknowledgement This research was supported by the Hungarian Scientific National Fund (OTKA K100180).
McShane, Heather V A; Sunahara, Geoffrey I; Whalen, Joann K; Hendershot, William H
2014-07-15
Soil toxicity tests for metal oxide nanoparticles often include micrometer-sized oxide and metal salt treatments to distinguish between toxicity from nanometer-sized particles, non-nanometer-sized particles, and dissolved ions. Test result will be confounded if each chemical form has different effects on soil solution chemistry. We report on changes in soil solution chemistry over 56 days-the duration of some standard soil toxicity tests-in three soils amended with 500 mg/kg Cu as nanometer-sized CuO (nano), micrometer-sized CuO (micrometer), or Cu(NO3)2 (salt). In the CuO-amended soils, the log Cu2+ activity was initially low (minimum -9.48) and increased with time (maximum -5.20), whereas in the salt-amended soils it was initially high (maximum -4.80) and decreased with time (minimum -6.10). The Cu2+ activity in the nano-amended soils was higher than in the micrometer-amended soils for at least the first 11 days, and lower than in the salt-amended soils for at least 28 d. The pH, and dissolved Ca and Mg concentrations in the CuO-amended soils were similar, but the salt-amended soils had lower pH for at least 14 d, and higher Ca and Mg concentrations throughout the test. Soil pretreatments such as leaching and aging prior to toxicity tests are suggested.
Relationship soil-water-plant after the dry season in dry Mediterranean areas
NASA Astrophysics Data System (ADS)
Hueso-González, P.; Jiménez-Donaire, V.; Ruiz-Sinoga, J. D.
2012-04-01
Preliminary studies have determined the existence of a pluviometric gradient around Mediterranean system, which varies from 240 to 1 100 mm mean annual rainfall. This gradient has an incidence in the physical, chemical and hydrological properties in soils with the same litology. Empiric results conclude that humid eco-geomorphological systems are controlled by biotic processes, whereas in arid eco-geomorphological systems, are abiotic factors which have more importance in soil degradation processes. The study area of the present work is located in Málaga (Andalusia, Spain), in the southern part of the Natural Park "Sierra Tejeda, Almijara y Alhama". There, the mean annual temperature is around 18 °C and the mean rainfall is 650 mm. Predominant vegetation corresponds to the termomediterranean serie Smilaci Mauritanicae-Querceto Rotundifoliae Sigmetum, typical of basic soils. The aim of this study is to analyse the immediate hydrological response of the soil under different vegetation covers, through the analysis of certain properties, all this, under subhumid ombrotipe. A random choice of ten representative plants has been done. These plants, with different sizes, were located in the same Southern slope. The soil samples were taken right beside the plant log, and also within a distance of 0.4 to 1 metre from them, depending on the plant size. The sampling was carried out between the end of the dry season and the beginning of the wet one, after a 20% of the mean annual rainfall had rained. The physical, chemical and hydrological analyzes -both in the field and the laboratory- were: exchange-base, total carbon, cation exchange capacity, soil infiltration capacity, salt content, hydrophobia, organic matter, soil organic carbon, total nitrogen, wetting profile in bared soil, wetting profile under vegetation cover (shrubland), and p.H. Literature reveals that rainfall affects significantly the edafogenetic factors, regarding the pluviometric gradient level. In the present study, from a 20% accumulated rainfall of the total mean, not considerable incidences can be found. Furthermore, after the dry season, rainfall event higher than 0.5 mm are necessary in order to observe changes in soil wetting profile. However, for intense rainfall episodes, the hydrological soil response -observe by its wetting profile- in bare soil is 24 hours, and 48 hours in soils vegetation cover. Secondly, soil hydraulic conductivity - measured with a minidisc infiltrometer at different distances from the selected plants- shows that soil infiltration capacity does not follow a determined patter. This could be due to the significant stony character of the studied area soil/presence of stones in of the studied area soil. Finally, not major differences regarding soil organic matter have been observed, either at species level or temporal level, from the selected plant.
NASA Astrophysics Data System (ADS)
Kogut, Janusz P.; Tekieli, Marcin
2018-04-01
Non-contact video measurement methods are used to extend the capabilities of standard measurement systems, based on strain gauges or accelerometers. In most cases, they are able to provide more accurate information about the material or construction being tested than traditional sensors, while maintaining a high resolution and measurement stability. With the use of optical methods, it is possible to generate a full field of displacement on the surface of the test sample. The displacement value is the basic (primary) value determined using optical methods, and it is possible to determine the size of the derivative in the form of a sample deformation. This paper presents the application of a non-contact optical method to investigate the deformation of coarse soil material. For this type of soil, it is particularly difficult to obtain basic strength parameters. The use of a non-contact optical method, followed by a digital image correlation (DIC) study of the sample obtained during the tests, effectively completes the description of the behaviour of this type of material.
Soil strength and macropore volume limit root elongation rates in many UK agricultural soils.
Valentine, Tracy A; Hallett, Paul D; Binnie, Kirsty; Young, Mark W; Squire, Geoffrey R; Hawes, Cathy; Bengough, A Glyn
2012-07-01
Simple indicators of crop and cultivar performance across a range of soil types and management are needed for designing and testing sustainable cropping practices. This paper determined the extent to which soil chemical and physical properties, particularly soil strength and pore-size distribution influences root elongation in a wide range of agricultural top soils, using a seedling-based indicator. Intact soil cores were sampled from the topsoil of 59 agricultural fields in Scotland, representing a wide geographic spread, range of textures and management practices. Water release characteristics, dry bulk density and needle penetrometer resistance were measured on three cores from each field. Soil samples from the same locations were sieved, analysed for chemical characteristics, and packed to dry bulk density of 1.0 g cm(-3) to minimize physical constraints. Root elongation rates were determined for barley seedlings planted in both intact field and packed soil cores at a water content close to field capacity (-20 kPa matric potential). Root elongation in field soil was typically less than half of that in packed soils. Penetrometer resistance was typically between 1 and 3 MPa for field soils, indicating the soils were relatively hard, despite their moderately wet condition (compared with <0.2 MPa for packed soil). Root elongation was strongly linked to differences in physical rather than chemical properties. In field soil root elongation was related most closely to the volume of soil pores between 60 µm and 300 µm equivalent diameter, as estimated from water-release characteristics, accounting for 65.7 % of the variation in the elongation rates. Root elongation rate in the majority of field soils was slower than half of the unimpeded (packed) rate. Such major reductions in root elongation rates will decrease rooting volumes and limit crop growth in soils where nutrients and water are scarce.
Targeting sediment management strategies using sediment quantification and fingerprinting methods
NASA Astrophysics Data System (ADS)
Sherriff, Sophie; Rowan, John; Fenton, Owen; Jordan, Phil; hUallacháin, Daire Ó.
2016-04-01
Cost-effective sediment management is required to reduce excessive delivery of fine sediment due to intensive land uses such as agriculture, resulting in the degradation of aquatic ecosystems. Prioritising measures to mitigate dominant sediment sources is, however, challenging, as sediment loss risk is spatially and temporally variable between and within catchments. Fluctuations in sediment supply from potential sources result from variations in land uses resulting in increased erodibility where ground cover is low (e.g., cultivated, poached and compacted soils), and physical catchment characteristics controlling hydrological connectivity and transport pathways (surface and/or sub-surface). Sediment fingerprinting is an evidence-based management tool to identify sources of in-stream sediments at the catchment scale. Potential sediment sources are related to a river sediment sample, comprising a mixture of source sediments, using natural physico-chemical characteristics (or 'tracers'), and contributions are statistically un-mixed. Suspended sediment data were collected over two years at the outlet of three intensive agricultural catchments (approximately 10 km2) in Ireland. Dominant catchment characteristics were grassland on poorly-drained soils, arable on well-drained soils and arable on moderately-drained soils. High-resolution (10-min) calibrated turbidity-based suspended sediment and discharge data were combined to quantify yield. In-stream sediment samples (for fingerprinting analysis) were collected at six to twelve week intervals, using time-integrated sediment samplers. Potential sources, including stream channel banks, ditches, arable and grassland field topsoils, damaged road verges and tracks were sampled, oven-dried (<40oC) and sieved (125 microns). Soil and sediment samples were analysed for mineral magnetics, geochemistry and radionuclide tracers, particle size distribution and soil organic carbon. Tracer data were corrected to account for particle size and organic matter selectivity processes. Contributions from potential sources type groups (channel - ditches and stream banks, roads - road verges and tracks, fields - grassland and arable topsoils) were statistically un-mixed using FR2000, an uncertainty-inclusive algorithm, and combined with sediment yield data. Results showed sediment contributions from channel, field and road groups were 70%, 25% and 5% in the poorly-drained catchment, 59%, 22% and 19% in the well-drained catchment, and 17%, 74% and 9% in the moderately-drained catchment. Higher channel contributions in the poorly-drained catchment were attributed to bank erosion accelerated by the rapid diversion of surface runoff into channels, facilitated by surface and sub-surface artificial drainage networks, and bank seepage from lateral pressure gradients due to confined groundwater. Despite the greatest proportion of arable soils in the well-drained catchment, this source was frequently hydrologically disconnected as well-drained soils largely infiltrated rainfall and prevented surface soil erosion. Periods of high and intense rainfall were associated with greater proportions of field losses in the well-drained catchment likely due to infiltration exceeding the saturated hydraulic conductivity of soils and establishment of surface hydrological connectivity. Losses from field topsoils dominated in the moderately-drained catchment as antecedent soil wetness maintained surface flow pathways and coincided with low groundcover on arable soils. For cost-effective management of sediment pressures to aquatic ecosystems, catchment specific variations in sediment sources must be considered.
Moskovchenko, D V; Kurchatova, A N; Fefilov, N N; Yurtaev, A A
2017-05-01
The concentrations of several trace elements and iron were determined in 26 soil samples from Belyi Island in the Kara Sea (West Siberian sector of Russian Arctic). The major types of soils predominating in the soil cover were sampled. The concentrations of trace elements (mg kg -1 ) varied within the following ranges: 119-561 for Mn, 9.5-126 for Zn, 0.082-2.5 for Cd, <0.5-19.2 for Cu, <0.5-132 for Pb, 0.011-0.081 for Hg, <0.5-10.3 for Co, and 7.6-108 for Cr; the concentration of Fe varied from 3943 to 37,899 mg kg -1 . The impact of particular soil properties (pH, carbon and nitrogen contents, particle-size distribution) on metal concentrations was analyzed by the methods of correlation, cluster, and factor analyses. The correlation analysis showed that metal concentrations are negatively correlated with the sand content and positively correlated with the contents of silt and clay fractions. The cluster analysis allowed separation of the soils into three clusters. Cluster I included the soils with the high organic matter content formed under conditions of poor drainage; cluster II, the low-humus sandy soils of the divides and slopes; and cluster III, saline soils of coastal marshes. It was concluded that the geomorphic position largely controls the soil properties. The obtained data were compared with data on metal concentrations in other regions of the Russian Arctic. In general, the concentrations of trace elements in the studied soils were within the ranges typical of the background Arctic territories. However, some soils of Belyi Island contained elevated concentrations of Pb and Cd.
NASA Astrophysics Data System (ADS)
Jolliff, Bradley L.; Rockow, Kaylynn M.; Korotev, Randy L.; Haskin, Larry A.
1996-01-01
Through analysis by instrumental neutron activation (INAA) of 789 individual lithic fragments from the 2 mm-4 mm grain-size fractions of five Apollo 17 soil samples (72443, 72503, 73243, 76283, and 76503) and petrographic examination of a subset, we have determined the diversity and proportions of rock types recorded within soils from the highland massifs. The distribution of rock types at the site, as recorded by lithic fragments in the soils, is an alternative to the distribution inferred from the limited number of large rock samples. The compositions and proportions of 2 mm-4 mm fragments provide a bridge between compositions of <1 mm fines, and types and proportions of rocks observed in large collected breccias and their clasts. The 2 mm-4 mm fraction of soil from South Massif, represented by an unbiased set of lithic fragments from station-2 samples 72443 and 72503, consists of 71% noritic impact-melt breccia, 7% incompatible-trace-element-(ITE)-poor highland rock types (mainly granulitic breccias), 19% agglutinates and regolith breccias, 1% high-Ti mare basalt, and 2% others (very-low-Ti (VLT) basalt, monzogabbro breccia, and metal). In contrast, the 2 mm-4 mm fraction of a soil from the North Massif, represented by an unbiased set of lithic fragments from station-6 sample 76503, has a greater proportion of ITE-poor highland rock types and mare-basalt fragments: it consists of 29% ITE-poor highland rock types (mainly granulitic breccias and troctolitic anorthosite), 25% impact-melt breccia, 13% high-Ti mare basalt, 31% agglutinates and regolith breccias, 1% orange glass and related breccia, and 1% others. Based on a comparison of mass-weighted mean compositions of the lithic fragments with compositions of soil fines from all Apollo 17 highland stations, differences between the station-2 and station-6 samples are representative of differences between available samples from the two massifs. From the distribution of different rock types and their compositions, we conclude the following: (1) North-Massif and South-Massif soil samples differ significantly in types and proportions of ITE-poor highland components and ITE-rich impact-melt-breccia components. These differences reflect crudely layered massifs and known local geology. The greater percentage of impact-melt breccia in the South-Massif light-mantle soil stems from derivation of the light mantle from the top of the massif, which apparently is richer in noritic impact-melt breccia than are lower parts of the massifs. (2) At station 2, the 2 mm-4 mm grain-size fraction is enriched in impact-melt breccias compared to the <1 mm fraction, suggesting that the <1 mm fraction within the light mantle has a greater proportion of lithologies such as granulitic breccias which are more prevalent lower in the massifs and which we infer to be older (pre-basin) highland components. (3) Soil from station 6, North Massif, contains magnesian troctolitic anorthosite, which is a component that is rare in station-2 South-Massif soils. (4) Compositional differences between poikilitic impact-melt breccias from the two massifs suggest broad-scale heterogeneity in impact-melt breccia interpreted by most investigators to be ejecta from the Serenitatis basin. We have found rock types not previously recognized or uncommon at the Apollo 17 site. These include (1) ITE-rich impact-melt breccias that are compositionally distinct from previously recognized "aphanitic" and "poikilitic" groups at Apollo 17; (2) regolith breccias that are free of mare components and poor in impact melt of the types associated with the main melt-breccia groups, and that, if those groups derive from the Serenitatis impact, may represent the pre-Serenitatis surface; (3) several VLT basalts, including an unusual very-high-K basaltic breccia; (4) orange-glass regolith breccias; (5) aphanitic-matrix melt breccias at station 6; (6) fragments of alkali-rich composition, including alkali anorthosite, and monzogabbro; (7) one fragment of 72275-type KREEP basalt from station 3; (8) seven lithic fragments of ferroan-anorthositic-suite rocks; and (9) a fragment of metal, possibly from an L chondrite. Some of these lithologies have been found only as lithic fragments in the soils and not among the large rock samples. In contrast, we have not found among the 2 mm-4 mm lithic fragments individual samples of certain lithologies that have been recognized as clasts in breccias (e.g., dunite and spinel troctolite). The diversity of lithologic information contained in the lithic fragments of these soils nearly equals that found among large rock samples, and most information bearing on petrographic relationships is maintained, even in such small samples. Given a small number of large samples for "petrologic ground truth," small lithic fragments contained in soil "scoop" samples can provide the basis for interpreting the diversity of rock types and their proportions in remotely sensed geologic units. They should be considered essential targets for future automated sample-analysis and sample-return missions.
Case studies in forensic soil examinations.
Petraco, Nicholas; Kubic, Thomas A; Petraco, Nicholas D K
2008-07-04
The examination and comparison of forensic soil samples is discussed. The origin of a simple and easy to learn procedure used and modified by the authors is reviewed. The process begins with a preliminary observation, removal of artifacts, and sieving of each specimen. A specific size fraction is split into three fractions for color matching, polarized light microscopy (PLM) examination (particle counting) and optional gradient comparison. Next, several cases are reviewed in which the modified method was used to evaluate the likelihood of common origin for questioned and known specimens.
Availability of hydrogen for lunar base activities
NASA Technical Reports Server (NTRS)
Bustin, Roberta
1990-01-01
Hydrogen will be needed on a lunar base to make water for consumables, to provide fuel, and to serve as reducing agent in the extraction of oxygen from lunar minerals. The abundance and distribution of solar wind implanted hydrogen were studied. Hydrogen was found in all samples studied with concentrations varying widely depending on soil maturity, grain size, and mineral composition. Seven cores returned from the moon were studied. Although hydrogen was implanted in the upper surface layer of the regolith, it was found throughout the cores due to micrometeorite reworking of the soil.
Cai, Andong; Xu, Hu; Shao, Xingfang; Zhu, Ping; Zhang, Wenju; Xu, Minggang; Murphy, Daniel V
2016-01-01
Long-term manure application is recognized as an efficient management practice to enhance soil organic carbon (SOC) accumulation and nitrogen (N) mineralization capacity. A field study was established in 1979 to understand the impact of long-term manure and/or chemical fertilizer application on soil fertility in a continuous maize cropping system. Soil samples were collected from field plots in 2012 from 9 fertilization treatments (M0CK, M0N, M0NPK, M30CK, M30N, M30NPK, M60CK, M60N, and M60NPK) where M0, M30, and M60 refer to manure applied at rates of 0, 30, and 60 t ha(-1) yr(-1), respectively; CK indicates no fertilizer; N and NPK refer to chemical fertilizer in the forms of either N or N plus phosphorus (P) and potassium (K). Soils were separated into three particle-size fractions (2000-250, 250-53, and <53 μm) by dry- and wet-sieving. A laboratory incubation study of these separated particle-size fractions was used to evaluate the effect of long-term manure, in combination with/without chemical fertilization application, on the accumulation and mineralization of SOC and total N in each fraction. Results showed that long-term manure application significantly increased SOC and total N content and enhanced C and N mineralization in the three particle-size fractions. The content of SOC and total N followed the order 2000-250 μm > 250-53 μm > 53 μm fraction, whereas the amount of C and N mineralization followed the reverse order. In the <53 μm fraction, the M60NPK treatment significantly increased the amount of C and N mineralized (7.0 and 10.1 times, respectively) compared to the M0CK treatment. Long-term manure application, especially when combined with chemical fertilizers, resulted in increased soil microbial biomass C and N, and a decreased microbial metabolic quotient. Consequently, long-term manure fertilization was beneficial to both soil C and N turnover and microbial activity, and had significant effect on the microbial metabolic quotient.
PM10 emissions from aggregate fractions of an Entic Haplustoll under two contrasting tillage systems
NASA Astrophysics Data System (ADS)
Mendez, Mariano J.; Aimar, Silvia B.; Buschiazzo, Daniel E.
2015-12-01
Tillage systems affect physical and chemical properties of soils modifying its aggregation. How changes of the aggregate size distribution affect the capacity of the soil to emit fine particulate matter (PM10) to the atmosphere during wind erosion processes, is a less investigated issue. In order to answer this question, PM10 emissions from an Entic Haplustoll submitted to 25 years of continuous conventional tillage (LC) and no-till (NT) were analyzed. Soil samples were sieved with a rotary sieve in order to determine the aggregate size distribution (fractions : <0.42 mm, 0.42-0.84 mm, 0.84-2 mm, 2-6.4 mm, 6.4-19.2 mm, and >19.2 mm), the dry aggregate stability (DAS) and the erodible fraction (EF). The organic matter contents (OM), the particle size composition and the PM10 emission of each aggregate fraction were also measured. Results showed that NT promoted OM accumulations in all aggregate fractions which favored DAS and soil aggregation. The <0.42 mm sized aggregates (27%) predominated in CT and the >19.2 mm (41.7%) in NT, while the proportion of the other aggregate fractions was similar in both tillage systems. As a consequence of the smaller proportion of the <0.42 mm aggregates, the erodible fraction was lower in NT (EF: 17.3%) than in CT (30.8%). PM10 emissions of each aggregate fraction (AE) decreased exponentially with increasing size of the fractions in both tillage systems, mainly as a consequence of the smaller size and higher specific surface. AE was higher in CT than in NT for all aggregate fractions, but the higher differences were found in the <0.42 mm aggregates (18 μg g-1 in CT vs 8 μg g-1 in NT). The PM10 emission of the whole soil was three times higher in CT than in NT, while the emission of the erodible fraction (EFE) was in CT four times higher than in NT. PM10 emissions of the <0.42 mm aggregates represented over 50% of SE and 90% of EFE. We concluded that NT reduced the capacity of soils of the semiarid Pampas to emit PM10 because it produced a better aggregation that reduced the proportion and emission of the <0.42 mm aggregates. These aggregates had, by far, the highest emission potential.
NASA Astrophysics Data System (ADS)
Viscarra Rossel, R. A.
2015-12-01
We can effectively monitor soil condition—and develop sound policies to offset the emissions of greenhouse gases—only with accurate data from which to define baselines. Currently, estimates of soil organic C for countries or continents are either unavailable or largely uncertain because they are derived from sparse data, with large gaps over many areas of the Earth. Here, we derive spatially explicit estimates, and their uncertainty, of the distribution and stock of organic C content and composition in the soil of Australia. The composition of soil organic C may be characterized by chemical separation or physical fractionation based on either particle size or particle density (Skjemstad et al., 2004; Gregorich et al., 2006; Kelleher&Simpson, 2006; Zimmermann et al., 2007). In Australia, for example, Skjemstad et al. (2004) used physical separation of soil samples into 50-2000 and <50-μm particle-size fractions followed by the measurement of char-carbon using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy, giving the three OC pools, particulate organic carbon (POC), humic organic carbon (HOC) and resistant organic carbon (ROC; charcoal or char-carbon). We assembled and harmonized data from several sources to produce the most comprehensive set of data on the current stock of organic C in soil of the continent. Using them, we have produced a fine spatial resolution baseline map of organic C, POC, HOC and ROC at the continental scale. In this presentation I will describe how we made the maps and how we use them to assess the vulnerability of soil organic C to for instance climate change.
Environmental Controls of Soil Organic Carbon in Soils Across Amazonia
NASA Astrophysics Data System (ADS)
Quesada, Carlos Alberto; Paz, Claudia; Phillips, Oliver; Nonato Araujo Filho, Raimundo; Lloyd, Jon
2015-04-01
Amazonian forests store and cycle a significant amount of carbon on its soils and vegetation. Yet, Amazonian forests are now subject to strong environmental pressure from both land use and climate change. Some of the more dramatic model projections for the future of the Amazon predict a major change in precipitation followed by savanization of most currently forested areas, resulting in major carbon losses to the atmosphere. However, how soil carbon stocks will respond to climatic and land use changes depend largely on how soil carbon is stabilized. Amazonian soils are highly diverse, being very variable in their weathering levels and chemical and physical properties, and thus it is important to consider how the different soils of the Basin stabilize and store soil organic carbon (SOC). The wide variation in soil weathering levels present in Amazonia, suggests that soil groups with contrasting pedogenetic development should differ in their predominant mechanism of SOC stabilization. In this study we investigated the edaphic, mineralogical and climatic controls of SOC concentration in 147 pristine forest soils across nine different countries in Amazonia, encompassing 14 different WRB soil groups. Soil samples were collected in 1 ha permanent plots used for forest dynamics studies as part of the RAINFOR project. Only 0-30 cm deep averages are reported here. Soil samples were analyzed for carbon and nitrogen and for their chemical (exchangeable bases, phosphorus, pH) and physical properties, (particle size, bulk density) and mineralogy through standard selective dissolution techniques (Fe and Al oxides) and by semi-quantitative X-Ray diffraction. In Addition, selected soils from each soil group had SOC fractionated by physical and chemical techniques. Our results indicate that different stabilization mechanisms are responsible for SOC stabilization in Amazonian soils with contrasting pedogenetic level. Ferralsols and Acrisols were found to have uniform mineralogy (kaolinitic) and thus the clay plus silt fraction was the best correlate for SOC but with crystalline iron oxides (dithionite-citrate minus ammonium oxalate - oxalic acid extractable iron) being also correlated to SOC in these soils (R2 = 0.74). Most of SOC in these soils was found on the clay+silt fraction and in stable, clay rich aggregates. However, SOC of high activity clays and other less weathered soils such as Alisols, Cambisols and Plinthosols showed no correlation with particle size or iron oxides, being mostly stabilized by aluminium complexes. We found SOC of these soils to be better explained by a three way interaction among soil pH, carbon quality and dithionite-citrate extractable Al (R2 = 0.85). Consistent with this observation, SOC in the less weathered soils was mostly found in the colloidal fraction (75%). SOC of Podzols and Arenosols on the other hand had only a small but significant influence from their clay plus silt fraction (R2 = 0.31), with particulate organic matter accounting for most of its SOC.
Imaging natural materials with a quasi-microscope. [spectrophotometry of granular materials
NASA Technical Reports Server (NTRS)
Bragg, S.; Arvidson, R.
1977-01-01
A Viking lander camera with auxilliary optics mounted inside the dust post was evaluated to determine its capability for imaging the inorganic properties of granular materials. During mission operations, prepared samples would be delivered to a plate positioned within the camera's field of view and depth of focus. The auxiliary optics would then allow soil samples to be imaged with an 11 pm pixel size in the broad band (high resolution, black and white) mode, and a 33 pm pixel size in the multispectral mode. The equipment will be used to characterize: (1) the size distribution of grains produced by igneous (intrusive and extrusive) processes or by shock metamorphism, (2) the size distribution resulting from crushing, chemical alteration, or by hydraulic or aerodynamic sorting; (3) the shape and degree of grain roundness and surface texture induced by mechanical and chemical alteration; and (4) the mineralogy and chemistry of grains.
Greater carbon stocks and faster turnover rates with increasing agricultural productivity
NASA Astrophysics Data System (ADS)
Sanderman, J.; Fallon, S.; Baisden, T. W.
2013-12-01
H.H. Janzen (2006) eloquently argued that from an agricultural perspective there is a tradeoff between storing carbon as soil organic matter (SOM) and the soil nutrient and energy benefit provided during SOM mineralization. Here we report on results from the Permanent Rotation Trial at the Waite Agricultural Institute, South Australia, indicating that shifting to an agricultural management strategy which returns more carbon to the soil, not only leads to greater carbon stocks but also increases the rate of carbon cycling through the soil. The Permanent Rotation Trial was established on a red Chromosol in 1925 with upgrades made to several treatments in 1948. Decadal soil samples were collected starting in 1963 at two depths, 0-10 and 10-22.5 cm, by compositing 20 soil cores taken along the length of each plot. We have chosen to analyze five trials representing a gradient in productivity: permanent pasture (Pa), wheat-pasture rotation (2W4Pa), continuous wheat (WW), wheat-oats-fallow rotation (WOF) and wheat-fallow (WF). For each of the soil samples (40 in total), the radiocarbon activity in the bulk soil as well as size-fractionated samples was measured by accelerator mass spectrometry at ANU's Radiocarbon Dating Laboratory (Fallon et al. 2010). After nearly 70 years under each rotation, SOC stocks increased linearly with productivity data across the trials from 24 to 58 tC ha-1. Importantly, these differences were due to greater losses over time in the low productivity trials rather than gains in SOC in any of the trials. Uptake of the bomb-spike in atmospheric 14C into the soil was greatest in the trials with the greatest productivity. The coarse size fraction always had greater Δ14C values than the bulk soil samples. Several different multi-pool steady state and non-steady state models were used to interpret the Δ14C data in terms of SOC turnover rates. Regardless of model choice, either the decay rates of all pools needed to increase or the allocation of C to more actively cycling pools needed to increase in order to fit the model to the measured Δ14C data as productivity of the trial increased. In model formulations with a non-cycling passive pool (i.e. Rothamsted Carbon Model, Jenkinson 1990), the best fit solution for the 14C age of the passive pool decreased from > 2000 years in the WF trial to < 100 years in the Pa trial. The modeling analysis suggests that decay constants are not constant and that there are important feedbacks between C input rate and the turnover rate of SOC. References: Fallon S et al. (2010) The next chapter in radiocarbon dating at the Australian National University: Status report on the single stage AMS. Nuclear Instruments and Methods in Physics Research: Section B, 268: 298-901. Grace PR et al. (1995) Trends in wheat yields and soil organic carbon in the Permanent Rotation Trial at the Waite Agricultural Research Institute, South Australia. Australian Journal of Experimental Agriculture 35: 857-864. Janzen HH (2006) The soil carbon dilemma: Shall we hoard it or use it? Soil Biology and Biochemistry 38:419-424. Jenkinson DS (1990) The turnover of organic carbon and nitrogen in soil. Philosophical transactions of the Royal Society, Series B 329: 361-368
NASA Astrophysics Data System (ADS)
Naseri, Mahyar; Richter, Niels; Iden, Sascha C.; Durner, Wolfgang
2017-04-01
Rock fragments in soil, in this contribution referred to as "stones", play an important role for water flow in the subsurface. To successfully model soil hydraulic processes such as evaporation, redistribution and drainage, an understanding of how stones affect soil hydraulic properties (SHP) is crucial. Past investigations on the role of stones in soil have focused on their influence on the water retention curve (WRC) and on saturated hydraulic conductivity Ks, and have led to some simple theoretical models for the influence of stones on effective SHP. However, studies that measure unsaturated SHP directly, i.e., simultaneously the WRC and hydraulic conductivity curve (HCC) are still missing. Also, studies so far were restricted to low or moderate stone contents of less than 40%. We conducted a laboratory study in which we examined the effect of stone content on effective WRC and HCC of stony soils. Mixtures of soil and stones were generated by substituting background soil with stones in weight fractions between 0% (fine material only) to 100% (pure gravel). Stone sizes were 2-5 mm and 7-15 mm, respectively, and background soils were Sand and Sandy Loam. Packed samples were fully saturated under vacuum and subsequently subjected to evaporation in the laboratory. All experiments were done in three replicates. The soil hydraulic properties were determined by the simplified evaporation method using the UMS HYPROP setup. Questions were whether the applied measurement methodology is applicable to derive the SHP of the mixtures and how the gradual increase of stone content will affect the SHP, particularly the HCC. The applied methodology was successful in identifying effective SHP with a high precision over the full moisture range. WRC and HCC were successfully obtained by HYPROP, even for pure gravel with a size of 7-15 mm. WRCs changed qualitatively in the expected manner, i.e., an increase of stone content reduced porosity and soil water content at all suctions. However, the effect on SHP could not be modelled by assuming stones to be simply impermeable objects that occupy a part of the soil space. This was indicated by a nonlinear increase of the van Genuchten shape parameter α and a decrease of n with increasing gravel content, the latter indicating a widening of the effective pore-size distribution. Saturated conductivity decreased with increasing stone content, but then steeply increased for stone contents > 40%. Unsaturated hydraulic conductivity curves of stone-soil mixtures showed a less pronounced decrease with increasing suction as compared to the pure components, again indicating a widening of the effective pore-size distribution and a nonlinear dependence of the effective unsaturated conductivity on stone content.
Sakaguchi, Aya; Yamamoto, Masayoshi; Hoshi, Masaharu; Imanaka, Tetsuji; Apsalikov, Kazbek N; Gusev, Boris I
2006-02-01
The present situation of radioactive contamination at the village of Dolon and nearby villages such as Mostik, Cheremushka and Budene was investigated to serve as an aid to resolve dose discrepancy between model calculations and TL measurements made for external gamma-ray dose in air in Dolon. The paper was focused on the reevaluation of the accumulated levels and distribution of long-lived radionuclides 137Cs and Pu isotopes in soil using long core samples up to a depth of 30 and 100 cm. The inventories of 137Cs and 239,240Pu found were in the wide range of 140-10,310 and 140-14,320 Bq/m2, respectively. Most of the Pu in soil was tightly incorporated into various sizes of fused particles. Both 137Cs and 239,240Pu in soil were accumulated in the smaller soil size fraction of <125 microm, and the presence of hot particles, probably due to Pu, was clearly observed by star-like patterns from alpha-tracks. The obtained data will be helpful for evaluating the current and future radiation risks to the people living around there.
Torr, Peter; Spiridonov, Sergei E; Heritage, Stuart; Wilson, Michael J
2007-03-01
1. Despite nematodes being the most abundant animals on earth, very few animal ecologists study them, probably because of the difficulties of identifying them to species by morphological methods. 2. A group of nematodes that are important both ecologically and economically is the entomopathogenic nematodes, which play a key role in regulating soil food webs and are sold throughout the world as biological insecticides, yet for which very little is known of their population ecology. 3. A novel detection and quantification method was developed for soil nematodes using real-time polymerase chain reaction (PCR), and the technique was used to estimate numbers of two closely related species of entomopathogenic nematodes, Steinernema kraussei and S. affine in 50 soil samples from 10 sites in Scotland representing two distinct habitats (woodland and grassland). 4. There was a high degree of correlation between our molecular and traditional morphological estimates of population size and our data clearly showed that Steinernema affine occurred only in grassland areas, whereas S. kraussei was found in grassland and woodland samples to a similar degree. 5. Real-time PCR offers a rapid and accurate method of detecting individual nematode species from soil samples without the need for a specialist taxonomist, and has much potential for use in studies of nematode population ecology.
Gemas: Geochemical mapping of the agricultural and grasing land soils of Europe
NASA Astrophysics Data System (ADS)
Reimann, Clemens; Fabian, Karl; Birke, Manfred; Demetriades, Alecos; Matschullat, Jörg; Gemas Project Team
2017-04-01
Geochemical Mapping of Agricultural and grazing land Soil (GEMAS) is a cooperative project between the Geochemistry Expert Group of EuroGeoSurveys and Eurometaux. During 2008 and until early 2009, a total of 2108 samples of agricultural (ploughed land, 0-20 cm, Ap-samples) and 2023 samples of grazing land (0-10 cm, Gr samples)) soil were collected at a density of 1 site/2500 km2 each from 33 European countries, covering an area of 5,600,000 km2. All samples were analysed for 52 chemical elements following an aqua regia extraction, 42 elements by XRF (total), and soil properties, like CEC, TOC, pH (CaCl2), following tight external quality control procedures. In addition, the Ap soil samples were analysed for 57 elements in a mobile metal ion (MMI®) extraction, Pb isotopes, magnetic susceptibility and total C, N and S. The results demonstrate that robust geochemical maps of Europe can be constructed based on low density sampling, the two independent sample materials, Ap and Gr, show very comparable distribution patterns across Europe. At the European scale, element distribution patterns are governed by natural processes, most often a combination of geology and climate. The geochemical maps reflect most of the known metal mining districts in Europe. In addition, a number of new anomalies emerge that may indicate mineral potential. The size of some anomalies is such that they can only be detected when mapping at the continental scale. For some elements completely new geological settings are detected. An anthropogenic impact at a much more local scale is discernible in the immediate vicinity of some major European cities (e.g., London, Paris) and some metal smelters. The impact of agriculture is visible for Cu (vineyard soils) and for some further elements only in the mobile metal ion (MMI) extraction. For several trace elements deficiency issues are a larger threat to plant, animal and finally human health at the European scale than toxicity. Taking the famous step back to see the whole picture at the continental scale and to understand the relative importance of the processes leading to element enrichment/depletion in soil may hold unexpected promise for mineral exploration as well as for environmental sciences.
Chemistry of volcanic soils used for agriculture in Brava Island (Cape Verde)
NASA Astrophysics Data System (ADS)
Prudêncio, Maria Isabel; Marques, Rosa; Waerenborgh, João Carlos; José Vieira, Bruno; Dias, Maria Isabel; Rocha, Fernando
2017-04-01
Brava is a small volcanic island located on the south-western part of the Cape Verde archipelago. It is characterized by an irregular plateau between 300 and 976 m above sea level, which is bounded by steep coastal cliffs and cut by fluvial incision in a generally radial drainage pattern. The major volcano-stratigraphic units of the island are: Lower Unit, Middle Unit, Upper Unit, and Sediments. Although Brava is one of the islands with more frequent rainy periods in Cape Verde, the climate is essentially semi-arid, which associated with the rough topography leads to incipient soils. Detailed Fe speciation and chemical composition studies of Cape Verde soils have shown that oxidation is a major weathering mechanism, and high contents of trace elements may occur originated from imbalance of elements in the volcanic parent materials, which can be a threat to the environmental health. The soils mostly used for agriculture in Brava Island are those developed on phonolitic pyroclasts on the plateau and also on sediments. In this work the whole sample (< 2 mm) and the clay-sized fraction (< 2 µm) of these soils were analysed by Mössbauer spectroscopy and neutron activation analysis, aiming to characterize the iron speciation and to determine the concentration and distribution of 30 chemical elements in Brava soils. Mössbauer spectroscopy shows that Fe is more oxidyzed in topsoils developed on sediments (84-87%) than in soils developed on pyroclasts (71-79%). In the clay sized-fraction of all the studied soils only Fe(III) was detected. Iron oxides clearly distinguish the soils derived from the two types of parent materials, hematite being the only Fe oxide present in soils developed on sediments, while maghemite is more abundant in soils developed on pyroclasts. Iron and chromium are depleted in this fine fraction suggesting their occurrence as iron oxides and ferromagnesian minerals present in coarser particles. Among the chemical elements studied, antimony was found to be particularly concentrated in the clay-sized fraction (up to 28 mg/kg) in soils located in the northern part of the island. The existence of significant Sb amounts in the fine particles may contribute to its accumulation in plants both by absorption or by dust deposition onto the plant leaves.
Moody, John A.; Nyman, Peter
2013-01-01
Wildfire affects hillslope erosion through increased surface runoff and increased sediment availability, both of which contribute to large post-fire erosion events. Relations between soil detachment rate, soil depth, flow and root properties, and fire impacts are poorly understood and not represented explicitly in commonly used post-fire erosion models. Detachment rates were measured on intact soil cores using a modified tilting flume. The cores were mounted flush with the flume-bed and a measurement was made on the surface of the core. The core was extruded upward, cut off, and another measurement was repeated at a different depth below the original surface of the core. Intact cores were collected from one site burned by the 2010 Fourmile Canyon (FMC) fire in Colorado and from one site burned by the 2010 Pozo fire in California. Each site contained contrasting vegetation and soil types. Additional soil samples were collected alongside the intact cores and were analyzed in the laboratory for soil properties (organic matter, bulk density, particle-size distribution) and for root properties (root density and root-length density). Particle-size distribution and root properties were different between sites, but sites were similar in terms of bulk density and organic matter. Soil detachment rates had similar relations with non-uniform shear stress and non-uniform unit stream power. Detachment rates within single sampling units displayed a relatively weak and inconsistent relation to flow variables. When averaged across all clusters, the detachment rate displayed a linear relation to shear stress, but variability in soil properties meant that the shear stress accounted for only a small proportion of the overall variability in detachment rates (R2 = 0.23; R2 is the coefficient of determination). Detachment rate was related to root-length density in some clusters (R2 values up to 0.91) and unrelated in others (R2 values 2 value improved and the range of exponents became narrower by applying a multivariate regression model where boundary shear stress and root-length density were included as explanatory variables. This suggests that an erodibility parameter which incorporates the effects of both flow and root properties on detachment could improve the representation of sediment availability after wildfire.
Measurement of surface water runoff from plots of two different sizes
NASA Astrophysics Data System (ADS)
Joel, Abraham; Messing, Ingmar; Seguel, Oscar; Casanova, Manuel
2002-05-01
Intensities and amounts of water infiltration and runoff on sloping land are governed by the rainfall pattern and soil hydraulic conductivity, as well as by the microtopography and soil surface conditions. These components are closely interrelated and occur simultaneously, and their particular contribution may change during a rainfall event, or their effects may vary at different field scales. The scale effect on the process of infiltration/runoff was studied under natural field and rainfall conditions for two plot sizes: small plots of 0·25 m2 and large plots of 50 m2. The measurements were carried out in the central region of Chile in a piedmont most recently used as natural pastureland. Three blocks, each having one large plot and five small plots, were established. Cumulative rainfall and runoff quantities were sampled every 5 min. Significant variations in runoff responses to rainfall rates were found for the two plot sizes. On average, large plots yielded only 40% of runoff quantities produced on small plots per unit area. This difference between plot sizes was observed even during periods of continuous runoff.
Application of X-ray computed microtomography to soil craters formed by raindrop splash
NASA Astrophysics Data System (ADS)
Beczek, Michał; Ryżak, Magdalena; Lamorski, Krzysztof; Sochan, Agata; Mazur, Rafał; Bieganowski, Andrzej
2018-02-01
The creation of craters on the soil surface is part of splash erosion. Due to the small size of these craters, they are difficult to study. The main aim of this paper was to test X-ray computed microtomography to investigate craters formed by raindrop impacts. Measurements were made on soil samples moistened to three different levels corresponding with soil water potentials of 0.1, 3.16 and 16 kPa. Using images obtained by X-ray microtomography, geometric parameters of the craters were recorded and analysed. X-ray computed microtomography proved to be a useful and efficient tool for the investigation of craters formed on the soil surface after the impact of water drops. The parameters of the craters changed with the energy of the water drops and were dependent on the initial moisture content of the soil. Crater depth is more dependent on the increased energy of the water drop than crater diameter.
Physical and chemical characterization of actinides in soil from Johnston Atoll
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, S.F.; Bates, J.K.; Buck, E.C.
1997-02-01
Characterization of the actinide content of a sample of contaminated coral soil from Johnston Atoll, the site of three non-nuclear destructs of nuclear warhead-carrying THOR missiles in 1962, revealed that >99% of the total actinide content is associated with discrete bomb fragments. After removal of these fragments, there was an inverse correlation between actinide content and soil particle size in particles from 43 to 0.4 {mu}m diameter. Detailed analyses of this remaining soil revealed no discrete actinide phase in these soil particles, despite measurable actinide content. Observations indicate that exposure to the environment has caused the conversion of relatively insolublemore » actinide oxides to the more soluble actinyl oxides and actinyl carbonate coordinated complexes. This process has led to dissolution of actinides from discrete particles and migration to the surrounding soil surfaces, resulting in a dispersion greater than would be expected by physical transport of discrete particles alone. 26 refs., 4 figs., 1 tab.« less
The MSP 2001 Mars Environmental Compatibility Assessment (MECA)
NASA Technical Reports Server (NTRS)
Hecht, M. H.; Meloy, T. P.; Anderson, M. S.; Buehler, M. G.; Frant, M. A.; Grannan, S. M.; Fuerstenau, D.; Keller, H. U.; Markiewicz, W. J.; Marshall, J.
1999-01-01
The Mars Environmental Compatibility Assessment (MECA) will evaluate the Martian environment for soil and dust-related hazards to human exploration as part of the Mars Surveyor Program 2001 Lander. Sponsored by the Human Exploration and Development of Space (HEDS) enterprise, MECA's goal is to evaluate potential geochemical and environmental hazards that may confront future Martian explorers, and to guide HEDS scientists in the development of high fidelity Mars soil simulants. The integrated MECA payload contains a wet-chemistry laboratory, a microscopy station, an electrometer to characterize the electrostatics of the soil and its environment, and arrays of material patches to study the abrasive and adhesive properties of soil grains. The instrument will acquire soil samples with a robotic arm equipped with a camera. MECA will examine surface and subsurface soil and dust in order to characterize particle size, shape, hardness, and also physical characteristics that may provide clues to mineralogy. MECA will characterize soil/water mixtures with respect to pH, redox potential, total dissolved ions, and trace toxins. MECA will determine the nature of electrostatic charging associated with excavation of soil, and the influence of ionizing radiation on material properties. It will also observe natural dust accumulation on engineering materials. To accomplish these objectives, MECA is allocated a mass of 10 kg within an enclosure of 35 x 25 x 15 cm. The Wet Chemistry Laboratory (WCL) consists of four identical cells that will accept samples from surface and subsurface regions accessible to the Lander's robotic arm, mix them with water, and perform extensive analysis of the solution. Ion-selective electrodes and related sensors will evaluate total dissolved solids, redox potential, pH, and the concentration of many soluble ions and gases in wet Martian soil. These electrodes can detect potentially dangerous heavy-metal ions, emitted pathogenic gases, and the soil's corrosive potential. Experiments will include cyclic voltammetry and anodic stripping voltammetry. Complementary to the Viking experiments, the chemical laboratory will characterize the water-soil solution rather than emitted gases. Nonetheless, through analysis of dissolved gases it will be able to replicate many of the Viking observations related to oxidants. MECA's microscopy station combines optical and atomic-force microscopy (AFM) in an actively focused, controlled illumination environment to image particles from millimeters to nanometers in size. Careful selection of substrates allows controlled experiments in adhesion, abrasion, hardness, aggregation, magnetic and other properties. Special tools allow primitive manipulation (brushing and scraping) of samples. Soil particle properties including size, shape, color, hardness, adhesive potential (electrostatic and magnetic), will be determined using an array of sample receptacles and collection substrates. The simple, rugged atomic-force microscope will image in the submicron size range and has the capability of performing a particle-by-particle analysis of the dust and soil. On Earth, the earliest forms of life are preserved as microfossils. The atomic-force microscope will have the required resolution to image down to the scale of terrestrial microfossils and beyond. Mounted on the end of the robot arm, MECA's electrometer actually consists of four types of sensors: an electric field meter, several triboelectricity monitors, an ion gauge, and a thermometer. Tempered only by ultraviolet-light-induced ions and a low-voltage breakdown threshold, the dry, cold, dusty martian environment presents an imposing electrostatic hazard to both robots and humans. The field meter will measure the ambient field on nearby objects while the triboelectric sensors, using identical circuitry, will measure the charge accumulated on test substances as they are dragged through the soil by the arm. The ion chamber, open to the environment, will sense both charged dust and free ions in the air. Over and above the potential threat to electronics, the electrostatic environment holds one of the keys to transport of dust and, consequently, Martian meteorology. Viewed with the robot arm camera, the abrasion and adhesion plates are strategically placed to allow direct observation of the interaction between materials and soils on a macroscopic scale. Materials of graded hardness are placed directly under the robot arm scoop to sense wear and soil hardness. A second array, placed on the lander deck, is deployed after the dust plume of landing has settled. It can be manipulated in a primitive fashion by the arm, first having dirt deposited on it from the scoop and subsequently shaken clean. A third array will passively collect dust from the atmosphere. In addition to objectives related to human exploration, the MECA data set will be rich in information relevant to basic geology, paleoclimate, and exobiology issues. To understand both contemporaneous and ancient processes on Mars, the mineralogy, petrology, and reactivity of Martian surface materials should be constrained. The MECA experiment will shed light on these quantities through its combination of chemistry and microscopy. MECA will be capable of measuring the composition of ancient surface water environments, observing microscopic evidence of geological (and biological?) processes, inferring soil and dust transport, comminution and weathering mechanisms, and characterizing soil horizons that might be encountered during excavation.
Nitrous Oxide Reductase (nosZ) Gene Fragments Differ between Native and Cultivated Michigan Soils
Stres, Blaž; Mahne, Ivan; Avguštin, Gorazd; Tiedje, James M.
2004-01-01
The effect of standard agricultural management on the genetic heterogeneity of nitrous oxide reductase (nosZ) fragments from denitrifying prokaryotes in native and cultivated soil was explored. Thirty-six soil cores were composited from each of the two soil management conditions. nosZ gene fragments were amplified from triplicate samples, and PCR products were cloned and screened by restriction fragment length polymorphism (RFLP). The total nosZ RFLP profiles increased in similarity with soil sample size until triplicate 3-g samples produced visually identical RFLP profiles for each treatment. Large differences in total nosZ profiles were observed between the native and cultivated soils. The fragments representing major groups of clones encountered at least twice and four randomly selected clones with unique RFLP patterns were sequenced to verify nosZ identity. The sequence diversity of nosZ clones from the cultivated field was higher, and only eight patterns were found in clone libraries from both soils among the 182 distinct nosZ RFLP patterns identified from the two soils. A group of clones that comprised 32% of all clones dominated the gene library of native soil, whereas many minor groups were observed in the gene library of cultivated soil. The 95% confidence intervals of the Chao1 nonparametric richness estimator for nosZ RFLP data did not overlap, indicating that the levels of species richness are significantly different in the two soils, the cultivated soil having higher diversity. Phylogenetic analysis of deduced amino acid sequences grouped the majority of nosZ clones into an interleaved Michigan soil cluster whose cultured members are α-Proteobacteria. Only four nosZ sequences from cultivated soil and one from the native soil were related to sequences found in γ-Proteobacteria. Sequences from the native field formed a distinct, closely related cluster (Dmean = 0.16) containing 91.6% of the native clones. Clones from the cultivated field were more distantly related to each other (Dmean = 0.26), and 65% were found outside of the cluster from the native soil, further indicating a difference in the two communities. Overall, there appears to be a relationship between use and richness, diversity, and the phylogenetic position of nosZ sequences, indicating that agricultural use of soil caused a shift to a more diverse denitrifying community. PMID:14711656
Comparison of Morphologies of Apollo 17 Dust Particles with Lunar Simulant, JSC-1
NASA Technical Reports Server (NTRS)
Liu, Yang; Taylor, Lawrence A.; Hill, Eddy; Kihm, Kenneth D.; Day, James D. M.
2005-01-01
Lunar dust (< 20 microns) makes up approx.20 wt.% of the lunar soil. Because of the abrasive and adhering nature of lunar soil, a detailed knowledge of the morphology (size, shape and abundance) of lunar dust is important for dust mitigation on the Moon. This represents a critical step towards the establishment of long-term human presence on the Moon (Taylor et al. 2005). Machinery design for in-situ resource utilization (ISRU) on the Moon also requires detailed information on dust morphology and general physical/chemical characteristics. Here, we report a morphological study of Apollo 17 dust sample 70051 and compare it to lunar soil stimulant, JSC-1. W e have obtained SEM images of dust grains from sample 70051 soil (Fig. 1). The dust grains imaged are composed of fragments of minerals, rocks, agglutinates and glass. Most particles consist largely of agglutinitic impact glass with their typical vesicular textures (fine bubbles). All grains show sub-angular to angular shapes, commonly with sharp edges, common for crushed glass fragments. There are mainly four textures: (1) ropey-textured pieces (typical for agglutinates), (2) angular shards, (3) blocky bits, and (4) Swiss-cheese grains. This last type with its high concentration of submicron bubbles, occurs on all scales. Submicron cracks are also present in most grains. Dust-sized grains of lunar soil simulant, JSC-1, were also studied. JSC-1 is a basaltic tuff with relatively high glass content (approx.50%; McKay et al. 1994). It was initially chosen in the early 90s to approximate the geotechnical properties of the average lunar soil (Klosky et al. 1996). JSC-1 dust grains also show angular blocky and shard textures (Fig. 2), similar to those of lunar dust. However, the JSC-1 grains lack the Swiss-cheese textured particles, as well as submicron cracks and bubbles in most grains.
Minimizing Artifacts and Biases in Chamber-Based Measurements of Soil Respiration
NASA Astrophysics Data System (ADS)
Davidson, E. A.; Savage, K.
2001-05-01
Soil respiration is one of the largest and most important fluxes of carbon in terrestrial ecosystems. The objectives of this paper are to review concerns about uncertainties of chamber-based measurements of CO2 emissions from soils, to evaluate the direction and magnitude of these potential errors, and to explain procedures that minimize these errors and biases. Disturbance of diffusion gradients cause underestimate of fluxes by less than 15% in most cases, and can be partially corrected for with curve fitting and/or can be minimized by using brief measurement periods. Under-pressurization or over-pressurization of the chamber caused by flow restrictions in air circulating designs can cause large errors, but can also be avoided with properly sized chamber vents and unrestricted flows. Somewhat larger pressure differentials are observed under windy conditions, and the accuracy of measurements made under such conditions needs more research. Spatial and temporal heterogeneity can be addressed with appropriate chamber sizes and numbers and frequency of sampling. For example, means of 8 randomly chosen flux measurements from a population of 36 measurements made with 300 cm2 chambers in tropical forests and pastures were within 25% of the full population mean 98% of the time and were within 10% of the full population mean 70% of the time. Comparisons of chamber-based measurements with tower-based measurements of total ecosystem respiration require analysis of the scale of variation within the purported tower footprint. In a forest at Howland, Maine, the differences in soil respiration rates among very poorly drained and well drained soils were large, but they mostly were fortuitously cancelled when evaluated for purported tower footprints of 600-2100 m length. While all of these potential sources of measurement error and sampling biases must be carefully considered, properly designed and deployed chambers provide a reliable means of accurately measuring soil respiration in terrestrial ecosystems.
Petrović, Jelena; Ćujić, Mirjana; Đorđević, Milan; Dragović, Ranko; Gajić, Boško; Miljanić, Šćepan; Dragović, Snežana
2013-06-01
In this study, the specific activity of (137)Cs was determined by gamma-ray spectrometry in 72 surface soil samples and 11 soil profiles collected from the territory of Belgrade 25 years after the Chernobyl accident. Based on the data obtained the external effective gamma dose rates due to (137)Cs were assessed and geographically mapped. The influence of pedogenic factors (pH, specific electrical conductivity, cation exchange capacity, organic matter content, soil particle size and carbonate content) on the spatial and vertical distribution of (137)Cs in soil was estimated through Pearson correlations. The specific activity of (137)Cs in surface soil samples ranged from 1.00 to 180 Bq kg(-1), with a mean value of 29.9 Bq kg(-1), while in soil profiles they ranged from 0.90 to 58.0 Bq kg(-1), with a mean value of 15.3 Bq kg(-1). The mean external effective gamma dose at 1 m above the ground due to (137)Cs in the soil was calculated to be 1.96 nSv h(-1). Geographic mapping of the external effective gamma dose rates originating from (137)Cs revealed much higher dose rates in southern parts of Belgrade city and around the confluence of the Sava and Danube. Negative Pearson correlation coefficients were found between pH, cation exchange capacity and (137)Cs specific activity in surface soil. There were positive correlations between organic matter and (137)Cs specific activity in surface soil; and between specific electrical conductivity, organic matter, silt content and (137)Cs specific activity in soil profiles.
Taxonomical and functional microbial responses to agriculture management of Amazon forest soils
NASA Astrophysics Data System (ADS)
Kuramae, Eiko; Navarrete, Acácio; Mendes, Lucas; de Hollander, Mattias; van Veen, Johannes; Tsai, Siu
2013-04-01
Land-use change is one of the greatest threats to biodiversity worldwide, and one of the most devastating changes in the use of land, especially in the tropics, is the conversion of forest to crop lands. Southeast Amazon region is considered the largest agricultural frontier in the world, where native forests are converted into soybean crop fields, a fact that highlights the social and economic importance of this system to Brazil. This study firstly, focused on the impact of land-use changes and agriculture management of Amazon forest soils on the size and composition of the acidobacterial community. Taxon-specific quantitative real-time PCR (qPCR) and pyrosequencing of 16S rRNA gene were applied to study the acidobacterial community in bulk soil samples from croplands, adjacent native forests and rhizosphere of soybean. Based on qPCR measurements, Acidobacteria accounted for 23%, 18% and 14% of the total bacterial signal in forest soils, cropland soils and soybean rhizosphere samples, respectively. From the sequences of Bacteria domain, the phylum Acidobacteria represented 28%, 16% and 17% of the sequences from forest soils, cropland soils and soybean rhizosphere samples, respectively. Acidobacteria subgroups 2-8, 10, 11, 13, 17, 18, 22 and 25 were detected with subgroup 1 as dominant among them. Subgroups 4, 6 and 7 were significantly higher in cropland soils than in forest soils, which subgroups respond to decrease of soil Aluminium. Subgroups 6 and 7 respond to high content of soil Ca, Mg, Zn, P, Fe, Mn and B. The results showed differential response of the Acidobacteria subgroups to abiotic soil factors, and indicated acidobacterial subgroups as potential early-warning bio-indicators of agricultural soil management effects in the Amazon area. Secondly, using 454 pyrosequencing, we investigated the metabolic diversity of microbial communities colonizing the rhizosphere and the bulk soil associated to soybean. The rhizosphere presented an overrepresentation of functional cores related to metabolism of nitrogen, iron, phosphorus and potassium, with bacterial groups linked to these cores found only in rhizosphere samples. Still, the network involving bacterial groups and metabolisms was less complex in rhizosphere, suggesting the specialization of some specific metabolic pathways. Taken together, these results indicate a rhizosphere effect over the soil functional community with a selection of some metabolic pathways, which could be related to plant benefits as nutrition and development. A better understanding of the functional role of the rhizosphere microbial communities is important to the development of a sustainable agriculture.
Shrestha, Utsala; Augé, Robert M.; Butler, David M.
2016-01-01
Anaerobic soil disinfestation (ASD) is a proven but relatively new strategy to control soil borne pests of horticultural crops through anaerobic decomposition of organic soil amendments. The ASD technique has primarily been used to control soil borne pathogens; however, this technique has also shown potential to control plant parasitic nematodes and weeds. ASD can utilize a broad range of carbon (C) amendments and optimization may improve efficacy across environments. In this context, a meta-analysis using a random-effects model was conducted to determine effect sizes of the ASD effect on soil borne pathogens (533 studies), plant parasitic nematodes (91 studies), and weeds (88 studies) compared with unamended controls. Yield response to ASD was evaluated (123 studies) compared to unamended and fumigated controls. We also examined moderator variables for environmental conditions and amendments to explore the impact of these moderators on ASD effectiveness on pests and yield. Across all pathogen types with the exception of Sclerotinia spp., ASD studies show suppression of bacterial, oomycete and fungal pathogens (59 to 94%). Pathogen suppression was effective under all environmental conditions (50 to 94%) and amendment types (53 to 97%), except when amendments were applied at rates less than 0.3 kg m-2. The ASD effect ranged from 15 to 56% for nematode suppression and 32 to 81% for weed suppression, but these differences were not significant. Significant nematode moderators included study type, soil type, sampling depth, incubation period, and use of mixed amendments. Weed suppression due to ASD showed significant heterogeneity for all environmental conditions, confirming that these studies do not share a common effect size. Total crop yield was not reduced by ASD when compared to a fumigant control and yield was significantly higher (30%) compared to an unamended control, suggesting ASD as a feasible option to maintain yield without chemical soil fumigants. We conclude ASD is effective against soil borne pathogens and while not conclusive due to a limited number of studies, we expect the same for nematodes and weeds given observed effect sizes. Findings should assist researchers in exploring ASD efficacy in particular environmental conditions and allow for development of standard treatment protocols. PMID:27617017
Deconvoluting effects of vine and soil properties on grape berry composition.
Zerihun, Ayalsew; McClymont, Lexie; Lanyon, Dean; Goodwin, Ian; Gibberd, Mark
2015-01-01
Grape berry composition is influenced by several factors including grapevine and soil properties and their interactions. Understanding how these factors interact to determine berry composition is integral to producing berries with desired composition. Here we used extensive spatio-temporal data to identify significant vine and soil features that influence Shiraz berry composition. The concentrations of berry flavonoids (anthocyanins, tannin and total phenolics), total soluble solids and pH were typically negatively associated with canopy, crop and berry size factors whereas titratable acidity was positively associated. The strengths of the associations, however, were generally greater with the crop and berry size factors than with the canopy size factor. The analyses also resolved separate influences of berry and crop size on berry composition. Soil properties had significant influences on berry composition; however, when influences of soil factors on vine-attributes were accounted for, the apparent effects of soil factors on berry composition were largely non-existent. At each site, variations in berry composition were more strongly associated with crop and berry size than with canopy size factors. Apparent influences of soil properties on berry composition are indirect, being mediated via their effects on vine attributes (canopy, crop and berry sizes). © 2014 Society of Chemical Industry.
Fall, S; Nazaret, S; Chotte, J L; Brauman, A
2004-08-01
The building and foraging activities of termites are known to modify soil characteristics such as the heterogeneity. In tropical savannas the impact of the activity of soil-feeding termites ( Cubitermes niokoloensis) has been shown to affect the properties of the soil at the aggregate level by creating new soil microenvironments (aggregate size fractions) [13]. These changes were investigated in greater depth by looking at the microbial density (AODC) and the genetic structure (automated rRNA intergenic spacer analysis: ARISA) of the communities in the different aggregate size fractions (i.e., coarse sand, fine sand, coarse silt, fine silt, and dispersible clays) separated from compartments (internal and external wall) of three Cubitermes niokoloensis mounds. The bacterial density of the mounds was significantly higher (1.5 to 3 times) than that of the surrounding soil. Within the aggregate size fractions, the termite building activity resulted in a significant increase in bacterial density within the coarser fractions (>20 mum). Multivariate analysis of the ARISA profiles revealed that the bacterial genetic structures of unfractionated soil and soil aggregate size fractions of the three mounds was noticeably different from the savanna soil used as a reference. Moreover, the microbial community associated with the different microenvironments in the three termite mounds revealed three distinct clusters formed by the aggregate size fractions of each mound. Except for the 2-20 mum fraction, these results suggest that the mound microbial genetic structure is more dependent upon microbial pool affiliation (the termite mound) than on the soil location (aggregate size fraction). The causes of the specificity of the microbial community structure of termite mound aggregate size fractions are discussed.
Johnson, J. R.; Lucey, P.G.; Horton, K.A.; Winter, E.M.
1998-01-01
Comparison of emissivity spectra (8-13 ??m) of pristine soils in the field with laboratory reflectance spectra of the same soils showed that laboratory spectra tend to have less spectral contrast than field spectra (see following article). We investigated this the phenomenon by measuring emission spectra of both undisturbed (in situ) and disturbed soils (prepared as if for transport to the laboratory). The disturbed soils had much less spectral contrast than the undisturbed soils in the reststrahlen region near 9 ??m. While the increased porosity of a disturbed soil can decrease spectral contrast due to multiple scattering, we hypothesize that the effect is dominantly the result of a difference in grain-size distribution of the optically active layer (i.e., fine particle coatings). This concept was proposed by Salisbury et al. (1994) to explain their observations that soils washed free of small particles adhering the larger grains exhibited greater spectral contrast than unwashed soils. Our laboratory reflectance spectra of wet- and dry-sieved soils returned from field sites also show greater spectral contrast for wet-sieved (washed) soils. We therefore propose that undisturbed soils in the field can be characterized as 'clean' soils (washed free of fine particles at the surface due to rain and wind action) and that disturbed soils represent 'dirty' soils (contaminated with fine particle coatings). The effect of packing soils in the field and laboratory also increases spectral contrast but not to the magnitude of that observed for undisturbed and wet-sieved soils. Since it is a common practice to use laboratory spectra of field samples to interpret spectra obtained remotely, we suggest that the influence of fine particle coatings on disturbed soils, if unrecognized, could influence interpretations of remote sensing data.Comparison of emissivity spectra (8-13 ??m) of pristine soils in the field with laboratory reflectance spectra of the same soils showed that laboratory spectra tend to have less spectral contrast than field spectra (see following article). We investigated this phenomenon by measuring emission spectra of both undisturbed (in situ) and disturbed soils (prepared as if for transport to the laboratory). The disturbed soils had much less spectral contrast than the undisturbed soils in the reststrahlen region near 9 ??m. While the increased porosity of a disturbed soil can decrease spectral contrast due to multiple scattering, we hypothesize that the effect is dominantly the result of a difference in grain-size distribution of the optically active layer (i.e., fine particle coatings). This concept was proposed by Salisbury et al. (1994) to explain their observations that soils washed free of small particles adhering to larger grains exhibited greater spectral contrast than unwashed soils. Our laboratory reflectance spectra of wet- and dry-sieved soils returned from field sites also show greater spectral contrast for wet-sieved (washed) soils. We therefore propose that undisturbed soils in the field can be characterized as `clean' soils (washed free of fine particles at the surface due to rain and wind action) and that disturbed soils represent `dirty' soils (contaminated with fine particle coatings). The effect of packing soils in the field and laboratory also increases spectral contrast but not to the magnitude of that observed for undisturbed and wet-sieved soils. Since it is a common practice to use laboratory spectra of field samples to interpret spectra obtained remotely, we suggest that the influence of fine particle coatings on disturbed soils, if unrecognized, could influence interpretations of remote sensing data.
Soil nutrient-landscape relationships in a lowland tropical rainforest in Panama
Barthold, F.K.; Stallard, R.F.; Elsenbeer, H.
2008-01-01
Soils play a crucial role in biogeochemical cycles as spatially distributed sources and sinks of nutrients. Any spatial patterns depend on soil forming processes, our understanding of which is still limited, especially in regards to tropical rainforests. The objective of our study was to investigate the effects of landscape properties, with an emphasis on the geometry of the land surface, on the spatial heterogeneity of soil chemical properties, and to test the suitability of soil-landscape modeling as an appropriate technique to predict the spatial variability of exchangeable K and Mg in a humid tropical forest in Panama. We used a design-based, stratified sampling scheme to collect soil samples at 108 sites on Barro Colorado Island, Panama. Stratifying variables are lithology, vegetation and topography. Topographic variables were generated from high-resolution digital elevation models with a grid size of 5 m. We took samples from five depths down to 1 m, and analyzed for total and exchangeable K and Mg. We used simple explorative data analysis techniques to elucidate the importance of lithology for soil total and exchangeable K and Mg. Classification and Regression Trees (CART) were adopted to investigate importance of topography, lithology and vegetation for the spatial distribution of exchangeable K and Mg and with the intention to develop models that regionalize the point observations using digital terrain data as explanatory variables. Our results suggest that topography and vegetation do not control the spatial distribution of the selected soil chemical properties at a landscape scale and lithology is important to some degree. Exchangeable K is distributed equally across the study area indicating that other than landscape processes, e.g. biogeochemical processes, are responsible for its spatial distribution. Lithology contributes to the spatial variation of exchangeable Mg but controlling variables could not be detected. The spatial variation of soil total K and Mg is mainly influenced by lithology. ?? 2007 Elsevier B.V. All rights reserved.
Hand-pressing trials and hand-to-mouth soil transfer experiments were conducted to better understand soil loadings, soil transfer ratios for three mouthing activities, and variations in particle size distributions under various conditions. Results indicated that sand caused highe...
NASA Astrophysics Data System (ADS)
Saravanan, R.; Udhayakumar, T.; Dinesh, S.; Venkatasubramanian, C.; Muthu, D.
2017-07-01
Construction of pavements uses various filling materials and due to the cost factor, the local soil is used for pavement construction. The strength of the soil is improved by stabilisation. This stabilisation increases the load bearing capacities of soil for heavy wheeled vehicle traffic. GGBS, silica fume, rice husk are the basic waste materials used as a waste material, which improves the quality of soil and reduces the cost of pavements. In this study, a detailed investigation is made on the Ground Granulated Blast-furnace Slag (GGBS), activated by lime, in the stabilisation of low bearing capacity sand and clay soils collected from Thanjavur district (Budalur, Sengipatti, Vallam and Palliahgraharam villages). The tests are carried out as per Indian Standards. The test procedures separated into two phases, namely Stage-I and Stage-II. In Stage-I the soil tests include soil type, particle size distribution, soil index properties, standard proctor tests, shear tests and CBR test. In Stage-II the soil tests include shear tests and CBR test for the suitable required proportions of GGBS along with lime in the collected soil samples. The test results from stage-I and stage-II are compared and from the study, it is inferred that the application of GGBS is a useful material for soil stabilisation.
Visual soil evaluation - future research requirements
NASA Astrophysics Data System (ADS)
Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Ball, Bruce; Holden, Nick
2017-04-01
A review of Visual Soil Evaluation (VSE) techniques (Emmet-Booth et al., 2016) highlighted their established utility for soil quality assessment, though some limitations were identified; (1) The examination of aggregate size, visible intra-porosity and shape forms a key assessment criterion in almost all methods, thus limiting evaluation to structural form. The addition of criteria that holistically examine structure may be desirable. For example, structural stability can be indicated using dispersion tests or examining soil surface crusting, while the assessment of soil colour may indirectly indicate soil organic matter content, a contributor to stability. Organic matter assessment may also indicate structural resilience, along with rooting, earthworm numbers or shrinkage cracking. (2) Soil texture may influence results or impeded method deployment. Modification of procedures to account for extreme texture variation is desirable. For example, evidence of compaction in sandy or single grain soils greatly differs to that in clayey soils. Some procedures incorporate separate classification systems or adjust deployment based on texture. (3) Research into impacts of soil moisture content on VSE evaluation criteria is required. Criteria such as rupture resistance and shape may be affected by moisture content. It is generally recommended that methods are deployed on moist soils and quantification of influences of moisture variation on results is necessary. (4) Robust sampling strategies for method deployment are required. Dealing with spatial variation differs between methods, but where methods can be deployed over large areas, clear instruction on sampling is required. Additionally, as emphasis has been placed on the agricultural production of soil, so the ability of VSE for exploring structural quality in terms of carbon storage, water purification and biodiversity support also requires research. References Emmet-Booth, J.P., Forristal. P.D., Fenton, O., Ball, B.C. & Holden, N.M. 2016. A review of visual soil evaluation techniques for soil structure. Soil Use and Management, 32, 623-634.
Finley, B L; Scott, P K; Mayhall, D A
1994-08-01
It has recently been suggested that "standard" data distributions for key exposure variables should be developed wherever appropriate for use in probabilistic or "Monte Carlo" exposure analyses. Soil-on-skin adherence estimates represent an ideal candidate for development of a standard data distribution: There are several readily available studies which offer a consistent pattern of reported results, and more importantly, soil adherence to skin is likely to vary little from site-to-site. In this paper, we thoroughly review each of the published soil adherence studies with respect to study design, sampling, and analytical methods, and level of confidence in the reported results. Based on these studies, probability density functions (PDF) of soil adherence values were examined for different age groups and different sampling techniques. The soil adherence PDF developed from adult data was found to resemble closely the soil adherence PDF based on child data in terms of both central tendency (mean = 0.49 and 0.63 mg-soil/cm2-skin, respectively) and 95th percentile values (1.6 and 2.4 mg-soil/cm2-skin, respectively). Accordingly, a single, "standard" PDF is presented based on all data collected for all age groups. This standard PDF is lognormally distributed; the arithmetic mean and standard deviation are 0.52 +/- 0.9 mg-soil/cm2-skin. Since our review of the literature indicates that soil adherence under environmental conditions will be minimally influenced by age, sex, soil type, or particle size, this PDF should be considered applicable to all settings. The 50th and 95th percentile values of the standard PDF (0.25 and 1.7 mg-soil/cm2-skin, respectively) are very similar to recent U.S. EPA estimates of "average" and "upper-bound" soil adherence (0.2 and 1.0 mg-soil/cm2-skin, respectively).
Kim, C.S.; Wilson, K.M.; Rytuba, J.J.
2011-01-01
The mining and processing of metal-bearing ores has resulted in contamination issues where waste materials from abandoned mines remain in piles of untreated and unconsolidated material, posing the potential for waterborne and airborne transport of toxic elements. This study presents a systematic method of particle size separation, mass distribution, and bulk chemical analysis for mine tailings and adjacent background soil samples from the Rand historic mining district, California, in order to assess particle size distribution and related trends in metal(loid) concentration as a function of particle size. Mine tailings produced through stamp milling and leaching processes were found to have both a narrower and finer particle size distribution than background samples, with significant fractions of particles available in a size range (???250 ??m) that could be incidentally ingested. In both tailings and background samples, the majority of trace metal(loid)s display an inverse relationship between concentration and particle size, resulting in higher proportions of As, Cr, Cu, Pb and Zn in finer-sized fractions which are more susceptible to both water- and wind-borne transport as well as ingestion and/or inhalation. Established regulatory screening levels for such elements may, therefore, significantly underestimate potential exposure risk if relying solely on bulk sample concentrations to guide remediation decisions. Correlations in elemental concentration trends (such as between As and Fe) indicate relationships between elements that may be relevant to their chemical speciation. ?? 2011 Elsevier Ltd.
Rangeland degradation in savannas of South Africa: spatial patterns of soil and vegetation
NASA Astrophysics Data System (ADS)
Sandhage-Hofmann, Alexandra; Löffler, Jörg; du Preez, Chris; Kotzé, Elmarie; Weijers, Stef; Wundram, Dirk; Zacharias, Maximilan; Amelung, Wulf
2017-04-01
Extensive bush encroachment by Acacia mellifera and associated woody species at semi-arid and arid sites are the most notable forms of rangeland degradation in savannas of South Africa. Concerns are growing over the threat of suppression and loss of nutritious perennial grass species. Grazing and different rangeland management systems (communal and freehold) are considered to be of major importance for degradation, but the process of encroachment is not restricted to communal land. A vegetation change is mostly accompanied by changes in soil properties, where soils in savanna systems can profit from woody species due to litter fall, root distribution, shadow and animal resting time. Savannas are very heterogeneous systems with high spatial variation of patches with wood, herbaceous species and bare ground. We hypothesized that the spatial patterns of soil properties in South Africás rangelands are controlled by present or past vegetation, modulated by the tenure systems with higher rangeland degradation in communal areas. To test this, we sampled soils at communal and commercial land in the Kuruman area of South Africa with the following design: three farms per tenure system, 6 randomly chosen plots (100x100m) per farm, and 25 soil samples (0-10 cm) per plot, each in a 5x5m sampling area. At every sampling point, information of overlying vegetation was recorded (species or bare soil, canopy size, height). For each sampling area, if present, trees/ shrubs were sampled and their ages estimated through the counting of annual growth rings. For each plot, high resolution UAV aerial photos were taken to evaluate the extent of bush encroachment. Analyses involved main physical and chemical soil parameters and isotopic analyses. The results of a rough aerial image classification (grass, woody species, bare ground) revealed significant differences between the tenure systems with higher coverage of bare ground and shrubs at communal farms, and higher grass cover at commercial farms. The tenure systems had no differences in main texture classes of the soils, but significant differences in the composition of the sand fraction, with higher levels of fine sand and lower levels of coarse sand in communal farms. The chemical soil properties showed a high variability both within and between the farms, with much higher variability within communal than commercial farms. Additionally, concentrations of nitrogen, carbon, calcium and pH were significant higher in communal farms. Isotopic analyses in soils showed significant differences for 15N with higher levels in commercial farms. Different photosynthetic pathways are responsible for differences found in 13C values, with higher levels (-16-18‰) in C4-grassland and lower values (-22-26‰) in soils under Acacia (C3). We found relationships between soil properties and species or bare ground, where differences in texture likely interact with both, vegetation cover and soil properties.
Viability of Mycobacterium leprae in the environment and its role in leprosy dissemination.
Mohanty, Partha Sarathi; Naaz, Farah; Katara, Dheeraj; Misba, Lama; Kumar, Dilip; Dwivedi, Deepak Kumar; Tiwari, Amit Kumar; Chauhan, Devendra Singh; Bansal, Avi Kumar; Tripathy, Srikanth Prasad; Katoch, Kiran
2016-01-01
Leprosy, a chronic disease caused by Mycobacterium leprae, is a public health concern in certain countries, including India. Although the prevalence of the disease has fallen drastically over time, new cases continue to occur at nearly the same rate in many regions. Several endemic pockets have been observed in India and elsewhere. The precise dynamics of leprosy transmission are still not clearly understood. Both live bacilli as well as M. leprae DNA have been detected in the soil and water of endemic areas; they possibly play an important role in disease transmission. To study the occurrence of viable M. leprae in environmental samples collected from areas of residence of patients with active leprosy. The study was conducted on 169 newly diagnosed leprosy patients in Ghatampur, Uttar Pradesh, India. Soil and water samples were collected from their areas of residence using a standardized protocol. An equal number of soil and water samples were also collected from non-patient areas of the same or adjoining villages. The environmental samples collected from the patients surroundings were subjected to 16S ribosomal RNA gene analysis after obtaining informed consent. About a quarter of the environmental samples collected from patient areas, (25.4% of soil samples and 24.2% of water samples) were found to be positive for specific 16S ribosomal RNA genes of M. leprae. Environmental samples collected from non-patient areas were all found negative for M. leprae 16S ribosomal RNA genes. The major limitation of the study was that the sample size was small. The study demonstrated the presence of viable strains of M. leprae in skin smear samples of paucibacillary patients and multibacillary patients, as well as in the environmental samples obtained from around their houses. This could play an important role in the continued transmission of leprosy.
Micro Electron MicroProbe and Sample Analyzer
NASA Technical Reports Server (NTRS)
Manohara, Harish; Bearman, Gregory; Douglas, Susanne; Bronikowski, Michael; Urgiles, Eduardo; Kowalczyk, Robert; Bryson, Charles
2009-01-01
A proposed, low-power, backpack-sized instrument, denoted the micro electron microprobe and sample analyzer (MEMSA), would serve as a means of rapidly performing high-resolution microscopy and energy-dispersive x-ray spectroscopy (EDX) of soil, dust, and rock particles in the field. The MEMSA would be similar to an environmental scanning electron microscope (ESEM) but would be much smaller and designed specifically for field use in studying effects of geological alteration at the micrometer scale. Like an ESEM, the MEMSA could be used to examine uncoated, electrically nonconductive specimens. In addition to the difference in size, other significant differences between the MEMSA and an ESEM lie in the mode of scanning and the nature of the electron source.
NASA Astrophysics Data System (ADS)
Vormstein, Svendja; Kaiser, Michael; Ludwig, Bernard
2017-04-01
Forest top- and subsoil account for approximately 70 % of the organic C (OC) globally stored in soil reasoning their large importance for terrestrial ecosystem services such as the mitigation of climate change. In contrast to forest topsoil, there is much less information about the decomposition and stabilization of organic matter (OM) in subsoil. Therefore, we sampled the pedogenetic horizons of five soils under mature beech forest developed on different parent material (i.e. Tertiary Sand, Loess, Basalt, Lime Stone, Red Sandstone) down to the bedrock. The bulk soil samples were characterized for texture, oxalate and dithionite soluble Fe and Al, pH, OC, microbial biomass C and basal respiration (cumulative CO2 emission after 7 and 14 days). Furthermore, we analyzed aggregate size fractions separated by wet-sieving (i.e. >1000 µm, 1000-250 µm, 250-53 µm, <53 µm) and density fractions separated using NaPT (i.e. light, occluded light, and heavy fraction) from the soil horizon specific samples. The OC of the topsoil (Ah horizon) on Lime Stone and Red Sandstone was predominately stored in the larger macro-aggregates (>1000 µm). In contrast, the major part of the topsoil OC on Basalt and Tertiary Sand was found in the smaller macro-aggregates (1000-250 µm). For the topsoil samples, we found that the basal respiration as well as the microbial biomass C were positively correlated (p ≤0.05) with the OC amounts associated with the free and occluded light fraction and with the macro-aggregates (1000-250 µm) and micro-aggregates (250-53 µm) suggesting these fractions to store the major part of the easily decomposable OM. The OC amount associated with the heavy fraction and the fraction <53 µm was correlated with the contents of oxalate and dithionite soluble Fe and Al suggesting interactions between organic compounds and Fe- and Al-oxides to be highly important for the OM stabilization in forest topsoil. In the subsoil (horizons below the Ah), the contribution of the OC associated with the aggregate size fractions <250 µm to the OC stored in the subsoil increased with depth. The OC contents associated with the free and occluded light as well as the heavy fraction and with the aggregate size fractions >53 µm were positively correlated with basal respiration and the microbial biomass C. This suggests, in contrast to the topsoil, the easily decomposable OM to be distributed more homogeneously among fractions. Only the OC content of the <53 µm fraction showed positive correlations to soil mineral characteristics such as the contents of clay oxalate and dithionite soluble Fe or Al and no relationship to the basal respiration and microbial biomass C. This indicates the OM associated with this fraction to be most diagnostic for the amount of OC stabilized against microbial decay in the subsoil and interactions between OM and oxides as well as layer silicates to be relevant stabilization mechanisms. The results point toward similar OM stabilization mechanisms in the analysed forest top- and subsoils but revealed differences in the distribution of easily decomposable OM within the soil matrix.
Geochemical study of urban soils in public areas of an industrialized town (Ajka, western Hungary)
NASA Astrophysics Data System (ADS)
Zacháry, D.; Jordán, Gy.; Szabó, Cs.
2012-04-01
Soil is one of the most essential parts of urban ecosystem contributing to the biogeochemical cycles along the rock-soil-plant-animal and human pathway. Soil plays a fundamental role in plant nutrient uptake and groundwater filtration, too. Urban soils differ from non-urban soils in many aspects, including their origin, and they may also concentrate contaminants in large quantities due to intensive human activities. The pollution sources are industry, traffic, fertilizer, tailing and waste. In addition to the increasing rate of urban areas, urban soils are under growing interest and their pollution have received significant attention in the past few decades. This work focuses on the toxic element (As, Hg, Pb, Cu, Zn, Cd, Ni) content of soils and their spatial distribution in order to find a link between contamination sources and the receiving urban soils at sensitive receptor locations such as children's playgrounds and parks. Ajka town is located in western Hungary. It has an old-established industrial history with multiple contamination sources of heavy alumina industry and coal-based power plants supplied by the nearby bauxite and coal mines. At 44 locations 46 soil samples have been collected at a depth of 0-10 cm along a 1x1 km grid. The whole grid covers an area of 48 km2. In each grid cell a sampling site was selected at public areas. Sample preparation included drying at 40 C°, thorough homogenization and sieving to 2 mm fine earth before chemical analysis. Grain size distribution and soil pH were also determined. Samples were analyzed with ICP-OES and SEM methods. The As, Hg, Pb, Cu, Zn, Cd and Ni concentrations range from 2.07 ppm to 9.48 ppm, 0.02 ppm to 2.84 ppm, 5.08 ppm to 35.74 ppm, 2.55 ppm to 47.78 ppm, 17.00 ppm to 91.00 ppm, 0.07 ppm to 0.61 ppm and 5.57 ppm to 32.09 ppm, respectively. The results revealed the contaminated areas associated with past industrial sites. This study also identified locations with considerable contamination at sensitive receptors in urban public areas, thus supporting contamination risk assessment for environmental decisions.
Whicker, Jeffrey J; Pinder, John E; Ibrahim, Shawki A; Stone, James M; Breshears, David D; Baker, Kristine N
2007-07-01
The environmental mobility of newly deposited radionuclides in surface soil is driven by complex biogeochemical relationships, which have significant impacts on transport pathways. The partition coefficient (Kd) is useful for characterizing the soil-solution exchange kinetics and is an important factor for predicting relative amounts of a radionuclide transported to groundwater compared to that remaining on soil surfaces and thus available for transport through erosion processes. Measurements of Kd for 238U are particularly useful because of the extensive use of 238U in military applications and associated testing, such as done at Los Alamos National Laboratory (LANL). Site-specific measurements of Kd for 238U are needed because Kd is highly dependent on local soil conditions and also on the fine soil fraction because 238U concentrates onto smaller soil particles, such as clays and soil organic material, which are most susceptible to wind erosion and contribute to inhalation exposure in off-site populations. We measured Kd for uranium in soils from two neighboring semiarid forest sites at LANL using a U.S. Environmental Protection Agency (EPA)-based protocol for both whole soil and the fine soil fraction (diameters<45 microm). The 7-d Kd values, which are those specified in the EPA protocol, ranged from 276-508 mL g-1 for whole soil and from 615-2249 mL g-1 for the fine soil fraction. Unexpectedly, the 30-d Kd values, measured to test for soil-solution exchange equilibrium, were more than two times the 7-d values. Rates of adsorption of 238U to soil from solution were derived using a 2-component (FAST and SLOW) exponential model. We found significant differences in Kd values among LANL sampling sites, between whole and fine soils, and between 7-d and 30-d Kd measurements. The significant variation in soil-solution exchange kinetics among the soils and soil sizes promotes the use of site-specific data for estimates of environmental transport rates and suggests possible differences in desorption rates from soil to solution (e.g., into groundwater or lung fluid). We also explore potential relationships between wind erosion, soil characteristics, and Kd values. Combined, our results highlight the need for a better mechanistic understanding of soil-solution partitioning kinetics for accurate risk assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margenot, Andrew J.; Calderón, Francisco J.; Magrini, Kimberly A.
Chemical oxidations are routinely employed in soil science to study soil organic matter (SOM), and their interpretation could be improved by characterizing oxidation effects on SOM composition with spectroscopy. We investigated the effects of routinely employed oxidants on SOM composition in a Mollic Xerofluvent representative of intensively managed agricultural soils in the California Central Valley. Soil samples were subjected to oxidation by potassium permanganate (KMnO4), sodium hypochlorite (NaOCl), and hydrogen peroxide (H2O2). Additionally, non-oxidized and oxidized soils were treated with hydrofluoric acid (HF) to evaluate reduction of the mineral component to improve spectroscopy of oxidation effects. Oxidized non-HF and HF-treatedmore » soils were characterized by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), 13C cross polarization magic angle spinning (CP-MAS) nuclear magnetic resonance (NMR) spectroscopy, and pyrolysis molecular beam mass spectrometry (py-MBMS), and for particle size distribution (PSD) using laser diffractometry (LD). Across the range of soil organic carbon (OC) removed by oxidations (14-72%), aliphatic C-H stretch at 3000-2800 cm-1 (DRIFTS) decreased with OC removal, and this trend was enhanced by HF treatment due to significant demineralization in this soil (70%). Analysis by NMR spectroscopy was feasible only after HF treatment, and did not reveal trends between OC removal and C functional groups. Pyrolysis-MBMS did not detect differences among oxidations, even after HF treatment of soils. Hydrofluoric acid entailed OC loss (13-39%), and for H2O2 oxidized soils increased C:N and substantially decreased mean particle size. This study demonstrates the feasibility of using HF to improve characterizations of SOM composition following oxidations as practiced in soil science, in particular for DRIFTS. Since OC removal by oxidants, mineral removal by HF, and the interaction of oxidants and HF observed for this soil may differ for soils with different mineralogies, future work should examine additional soil and land use types to optimize characterizations of oxidation effects on SOM composition.« less
Microbial contents of soil from fire pits
NASA Astrophysics Data System (ADS)
Moon, K.; Esparza, V.; de Sandre, J.; Cheney, S.; Anderson, A.; White, M. A.
2006-12-01
Forest fires generate polycylic aromatic hydrocarbons (PAHs) that can lead to carcinogenic compounds, which are potential health risks. PAHs can be degraded to water and carbon dioxide by certain soil microbes. Thus, during participation in a NASA-funded summer research experience at Utah State University, our high school student team sampled soils from a month-old fire pit in which plant materials had been burnt. We detected in soil samples, from surface, 10 and 20 cm depths, microbes that would grow on a defined minimal medium source. Other microbes were cultured from the roots of plants that had established at the fire pit. A diversity of microbes was present in all samples based on visible differences in cell shape and color. It was surprising that the surface ash, although exposed to sunlight over the month interval, had culturable colonies. Many of these culturable bacteria were pigmented perhaps as a protection against UV radiation from the sun. We searched for genes in the microbes that encoded enzymes called dioxygenases that in other bacteria are involved in degradation of PAHs. This test involved using polymerase chain reactions to detect the genes. PCR products were found in two of the fifteen isolates tested although their sizes differed from the control gene product from a PAH-degrading mycobacterium isolate. These results suggest that the soils did contain microbes with the possible potential to alter the PAH compounds generated from vegetation fires. Our findings serve as a starting point for future studies looking at recovery and remediation of fired acreages.
Strydom, Matthys; Veldtman, Ruan; Ngwenya, Mzabalazo Z; Esler, Karen J
2017-01-01
Australian Acacia are invasive in many parts of the world. Despite significant mechanical and biological efforts to control their invasion and spread, soil-stored seed banks prevent their effective and sustained removal. In response South Africa has had a strong focus on employing seed reducing biological control agents to deal with Australian Acacia invasion, a programme that is considered as being successful. To provide a predictive understanding for their management, seed banks of four invasive Australian acacia species (Acacia longifolia, A. mearnsii, A. pycnantha and A. saligna) were studied in the Western Cape of South Africa. Across six to seven sites for each species, seed bank sizes were estimated from dense, monospecific stands by collecting 30 litter and soil samples. Average estimated seed bank size was large (1017 to 17261 seed m-2) as was annual input into the seed bank, suggesting that these seed banks are not residual but are replenished in size annually. A clear relationship between seed bank size and stem diameter was established indicating that mechanical clearing should be conducted shortly after fire-stimulated recruitment events or within old populations when seed banks are small. In dense, monospecific stands seed-feeding biological control agents are not effective in reducing seed bank size.
NASA Astrophysics Data System (ADS)
Lininger, K. B.; Wohl, E.; Rose, J. R.
2018-03-01
Floodplains accumulate and store organic carbon (OC) and release OC to rivers, but studies of floodplain soil OC come from small rivers or small spatial extents on larger rivers in temperate latitudes. Warming climate is causing substantial change in geomorphic process and OC fluxes in high latitude rivers. We investigate geomorphic controls on floodplain soil OC concentrations in active-layer mineral sediment in the Yukon Flats, interior Alaska. We characterize OC along the Yukon River and four tributaries in relation to geomorphic controls at the river basin, segment, and reach scales. Average OC concentration within floodplain soil is 2.8% (median = 2.2%). Statistical analyses indicate that OC varies among river basins, among planform types along a river depending on the geomorphic unit, and among geomorphic units. OC decreases with sample depth, suggesting that most OC accumulates via autochthonous inputs from floodplain vegetation. Floodplain and river characteristics, such as grain size, soil moisture, planform, migration rate, and riverine DOC concentrations, likely influence differences among rivers. Grain size, soil moisture, and age of surface likely influence differences among geomorphic units. Mean OC concentrations vary more among geomorphic units (wetlands = 5.1% versus bars = 2.0%) than among study rivers (Dall River = 3.8% versus Teedrinjik River = 2.3%), suggesting that reach-scale geomorphic processes more strongly control the spatial distribution of OC than basin-scale processes. Investigating differences at the basin and reach scale is necessary to accurately assess the amount and distribution of floodplain soil OC, as well as the geomorphic controls on OC.
Arsenic and mercury in the soils of an industrial city in the Donets Basin, Ukraine
Conko, Kathryn M.; Landa, Edward R.; Kolker, Allan; Kozlov, Kostiantyn; Gibb, Herman J.; Centeno, Jose; Panov, Boris S.; Panov, Yuri B.
2013-01-01
Soil and house dust collected in and around Hg mines and a processing facility in Horlivka, a mid-sized city in the Donets Basin of southeastern Ukraine, have elevated As and Hg levels. Surface soils collected at a former Hg-processing facility had up to 1300 mg kg−1 As and 8800 mg kg−1 Hg; 1M HCl extractions showed 74–93% of the total As, and 1–13% of the total Hg to be solubilized, suggesting differential environmental mobility between these elements. In general, lower extractability of As and Hg was seen in soil samples up to 12 km from the Hg-processing facility, and the extractable (1M HCl, synthetic precipitation, deionized water) fractions of As are greater than those for Hg, indicating that Hg is present in a more resistant form than As. The means (standard deviation) of total As and Hg in grab samples collected from playgrounds and public spaces within 12 km of the industrial facility were 64 (±38) mg kg−1 As and 12 (±9.4) mg kg−1 Hg; all concentrations are elevated compared to regional soils. The mean concentrations of As and Hg in dust from homes in Horlivka were 5–15 times higher than dust from homes in a control city. Estimates of possible exposure to As and Hg through inadvertent soil ingestion are provided.
Learning class descriptions from a data base of spectral reflectance of soil samples
NASA Technical Reports Server (NTRS)
Kimes, D. S.; Irons, J. R.; Levine, E. R.; Horning, N. A.
1993-01-01
Consideration is given to a program developed to learn class descriptions from positive and negative training examples of spectral reflectance data of bare soils. It is a combination of 'learning by example' and the generate-and-test paradigm and is designed to provide a robust learning environment that can handle error-prone data. The program was tested by having it learn class descriptions of various categories of organic carbon content, iron oxide content, and particle size distribution in soils. These class descriptions were then used to classify an array of targets. The program found the sequence of relationships between bands that contained the most important information to distinguish the classes. Physical explanations for the class descriptions obtained are presented.
NASA Astrophysics Data System (ADS)
Sreejith, M. P.; Balan, Aparna K.; Shaniba, V.; Jinitha, T. V.; Subair, N.; Purushothaman, E.
2017-06-01
Biodegradation behavior of styrene butadiene rubber composites reinforced with natural filler, coconut shell powder (CSP), with different filler loadings were carried out under soil burial conditions for three to six months. The extent of biodegradation of the composites was evaluated through weight loss, tensile strength and hardness measurements. It was observed that the permanence of the composites was remarkably dependent on filler modification, size of the filler particle and filler content. Composites containing silane modified filler were found to be more resistant to attack by the microbes present in the soil. Mechanical properties such as tensile strength, Young's modulus and hardness were decreased after soil burial testing due to the microbial attack onto the samples.