Sample records for soil sampling techniques

  1. Soil Sampling Techniques For Alabama Grain Fields

    NASA Technical Reports Server (NTRS)

    Thompson, A. N.; Shaw, J. N.; Mask, P. L.; Touchton, J. T.; Rickman, D.

    2003-01-01

    Characterizing the spatial variability of nutrients facilitates precision soil sampling. Questions exist regarding the best technique for directed soil sampling based on a priori knowledge of soil and crop patterns. The objective of this study was to evaluate zone delineation techniques for Alabama grain fields to determine which method best minimized the soil test variability. Site one (25.8 ha) and site three (20.0 ha) were located in the Tennessee Valley region, and site two (24.2 ha) was located in the Coastal Plain region of Alabama. Tennessee Valley soils ranged from well drained Rhodic and Typic Paleudults to somewhat poorly drained Aquic Paleudults and Fluventic Dystrudepts. Coastal Plain s o i l s ranged from coarse-loamy Rhodic Kandiudults to loamy Arenic Kandiudults. Soils were sampled by grid soil sampling methods (grid sizes of 0.40 ha and 1 ha) consisting of: 1) twenty composited cores collected randomly throughout each grid (grid-cell sampling) and, 2) six composited cores collected randomly from a -3x3 m area at the center of each grid (grid-point sampling). Zones were established from 1) an Order 1 Soil Survey, 2) corn (Zea mays L.) yield maps, and 3) airborne remote sensing images. All soil properties were moderately to strongly spatially dependent as per semivariogram analyses. Differences in grid-point and grid-cell soil test values suggested grid-point sampling does not accurately represent grid values. Zones created by soil survey, yield data, and remote sensing images displayed lower coefficient of variations (8CV) for soil test values than overall field values, suggesting these techniques group soil test variability. However, few differences were observed between the three zone delineation techniques. Results suggest directed sampling using zone delineation techniques outlined in this paper would result in more efficient soil sampling for these Alabama grain fields.

  2. Measurement of technetium-99 in Marshall Islands soil samples by ICP-MS

    PubMed

    Tagami; Uchida; Hamilton; Robison

    2000-07-01

    Extraction techniques for recovery of technetium-99 (99Tc) for Inductively Coupled Plasma Mass Spectrometry (ICP-MS) measurements were evaluated using soil samples collected from the Marshall Islands. The results of three different extraction techniques were compared: (MI) acid leaching of Tc from ashed soil; (M2) acid leaching of Tc from raw dry soil; and (M3) Tc volatilization from ashed soil using a combustion apparatus. Total Tc recoveries varied considerably between the extraction techniques but each method yielded similar analytical results for 99Tc. Applications of these extraction techniques to a series of environmental samples and ICP-MS measurements have yielded first data on the 99Tc content of Marshall Islands soil samples contaminated with close-in radioactive fallout from nuclear weapons testing. The 99Tc activity concentration in the soil samples ranged between 0.1 and 1.1 mBq g(-1) dry weight (dw). The limit of detection for 99Tc by ICP-MS was 0.17 mBq per sample or 0.014 mBq g(-1) dw under standard operating conditions.

  3. Tests on the centrifugal flotation technique and its use in estimating the prevalence of Toxocara in soil samples from urban and suburban areas of Malaysia.

    PubMed

    Loh, A G; Israf, D A

    1998-03-01

    The influence of soil texture (silt, sand and laterite) and flotation solutions (saturated NaCl, sucrose, NaNO3, and ZnSO4) upon the recovery of Toxocara ova from seeded soil samples with the centrifugal flotation technique was investigated. Soil samples of different texture were artificially seeded with Toxocara spp. ova and subjected to a centrifugal flotation technique which used various flotation solutions. The results showed significant (P < 0.001) interactions between the soil types and the flotation solutions. The highest percentage of ova recovery was obtained with silty soil (34.9-100.8%) with saturated NaCl as the flotation solution (45.3-100.8%). A combination of washing of soil samples with 0.1% Tween 80, and flotation using saturated NaCl and a 30 min coverslip recovery period was used to study the prevalence of contamination of soil samples. Forty-six soil samples were collected from up to 24 public parks/playgrounds in urban areas of Petaling Jaya and suburban areas of Serdang. The prevalence of Toxocara species in the urban and suburban areas was 54.5% and 45.8% respectively.

  4. Soil gas screening for chlorinated solvents at three contaminated karst sites in Tennessee

    USGS Publications Warehouse

    Wolfe, W.J.; Williams, S.D.

    2002-01-01

    Soil gas was sampled using active sampling techniques and passive collectors at three sites in Tennessee to evaluate the effectiveness of these techniques for locating chlorinated solvent sources and flowpaths in karst aquifers. Actively collected soil gas samples were analyzed in the field with a portable gas chromatograph, and the passive soil gas collectors were analyzed in the lab with gas chromatography/mass spectrometry. Results of the sampling indicate that the effectiveness of both techniques is highly dependent on the distribution of the contaminants in the subsurface, the geomorphic and hydrogeologic characteristics of the site, and, in one case, on seasonal conditions. Both active and passive techniques identified areas of elevated subsurface chlorinated solvent concentrations at a landfill site where contamination remains concentrated in the regolith. Neither technique detected chlorinated solvents known to be moving in the bedrock at a manufacturing site characterized by thick regolith and an absence of surficial karst features. Passive soil gas sampling had varied success detecting flowpaths for chloroform in the bedrock at a train derailment site characterized by shallow regolith and abundant surficial karst features. At the train derailment site, delineation of the contaminant flowpath through passive soil gas sampling was stronger and more detailed under Winter conditions than summer.

  5. COMPARISON OF GEOPROBE PRT AND AMS GVP SOIL-GAS SAMPLING SYSTEMS WITH DEDICATED VAPOR PROBES IN SANDY SOILS AT THE RAYMARK SUPERFUND SITE

    EPA Science Inventory

    A study was conducted near the Raymark Superfund Site in Stratford, Connecticut to compare results of soil-gas sampling using dedicated vapor probes, a truck-mounted direct-push technique - the Geoprobe Post-Run-Tubing (PRT) system, and a hand-held rotary hammer technique - the A...

  6. Use of a (137)Cs re-sampling technique to investigate temporal changes in soil erosion and sediment mobilisation for a small forested catchment in southern Italy.

    PubMed

    Porto, Paolo; Walling, Des E; Alewell, Christine; Callegari, Giovanni; Mabit, Lionel; Mallimo, Nicola; Meusburger, Katrin; Zehringer, Markus

    2014-12-01

    Soil erosion and both its on-site and off-site impacts are increasingly seen as a serious environmental problem across the world. The need for an improved evidence base on soil loss and soil redistribution rates has directed attention to the use of fallout radionuclides, and particularly (137)Cs, for documenting soil redistribution rates. This approach possesses important advantages over more traditional means of documenting soil erosion and soil redistribution. However, one key limitation of the approach is the time-averaged or lumped nature of the estimated erosion rates. In nearly all cases, these will relate to the period extending from the main period of bomb fallout to the time of sampling. Increasing concern for the impact of global change, particularly that related to changing land use and climate change, has frequently directed attention to the need to document changes in soil redistribution rates within this period. Re-sampling techniques, which should be distinguished from repeat-sampling techniques, have the potential to meet this requirement. As an example, the use of a re-sampling technique to derive estimates of the mean annual net soil loss from a small (1.38 ha) forested catchment in southern Italy is reported. The catchment was originally sampled in 1998 and samples were collected from points very close to the original sampling points again in 2013. This made it possible to compare the estimate of mean annual erosion for the period 1954-1998 with that for the period 1999-2013. The availability of measurements of sediment yield from the catchment for parts of the overall period made it possible to compare the results provided by the (137)Cs re-sampling study with the estimates of sediment yield for the same periods. In order to compare the estimates of soil loss and sediment yield for the two different periods, it was necessary to establish the uncertainty associated with the individual estimates. In the absence of a generally accepted procedure for such calculations, key factors influencing the uncertainty of the estimates were identified and a procedure developed. The results of the study demonstrated that there had been no significant change in mean annual soil loss in recent years and this was consistent with the information provided by the estimates of sediment yield from the catchment for the same periods. The study demonstrates the potential for using a re-sampling technique to document recent changes in soil redistribution rates. Copyright © 2014. Published by Elsevier Ltd.

  7. Studying the spatial variability of Cr in agricultural field using both particle induced X-ray emission (PIXE) and instrumental neutron activation analysis (INAA) technique

    NASA Astrophysics Data System (ADS)

    Cruvinel, Paulo E.; Crestana, Sílvio; Artaxo, Paulo; Martins, JoséV.; Armelin, Maria JoséA.

    1996-04-01

    In the field of soil physics, a technique which permits a non-destructive, accurate and fast elemental analysis with a minimum of sample preparation effort is often desired. Although trace elements are minor components of the solid phase, they play an important role in soil fertility. Cr is of nutritional importance because it is a required element in human and animal nutrition. The immobility of Cr may be responsible for an inadequate Cr supply to plants. This work not only demonstrates the suitability of PIXE as a fast and non-destructive technique, useful to measure Cr content in soil samples, but also outlines a study of spatial variability of that element in agricultural field. To demonstrate the capability of the method soil samples were collected in a 5000 m 2 agricultural field. The soil samples were analyzed using both PIXE and INAA techniques. Besides, a Fourier interpolation technique was used to verify the distribution of Cr along of the sampled field. INAA was carried out by means of the γ-ray emitted by 51Cr(320 keV). Results show that there is a good linear relationship between the elemental concentration of Cr obtained using those techniques, i.e. a correlation coefficient of r2 = 0.82 was achieved.

  8. Characterization of Soil Samples of Enzyme Activity

    ERIC Educational Resources Information Center

    Freeland, P. W.

    1977-01-01

    Described are nine enzyme essays for distinguishing soil samples. Colorimetric methods are used to compare enzyme levels in soils from different sites. Each soil tested had its own spectrum of activity. Attention is drawn to applications of this technique in forensic science and in studies of soil fertility. (Author/AJ)

  9. An improved technique for taking hydraulic conductivity cores from forest soils

    Treesearch

    Gerald M. Aubertin

    1969-01-01

    Describes a large-diameter, heavy-duty soil sampler that makes it possible to obtain long, relatively undisturbed sample columns from stony, root-filled forest soils. The resultant samples include the roots, root channels, stones, and macro-voids common to forested soils.

  10. Use of X-ray diffraction technique and chemometrics to aid soil sampling strategies in traceability studies.

    PubMed

    Bertacchini, Lucia; Durante, Caterina; Marchetti, Andrea; Sighinolfi, Simona; Silvestri, Michele; Cocchi, Marina

    2012-08-30

    Aim of this work is to assess the potentialities of the X-ray powder diffraction technique as fingerprinting technique, i.e. as a preliminary tool to assess soil samples variability, in terms of geochemical features, in the context of food geographical traceability. A correct approach to sampling procedure is always a critical issue in scientific investigation. In particular, in food geographical traceability studies, where the cause-effect relations between the soil of origin and the final foodstuff is sought, a representative sampling of the territory under investigation is certainly an imperative. This research concerns a pilot study to investigate the field homogeneity with respect to both field extension and sampling depth, taking also into account the seasonal variability. Four Lambrusco production sites of the Modena district were considered. The X-Ray diffraction spectra, collected on the powder of each soil sample, were treated as fingerprint profiles to be deciphered by multivariate and multi-way data analysis, namely PCA and PARAFAC. The differentiation pattern observed in soil samples, as obtained by this fast and non-destructive analytical approach, well matches with the results obtained by characterization with other costly analytical techniques, such as ICP/MS, GFAAS, FAAS, etc. Thus, the proposed approach furnishes a rational basis to reduce the number of soil samples to be collected for further analytical characterization, i.e. metals content, isotopic ratio of radiogenic element, etc., while maintaining an exhaustive description of the investigated production areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. A common soil handling technique can generate incorrect estimates of soil biota effects on plants

    USDA-ARS?s Scientific Manuscript database

    Several plant-soil biota (PSB) studies were recently published in high profile journals that used the suspect “mixed soil sampling” methodology. To explore the extent to which mixing field samples (i.e. employing mixed soil sample designs) can generate erroneous conclusions, we used real data to pa...

  12. Use of Ultrasonic Technology for Soil Moisture Measurement

    NASA Technical Reports Server (NTRS)

    Choi, J.; Metzl, R.; Aggarwal, M. D.; Belisle, W.; Coleman, T.

    1997-01-01

    In an effort to improve existing soil moisture measurement techniques or find new techniques using physics principles, a new technique is presented in this paper using ultrasonic techniques. It has been found that ultrasonic velocity changes as the moisture content changes. Preliminary values of velocities are 676.1 m/s in dry soil and 356.8 m/s in 100% moist soils. Intermediate values can be calibrated to give exact values for the moisture content in an unknown sample.

  13. Soil forensics: How far can soil clay analysis distinguish between soil vestiges?

    PubMed

    Corrêa, R S; Melo, V F; Abreu, G G F; Sousa, M H; Chaker, J A; Gomes, J A

    2018-03-01

    Soil traces are useful as forensic evidences because they frequently adhere to individuals and objects associated with crimes and can place or discard a suspect at/from a crime scene. Soil is a mixture of organic and inorganic components and among them soil clay contains signatures that make it reliable as forensic evidence. In this study, we hypothesized that soils can be forensically distinguished through the analysis of their clay fraction alone, and that samples of the same soil type can be consistently distinguished according to the distance they were collected from each other. To test these hypotheses 16 Oxisol samples were collected at distances of between 2m and 1.000m, and 16 Inceptisol samples were collected at distances of between 2m and 300m from each other. Clay fractions were extracted from soil samples and analyzed for hyperspectral color reflectance (HSI), X-ray diffraction crystallographic (XRD), and for contents of iron oxides, kaolinite and gibbsite. The dataset was submitted to multivariate analysis and results were from 65% to 100% effective to distinguish between samples from the two soil types. Both soil types could be consistently distinguished for forensic purposes according to the distance that samples were collected from each other: 1000m for Oxisol and 10m for Inceptisol. Clay color and XRD analysis were the most effective techniques to distinguish clay samples, and Inceptisol samples were more easily distinguished than Oxisol samples. Soil forensics seems a promising field for soil scientists as soil clay can be useful as forensic evidence by using routine analytical techniques from soil science. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  14. STATISTICAL SAMPLING AND DATA ANALYSIS

    EPA Science Inventory

    Research is being conducted to develop approaches to improve soil and sediment sampling techniques, measurement design and geostatistics, and data analysis via chemometric, environmetric, and robust statistical methods. Improvements in sampling contaminated soil and other hetero...

  15. Determination of Se in soil samples using the proton induced X-ray emission technique

    NASA Astrophysics Data System (ADS)

    Cruvinel, Paulo E.; Flocchini, Robert G.

    1993-04-01

    An alternative method for the direct determination of total Se in soil samples is presented. A large number of trace elements is present in soil at concentration values in the range of part per billion and tenths of parts of million. The most common are the trace elements of Al, Si, K, Ca, Ti, V, Cr, Fe, Cu, Zn, Br, Rb, Mo, Cd and Pb. As for biological samples many of these elements are of great importance for the nutrition of plants, while others are toxic and others have an unknown role. Selenium is an essential micronutrient for humans and animals but it is also known that in certain areas Se deficiency or toxicity has caused endemic disease to livestock and humans through the soil-plant-animal linkage. In this work the suitability of the proton induced X-ray emission (PIXE) technique as a fast and nondestructive technique useful to measure total the Se content in soil samples is demonstrated. To validate the results a comparison of data collected using the conventional atomic absorption spectrophotometry (AAS) method was performed.

  16. Single-particle mineralogy of Chinese soil particles by the combined use of low-Z particle electron probe X-ray microanalysis and attenuated total reflectance-FT-IR imaging techniques.

    PubMed

    Malek, Md Abdul; Kim, Bowha; Jung, Hae-Jin; Song, Young-Chul; Ro, Chul-Un

    2011-10-15

    Our previous work on the speciation of individual mineral particles of micrometer size by the combined use of attenuated total reflectance FT-IR (ATR-FT-IR) imaging and a quantitative energy-dispersive electron probe X-ray microanalysis technique (EPMA), low-Z particle EPMA, demonstrated that the combined use of these two techniques is a powerful approach for looking at the single-particle mineralogy of externally heterogeneous minerals. In this work, this analytical methodology was applied to characterize six soil samples collected at arid areas in China, in order to identify mineral types present in the samples. The six soil samples were collected from two types of soil, i.e., loess and desert soils, for which overall 665 particles were analyzed on a single particle basis. The six soil samples have different mineralogical characteristics, which were clearly differentiated in this work. As this analytical methodology provides complementary information, the ATR-FT-IR imaging on mineral types, and low-Z particle EPMA on the morphology and elemental concentrations, on the same individual particles, more detailed information can be obtained using this approach than when either low-Z particle EPMA or ATR-FT-IR imaging techniques are used alone, which has a great potential for the characterization of Asian dust and mineral dust particles. © 2011 American Chemical Society

  17. Characterization of the spatial variability of soil available zinc at various sampling densities using grouped soil type information.

    PubMed

    Song, Xiao-Dong; Zhang, Gan-Lin; Liu, Feng; Li, De-Cheng; Zhao, Yu-Guo

    2016-11-01

    The influence of anthropogenic activities and natural processes involved high uncertainties to the spatial variation modeling of soil available zinc (AZn) in plain river network regions. Four datasets with different sampling densities were split over the Qiaocheng district of Bozhou City, China. The difference of AZn concentrations regarding soil types was analyzed by the principal component analysis (PCA). Since the stationarity was not indicated and effective ranges of four datasets were larger than the sampling extent (about 400 m), two investigation tools, namely F3 test and stationarity index (SI), were employed to test the local non-stationarity. Geographically weighted regression (GWR) technique was performed to describe the spatial heterogeneity of AZn concentrations under the non-stationarity assumption. GWR based on grouped soil type information (GWRG for short) was proposed so as to benefit the local modeling of soil AZn within each soil-landscape unit. For reference, the multiple linear regression (MLR) model, a global regression technique, was also employed and incorporated the same predictors as in the GWR models. Validation results based on 100 times realization demonstrated that GWRG outperformed MLR and can produce similar or better accuracy than the GWR approach. Nevertheless, GWRG can generate better soil maps than GWR for limit soil data. Two-sample t test of produced soil maps also confirmed significantly different means. Variogram analysis of the model residuals exhibited weak spatial correlation, rejecting the use of hybrid kriging techniques. As a heuristically statistical method, the GWRG was beneficial in this study and potentially for other soil properties.

  18. Microbial soil community analyses for forensic science: Application to a blind test.

    PubMed

    Demanèche, Sandrine; Schauser, Leif; Dawson, Lorna; Franqueville, Laure; Simonet, Pascal

    2017-01-01

    Soil complexity, heterogeneity and transferability make it valuable in forensic investigations to help obtain clues as to the origin of an unknown sample, or to compare samples from a suspect or object with samples collected at a crime scene. In a few countries, soil analysis is used in matters from site verification to estimates of time after death. However, up to date the application or use of soil information in criminal investigations has been limited. In particular, comparing bacterial communities in soil samples could be a useful tool for forensic science. To evaluate the relevance of this approach, a blind test was performed to determine the origin of two questioned samples (one from the mock crime scene and the other from a 50:50 mixture of the crime scene and the alibi site) compared to three control samples (soil samples from the crime scene, from a context site 25m away from the crime scene and from the alibi site which was the suspect's home). Two biological methods were used, Ribosomal Intergenic Spacer Analysis (RISA), and 16S rRNA gene sequencing with Illumina Miseq, to evaluate the discriminating power of soil bacterial communities. Both techniques discriminated well between soils from a single source, but a combination of both techniques was necessary to show that the origin was a mixture of soils. This study illustrates the potential of applying microbial ecology methodologies in soil as an evaluative forensic tool. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Simple Techniques For Assessing Impacts Of Oil And Gas Operations On Public Lands: A Field Evaluation Of A Photoionization Detector (PID) At A Condensate Release Site, Padre Island National Seashore, Texas

    USGS Publications Warehouse

    Otton, James K.; Zielinski, Robert A.

    2001-01-01

    Simple, cost-effective techniques are needed for land managers to assess the environmental impacts of oil and gas production activities on public lands, so that sites may be prioritized for remediation or for further, more formal assessment. Field-portable instruments provide real-time data and allow the field investigator to extend an assessment beyond simply locating and mapping obvious disturbances. Field investigators can examine sites for the presence of hydrocarbons in the subsurface using a soil auger and a photoionization detector (PID). The PID measures volatile organic compounds (VOC) in soil gases. This allows detection of hydrocarbons in the shallow subsurface near areas of obvious oil-stained soils, oil in pits, or dead vegetation. Remnants of a condensate release occur in sandy soils at a production site on the Padre Island National Seashore in south Texas. Dead vegetation had been observed by National Park Service personnel in the release area several years prior to our visit. The site is located several miles south of the Malaquite Beach Campground. In early 2001, we sampled soil gases for VOCs in the area believed to have received the condensate. Our purpose in this investigation was: 1) to establish what sampling techniques might be effective in sandy soils with a shallow water and contrast them with techniques used in an earlier study; and 2) delineate the probable area of condensate release. Our field results show that sealing the auger hole with a clear, rigid plastic tube capped at the top end and sampling the soil gas through a small hole in the cap increases the soil VOC gas signature, compared to sampling soil gases in the bottom of an open hole. This sealed-tube sampling method increases the contrast between the VOC levels within a contaminated area and adjacent background areas. The tube allows the PID air pump to draw soil gas from the volume of soil surrounding the open hole below the tube in a zone less influenced by atmospheric air. In an open hole, the VOC readings seem to be strongly dependent on the degree of diffusion and advection of soil gas VOCs into the open hole from the surrounding soil, a process that may vary with soil and wind conditions. Making measurements with the sealed hole does take some additional time (4-7 minutes after the hole is augered) compared to the open-hole technique (1-2 minutes). We used the rigid-plastic tube technique to survey for soil gas VOCs across the entire site, less than ? acre. Condensate has impacted at least 0.28 acres. The impacted area may extend northwest of the surveyed area.

  20. SOIL AND SEDIMENT SAMPLING METHODS | Science ...

    EPA Pesticide Factsheets

    The EPA Office of Solid Waste and Emergency Response's (OSWER) Office of Superfund Remediation and Technology Innovation (OSRTI) needs innovative methods and techniques to solve new and difficult sampling and analytical problems found at the numerous Superfund sites throughout the United States. Inadequate site characterization and a lack of knowledge of surface and subsurface contaminant distributions hinders EPA's ability to make the best decisions on remediation options and to conduct the most effective cleanup efforts. To assist OSWER, NERL conducts research to improve their capability to more accurately, precisely, and efficiently characterize Superfund, RCRA, LUST, oil spills, and brownfield sites and to improve their risk-based decision making capabilities, research is being conducted on improving soil and sediment sampling techniques and improving the sampling and handling of volatile organic compound (VOC) contaminated soils, among the many research programs and tasks being performed at ESD-LV.Under this task, improved sampling approaches and devices will be developed for characterizing the concentration of VOCs in soils. Current approaches and devices used today can lose up to 99% of the VOCs present in the sample due inherent weaknesses in the device and improper/inadequate collection techniques. This error generally causes decision makers to markedly underestimate the soil VOC concentrations and, therefore, to greatly underestimate the ecological

  1. Spatial variability of soil available phosphorous and potassium at three different soils located in Pannonian Croatia

    NASA Astrophysics Data System (ADS)

    Bogunović, Igor; Pereira, Paulo; Đurđević, Boris

    2017-04-01

    Information on spatial distribution of soil nutrients in agroecosystems is critical for improving productivity and reducing environmental pressures in intensive farmed soils. In this context, spatial prediction of soil properties should be accurate. In this study we analyse 704 data of soil available phosphorus (AP) and potassium (AK); the data derive from soil samples collected across three arable fields in Baranja region (Croatia) in correspondence of different soil types: Cambisols (169 samples), Chernozems (131 samples) and Gleysoils (404 samples). The samples are collected in a regular sampling grid (distance 225 x 225 m). Several geostatistical techniques (Inverse Distance to a Weight (IDW) with the power of 1, 2 and 3; Radial Basis Functions (RBF) - Inverse Multiquadratic (IMT), Multiquadratic (MTQ), Completely Regularized Spline (CRS), Spline with Tension (SPT) and Thin Plate Spline (TPS); and Local Polynomial (LP) with the power of 1 and 2; two geostatistical techniques -Ordinary Kriging - OK and Simple Kriging - SK) were tested in order to evaluate the most accurate spatial variability maps using criteria of lowest RMSE during cross validation technique. Soil parameters varied considerably throughout the studied fields and their coefficient of variations ranged from 31.4% to 37.7% and from 19.3% to 27.1% for soil AP and AK, respectively. The experimental variograms indicate a moderate spatial dependence for AP and strong spatial dependence for all three locations. The best spatial predictor for AP at Chernozem field was Simple kriging (RMSE=61.711), and for AK inverse multiquadratic (RMSE=44.689). The least accurate technique was Thin plate spline (AP) and Inverse distance to a weight with a power of 1 (AK). Radial basis function models (Spline with Tension for AP at Gleysoil and Cambisol and Completely Regularized Spline for AK at Gleysol) were the best predictors, while Thin Plate Spline models were the least accurate in all three cases. The best interpolator for AK at Cambisol was the local polynomial with the power of 2 (RMSE=33.943), while the least accurate was Thin Plate Spline (RMSE=39.572).

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudson, W.G.

    Scapteriscus vicinus is the most important pest of turf and pasture grasses in Florida. This study develops a method of correlating sample results with true population density and provides the first quantitative information on spatial distribution and movement patterns of mole crickets. Three basic techniques for sampling mole crickets were compared: soil flushes, soil corer, and pitfall trapping. No statistical difference was found between the soil corer and soil flushing. Soil flushing was shown to be more sensitive to changes in population density than pitfall trapping. No technique was effective for sampling adults. Regression analysis provided a means of adjustingmore » for the effects of soil moisture and showed soil temperature to be unimportant in predicting efficiency of flush sampling. Cesium-137 was used to label females for subsequent location underground. Comparison of mean distance to nearest neighbor with the distance predicted by a random distribution model showed that the observed distance in the spring was significantly greater than hypothesized (Student's T-test, p < 0.05). Fall adult nearest neighbor distance was not different than predicted by the random distribution hypothesis.« less

  3. Demonstration/Validation of Incremental Sampling at Two Diverse Military Ranges and Development of an Incremental Sampling Tool

    DTIC Science & Technology

    2010-06-01

    Sampling (MIS)? • Technique of combining many increments of soil from a number of points within exposure area • Developed by Enviro Stat (Trademarked...Demonstrating a reliable soil sampling strategy to accurately characterize contaminant concentrations in spatially extreme and heterogeneous...into a set of decision (exposure) units • One or several discrete or small- scale composite soil samples collected to represent each decision unit

  4. Determination of free Zn2+ concentration in synthetic and natural samples with AGNES (Absence of Gradients and Nernstian Equilibrium Stripping) and DMT (Donnan Membrane Technique).

    PubMed

    Chito, Diana; Weng, Liping; Galceran, Josep; Companys, Encarnació; Puy, Jaume; van Riemsdijk, Willem H; van Leeuwen, Herman P

    2012-04-01

    The determination of free Zn(2+) ion concentration is a key in the study of environmental systems like river water and soils, due to its impact on bioavailability and toxicity. AGNES (Absence of Gradients and Nernstian Equilibrium Stripping) and DMT (Donnan Membrane Technique) are emerging techniques suited for the determination of free heavy metal concentrations, especially in the case of Zn(2+), given that there is no commercial Ion Selective Electrode. In this work, both techniques have been applied to synthetic samples (containing Zn and NTA) and natural samples (Rhine river water and soils), showing good agreement. pH fluctuations in DMT and N(2)/CO(2) purging system used in AGNES did not affect considerably the measurements done in Rhine river water and soil samples. Results of DMT in situ of Rhine river water are comparable to those of AGNES in the lab. The comparison of this work provides a cross-validation for both techniques. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Solving mercury (Hg) speciation in soil samples by synchrotron X-ray microspectroscopic techniques.

    PubMed

    Terzano, Roberto; Santoro, Anna; Spagnuolo, Matteo; Vekemans, Bart; Medici, Luca; Janssens, Koen; Göttlicher, Jörg; Denecke, Melissa A; Mangold, Stefan; Ruggiero, Pacifico

    2010-08-01

    Direct mercury (Hg) speciation was assessed for soil samples with a Hg concentration ranging from 7 up to 240 mg kg(-1). Hg chemical forms were identified and quantified by sequential extractions and bulk- and micro-analytical techniques exploiting synchrotron generated X-rays. In particular, microspectroscopic techniques such as mu-XRF, mu-XRD and mu-XANES were necessary to solve bulk Hg speciation, in both soil fractions <2 mm and <2 microm. The main Hg-species found in the soil samples were metacinnabar (beta-HgS), cinnabar (alpha-HgS), corderoite (Hg(3)S(2)Cl(2)), and an amorphous phase containing Hg bound to chlorine and sulfur. The amount of metacinnabar and amorphous phases increased in the fraction <2 microm. No interaction among Hg-species and soil components was observed. All the observed Hg-species originated from the slow weathering of an inert Hg-containing waste material (K106, U.S. EPA) dumped in the area several years ago, which is changing into a relatively more dangerous source of pollution. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. An evaluation of different soil washing solutions for remediating arsenic-contaminated soils.

    PubMed

    Wang, Yiwen; Ma, Fujun; Zhang, Qian; Peng, Changsheng; Wu, Bin; Li, Fasheng; Gu, Qingbao

    2017-04-01

    Soil washing is a promising way to remediate arsenic-contaminated soils. Most research has mostly focused on seeking efficient extractants for removing arsenic, but not concerned with any changes in soil properties when using this technique. In this study, the removal of arsenic from a heavily contaminated soil employing different washing solutions including H 3 PO 4 , NaOH and dithionite in EDTA was conducted. Subsequently, the changes in soil physicochemical properties and phytotoxicity of each washing technique were evaluated. After washing with 2 M H 3 PO 4 , 2 M NaOH or 0.1 M dithionite in 0.1 M EDTA, the soil samples' arsenic content met the clean-up levels stipulated in China's environmental regulations. H 3 PO 4 washing decreased soil pH, Ca, Mg, Al, Fe, and Mn concentrations but increased TN and TP contents. NaOH washing increased soil pH but decreased soil TOC, TN and TP contents. Dithionite in EDTA washing reduced soil TOC, Ca, Mg, Al, Fe, Mn and TP contents. A drastic color change was observed when the soil sample was washed with H 3 PO 4 or 0.1 M dithionite in 0.1 M EDTA. After adjusting the soil pH to neutral, wheat planted in the soil sample washed by NaOH evidenced the best growth of all three treated soil samples. These results will help with selecting the best washing solution when remediating arsenic-contaminated soils in future engineering applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. imVisIR - a new tool for high resolution soil characterisation

    NASA Astrophysics Data System (ADS)

    Steffens, Markus; Buddenbaum, Henning

    2014-05-01

    The physical and chemical heterogeneities of soils are the source of a vast functional diversity of soil properties in a multitude of spatial domains. But many studies do not consider the spatial variability of soil types, diagnostic horizons and properties. These lateral and vertical heterogeneities of soils or soil horizons are mostly neglected due to the limitations in the available soil data and missing techniques to gather the information. We present an imaging technique that enables the spatially accurate, high resolution assessment (63×63 µm2 per pixel) of complete soil profiles consisting of mineral and organic horizons. We used a stainless steel box (100×100×300 mm3) to sample various soil types and a hyperspectral camera to record the bidirectional reflectance of the large undisturbed soil samples in the visible and near infrared (Vis-NIR) part of the electromagnetic spectrum (400-1000 nm in 160 spectral bands). Various statistical, geostatistical and image processing tools were used to 1) assess the spatial variability of the soil profile as a whole; 2) classify diagnostic horizons; 3) extrapolate elemental concentrations of small sampling areas to the complete image and calculate high resolution chemometric maps of up to five elements (C, N, Al, Fe, Mn); and 4) derive maps of the chemical composition of soil organic matter. Imaging Vis-NIR (imVisIR) has the potential to significantly improve soil classification, assessment of elemental budgets and balances and the understanding of soil forming processes and mechanisms. It will help to identify areas of interest for techniques working on smaller scales and enable the upscaling and referencing of this information to the complete pedon.

  8. Computed Tomography to Estimate the Representative Elementary Area for Soil Porosity Measurements

    PubMed Central

    Borges, Jaqueline Aparecida Ribaski; Pires, Luiz Fernando; Belmont Pereira, André

    2012-01-01

    Computed tomography (CT) is a technique that provides images of different solid and porous materials. CT could be an ideal tool to study representative sizes of soil samples because of the noninvasive characteristic of this technique. The scrutiny of such representative elementary sizes (RESs) has been the target of attention of many researchers related to soil physics field owing to the strong relationship between physical properties and size of the soil sample. In the current work, data from gamma-ray CT were used to assess RES in measurements of soil porosity (ϕ). For statistical analysis, a study on the full width at a half maximum (FWHM) of the adjustment of distribution of ϕ at different areas (1.2 to 1162.8 mm2) selected inside of tomographic images was proposed herein. The results obtained point out that samples with a section area corresponding to at least 882.1 mm2 were the ones that provided representative values of ϕ for the studied Brazilian tropical soil. PMID:22666133

  9. Passive soil gas technique for investigating soil and groundwater plume emanating from volatile organic hydrocarbon at Bazian oil refinery site.

    PubMed

    Hamamin, Dara Faeq

    2018-05-01

    The current work is an attempt to illustrate the importance of using passive soil gas as an innovative investigation technique in the assessment of soil and groundwater pollutions that emanates from volatile hydrocarbon activities in newly emerging countries. Bazian Oil Refinery as one of the largest refinery in Iraqi Kurdistan Region produces 40,000 barrels a day and provides a wide range of petroleum products for daily consumption. The types and scale of different process that happen in this industrial site have led to concerns with regard to its impact on both the soil and groundwater the vicinity of the factory. The researcher conducted a combined sampling design with a dual-phased extraction procedure for soil vapor and groundwater samples in order to assess the susceptibility of the subsurface to pollution with hydrocarbon. The aims were to characterize potential source(s), map the areal extent of the site which is at risk to be affected with the identified9 hydrocarbon compounds and vapor. A collection kit from Beacon Environmental Service was used to collect a total number of 50 passive soil vapors in the first step of work. To extrapolate results, five shallow boring for soils and six for water sampling were carefully observed. The selection of the sampling points was based on the results revealed by the PSG survey that showed significant quantities of analyzed organic hydrocarbon for a follow-up investigation. The matrices were analyzed by ALS Laboratory to target more than 40 VOCs and SVOCs. The plan was to make the mass to concentration tie-in for the selected analyzed compounds (Benzene, Toluene, and Total Petroleum Hydrocarbons) from the PSG in mass (nanograms) with both the soil and water samples in concentration. The results revealed that the PSG technique is unique in identifying the source and extent of soil and groundwater pollutions plume. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Learning About Dirt

    ERIC Educational Resources Information Center

    Atyeo, Marilyn J.

    1972-01-01

    Describes techniques for introducing studies of the soil in the early primary grades or in preschool classes. Includes suggestions for observation of soil samples, field trips to examine various soils in situ, and establishing a small garden. (AL)

  11. The effects of the physical and chemical properties of soils on the spectral reflectance of soils

    NASA Technical Reports Server (NTRS)

    Montgomery, O. L.; Baumgardner, M. F.

    1974-01-01

    The effects of organic matter, free iron oxides, texture, moisture content, and cation exchange capacity on the spectral reflectance of soils were investigated along with techniques for differentiating soil orders by computer analysis of multispectral data. By collecting soil samples of benchmark soils from the different climatic regions within the United States and using the extended wavelength field spectroradiometer to obtain reflectance values and curves for each sample, average curves were constructed for each soil order. Results indicate that multispectral analysis may be a valuable tool for delineating and quantifying differences between soils.

  12. Analysis of problems and failures in the measurement of soil-gas radon concentration.

    PubMed

    Neznal, Martin; Neznal, Matěj

    2014-07-01

    Long-term experience in the field of soil-gas radon concentration measurements allows to describe and explain the most frequent causes of failures, which can appear in practice when various types of measurement methods and soil-gas sampling techniques are used. The concept of minimal sampling depth, which depends on the volume of the soil-gas sample and on the soil properties, is shown in detail. Consideration of minimal sampling depth at the time of measurement planning allows to avoid the most common mistakes. The ways how to identify influencing parameters, how to avoid a dilution of soil-gas samples by the atmospheric air, as well as how to recognise inappropriate sampling methods are discussed. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Comparision of ICP-OES and MP-AES in determing soil nutrients by Mechlich3 method

    NASA Astrophysics Data System (ADS)

    Tonutare, Tonu; Penu, Priit; Krebstein, Kadri; Rodima, Ako; Kolli, Raimo; Shanskiy, Merrit

    2014-05-01

    Accurate, routine testing of nutrients in soil samples is critical to understanding soil potential fertility. There are different factors which must be taken into account selecting the best analytical technique for soil laboratory analysis. Several techniques can provide adequate detection range for same analytical subject. In similar cases the choise of technique will depend on factors such as sample throughput, required infrastructure, ease of use, used chemicals and need for gas supply and operating costs. Mehlich 3 extraction method is widely used for the determination of the plant available nutrient elements contents in agricultural soils. For determination of Ca, K, and Mg from soil extract depending of laboratory ICP and AAS techniques are used, also flame photometry for K in some laboratories. For the determination of extracted P is used ICP or Vis spectrometry. The excellent sensitivity and wide working range for all extracted elements make ICP a nearly ideal method, so long as the sample throughput is big enough to justify the initial capital outlay. Other advantage of ICP techniques is the multiplex character (simultaneous acquisition of all wavelengths). Depending on element the detection limits are in range 0.1 - 1000 μg/L. For smaller laboratories with low sample throughput requirements the use of AAS is more common. Flame AAS is a fast, relatively cheap and easy technique for analysis of elements. The disadvantages of the method is single element analysis and use of flammable gas, like C2H2 and oxidation gas N2O for some elements. Detection limits of elements for AAS lays from 1 to 1000 μg/L. MP-AES offers a unique alternative to both, AAS and ICP-OES techniques with its detection power, speed of analysis. MP-AES is quite new, simple and relatively inexpensive multielemental technique, which is use self-sustained atmospheric pressure microwave plasma (MP) using nitrogen gas generated by nitrogen generator. Therefore not needs for argon and flammable (C2H2) gases, cylinder handling and the running costs of equipment are low. Detection limits of elements for MP-AES lays between the AAS and ICP ones. The objective of this study was to compare the results of soil analysis using two multielemental analytical methods - ICP-OES and MP-AES. In the experiment, different soil types with various texture, content of organic matter and pH were used. For the study soil samples of Albeluvisols, Leptosols, Cambisols, Regosols and Histosols were used . The plant available nutrients were estimated by Mehlich 3 extraction. The ICP-OES analysis were provided in the Estonian Agricultural Research Centre and MP-AES analysis in department of Soil Science and Agrochemistry at Estonian University of Life Sciences. The detection limits and limits of quantification of Ca, K, Mg and P in extracts are calculated and reported.

  14. Evaluation of remediation techniques in soils affected by residual contamination with heavy metals and arsenic.

    PubMed

    García-Carmona, M; Romero-Freire, A; Sierra Aragón, M; Martínez Garzón, F J; Martín Peinado, F J

    2017-04-15

    Residual soil pollution from the Aznalcóllar mine spill is still a problem in some parts of the affected area, today converted in the Guadiamar Green Corridor. Dispersed spots of polluted soils, identified by the absence of vegetation, are characterized by soil acid pH and high concentrations of As, Pb, Cu and Zn. Ex situ remediation techniques were performed with unrecovered soil samples. Landfarming, Composting and Biopiles techniques were tested in order to immobilize pollutants, to improve soil properties and to promote vegetation recovery. The effectiveness of these techniques was assessed by toxicity bioassays: Lactuca sativa L. root elongation test, Vibrio fischeri bioluminescence reduction test, soil induced respiration test, and Eisenia andrei survival and metal bioaccumulation tests. Landfarming and Composting were not effective techniques, mainly due to the poor improvement of soil properties which maintained high soluble concentrations of Zn and Cu after treatments. Biopile technique, using adjacent recovered soils in the area, was the most effective action in the reduction of soil toxicity; the improvement of soil properties and the reduction in pollutants solubility were key to improve the response of the tested organisms. Therefore, the mixture of recovered soils with polluted soils in the areas affected by residual contamination is considered a more suitable technique to reduce the residual pollution and to promote the complete soil recovery in the Guadiamar Green Corridor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Detection techniques using multispectral data to index soil erosional status

    NASA Technical Reports Server (NTRS)

    Pelletier, R. E.

    1988-01-01

    Indexing techniques that can be used to detect soil erosion utilizing the known band widths of the Landsat MSS and TM sensors are identified. The indexing techniques focus on iron oxides, clays, and organic matter as properties revealing soil erosional status. For data aquisition, a Collins visible and infrared intelligent spectrometer was used to collect data from 0.4-24 microns. Pressed polytetrafluorethylene was used as the reflectance standard and was aquired at the same time that the sample data were aquired.

  16. Impacts of soil moisture content on visual soil evaluation

    NASA Astrophysics Data System (ADS)

    Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Bondi, Giulia; Creamer, Rachel; Holden, Nick

    2017-04-01

    Visual Soil Examination and Evaluation (VSE) techniques offer tools for soil quality assessment. They involve the visual and tactile assessment of soil properties such as aggregate size and shape, porosity, redox morphology, soil colour and smell. An increasing body of research has demonstrated the reliability and utility of VSE techniques. However a number of limitations have been identified, including the potential impact of soil moisture variation during sampling. As part of a national survey of grassland soil quality in Ireland, an evaluation of the impact of soil moisture on two widely used VSE techniques was conducted. The techniques were Visual Evaluation of Soil Structure (VESS) (Guimarães et al., 2011) and Visual Soil Assessment (VSA) (Shepherd, 2009). Both generate summarising numeric scores that indicate soil structural quality, though employ different scoring mechanisms. The former requires the assessment of properties concurrently and the latter separately. Both methods were deployed on 20 sites across Ireland representing a range of soils. Additional samples were taken for soil volumetric water (θ) determination at 5-10 and 10-20 cm depth. No significant correlation was observed between θ 5-10 cm and either VSE technique. However, VESS scores were significantly related to θ 10-20 cm (rs = 0.40, sig = 0.02) while VSA scores were not (rs = -0.33, sig = 0.06). VESS and VSA scores can be grouped into quality classifications (good, moderate and poor). No significant mean difference was observed between θ 5-10 cm or θ 10-20 cm according to quality classification by either method. It was concluded that VESS scores may be affected by soil moisture variation while VSA appear unaffected. The different scoring mechanisms, where the separate assessment and scoring of individual properties employed by VSA, may limit soil moisture effects. However, moisture content appears not to affect overall structural quality classification by either method. References Guimarães, R.M.C., Ball, B.C. & Tormena, C.A. 2011. Improvements in the visual evaluation of soil structure, Soil Use and Management, 27, 3: 395-403 Shepherd, G.T. 2009. Visual Soil Assessment. Field guide for pastoral grazing and cropping on flat to rolling country. 2nd edn. Horizons regional council, New Zealand.

  17. Soil sampling and extraction methods with possible application to pear thrips (Thysanoptera: Thripidae)

    Treesearch

    John E. Bater

    1991-01-01

    Techniques are described for the sampling and extraction of microarthropods from soil and the potential of these methods to extract the larval stages of the pear thrips, Taeniothrips inconsequens (Uzel), from soil cores taken in sugar maple stands. Also described is a design for an emergence trap that could be used to estimate adult thrips...

  18. [Environmental Education Units.] Soil Sampling. Stream Profiles. Tree Watching. Plant Puzzles.

    ERIC Educational Resources Information Center

    Minneapolis Independent School District 275, Minn.

    Five of these eleven units describe methods elementary school students can use when studying soil characteristics. Soil nitrogen and water holding capacity tests are included with two techniques for measuring soil pH. Survey methods for soil organisms are suggested. The remaining pamphlets describe diverse activities associated with field…

  19. A simplified regional-scale electromagnetic induction - Salinity calibration model using ANOCOVA modeling techniques

    USDA-ARS?s Scientific Manuscript database

    Directed soil sampling based on geospatial measurements of apparent soil electrical conductivity (ECa) is a potential means of characterizing the spatial variability of any soil property that influences ECa including soil salinity, water content, texture, bulk density, organic matter, and cation exc...

  20. Study on a pattern classification method of soil quality based on simplified learning sample dataset

    USGS Publications Warehouse

    Zhang, Jiahua; Liu, S.; Hu, Y.; Tian, Y.

    2011-01-01

    Based on the massive soil information in current soil quality grade evaluation, this paper constructed an intelligent classification approach of soil quality grade depending on classical sampling techniques and disordered multiclassification Logistic regression model. As a case study to determine the learning sample capacity under certain confidence level and estimation accuracy, and use c-means algorithm to automatically extract the simplified learning sample dataset from the cultivated soil quality grade evaluation database for the study area, Long chuan county in Guangdong province, a disordered Logistic classifier model was then built and the calculation analysis steps of soil quality grade intelligent classification were given. The result indicated that the soil quality grade can be effectively learned and predicted by the extracted simplified dataset through this method, which changed the traditional method for soil quality grade evaluation. ?? 2011 IEEE.

  1. The History of Electromagnetic Induction Techniques in Soil Survey

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Doolittle, Jim

    2014-05-01

    Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; assessing variations in soil texture, compaction, organic matter content, and pH; and determining the depth to subsurface horizons, stratigraphic layers or bedrock, among other uses. In all cases the soil property being investigated must influence soil apparent electrical conductivity (ECa) either directly or indirectly for EMI techniques to be effective. An increasing number and diversity of EMI sensors have been developed in response to users' needs and the availability of allied technologies, which have greatly improved the functionality of these tools. EMI investigations provide several benefits for soil studies. The large amount of georeferenced data that can be rapidly and inexpensively collected with EMI provides more complete characterization of the spatial variations in soil properties than traditional sampling techniques. In addition, compared to traditional soil survey methods, EMI can more effectively characterize diffuse soil boundaries and identify included areas of dissimilar soils within mapped soil units, giving soil scientists greater confidence when collecting spatial soil information. EMI techniques do have limitations; results are site-specific and can vary depending on the complex interactions among multiple and variable soil properties. Despite this, EMI techniques are increasingly being used to investigate the spatial variability of soil properties at field and landscape scales.

  2. Molecular identification of Coccidioides spp. in soil samples from Brazil

    PubMed Central

    2011-01-01

    Background Since 1991 several outbreaks of acute coccidioidomycosis (CM) were diagnosed in the semi-arid Northeast of Brazil, mainly related to disturbance of armadillo burrows caused by hunters while digging them for the capture of these animals. This activity causes dust contaminated with arthroconidia of Coccidioides posadasii, which, once inhaled, cause the mycosis. We report on the identification of C. posadasii in soil samples related to outbreaks of CM. Results Twenty four soil samples had their DNA extracted and subsequently submitted to a semi-nested PCR technique using specific primers. While only 6 (25%) soil samples were positive for C. posadasii by mice inoculation, all (100%) were positive by the molecular tool. Conclusion This methodology represents a simple, sensitive and specific molecular technique to determine the environmental distribution of Coccidioides spp. in endemic areas, but cannot distinguish the species. Moreover, it may be useful to identify culture isolates. Key-words: 1. Coccidioidomycosis. 2. Coccidioides spp. 3. C. posadasii. 4. Semi-arid. 5. Semi-nested PCR PMID:21575248

  3. Assessing the spatial distribution of glyphosate-AMPA in an Argentinian farm field using a pedometric technique

    NASA Astrophysics Data System (ADS)

    Barbera, Agustin; Zamora, Martin; Domenech, Marisa; Vega-Becerra, Andres; Castro-Franco, Mauricio

    2017-04-01

    The cultivation of transgenic glyphosate-resistant crops has been the most rapidly adopted crop technology in Argentina since 1997. Thus, more than 180 million liters of the broad-spectrum herbicide glyphosate (N - phosphonomethylglicine) are applied every year. The intensive use of glyphosate combined with geomorphometrical characteristics of the Pampa region is a matter of environmental concern. An integral component of assessing the risk of soil contamination in farm fields is to describe the spatial distribution of the levels of contaminant agent. Application of pedometric techniques for this purpose has been scarcely demonstrated. These techniques could provide an estimate of the concentration at a given unsampled location, as well as the probability that concentration will exceed the critical threshold concentration. In this work, a pedometric technique for assessing the spatial distribution of glyphosate in farm fields was developed. A field located at INTA Barrow, Argentina (Lat: -38.322844, Lon: -60.25572) which has a great soil spatial variability, was divided by soil-specific zones using a pedometric technique. This was developed integrating INTA Soil Survey information and a digital elevation model (DEM) obtained from a DGPS. Firstly, 10 topographic indices derived from a DEM were computed in a Random Forest algorithm to obtain a classification model for soil map units (SMU). Secondly, a classification model was applied to those topographic indices but at a scale higher than 1:1000. Finally, a spatial principal component analysis and a clustering using Fuzzy K-means were used into each SMU. From this clustering, three soil-specific zones were determined which were also validated through apparent electrical conductivity (CEa) measurements. Three soil sample points were determined by zone. In each one, samples from 0-10, 10-20 and 20-40cm depth were taken. Glyphosate content and AMPA in each soil sample were analyzed using de UPLC-MS/MS ESI (+/-). Only AMPA at 10-20 cm depth had significant difference among soil-specific zones. However, marked trends for glyphosate content and AMPA were clearly shown among zones. These results suggest that (i) the presence of glyphosate and AMPA has spatial patterns distribution related to soil properties at field scale; and (ii) the proposed technique allowed to determine soil-specific zones related to the spatial distribution of glyphosate and AMPA fast, cost-effective and accurately. In further works, we would suggest adding new soil information sources to improve soil-specific zone delimitation.

  4. Rapid fusion method for the determination of Pu, Np, and Am in large soil samples

    DOE PAGES

    Maxwell, Sherrod L.; Culligan, Brian; Hutchison, Jay B.; ...

    2015-02-14

    A new rapid sodium hydroxide fusion method for the preparation of 10-20 g soil samples has been developed by the Savannah River National Laboratory (SRNL). The method enables lower detection limits for plutonium, neptunium, and americium in environmental soil samples. The method also significantly reduces sample processing time and acid fume generation compared to traditional soil digestion techniques using hydrofluoric acid. Ten gram soil aliquots can be ashed and fused using the new method in 1-2 hours, completely dissolving samples, including refractory particles. Pu, Np and Am are separated using stacked 2mL cartridges of TEVA and DGA Resin and measuredmore » using alpha spectrometry. The method can be adapted for measurement by inductively-coupled plasma mass spectrometry (ICP-MS). Two 10 g soil aliquots of fused soil may be combined prior to chromatographic separations to further improve detection limits. Total sample preparation time, including chromatographic separations and alpha spectrometry source preparation, is less than 8 hours.« less

  5. Cost-effective sampling of ¹³⁷Cs-derived net soil redistribution: part 1--estimating the spatial mean across scales of variation.

    PubMed

    Li, Y; Chappell, A; Nyamdavaa, B; Yu, H; Davaasuren, D; Zoljargal, K

    2015-03-01

    The (137)Cs technique for estimating net time-integrated soil redistribution is valuable for understanding the factors controlling soil redistribution by all processes. The literature on this technique is dominated by studies of individual fields and describes its typically time-consuming nature. We contend that the community making these studies has inappropriately assumed that many (137)Cs measurements are required and hence estimates of net soil redistribution can only be made at the field scale. Here, we support future studies of (137)Cs-derived net soil redistribution to apply their often limited resources across scales of variation (field, catchment, region etc.) without compromising the quality of the estimates at any scale. We describe a hybrid, design-based and model-based, stratified random sampling design with composites to estimate the sampling variance and a cost model for fieldwork and laboratory measurements. Geostatistical mapping of net (1954-2012) soil redistribution as a case study on the Chinese Loess Plateau is compared with estimates for several other sampling designs popular in the literature. We demonstrate the cost-effectiveness of the hybrid design for spatial estimation of net soil redistribution. To demonstrate the limitations of current sampling approaches to cut across scales of variation, we extrapolate our estimate of net soil redistribution across the region, show that for the same resources, estimates from many fields could have been provided and would elucidate the cause of differences within and between regional estimates. We recommend that future studies evaluate carefully the sampling design to consider the opportunity to investigate (137)Cs-derived net soil redistribution across scales of variation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Removal of arsenic from Janghang smelter site and energy crops-grown soil with soil washing using magnetic iron oxide

    NASA Astrophysics Data System (ADS)

    Han, Jaemaro; Zhao, Xin; Lee, Jong Keun; Kim, Jae Young

    2014-05-01

    Arsenic compounds are considered carcinogen and easily enter drinking water supplies with their natural abundance. US Environmental Protection Agency is finalizing a regulation to reduce the public health risks from arsenic in drinking water by revising the current drinking water standard for arsenic from 50 ppb to 10 ppb in 2001 (USEPA, 2001). Therefore, soil remediation is also growing field to prevent contamination of groundwater as well as crop cultivation. Soil washing is adjusted as ex-situ soil remediation technique which reduces volume of the contaminated soil. The technique is composed of physical separation and chemical extraction to extract target metal contamination in the soil. Chemical extraction methods have been developed solubilizing contaminants containing reagents such as acids or chelating agents. And acid extraction is proven as the most commonly used technology to treat heavy metals in soil, sediment, and sludge (FRTR, 2007). Due to the unique physical and chemical properties, magnetic iron oxide have been used in diverse areas including information technology and biomedicine. Magnetic iron oxides also can be used as adsorbent to heavy metal enhancing removal efficiency of arsenic concentration. In this study, magnetite is used as the washing agent with acid extraction condition so that the injected oxide can be separated by magnetic field. Soil samples were collected from three separate areas in the Janghang smelter site and energy crops-grown soil to have synergy effect with phytoremediation. Each sample was air-dried and sieved (2mm). Soil washing condition was adjusted on pH in the range of 0-12 with hydrogen chloride and sodium hydroxide. After performing soil washing procedure, arsenic-extracted samples were analyzed for arsenic concentration by inductively coupled plasma optical emission spectrometer (ICP-OES). All the soils have exceeded worrisome level of soil contamination for region 1 (25mg/kg) so the soil remediation techniques are needed to be applied. The objective of this study is to investigate soil washing efficiency using magnetic iron oxide and derive the availability of the washing technique to the arsenic-contaminated field soils. Acknowledgement This study was supported by Korea Ministry of Environment as 'Knowledge-based environmental service (Waste to Energy) Human Resource Development Project'.

  7. Mapping patterns of soil properties and soil moisture using electromagnetic induction to investigate the impact of land use changes on soil processes

    NASA Astrophysics Data System (ADS)

    Robinet, Jérémy; von Hebel, Christian; van der Kruk, Jan; Govers, Gerard; Vanderborght, Jan

    2016-04-01

    As highlighted by many authors, classical or geophysical techniques for measuring soil moisture such as destructive soil sampling, neutron probes or Time Domain Reflectometry (TDR) have some major drawbacks. Among other things, they provide point scale information, are often intrusive and time-consuming. ElectroMagnetic Induction (EMI) instruments are often cited as a promising alternative hydrogeophysical methods providing more efficiently soil moisture measurements ranging from hillslope to catchment scale. The overall objective of our research project is to investigate whether a combination of geophysical techniques at various scales can be used to study the impact of land use change on temporal and spatial variations of soil moisture and soil properties. In our work, apparent electrical conductivity (ECa) patterns are obtained with an EM multiconfiguration system. Depth profiles of ECa were subsequently inferred through a calibration-inversion procedure based on TDR data. The obtained spatial patterns of these profiles were linked to soil profile and soil water content distributions. Two catchments with contrasting land use (agriculture vs. natural forest) were selected in a subtropical region in the south of Brazil. On selected slopes within the catchments, combined EMI and TDR measurements were carried out simultaneously, under different atmospheric and soil moisture conditions. Ground-truth data for soil properties were obtained through soil sampling and auger profiles. The comparison of these data provided information about the potential of the EMI technique to deliver qualitative and quantitative information about the variability of soil moisture and soil properties.

  8. Comparative forensic soil analysis of New Jersey state parks using a combination of simple techniques with multivariate statistics.

    PubMed

    Bonetti, Jennifer; Quarino, Lawrence

    2014-05-01

    This study has shown that the combination of simple techniques with the use of multivariate statistics offers the potential for the comparative analysis of soil samples. Five samples were obtained from each of twelve state parks across New Jersey in both the summer and fall seasons. Each sample was examined using particle-size distribution, pH analysis in both water and 1 M CaCl2 , and a loss on ignition technique. Data from each of the techniques were combined, and principal component analysis (PCA) and canonical discriminant analysis (CDA) were used for multivariate data transformation. Samples from different locations could be visually differentiated from one another using these multivariate plots. Hold-one-out cross-validation analysis showed error rates as low as 3.33%. Ten blind study samples were analyzed resulting in no misclassifications using Mahalanobis distance calculations and visual examinations of multivariate plots. Seasonal variation was minimal between corresponding samples, suggesting potential success in forensic applications. © 2014 American Academy of Forensic Sciences.

  9. Soil and Water – What is Detectable through Microbiological Sample Preparation Techniques

    EPA Science Inventory

    The concerns of a potential terrorist’s use of biological agents in soil and ground water are articulated by comparisons to major illnesses in this Country involving contaminated drinking water sources. Objectives are focused on the importance of sample preparation in the rapid, ...

  10. Geochemical Exploration Techniques Applicable in the Search for Copper Deposits

    USGS Publications Warehouse

    Chaffee, Maurice A.

    1975-01-01

    Geochemical exploration is an important part of copper-resource evaluation. A large number of geochemical exploration techniques, both proved and untried, are available to the geochemist to use in the search for new copper deposits. Analyses of whole-rock samples have been used in both regional and local geochemical exploration surveys in the search for copper. Analyses of mineral separates, such as biotite, magnetite, and sulfides, have also been used. Analyses of soil samples are widely used in geochemical exploration, especially for localized surveys. It is important to distinguish between residual and transported soil types. Orientation studies should always be conducted prior to a geochemical investigation in a given area in order to determine the best soil horizon and the best size of soil material for sampling in that area. Silty frost boils, caliche, and desert varnish are specialized types of soil samples that might be useful sampling media. Soil gas is a new and potentially valuable geochemical sampling medium, especially in exploring for buried mineral deposits in arid regions. Gaseous products in samples of soil may be related to base-metal deposits and include mercury vapor, sulfur dioxide, hydrogen sulfide, carbon oxysulfide, carbon dioxide, hydrogen, oxygen, nitrogen, the noble gases, the halogens, and many hydrocarbon compounds. Transported materials that have been used in geochemical sampling programs include glacial float boulders, glacial till, esker gravels, stream sediments, stream-sediment concentrates, and lake sediments. Stream-sediment sampling is probably the most widely used and most successful geochemical exploration technique. Hydrogeochemical exploration programs have utilized hot- and cold-spring waters and their precipitates as well as waters from lakes, streams, and wells. Organic gel found in lakes and at stream mouths is an unproved sampling medium. Suspended material and dissolved gases in any type of water may also be useful media. Samples of ice and snow have been used for limited geochemical surveys. Both geobotanical and biogeochemical surveys have been successful in locating copper deposits in many parts of the world. Micro-organisms, including bacteria and algae, are other unproved media that should be studied. Animals can be used in geochemical-prospecting programs. Dogs have been used quite successfully to sniff out hidden and exposed sulfide minerals. Tennite mounds are commonly composed of subsurface material, but have not as yet proved to be useful in locating buried mineral deposits. Animal tissue and waste products are essentially unproved but potentially valuable sampling media. Knowledge of the location of areas where trace-element-associated diseases in animals and man are endemic as well as a better understanding of these diseases, may aid in identifying regions that are enriched in or depleted of various elements, including copper. Results of analyses of gases in the atmosphere are proving valuable in mineral-exploration surveys. Studies involving metallic compounds exhaled by plants into the atmosphere, and of particulate matter suspended in the atmosphere are reviewed these methods may become important in the future. Remote-sensing techniques are useful for making indirect measurements of geochemical responses. Two techniques applicable to geochemical exploration are neutron-activation analysis and gamma-ray spectrometry. Aerial photography is especially useful in vegetation surveys. Radar imagery is an unproved but potentially valuable method for use in studies of vegetation in perpetually clouded regions. With the advent of modern computers, many new techniques, such as correlation analysis, regression analysis, discriminant analysis, factor analysis, cluster analysis, trend-surface analysis, and moving-average analysis can be applied to geochemical data sets. Selective use of these techniques can provide new insights into the interpretatio

  11. Rapid Radiochemical Analyses in Support of Fukushima Nuclear Accident - 13196

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    There is an increasing need to develop faster analytical methods for emergency response, including emergency soil and air filter samples [1, 2]. The Savannah River National Laboratory (SRNL) performed analyses on samples received from Japan in April, 2011 as part of a U.S. Department of Energy effort to provide assistance to the government of Japan, following the nuclear event at Fukushima Daiichi, resulting from the earthquake and tsunami on March 11, 2011. Of particular concern was whether it was safe to plant rice in certain areas (prefectures) near Fukushima. The primary objectives of the sample collection, sample analysis, and datamore » assessment teams were to evaluate personnel exposure hazards, identify the nuclear power plant radiological source term and plume deposition, and assist the government of Japan in assessing any environmental and agricultural impacts associated with the nuclear event. SRNL analyzed approximately 250 samples and reported approximately 500 analytical method determinations. Samples included soil from farmland surrounding the Fukushima reactors and air monitoring samples of national interest, including those collected at the U.S. Embassy and American military bases. Samples were analyzed for a wide range of radionuclides, including strontium-89, strontium-90, gamma-emitting radionuclides, and plutonium, uranium, americium and curium isotopes. Technical aspects of the rapid soil and air filter analyses will be described. The extent of radiostrontium contamination was a significant concern. For {sup 89,90}Sr analyses on soil samples, a rapid fusion technique using 1.5 gram soil aliquots to enable a Minimum Detectable Activity (MDA) of <1 pCi {sup 89,90}Sr /g of soil was employed. This sequential technique has been published recently by this laboratory for actinides and radiostrontium in soil and vegetation [3, 4]. It consists of a rapid sodium hydroxide fusion, pre-concentration steps using iron hydroxide and calcium fluoride precipitations, followed by Sr-Resin separation and gas flow proportional counting. To achieve a lower detection limit for analysis of some of the Japanese soil samples, a 10 gram aliquot of soil was taken, acid-leached and processed with similar preconcentration chemistry. The MDA using this approach was ∼0.03 pCi/g (1.1 mBq/g)/, which is less than the 0.05-0.10 pCi/g {sup 90}Sr levels found in soil as a result of global fallout. The chemical yields observed for the Japanese soil samples was typically 75-80% and the laboratory control sample (LCS) and matrix spike (MS) results looked very good for this work Individual QC results were well within the ± 25% acceptable range and the average of these results does not show significant bias. Additional data for a radiostrontium in soil method for 50 gram samples will also be presented, which appears to be a significant step forward based on looking at the current literature, with higher chemical yields for even larger sample aliquots and lower MDA [5, 6, 7] Hou et al surveyed a wide range of separation methods for Pu in waters and environmental solid samples [8]. While there are many actinide methods in the scientific literature, few would be considered rapid due to the tedious and time-consuming steps involved. For actinide analyses in soil, a new rapid method for the determination of actinide isotopes in soil samples using both alpha spectrometry and inductively-coupled plasma mass spectrometry was employed. The new rapid soil method utilizes an acid leaching method, iron/titanium hydroxide precipitation, a lanthanum fluoride soil matrix removal step, and a rapid column separation process with TEVA Resin. The large soil matrix is removed easily and rapidly using these two simple precipitations with high chemical recoveries and effective removal of interferences. [9, 10] Vacuum box technology and rapid flow rates were used to reduce analytical time. Challenges associated with the mineral content in the volcanic soil will be discussed. Air filter samples were reported within twenty-four (24) hours of receipt using rapid techniques published previously. [11] The rapid reporting of high quality analytical data arranged through the U.S. Department of Energy Consequence Management Home Team was critical to allow the government of Japan to readily evaluate radiological impacts from the nuclear reactor incident to both personnel and the environment. SRNL employed unique rapid methods capability for radionuclides to support Japan that can also be applied to environmental, bioassay and waste management samples. New rapid radiochemical techniques for radionuclides in soil and other environmental matrices as well as some of the unique challenges associated with this work will be presented that can be used for application to environmental monitoring, environmental remediation, decommissioning and decontamination activities. (authors)« less

  12. RAPID RADIOCHEMICAL ANALYSES IN SUPPORT OF FUKUSHIMA NUCLEAR ACCIDENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, S.

    2012-11-07

    There is an increasing need to develop faster analytical methods for emergency response, including emergency soil and air filter samples. The Savannah River National Laboratory (SRNL) performed analyses on samples received from Japan in April, 2011 as part of a U.S. Department of Energy effort to provide assistance to the government of Japan, following the nuclear event at Fukushima Daiichi, resulting from the earthquake and tsunami on March 11, 2011. Of particular concern was whether it was safe to plant rice in certain areas (prefectures) near Fukushima. The primary objectives of the sample collection, sample analysis, and data assessment teamsmore » were to evaluate personnel exposure hazards, identify the nuclear power plant radiological source term and plume deposition, and assist the government of Japan in assessing any environmental and agricultural impacts associated with the nuclear event. SRNL analyzed approximately 250 samples and reported approximately 500 analytical method determinations. Samples included soil from farmland surrounding the Fukushima reactors and air monitoring samples of national interest, including those collected at the U.S. Embassy and American military bases. Samples were analyzed for a wide range of radionuclides, including strontium-89, strontium-90, gamma-emitting radionuclides, and plutonium, uranium, americium and curium isotopes. Technical aspects of the rapid soil and air filter analyses will be described. The extent of radiostrontium contamination was a significant concern. For {sup 89,90}Sr analyses on soil samples, a rapid fusion technique using 1.5 gram soil aliquots to enable a Minimum Detectable Activity (MDA) of <1 pCi {sup 89,90} Sr /g of soil was employed. This sequential technique has been published recently by this laboratory for actinides and radiostrontium in soil and vegetation. It consists of a rapid sodium hydroxide fusion, pre-concentration steps using iron hydroxide and calcium fluoride precipitations, followed by Sr-Resin separation and gas flow proportional counting. To achieve a lower detection limit for analysis of some of the Japanese soil samples, a 10 gram aliquot of soil was taken, acid-leached and processed with similar preconcentration chemistry. The MDA using this approach was ~0.03 pCi/g (1.1 mBq/g)/, which is less than the 0.05-0.10 pCi/g {sup 90}Sr levels found in soil as a result of global fallout. The chemical yields observed for the Japanese soil samples was typically 75-80% and the laboratory control sample (LCS) and matrix spike (MS) results looked very good for this work Individual QC results were well within the ± 25% acceptable range and the average of these results does not show significant bias. Additional data for a radiostrontium in soil method for 50 gram samples will also be presented, which appears to be a significant step forward based on looking at the current literature, with higher chemical yields for even larger sample aliquots and lower MDA. Hou et al surveyed a wide range of separation methods for Pu in waters and environmental solid samples. While there are many actinide methods in the scientific literature, few would be considered rapid due to the tedious and time-consuming steps involved. For actinide analyses in soil, a new rapid method for the determination of actinide isotopes in soil samples using both alpha spectrometry and inductively-coupled plasma mass spectrometry was employed. The new rapid soil method utilizes an acid leaching method, iron/titanium hydroxide precipitation, a lanthanum fluoride soil matrix removal step, and a rapid column separation process with TEVA Resin. The large soil matrix is removed easily and rapidly using these two simple precipitations with high chemical recoveries and effective removal of interferences. Vacuum box technology and rapid flow rates were used to reduce analytical time. Challenges associated with the mineral content in the volcanic soil will be discussed. Air filter samples were reported within twenty-four (24) hours of receipt using rapid techniques published previously. The rapid reporting of high quality analytical data arranged through the U.S. Department of Energy Consequence Management Home Team was critical to allow the government of Japan to readily evaluate radiological impacts from the nuclear reactor incident to both personnel and the environment. SRNL employed unique rapid methods capability for radionuclides to support Japan that can also be applied to environmental, bioassay and waste management samples. New rapid radiochemical techniques for radionuclides in soil and other environmental matrices as well as some of the unique challenges associated with this work will be presented that can be used for application to environmental monitoring, environmental remediation, decommissioning and decontamination activities.« less

  13. Digital soil classification and elemental mapping using imaging Vis-NIR spectroscopy: How to explicitly quantify stagnic properties of a Luvisol under Norway spruce

    NASA Astrophysics Data System (ADS)

    Kriegs, Stefanie; Buddenbaum, Henning; Rogge, Derek; Steffens, Markus

    2015-04-01

    Laboratory imaging Vis-NIR spectroscopy of soil profiles is a novel technique in soil science that can determine quantity and quality of various chemical soil properties with a hitherto unreached spatial resolution in undisturbed soil profiles. We have applied this technique to soil cores in order to get quantitative proof of redoximorphic processes under two different tree species and to proof tree-soil interactions at microscale. Due to the imaging capabilities of Vis-NIR spectroscopy a spatially explicit understanding of soil processes and properties can be achieved. Spatial heterogeneity of the soil profile can be taken into account. We took six 30 cm long rectangular soil columns of adjacent Luvisols derived from quaternary aeolian sediments (Loess) in a forest soil near Freising/Bavaria using stainless steel boxes (100×100×300 mm). Three profiles were sampled under Norway spruce and three under European beech. A hyperspectral camera (VNIR, 400-1000 nm in 160 spectral bands) with spatial resolution of 63×63 µm² per pixel was used for data acquisition. Reference samples were taken at representative spots and analysed for organic carbon (OC) quantity and quality with a CN elemental analyser and for iron oxides (Fe) content using dithionite extraction followed by ICP-OES measurement. We compared two supervised classification algorithms, Spectral Angle Mapper and Maximum Likelihood, using different sets of training areas and spectral libraries. As established in chemometrics we used multivariate analysis such as partial least-squares regression (PLSR) in addition to multivariate adaptive regression splines (MARS) to correlate chemical data with Vis-NIR spectra. As a result elemental mapping of Fe and OC within the soil core at high spatial resolution has been achieved. The regression model was validated by a new set of reference samples for chemical analysis. Digital soil classification easily visualizes soil properties within the soil profiles. By combining both techniques, detailed soil maps, elemental balances and a deeper understanding of soil forming processes at the microscale become feasible for complete soil profiles.

  14. TO PURGE OR NOT TO PURGE? VOC CONCENTRATION CHANGES DURING LINE VOLUME PURGING

    EPA Science Inventory

    Soil vapor surveys are commonly used as a screening technique to delineate volatile organic compound (VOC) contaminant plumes and provide information for soil sampling plans. Traditionally, three purge volumes of vapor are removed before a sample is collected. One facet of this s...

  15. Evaluation of Three Field-Based Methods for Quantifying Soil Carbon

    PubMed Central

    Izaurralde, Roberto C.; Rice, Charles W.; Wielopolski, Lucian; Ebinger, Michael H.; Reeves, James B.; Thomson, Allison M.; Francis, Barry; Mitra, Sudeep; Rappaport, Aaron G.; Etchevers, Jorge D.; Sayre, Kenneth D.; Govaerts, Bram; McCarty, Gregory W.

    2013-01-01

    Three advanced technologies to measure soil carbon (C) density (g C m−2) are deployed in the field and the results compared against those obtained by the dry combustion (DC) method. The advanced methods are: a) Laser Induced Breakdown Spectroscopy (LIBS), b) Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS), and c) Inelastic Neutron Scattering (INS). The measurements and soil samples were acquired at Beltsville, MD, USA and at Centro International para el Mejoramiento del Maíz y el Trigo (CIMMYT) at El Batán, Mexico. At Beltsville, soil samples were extracted at three depth intervals (0–5, 5–15, and 15–30 cm) and processed for analysis in the field with the LIBS and DRIFTS instruments. The INS instrument determined soil C density to a depth of 30 cm via scanning and stationary measurements. Subsequently, soil core samples were analyzed in the laboratory for soil bulk density (kg m−3), C concentration (g kg−1) by DC, and results reported as soil C density (kg m−2). Results from each technique were derived independently and contributed to a blind test against results from the reference (DC) method. A similar procedure was employed at CIMMYT in Mexico employing but only with the LIBS and DRIFTS instruments. Following conversion to common units, we found that the LIBS, DRIFTS, and INS results can be compared directly with those obtained by the DC method. The first two methods and the standard DC require soil sampling and need soil bulk density information to convert soil C concentrations to soil C densities while the INS method does not require soil sampling. We conclude that, in comparison with the DC method, the three instruments (a) showed acceptable performances although further work is needed to improve calibration techniques and (b) demonstrated their portability and their capacity to perform under field conditions. PMID:23383225

  16. Distribution and risk factors of Ascarididae and other geohelminths in the soil of Uberlandia, Minas Gerais, Brazil

    PubMed Central

    Mota, Kelem Cristina Pereira; Grama, Daliane Faria; Fava, Natália M. Nasser; Úngari, Letícia Pereira; Faria, Elaine Silva Marques; Cury, Márcia Cristina

    2018-01-01

    ABSTRACT Among the geohelminths, parasites from the Ascarididae family have a significant role in the human and animal health. This research aims to determine the prevalence of Ascarididae species in the soil in different areas located in a city of Minas Gerais State, Brazil (South America). The study was developed in squares, parks, sports clubs, orchards and municipal children's schools. Samples of sand/soil/grass were collected from January to August 2014. The optical microscope screening was performed through formal-ether and spontaneous sedimentation techniques. Out of the 183 collected samples, eight (4.4%) belonged to parks, 16 (8.7%) to sports clubs, 76 (41.5%) to squares, 23 (12.6%) to orchards, and 60 (32.8%) to schools. Out of the total, 28 (15.3%) contained Ascarididae eggs. Higher levels of positivity were demonstrated in the raining season (25.0%), in samples collected in the southern region of the town (25.1%), on ground soils (27.3%). Twenty-three (12.6%) were detected by the formal-ether sedimentation technique and 10 (5.5%) by spontaneous sedimentation technique. Therefore, it was concluded that the soils in the city of Uberlandia are contaminated with eggs and larvae of geohelminths, enabling dissemination of illnesses among animals and human beings. PMID:29694601

  17. Distribution and risk factors of Ascarididae and other geohelminths in the soil of Uberlandia, Minas Gerais, Brazil.

    PubMed

    Mota, Kelem Cristina Pereira; Grama, Daliane Faria; Fava, Natália M Nasser; Úngari, Letícia Pereira; Faria, Elaine Silva Marques; Cury, Márcia Cristina

    2018-01-01

    Among the geohelminths, parasites from the Ascarididae family have a significant role in the human and animal health. This research aims to determine the prevalence of Ascarididae species in the soil in different areas located in a city of Minas Gerais State, Brazil (South America). The study was developed in squares, parks, sports clubs, orchards and municipal children's schools. Samples of sand/soil/grass were collected from January to August 2014. The optical microscope screening was performed through formal-ether and spontaneous sedimentation techniques. Out of the 183 collected samples, eight (4.4%) belonged to parks, 16 (8.7%) to sports clubs, 76 (41.5%) to squares, 23 (12.6%) to orchards, and 60 (32.8%) to schools. Out of the total, 28 (15.3%) contained Ascarididae eggs. Higher levels of positivity were demonstrated in the raining season (25.0%), in samples collected in the southern region of the town (25.1%), on ground soils (27.3%). Twenty-three (12.6%) were detected by the formal-ether sedimentation technique and 10 (5.5%) by spontaneous sedimentation technique. Therefore, it was concluded that the soils in the city of Uberlandia are contaminated with eggs and larvae of geohelminths, enabling dissemination of illnesses among animals and human beings.

  18. Forensic Comparison of Soil Samples Using Nondestructive Elemental Analysis.

    PubMed

    Uitdehaag, Stefan; Wiarda, Wim; Donders, Timme; Kuiper, Irene

    2017-07-01

    Soil can play an important role in forensic cases in linking suspects or objects to a crime scene by comparing samples from the crime scene with samples derived from items. This study uses an adapted ED-XRF analysis (sieving instead of grinding to prevent destruction of microfossils) to produce elemental composition data of 20 elements. Different data processing techniques and statistical distances were evaluated using data from 50 samples and the log-LR cost (C llr ). The best performing combination, Canberra distance, relative data, and square root values, is used to construct a discriminative model. Examples of the spatial resolution of the method in crime scenes are shown for three locations, and sampling strategy is discussed. Twelve test cases were analyzed, and results showed that the method is applicable. The study shows how the combination of an analysis technique, a database, and a discriminative model can be used to compare multiple soil samples quickly. © 2016 American Academy of Forensic Sciences.

  19. Modification of gDNA extraction from soil for PCR designed for the routine examination of soil samples contaminated with Toxocara spp. eggs.

    PubMed

    Borecka, A; Gawor, J

    2008-06-01

    A modification of gDNA extraction was developed for the polymerase chain reaction (PCR) technique, intended for the detection and differentiation of Toxocara spp. eggs in soil or sediments. Sand samples from sandpits confirmed as being contaminated with Toxocara spp. eggs by the flotation technique were analysed by PCR. The use of proteinase K made it possible to obtain genomic DNA from the sample without needing to isolate eggs using flotation or to inactivate PCR inhibitors present in the sand. Specific primers in the PCR reaction allowed discrimination between T. canis and T. cati eggs. The modification simplified the procedure, thanks to eliminating the step of gDNA isolation from eggs, which is both laborious and difficult.

  20. Optimal spatial sampling techniques for ground truth data in microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Rao, R. G. S.; Ulaby, F. T.

    1977-01-01

    The paper examines optimal sampling techniques for obtaining accurate spatial averages of soil moisture, at various depths and for cell sizes in the range 2.5-40 acres, with a minimum number of samples. Both simple random sampling and stratified sampling procedures are used to reach a set of recommended sample sizes for each depth and for each cell size. Major conclusions from statistical sampling test results are that (1) the number of samples required decreases with increasing depth; (2) when the total number of samples cannot be prespecified or the moisture in only one single layer is of interest, then a simple random sample procedure should be used which is based on the observed mean and SD for data from a single field; (3) when the total number of samples can be prespecified and the objective is to measure the soil moisture profile with depth, then stratified random sampling based on optimal allocation should be used; and (4) decreasing the sensor resolution cell size leads to fairly large decreases in samples sizes with stratified sampling procedures, whereas only a moderate decrease is obtained in simple random sampling procedures.

  1. Installation Restoration General Environmental Technology Development. Task 6. Materials Handling of Explosive Contaminated Soil and Sediment.

    DTIC Science & Technology

    1985-06-01

    of chemical analysis and sensitivity testing on material samples . At this 4 time, these samples must be packaged and...preparation at a rate of three samples per hour. One analyst doing both sample preparation and the HPLC analysis can run 16 samples in an 8-hour day. II... study , sensitivity testing was reviewed to enable recommendations for complete analysis of contaminated soils. Materials handling techniques,

  2. Molecular methods (digital PCR and real-time PCR) for the quantification of low copy DNA of Phytophthora nicotianae in environmental samples.

    PubMed

    Blaya, Josefa; Lloret, Eva; Santísima-Trinidad, Ana B; Ros, Margarita; Pascual, Jose A

    2016-04-01

    Currently, real-time polymerase chain reaction (qPCR) is the technique most often used to quantify pathogen presence. Digital PCR (dPCR) is a new technique with the potential to have a substantial impact on plant pathology research owing to its reproducibility, sensitivity and low susceptibility to inhibitors. In this study, we evaluated the feasibility of using dPCR and qPCR to quantify Phytophthora nicotianae in several background matrices, including host tissues (stems and roots) and soil samples. In spite of the low dynamic range of dPCR (3 logs compared with 7 logs for qPCR), this technique proved to have very high precision applicable at very low copy numbers. The dPCR was able to detect accurately the pathogen in all type of samples in a broad concentration range. Moreover, dPCR seems to be less susceptible to inhibitors than qPCR in plant samples. Linear regression analysis showed a high correlation between the results obtained with the two techniques in soil, stem and root samples, with R(2) = 0.873, 0.999 and 0.995 respectively. These results suggest that dPCR is a promising alternative for quantifying soil-borne pathogens in environmental samples, even in early stages of the disease. © 2015 Society of Chemical Industry.

  3. Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium.

    PubMed

    Senesi, G S; Dell'Aglio, M; Gaudiuso, R; De Giacomo, A; Zaccone, C; De Pascale, O; Miano, T M; Capitelli, M

    2009-05-01

    Soil is unanimously considered as one of the most important sink of heavy metals released by human activities. Heavy metal analysis of natural and polluted soils is generally conducted by the use of atomic absorption spectroscopy (AAS) or inductively coupled plasma optical emission spectroscopy (ICP-OES) on adequately obtained soil extracts. Although in recent years the emergent technique of laser-induced breakdown spectroscopy (LIBS) has been applied widely and with increasing success for the qualitative and quantitative analyses of a number of heavy metals in soil matrices with relevant simplification of the conventional methodologies, the technique still requires further confirmation before it can be applied fully successfully in soil analyses. The main objective of this work was to demonstrate that new developments in LIBS technique are able to provide reliable qualitative and quantitative analytical evaluation of several heavy metals in soils, with special focus on the element chromium (Cr), and with reference to the concentrations measured by conventional ICP spectroscopy. The preliminary qualitative LIBS analysis of five soil samples and one sewage sludge sample has allowed the detection of a number of elements including Al, Ca, Cr, Cu, Fe, Mg, Mn, Pb, Si, Ti, V and Zn. Of these, a quantitative analysis was also possible for the elements Cr, Cu, Pb, V and Zn based on the obtained linearity of the calibration curves constructed for each heavy metal, i.e., the proportionality between the intensity of the LIBS emission peaks and the concentration of each heavy metal in the sample measured by ICP. In particular, a triplet of emission lines for Cr could be used for its quantitative measurement. The consistency of experiments made on various samples was supported by the same characteristics of the laser-induced plasma (LIP), i.e., the typical linear distribution confirming the existence of local thermodynamic equilibrium (LTE) condition, and similar excitation temperatures and comparable electron number density measured for all samples. An index of the anthropogenic contribution of Cr in polluted soils was calculated in comparison to a non-polluted reference soil. Thus, the intensity ratios of the emission lines of heavy metal can be used to detect in few minutes the polluted areas for which a more detailed sampling and analysis can be useful.

  4. Critical Evaluation of Soil Pore Water Extraction Methods on a Natural Soil

    NASA Astrophysics Data System (ADS)

    Orlowski, Natalie; Pratt, Dyan; Breuer, Lutz; McDonnell, Jeffrey

    2017-04-01

    Soil pore water extraction is an important component in ecohydrological studies for the measurement of δ2H and δ18O. The effect of pore water extraction technique on resultant isotopic signature is poorly understood. Here we present results of an intercomparison of commonly applied lab-based soil water extraction techniques on a natural soil: high pressure mechanical squeezing, centrifugation, direct vapor equilibration, microwave extraction, and two types of cryogenic extraction systems. We applied these extraction methods to a natural summer-dry (gravimetric water contents ranging from 8% to 15%) glacio-lacustrine, moderately fine textured clayey soil; excavated in 10 cm sampling increments to a depth of 1 meter. Isotope results were analyzed via OA-ICOS and compared for each extraction technique that produced liquid water. From our previous intercomparison study among the same extraction techniques but with standard soils, we discovered that extraction methods are not comparable. We therefore tested the null hypothesis that all extraction techniques would be able to replicate the natural evaporation front in a comparable manner occurring in a summer-dry soil. Our results showed that the extraction technique utilized had a significant effect on the soil water isotopic composition. High pressure mechanical squeezing and vapor equilibration techniques produced similar results with similarly sloped evaporation lines. Due to the nature of soil properties and dryness, centrifugation was unsuccessful in obtaining pore water for isotopic analysis. Cryogenic extraction on both tested techniques produced similar results to each other on a similar sloping evaporation line, but dissimilar with depth.

  5. The application of remote sensing technology to the solution of problems in the management of resources in Indiana

    NASA Technical Reports Server (NTRS)

    Weismiller, R. A.; Mroczynski, R. P. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. Of the sampling techniques considered, a combination soil mapping and area sampling offered the most practical method for gathering soils data. Using the dot grid count, a relative percentage composition of soils can be calculated for each spectral class. From these percentages, a legend describing the dominant soils and inclusions can be developed. Interval drainage class seemed to be correlated with magnitude. For every parent material area, the more poorly drained soils had a lower magnitude of reflectance. Soil spectral classes seemed to be predominantly one internal drainage class.

  6. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review.

    PubMed

    Hou, Deyi; O'Connor, David; Nathanail, Paul; Tian, Li; Ma, Yan

    2017-12-01

    Heavy metal soil contamination is associated with potential toxicity to humans or ecotoxicity. Scholars have increasingly used a combination of geographical information science (GIS) with geostatistical and multivariate statistical analysis techniques to examine the spatial distribution of heavy metals in soils at a regional scale. A review of such studies showed that most soil sampling programs were based on grid patterns and composite sampling methodologies. Many programs intended to characterize various soil types and land use types. The most often used sampling depth intervals were 0-0.10 m, or 0-0.20 m, below surface; and the sampling densities used ranged from 0.0004 to 6.1 samples per km 2 , with a median of 0.4 samples per km 2 . The most widely used spatial interpolators were inverse distance weighted interpolation and ordinary kriging; and the most often used multivariate statistical analysis techniques were principal component analysis and cluster analysis. The review also identified several determining and correlating factors in heavy metal distribution in soils, including soil type, soil pH, soil organic matter, land use type, Fe, Al, and heavy metal concentrations. The major natural and anthropogenic sources of heavy metals were found to derive from lithogenic origin, roadway and transportation, atmospheric deposition, wastewater and runoff from industrial and mining facilities, fertilizer application, livestock manure, and sewage sludge. This review argues that the full potential of integrated GIS and multivariate statistical analysis for assessing heavy metal distribution in soils on a regional scale has not yet been fully realized. It is proposed that future research be conducted to map multivariate results in GIS to pinpoint specific anthropogenic sources, to analyze temporal trends in addition to spatial patterns, to optimize modeling parameters, and to expand the use of different multivariate analysis tools beyond principal component analysis (PCA) and cluster analysis (CA). Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Analysis of soil samples from Gebeng area using NAA technique

    NASA Astrophysics Data System (ADS)

    Elias, Md Suhaimi; Wo, Yii Mei; Hamzah, Mohd Suhaimi; Shukor, Shakirah Abd; Rahman, Shamsiah Ab; Salim, Nazaratul Ashifa Abdullah; Azman, Muhamad Azfar; Hashim, Azian

    2017-01-01

    Rapid development and urbanization will increase number of residence and industrial area. Without proper management and control of pollution, these will give an adverse effect to environment and human life. The objective of this study to identify and quantify key contaminants into the environment of the Gebeng area as a result of industrial and human activities. Gebeng area was gazetted as one of the industrial estate in Pahang state. Assessment of elemental pollution in soil of Gebeng area base on level of concentration, enrichment factor and geo-accumulation index. The enrichment factors (EFs) were determined by the elemental rationing method, whilst the geo-accumulation index (Igeo) by comparing of current to continental crustal average concentration of element. Twenty-seven of soil samples were collected from Gebeng area. Soil samples were analysed by using Neutron Activation Analyses (NAA) technique. The obtained data showed higher concentration of iron (Fe) due to abundance in soil compared to other elements. The results of enrichment factor showed that Gebeng area have enrich with elements of As, Br, Hf, Sb, Th and U. Base on the geo-accumulation index (Igeo) classification, the soil quality of Gebeng area can be classified as class 0, (uncontaminated) to Class 3, (moderately to heavily contaminated).

  8. Lufkin_Exercise_ Setup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milbrath, Brian; Sussman, Aviva Joy

    As part of this training course, we have created a scenario at a location that will provide you with an opportunity to practice the techniques you have learned during the week. For the first hour, you will have the opportunity to conduct a Visual Observation and use VOB to determine ideal locations for RN soil sampling, swipe sampling, and in situ measurements. After the VOB and sampling locating, you will rotate between soil sample, swipe sample, and two in situ activities.

  9. A New Method for Estimating Bacterial Abundances in Natural Samples using Sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Cleaves, H. James; Schubert, Michael; Aubrey, Andrew; Bada, Jeffrey L.

    2004-01-01

    We have developed a new method based on the sublimation of adenine from Escherichia coli to estimate bacterial cell counts in natural samples. To demonstrate this technique, several types of natural samples including beach sand, seawater, deep-sea sediment, and two soil samples from the Atacama Desert were heated to a temperature of 500 C for several seconds under reduced pressure. The sublimate was collected on a cold finger and the amount of adenine released from the samples then determined by high performance liquid chromatography (HPLC) with UV absorbance detection. Based on the total amount of adenine recovered from DNA and RNA in these samples, we estimated bacterial cell counts ranging from approx. l0(exp 5) to l0(exp 9) E. coli cell equivalents per gram. For most of these samples, the sublimation based cell counts were in agreement with total bacterial counts obtained by traditional DAPI staining. The simplicity and robustness of the sublimation technique compared to the DAPI staining method makes this approach particularly attractive for use by spacecraft instrumentation. NASA is currently planning to send a lander to Mars in 2009 in order to assess whether or not organic compounds, especially those that might be associated with life, are present in Martian surface samples. Based on our analyses of the Atacama Desert soil samples, several million bacterial cells per gam of Martian soil should be detectable using this sublimation technique.

  10. Microflora in soils of desert regions

    NASA Technical Reports Server (NTRS)

    Cameron, R. E.

    1970-01-01

    Desert soil samples, collected using aseptic techniques, are low in organic matter and cation exchange capacity. Aerobic and microaerophilic bacteria are most abundant, next are algae and molds. Chemical and physical properties are determined by standard procedures, including the Kjeldahl method and the use of Munsell soil color charts.

  11. Geochemistry of biomolecules

    NASA Technical Reports Server (NTRS)

    Bonner, J.

    1976-01-01

    A highly sensitive fluorometric technique is developed for the determination of biological and geo-organic compounds in ancient sediments and extraterrestrial samples. This technique is used to establish chemical evidence for fossil pigments in an extraterrestrial sample. Also developed is a highly sensitive and specific fluorometric method for the determination of total primary amine nitrogen in soil samples.

  12. Visually assessing the level of development and soil surface stability of cyanobacterially dominated biological soil crusts

    USGS Publications Warehouse

    Belnap, J.; Phillips, S.L.; Witwicki, D.L.; Miller, M.E.

    2008-01-01

    Biological soil crusts (BSCs) are an integral part of dryland ecosystems and often included in long-term ecological monitoring programs. Estimating moss and lichen cover is fairly easy and non-destructive, but documenting cyanobacterial level of development (LOD) is more difficult. It requires sample collection for laboratory analysis, which causes soil surface disturbance. Assessing soil surface stability also requires surface disturbance. Here we present a visual technique to assess cyanobacterial LOD and soil surface stability. We define six development levels of cyanobacterially dominated soils based on soil surface darkness. We sampled chlorophyll a concentrations (the most common way of assessing cyanobacterial biomass), exopolysaccharide concentrations, and soil surface aggregate stability from representative areas of each LOD class. We found that, in the laboratory and field, LOD classes were effective at predicting chlorophyll a soil concentrations (R2=68-81%), exopolysaccharide concentrations (R2=71%), and soil aggregate stability (R2=77%). We took representative photos of these classes to construct a field guide. We then tested the ability of field crews to distinguish these classes and found this technique was highly repeatable among observers. We also discuss how to adjust this index for the different types of BSCs found in various dryland regions.

  13. Nickel speciation in several serpentine (ultramafic) topsoils via bulk synchrotron-based techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siebecker, Matthew G.; Chaney, Rufus L.; Sparks, Donald L.

    2017-07-01

    Serpentine soils have elevated concentrations of trace metals including nickel, cobalt, and chromium compared to non-serpentine soils. Identifying the nickel bearing minerals allows for prediction of potential mobility of nickel. Synchrotron-based techniques can identify the solid-phase chemical forms of nickel with minimal sample treatment. Element concentrations are known to vary among soil particle sizes in serpentine soils. Sonication is a useful method to physically disperse sand, silt and clay particles in soils. Synchrotron-based techniques and sonication were employed to identify nickel species in discrete particle size fractions in several serpentine (ultramafic) topsoils to better understand solid-phase nickel geochemistry. Nickel commonlymore » resided in primary serpentine parent material such as layered-phyllosilicate and chain-inosilicate minerals and was associated with iron oxides. In the clay fractions, nickel was associated with iron oxides and primary serpentine minerals, such as lizardite. Linear combination fitting (LCF) was used to characterize nickel species. Total metal concentration did not correlate with nickel speciation and is not an indicator of the major nickel species in the soil. Differences in soil texture were related to different nickel speciation for several particle size fractionated samples. A discussion on LCF illustrates the importance of choosing standards based not only on statistical methods such as Target Transformation but also on sample mineralogy and particle size. Results from the F-test (Hamilton test), which is an underutilized tool in the literature for LCF in soils, highlight its usefulness to determine the appropriate number of standards to for LCF. EXAFS shell fitting illustrates that destructive interference commonly found for light and heavy elements in layered double hydroxides and in phyllosilicates also can occur in inosilicate minerals, causing similar structural features and leading to false positive results in LCF.« less

  14. Variability of 137Cs inventory at a reference site in west-central Iran.

    PubMed

    Bazshoushtari, Nasim; Ayoubi, Shamsollah; Abdi, Mohammad Reza; Mohammadi, Mohammad

    2016-12-01

    137 Cs technique has been widely used for the evaluation rates and patterns of soil erosion and deposition. This technique requires an accurate estimate of the values of 137 Cs inventory at the reference site. This study was conducted to evaluate the variability of the inventory of 137 Cs regarding to the sampling program including sample size, distance and sampling method at a reference site located in vicinity of Fereydan district in Isfahan province, west-central Iran. Two 3 × 8 grids were established comprising large grid (35 m length and 8 m width), and small grid (24 m length and 6 m width). At each grid intersection two soil samples were collected from 0 to 15 cm and 15-30 cm depths, totally 96 soil samples from 48 sampling points. Coefficients of variation for 137 Cs inventory in the soil samples was relatively low (CV = 15%), and the sampling distance and methods used did not significantly affect the 137 Cs inventories across the studied reference site. To obtain a satisfactory estimate of the mean 137 Cs activity in the reference sites, particularly those located in the semiarid regions, it is recommended to collect at least four samples along in a grid pattern 3 m apart. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Development of remote sensing techniques capable of delineating soils as an aid to soil survey

    NASA Technical Reports Server (NTRS)

    Coleman, T. L.; Montgomery, O. L.

    1988-01-01

    Eighty-one benchmark soils from Alabama, Georgia, Florida, Tennessee, and Mississippi were evaluated to determine the feasibility of spectrally differentiating among soil categories. Relationships among spectral properties that occur between soils and within soils were examined, using discriminant analysis. Soil spectral data were obtained from air-dried samples using an Exotech Model 20C field spectroradiometer (0.37 to 2.36 microns). Differentiating among the orders, suborders, great groups, and subgroups using reflectance spectra achieved varying percentages of accuracy. Six distinct reflectance curve forms were developed from the air-dried samples based on the shape and presence or absence of adsorption bands. Iron oxide and organic matter content were the dominant soil parameters affecting the spectral characteristics for differentiating among and between these soils.

  16. Soil contamination by petroleum products. Southern Algerian case

    NASA Astrophysics Data System (ADS)

    Belabbas, Amina; Boutoutaou, Djamel; Segaï, Sofiane; Segni, Ladjel

    2016-07-01

    Contamination of soil by petroleum products is a current problem in several countries in the world. In Algeria, this negative phenomenon is highly remarked in Saharan region. Numerous studies at the University of Ouargla that we will review in this paper, have tried to find an effective solution to eliminate the hydrocarbons from the soil by the technique of "biodegradation" which is a natural process based on microorganisms such as Bacillus megaterium and Pseudomonas aeruginosa. Presence of aboriginal strain Bacillus megaterium in the soil samples with different ages of contamination has shown a strong degradation of pollutants. This strain chosen for its short time of generation which is performing as seen the best yields of elimination of hydrocarbons assessed at 98 % biostimule by biosurfactant, also 98% on a sample wich bioaugmente by urea, and 86 % of the sample which biostimule by nutrient solution. The rate of biodegradation of the contaminated soil by crude oil using the strain Pseudomonas aeruginosa is higher in the presence of biosurfactant 53 % that in his absence 35 %. Another elimination technique wich is washing the contaminated soil's sample by centrifugation in the presence of biosurfactant where The rate of hydrocarbons mobilized after washing soil by centrifugation is of 50 % and 76 % but without centrifugation it was of 46% to 79%. Those processes have great capacity in the remobilization of hydrocarbons and acceleration of their biodegradation; thus, they deserve to be further developed in order to prevent environmental degradation in the region of Ouargla.

  17. Resource seeking strategies of zoosporic true fungi in heterogeneous soil habitats at the microscale level

    PubMed Central

    Gleason, Frank H.; Crawford, John W.; Neuhauser, Sigrid; Henderson, Linda E.; Lilje, Osu

    2012-01-01

    Zoosporic true fungi have frequently been identified in samples from soil and freshwater ecosystems using baiting and molecular techniques. In fact some species can be components of the dominant groups of microorganisms in particular soil habitats. Yet these microorganisms have not yet been directly observed growing in soil ecosystems. Significant physical characteristics and features of the three-dimensional structures of soils which impact microorganisms at the microscale level are discussed. A thorough knowledge of soil structures is important for studying the distribution of assemblages of these fungi and understanding their ecological roles along spatial and temporal gradients. A number of specific adaptations and resource seeking strategies possibly give these fungi advantages over other groups of microorganisms in soil ecosystems. These include chemotactic zoospores, mechanisms for adhesion to substrates, rhizoids which can penetrate substrates in small spaces, structures which are resistant to environmental extremes, rapid growth rates and simple nutritional requirements. These adaptations are discussed in the context of the characteristics of soils ecosystems. Recent advances in instrumentation have led to the development of new and more precise methods for studying microorganisms in three-dimensional space. New molecular techniques have made identification of microbes possible in environmental samples. PMID:22308003

  18. Impacts of Sampling and Handling Procedures on DNA- and RNA-based Microbial Characterization and Quantification of Groundwater and Saturated Soil

    DTIC Science & Technology

    2012-07-01

    use of molecular biological techniques (MBTs) has allowed microbial ecologists and environmental engineers to determine microbial community...metabolic genes). The most common approaches used in bioremediation research are those based on the polymerase chain reaction (PCR) amplification of... bioremediation . Because of its sensitivity compared to direct hybridization/probing, PCR is increasingly used to analyze groundwater samples and soil samples

  19. The accuracy of formol-ether concentration in diagnosing soiltransmitted helminths in elementary school 27 Peusangan in Bireuen

    NASA Astrophysics Data System (ADS)

    Fitriani, C. L.; Panggabean, M.; Pasaribu, A. P.

    2018-03-01

    Soil-transmitted helminths (STH) or a group of parasitic nematode worms causing human infection through contact with moist soil may contribute to anemia, nutritional disorders, physical and intellectual growth retardation. School-age children are at high risk of STH infection due to frequent contact with soil. Reliable, sensitive, and practical diagnostic are the test series for detecting STH. This study aimed to assess the sensitivity and specificity of the formol-ether concentration (FEC) in the diagnosis of STH when compared to the Kato-Katz technique. The study was designed at state elementary school 27 Peusangan, Bireuen. The FEC study on a total of 80 (100%) elementary students showed that 12 (15%) sample had the STH infection, while Kato-Katz technique (Gold standard) showed that 31 (38.75%) sample had the STH infection. The FEC technique has the sensitivity of (38.71%), specificity of (100%) and accuracy of (76.25%). The Kato-Katz technique is better than the FEC technique for assessing STH in Bireuen due to mild infection.

  20. Methodological issues concerning the application of reliable laser particle sizing in soils

    NASA Astrophysics Data System (ADS)

    de Mascellis, R.; Impagliazzo, A.; Basile, A.; Minieri, L.; Orefice, N.; Terribile, F.

    2009-04-01

    During the past decade, the evolution of technologies has enabled laser diffraction (LD) to become a much widespread means of particle size distribution (PSD), replacing sedimentation and sieve analysis in many scientific fields mainly due to its advantages of versatility, fast measurement and high reproducibility. Despite such developments of the last decade, the soil scientist community has been quite reluctant to replace the good old sedimentation techniques (ST); possibly because of (i) the large complexity of the soil matrix inducing different types of artefacts (aggregates, deflocculating dynamics, etc.), (ii) the difficulties in relating LD results with results obtained through sedimentation techniques and (iii) the limited size range of most LD equipments. More recently LD granulometry is slowly gaining appreciation in soil science also because of some innovations including an enlarged size dynamic range (0,01-2000 m) and the ability to implement more powerful algorithms (e.g. Mie theory). Furthermore, LD PSD can be successfully used in the application of physically based pedo-transfer functions (i.e., Arya and Paris model) for investigations of soil hydraulic properties, due to the direct determination of PSD in terms of volume percentage rather than in terms of mass percentage, thus eliminating the need to adopt the rough approximation of a single value for soil particle density in the prediction process. Most of the recent LD work performed in soil science deals with the comparison with sedimentation techniques and show the general overestimation of the silt fraction following a general underestimation of the clay fraction; these well known results must be related with the different physical principles behind the two techniques. Despite these efforts, it is indeed surprising that little if any work is devoted to more basic methodological issues related to the high sensitivity of LD to the quantity and the quality of the soil samples. Our work aims to both analyse and to suggest technical solutions to address the following key methodological problems: (i) sample representativeness due to the very small amount of soil sample required by LD (e.g. 0,2 g) as compared to ST (e.g. 40 g for densimetry); (ii) PSD reading variability caused by the large number of instantaneous reading on a very small volume of the solution, (iii) the varying soil mineralogy that in turn produce varying refractive indexes affecting PSD results, (iv) the determination of the mass density of the soil samples to compare results with those obtained from ST. Our results, referring to many different soil types (Vertisols, Regosols, Andosols, Calcisols, Luvisols) show that the listed major technical problems can be successfully addressed by the following set of solutions: (i) adequate subsampling in both solid and liquid phases (including a setup of a dilution system); (ii) preliminary study of the PSD variability to reasonably increase the number of readings per each sample; (iii, iv) preliminary sensitivity analysis of both refractive indexes and mass density in accordance to the specific soil mineralogy.

  1. Reconnaissance techniques for determining soil-gas radon concentrations: an example from Prince Georges County, Maryland

    USGS Publications Warehouse

    Reimer, G.M.

    1990-01-01

    Radon reconnaissance requires some special considerations because a large area must be covered in a short period of time and analyses must be made soon after collection because of Rn decay. A simple approach to collection and field analysis consists of a small-diameter probe pounded into the ground to a depth of at least 0.75 m. Analysis is by an alpha-scintillometer. Soil-gas samples collected along a traverse in Prince Georges County, Maryland, demonstrates the utility of the technique. The reconnaissance sampling revealed Rn soil-gas concentrations of up to 2500 pCi/L (picocuries per liter) indicating that the potential exists for indoor accumulations in excess of 4 pCi/L. -from Author

  2. Spectral mapping of soil organic matter

    NASA Technical Reports Server (NTRS)

    Kristof, S. J.; Baumgardner, M. F.; Johannsen, C. J.

    1974-01-01

    Multispectral remote sensing data were examined for use in the mapping of soil organic matter content. Computer-implemented pattern recognition techniques were used to analyze data collected in May 1969 and May 1970 by an airborne multispectral scanner over a 40-km flightline. Two fields within the flightline were selected for intensive study. Approximately 400 surface soil samples from these fields were obtained for organic matter analysis. The analytical data were used as training sets for computer-implemented analysis of the spectral data. It was found that within the geographical limitations included in this study, multispectral data and automatic data processing techniques could be used very effectively to delineate and map surface soils areas containing different levels of soil organic matter.

  3. Measurement of particle size distribution of soil and selected aggregate sizes using the hydrometer method and laser diffractometry

    NASA Astrophysics Data System (ADS)

    Guzmán, G.; Gómez, J. A.; Giráldez, J. V.

    2010-05-01

    Soil particle size distribution has been traditionally determined by the hydrometer or the sieve-pipette methods, both of them time consuming and requiring a relatively large soil sample. This might be a limitation in situations, such as for instance analysis of suspended sediment, when the sample is small. A possible alternative to these methods are the optical techniques such as laser diffractometry. However the literature indicates that the use of this technique as an alternative to traditional methods is still limited, because the difficulty in replicating the results obtained with the standard methods. In this study we present the percentages of soil grain size determined using laser diffractometry within ranges set between 0.04 - 2000 μm. A Beckman-Coulter ® LS-230 with a 750 nm laser beam and software version 3.2 in five soils, representative of southern Spain: Alameda, Benacazón, Conchuela, Lanjarón and Pedrera. In three of the studied soils (Alameda, Benacazón and Conchuela) the particle size distribution of each aggregate size class was also determined. Aggregate size classes were obtained by dry sieve analysis using a Retsch AS 200 basic ®. Two hundred grams of air dried soil were sieved during 150 s, at amplitude 2 mm, getting nine different sizes between 2000 μm and 10 μm. Analyses were performed by triplicate. The soil sample preparation was also adapted to our conditions. A small amount each soil sample (less than 1 g) was transferred to the fluid module full of running water and disaggregated by ultrasonication at energy level 4 and 80 ml of sodium hexametaphosphate solution during 580 seconds. Two replicates of each sample were performed. Each measurement was made for a 90 second reading at a pump speed of 62. After the laser diffractometry analysis, each soil and its aggregate classes were processed calibrating its own optical model fitting the optical parameters that mainly depends on the color and the shape of the analyzed particle. As a second alternative a unique optical model valid for a broad range of soils developed by the Department of Soil, Water, and Environmental Science of the University of Arizona (personal communication, already submitted) was tested. The results were compared with the particle size distribution measured in the same soils and aggregate classes using the hydrometer method. Preliminary results indicate a better calibration of the technique using the optical model of the Department of Soil, Water, and Environmental Science of the University of Arizona, which obtained a good correlations (r2>0.85). This result suggests that with an appropriate calibration of the optical model laser diffractometry might provide a reliable soil particle characterization.

  4. Mode Decomposition Methods for Soil Moisture Prediction

    NASA Astrophysics Data System (ADS)

    Jana, R. B.; Efendiev, Y. R.; Mohanty, B.

    2014-12-01

    Lack of reliable, well-distributed, long-term datasets for model validation is a bottle-neck for most exercises in soil moisture analysis and prediction. Understanding what factors drive soil hydrological processes at different scales and their variability is very critical to further our ability to model the various components of the hydrologic cycle more accurately. For this, a comprehensive dataset with measurements across scales is very necessary. Intensive fine-resolution sampling of soil moisture over extended periods of time is financially and logistically prohibitive. Installation of a few long term monitoring stations is also expensive, and needs to be situated at critical locations. The concept of Time Stable Locations has been in use for some time now to find locations that reflect the mean values for the soil moisture across the watershed under all wetness conditions. However, the soil moisture variability across the watershed is lost when measuring at only time stable locations. We present here a study using techniques such as Dynamic Mode Decomposition (DMD) and Discrete Empirical Interpolation Method (DEIM) that extends the concept of time stable locations to arrive at locations that provide not simply the average soil moisture values for the watershed, but also those that can help re-capture the dynamics across all locations in the watershed. As with the time stability, the initial analysis is dependent on an intensive sampling history. The DMD/DEIM method is an application of model reduction techniques for non-linearly related measurements. Using this technique, we are able to determine the number of sampling points that would be required for a given accuracy of prediction across the watershed, and the location of those points. Locations with higher energetics in the basis domain are chosen first. We present case studies across watersheds in the US and India. The technique can be applied to other hydro-climates easily.

  5. High-throughput immunomagnetic scavenging technique for quantitative analysis of live VX nerve agent in water, hamburger, and soil matrixes.

    PubMed

    Knaack, Jennifer S; Zhou, Yingtao; Abney, Carter W; Prezioso, Samantha M; Magnuson, Matthew; Evans, Ronald; Jakubowski, Edward M; Hardy, Katelyn; Johnson, Rudolph C

    2012-11-20

    We have developed a novel immunomagnetic scavenging technique for extracting cholinesterase inhibitors from aqueous matrixes using biological targeting and antibody-based extraction. The technique was characterized using the organophosphorus nerve agent VX. The limit of detection for VX in high-performance liquid chromatography (HPLC)-grade water, defined as the lowest calibrator concentration, was 25 pg/mL in a small, 500 μL sample. The method was characterized over the course of 22 sample sets containing calibrators, blanks, and quality control samples. Method precision, expressed as the mean relative standard deviation, was less than 9.2% for all calibrators. Quality control sample accuracy was 102% and 100% of the mean for VX spiked into HPLC-grade water at concentrations of 2.0 and 0.25 ng/mL, respectively. This method successfully was applied to aqueous extracts from soil, hamburger, and finished tap water spiked with VX. Recovery was 65%, 81%, and 100% from these matrixes, respectively. Biologically based extractions of organophosphorus compounds represent a new technique for sample extraction that provides an increase in extraction specificity and sensitivity.

  6. Comparison of soil sampling and analytical methods for asbestos at the Sumas Mountain Asbestos Site-Working towards a toolbox for better assessment.

    PubMed

    Wroble, Julie; Frederick, Timothy; Frame, Alicia; Vallero, Daniel

    2017-01-01

    Established soil sampling methods for asbestos are inadequate to support risk assessment and risk-based decision making at Superfund sites due to difficulties in detecting asbestos at low concentrations and difficulty in extrapolating soil concentrations to air concentrations. Environmental Protection Agency (EPA)'s Office of Land and Emergency Management (OLEM) currently recommends the rigorous process of Activity Based Sampling (ABS) to characterize site exposures. The purpose of this study was to compare three soil analytical methods and two soil sampling methods to determine whether one method, or combination of methods, would yield more reliable soil asbestos data than other methods. Samples were collected using both traditional discrete ("grab") samples and incremental sampling methodology (ISM). Analyses were conducted using polarized light microscopy (PLM), transmission electron microscopy (TEM) methods or a combination of these two methods. Data show that the fluidized bed asbestos segregator (FBAS) followed by TEM analysis could detect asbestos at locations that were not detected using other analytical methods; however, this method exhibited high relative standard deviations, indicating the results may be more variable than other soil asbestos methods. The comparison of samples collected using ISM versus discrete techniques for asbestos resulted in no clear conclusions regarding preferred sampling method. However, analytical results for metals clearly showed that measured concentrations in ISM samples were less variable than discrete samples.

  7. Comparison of soil sampling and analytical methods for asbestos at the Sumas Mountain Asbestos Site—Working towards a toolbox for better assessment

    PubMed Central

    2017-01-01

    Established soil sampling methods for asbestos are inadequate to support risk assessment and risk-based decision making at Superfund sites due to difficulties in detecting asbestos at low concentrations and difficulty in extrapolating soil concentrations to air concentrations. Environmental Protection Agency (EPA)’s Office of Land and Emergency Management (OLEM) currently recommends the rigorous process of Activity Based Sampling (ABS) to characterize site exposures. The purpose of this study was to compare three soil analytical methods and two soil sampling methods to determine whether one method, or combination of methods, would yield more reliable soil asbestos data than other methods. Samples were collected using both traditional discrete (“grab”) samples and incremental sampling methodology (ISM). Analyses were conducted using polarized light microscopy (PLM), transmission electron microscopy (TEM) methods or a combination of these two methods. Data show that the fluidized bed asbestos segregator (FBAS) followed by TEM analysis could detect asbestos at locations that were not detected using other analytical methods; however, this method exhibited high relative standard deviations, indicating the results may be more variable than other soil asbestos methods. The comparison of samples collected using ISM versus discrete techniques for asbestos resulted in no clear conclusions regarding preferred sampling method. However, analytical results for metals clearly showed that measured concentrations in ISM samples were less variable than discrete samples. PMID:28759607

  8. Comparison of soil pollution concentrations determined using AAS and portable XRF techniques.

    PubMed

    Radu, Tanja; Diamond, Dermot

    2009-11-15

    Past mining activities in the area of Silvermines, Ireland, have resulted in heavily polluted soils. The possibility of spreading pollution to the surrounding areas through dust blow-offs poses a potential threat for the local communities. Conventional environmental soil and dust analysis techniques are very slow and laborious and consequently there is a need for fast and accurate analytical methods, which can provide real-time in situ pollution mapping. Laboratory-based aqua regia acid digestion of the soil samples collected in the area followed by the atomic absorption spectrophotometry (AAS) analysis confirmed very high pollution, especially by Pb, As, Cu, and Zn. In parallel, samples were analyzed using portable X-ray fluorescence radioisotope and miniature tube powered (XRF) NITON instruments and their performance was compared. Overall, the portable XRF instrument gave excellent correlation with the laboratory-based reference AAS method.

  9. Spatial prediction of near surface soil water retention functions using hydrogeophysics

    NASA Astrophysics Data System (ADS)

    Gibson, J. P.; Franz, T. E.

    2017-12-01

    The hydrological community often turns to widely available spatial datasets such as SSURGO to characterize the spatial variability of soil across a landscape of interest. This has served as a reasonable first approximation when lacking localized soil data. However, previous work has shown that information loss within land surface models primarily stems from parameterization. Localized soil sampling is both expensive and time intense, and thus a need exists in connecting spatial datasets with ground observations. Given that hydrogeophysics is data-dense, rapid, and relatively easy to adopt, it is a promising technique to help dovetail localized soil sampling with larger spatial datasets. In this work, we utilize 2 geophysical techniques; cosmic ray neutron probe and electromagnetic induction, to identify temporally stable soil moisture patterns. This is achieved by measuring numerous times over a range of wet to dry field conditions in order to apply an empirical orthogonal function. We then present measured water retention functions of shallow cores extracted within each temporally stable zone. Lastly, we use soil moisture patterns as a covariate to predict soil hydraulic properties in areas without measurement and validate using a leave-one-out cross validation analysis. Using these approaches to better constrain soil hydraulic property variability, we speculate that further research can better estimate hydrologic fluxes in areas of interest.

  10. A Brief History of the use of Electromagnetic Induction Techniques in Soil Survey

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Doolittle, James

    2017-04-01

    Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; assessing variations in soil texture, compaction, organic matter content, and pH; and determining the depth to subsurface horizons, stratigraphic layers or bedrock, among other uses. In all cases the soil property being investigated must influence soil apparent electrical conductivity (ECa) either directly or indirectly for EMI techniques to be effective. An increasing number and diversity of EMI sensors have been developed in response to users' needs and the availability of allied technologies, which have greatly improved the functionality of these tools and increased the amount and types of data that can be gathered with a single pass. EMI investigations provide several benefits for soil studies. The large amount of georeferenced data that can be rapidly and inexpensively collected with EMI provides more complete characterization of the spatial variations in soil properties than traditional sampling techniques. In addition, compared to traditional soil survey methods, EMI can more effectively characterize diffuse soil boundaries and identify included areas of dissimilar soils within mapped soil units, giving soil scientists greater confidence when collecting spatial soil information. EMI techniques do have limitations; results are site-specific and can vary depending on the complex interactions among multiple and variable soil properties. Despite this, EMI techniques are increasingly being used to investigate the spatial variability of soil properties at field and landscape scales. The future should witness a greater use of multiple-frequency and multiple-coil EMI sensors and integration with other sensors to assess the spatial variability of soil properties. Data analysis will be improved with advanced processing and presentation systems and more sophisticated geostatistical modeling algorithms will be developed and used to interpolate EMI data, improve the resolution of subsurface features, and assess soil properties.

  11. Mobile Soil Moisture Sensing in High Elevations: Applications of the Cosmic Ray Neutron Sensor Technique in Heterogeneous Terrain

    NASA Astrophysics Data System (ADS)

    Franz, T. E.; Avery, W. A.; Wahbi, A.; Dercon, G.; Heng, L.; Strauss, P.

    2017-12-01

    The use of the Cosmic Ray Neutron Sensor (CRNS) for the detection of field-scale soil moisture ( 20 ha) has been the subject of a multitude research applications over the past decade. One exciting area within agriculture aims to provide soil moisture and soil property information for irrigation scheduling. The CRNS technology exists in both a stationary and mobile form. The use of a mobile CRNS opens possibilities for application in many diverse environments. This work details the use of a mobile "backpack" CRNS device in high elevation heterogeneous terrain in the alpine mountains of western Austria. This research demonstrates the utilization of established calibration and validation techniques associated with the use of the CRNS within difficult to reach landscapes that are either inaccessible or impractical to both the stationary CRNS and other more traditional soil moisture sensing technology. Field work was conducted during the summer of 2016 in the Rauris valley of the Austrian Alps at three field sites located at different representative elevations within the same Rauris watershed. Calibrations of the "backpack" CRNS were performed at each site along with data validation via in-situ Time Domain Reflectometry (TDR) and gravimetric soil sampling. Validation data show that the relationship between in-situ soil moisture data determined via TDR and soil sampling and soil moisture data determined via the mobile CRNS is strong (RMSE <2.5 % volumetric). The efficacy of this technique in remote alpine landscapes shows great potential for use in early warning systems for landslides and flooding, watershed hydrology, and high elevation agricultural water management.

  12. Mapping Soil Organic Matter with Hyperspectral Imaging

    NASA Astrophysics Data System (ADS)

    Moni, Christophe; Burud, Ingunn; Flø, Andreas; Rasse, Daniel

    2014-05-01

    Soil organic matter (SOM) plays a central role for both food security and the global environment. Soil organic matter is the 'glue' that binds soil particles together, leading to positive effects on soil water and nutrient availability for plant growth and helping to counteract the effects of erosion, runoff, compaction and crusting. Hyperspectral measurements of samples of soil profiles have been conducted with the aim of mapping soil organic matter on a macroscopic scale (millimeters and centimeters). Two soil profiles have been selected from the same experimental site, one from a plot amended with biochar and another one from a control plot, with the specific objective to quantify and map the distribution of biochar in the amended profile. The soil profiles were of size (30 x 10 x 10) cm3 and were scanned with two pushbroomtype hyperspectral cameras, one which is sensitive in the visible wavelength region (400 - 1000 nm) and one in the near infrared region (1000 - 2500 nm). The images from the two detectors were merged together into one full dataset covering the whole wavelength region. Layers of 15 mm were removed from the 10 cm high sample such that a total of 7 hyperspectral images were obtained from the samples. Each layer was analyzed with multivariate statistical techniques in order to map the different components in the soil profile. Moreover, a 3-dimensional visalization of the components through the depth of the sample was also obtained by combining the hyperspectral images from all the layers. Mid-infrared spectroscopy of selected samples of the measured soil profiles was conducted in order to correlate the chemical constituents with the hyperspectral results. The results show that hyperspectral imaging is a fast, non-destructive technique, well suited to characterize soil profiles on a macroscopic scale and hence to map elements and different organic matter quality present in a complete pedon. As such, we were able to map and quantify biochar in our profile. Smaller interesting regions can also easily be selected from the hyperspectral images for more detailed study at microscopic scale.

  13. ESEM results and changes in wettability patterns within soil: three years irrigation with slightly-salted water

    NASA Astrophysics Data System (ADS)

    Valdes-Abellan, Javier; Candela, Lucila; Medero, Gabriela; Buckman, Jim; Hasnayn, Mohammad M.

    2015-04-01

    Impacts on soil and aquifer media from the use of non-conventional water (treated wastewater-TWW, desalted) for irrigation have been widely studied in the last years . A number of contributions have focused on the impacts derived from the use of TWW (Assouline and Narkis, 2013; Lahav et al., 2010; Xu et al., 2010). Changes in soil hydraulic conductivity and clogging processes have been studied in laboratory experiments from soil columns (Lado and Ben-Hur, 2010) and at field scale (Costa, 1999; Minhas et al., 1994). Irrigation with non-conventional water may also lead to the occurrence of contaminants, a major current environmental concern (Valdes-Abellan et al., 2013). Previous studies have considered impacts in a uniform soil media pore structure; less attention has been paid at a microscopic scale and the influence that high-salinity water may have on wettability of soil. Environmental scanning electron microscopy (ESEM) is a useful technique to be applied in soil science to analyse microscopic changes in soil structure or soil wetting patterns. Research applying this technology for wet systems (Donald, 1998) or porous media (Ali et al., 1995) is available, however as far as we know research on soil impacts due to long term irrigation with saline or non-conventional water are much less common. The dynamic mode of the ESEM allows changes of samples from wet to dry by modifying the water vapour pressure and to observe the wetting and drying patterns and interactions between the solid and liquid phase in the soil (Lourenço et al., 2008). Preliminary results of the study at a microscopic scale of soil samples collected before and after three year irrigation with slightly salted water in an experimental plot setup in semi-arid climatic conditions (Alicante, SE Spain) are presented. We will show the micro-structure of soil and undertake a preliminary investigation of wetting and drying of samples using ESEM techniques Differences in the water vapour pressure value at which complete saturation is achieved was detected, being lower in the 3-years irrigated samples compared with the initial ones. Besides, velocity in which saturation took place was different: initial samples saturation process were developed very quickly, as triggered by a critical shift in the water vapour pressure value and much gradual process were develop in the 3-years irrigated sample when saturation started earlier.

  14. Low-field NMR logging sensor for measuring hydraulic parameters of model soils

    NASA Astrophysics Data System (ADS)

    Sucre, Oscar; Pohlmeier, Andreas; Minière, Adrien; Blümich, Bernhard

    2011-08-01

    SummaryKnowing the exact hydraulic parameters of soils is very important for improving water management in agriculture and for the refinement of climate models. Up to now, however, the investigation of such parameters has required applying two techniques simultaneously which is time-consuming and invasive. Thus, the objective of this current study is to present only one technique, i.e., a new non-invasive method to measure hydraulic parameters of model soils by using low-field nuclear magnetic resonance (NMR). Hereby, two model clay or sandy soils were respectively filled in a 2 m-long acetate column having an integrated PVC tube. After the soils were completely saturated with water, a low-field NMR sensor was moved up and down in the PVC tube to quantitatively measure along the whole column the initial water content of each soil sample. Thereafter, both columns were allowed to drain. Meanwhile, the NMR sensor was set at a certain depth to measure the water content of that soil slice. Once the hydraulic equilibrium was reached in each of the two columns, a final moisture profile was taken along the whole column. Three curves were subsequently generated accordingly: (1) the initial moisture profile, (2) the evolution curve of the moisture depletion at that particular depth, and (3) the final moisture profile. All three curves were then inverse analyzed using a MATLAB code over numerical data produced with the van Genuchten-Mualem model. Hereby, a set of values ( α, n, θr and θs) was found for the hydraulic parameters for the soils under research. Additionally, the complete decaying NMR signal could be analyzed through Inverse Laplace Transformation and averaged on the 1/ T2 space. Through measurement of the decay in pure water, the effect on the relaxation caused by the sample could be estimated from the obtained spectra. The migration of the sample-related average <1/ T2, Sample> with decreasing saturation speaks for a enhancement of the surface relaxation as the soil dries, in concordance with results found by other authors. In conclusion, this low-field mobile NMR technique has proven itself to be a fast and a non-invasive mean to investigate the hydraulic behavior of soils and to explore microscopical aspect of the water retained in them. In the future, the sensor should allow easy soil moisture measurements on-field.

  15. Positive matrix factorization as source apportionment of soil lead and cadmium around a battery plant (Changxing County, China).

    PubMed

    Xue, Jian-long; Zhi, Yu-you; Yang, Li-ping; Shi, Jia-chun; Zeng, Ling-zao; Wu, Lao-sheng

    2014-06-01

    Chemical compositions of soil samples are multivariate in nature and provide datasets suitable for the application of multivariate factor analytical techniques. One of the analytical techniques, the positive matrix factorization (PMF), uses a weighted least square by fitting the data matrix to determine the weights of the sources based on the error estimates of each data point. In this research, PMF was employed to apportion the sources of heavy metals in 104 soil samples taken within a 1-km radius of a lead battery plant contaminated site in Changxing County, Zhejiang Province, China. The site is heavily contaminated with high concentrations of lead (Pb) and cadmium (Cd). PMF successfully partitioned the variances into sources related to soil background, agronomic practices, and the lead battery plants combined with a geostatistical approach. It was estimated that the lead battery plants and the agronomic practices contributed 55.37 and 29.28%, respectively, for soil Pb of the total source. Soil Cd mainly came from the lead battery plants (65.92%), followed by the agronomic practices (21.65%), and soil parent materials (12.43%). This research indicates that PMF combined with geostatistics is a useful tool for source identification and apportionment.

  16. Micaceous Soil Strength And Permeability Improvement Induced By Microbacteria From Vegetable Waste

    NASA Astrophysics Data System (ADS)

    Omar, R. C.; Roslan, R.; Baharuddin, I. N. Z.; Hanafiah, M. I. M.

    2016-11-01

    Green technology method using vegetable waste are introduced in this paper for improvement of phyllite residual soil from UNITEN, Campus. Residual soil from phyllite are known as micaceous soils and it give problem in managing the stability of the slope especially in wet and extensively dry seasons. Micaceous soil are collected using tube sampler technique and mixed with liquid contain microorganism from fermented vegetable waste name as vege-grout to form remolded sample. The remolded sample are classify as 15.0%, 17.5%, 20.00% and 22.5% based on different incremental percentages of vege-grout. The curing time for the sample are 7, 14, 21, 28, and 35 days before the tests were conducted. Observation of the effect of treatment shows 20.0% of liquid contain Bacillus pasteurii and Bacillus Subtilis with 21 days curing time is the optimum value in strengthening the soil and improve the permeability.

  17. Corrosive effect of the type of soil in the systems of grounding more used (copper and stainless steel) for local soil samples from the city of Tunja (Colombia), by means of electrochemical techniques

    NASA Astrophysics Data System (ADS)

    Guerrero, L.; Salas, Y.; Blanco, J.

    2016-02-01

    In this work electrochemical techniques were used to determine the corrosion behaviour of copper and stainless steel electrodes, used in grounding varying soil type with which they react. A slight but significant change in the corrosion rate, linear polarization resistance and equivalent parameters in the technique of electrochemical impedance spectroscopy circuit was observed. Electrolytes in soils are slightly different depending on laboratory study, but the influence was noted in the retention capacity of water, mainly due to clays, affecting ion mobility and therefore measures such as the corrosion rate. Behaviour was noted in lower potential for copper corrosion, though the corrosion rate regardless of the type of soil, was much higher for electrodes based on copper, by several orders of magnitude.

  18. The discrimination of geoforensic trace material from close proximity locations by organic profiling using HPLC and plant wax marker analysis by GC.

    PubMed

    McCulloch, G; Dawson, L A; Ross, J M; Morgan, R M

    2018-07-01

    There is a need to develop a wider empirical research base to expand the scope for utilising the organic fraction of soil in forensic geoscience, and to demonstrate the capability of the analytical techniques used in forensic geoscience to discriminate samples at close proximity locations. The determination of wax markers from soil samples by GC analysis has been used extensively in court and is known to be effective in discriminating samples from different land use types. A new HPLC method for the analysis of the organic fraction of forensic sediment samples has also been shown recently to add value in conjunction with existing inorganic techniques for the discrimination of samples derived from close proximity locations. This study compares the ability of these two organic techniques to discriminate samples derived from close proximity locations and finds the GC technique to provide good discrimination at this scale, providing quantification of known compounds, whilst the HPLC technique offered a shorter and simpler sample preparation method and provided very good discrimination between groups of samples of different provenance in most cases. The use of both data sets together gave further improved accuracy rates in some cases, suggesting that a combined organic approach can provide added benefits in certain case scenarios and crime reconstruction contexts. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Topsoil moisture mapping using geostatistical techniques under different Mediterranean climatic conditions.

    PubMed

    Martínez-Murillo, J F; Hueso-González, P; Ruiz-Sinoga, J D

    2017-10-01

    Soil mapping has been considered as an important factor in the widening of Soil Science and giving response to many different environmental questions. Geostatistical techniques, through kriging and co-kriging techniques, have made possible to improve the understanding of eco-geomorphologic variables, e.g., soil moisture. This study is focused on mapping of topsoil moisture using geostatistical techniques under different Mediterranean climatic conditions (humid, dry and semiarid) in three small watersheds and considering topography and soil properties as key factors. A Digital Elevation Model (DEM) with a resolution of 1×1m was derived from a topographical survey as well as soils were sampled to analyzed soil properties controlling topsoil moisture, which was measured during 4-years. Afterwards, some topography attributes were derived from the DEM, the soil properties analyzed in laboratory, and the topsoil moisture was modeled for the entire watersheds applying three geostatistical techniques: i) ordinary kriging; ii) co-kriging considering as co-variate topography attributes; and iii) co-kriging ta considering as co-variates topography attributes and gravel content. The results indicated topsoil moisture was more accurately mapped in the dry and semiarid watersheds when co-kriging procedure was performed. The study is a contribution to improve the efficiency and accuracy of studies about the Mediterranean eco-geomorphologic system and soil hydrology in field conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Spatial variation of radon and helium in soil gas vis-à-vis geology of area, NW Himalayas, India

    NASA Astrophysics Data System (ADS)

    Mahajan, S.; Bajwa, B.; Kumar, A.; Singh, S.; Walia, V.; Yang, T. F.

    2009-12-01

    In an effort to quantify the geological/lithological control on radon, helium soil gas potential and appraise the use of soil gas technique as a geological mapping tool, soil gas measurements were made, in some parts of Himachal Himalayas of NW Himalayan range, using soil gas grab sampling technique. More than 360 soil gas samples were collected from four different geological/lithologic rock units of the area under consideration. The collected soil gas samples were analyzed for radon and helium using RTM-2100 (SARAD) and Helium leak detector (ALCATEL) respectively. The observed values were then correlated with the geology/lithology of the study area. The study area is broadly divided into four different units on the basis of geology/lithology i.e. (A) Upper Shiwaliks (B) Middle & Lower Shiwaliks (C) Lesser Himalayan rocks (D) Higher Himalayan rocks. Significant differences in the soil gas concentrations among the geologic units were observed, where Lesser Himalayan rocks showing maximum concentrations of both radon (254 KBq/m3) and helium (5.46 ppm). Lesser Himalayan zone lies mainly between two major thrusts MBT and MCT running along the Himalayan trend, which still are tectonically active. It can be concluded from the present study that soil gases (radon and helium) can be used as a productive tool for geological mapping. These findings may have very important connation for health risk assessment of the area, since it has been shown that radon soil gas found in soils overlying basement rocks are the main source for indoor radon concentrations. Radioactive isotopes attach rapidly to atmospheric aerosols and can enter into a human body thus constitute significant hazard to human health.

  1. Prediction of soil attributes through interpolators in a deglaciated environment with complex landforms

    NASA Astrophysics Data System (ADS)

    Schünemann, Adriano Luis; Inácio Fernandes Filho, Elpídio; Rocha Francelino, Marcio; Rodrigues Santos, Gérson; Thomazini, Andre; Batista Pereira, Antônio; Gonçalves Reynaud Schaefer, Carlos Ernesto

    2017-04-01

    The knowledge of environmental variables values, in non-sampled sites from a minimum data set can be accessed through interpolation technique. Kriging and the classifier Random Forest algorithm are examples of predictors with this aim. The objective of this work was to compare methods of soil attributes spatialization in a recent deglaciated environment with complex landforms. Prediction of the selected soil attributes (potassium, calcium and magnesium) from ice-free areas were tested by using morphometric covariables, and geostatistical models without these covariables. For this, 106 soil samples were collected at 0-10 cm depth in Keller Peninsula, King George Island, Maritime Antarctica. Soil chemical analysis was performed by the gravimetric method, determining values of potassium, calcium and magnesium for each sampled point. Digital terrain models (DTMs) were obtained by using Terrestrial Laser Scanner. DTMs were generated from a cloud of points with spatial resolutions of 1, 5, 10, 20 and 30 m. Hence, 40 morphometric covariates were generated. Simple Kriging was performed using the R package software. The same data set coupled with morphometric covariates, was used to predict values of the studied attributes in non-sampled sites through Random Forest interpolator. Little differences were observed on the DTMs generated by Simple kriging and Random Forest interpolators. Also, DTMs with better spatial resolution did not improved the quality of soil attributes prediction. Results revealed that Simple Kriging can be used as interpolator when morphometric covariates are not available, with little impact regarding quality. It is necessary to go further in soil chemical attributes prediction techniques, especially in periglacial areas with complex landforms.

  2. Telephone survey to investigate relationships between onychectomy or onychectomy technique and house soiling in cats.

    PubMed

    Gerard, Amanda F; Larson, Mandy; Baldwin, Claudia J; Petersen, Christine

    2016-09-15

    OBJECTIVE To determine whether associations existed between onychectomy or onychectomy technique and house soiling in cats. DESIGN Cross-sectional study. SAMPLE 281 owners of 455 cats in Polk County, Iowa, identified via a list of randomly selected residential phone numbers of cat owners in that region. PROCEDURES A telephone survey was conducted to collect information from cat owners on factors hypothesized a priori to be associated with house soiling, including cat sex, reproductive status, medical history, and onychectomy history. When cats that had undergone onychectomy were identified, data were collected regarding the cat's age at the time of the procedure and whether a carbon dioxide laser (CDL) had been used. Information on history of house soiling behavior (urinating or defecating outside the litter box) was also collected. RESULTS Onychectomy technique was identified as a risk factor for house soiling. Cats for which a non-CDL technique was used had a higher risk of house soiling than cats for which the CDL technique was used. Cats that had undergone onychectomy and that lived in a multicat (3 to 5 cats) household were more than 3 times as likely to have house soiled as were single-housed cats with intact claws. CONCLUSIONS AND CLINICAL RELEVANCE Results of this cross-sectional study suggested that use of the CDL technique for onychectomy could decrease the risk of house soiling by cats relative to the risk associated with other techniques. This and other findings can be used to inform the decisions of owners and veterinarians when considering elective onychectomy for cats.

  3. Geotechnical behaviour of low-permeability soils in surfactant-enhanced electrokinetic remediation.

    PubMed

    López-Vizcaíno, Rubén; Navarro, Vicente; Alonso, Juan; Yustres, Ángel; Cañizares, Pablo; Rodrigo, Manuel A; Sáez, Cristina

    2016-01-01

    Electrokinetic processes provide the basis of a range of very interesting techniques for the remediation of polluted soils. These techniques consist of the application of a current field in the soil that develops different transport mechanisms capable of mobilizing several types of pollutants. However, the use of these techniques could generate nondesirable effects related to the geomechanical behavior of the soil, reducing the effectiveness of the processes. In the case of the remediation of polluted soils with plasticity index higher than 35, an excessive shrinkage can be observed in remediation test. For this reason, the continued evaporation that takes place in the sample top can lead to the development of cracks, distorting the electrokinetic transport regime, and consequently, the development of the operation. On the other hand, when analyzing silty soils, in the surroundings of injection surfactant wells, high seepages can be generated that give rise to the development of piping processes. In this article methods are described to allow a reduction, or to even eliminate, both problems.

  4. Effects of fines content on hydraulic conductivity and morphology of laterite soil as hydraulic barrier

    NASA Astrophysics Data System (ADS)

    Bello Yamusa, Yamusa; Yunus, Nor Zurairahetty Mohd; Ahmad, Kamarudin; Rahman, Norhan Abd; Sa'ari, Radzuan

    2018-03-01

    Laterite soil was investigated to find out the effects of fines content and to identify the micro-structural and molecular characteristics to evaluate its potentiality as a compacted soil landfill liner material. Tests were carried out on natural soil and reconstituted soil by dry weight of soil samples to determine the physical and engineering properties of the soil. All tests were carried out on the samples by adopting the British Standard 1377:1990. The possible mechanisms that contributed to the clay mineralogy were analyzed using spectroscopic and microscopic techniques such as field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX) and X-ray diffractometry (XRD). The laterite soil was found to contain kaolinite as the major clay minerals. A minimum of 50% fines content of laterite soil met the required result for hydraulic barriers in waste containment facilities.

  5. Lead (II) removal from natural soils by enhanced electrokinetic remediation.

    PubMed

    Altin, Ahmet; Degirmenci, Mustafa

    2005-01-20

    Electrokinetic remediation is a very effective method to remove metal from fine-grained soils having low adsorption and buffering capacity. However, remediation of soil having high alkali and adsorption capacity via the electrokinetic method is a very difficult process. Therefore, enhancement techniques are required for use in these soil types. In this study, the effect of the presence of minerals having high alkali and cation exchange capacity in natural soil polluted with lead (II) was investigated by means of the efficiency of electrokinetic remediation method. Natural soil samples containing clinoptilolite, gypsum and calcite minerals were used in experimental studies. Moreover, a sample containing kaolinite minerals was studied to compare with the results obtained from other samples. Best results for soils bearing alkali and high sorption capacity minerals were obtained upon addition of 3 mol AcH and application of 20 V constant potential after a remediation period of 220 h. In these test conditions, lead (II) removal efficiencies for these samples varied between 60% and 70% up to 0.55 normalized distance. Under the same conditions, removal efficiencies in kaolinite sample varied between 50% and 95% up to 0.9 normalized distance.

  6. Analysis of heavy metal sources in soil using kriging interpolation on principal components.

    PubMed

    Ha, Hoehun; Olson, James R; Bian, Ling; Rogerson, Peter A

    2014-05-06

    Anniston, Alabama has a long history of operation of foundries and other heavy industry. We assessed the extent of heavy metal contamination in soils by determining the concentrations of 11 heavy metals (Pb, As, Cd, Cr, Co, Cu, Mn, Hg, Ni, V, and Zn) based on 2046 soil samples collected from 595 industrial and residential sites. Principal Component Analysis (PCA) was adopted to characterize the distribution of heavy metals in soil in this region. In addition, a geostatistical technique (kriging) was used to create regional distribution maps for the interpolation of nonpoint sources of heavy metal contamination using geographical information system (GIS) techniques. There were significant differences found between sampling zones in the concentrations of heavy metals, with the exception of the levels of Ni. Three main components explaining the heavy metal variability in soils were identified. The results suggest that Pb, Cd, Cu, and Zn were associated with anthropogenic activities, such as the operations of some foundries and major railroads, which released these heavy metals, whereas the presence of Co, Mn, and V were controlled by natural sources, such as soil texture, pedogenesis, and soil hydrology. In general terms, the soil levels of heavy metals analyzed in this study were higher than those reported in previous studies in other industrial and residential communities.

  7. Use of (137)Cs technique for soil erosion study in the agricultural region of Casablanca in Morocco.

    PubMed

    Nouira, A; Sayouty, E H; Benmansour, M

    2003-01-01

    Accelerated erosion and soil degradation currently cause serious problems to the Oued El Maleh basin (Morocco). Furthermore, there is still only limited information on rates of soil loss for optimising strategies for soil conservation. In the present study we have used the (137)Cs technique to assess the soil erosion rates on an agricultural land in Oued el Maleh basin near Casablanca (Morocco). A small representative agricultural field was selected to investigate the soil degradation required by soil managers in this region. The transect approach was applied for sampling to identify the spatial redistribution of (137)Cs. The spatial variability of (137)Cs inventory has provided evidence of the importance of tillage process and the human effects on the redistribution of (137)Cs. The mean (137)Cs inventory was found about 842 Bq m(-2), this value corresponds to an erosion rate of 82 tha(-1) yr(-1) by applying simplified mass balance model in a preliminary estimation. When data on site characteristics were available, the refined mass balance model was applied to highlight the contribution of tillage effect in soil redistribution. The erosion rate was estimated about 50 tha(-1) yr(-1). The aspects related to the sampling procedures and the models for calculation of erosion rates are discussed.

  8. Optimized demineralization technique for the measurement of stable isotope ratios of nonexchangeable H in soil organic matter.

    PubMed

    Ruppenthal, Marc; Oelmann, Yvonne; Wilcke, Wolfgang

    2013-01-15

    To make use of the isotope ratio of nonexchangeable hydrogen (δ(2)H(n (nonexchangeable))) of bulk soil organic matter (SOM), the mineral matrix (containing structural water of clay minerals) must be separated from SOM and samples need to be analyzed after H isotope equilibration. We present a novel technique for demineralization of soil samples with HF and dilute HCl and recovery of the SOM fraction solubilized in the HF demineralization solution via solid-phase extraction. Compared with existing techniques, organic C (C(org)) and organic N (N(org)) recovery of demineralized SOM concentrates was significantly increased (C(org) recovery using existing techniques vs new demineralization method: 58% vs 78%; N(org) recovery: 60% vs 78%). Chemicals used for the demineralization treatment did not affect δ(2)H(n) values as revealed by spiking with deuterated water. The new demineralization method minimized organic matter losses and thus artificial H isotope fractionation, opening up the opportunity to use δ(2)H(n) analyses of SOM as a new tool in paleoclimatology or geospatial forensics.

  9. Micromorphology of pelletized soil conditioners

    NASA Astrophysics Data System (ADS)

    Hirsch, Florian; Dietrich, Nils; Knoop, Christine; Raab, Thomas

    2017-04-01

    Soil conditioners produced by anaerobic digestion and subsequent composting of organic household waste, bear the potential to improve unproductive farmland together with a reduced input risk of unwanted pollutants into the soils. Within the VeNGA project (http://www.biogas-network.de/venga), soil conditioners from anaerobically digested organic household waste are tested for their potential to increase plant growth in glasshouse and field experiments. Because the production techniques of these soil conditioners may influence their physical and chemical behaviour in the soil, two different techniques for pelletizing the soil conditioners where applied. We present findings from a pot experiment with cereal that has been sampled after two months for micromorphological analyses. We visualize the decomposition and the physical behaviour of the soil conditioners. Pellets produced in an agglomeration mixer result in dense balls, that are only slightly decomposed after the trial. But the soil conditioners created under pressure in a screw extruder are rich in voids and have the potential of retaining more soil water.

  10. Assessment of Robinia pseudoacacia cultivations as a restoration strategy for reclaimed mine spoil heaps.

    PubMed

    Vlachodimos, Kostas; Papatheodorou, Efimia M; Diamantopoulos, John; Monokrousos, Nikolaos

    2013-08-01

    Reforestation with black locust (Robinia pseudoacacia) is considered a successful technique that is often used for the reclamation of open-cast mine areas. An alternative reclamation technique could be the natural regeneration of vegetation with spontaneous grass species. In this study, we compared the concentrations of chemical and biochemical variables in soil samples taken under black locust canopy to those from sites covered by spontaneous grass vegetation (control samples) in a time sequence of spoil deposition (0-10 years), in order to assess which of the two reclamation techniques yields higher soil quality. Soil quality refers here to the ability of soils to function ecologically. This has a special interest since the main question for the restored soils is their capacity to perform a range of ecological functions under stress or disturbance. Furthermore, we aimed at identifying the effect of vegetation type on soil ecological succession. The effect of vegetation type on primary succession becomes apparent after 2 years of reclamation. R. pseudoacacia as a nitrogen-fixing plant enriched soil with organic and inorganic nitrogen and organic matter to a greater extent than the natural grasses. It also increased the amount of soil microbial biomass and the activity of alkaline phosphatase. However, the fact that black locust failed to enhance dehydrogenase activity and actually decreased the activity of urease, activities that represent specialized niche functions and therefore, are more vulnerable to stress or disturbance, suggests that the development of an indigenous grass community in combination with organic supplements might often be more appropriate for the reclamation of similar kinds of mine areas.

  11. A Novel Method to Quantify Soil Aggregate Stability by Measuring Aggregate Bond Energies

    NASA Astrophysics Data System (ADS)

    Efrat, Rachel; Rawlins, Barry G.; Quinton, John N.; Watts, Chris W.; Whitmore, Andy P.

    2016-04-01

    Soil aggregate stability is a key indicator of soil quality because it controls physical, biological and chemical functions important in cultivated soils. Micro-aggregates are responsible for the long term sequestration of carbon in soil, therefore determine soils role in the carbon cycle. It is thus vital that techniques to measure aggregate stability are accurate, consistent and reliable, in order to appropriately manage and monitor soil quality, and to develop our understanding and estimates of soil as a carbon store to appropriately incorporate in carbon cycle models. Practices used to assess the stability of aggregates vary in sample preparation, operational technique and unit of results. They use proxies and lack quantification. Conflicting results are therefore drawn between projects that do not provide methodological or resultant comparability. Typical modern stability tests suspend aggregates in water and monitor fragmentation upon exposure to an un-quantified amount of ultrasonic energy, utilising a laser granulometer to measure the change in mean weight diameter. In this project a novel approach has been developed based on that of Zhu et al., (2009), to accurately quantify the stability of aggregates by specifically measuring their bond energies. The bond energies are measured operating a combination of calorimetry and a high powered ultrasonic probe, with computable output function. Temperature change during sonication is monitored by an array of probes which enables calculation of the energy spent heating the system (Ph). Our novel technique suspends aggregates in heavy liquid lithium heteropolytungstate, as opposed to water, to avoid exposing aggregates to an immeasurable disruptive energy source, due to cavitation, collisions and clay swelling. Mean weight diameter is measured by a laser granulometer to monitor aggregate breakdown after successive periods of calculated ultrasonic energy input (Pi), until complete dispersion is achieved and bond energy (Pb; input energy used in aggregate breakdown) can be calculated by the following equation: ΣPi - Ph = Pb The novel technique was tested by comparing the bond energies measured from a series of soil aggregates sampled from different land management histories, to the samples corresponding stability measurement obtained from standard modern stability tests. The effectiveness of the heavy liquid as a suspension (as opposed to water) was evaluated by comparing the bond energies of samples measured in both suspensions. Our results determine i) how disruptive water is in aggregate stability tests, ii) how accurate and representative standard aggregate stability tests are, and iii) how bond strength varies depending on land use. Keywords: Aggregate; Bond; Fragmentation; Soil; Sonication; Stability References: Zhu, Z. L., Minasny, B. & Field D. J. 2009. Measurement of aggregate bond energy using ultrasonic dispersion. European Journal of Soil Science, 60, 695-705

  12. Spatially resolved δ13C analysis using laser ablation isotope ratio mass spectrometry

    NASA Astrophysics Data System (ADS)

    Moran, J.; Riha, K. M.; Nims, M. K.; Linley, T. J.; Hess, N. J.; Nico, P. S.

    2014-12-01

    Inherent geochemical, organic matter, and microbial heterogeneity over small spatial scales can complicate studies of carbon dynamics through soils. Stable isotope analysis has a strong history of helping track substrate turnover, delineate rhizosphere activity zones, and identifying transitions in vegetation cover, but most traditional isotope approaches are limited in spatial resolution by a combination of physical separation techniques (manual dissection) and IRMS instrument sensitivity. We coupled laser ablation sampling with isotope measurement via IRMS to enable spatially resolved analysis over solid surfaces. Once a targeted sample region is ablated the resulting particulates are entrained in a helium carrier gas and passed through a combustion reactor where carbon is converted to CO2. Cyrotrapping of the resulting CO2 enables a reduction in carrier gas flow which improves overall measurement sensitivity versus traditional, high flow sample introduction. Currently we are performing sample analysis at 50 μm resolution, require 65 ng C per analysis, and achieve measurement precision consistent with other continuous flow techniques. We will discuss applications of the laser ablation IRMS (LA-IRMS) system to microbial communities and fish ecology studies to demonstrate the merits of this technique and how similar analytical approaches can be transitioned to soil systems. Preliminary efforts at analyzing soil samples will be used to highlight strengths and limitations of the LA-IRMS approach, paying particular attention to sample preparation requirements, spatial resolution, sample analysis time, and the types of questions most conducive to analysis via LA-IRMS.

  13. Soil pollution in the railway junction Niš (Serbia) and possibility of bioremediation of hydrocarbon-contaminated soil

    NASA Astrophysics Data System (ADS)

    Jovanovic, Larisa; Aleksic, Gorica; Radosavljevic, Milan; Onjia, Antonije

    2015-04-01

    Mineral oil leaking from vehicles or released during accidents is an important source of soil and ground water pollution. In the railway junction Niš (Serbia) total 90 soil samples polluted with mineral oil derivatives were investigated. Field work at the railway Niš sites included the opening of soil profiles and soil sampling. The aim of this work is the determination of petroleum hydrocarbons concentration in the soil samples and the investigation of the bioremediation technique for treatment heavily contaminated soil. For determination of petroleum hydrocarbons in the soil samples method of gas-chromatography was carried out. On the basis of measured concentrations of petroleum hydrocarbons in the soil it can be concluded that: Obtained concentrations of petroleum hydrocarbons in 60% of soil samples exceed the permissible values (5000 mg/kg). The heavily contaminated soils, according the Regulation on the program of systematic monitoring of soil quality indicators for assessing the risk of soil degradation and methodology for development of remediation programs, Annex 3 (Official Gazette of RS, No.88 / 2010), must be treated using some of remediation technologies. Between many types of phytoremediation of soil contaminated with mineral oils and their derivatives, the most suitable are phytovolatalisation and phytostimulation. During phytovolatalisation plants (poplar, willow, aspen, sorgum, and rye) absorb organic pollutants through the root, and then transported them to the leaves where the reduced pollutants are released into the atmosphere. In the case of phytostimulation plants (mulberry, apple, rye, Bermuda) secrete from the roots enzymes that stimulates the growth of bacteria in the soil. The increase in microbial activity in soil promotes the degradation of pollutants. Bioremediation is performed by composting the contaminated soil with addition of composting materials (straw, manure, sawdust, and shavings), moisture components, oligotrophs and heterotrophs bacteria.

  14. Distribution of volatile organic compounds in soil vapor in the vicinity of a defense fuel supply point, Hanahan, South Carolina

    USGS Publications Warehouse

    Robertson, J.F.; Aelion, C.M.; Vroblesky, D.A.

    1993-01-01

    Two passive soil-vapor sampling techniques were used in the vicinity of a defense fuel supply point in Hanahan, South Carolina, to identify areas of potential contamination of the shallow water table aquifer by volatile organic compounds (VOC's). Both techniques involved the burial of samplers in the vadose zone and the saturated bottom sediments of nearby streams. One method, the empty-tube technique, allowed vapors to pass through a permeable membrane and accumulate inside an inverted empty test tube. A sample was extracted and analyzed on site by using a portable gas chromatograph. As a comparison to this method, an activated-carbon technique, also was used in certain areas. This method uses a vapor collector consisting of a test tube containing activated carbon as a sorbent for VOC's.

  15. INNOVATIONS IN SOIL SAMPLING AND DATA ANALYSIS

    EPA Science Inventory

    Successful research outcomes from the VOC in soils work will provide the Agency with methods and techniques that provide the accurate VOC concentrations so that decisions related to a contaminated site can be made to optimize the protectiveness to the environment and human health...

  16. Assessment of the global fallout of plutonium isotopes and americium-241 in the soil of the central region of Saudi Arabia.

    PubMed

    Shabana, E I; Al-Shammari, H L

    2001-01-01

    A radiochemical technique for determination of plutonium isotopes and 241Am in soil samples is tested against IAEA-standard reference materials to determine its accuracy and precision for reliable results. The technique is then used in the investigation of topsoil samples, collected from the natural environment of the central region of Saudi Arabia, to assess the effect of fallout accumulation of these radionuclides in the region. Plutonium and americium were sequentially separated from all other components of the sample by anion-exchange chromatography and co-precipitated with Nd3+ as fluorides. The precipitates were mounted on membrane filters and measured using a high-resolution alpha-spectrometer. The results of the analysis of the reference materials showed satisfactory sensitivity and precision of the technique. The results of the analyzed soil samples show activity levels ranging from < LLD to 0.089 and from

  17. Constraints on Exposure Ages of Lunar and Asteroidal Regolith Particles

    NASA Technical Reports Server (NTRS)

    Berger, Eve L.; Keller, Lindsay P

    2014-01-01

    Mineral grains in lunar and asteroidal regolith samples provide a unique record of their interaction with the space environment. Exposure to the solar wind results in implantation effects that are preserved in the rims of grains (typically the outermost 100 nm), while impact processes result in the accumulation of vapor-deposited elements, impact melts and adhering grains on particle surfaces. These processes are collectively referred to as space weathering. A critical element in the study of these processes is to determine the rate at which these effects accumulate in the grains during their space exposure. For small particulate samples, one can use the density of solar flare particle tracks to infer the length of time the particle was at the regolith surface (i.e., its exposure age). We have developed a new technique that enables more accurate determination of solar flare particle track densities in mineral grains <50 micron in size that utilizes focused ion beam (FIB) sample preparation combined with transmission electron microscopy (TEM) imaging. We have applied this technique to lunar soil grains from the Apollo 16 site (soil 64501) and most recently to samples from asteroid 25143 Itokawa returned by the Hayabusa mission. Our preliminary results show that the Hayabusa grains have shorter exposure ages compared to typical lunar soil grains. We will use these techniques to re-examine the track density-exposure age calibration from lunar samples reported by Blanford et al. (1975).

  18. Fluorescence lifetime evaluation of whole soils from the Amazon rainforest.

    PubMed

    Nicolodelli, Gustavo; Tadini, Amanda Maria; Nogueira, Marcelo Saito; Pratavieira, Sebastião; Mounier, Stephane; Huaman, Jose Luis Clabel; Dos Santos, Cléber Hilário; Montes, Célia Regina; Milori, Débora Marcondes Bastos Pereira

    2017-08-20

    Time-resolved fluorescence spectroscopy (TRFS) is a new tool that can be used to investigate processes of interaction between metal ions and organic matter (OM) in soils, providing a specific analysis of the structure and dynamics of macromolecules. To the best of our knowledge, there are no studies in the literature reporting the use of this technique applied to whole/non-fractionated soil samples, making it a potential method for use in future studies. This work describes the use of TRFS to evaluate the fluorescence lifetimes of OM of whole soils from the Amazon region. Analysis was made of pellets of soils from an oxisol-spodosol system, collected in São Gabriel da Cachoeira (Amazonas, Brazil). The fluorescence lifetimes in the oxisol-spodosol system were attributed to two different fluorophores. One was related to complexation of an OM fraction with metals, resulting in a shorter fluorophore lifetime. A short fluorescence lifetime (2-12 ns) could be associated with simpler structures of the OM, while a long lifetime (19-66 ns) was associated with more complex OM structures. This new TRFS technique for analysis of the fluorescence lifetime in whole soil samples complies with the principles of green chemistry.

  19. Rapid identification of oil-contaminated soils using visible near-infrared diffuse reflectance spectroscopy.

    PubMed

    Chakraborty, Somsubhra; Weindorf, David C; Morgan, Cristine L S; Ge, Yufeng; Galbraith, John M; Li, Bin; Kahlon, Charanjit S

    2010-01-01

    In the United States, petroleum extraction, refinement, and transportation present countless opportunities for spillage mishaps. A method for rapid field appraisal and mapping of petroleum hydrocarbon-contaminated soils for environmental cleanup purposes would be useful. Visible near-infrared (VisNIR, 350-2500 nm) diffuse reflectance spectroscopy (DRS) is a rapid, nondestructive, proximal-sensing technique that has proven adept at quantifying soil properties in situ. The objective of this study was to determine the prediction accuracy of VisNIR DRS in quantifying petroleum hydrocarbons in contaminated soils. Forty-six soil samples (including both contaminated and reference samples) were collected from six different parishes in Louisiana. Each soil sample was scanned using VisNIR DRS at three combinations of moisture content and pretreatment: (i) field-moist intact aggregates, (ii) air-dried intact aggregates, (iii) and air-dried ground soil (sieved through a 2-mm sieve). The VisNIR spectra of soil samples were used to predict total petroleum hydrocarbon (TPH) content in the soil using partial least squares (PLS) regression and boosted regression tree (BRT) models. Each model was validated with 30% of the samples that were randomly selected and not used in the calibration model. The field-moist intact scan proved best for predicting TPH content with a validation r2 of 0.64 and relative percent difference (RPD) of 1.70. Because VisNIR DRS was promising for rapidly predicting soil petroleum hydrocarbon content, future research is warranted to evaluate the methodology for identifying petroleum contaminated soils.

  20. General statistical considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberhardt, L L; Gilbert, R O

    From NAEG plutonium environmental studies program meeting; Las Vegas, Nevada, USA (2 Oct 1973). The high sampling variability encountered in environmental plutonium studies along with high analytical costs makes it very important that efficient soil sampling plans be used. However, efficient sampling depends on explicit and simple statements of the objectives of the study. When there are multiple objectives it may be difficult to devise a wholly suitable sampling scheme. Sampling for long-term changes in plutonium concentration in soils may also be complex and expensive. Further attention to problems associated with compositing samples is recommended, as is the consistent usemore » of random sampling as a basic technique. (auth)« less

  1. EFFECTS OF THE VARIATION OF SELECT SAMPLING PARAMETERS ON SOIL VAPOR CONCENTRATIONS

    EPA Science Inventory

    Currently soil vapor surveys are commonly used as a screening technique to delineate subsurface volatile organic compound (VOC) contaminant plumes and to provide information for vapor intrusion and contaminated site evaluations. To improve our understanding of the fate and transp...

  2. Soil and leaf litter metaproteomics—a brief guideline from sampling to understanding

    PubMed Central

    Keiblinger, Katharina M.; Fuchs, Stephan; Zechmeister-Boltenstern, Sophie; Riedel, Katharina

    2016-01-01

    The increasing application of soil metaproteomics is providing unprecedented, in-depth characterization of the composition and functionality of in situ microbial communities. Despite recent advances in high-resolution mass spectrometry, soil metaproteomics still suffers from a lack of effective and reproducible protein extraction protocols and standardized data analyses. This review discusses the opportunities and limitations of selected techniques in soil-, and leaf litter metaproteomics, and presents a step-by-step guideline on their application, covering sampling, sample preparation, extraction and data evaluation strategies. In addition, we present recent applications of soil metaproteomics and discuss how such approaches, linking phylogenetics and functionality, can help gain deeper insights into terrestrial microbial ecology. Finally, we strongly recommend that to maximize the insights environmental metaproteomics may provide, such methods should be employed within a holistic experimental approach considering relevant aboveground and belowground ecosystem parameters. PMID:27549116

  3. X-ray Diffraction and Rietveld Refinement in Deferrified Clays for Forensic Science.

    PubMed

    Prandel, Luis V; Melo, Vander de F; Brinatti, André M; Saab, Sérgio da C; Salvador, Fábio A S

    2018-01-01

    Soil vestiges might provide information about a crime scene. The Rietveld method with X-ray diffraction data (RM-XRD) is a nondestructive technique that makes it possible to characterize minerals present in the soils. Soil clays from the metropolitan region of Curitiba (Brazil) were submitted to DCB treatment and analyzed using XRD with CuK α radiation in the step-scan mode (0.02° 2θ/5 s). The GSAS+EXPGUI software was used for RM refinement. The RM-XRD results, together with the principal component analysis (PCA) (52.6% total variance), showed the kaolinite predominance in most analyzed samples and the highest quartz contents in "site 1." Higher anatase, and gibbsite and muscovite contents influenced discrimination, mainly in "site 3" and "site 1," respectively. These results were enough to discriminate clays of four sites and two horizons using a reduced amount of sample showing that the technique can be applied to the investigation into soil vestiges. © 2017 American Academy of Forensic Sciences.

  4. Forest soil chemistry and terrain attributes in a Catskills watershed

    USGS Publications Warehouse

    Johnson, C.E.; Ruiz-Mendez, J. J.; Lawrence, G.B.

    2000-01-01

    Knowledge of soil chemistry is useful in assessing the sensitivity of forested areas to natural and anthropogenic disturbances, but characterizing large areas is expensive because of the large sample numbers required and the cost of soil chemical analyses. We collected and chemically analyzed soil samples from 72 sites within a 214-ha watershed in the Catskill Mountains of New York to evaluate factors that influence soil chemistry and whether terrain features could be used to predict soil chemical properties. Using geographic information system (GIS) techniques, we determined five terrain attributes at each sampling location: (i) slope, (ii) aspect, (iii) elevation, (iv) topographic index, and (v) flow accumulation. These attributes were ineffective in predicting the chemical properties of organic and mineral soil samples; together they explained only 4 to 25% of the variance in pH(w), effective cation-exchange capacity (CEC(e)), exchangeable bases, exchangeable acidity, total C, total N, and C/N ratio. Regressions among soil properties were much better; total C and pH(w) together explained 33 to 66% of the variation in exchangeable bases and CEC(e). Total C was positively correlated with N (r = 0.91 and 0.96 in Oa horizons and mineral soil, respectively), exchangeable bases (r = 0.65, 0.76), and CEC(e) (r = 0.54, 0.44), indicating the importance of organic matter to the chemistry of these acidic soils. The fraction of CEC(e) occupied by H explained 44% of the variation in pH(w). Soil chemical properties at this site vary on spatial scales finer than typical GIS analyses, resulting in relationships with poor predictive power. Thus, interrelationships among soil properties are more reliable for prediction.Knowledge of soil chemistry is useful in assessing the sensitivity of forested areas to natural and anthropogenic disturbances, but characterizing large areas is expensive because of the large sample numbers required and the cost of soil chemical analyses. We collected and chemically analyzed soil samples from 72 sites within a 214-ha watershed in the Catskill Mountains of New York to evaluate factors that influence soil chemistry and whether terrain features could be used to predict soil chemical properties. Using geographic information system (GIS) techniques, we determined five terrain attributes at each sampling location: (i) slope, (ii) aspect, (iii) elevation, (iv) topographic index, and (v) flow accumulation. These attributes were ineffective in predicting the chemical properties of organic and mineral soil samples; together they explained only 4 to 25% of the variance in pHw, effective cation-exchange capacity (CECe), exchangeable bases, exchangeable acidity, total C, total N, and C/N ratio. Regressions among soil properties were much better; total C and pHw together explained 33 to 66% of the variation in exchangeable bases and CECe. Total C was positively correlated with N (r = 0.91 and 0.96 in Oa horizons and mineral soil, respectively), exchangeable bases (r = 0.65, 0.76), and CECe (r = 0.54, 0.44), indicating the importance of organic matter to the chemistry of these acidic soils. The fraction of CECe occupied by H explained 44% of the variation in pHw. Soil chemical properties at this site vary on spatial scales finer than typical GIS analyses, resulting in relationships with poor predictive power. Thus, interrelationships among soil properties are more reliable for prediction.

  5. Gamma-Ray Attenuation to Evaluate Soil Porosity: An Analysis of Methods

    PubMed Central

    Pires, Luiz F.; Pereira, André B.

    2014-01-01

    Soil porosity (ϕ) is of a great deal for environmental studies due to the fact that water infiltrates and suffers redistribution in the soil pore space. Many physical and biochemical processes related to environmental quality occur in the soil porous system. Representative determinations of ϕ are necessary due to the importance of this physical property in several fields of natural sciences. In the current work, two methods to evaluate ϕ were analyzed by means of gamma-ray attenuation technique. The first method uses the soil attenuation approach through dry soil and saturated samples, whereas the second one utilizes the same approach but taking into account dry soil samples to assess soil bulk density and soil particle density to determine ϕ. The results obtained point out a good correlation between both methods. However, when ϕ is obtained through soil water content at saturation and a 4 mm collimator is used to collimate the gamma-ray beam the first method also shows good correlations with the traditional one. PMID:24616640

  6. Determination of the resistance of fabric printed with triclosan microcapsules to the action of soil micro-flora

    NASA Astrophysics Data System (ADS)

    Golja, B.; Forte Tavčer, P.

    2017-10-01

    Microcapsules with a pressure-sensitive melamine-formaldehyde wall and triclosan core were printed to 100% cotton fabric with screen printing technique. Previous research showed excellent antibacterial activity (estimated for E. Coli and S. Aureus) of such fabric, so our aim in this research was to determine its resistance to the action of microorganisms present in the soil. The soil burial test was conducted. The breaking strength of the buried samples was measured and also the scanning electron microscope analysis was done. The results showed that none of the samples are resistant to decay. It is evident from SEM micrographs that on all of the buried samples greater morphological changes occur due to the functions of the soil microflora. It can be concluded that the samples printed with triclosan microcapsules are biodegradable which is environmentally preferable.

  7. Soil sail content estimation in the yellow river delta with satellite hyperspectral data

    USGS Publications Warehouse

    Weng, Yongling; Gong, Peng; Zhu, Zhi-Liang

    2008-01-01

    Soil salinization is one of the most common land degradation processes and is a severe environmental hazard. The primary objective of this study is to investigate the potential of predicting salt content in soils with hyperspectral data acquired with EO-1 Hyperion. Both partial least-squares regression (PLSR) and conventional multiple linear regression (MLR), such as stepwise regression (SWR), were tested as the prediction model. PLSR is commonly used to overcome the problem caused by high-dimensional and correlated predictors. Chemical analysis of 95 samples collected from the top layer of soils in the Yellow River delta area shows that salt content was high on average, and the dominant chemicals in the saline soil were NaCl and MgCl2. Multivariate models were established between soil contents and hyperspectral data. Our results indicate that the PLSR technique with laboratory spectral data has a strong prediction capacity. Spectral bands at 1487-1527, 1971-1991, 2032-2092, and 2163-2355 nm possessed large absolute values of regression coefficients, with the largest coefficient at 2203 nm. We obtained a root mean squared error (RMSE) for calibration (with 61 samples) of RMSEC = 0.753 (R2 = 0.893) and a root mean squared error for validation (with 30 samples) of RMSEV = 0.574. The prediction model was applied on a pixel-by-pixel basis to a Hyperion reflectance image to yield a quantitative surface distribution map of soil salt content. The result was validated successfully from 38 sampling points. We obtained an RMSE estimate of 1.037 (R2 = 0.784) for the soil salt content map derived by the PLSR model. The salinity map derived from the SWR model shows that the predicted value is higher than the true value. These results demonstrate that the PLSR method is a more suitable technique than stepwise regression for quantitative estimation of soil salt content in a large area. ?? 2008 CASI.

  8. 3D printed e-tongue

    NASA Astrophysics Data System (ADS)

    Gaál, Gabriel; da Silva, Tatiana A.; Gaál, Vladimir; Hensel, Rafael C.; Amaral, Lucas R.; Rodrigues, Varlei; Riul, Antonio

    2018-05-01

    Nowadays, one of the biggest issues addressed to electronic sensor fabrication is the build-up of efficient electrodes as an alternative way to the expensive, complex and multistage processes required by traditional techniques. Printed electronics arises as an interesting alternative to fulfill this task due to the simplicity and speed to stamp electrodes on various surfaces. Within this context, the Fused Deposition Modeling 3D printing is an emerging, cost-effective and alternative technology to fabricate complex structures that potentiates several fields with more creative ideas and new materials for a rapid prototyping of devices. We show here the fabrication of interdigitated electrodes using a standard home-made CoreXY 3D printer using transparent and graphene-based PLA filaments. Macro 3D printed electrodes were easily assembled within 6 minutes with outstanding reproducibility. The electrodes were also functionalized with different nanostructured thin films via dip-coating Layer-by-Layer technique to develop a 3D printed e-tongue setup. As a proof of concept, the printed e-tongue was applied to soil analysis. A control soil sample was enriched with several macro-nutrients to the plants (N, P, K, S, Mg and Ca) and the discrimination was done by electrical impedance spectroscopy of water solution of the soil samples. The data was analyzed by Principal Component Analysis and the 3D printed sensor distinguished clearly all enriched samples despite the complexity of the soil chemical composition. The 3D printed e-tongue successfully used in soil analysis encourages further investments in developing new sensory tools for precision agriculture and other fields exploiting the simplicity and flexibility offered by the 3D printing techniques.

  9. Metal Load of the Crops Depending on Land Use, Land Management and Soil Characteristics

    NASA Astrophysics Data System (ADS)

    Oeztan, Sezin; Duering, Rolf-Alexander

    2010-05-01

    The increase of pollutant concentrations in soil and in the food chain became very important in the past few decades. Metals of different toxicities (Cd, Zn, As, Cr, Cu, Pb, Ni, Co, V, Tl) occur in soils as a result of weathering, industrial processes, fertilization and atmospheric deposition. Some of them can be absorbed by the plants due to their mobility. The transfer of metals from soil into the plants can be explained by the physicochemical characteristics of the soil such as pH-value, organic matter and clay content. Badly adapted cultivation of the agricultural soils (declining pH-value, application of unsuitable fertilizers) can enhance the mobility of the metals and by the way increase their concentrations in agricultural products. With this study, a field experiment was established and the aim is to test the relations between available metal concentrations in the soil and metal load of the plants depending on the fertilization techniques. The plants and soil samples of the reference sites were taken, heavy metal contents of the soil samples identified by Microwave Assisted Extraction (MAE) and compared to the Aqua Regia Digestion Method for confirming the methodology. For the determination of the metal content in plants, MAE was executed to the selected plant samples and for that procedure, the samples were digested with HNO3 and H2O2 in the microwave oven. Quantation of the metals in soil and in plants was done by ICP-OES Methodology. The evaluation of the first results confirmed that the metal content of the soil is strongly dependent on the properties of different fertilization variants (N,P,K) used and physicochemical characteristics of the soils. According to the fertilization variants, total metal contents of the soil are increased in the soil samples which have high amounts of N, P, K fertilization. Soils which were enforced with high P fertilization degrees had significantly higher total Cd content. Results on the Cd content of the plant samples also revealed that transition of metals from soil to plants depend heavily on the fertilizer since plant samples and soil samples treated with the same fertilizer showed similar results.

  10. Soil transmitted helminths and associated factors among schoolchildren in government and private primary school in Jimma Town, Southwest Ethiopia.

    PubMed

    Debalke, Serkadis; Worku, Amare; Jahur, Nejat; Mekonnen, Zeleke

    2013-11-01

    Soil transmitted helminth infections are among the most common human infections. They are distributed throughout the world with high prevalence rates in tropical and sub-tropical countries mainly because of lack of adequate sanitary facilities, inappropriate waste disposal systems, lack of safe water supply, and low socio-economic status. A comparative cross sectional study was conducted from December 2011 to June 2012 to determine and assess the prevalence of soil transmitted helminths and their associated factors among government and private primary school children. Stool samples were collected from 369 randomly selected children and examined microscopically for eggs of soil transmitted helminth following McMaster techniques. Soil samples were collected from different parts of the school compound and microscopic examination was performed for eggs of the helminths using sodium nitrate flotation technique. The overall prevalence rate of soil transmitted helminth infections in private and government schools was 20.9% and 53.5% respectively. T. trichiura was the most common soil transmitted helminth in both schools while hookworm infections were identified in government school students only. Type of school and sex were significantly associated with soil transmitted helminth. Soil contamination rate of the school compounds was 11.25% with predominant parasites of A. lumbricoides. Higher prevalence of soil transmitted helminth infection was found among government school students. Thus, more focus, on personal hygiene and sanitary facilities, should be given to children going to government schools.

  11. Impact of Oriented Clay Particles on X-Ray Spectroscopy Analysis

    NASA Astrophysics Data System (ADS)

    Lim, A. J. M. S.; Syazwani, R. N.; Wijeyesekera, D. C.

    2016-07-01

    Understanding the engineering properties of the mineralogy and microfabic of clayey soils is very complex and thus very difficult for soil characterization. Micromechanics of soils recognize that the micro structure and mineralogy of clay have a significant influence on its engineering behaviour. To achieve a more reliable quantitative evaluation of clay mineralogy, a proper sample preparation technique for quantitative clay mineral analysis is necessary. This paper presents the quantitative evaluation of elemental analysis and chemical characterization of oriented and random oriented clay particles using X-ray spectroscopy. Three different types of clays namely marine clay, bentonite and kaolin clay were studied. The oriented samples were prepared by placing the dispersed clay in water and left to settle on porous ceramic tiles by applying a relatively weak suction through a vacuum pump. Images form a Scanning Electron Microscope (SEM) was also used to show the comparison between the orientation patterns of both the sample preparation techniques. From the quantitative analysis of the X-ray spectroscopy, oriented sampling method showed more accuracy in identifying mineral deposits, because it produced better peak intensity on the spectrum and more mineral content can be identified compared to randomly oriented samples.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, J.M.; Callahan, C.A.; Cline, J.F.

    Bioassays were used in a three-phase research project to assess the comparative sensitivity of test organisms to known chemicals, determine if the chemical components in field soil and water samples containing unknown contaminants could be inferred from our laboratory studies using known chemicals, and to investigate kriging (a relatively new statistical mapping technique) and bioassays as methods to define the areal extent of chemical contamination. The algal assay generally was most sensitive to samples of pure chemicals, soil elutriates and water from eight sites with known chemical contamination. Bioassays of nine samples of unknown chemical composition from the Rocky Mountainmore » Arsenal (RMA) site showed that a lettuce seed soil contact phytoassay was most sensitive. In general, our bioassays can be used to broadly identify toxic components of contaminated soil. Nearly pure compounds of insecticides and herbicides were less toxic in the sensitive bioassays than were the counterpart commercial formulations. This finding indicates that chemical analysis alone may fail to correctly rate the severity of environmental toxicity. Finally, we used the lettuce seed phytoassay and kriging techniques in a field study at RMA to demonstrate the feasibility of mapping contamination to aid in cleanup decisions. 25 references, 9 figures, 9 tables.« less

  13. Can Infrared Spectroscopy Be Used to Measure Change in Potassium Nitrate Concentration as a Proxy for Soil Particle Movement?

    PubMed Central

    Luleva, Mila Ivanova; van der Werff, Harald; Jetten, Victor; van der Meer, Freek

    2011-01-01

    Displacement of soil particles caused by erosion influences soil condition and fertility. To date, the cesium 137 isotope (137Cs) technique is most commonly used for soil particle tracing. However when large areas are considered, the expensive soil sampling and analysis present an obstacle. Infrared spectral measurements would provide a solution, however the small concentrations of the isotope do not influence the spectral signal sufficiently. Potassium (K) has similar electrical, chemical and physical properties as Cs. Our hypothesis is that it can be used as possible replacement in soil particle tracing. Soils differing in texture were sampled for the study. Laboratory soil chemical analyses and spectral sensitivity analyses were carried out to identify the wavelength range related to K concentration. Different concentrations of K fertilizer were added to soils with varying texture properties in order to establish spectral characteristics of the absorption feature associated with the element. Changes in position of absorption feature center were observed at wavelengths between 2,450 and 2,470 nm, depending on the amount of fertilizer applied. Other absorption feature parameters (absorption band depth, width and area) were also found to change with K concentration with coefficient of determination between 0.85 and 0.99. Tracing soil particles using K fertilizer and infrared spectral response is considered suitable for soils with sandy and sandy silt texture. It is a new approach that can potentially grow to a technique for rapid monitoring of soil particle movement over large areas. PMID:22163843

  14. Estimation of soil clay and organic matter using two quantitative methods (PLSR and MARS) based on reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Nawar, Said; Buddenbaum, Henning; Hill, Joachim

    2014-05-01

    A rapid and inexpensive soil analytical technique is needed for soil quality assessment and accurate mapping. This study investigated a method for improved estimation of soil clay (SC) and organic matter (OM) using reflectance spectroscopy. Seventy soil samples were collected from Sinai peninsula in Egypt to estimate the soil clay and organic matter relative to the soil spectra. Soil samples were scanned with an Analytical Spectral Devices (ASD) spectrometer (350-2500 nm). Three spectral formats were used in the calibration models derived from the spectra and the soil properties: (1) original reflectance spectra (OR), (2) first-derivative spectra smoothened using the Savitzky-Golay technique (FD-SG) and (3) continuum-removed reflectance (CR). Partial least-squares regression (PLSR) models using the CR of the 400-2500 nm spectral region resulted in R2 = 0.76 and 0.57, and RPD = 2.1 and 1.5 for estimating SC and OM, respectively, indicating better performance than that obtained using OR and SG. The multivariate adaptive regression splines (MARS) calibration model with the CR spectra resulted in an improved performance (R2 = 0.89 and 0.83, RPD = 3.1 and 2.4) for estimating SC and OM, respectively. The results show that the MARS models have a great potential for estimating SC and OM compared with PLSR models. The results obtained in this study have potential value in the field of soil spectroscopy because they can be applied directly to the mapping of soil properties using remote sensing imagery in arid environment conditions. Key Words: soil clay, organic matter, PLSR, MARS, reflectance spectroscopy.

  15. An orientation soil survey at the Pebble Cu-Au-Mo porphyry deposit, Alaska

    USGS Publications Warehouse

    Smith, Steven M.; Eppinger, Robert G.; Fey, David L.; Kelley, Karen D.; Giles, S.A.

    2009-01-01

    Soil samples were collected in 2007 and 2008 along three traverses across the giant Pebble Cu-Au-Mo porphyry deposit. Within each soil pit, four subsamples were collected following recommended protocols for each of ten commonly-used and proprietary leach/digestion techniques. The significance of geochemical patterns generated by these techniques was classified by visual inspection of plots showing individual element concentration by each analytical method along the 2007 traverse. A simple matrix by element versus method, populated with a value based on the significance classification, provides a method for ranking the utility of methods and elements at this deposit. The interpretation of a complex multi-element dataset derived from multiple analytical techniques is challenging. An example of vanadium results from a single leach technique is used to illustrate the several possible interpretations of the data.

  16. Investigation of 4-year-old stabilised/solidified and accelerated carbonated contaminated soil.

    PubMed

    Antemir, A; Hills, C D; Carey, P J; Magnié, M-C; Polettini, A

    2010-09-15

    The investigation of the pilot-scale application of two different stabilisation/solidification (S/S) techniques was carried out at a former fireworks and low explosives manufacturing site in SE England. Cores and granular samples were recovered from uncovered accelerated carbonated (ACT) and cement-treated soils (S/S) after 4 years to evaluate field-performance with time. Samples were prepared for microstructural examination and leaching testing. The results indicated that the cement-treated soil was progressively carbonated over time, whereas the mineralogy of the carbonated soil remained essentially unchanged. Distinct microstructures were developed in the two soils. Although Pb, Zn and Cu leached less from the carbonated soil, these metals were adequately immobilised by both treatments. Geochemical modeling of pH-dependent leaching data suggested that the retention of trace metals resulted from different immobilisation mechanisms operating in the two soils examined. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Trace geochemistry of lunar material

    NASA Technical Reports Server (NTRS)

    Morrison, G. H.

    1974-01-01

    The lunar samples from the Apollo 16 and 17 flights which were analyzed include soil, igneous rock, anorthositic gabbro, orange soil, subfloor basalt, and norite breccia. Up to 57 elements including majors, minors, rare earths and other trace elements were determined in the lunar samples. The analytical techniques used were spark source mass spectrometry and neutron activation analysis. The latter was done either instrumentally or with group radiochemical separations. The differences in abundances of the elements in lunar soils at the various sites are discussed. With regard to the major elements only Si is about the same at all the sites. A detailed analysis which was performed on a sample of the Allende meteorite is summarized.

  18. A novel method for soil aggregate stability measurement by laser granulometry with sonication

    NASA Astrophysics Data System (ADS)

    Rawlins, B. G.; Lark, R. M.; Wragg, J.

    2012-04-01

    Regulatory authorities need to establish rapid, cost-effective methods to measure soil physical indicators - such as aggregate stability - which can be applied to large numbers of soil samples to detect changes of soil quality through monitoring. Limitations of sieve-based methods to measure the stability of soil macro-aggregates include: i) the mass of stable aggregates is measured, only for a few, discrete sieve/size fractions, ii) no account is taken of the fundamental particle size distribution of the sub-sampled material, and iii) they are labour intensive. These limitations could be overcome by measurements with a Laser Granulometer (LG) instrument, but this technology has not been widely applied to the quantification of aggregate stability of soils. We present a novel method to quantify macro-aggregate (1-2 mm) stability. We measure the difference between the mean weight diameter (MWD; μm) of aggregates that are stable in circulating water of low ionic strength, and the MWD of the fundamental particles of the soil to which these aggregates are reduced by sonication. The suspension is circulated rapidly through a LG analytical cell from a connected vessel for ten seconds; during this period hydrodynamic forces associated with the circulating water lead to the destruction of unstable aggregates. The MWD of stable aggregates is then measured by LG. In the next step, the aggregates - which are kept in the vessel at a minimal water circulation speed - are subject to sonication (18W for ten minutes) so the vast majority of the sample is broken down into its fundamental particles. The suspension is then recirculated rapidly through the LG and the MWD measured again. We refer to the difference between these two measurements as disaggregation reduction (DR) - the reduction in MWD on disaggregation by sonication. Soil types with more stable aggregates have larger values of DR. The stable aggregates - which are resistant to both slaking and mechanical breakdown by the hydrodynamic forces during circulation - are disrupted only by sonication. We used this method to compare macro-aggregate (1-2 mm) stability of air-dried agricultural topsoils under conventional tillage developed from two contrasting parent material types and compared the results with an alternative sieve-based technique. The first soil from the Midlands of England (developed from sedimentary mudstone; mean soil organic carbon (SOC) 2.5%) contained a substantially larger amount of illite/smectite (I/S) minerals compared to the second from the Wensum catchment in eastern England (developed from sands and glacial deposits; mean SOC=1.7%). The latter soils are prone to large erosive losses of fine sediment. Both sets of samples had been stored air-dried for 6 months prior to aggregate analyses. The mean values of DR (n=10 repeated subsample analyses) for the Midlands soil was 178μm; mean DR (n=10 repeat subsample analyses) for the Wensum soil was 30μm. The large difference in DR is most likely due to differences in soil mineralogy. The coefficient of variation of mean DR for duplicate analyses of sub-samples from the two topsoil types is around 10%. The majority of this variation is likely to be related to the difference in composition of the sub-samples. A standard, aggregated material could be included in further analyses to determine the relative magnitude of sub-sampling and analytical variance for this measurement technique. We then used the technique to investigate whether - as previously observed - variations (range 1000 - 4000 mg kg-1) in the quantity of amorphous (oxalate extractable) iron oxyhydroxides in a variety of soil samples (n=30) from the Wensum area (range SOC 1 - 2%) could account for differences in aggregate stability of these samples.

  19. Accelerated solvent extraction combined with dispersive liquid-liquid microextraction before gas chromatography with mass spectrometry for the sensitive determination of phenols in soil samples.

    PubMed

    Xing, Han-Zhu; Wang, Xia; Chen, Xiang-Feng; Wang, Ming-Lin; Zhao, Ru-Song

    2015-05-01

    A method combining accelerated solvent extraction with dispersive liquid-liquid microextraction was developed for the first time as a sample pretreatment for the rapid analysis of phenols (including phenol, m-cresol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol) in soil samples. In the accelerated solvent extraction procedure, water was used as an extraction solvent, and phenols were extracted from soil samples into water. The dispersive liquid-liquid microextraction technique was then performed on the obtained aqueous solution. Important accelerated solvent extraction and dispersive liquid-liquid microextraction parameters were investigated and optimized. Under optimized conditions, the new method provided wide linearity (6.1-3080 ng/g), low limits of detection (0.06-1.83 ng/g), and excellent reproducibility (<10%) for phenols. Four real soil samples were analyzed by the proposed method to assess its applicability. Experimental results showed that the soil samples were free of our target compounds, and average recoveries were in the range of 87.9-110%. These findings indicate that accelerated solvent extraction with dispersive liquid-liquid microextraction as a sample pretreatment procedure coupled with gas chromatography and mass spectrometry is an excellent method for the rapid analysis of trace levels of phenols in environmental soil samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. More Poop, More Precision: Improving Epidemiologic Surveillance of Soil-Transmitted Helminths with Multiple Fecal Sampling using the Kato-Katz Technique.

    PubMed

    Liu, Chengfang; Lu, Louise; Zhang, Linxiu; Bai, Yu; Medina, Alexis; Rozelle, Scott; Smith, Darvin Scott; Zhou, Changhai; Zang, Wei

    2017-09-01

    Soil-transmitted helminths, or parasitic intestinal worms, are among the most prevalent and geographically widespread parasitic infections in the world. Accurate diagnosis and quantification of helminth infection are critical for informing and assessing deworming interventions. The Kato-Katz thick smear technique, the most widely used laboratory method to quantitatively assess infection prevalence and infection intensity of helminths, has often been compared with other methods. Only a few small-scale studies, however, have considered ways to improve its diagnostic sensitivity. This study, conducted among 4,985 school-age children in an area of rural China with moderate prevalence of helminth infection, examines the effect on diagnostic sensitivity of the Kato-Katz technique when two fecal samples collected over consecutive days are examined and compared with a single sample. A secondary aim was to consider cost-effectiveness by calculating an estimate of the marginal costs of obtaining an additional fecal sample. Our findings show that analysis of an additional fecal sample led to increases of 23%, 26%, and 100% for Ascaris lumbricoides, Trichuris trichiura , and hookworm prevalence, respectively. The cost of collecting a second fecal sample for our study population was approximately USD4.60 per fecal sample. Overall, the findings suggest that investing 31% more capital in fecal sample collection prevents an underestimation of prevalence by about 21%, and hence improves the diagnostic sensitivity of the Kato-Katz method. Especially in areas with light-intensity infections of soil-transmitted helminths and limited public health resources, more accurate epidemiological surveillance using multiple fecal samples will critically inform decisions regarding infection control and prevention.

  1. The Physical Behavior of Stabilised Soft Clay by Electrokinetic Stabilisation Technology

    NASA Astrophysics Data System (ADS)

    Azhar, A. T. S.; Nordin, N. S.; Azmi, M. A. M.; Embong, Z.; Sunar, N.; Hazreek, Z. A. M.; Aziman, M.

    2018-04-01

    Electrokinetic Stabilisation (EKS) technology is the combination processes of electroosmosis and chemical grouting. This technique is most effective in silty and clayey soils where the hydraulic conductivity is very low. Stabilising agents will assist the EKS treatment by inducing it into soil under direct current. The movement of stabilising agents into soil is governed by the principle of electrokinetics. The aim of this study is to evaluate the physical behavior of soft soil using the EKS technology as an effective method to strengthen soft clay soils with calcium chloride (CaCl2) as the stabilising agent. Stainless steel plates were used as the electrodes, while 1.0 mol/l of CaCl2 was used as the electrolyte that fed at the anode compartment. Soft marine clay at Universiti Tun Hussein Onn Malaysia was used as the soil sample. The EKS treatment was developed at Research Centre for Soft Soil (RECESS), UTHM with a constant voltage gradient (50 V/m) in 21 days. The result shows that the shear strength of treated soil was increased across the soil sample. The treated soil near the cathode showed the highest value of shear strength (24.5 – 33 kPa) compared with the anode and in the middle of the soil sample.

  2. The rapid measurement of soil carbon stock using near-infrared technology

    NASA Astrophysics Data System (ADS)

    Kusumo, B. H.; Sukartono; Bustan

    2018-03-01

    As a soil pool stores carbon (C) three times higher than an atmospheric pool, the depletion of C stock in the soil will significantly increase the concentration of CO2 in the atmosphere, causing global warming. However, the monitoring or measurement of soil C stock using conventional procedures is time-consuming and expensive. So it requires a rapid and non-destructive technique that is simple and does not need chemical substances. This research is aimed at testing whether near-infrared (NIR) technology is able to rapidly measure C stock in the soil. Soil samples were collected from an agricultural land at the sub-district of Kayangan, North Lombok, Indonesia. The coordinates of the samples were recorded. Parts of the samples were analyzed using conventional procedure (Walkley and Black) and some other parts were scanned using near-infrared spectroscopy (NIRS) for soil spectral collection. Partial Least Square Regression (PLSR) was used to develop models from soil C data measured by conventional analysis and from spectral data scanned by NIRS. The best model was moderately successful to measure soil C stock in the study area in North Lombok. This indicates that the NIR technology can be further used to monitor the change of soil C stock in the soil.

  3. Mapping The Temporal and Spatial Variability of Soil Moisture Content Using Proximal Soil Sensing

    NASA Astrophysics Data System (ADS)

    Virgawati, S.; Mawardi, M.; Sutiarso, L.; Shibusawa, S.; Segah, H.; Kodaira, M.

    2018-05-01

    In studies related to soil optical properties, it has been proven that visual and NIR soil spectral response can predict soil moisture content (SMC) using proper data analysis techniques. SMC is one of the most important soil properties influencing most physical, chemical, and biological soil processes. The problem is how to provide reliable, fast and inexpensive information of SMC in the subsurface from numerous soil samples and repeated measurement. The use of spectroscopy technology has emerged as a rapid and low-cost tool for extensive investigation of soil properties. The objective of this research was to develop calibration models based on laboratory Vis-NIR spectroscopy to estimate the SMC at four different growth stages of the soybean crop in Yogyakarta Province. An ASD Field-spectrophotoradiometer was used to measure the reflectance of soil samples. The partial least square regression (PLSR) was performed to establish the relationship between the SMC with Vis-NIR soil reflectance spectra. The selected calibration model was used to predict the new samples of SMC. The temporal and spatial variability of SMC was performed in digital maps. The results revealed that the calibration model was excellent for SMC prediction. Vis-NIR spectroscopy was a reliable tool for the prediction of SMC.

  4. Development and Application of Pyrolysis Gas Chromatography/Mass Spectrometry for the Analysis of Bound Trinitrotoluene Residues in Soil

    USGS Publications Warehouse

    Weiss, J.M.; Mckay, A.J.; Derito, C.; Watanabe, C.; Thorn, K.A.; Madsen, E.L.

    2004-01-01

    TNT (trinitrotoluene) is a contaminant of global environmental significance, yet determining its environmental fate has posed longstanding challenges. To date, only differential extraction-based approaches have been able to determine the presence of covalently bound, reduced forms of TNT in field soils. Here, we employed thermal elution, pyrolysis, and gas chromatography/mass spectrometry (GC/MS) to distinguish between covalently bound and noncovalently bound reduced forms of TNT in soil. Model soil organic matter-based matrixes were used to develop an assay in which noncovalently bound (monomeric) aminodinitrotoluene (ADNT) and diaminonitrotoluene (DANT) were desorbed from the matrix and analyzed at a lower temperature than covalently bound forms of these same compounds. A thermal desorption technique, evolved gas analysis, was initially employed to differentiate between covalently bound and added 15N-labeled monomeric compounds. A refined thermal elution procedure, termed "double-shot analysis" (DSA), allowed a sample to be sequentially analyzed in two phases. In phase 1, all of an added 15N-labeled monomeric contaminant was eluted from the sample at relatively low temperature. In phase 2 during high-temperature pyrolysis, the remaining covalently bound contaminants were detected. DSA analysis of soil from the Louisiana Army Ammunition Plant (LAAP; ???5000 ppm TNT) revealed the presence of DANT, ADNT, and TNT. After scrutinizing the DSA data and comparing them to results from solvent-extracted and base/acid-hydrolyzed LAAP soil, we concluded that the TNT was a noncovalently bound "carryover" from phase 1. Thus, the pyrolysis-GC/MS technique successfully defined covalently bound pools of ADNT and DANT in the field soil sample.

  5. A Lipid Extraction and Analysis Method for Characterizing Soil Microbes in Experiments with Many Samples

    PubMed Central

    Oates, Lawrence G.; Read, Harry W.; Gutknecht, Jessica L. M.; Duncan, David S.; Balser, Teri B.; Jackson, Randall D.

    2017-01-01

    Microbial communities are important drivers and regulators of ecosystem processes. To understand how management of ecosystems may affect microbial communities, a relatively precise but effort-intensive technique to assay microbial community composition is phospholipid fatty acid (PLFA) analysis. PLFA was developed to analyze phospholipid biomarkers, which can be used as indicators of microbial biomass and the composition of broad functional groups of fungi and bacteria. It has commonly been used to compare soils under alternative plant communities, ecology, and management regimes. The PLFA method has been shown to be sensitive to detecting shifts in microbial community composition. An alternative method, fatty acid methyl ester extraction and analysis (MIDI-FA) was developed for rapid extraction of total lipids, without separation of the phospholipid fraction, from pure cultures as a microbial identification technique. This method is rapid but is less suited for soil samples because it lacks an initial step separating soil particles and begins instead with a saponification reaction that likely produces artifacts from the background organic matter in the soil. This article describes a method that increases throughput while balancing effort and accuracy for extraction of lipids from the cell membranes of microorganisms for use in characterizing both total lipids and the relative abundance of indicator lipids to determine soil microbial community structure in studies with many samples. The method combines the accuracy achieved through PLFA profiling by extracting and concentrating soil lipids as a first step, and a reduction in effort by saponifying the organic material extracted and processing with the MIDI-FA method as a second step. PMID:28745639

  6. A comparison of a new centrifuge sugar flotation technique with the agar method for the extraction of immature Culicoides (Diptera: Ceratopogonidae) life stages from salt marsh soils.

    USDA-ARS?s Scientific Manuscript database

    Two sampling techniques, agar extraction (AE) and centrifuge sugar flotation extraction (CSFE) were compared to determine their relative efficacy to recover immature stages of Culicoides spp from salt marsh substrates. Three types of samples (seeded with known numbers of larvae, homogenized field s...

  7. Discussion of NAEG distribution and inventory program sampling data in preparation for initiation of phase III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, D.N.; Church, B.W.; White, M.G.

    Soil sampling activities during 1974 were concentrated in Area 5 of the Nevada Test Site (NTS). Area 5 has been assigned the highest priority because of the number of atmospheric test events held and a wide distribution of contaminants. Improved sampling techniques are described. Preliminary data analysis aided in designing a program to infer $sup 239-240$Pu results by Ge(Li) scanning techniques. (auth)

  8. Analysis of Mars analogue soil samples using solid-phase microextraction, organic solvent extraction and gas chromatography/mass spectrometry

    NASA Astrophysics Data System (ADS)

    Orzechowska, G. E.; Kidd, R. D.; Foing, B. H.; Kanik, I.; Stoker, C.; Ehrenfreund, P.

    2011-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are robust and abundant molecules in extraterrestrial environments. They are found ubiquitously in the interstellar medium and have been identified in extracts of meteorites collected on Earth. PAHs are important target molecules for planetary exploration missions that investigate the organic inventory of planets, moons and small bodies. This study is part of an interdisciplinary preparation phase to search for organic molecules and life on Mars. We have investigated PAH compounds in desert soils to determine their composition, distribution and stability. Soil samples (Mars analogue soils) were collected at desert areas of Utah in the vicinity of the Mars Desert Research Station (MDRS), in the Arequipa region in Peru and from the Jutland region of Denmark. The aim of this study was to optimize the solid-phase microextraction (SPME) method for fast screening and determination of PAHs in soil samples. This method minimizes sample handling and preserves the chemical integrity of the sample. Complementary liquid extraction was used to obtain information on five- and six-ring PAH compounds. The measured concentrations of PAHs are, in general, very low, ranging from 1 to 60 ng g-1. The texture of soils is mostly sandy loam with few samples being 100 % silt. Collected soils are moderately basic with pH values of 8-9 except for the Salten Skov soil, which is slightly acidic. Although the diverse and variable microbial populations of the samples at the sample sites might have affected the levels and variety of PAHs detected, SPME appears to be a rapid, viable field sampling technique with implications for use on planetary missions.

  9. Analysis of Mars Analogue Soil Samples Using Solid-Phase Microextraction, Organic Solvent Extraction and Gas Chromatography/Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Orzechowska, G. E.; Kidd, R. D.; Foing, B. H.; Kanik, I.; Stoker, C.; Ehrenfreund, P.

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are robust and abundant molecules in extraterrestrial environments. They are found ubiquitously in the interstellar medium and have been identified in extracts of meteorites collected on Earth. PAHs are important target molecules for planetary exploration missions that investigate the organic inventory of planets, moons and small bodies. This study is part of an interdisciplinary preparation phase to search for organic molecules and life on Mars. We have investigated PAH compounds in desert soils to determine their composition, distribution and stability. Soil samples (Mars analogue soils) were collected at desert areas of Utah in the vicinity of the Mars Desert Research Station (MDRS), in the Arequipa region in Peru and from the Jutland region of Denmark. The aim of this study was to optimize the solid-phase microextraction (SPME) method for fast screening and determination of PAHs in soil samples. This method minimizes sample handling and preserves the chemical integrity of the sample. Complementary liquid extraction was used to obtain information on five- and six-ring PAH compounds. The measured concentrations of PAHs are, in general, very low, ranging from 1 to 60 ng g(sup -1). The texture of soils is mostly sandy loam with few samples being 100% silt. Collected soils are moderately basic with pH values of 8-9 except for the Salten Skov soil, which is slightly acidic. Although the diverse and variable microbial populations of the samples at the sample sites might have affected the levels and variety of PAHs detected, SPME appears to be a rapid, viable field sampling technique with implications for use on planetary missions.

  10. Results from the FIN-2 formal comparison

    NASA Astrophysics Data System (ADS)

    Connolly, Paul; Hoose, Corinna; Liu, Xiaohong; Moehler, Ottmar; Cziczo, Daniel; DeMott, Paul

    2017-04-01

    During the Fifth International Ice Nucleation Workshop (FIN-2) at the AIDA Ice Nucleation facility in Karlsruhe, Germany in March 2015, a formal comparison of ice nucleation measurement methods was conducted. During the experiments the samples of ice nucleating particles were not revealed to the instrument scientists, hence this was referred to as a "blind comparison". The two samples used were later revealed to be Arizona Test Dust and an Argentina soil sample. For these two samples seven mobile ice nucleating particle counters sampled directly from the AIDA chamber or from the aerosol preparation chamber at specified temperatures, whereas filter samples were taken for two offline deposition nucleation instruments. Wet suspension methods for determining IN concentrations were also used with 10 different methods employed. For the wet suspension methods experiments were conducted using INPs collected from the air inside the chambers (impinger sampling) and INPs taken from the bulk samples (vial sampling). Direct comparisons of the ice nucleating particle concentrations are reported as well as derived ice nucleation active site densities. The study highlights the difficulties in performing such analyses, but generally indicates that there is reasonable agreement between the wet suspension techniques. It is noted that ice nucleation efficiency derived from the AIDA chamber (quantified using the ice active surface site density approach) is higher than that for the cold stage techniques. This is both true for the Argentina soil sample and, to a lesser extent, for the Arizona Test Dust sample too. Other interesting effects were noted: for the ATD the impinger sampling demonstrated higher INP efficiency at higher temperatures (>255 K) than the vial sampling, but agreed at the lower temperatures (<255K), whereas the opposite was true for the Argentina soil sample. The results are analysed to better understand the performance of the various techniques and to address any size-sorting effects and / or sampling line loses.

  11. iSOIL: Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping

    NASA Astrophysics Data System (ADS)

    Dietrich, Peter; Werban, Ulrike; Sauer, Uta

    2010-05-01

    High-resolution soil property maps are one major prerequisite for the specific protection of soil functions and restoration of degraded soils as well as sustainable land use, water and environmental management. To generate such maps the combination of digital soil mapping approaches and remote as well as proximal soil sensing techniques is most promising. However, a feasible and reliable combination of these technologies for the investigation of large areas (e.g. catchments and landscapes) and the assessment of soil degradation threats is missing. Furthermore, there is insufficient dissemination of knowledge on digital soil mapping and proximal soil sensing in the scientific community, to relevant authorities as well as prospective users. As one consequence there is inadequate standardization of techniques. At the poster we present the EU collaborative project iSOIL within the 7th framework program of the European Commission. iSOIL focuses on improving fast and reliable mapping methods of soil properties, soil functions and soil degradation risks. This requires the improvement and integration of advanced soil sampling approaches, geophysical and spectroscopic measuring techniques, as well as pedometric and pedophysical approaches. The focus of the iSOIL project is to develop new and to improve existing strategies and innovative methods for generating accurate, high resolution soil property maps. At the same time the developments will reduce costs compared to traditional soil mapping. ISOIL tackles the challenges by the integration of three major components: (i)high resolution, non-destructive geophysical (e.g. Electromagnetic Induction EMI; Ground Penetrating Radar, GPR; magnetics, seismics) and spectroscopic (e.g., Near Surface Infrared, NIR) methods, (ii)Concepts of Digital Soil Mapping (DSM) and pedometrics as well as (iii)optimized soil sampling with respect to profound soil scientific and (geo)statistical strategies. A special focus of iSOIL lies on the sustainable dissemination of technologies and concepts developed in the projects through workshops for stakeholders and the publication of a handbook "Methods and Technologies for Mapping of Soil Properties, Function and Threat Risks". Besides, the CEN Workshop offers a new mechanism and approach to standardization. During the project we decided that the topic of the CEN Workshop should focus on a voluntary standardization of electromagnetic induction measurement to ensure that results can be evaluated and processed under uniform circumstances and can be comparable. At the poster we will also present the idea and the objectives of our CEN Workshop "Best Practice Approach for electromagnetic induction measurements of the near surface"and invite every interested person to participate.

  12. SOIL AND SEDIMENT SAMPLING METHODS

    EPA Science Inventory

    The EPA Office of Solid Waste and Emergency Response's (OSWER) Office of Superfund Remediation and Technology Innovation (OSRTI) needs innovative methods and techniques to solve new and difficult sampling and analytical problems found at the numerous Superfund sites throughout th...

  13. Deformation and Fabric in Compacted Clay Soils

    NASA Astrophysics Data System (ADS)

    Wensrich, C. M.; Pineda, J.; Luzin, V.; Suwal, L.; Kisi, E. H.; Allameh-Haery, H.

    2018-05-01

    Hydromechanical anisotropy of clay soils in response to deformation or deposition history is related to the micromechanics of platelike clay particles and their orientations. In this article, we examine the relationship between microstructure, deformation, and moisture content in kaolin clay using a technique based on neutron scattering. This technique allows for the direct characterization of microstructure within representative samples using traditional measures such as orientation density and soil fabric tensor. From this information, evidence for a simple relationship between components of the deviatoric strain tensor and the deviatoric fabric tensor emerge. This relationship may provide a physical basis for future anisotropic constitutive models based on the micromechanics of these materials.

  14. Magnetic properties of alluvial soils polluted with heavy metals

    NASA Astrophysics Data System (ADS)

    Dlouha, S.; Petrovsky, E.; Boruvka, L.; Kapicka, A.; Grison, H.

    2012-04-01

    Magnetic properties of soils, reflecting mineralogy, concentration and grain-size distribution of Fe-oxides, proved to be useful tool in assessing the soil properties in terms of various environmental conditions. Measurement of soil magnetic properties presents a convenient method to investigate the natural environmental changes in soils as well as the anthropogenic pollution of soils with several risk elements. The effect of fluvial pollution with Cd, Cu, Pb and Zn on magnetic soil properties was studied on highly contaminated alluvial soils from the mining/smelting district (Příbram; CZ) using a combination of magnetic and geochemical methods. The basic soil characteristics, the content of heavy metals, oxalate, and dithionite extractable iron were determined in selected soil samples. Soil profiles were sampled using HUMAX soil corer and the magnetic susceptibility was measured in situ, further detailed magnetic analyses of selected distinct layers were carried out. Two types of variations of magnetic properties in soil profiles were observed corresponding to indentified soil types (Fluvisols, and Gleyic Fluvisols). Significantly higher values of topsoil magnetic susceptibility compared to underlying soil are accompanied with high concentration of heavy metals. Sequential extraction analysis proved the binding of Pb, Zn and Cd in Fe and Mn oxides. Concentration and size-dependent parameters (anhysteretic and isothermal magnetization) were measured on bulk samples in terms of assessing the origin of magnetic components. The results enabled to distinguish clearly topsoil layers enhanced with heavy metals from subsoil samples. The dominance of particles with pseudo-single domain behavior in topsoil and paramagnetic/antiferromagnetic contribution in subsoil were observed. These measurements were verified with room temperature hysteresis measurement carried out on bulk samples and magnetic extracts. Thermomagnetic analysis of magnetic susceptibility measured on magnetic extracts indicated the presence of magnetite/maghemite in the uppermost layers, and strong mineralogical transformation of iron oxyhydroxides during heating. Magnetic techniques give valuable information about the soil Fe oxides, which are useful for investigation of the environmental effects in soil. Key words: magnetic methods, Fe oxides, pollution, alluvial soils.

  15. Short term soil erosion dynamics in alpine grasslands - Results from a Fallout Radionuclide repeated-sampling approach

    NASA Astrophysics Data System (ADS)

    Arata, Laura; Meusburger, Katrin; Zehringer, Markus; Ketterer, Michael E.; Mabit, Lionel; Alewell, Christine

    2016-04-01

    Improper land management and climate change has resulted in accelerated soil erosion rates in Alpine grasslands. To efficiently mitigate and control soil erosion and reduce its environmental impact in Alpine grasslands, reliable and validated methods for comprehensive data generation on its magnitude and spatial extent are mandatory. The use of conventional techniques (e.g. sediment traps, erosion pins or rainfall simulations) may be hindered by the extreme topographic and climatic conditions of the Alps. However, the application of the Fallout Radionuclides (FRNs) as soil tracers has already showed promising results in these specific agro-ecosystems. Once deposited on the ground, FRNs strongly bind to fine particles at the surface soil and move across the landscape primarily through physical processes. As such, they provide an effective track of soil and sediment redistribution. So far, applications of FRN in the Alps include 137Cs (half-life: 30.2 years) and 239+240Pu (239Pu [half-life = 24110 years] and 240Pu [half-life = 6561 years]). To investigate short term (4-5 years) erosion dynamics in the Swiss Alps, the authors applied a FRNs repeated sampling approach. Two study areas in the central Swiss Alps have been investigated: the Urseren Valley (Canton Uri), where significant land use changes occurred in the last centuries, and the Piora Valley (Canton Ticino), where land use change plays a minor role. Soil samples have been collected at potentially erosive sites along the valleys over a period of 4-5 years and measured for 137Cs and 239+240Pu activity. The inventory change between the sampling years indicates high erosion and deposition dynamics at both valleys. High spatial variability of 137Cs activities at all sites has been observed, reflecting the heterogeneous distribution of 137Cs fallout after the Chernobyl power plant accident in 1986. Finally, a new modelling technique to convert the inventory changes to quantitative estimates of soil erosion has been tested.

  16. Soil moisture estimation using reflected solar and emitted thermal infrared radiation

    NASA Technical Reports Server (NTRS)

    Jackson, R. D.; Cihlar, J.; Estes, J. E.; Heilman, J. L.; Kahle, A.; Kanemasu, E. T.; Millard, J.; Price, J. C.; Wiegand, C. L.

    1978-01-01

    Classical methods of measuring soil moisture such as gravimetric sampling and the use of neutron moisture probes are useful for cases where a point measurement is sufficient to approximate the water content of a small surrounding area. However, there is an increasing need for rapid and repetitive estimations of soil moisture over large areas. Remote sensing techniques potentially have the capability of meeting this need. The use of reflected-solar and emitted thermal-infrared radiation, measured remotely, to estimate soil moisture is examined.

  17. Estimates of soil erosion using cesium-137 tracer models.

    PubMed

    Saç, M M; Uğur, A; Yener, G; Ozden, B

    2008-01-01

    The soil erosion was studied by 137Cs technique in Yatagan basin in Western Turkey, where there exist intensive agricultural activities. This region is subject to serious soil loss problems and yet there is not any erosion data towards soil management and control guidelines. During the soil survey studies, the soil profiles were examined carefully to select the reference points. The soil samples were collected from the slope facets in three different study areas (Kirtas, Peynirli and Kayisalan Hills). Three different models were applied for erosion rate calculations in undisturbed and cultivated sites. The profile distribution model (PDM) was used for undisturbed soils, while proportional model (PM) and simplified mass balance model (SMBM) were used for cultivated soils. The mean annual erosion rates found using PDM in undisturbed soils were 15 t ha(-1) year(-1) at the Peynirli Hill and 27 t ha(-1) year(-1) at the Kirtas Hill. With the PM and SMBM in cultivated soils at Kayişalan, the mean annual erosion rates were obtained to be 65 and 116 t ha(-1) year(-1), respectively. The results of 137Cs technique were compared with the results of the Universal Soil Loss Equation (USLE).

  18. Strategy for Extracting DNA from Clay Soil and Detecting a Specific Target Sequence via Selective Enrichment and Real-Time (Quantitative) PCR Amplification ▿

    PubMed Central

    Yankson, Kweku K.; Steck, Todd R.

    2009-01-01

    We present a simple strategy for isolating and accurately enumerating target DNA from high-clay-content soils: desorption with buffers, an optional magnetic capture hybridization step, and quantitation via real-time PCR. With the developed technique, μg quantities of DNA were extracted from mg samples of pure kaolinite and a field clay soil. PMID:19633108

  19. [A comparison of soil contamination with Toxocara canis and Toxocara cati eggs in rural and urban areas of Wielkopolska district in 2000-2005].

    PubMed

    Mizgajska-Wiktor, Hanna; Jarosz, Wojciech

    2007-01-01

    The aim of the studies was to compare the degree of soil contamination with Toxocara canis and T. cati eggs in rural and urban areas depending on time of sampling and type of places examined. Material and methods. Over 2000-2005 a total of 538 soil samples from 3 villages and 368 from Poznań city (Poland) areas were examined for Toxocara spp. eggs. In spring 418 samples in rural areas and 184 samples in urban areas were collected and in autumn 120 and 184 respectively. The samples were examined using flotation technique in saturated sodium nitrate. The discrimination of T. canis and T. cati eggs was based on the size of eggs and transparency of shell layers. Results. The contamination of soil with Toxocara eggs was higher in the urban areas (19.8% positive samples) than in the rural ones (15.6% positive samples) and city or village-backyards were most heavily contaminated. Both, in the villages and in the city, the degree of soil contamination with eggs in spring and autumn was similar (17.6 and 14.8% positive samples respectively). T. cati eggs were much more prevalent in urban areas (97% of all eggs recovered) while T. canis in rural areas (84% of all recovered eggs). The share of T. canis and T. cati eggs in soil contamination did not depend on the time of sampling.

  20. [Toxocara canis eggs as bait for soil fungus in a subtropical city].

    PubMed

    Bojanich, María Viviana; Sarmiento, María Mercedes; Giusiano, Gustavo; Mangiaterra, Magdalena; Basualdo, Juan Ángel

    2015-01-01

    The use of different isolation techniques allows the recovery of fungi based on their ability to use selective substrates. The sprinkle method is a technique for the recovery of nematophagous fungi in the soil. These fungi are natural predators of nematodes and are widely distributed in nature. To detect possible fungi with nematophagous ability in the soil of city parks in Corrientes (Argentina). The soil samples were taken from an area of ground between two trees and to no more than 2cm deep. The isolation was performed according to the sprinkle method with Toxocara canis eggs as bait. Eighteen soil samples were collected, and 6 genera and 8 species of fungi were isolated. The sprinkle method, simple and efficient, has the advantage of using a small amount of untreated soil for the isolation of fungi that can grow on the eggs of geohelminths. The genera Bipolaris, Fusarium, Purpureocillium, Curvularia, Phoma and Scytalidium were isolated in this study. No other studies describing the interaction between the genera Curvularia, Phoma and Scytalidium with nematode eggs have been found in the literature, thus more studies are required to determine what is their real action on these eggs. Copyright © 2014 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  1. Electromigration of Contaminated Soil by Electro-Bioremediation Technique

    NASA Astrophysics Data System (ADS)

    Azhar, A. T. S.; Nabila, A. T. A.; Nurshuhaila, M. S.; Shaylinda, M. Z. N.; Azim, M. A. M.

    2016-07-01

    Soil contamination with heavy metals poses major environmental and human health problems. This problem needs an efficient method and affordable technological solution such as electro-bioremediation technique. The electro-bioremediation technique used in this study is the combination of bacteria and electrokinetic process. The aim of this study is to investigate the effectiveness of Pseudomonas putida bacteria as a biodegradation agent to remediate contaminated soil. 5 kg of kaolin soil was spiked with 5 g of zinc oxide. During this process, the anode reservoir was filled with Pseudomonas putida while the cathode was filled with distilled water for 5 days at 50 V of electrical gradient. The X-Ray Fluorescent (XRF) test indicated that there was a significant reduction of zinc concentration for the soil near the anode with 89% percentage removal. The bacteria count is high near the anode which is 1.3x107 cfu/gww whereas the bacteria count at the middle and near the cathode was 5.0x106 cfu/gww and 8.0x106 cfu/gww respectively. The migration of ions to the opposite charge of electrodes during the electrokinetic process resulted from the reduction of zinc. The results obtained proved that the electro-bioremediation reduced the level of contaminants in the soil sample. Thus, the electro-bioremediation technique has the potential to be used in the treatment of contaminated soil.

  2. Methodological considerations for detection of terrestrial small-body salamander eDNA and implications for biodiversity conservation

    USGS Publications Warehouse

    Walker, Donald M.; Leys, Jacob E.; Dunham, Kelly E.; Oliver, Joshua C.; Schiller, Emily E.; Stephenson, Kelsey S.; Kimrey, John T.; Wooten, Jessica; Rogers, Mark W.

    2017-01-01

    Environmental DNA (eDNA) can be used as an assessment tool to detect populations of threatened species and provide fine-scale data required to make management decisions. The objectives of this project were to use quantitative PCR (qPCR) to: (i) detect spiked salamander DNA in soil, (ii) quantify eDNA degradation over time, (iii) determine detectability of salamander eDNA in a terrestrial environment using soil, faeces, and skin swabs, (iv) detect salamander eDNA in a mesocosm experiment. Salamander eDNA was positively detected in 100% of skin swabs and 66% of faecal samples and concentrations did not differ between the two sources. However, eDNA was not detected in soil samples collected from directly underneath wild-caught living salamanders. Salamander genomic DNA (gDNA) was detected in all qPCR reactions when spiked into soil at 10.0, 5.0, and 1.0 ng/g soil and spike concentration had a significant effect on detected concentrations. Only 33% of samples showed recoverable eDNA when spiked with 0.25 ng/g soil, which was the low end of eDNA detection. To determine the rate of eDNA degradation, gDNA (1 ng/g soil) was spiked into soil and quantified over seven days. Salamander eDNA concentrations decreased across days, but eDNA was still amplifiable at day 7. Salamander eDNA was detected in two of 182 mesocosm soil samples over 12 weeks (n = 52 control samples; n = 65 presence samples; n = 65 eviction samples). The discrepancy in detection success between experiments indicates the potential challenges for this method to be used as a monitoring technique for small-bodied wild terrestrial salamander populations.

  3. Methodological considerations for detection of terrestrial small-body salamander eDNA and implications for biodiversity conservation.

    PubMed

    Walker, Donald M; Leys, Jacob E; Dunham, Kelly E; Oliver, Joshua C; Schiller, Emily E; Stephenson, Kelsey S; Kimrey, John T; Wooten, Jessica; Rogers, Mark W

    2017-11-01

    Environmental DNA (eDNA) can be used as an assessment tool to detect populations of threatened species and provide fine-scale data required to make management decisions. The objectives of this project were to use quantitative PCR (qPCR) to: (i) detect spiked salamander DNA in soil, (ii) quantify eDNA degradation over time, (iii) determine detectability of salamander eDNA in a terrestrial environment using soil, faeces, and skin swabs, (iv) detect salamander eDNA in a mesocosm experiment. Salamander eDNA was positively detected in 100% of skin swabs and 66% of faecal samples and concentrations did not differ between the two sources. However, eDNA was not detected in soil samples collected from directly underneath wild-caught living salamanders. Salamander genomic DNA (gDNA) was detected in all qPCR reactions when spiked into soil at 10.0, 5.0, and 1.0 ng/g soil and spike concentration had a significant effect on detected concentrations. Only 33% of samples showed recoverable eDNA when spiked with 0.25 ng/g soil, which was the low end of eDNA detection. To determine the rate of eDNA degradation, gDNA (1 ng/g soil) was spiked into soil and quantified over seven days. Salamander eDNA concentrations decreased across days, but eDNA was still amplifiable at day 7. Salamander eDNA was detected in two of 182 mesocosm soil samples over 12 weeks (n = 52 control samples; n = 65 presence samples; n = 65 eviction samples). The discrepancy in detection success between experiments indicates the potential challenges for this method to be used as a monitoring technique for small-bodied wild terrestrial salamander populations. © 2017 John Wiley & Sons Ltd.

  4. Flow analysis techniques for phosphorus: an overview.

    PubMed

    Estela, José Manuel; Cerdà, Víctor

    2005-04-15

    A bibliographical review on the implementation and the results obtained in the use of different flow analytical techniques for the determination of phosphorus is carried out. The sources, occurrence and importance of phosphorus together with several aspects regarding the analysis and terminology used in the determination of this element are briefly described. A classification as well as a brief description of the basis, advantages and disadvantages of the different existing flow techniques, namely; segmented flow analysis (SFA), flow injection analysis (FIA), sequential injection analysis (SIA), all injection analysis (AIA), batch injection analysis (BIA), multicommutated FIA (MCFIA), multisyringe FIA (MSFIA) and multipumped FIA (MPFIA) is also carried out. The most relevant manuscripts regarding the analysis of phosphorus by means of flow techniques are herein classified according to the detection instrumental technique used with the aim to facilitate their study and obtain an overall scope. Finally, the analytical characteristics of numerous flow-methods reported in the literature are provided in the form of a table and their applicability to samples with different matrixes, namely water samples (marine, river, estuarine, waste, industrial, drinking, etc.), soils leachates, plant leaves, toothpaste, detergents, foodstuffs (wine, orange juice, milk), biological samples, sugars, fertilizer, hydroponic solutions, soils extracts and cyanobacterial biofilms are tabulated.

  5. Integrated field lysimetry and porewater sampling for evaluation of chemical mobility in soils and established vegetation.

    PubMed

    Matteson, Audrey R; Mahoney, Denis J; Gannon, Travis W; Polizzotto, Matthew L

    2014-07-04

    Potentially toxic chemicals are routinely applied to land to meet growing demands on waste management and food production, but the fate of these chemicals is often not well understood. Here we demonstrate an integrated field lysimetry and porewater sampling method for evaluating the mobility of chemicals applied to soils and established vegetation. Lysimeters, open columns made of metal or plastic, are driven into bareground or vegetated soils. Porewater samplers, which are commercially available and use vacuum to collect percolating soil water, are installed at predetermined depths within the lysimeters. At prearranged times following chemical application to experimental plots, porewater is collected, and lysimeters, containing soil and vegetation, are exhumed. By analyzing chemical concentrations in the lysimeter soil, vegetation, and porewater, downward leaching rates, soil retention capacities, and plant uptake for the chemical of interest may be quantified. Because field lysimetry and porewater sampling are conducted under natural environmental conditions and with minimal soil disturbance, derived results project real-case scenarios and provide valuable information for chemical management. As chemicals are increasingly applied to land worldwide, the described techniques may be utilized to determine whether applied chemicals pose adverse effects to human health or the environment.

  6. Integrated Field Lysimetry and Porewater Sampling for Evaluation of Chemical Mobility in Soils and Established Vegetation

    PubMed Central

    Gannon, Travis W.; Polizzotto, Matthew L.

    2014-01-01

    Potentially toxic chemicals are routinely applied to land to meet growing demands on waste management and food production, but the fate of these chemicals is often not well understood. Here we demonstrate an integrated field lysimetry and porewater sampling method for evaluating the mobility of chemicals applied to soils and established vegetation. Lysimeters, open columns made of metal or plastic, are driven into bareground or vegetated soils. Porewater samplers, which are commercially available and use vacuum to collect percolating soil water, are installed at predetermined depths within the lysimeters. At prearranged times following chemical application to experimental plots, porewater is collected, and lysimeters, containing soil and vegetation, are exhumed. By analyzing chemical concentrations in the lysimeter soil, vegetation, and porewater, downward leaching rates, soil retention capacities, and plant uptake for the chemical of interest may be quantified. Because field lysimetry and porewater sampling are conducted under natural environmental conditions and with minimal soil disturbance, derived results project real-case scenarios and provide valuable information for chemical management. As chemicals are increasingly applied to land worldwide, the described techniques may be utilized to determine whether applied chemicals pose adverse effects to human health or the environment. PMID:25045915

  7. Methodological Approaches toward Chemico-Biological Diagnostics of the State of Soils in Technogenically Transformed Territories

    NASA Astrophysics Data System (ADS)

    Fokina, A. I.; Dabakh, E. V.; Domracheva, L. I.; Skugoreva, S. G.; Lyalina, E. I.; Ashikhmina, T. Ya.; Zykova, Yu. N.; Leonova, K. A.

    2018-05-01

    The comprehensive diagnostics of the state of soils in the impact zone of thermal power station (TPS-5) in the city of Kirov was performed on the basis of the soil chemical analyses and the study of biota response to the loads at different organization levels. The chemical analyses attested to a satisfactory state of the soils. However, the use of soil cyanobacteria and bird's-foot trefoil ( Lótus corniculátus) as test objects showed the toxicity of studied soil samples. The toxicity of the samples was judged from the bioindication effects of cyanophytization and melanization of soil microbial complexes. The obtained results demonstrated that at relatively low concentrations of total and mobile heavy metal compounds in the soil samples, their amount released into the tested soil water (1: 4) extract exceeded the limit allowable for normal functioning of living organisms. For the first time, the express cyanobacterial tetrazole-topographic method of biotesting was applied in the geoecological study to estimate the toxicity of the soil samples. The results obtained with the help of traditional and express methods proved to be comparable. The express-method was sufficiently sensitive and efficient. It allowed the determination of the samples' toxicity in five hours, i.e., four to five times faster than the traditional technique. An inverse relationship between the number of viable cells of cyanobacteria (as judged from the inclusion of formazan crystals) and the concentration of lead ions in the tested soil extracts was found. This finding can be considered a prerequisite for further study and application of the express method in the practice of geoecological monitoring. Our study demonstrated the necessity of a comprehensive approach for the assessment of the real ecological state of soils in the investigated impact zone of the thermal power station.

  8. A Comparison of Selected Statistical Techniques to Model Soil Cation Exchange Capacity

    NASA Astrophysics Data System (ADS)

    Khaledian, Yones; Brevik, Eric C.; Pereira, Paulo; Cerdà, Artemi; Fattah, Mohammed A.; Tazikeh, Hossein

    2017-04-01

    Cation exchange capacity (CEC) measures the soil's ability to hold positively charged ions and is an important indicator of soil quality (Khaledian et al., 2016). However, other soil properties are more commonly determined and reported, such as texture, pH, organic matter and biology. We attempted to predict CEC using different advanced statistical methods including monotone analysis of variance (MONANOVA), artificial neural networks (ANNs), principal components regressions (PCR), and particle swarm optimization (PSO) in order to compare the utility of these approaches and identify the best predictor. We analyzed 170 soil samples from four different nations (USA, Spain, Iran and Iraq) under three land uses (agriculture, pasture, and forest). Seventy percent of the samples (120 samples) were selected as the calibration set and the remaining 50 samples (30%) were used as the prediction set. The results indicated that the MONANOVA (R2= 0.82 and Root Mean Squared Error (RMSE) =6.32) and ANNs (R2= 0.82 and RMSE=5.53) were the best models to estimate CEC, PSO (R2= 0.80 and RMSE=5.54) and PCR (R2= 0.70 and RMSE=6.48) also worked well and the overall results were very similar to each other. Clay (positively correlated) and sand (negatively correlated) were the most influential variables for predicting CEC for the entire data set, while the most influential variables for the various countries and land uses were different and CEC was affected by different variables in different situations. Although the MANOVA and ANNs provided good predictions of the entire dataset, PSO gives a formula to estimate soil CEC using commonly tested soil properties. Therefore, PSO shows promise as a technique to estimate soil CEC. Establishing effective pedotransfer functions to predict CEC would be productive where there are limitations of time and money, and other commonly analyzed soil properties are available. References Khaledian, Y., Kiani, F., Ebrahimi, S., Brevik, E.C., Aitkenhead-Peterson, J. 2016. Assessment and monitoring of soil degradation during land use change using multivariate analysis. Land Degradation and Development. doi: 10.1002/ldr.2541.

  9. Spatial Dependence of Physical Attributes and Mechanical Properties of Ultisol in a Sugarcane Field.

    PubMed

    Tavares, Uilka Elisa; Rolim, Mário Monteiro; de Oliveira, Veronildo Souza; Pedrosa, Elvira Maria Regis; Siqueira, Glécio Machado; Magalhães, Adriana Guedes

    2015-01-01

    This study investigates the effect of conventional tillage and application of the monoculture of sugar cane on soil health. Variables like density, moisture, texture, consistency limits, and preconsolidation stress were taken as indicators of soil quality. The measurements were made at a 120 × 120 m field cropped with sugar cane under conventional tillage. The objective of this work was to characterize the soil and to study the spatial dependence of the physical and mechanical attributes. Then, undisturbed soil samples were collected to measure bulk density, moisture content and preconsolidation stress and disturbed soil samples for classification of soil texture, and consistency limits. The soil texture indicated that soil can be characterized as sandy clay soil and a sandy clay loam soil, and the consistency limits indicated that the soil presents an inorganic low plasticity clay. The preconsolidation tests tillage in soil moisture content around 19% should be avoided or should be chosen a management of soil with lighter vehicles in this moisture content, to avoid risk of compaction. Using geostatistical techniques mapping was possible to identify areas of greatest conservation soil and greater disturbance of the ground.

  10. Spatial Dependence of Physical Attributes and Mechanical Properties of Ultisol in a Sugarcane Field

    PubMed Central

    Tavares, Uilka Elisa; Monteiro Rolim, Mário; Souza de Oliveira, Veronildo; Maria Regis Pedrosa, Elvira; Siqueira, Glécio Machado; Guedes Magalhães, Adriana

    2015-01-01

    This study investigates the effect of conventional tillage and application of the monoculture of sugar cane on soil health. Variables like density, moisture, texture, consistency limits, and preconsolidation stress were taken as indicators of soil quality. The measurements were made at a 120 × 120 m field cropped with sugar cane under conventional tillage. The objective of this work was to characterize the soil and to study the spatial dependence of the physical and mechanical attributes. Then, undisturbed soil samples were collected to measure bulk density, moisture content and preconsolidation stress and disturbed soil samples for classification of soil texture, and consistency limits. The soil texture indicated that soil can be characterized as sandy clay soil and a sandy clay loam soil, and the consistency limits indicated that the soil presents an inorganic low plasticity clay. The preconsolidation tests tillage in soil moisture content around 19% should be avoided or should be chosen a management of soil with lighter vehicles in this moisture content, to avoid risk of compaction. Using geostatistical techniques mapping was possible to identify areas of greatest conservation soil and greater disturbance of the ground. PMID:26167528

  11. Measurement of soil moisture trends with airborne scatterometers. [Guymon, Oklahoma and Dalhart, Texas

    NASA Technical Reports Server (NTRS)

    Jones, C. L.; Mcfarland, M. J.; Rosethal, W. D.; Theis, S. W. (Principal Investigator)

    1982-01-01

    In an effort to investigate aircraft multisensor responses to soil moisture and vegetation in agricultural fields, an intensive ground sampling program was conducted in Guymon, Oklahoma and Dalhart, Texas in conjunction with aircraft data collected for visible/infrared and passive and active microwave systems. Field selections, sampling techniques, data processing, and the aircraft schedule are discussed for both sites. Field notes are included along with final (normalized and corrected) data sets.

  12. Soil organic matter composition from correlated thermal analysis and nuclear magnetic resonance data in Australian national inventory of agricultural soils

    NASA Astrophysics Data System (ADS)

    Moore, T. S.; Sanderman, J.; Baldock, J.; Plante, A. F.

    2016-12-01

    National-scale inventories typically include soil organic carbon (SOC) content, but not chemical composition or biogeochemical stability. Australia's Soil Carbon Research Programme (SCaRP) represents a national inventory of SOC content and composition in agricultural systems. The program used physical fractionation followed by 13C nuclear magnetic resonance (NMR) spectroscopy. While these techniques are highly effective, they are typically too expensive and time consuming for use in large-scale SOC monitoring. We seek to understand if analytical thermal analysis is a viable alternative. Coupled differential scanning calorimetry (DSC) and evolved gas analysis (CO2- and H2O-EGA) yields valuable data on SOC composition and stability via ramped combustion. The technique requires little training to use, and does not require fractionation or other sample pre-treatment. We analyzed 300 agricultural samples collected by SCaRP, divided into four fractions: whole soil, coarse particulates (POM), untreated mineral associated (HUM), and hydrofluoric acid (HF)-treated HUM. All samples were analyzed by DSC-EGA, but only the POM and HF-HUM fractions were analyzed by NMR. Multivariate statistical analyses were used to explore natural clustering in SOC composition and stability based on DSC-EGA data. A partial least-squares regression (PLSR) model was used to explore correlations among the NMR and DSC-EGA data. Correlations demonstrated regions of combustion attributable to specific functional groups, which may relate to SOC stability. We are increasingly challenged with developing an efficient technique to assess SOC composition and stability at large spatial and temporal scales. Correlations between NMR and DSC-EGA may demonstrate the viability of using thermal analysis in lieu of more demanding methods in future large-scale surveys, and may provide data that goes beyond chemical composition to better approach quantification of biogeochemical stability.

  13. Spatial analysis of plutonium-239 + 240 and Americium-241 in soils around Rocky Flats, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litaor, M.I.

    1995-05-01

    Plutonium and american contamination of soils around Rocky Flats, Colorado resulted from past outdoor storage practices. Four previous studies produce four different Pu isopleth maps. Spatial estimation techniques were not used in the construction of these maps and were also based on an extremely small number of soil samples. The purpose of this study was to elucidate the magnitude of Pu-239 + 240 and Am-241 dispersion in the soil environment east of Rocky Flats using robust spatial estimation techniques. Soils were sampled from 118 plots of 1.01 and 4.05 ha by compositing 25 evenly spaced samples in each plot frommore » the top 0.64 cm. Plutonium-239 + 240 activity ranged from 1.85 to 53 560 Bq/kg with a mean of 1924 Bq/kg and a standard deviation of 6327 Bq/kg. Americium-241 activity ranged from 0.18 to 9990 Bq/kg with a mean of 321 Bq/kg and a standard deviation of 1143 Bq/kg. Geostatistical techniques were used to model the spatial dependency and construct isopleth maps showing Pu-239 + 240 and Am-241 distribution. The isopleth configuration was consistent with the hypothesis that the dominant dispersal mechanism of Pu-239 + 240 was wind dispersion from west to east. The Pu-239 + 240 isopleth map proposed to this study differed significantly in the direction and distance of dispersal from the previously published maps. This ispleth map as well as the Am-241 map should be used as the primary data for future risk assessment associated with public exposure to Pu-239 + 240 and Am-241. 37 refs., 7 figs., 2 tabs.« less

  14. Inorganic species of arsenic in soil solution determined by microcartridges and ferrihydrite-based diffusive gradient in thin films (DGT).

    PubMed

    Moreno-Jiménez, Eduardo; Six, Laetitia; Williams, Paul N; Smolders, Erik

    2013-01-30

    The bioavailability of soil arsenic (As) is determined by its speciation in soil solution, i.e., arsenite [As(III)] or arsenate [As(V)]. Soil bioavailability studies require suitable methods to cope with small volumes of soil solution that can be speciated directly after sampling, and thereby minimise any As speciation change during sample collection. In this study, we tested a self-made microcartridge to separate both As species and compared it to a commercially available cartridge. In addition, the diffusive gradient in thin films technique (DGT), in combination with the microcartridges, was applied to synthetic solutions and to a soil spiked with As. This combination was used to improve the assessment of available inorganic As species with ferrihydrite(FH)-DGT, in order to validate the technique for environmental analysis, mainly in soils. The self-made microcartridge was effective in separating As(III) from As(V) in solution with detection by inductively coupled plasma optical emission spectrometry (ICP-OES) in volumes of only 3 ml. The DGT study also showed that the FH-based binding gels are effective for As(III) and As(V) assessment, in solutions with As and P concentrations and ionic strength commonly found in soils. The FH-DGT was tested on flooded and unflooded As spiked soils and recoveries of As(III) and As(V) were 85-104% of the total dissolved As. This study shows that the DGT with FH-based binding gel is robust for assessing inorganic species of As in soils. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Random whole metagenomic sequencing for forensic discrimination of soils.

    PubMed

    Khodakova, Anastasia S; Smith, Renee J; Burgoyne, Leigh; Abarno, Damien; Linacre, Adrian

    2014-01-01

    Here we assess the ability of random whole metagenomic sequencing approaches to discriminate between similar soils from two geographically distinct urban sites for application in forensic science. Repeat samples from two parklands in residential areas separated by approximately 3 km were collected and the DNA was extracted. Shotgun, whole genome amplification (WGA) and single arbitrarily primed DNA amplification (AP-PCR) based sequencing techniques were then used to generate soil metagenomic profiles. Full and subsampled metagenomic datasets were then annotated against M5NR/M5RNA (taxonomic classification) and SEED Subsystems (metabolic classification) databases. Further comparative analyses were performed using a number of statistical tools including: hierarchical agglomerative clustering (CLUSTER); similarity profile analysis (SIMPROF); non-metric multidimensional scaling (NMDS); and canonical analysis of principal coordinates (CAP) at all major levels of taxonomic and metabolic classification. Our data showed that shotgun and WGA-based approaches generated highly similar metagenomic profiles for the soil samples such that the soil samples could not be distinguished accurately. An AP-PCR based approach was shown to be successful at obtaining reproducible site-specific metagenomic DNA profiles, which in turn were employed for successful discrimination of visually similar soil samples collected from two different locations.

  16. Dielectrophoretic sample preparation for environmental monitoring of microorganisms: Soil particle removal.

    PubMed

    Fatoyinbo, Henry O; McDonnell, Martin C; Hughes, Michael P

    2014-07-01

    Detection of pathogens from environmental samples is often hampered by sensors interacting with environmental particles such as soot, pollen, or environmental dust such as soil or clay. These particles may be of similar size to the target bacterium, preventing removal by filtration, but may non-specifically bind to sensor surfaces, fouling them and causing artefactual results. In this paper, we report the selective manipulation of soil particles using an AC electrokinetic microfluidic system. Four heterogeneous soil samples (smectic clay, kaolinitic clay, peaty loam, and sandy loam) were characterised using dielectrophoresis to identify the electrical difference to a target organism. A flow-cell device was then constructed to evaluate dielectrophoretic separation of bacteria and clay in a continous flow through mode. The average separation efficiency of the system across all soil types was found to be 68.7% with a maximal separation efficiency for kaolinitic clay at 87.6%. This represents the first attempt to separate soil particles from bacteria using dielectrophoresis and indicate that the technique shows significant promise; with appropriate system optimisation, we believe that this preliminary study represents an opportunity to develop a simple yet highly effective sample processing system.

  17. Geochemical and isotopic study of soils and waters from an Italian contaminated site: Agro Aversano (Campania)

    USGS Publications Warehouse

    Bove, M.A.; Ayuso, R.A.; de Vivo, B.; Lima, A.; Albanese, S.

    2011-01-01

    Lead isotope applications have been widely used in recent years in environmental studies conducted on different kinds of sampled media. In the present paper, Pb isotope ratios have been used to determine the sources of metal pollution in soils and waters in the Agro Aversano area. During three different sampling phases, a total of 113 surface soils (5-20. cm), 20 samples from 2 soil profiles (0-1. m), 11 stream waters and 4 groundwaters were collected. Major element concentrations in sampled media have been analyzed by the ICP-MS technique. Surface soils (20 samples), all soil profiles and all waters have been also analyzed for Pb isotope compositions by thermal ionization (TIMS). The geochemical data were assessed using statistic methods and cartographically elaborated in order to have a clear picture of the level of disturbance of the area. Pb isotopic data were studied to discriminate between anthropogenic and geologic sources. Our results show that As (5.6-25.6. mg/kg), Cu (9-677. mg/kg), Pb (22-193. mg/kg), Tl (0.53-3.62. mg/kg), V (26-142. mg/kg) and Zn (34-215. mg//kg) contents in analyzed soils, exceed the intervention limits fixed by the Italian Environmental Law for residential areas in some of the sampled sites, while intervention limit for industrial areas is exceeded only for Cu concentrations. Lead isotopic data, show that there is a high similarity between the ratios measured in the leached soil samples and those deriving from anthropic activities. This similarity with anthropogenic Pb is also evident in the ratios measured in both groundwater and stream water samples. ?? 2010 Elsevier B.V.

  18. Nickel and manganese transfer from soil to plant in lateritic mining soils from New Caledonia

    NASA Astrophysics Data System (ADS)

    Pouschat, P.; Rose, J.; Alliot, I.; Dominici, C.; Keller, C.; Laffont-Schwob, I.; Olivi, L.; Ambrosi, J.-P.

    2009-04-01

    New Caledonian ferritic soils (more than 50 % of iron) are naturally rich in metals (chromium, nickel, cobalt, and manganese), deficient in major nutrients (nitrogen, phosphorous, and potassium), and unbalanced for the calcium/magnesium ratio. Under these particular ecological conditions, New Caledonia, recognized as a hot-spot of biodiversity, is a natural laboratory to study and understand the adaptation strategies of plants to metalliferous soils, and particularly the tolerance and (hyper)accumulation of metals by plants. Moreover, understanding such mechanisms is essential to develop rehabilitation or phytoremediation techniques for polluted soils, as well as phytomining techniques. Thus, in order to understand the soil - plant relationship and metal mobility along a toposequence in a future nickel mining massif, field experiments were conducted in an isolated ultramafic massif of New Caledonia. Several plant species of two endemic and frequent plant genera were chosen: Tristaniopsis guillainii and T. calobuxus (Myrtaceae), and Phyllanthus serpentinus and P. favieri (Euphorbiaceae), because of their nickel and/or manganese accumulating or hyperaccumulating nature. Leaves, twigs, and roots of all plants were collected along the soil sequence and their associated rhizospheric and bulk soils were sampled. Next, a series of characterization techniques were adapted and then coupled to cryogenics. The combined use of those multiple techniques (cryo-microtomy, cryo-SEM, µXRF, cryo-XAS, and soil characterization) allowed to study co-location and speciation of nickel and manganese in the different plant organs and soils (rhizospheric and bulk). Bioaccumulated nickel and manganese had different distribution patterns. In leaves, Ni accumulated in non photosynthetic tissues (e.g. epidermis) whereas Mn preferentially accumulated in mesophyll whatever the plant species. Nevertheless, in spite of a different speciation in soils, nickel and manganese were both found as similar divalent organometallic complexes in the different plant parts.

  19. The distribution of selected elements and minerals in soil of the conterminous United States

    USGS Publications Warehouse

    Woodruff, Laurel G.; Cannon, William F.; Smith, David; Solano, Federico

    2015-01-01

    In 2007, the U.S. Geological Survey initiated a low-density (1 site per 1600 km2, 4857 sites) geochemical and mineralogical survey of soil of the conterminous United States as part of the North American Soil Geochemical Landscapes Project. Three soil samples were collected, if possible, from each site; (1) a sample from a depth of 0 to 5 cm, (2) a composite of the soil A-horizon, and (3) a deeper sample from the soil C-horizon or, if the top of the C-horizon was at a depth greater than 100 cm, from a depth of approximately 80–100 cm. The < 2 mm fraction of each sample was analysed for a suite of 45 major and trace elements following near-total multi-acid digestion. The major mineralogical components in samples from the soil A- and C-horizons were determined by a quantitative X-ray diffraction method using Rietveld refinement. Sampling ended in 2010 and chemical and mineralogical analyses were completed in May 2013. Maps of the conterminous United States showing predicted element and mineral concentrations were interpolated from actual soil data for each soil sample type by an inverse distance weighted (IDW) technique using ArcGIS software. Regional- and national-scale map patterns for selected elements and minerals apparent in interpolated maps are described here in the context of soil-forming factors and possible human inputs. These patterns can be related to (1) soil parent materials, for example, in the distribution of quartz, (2) climate impacts, for example, in the distribution of feldspar and kaolinite, (3) soil age, for example, in the distribution of carbonate in young glacial deposits, and (4) possible anthropogenic loading of phosphorus (P) and lead (Pb) to surface soil. This new geochemical and mineralogical data set for the conterminous United States represents a major step forward from prior national-scale soil geochemistry data and provides a robust soil data framework for the United States now and into the future.

  20. Assessment of the plasma desorption time-of-flight mass spectrometry technique for pesticide adsorption and degradation on 'as-received' treated soil samples.

    PubMed

    Thomas, J P; Nsouli, B; Darwish, T; Fallavier, M; Khoury, R; Wehbé, N

    2005-01-01

    The assessment of the plasma desorption time-of-flight mass spectrometry (PD-TOFMS) technique as a tool for direct characterization of pesticides adsorbed on agricultural soil is made for the first time in this study. Pellets of soils impregnated by solutions of three pesticides, namely norflurazon, malathion and oxyfluorfen, as well as deposits of these solutions onto aluminum surfaces, were investigated to this end. The yield values of the most characteristic peaks of the negative ion mass spectra were used to determine both the lowest concentrations detected on soils and limits of detection from thin films. The lowest values on soils are for malathion (1000 ppm range), and the largest for norflurazon (20,000 ppm), which is close to the limit of detection (LOD) found for the pesticide on the aluminum substrate (approximately 0.2 microg . cm(-2)). Different behaviors were observed as a function of time of storage in the ambient atmosphere or under vacuum; norflurazon adsorbed on soil exhibited high stability for a long period of time, and a rapid degradation of malathion with the elapsed time was clearly observed. The behavior of oxyfluorfen was also investigated but segregation processes seem to occur after several days. Although by far less sensitive than conventional methods based on extraction processes and used for real-world analytical applications, this technique is well suited to the study of the transformations occurring at the sample surface. A discussion is presented of the future prospects of such experiments in degradation studies. Copyright (c) 2005 John Wiley & Sons, Ltd.

  1. Laser ablation-laser induced breakdown spectroscopy for the measurement of total elemental concentration in soils.

    PubMed

    Pareja, Jhon; López, Sebastian; Jaramillo, Daniel; Hahn, David W; Molina, Alejandro

    2013-04-10

    The performances of traditional laser-induced breakdown spectroscopy (LIBS) and laser ablation-LIBS (LA-LIBS) were compared by quantifying the total elemental concentration of potassium in highly heterogeneous solid samples, namely soils. Calibration curves for a set of fifteen samples with a wide range of potassium concentrations were generated. The LA-LIBS approach produced a superior linear response different than the traditional LIBS scheme. The analytical response of LA-LIBS was tested with a large set of different soil samples for the quantification of the total concentration of Fe, Mn, Mg, Ca, Na, and K. Results showed an acceptable linear response for Ca, Fe, Mg, and K while poor signal responses were found for Na and Mn. Signs of remaining matrix effects for the LA-LIBS approach in the case of soil analysis were found and discussed. Finally, some improvements and possibilities for future studies toward quantitative soil analysis with the LA-LIBS technique are suggested.

  2. Short-term effect of aniline on soil microbial activity: a combined study by isothermal microcalorimetry, glucose analysis, and enzyme assay techniques.

    PubMed

    Chen, Huilun; Zhuang, Rensheng; Yao, Jun; Wang, Fei; Qian, Yiguang; Masakorala, Kanaji; Cai, Minmin; Liu, Haijun

    2014-01-01

    The accidents of aniline spill and explosion happened almost every year in China, whereas the toxic effect of aniline on soil microbial activity remained largely unexplored. In this study, isothermal microcalorimetric technique, glucose analysis, and soil enzyme assay techniques were employed to investigate the toxic effect of aniline on microbial activity in Chinese soil for the first time. Soil samples were treated with aniline from 0 to 2.5 mg/g soil to tie in with the fact of aniline spill. Results from microcalorimetric analysis showed that the introduction of aniline had a significant adverse effect on soil microbial activity at the exposure concentrations ≥0.4 mg/g soil (p < 0.05) and ≥0.8 mg/g soil (p < 0.01), and the activity was totally inhibited when the concentration increased to 2.5 mg/g soil. The glucose analysis indicated that aniline significantly decreased the soil microbial respiratory activity at the concentrations ≥0.8 mg/g soil (p < 0.05) and ≥1.5 mg/g soil (p < 0.01). Soil enzyme activities for β-glucosidase, urease, acid-phosphatase, and dehydrogenase revealed that aniline had a significant effect (p < 0.05) on the nutrient cycling of C, N, and P as well as the oxidative capacity of soil microorganisms, respectively. All of these results showed an intensively toxic effect of aniline on soil microbial activity. The proposed methods can provide toxicological information of aniline to soil microbes from the metabolic and biochemical point of views which are consistent with and correlated to each other.

  3. Transversely Excited Atmospheric CO2 Laser-Induced Plasma Spectroscopy for the Detection of Heavy Metals in Soil

    NASA Astrophysics Data System (ADS)

    Khumaeni, A.; Sugito, H.; Setia Budi, W.; Yoyo Wardaya, A.

    2018-01-01

    A rapid detection of heavy metals in soil was presented by the metal-assisted gas plasma method using specific characteristics of a pulsed, transversely excited atmospheric (TEA) CO2 laser. The soil particles were placed in a hole made of acrylic plate. The sample was covered by a to prevent the soil particles from being blown off. The mesh also functioned to initiate a luminous plasma. When a TEA CO2 laser (1500 mJ, 200 ns) was focused on the soil sample, passing through the metal mesh, some of the laser energy was used to generate the gas plasma on the mesh surface, and the remaining laser energy was employed to ablate the soil particles. The fine, ablated soil particles moved into the gas plasma region to be dissociated and excited. Using this technique, analysis can be made with reduced sample pretreatment, and therefore a rapid analysis can be performed efficiently. The results proved that the signal to noise ratio (S/N) of the emission spectral lines is much better for the case of the present method (mesh method) compared to the case of standard laser-induced breakdown spectroscopy using the pellet method. Rapid detection of heavy metal elements in soil has been successfully carried out. The detection limits of Cu and Hg in soil were estimated to be 3 and 10 mg/kg, respectively. The present method has good potential for rapid and sensitive detection of heavy metals in soil samples.

  4. Batch experiments versus soil pore water extraction--what makes the difference in isoproturon (bio-)availability?

    PubMed

    Folberth, Christian; Suhadolc, Metka; Scherb, Hagen; Munch, Jean Charles; Schroll, Reiner

    2009-10-01

    Two approaches to determine pesticide (bio-)availability in soils (i) batch experiments with "extraction with an excess of water" (EEW) and (ii) the recently introduced "soil pore water (PW) extraction" of pesticide incubated soil samples have been compared with regard to the sorption behavior of the model compound isoproturon in soils. A significant correlation between TOC and adsorbed pesticide amount was found when using the EEW approach. In contrast, there was no correlation between TOC and adsorbed isoproturon when using the in situ PW extraction method. Furthermore, sorption was higher at all concentrations in the EEW method when comparing the distribution coefficients (K(d)) for both methods. Over all, sorption in incubated soil samples at an identical water tension (-15 kPa) and soil density (1.3 g cm(-3)) appears to be controlled by a complex combination of sorption driving soil parameters. Isoproturon bioavailability was found to be governed in different soils by binding strength and availability of sorption sites as well as water content, whereas the dominance of either one of these factors seems to depend on the individual composition and characteristics of the respective soil sample. Using multiple linear regression analysis we obtained furthermore indications that the soil pore structure is affected by the EEW method due to disaggregation, resulting in a higher availability of pesticide sorption sites than in undisturbed soil samples. Therefore, it can be concluded that isoproturon sorption is overestimated when using the EEW method, which should be taken into account when using data from this approach or similar batch techniques for risk assessment analysis.

  5. Autoclave decomposition method for metals in soils and sediments.

    PubMed

    Navarrete-López, M; Jonathan, M P; Rodríguez-Espinosa, P F; Salgado-Galeana, J A

    2012-04-01

    Leaching of partially leached metals (Fe, Mn, Cd, Co, Cu, Ni, Pb, and Zn) was done using autoclave technique which was modified based on EPA 3051A digestion technique. The autoclave method was developed as an alternative to the regular digestion procedure passed the safety norms for partial extraction of metals in polytetrafluoroethylene (PFA vessel) with a low constant temperature (119.5° ± 1.5°C) and the recovery of elements were also precise. The autoclave method was also validated using two Standard Reference Materials (SRMs: Loam Soil B and Loam Soil D) and the recoveries were equally superior to the traditionally established digestion methods. Application of the autoclave was samples from different natural environments (beach, mangrove, river, and city soil) to reproduce the recovery of elements during subsequent analysis.

  6. Area G Perimeter Surface-Soil Sampling Environmental Surveillance for Fiscal Year 1998 Hazardous and Solid Waste Group (ESH-19)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquis Childs

    1999-09-01

    Material Disposal Area G (Area G) is at Technical Area 54 at Los Alamos National Laboratory (LANL). Area G has been the principal facility for the disposal of low-level, solid-mixed, and transuranic waste since 1957. It is currently LANL's primary facility for radioactive solid waste burial and storage. As part of the annual environmental surveillance effort at Area G, surface soil samples are collected around the facility's perimeter to characterize possible radionuclide movement off the site through surface water runoff During 1998, 39 soil samples were collected and analyzed for percent moisture, tritium, plutonium-238 and 239, cesium-137 and americium-241. Tomore » assess radionuclide concentrations, the results from these samples are compared with baseline or background soil samples collected in an undisturbed area west of the active portion Area G. The 1998 results are also compared to the results from analogous samples collected during 1996 and 1997 to assess changes over this time in radionuclide activity concentrations in surface soils around the perimeter of Area G. The results indicate elevated levels of all the radionuclides assessed (except cesium-137) exist in Area G perimeter surface soils vs the baseline soils. The comparison of 1998 soil data to previous years (1996 and 1997) indicates no significant increase or decrease in radionuclide concentrations; an upward or downward trend in concentrations is not detectable at this time. These results are consistent with data comparisons done in previous years. Continued annual soil sampling will be necessary to realize a trend if one exists. The radionuclide levels found in the perimeter surface soils are above background but still considered relatively low. This perimeter surface soil data will be used for planning purposes at Area G, techniques to prevent sediment tm.nsport off-site are implemented in the areas where the highest radionuclide concentrations are indicated.« less

  7. Laboratory measurements of nitric oxide release from forest soil with a thick organic layer under different understory types

    NASA Astrophysics Data System (ADS)

    Bargsten, A.; Falge, E.; Pritsch, K.; Huwe, B.; Meixner, F. X.

    2010-05-01

    Nitric oxide (NO) plays an important role in the photochemistry of the troposphere. NO from soil contributes up to 40% to the global budget of atmospheric NO. Soil NO emissions are primarily caused by biological activity (nitrification and denitrification), that occurs in the uppermost centimeter of the soil, a soil region often characterized by high contents of organic material. Most studies of NO emission potentials to date have investigated mineral soil layers. In our study we sampled soil organic matter under different understories (moss, grass, spruce and blueberries) in a humid mountainous Norway spruce forest plantation in the Fichtelgebirge (Germany). We performed laboratory incubation and flushing experiments using a customized chamber technique to determine the response of net potential NO flux to physical and chemical soil conditions (water content and temperature, bulk density, particle density, pH, C/N ratio, organic C, soil ammonium, soil nitrate). Net potential NO fluxes (in terms of mass of N) from soil samples taken under different understories ranged from 1.7-9.8 ng m-2 s-1 (soil sampled under grass and moss cover), 55.4-59.3 ng m-2 s-1 (soil sampled under spruce cover), and 43.7-114.6 ng m-2 s-1 (soil sampled under blueberry cover) at optimum water content and a soil temperature of 10 °C. The water content for optimum net potential NO flux ranged between 0.76 and 0.8 gravimetric soil moisture for moss covered soils, between 1.0 and 1.1 for grass covered soils, 1.1 and 1.2 for spruce covered soils, and 1.3 and 1.9 for blueberry covered soils. Effects of soil physical and chemical characteristics on net potential NO flux were statistically significant (0.01 probability level) only for NH4+. Therefore, as an alternative explanation for the differences in soil biogenic NO emission we consider more biological factors like understory vegetation type, amount of roots, and degree of mycorrhization; they have the potential to explain the observed differences of net potential NO fluxes.

  8. A novel method for tracing the movement of multiple individual soil particles under rainfall conditions using florescent videography.

    NASA Astrophysics Data System (ADS)

    Hardy, Robert; Pates, Jackie; Quinton, John

    2016-04-01

    The importance of developing new techniques to study soil movement cannot be underestimated especially those that integrate new technology. Currently there are limited empirical data available about the movement of individual soil particles, particularly high quality time-resolved data. Here we present a new technique which allows multiple individual soil particles to be traced in real time under simulated rainfall conditions. The technique utilises fluorescent videography in combination with a fluorescent soil tracer, which is based on natural particles. The system has been successfully used on particles greater than ~130 micrometres diameter. The technique uses HD video shot at 50 frames per second, providing extremely high temporal (0.02 s) and spatial resolution (sub-millimetre) of a particle's location without the need to perturb the system. Once the tracer has been filmed then the images are processed and analysed using a particle analysis and visualisation toolkit written in python. The toolkit enables the creation of 2 and 3-D time-resolved graphs showing the location of 1 or more particles. Quantitative numerical analysis of a pathway (or collection of pathways) is also possible, allowing parameters such as particle speed and displacement to be assessed. Filming the particles removes the need to destructively sample material and has many side-benefits, reducing the time, money and effort expended in the collection, transport and laboratory analysis of soils, while delivering data in a digital form which is perfect for modern computer-driven analysis techniques. There are many potential applications for the technique. High resolution empirical data on how soil particles move could be used to create, parameterise and evaluate soil movement models, particularly those that use the movement of individual particles. As data can be collected while rainfall is occurring it may offer the ability to study systems under dynamic conditions(rather than rainfall of a constant intensity), which are more realistic and this was one motivations behind the development of this technique.

  9. Cost-effective sampling of (137)Cs-derived net soil redistribution: part 2 - estimating the spatial mean change over time.

    PubMed

    Chappell, A; Li, Y; Yu, H Q; Zhang, Y Z; Li, X Y

    2015-06-01

    The caesium-137 ((137)Cs) technique for estimating net, time-integrated soil redistribution by the processes of wind, water and tillage is increasingly being used with repeated sampling to form a baseline to evaluate change over small (years to decades) timeframes. This interest stems from knowledge that since the 1950s soil redistribution has responded dynamically to different phases of land use change and management. Currently, there is no standard approach to detect change in (137)Cs-derived net soil redistribution and thereby identify the driving forces responsible for change. We outline recent advances in space-time sampling in the soil monitoring literature which provide a rigorous statistical and pragmatic approach to estimating the change over time in the spatial mean of environmental properties. We apply the space-time sampling framework, estimate the minimum detectable change of net soil redistribution and consider the information content and cost implications of different sampling designs for a study area in the Chinese Loess Plateau. Three phases (1954-1996, 1954-2012 and 1996-2012) of net soil erosion were detectable and attributed to well-documented historical change in land use and management practices in the study area and across the region. We recommend that the design for space-time sampling is considered carefully alongside cost-effective use of the spatial mean to detect and correctly attribute cause of change over time particularly across spatial scales of variation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Practical soil analysis by laser induced breakdown spectroscopy employing subtarget supported micro mesh as a powder sample holder

    NASA Astrophysics Data System (ADS)

    Suyanto, Hery; Lie, Tjung Jie; Kurniawan, Koo Hendrik; Kagawa, Kiichiro; Tjia, May On

    2017-11-01

    A practical alternative of sample preparation technique is proposed for direct powder analysis using laser-induced breakdown spectroscopy (LIBS) instead of the commonly adopted treatment of pelletizing the powder. The resulted pellet is known to suffer from reduced sensitivity of emission. Besides, it may also give rise to interfering effect from the binder emission. We introduce in this report a more practical technique of using a subtarget supported micro mesh (SSMM) powder sample holder. The LIBS spectrum of standard soil powder measured with 13 mJ 1064 nm Nd:YAG laser in 0.65 kPa ambient air is shown to exhibit the sharp emission lines of all the major elements in the sample. A comparison with the emission spectra measured from the pelletized powder, the spectrum obtained using the SSMM sample holder shows distinctly superior spectral quality marked by the absence of matrix effect found in pelletized powder samples, and the much stronger intensity due to the more effective shock wave plasma induced thermal excitation process produced by the hard subtarget in the sample holder. Repeating the measurement on a number of the standard soil samples of various Pb contents is shown to yield a linear calibration line with practically zero intercept and a detection limit of less than 10 ppm. We have thus demonstrated the viability of the proposed powder sample holder for the development of practical and quantitative powder analysis in the field.

  11. Identification of sources of environmental lead in South Africa from surface soil geochemical maps.

    PubMed

    de Villiers, Stephanie; Thiart, Christien; Basson, Nicholas C

    2010-10-01

    The bioavailability of lead in soil is of considerable importance to human and animal health. Although selective extraction has been explored as a more appropriate technique than total heavy metal analysis in environmental pollution assessments, such studies remain scarce globally and are almost non-existent in developing countries. Results for a large-scale study of extractable lead levels in undisturbed soil samples in South Africa identify several geographic areas of concern. Lead levels are considerably elevated relative to background levels in the Johannesburg urban and industrial area. Areas of active lead mining also exhibit higher surface soil values. Interestingly, areas of active and intensive coal mining activity display relatively low soil Pb values, possibly attributable to the relatively low heavy metal content of South African coal. In all instances, distribution of cadmium, a carcinogenic element, correlates with that of lead. The results demonstrate the usefulness of the quick and easy Mehlich-3 single extractant technique, an established technique in micronutrient studies, to simultaneously provide valuable environmental data for toxic metals such as Pb and Cd.

  12. Spatial distribution of metals in soils in Baltimore, Maryland: role of native parent material, proximity to major roads, housing age and screening guidelines

    Treesearch

    I.D. Yesilonis; R.V. Pouyat; N.K. Neerchal

    2008-01-01

    We investigated the spatial distribution of heavy metal above-background (anthropic) contents of Cd, Co, Cu, Cr, Fe, Mn, Ni, Pb, Ti, V, and Zn in Baltimore City surface soils and related these levels to potential contaminating sources. Composite soil samples (0?10 cm depth) were digested using a nitric and hydrochloric extraction technique. Slightly more than 10% of...

  13. Microbiological Detection Systems for Molecular Analysis of Environmental Water and Soil Samples

    EPA Science Inventory

    Multiple detection systems are being targeted to track various species and genotypes of pathogens found in environmental samples with the overreaching goal of developing analytical separation and detection techniques for Salmonella enterica Serovars Typhi, Cryptosporidium parvum,...

  14. Data documentation for the bare soil experiment at the University of Arkansas, June - August 1980

    NASA Technical Reports Server (NTRS)

    Sadeghi, A. M.

    1984-01-01

    The primary objective of this study is to evaluate the relationships between soil moisture and reflectivity of a bare soil, using microwave techniques. A drainage experiment was conducted on a Captina silt loam in cooperation with personnel in the Electrical Engineering Department. Measurements included soil moisture pressures at various depths, neutron probe measurements, gravimetric moisture samples, and reflectivity of the soil surface at selected frequencies including 1.5 and 6.0 GHz and at the incident angle of 45 deg. All measurements were made in conjuction with that of reflectivity data.

  15. Reconstructing rare soil microbial genomes using in situ enrichments and metagenomics

    PubMed Central

    Delmont, Tom O.; Eren, A. Murat; Maccario, Lorrie; Prestat, Emmanuel; Esen, Özcan C.; Pelletier, Eric; Le Paslier, Denis; Simonet, Pascal; Vogel, Timothy M.

    2015-01-01

    Despite extensive direct sequencing efforts and advanced analytical tools, reconstructing microbial genomes from soil using metagenomics have been challenging due to the tremendous diversity and relatively uniform distribution of genomes found in this system. Here we used enrichment techniques in an attempt to decrease the complexity of a soil microbiome prior to sequencing by submitting it to a range of physical and chemical stresses in 23 separate microcosms for 4 months. The metagenomic analysis of these microcosms at the end of the treatment yielded 540 Mb of assembly using standard de novo assembly techniques (a total of 559,555 genes and 29,176 functions), from which we could recover novel bacterial genomes, plasmids and phages. The recovered genomes belonged to Leifsonia (n = 2), Rhodanobacter (n = 5), Acidobacteria (n = 2), Sporolactobacillus (n = 2, novel nitrogen fixing taxon), Ktedonobacter (n = 1, second representative of the family Ktedonobacteraceae), Streptomyces (n = 3, novel polyketide synthase modules), and Burkholderia (n = 2, includes mega-plasmids conferring mercury resistance). Assembled genomes averaged to 5.9 Mb, with relative abundances ranging from rare (<0.0001%) to relatively abundant (>0.01%) in the original soil microbiome. Furthermore, we detected them in samples collected from geographically distant locations, particularly more in temperate soils compared to samples originating from high-latitude soils and deserts. To the best of our knowledge, this study is the first successful attempt to assemble multiple bacterial genomes directly from a soil sample. Our findings demonstrate that developing pertinent enrichment conditions can stimulate environmental genomic discoveries that would have been impossible to achieve with canonical approaches that focus solely upon post-sequencing data treatment. PMID:25983722

  16. Miscellaneous methods for measuring matric or water potential

    USGS Publications Warehouse

    Scanlon, Bridget R.; Andraski, Brian J.; Bilskie, Jim; Dane, Jacob H.; Topp, G. Clarke

    2002-01-01

    A variety of techniques to measure matric potential or water potential in the laboratory and in the field are described in this section. The techniques described herein require equilibration of some medium whose matric or water potential can be determined from previous calibration or can be measured directly. Under equilibrium conditions the matric or water potential of the medium is equal to that of the soil. The techniques can be divided into: (i) those that measure matric potential and (ii) those that measure water potential (sum of matric and osmotic potentials). Matric potential is determined when the sensor matrix is in direct contact with the soil, so salts are free to diffuse in or out of the sensor matrix, and the equilibrium measurement therefore reflects matric forces acting on the water. Water potential is determined when the sensor is separated from the soil by a vapor gap, so salts are not free to move in or out of the sensor, and the equilibrium measurement reflects the sum of the matric and osmotic forces acting on the water.Seven different techniques are described in this section. Those that measure matric potential include (i) heat dissipation sensors, (ii) electrical resistance sensors, (iii) frequency domain and time domain sensors, and (iv) electro-optical switches. A method that can be used to measure matric potential or water potential is the (v) filter paper method. Techniques that measure water potential include (vi) the Dew Point Potentiameter (Decagon Devices, Inc., Pullman, WA1) (water activity meter) and (vii) vapor equilibration.The first four techniques are electronically based methods for measuring matric potential. Heat dissipation sensors and electrical resistance sensors infer matric potential from previously determined calibration relations between sensor heat dissipation or electrical resistance and matric potential. Frequency-domain and timedomain matric potential sensors measure water content, which is related to matric potential of the sensor through calibration. Electro-optical switches measure changes in light transmission through thin, nylon filters as they absorb or desorb water in response to changes in matric potential. Heat dissipation sensors and electrical resistance sensors are used primarily in the field to provide information on matric potential. Frequency domain matric potential sensors are new and have not been widely used. Time domain matric potential sensors and electro-optical switches are new and have not been commercialized. For the fifth technique, filter paper is used as the standard matrix. The filter paper technique measures matric potential when the filter paper is in direct contact with soil or water potential when separated from soil by a vapor gap. The Dew Point Potentiameter calculates water potential from the measured dew point and sample temperature. The vapor equilibration technique involves equilibration of soil samples with salt solutions of known osmotic potential. The filter paper, Dew Point Potentiameter, and vapor equilibration techniques are generally used in the laboratory to measure water potential of disturbed field samples or to measure water potential for water retention functions.

  17. Geotechnical characterization of mined clay from Appalachian Ohio: challenges and implications for the clay mining industry.

    PubMed

    Moran, Anthony R; Hettiarachchi, Hiroshan

    2011-07-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling.

  18. Geotechnical Characterization of Mined Clay from Appalachian Ohio: Challenges and Implications for the Clay Mining Industry

    PubMed Central

    Moran, Anthony R.; Hettiarachchi, Hiroshan

    2011-01-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling. PMID:21845150

  19. Molecular Identification of Ectomycorrhizal Mycelium in Soil Horizons

    PubMed Central

    Landeweert, Renske; Leeflang, Paula; Kuyper, Thom W.; Hoffland, Ellis; Rosling, Anna; Wernars, Karel; Smit, Eric

    2003-01-01

    Molecular identification techniques based on total DNA extraction provide a unique tool for identification of mycelium in soil. Using molecular identification techniques, the ectomycorrhizal (EM) fungal community under coniferous vegetation was analyzed. Soil samples were taken at different depths from four horizons of a podzol profile. A basidiomycete-specific primer pair (ITS1F-ITS4B) was used to amplify fungal internal transcribed spacer (ITS) sequences from total DNA extracts of the soil horizons. Amplified basidiomycete DNA was cloned and sequenced, and a selection of the obtained clones was analyzed phylogenetically. Based on sequence similarity, the fungal clone sequences were sorted into 25 different fungal groups, or operational taxonomic units (OTUs). Out of 25 basidiomycete OTUs, 7 OTUs showed high nucleotide homology (≥99%) with known EM fungal sequences and 16 were found exclusively in the mineral soil. The taxonomic positions of six OTUs remained unclear. OTU sequences were compared to sequences from morphotyped EM root tips collected from the same sites. Of the 25 OTUs, 10 OTUs had ≥98% sequence similarity with these EM root tip sequences. The present study demonstrates the use of molecular techniques to identify EM hyphae in various soil types. This approach differs from the conventional method of EM root tip identification and provides a novel approach to examine EM fungal communities in soil. PMID:12514012

  20. Novel diffusive gradients in thin films technique to assess labile sulfate in soil.

    PubMed

    Hanousek, Ondrej; Mason, Sean; Santner, Jakob; Chowdhury, Md Mobaroqul Ahsan; Berger, Torsten W; Prohaska, Thomas

    2016-09-01

    A novel diffusive gradients in thin films (DGT) technique for sampling labile soil sulfate was developed, based on a strong basic anion exchange resin (Amberlite IRA-400) for sulfate immobilization on the binding gel. For reducing the sulfate background on the resin gels, photopolymerization was applied instead of ammonium persulfate-induced polymerization. Agarose cross-linked polyacrylamide (APA) hydrogels were used as diffusive layer. The sulfate diffusion coefficient in APA gel was determined as 9.83 × 10(-6) ± 0.35 × 10(-6) cm(2) s(-1) at 25 °C. The accumulated sulfate was eluted in 1 mol L(-1) HNO3 with a recovery of 90.9 ± 1.6 %. The developed method was tested against two standard extraction methods for soil sulfate measurement. The obtained low correlation coefficients indicate that DGT and conventional soil test methods assess differential soil sulfate pools, rendering DGT a potentially important tool for measuring labile soil sulfate.

  1. Soil nutrient-landscape relationships in a lowland tropical rainforest in Panama

    USGS Publications Warehouse

    Barthold, F.K.; Stallard, R.F.; Elsenbeer, H.

    2008-01-01

    Soils play a crucial role in biogeochemical cycles as spatially distributed sources and sinks of nutrients. Any spatial patterns depend on soil forming processes, our understanding of which is still limited, especially in regards to tropical rainforests. The objective of our study was to investigate the effects of landscape properties, with an emphasis on the geometry of the land surface, on the spatial heterogeneity of soil chemical properties, and to test the suitability of soil-landscape modeling as an appropriate technique to predict the spatial variability of exchangeable K and Mg in a humid tropical forest in Panama. We used a design-based, stratified sampling scheme to collect soil samples at 108 sites on Barro Colorado Island, Panama. Stratifying variables are lithology, vegetation and topography. Topographic variables were generated from high-resolution digital elevation models with a grid size of 5 m. We took samples from five depths down to 1 m, and analyzed for total and exchangeable K and Mg. We used simple explorative data analysis techniques to elucidate the importance of lithology for soil total and exchangeable K and Mg. Classification and Regression Trees (CART) were adopted to investigate importance of topography, lithology and vegetation for the spatial distribution of exchangeable K and Mg and with the intention to develop models that regionalize the point observations using digital terrain data as explanatory variables. Our results suggest that topography and vegetation do not control the spatial distribution of the selected soil chemical properties at a landscape scale and lithology is important to some degree. Exchangeable K is distributed equally across the study area indicating that other than landscape processes, e.g. biogeochemical processes, are responsible for its spatial distribution. Lithology contributes to the spatial variation of exchangeable Mg but controlling variables could not be detected. The spatial variation of soil total K and Mg is mainly influenced by lithology. ?? 2007 Elsevier B.V. All rights reserved.

  2. Population Size and Distribution of Rhizobium leguminosarum bv. trifolii in Relation to Total Soil Bacteria and Soil Depth †

    PubMed Central

    Bottomley, Peter J.; Dughri, Muktar H.

    1989-01-01

    Bacterial cells small enough to pass through 0.4-μm-pore-size filters made up 5 to 9% of the indigenous bacterial population in 0- to 20-cm-depth samples of Abiqua silty clay loam. Within the same soil samples, cells of a similar dimension were stained with fluorescent antibodies specific to each of four antigenically distinct indigenous serogroups of Rhizobium leguminosarum bv. trifolii and made up 22 to 34% of the soil population of the four serogroups. Despite the extensive contribution of small cells to these soil populations, no evidence of their being capable of either growth or nodulation was obtained. The density of soil bacteria which could be cultured ranged between 0.5 and 8.5% of the >0.4-μm direct count regardless of media, season of sampling, or soil depth. In the same soil samples, the viable nodulating populations of biovar trifolii determined by the plant infection soil dilution technique ranged between 1 and 10% of the >0.4-μm direct-immunofluorescence count of biovar trifolii. The <0.4-μm cell populations of both total soil bacteria and biovar trifolii changed abruptly between the 10- to 15-cm and 15- to 20-cm soil depth increments, increasing from 5 to 20% and from 20 to 50%, respectively, of their direct-count totals. The increase in density of the small-cell population corresponded to a significant increase in soil bulk density (1.07 to 1.21 g cm−3). The percent contribution of the <0.4-μm direct count to individual serogroup totals increased with soil depth by approximately 2-fold (39 to 87%) for serogroups 17 and 21 and by 12-fold (6 to 75%) for serogroups 6 and 36. PMID:16347896

  3. Visual soil evaluation - future research requirements

    NASA Astrophysics Data System (ADS)

    Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Ball, Bruce; Holden, Nick

    2017-04-01

    A review of Visual Soil Evaluation (VSE) techniques (Emmet-Booth et al., 2016) highlighted their established utility for soil quality assessment, though some limitations were identified; (1) The examination of aggregate size, visible intra-porosity and shape forms a key assessment criterion in almost all methods, thus limiting evaluation to structural form. The addition of criteria that holistically examine structure may be desirable. For example, structural stability can be indicated using dispersion tests or examining soil surface crusting, while the assessment of soil colour may indirectly indicate soil organic matter content, a contributor to stability. Organic matter assessment may also indicate structural resilience, along with rooting, earthworm numbers or shrinkage cracking. (2) Soil texture may influence results or impeded method deployment. Modification of procedures to account for extreme texture variation is desirable. For example, evidence of compaction in sandy or single grain soils greatly differs to that in clayey soils. Some procedures incorporate separate classification systems or adjust deployment based on texture. (3) Research into impacts of soil moisture content on VSE evaluation criteria is required. Criteria such as rupture resistance and shape may be affected by moisture content. It is generally recommended that methods are deployed on moist soils and quantification of influences of moisture variation on results is necessary. (4) Robust sampling strategies for method deployment are required. Dealing with spatial variation differs between methods, but where methods can be deployed over large areas, clear instruction on sampling is required. Additionally, as emphasis has been placed on the agricultural production of soil, so the ability of VSE for exploring structural quality in terms of carbon storage, water purification and biodiversity support also requires research. References Emmet-Booth, J.P., Forristal. P.D., Fenton, O., Ball, B.C. & Holden, N.M. 2016. A review of visual soil evaluation techniques for soil structure. Soil Use and Management, 32, 623-634.

  4. A comparison of in situ methods for measuring net nitrogen mineralization rates of organic soil amendments.

    PubMed

    Hanselman, Travis A; Graetz, Donald A; Obreza, Thomas A

    2004-01-01

    In situ incubation methods may help provide site-specific estimates of N mineralization from land-applied wastes. However, there are concerns about the reliability of the data generated by the various methods due to containment artifacts. We amended a sandy soil with either poultry manure, biosolids, or yard-waste compost and incubated the mixtures using four in situ methods (buried bags, covered cylinders, standard resin traps, and "new" soil-resin traps) and a conventional laboratory technique in plastic bags. Each incubation device was destructively sampled at 45-d intervals for 180 d and net N mineralization was determined by measuring the amount of inorganic N that accumulated in the soil or soil plus resin traps. Containment effects were evaluated by comparing water content of the containerized soil to a field-reference soil column. In situ incubation methods provided reasonable estimates of short-term (< 45 d) N mineralization, but long-term (> 45 d) mineralization data were not accurate due to a variety of problems specific to each technique. Buried bags and covered cylinders did not retain mineralized N due to water movement into and out of the containers. Neither resin method captured all of the mineralized N that leached through the soil columns, but the new soil-resin trap method tracked field soil water content better than all other in situ methods evaluated. With further refinement and validation, the new soil-resin trap method may be a useful in situ incubation technique for measuring net N mineralization rates of organic soil amendments.

  5. NG09 And CTBT On-Site Inspection Noble Gas Sampling and Analysis Requirements

    NASA Astrophysics Data System (ADS)

    Carrigan, Charles R.; Tanaka, Junichi

    2010-05-01

    A provision of the Comprehensive Test Ban Treaty (CTBT) allows on-site inspections (OSIs) of suspect nuclear sites to determine if the occurrence of a detected event is nuclear in origin. For an underground nuclear explosion (UNE), the potential success of an OSI depends significantly on the containment scenario of the alleged event as well as the application of air and soil-gas radionuclide sampling techniques in a manner that takes into account both the suspect site geology and the gas transport physics. UNE scenarios may be broadly divided into categories involving the level of containment. The simplest to detect is a UNE that vents a significant portion of its radionuclide inventory and is readily detectable at distance by the International Monitoring System (IMS). The most well contained subsurface events will only be detectable during an OSI. In such cases, 37 Ar and radioactive xenon cavity gases may reach the surface through either "micro-seepage" or the barometric pumping process and only the careful siting of sampling locations, timing of sampling and application of the most site-appropriate atmospheric and soil-gas capturing methods will result in a confirmatory signal. The OSI noble gas field tests NG09 was recently held in Stupava, Slovakia to consider, in addition to other field sampling and analysis techniques, drilling and subsurface noble gas extraction methods that might be applied during an OSI. One of the experiments focused on challenges to soil-gas sampling near the soil-atmosphere interface. During withdrawal of soil gas from shallow, subsurface sample points, atmospheric dilution of the sample and the potential for introduction of unwanted atmospheric gases were considered. Tests were designed to evaluate surface infiltration and the ability of inflatable well-packers to seal out atmospheric gases during sample acquisition. We discuss these tests along with some model-based predictions regarding infiltration under different near-surface hydrologic conditions. We also consider how naturally occurring as well as introduced (e.g., SF6) soil-gas tracers might be used to guard against the possibility of atmospheric contamination of soil gases while sampling during an actual OSI. The views expressed here do not necessarily reflect the opinion of the United States Government, the United States Department of Energy, or Lawrence Livermore National Laboratory. This work has been performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-418791

  6. Scaling down of a deworming programme among school-age children after a thirty-year successful intervention in the Bolivian Chaco.

    PubMed

    Spinicci, Michele; Macchioni, Fabio; Rojo, David; Gamboa, Herlan; Villagrán, Ana Liz; Vallejos, Yolanda; Strohmeyer, Marianne; Roselli, Mimmo; Gabrielli, Simona; Cancrini, Gabriella; Monasterio, Joaquín; Castellanos, Paul; Paredes, Grover Adolfo; Maury, Sdenka; Zárate, Adolfo; Rocabado, Rodolfo; Olliaro, Piero; Montresor, Antonio; Bartoloni, Alessandro

    2018-04-16

    Preventive chemotherapy is the WHO-recommended control method for soil-transmitted helminthiases. In the Bolivian Chaco, 6-monthly single-dose mebendazole delivery to school-age children achieved a dramatic decrease in soil-transmitted helminthiases prevalence between 1987 and 2013. Consequently, in September 2016, preventive chemotherapy delivery was interrupted in nine rural communities. In compliance with WHO recommendations, we intensified surveillance to monitor soil-transmitted helminthiases prevalence and detect potential changes that would require interventions. We conducted two cross-sectional parasitology surveys 12 months apart (September 2016-2017) among school-age children living in the communities where preventive chemotherapy delivery had been halted. Study design, methods of sampling and sample analysis technique (direct microscopy, Kato-Katz technique) followed WHO recommendations, aiming to obtain data representative of the Bolivian Chaco ecological zone. We collected 426 samples in 2016 and 520 in 2017. Soil-transmitted helminthiasis prevalence was unremarkable: 0.7% (95% CI 0-1.5%) in 2016 and 0.8% (0-1.5%) in 2017. Conversely, the prevalence of tapeworms (13% in 2016, 12% in 2017) and intestinal protozoan infections (81% in 2016 and 75% in 2017) continued to be high. Our findings support the role of preventive chemotherapy in reducing soil-transmitted helminthiases transmission, as otherwise poor hygienic and health conditions persist in the Bolivian Chaco. A national survey, involving areas from all the ecological zones of Bolivia, is now warranted. © 2018 John Wiley & Sons Ltd.

  7. Determination of low methylmercury concentrations in peat soil samples by isotope dilution GC-ICP-MS using distillation and solvent extraction methods.

    PubMed

    Pietilä, Heidi; Perämäki, Paavo; Piispanen, Juha; Starr, Mike; Nieminen, Tiina; Kantola, Marjatta; Ukonmaanaho, Liisa

    2015-04-01

    Most often, only total mercury concentrations in soil samples are determined in environmental studies. However, the determination of extremely toxic methylmercury (MeHg) in addition to the total mercury is critical to understand the biogeochemistry of mercury in the environment. In this study, N2-assisted distillation and acidic KBr/CuSO4 solvent extraction methods were applied to isolate MeHg from wet peat soil samples collected from boreal forest catchments. Determination of MeHg was performed using a purge and trap GC-ICP-MS technique with a species-specific isotope dilution quantification. Distillation is known to be more prone to artificial MeHg formation compared to solvent extraction which may result in the erroneous MeHg results, especially with samples containing high amounts of inorganic mercury. However, methylation of inorganic mercury during the distillation step had no effect on the reliability of the final MeHg results when natural peat soil samples were distilled. MeHg concentrations determined in peat soil samples after distillation were compared to those determined after the solvent extraction method. MeHg concentrations in peat soil samples varied from 0.8 to 18 μg kg(-1) (dry weight) and the results obtained with the two different methods did not differ significantly (p=0.05). The distillation method with an isotope dilution GC-ICP-MS was shown to be a reliable method for the determination of low MeHg concentrations in unpolluted soil samples. Furthermore, the distillation method is solvent-free and less time-consuming and labor-intensive when compared to the solvent extraction method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Isolation of Bdellovibrio sp. from soil samples in Mexico and their potential applications in control of pathogens.

    PubMed

    Oyedara, Omotayo Opemipo; De Luna-Santillana, Erick de Jesus; Olguin-Rodriguez, Omar; Guo, Xianwu; Mendoza-Villa, Marco Antonio; Menchaca-Arredondo, Jorge Luis; Elufisan, Temidayo Oluyomi; Garza-Hernandez, Javier Alfonso; Garcia Leon, Israel; Rodriguez-Perez, Mario Alberto

    2016-12-01

    In this study, two strains of Bdellovibrio were isolated from soil samples using the culture-dependent technique and two members of the family Enterobacteriaceae (Klebsiella sp. and Salmonella sp.) as prey. The Bdellovibrio strains were bacteriolytic, plaque-forming, and highly motile gram-negative bacteria. We identified and confirmed the Bdellovibrio strains using microscopy, PCR amplification, and sequencing of the 16S rRNA gene. They were observed to be different strains based on hit locus and prey range analyses. Here, the first report on Bdellovibrio strains isolated from soil in Mexico corroborates earlier report indicating that populations of Bdellovibrio found in soil are heterogeneous thereby the need to identify the various strains. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  9. Vertical characterization of soil contamination using multi-way modeling--a case study.

    PubMed

    Singh, Kunwar P; Malik, Amrita; Basant, Ankita; Ojha, Priyanka

    2008-11-01

    This study describes application of chemometric multi-way modeling approach to analyze the dataset pertaining to soils of industrial area with a view to assess the soil/sub-soil contamination, accumulation pathways and mobility of contaminants in the soil profiles. The three-way (sampling depths, chemical variables, sampling sites) dataset on heavy metals in soil samples collected from three different sites in an industrial area, up to a depth of 60 m each was analyzed using three-way Tucker3 model validated for stability and goodness of fit. A two component Tucker3 model, explaining 66.6% of data variance, allowed interpretation of the data information in all the three modes. The interpretation of core elements revealing interactions among the components of different modes (depth, variables, sites) allowed inferring more realistic information about the contamination pattern of soils both along the horizontal and vertical coordinates, contamination pathways, and mobility of contaminants through soil profiles, as compared to the traditional data analysis techniques. It concluded that soils at site-1 and site-2 are relatively more contaminated with heavy metals of both the natural as well as anthropogenic origins, as compared to the soil of site-3. Moreover, the accumulation pathways of metals for upper shallow layers and deeper layers of soils in the area were differentiated. The information generated would be helpful in developing strategies for remediation of the contaminated soils for reducing the subsequent risk of ground-water contamination in the study region.

  10. A method for soil moisture probes calibration and validation of satellite estimates.

    PubMed

    Holzman, Mauro; Rivas, Raúl; Carmona, Facundo; Niclòs, Raquel

    2017-01-01

    Optimization of field techniques is crucial to ensure high quality soil moisture data. The aim of the work is to present a sampling method for undisturbed soil and soil water content to calibrated soil moisture probes, in a context of the SMOS (Soil Moisture and Ocean Salinity) mission MIRAS Level 2 soil moisture product validation in Pampean Region of Argentina. The method avoids soil alteration and is recommended to calibrated probes based on soil type under a freely drying process at ambient temperature. A detailed explanation of field and laboratory procedures to obtain reference soil moisture is shown. The calibration results reflected accurate operation for the Delta-T thetaProbe ML2x probes in most of analyzed cases (RMSE and bias ≤ 0.05 m 3 /m 3 ). Post-calibration results indicated that the accuracy improves significantly applying the adjustments of the calibration based on soil types (RMSE ≤ 0.022 m 3 /m 3 , bias ≤ -0.010 m 3 /m 3 ). •A sampling method that provides high quality data of soil water content for calibration of probes is described.•Importance of calibration based on soil types.•A calibration process for similar soil types could be suitable in practical terms, depending on the required accuracy level.

  11. Assessment of the trace element distribution in soils in the parks of the city of Zagreb (Croatia).

    PubMed

    Roje, Vibor; Orešković, Marko; Rončević, Juraj; Bakšić, Darko; Pernar, Nikola; Perković, Ivan

    2018-02-07

    This paper presents the results of the preliminary testing of the selected trace elements in the soils of several parks in the city of Zagreb, Republic of Croatia. In each park, the samples were taken from several points-at various distances from the roads. The samples were taken at two different depths: 0-5 and 30-45 cm. Composite samples were done for each sampling point. Microwave-assisted wet digestion of the soil samples was performed and the determination by ICP-AES technique was done. Results obtained for Al, As, Ba, Mn, Ti, V, and K are in a good agreement with the results published in the scientific literature so far. The mass fraction values of Cd, Cr, Cu, Ni, Pb, and Zn are somewhat higher than the maximum values given in the Croatian Directive on agricultural land protection against pollution. Be, Mo, Sb, Se, and Tl in the samples were present in the concentrations that are lower than their method detection limit values.

  12. The wettability of selected organic soils in Poland

    NASA Astrophysics Data System (ADS)

    Całka, A.; Hajnos, M.

    2009-04-01

    The wettability was measured in the laboratory by means of two methods: Water Drop Penetration Time (WDPT) test and Thin Column Wicking (TCW) method. WDPT is fast and simple method and was used to investigate potential water repellency of analyzed samples. TCW is an indirect method and was used to determine contact angles and surface free energy components. The measurement was performed in horizontal teflon chambers for thin-layer chromatography, adapted for tubes 10 cm long. The experiment was carried out on muck soils (samples were taken from two levels of soil profile: 0-20 cm and 20-40 cm) and peat soils. There were two types of peats: low-moor peats and high moor peats. Samples of low-moor peats were taken from level 25-75 cm (alder peat) and 75-125cm (sedge peat) and 25-75 cm (peloid peat). Samples of high moor peats from level 25-175 cm (sphagnum peat) and 175-225 cm (sphagnum peat with Eriophorum). There was found no variability in persistence of potential water repellency but there were differences in values of contact angles of individual soil samples. Both muck and peat samples are extremely water repellent soils. Water droplets persisted on the surface of soils for more than 24 hours. Contact angles and surface free energy components for all samples were differentiated. Ranges of water contact angles for organic soils are from 27,54o to 96,50o. The highest values of contact angles were for sphagnum peats, and the lowest for muck soil from 20-40 cm level. It means, that there are differences in wettability between these samples. Muck soil is the best wettable and sphagnum peats is the worst wettable soil. If the content of organic compounds in the soil exceeds 40% (like in peats), the tested material displays only dispersion-type interactions. Therefore for peat soils, the technique of thin column wicking could only be used to determine the dispersive component γiLW. For muck soils it was also determined electron-acceptor (Lewis acid) γ+ and electron-donor (Lewis base) γ- surface free energy components. The authors gratefully acknowledge the Ministry of Science and Higher Education for financial support of this work (grant No. N N310 149335).

  13. Fungal Genetics and Functional Diversity of Microbial Communities in the Soil under Long-Term Monoculture of Maize Using Different Cultivation Techniques

    PubMed Central

    Gałązka, Anna; Grządziel, Jarosław

    2018-01-01

    Fungal diversity in the soil may be limited under natural conditions by inappropriate environmental factors such as: nutrient resources, biotic and abiotic factors, tillage system and microbial interactions that prevent the occurrence or survival of the species in the environment. The aim of this paper was to determine fungal genetic diversity and community level physiological profiling of microbial communities in the soil under long-term maize monoculture. The experimental scheme involved four cultivation techniques: direct sowing (DS), reduced tillage (RT), full tillage (FT), and crop rotation (CR). Soil samples were taken in two stages: before sowing of maize (DSBS-direct sowing, RTBS-reduced tillage, FTBS-full tillage, CRBS-crop rotation) and the flowering stage of maize growth (DSF-direct sowing, RTF-reduced tillage, FTF-full tillage, CRF-crop rotation). The following plants were used in the crop rotation: spring barley, winter wheat and maize. The study included fungal genetic diversity assessment by ITS-1 next generation sequencing (NGS) analyses as well as the characterization of the catabolic potential of microbial communities (Biolog EcoPlates) in the soil under long-term monoculture of maize using different cultivation techniques. The results obtained from the ITS-1 NGS technique enabled to classify and correlate the fungi species or genus to the soil metabolome. The research methods used in this paper have contributed to a better understanding of genetic diversity and composition of the population of fungi in the soil under the influence of the changes that have occurred in the soil under long-term maize cultivation. In all cultivation techniques, the season had a great influence on the fungal genetic structure in the soil. Significant differences were found on the family level (P = 0.032, F = 3.895), genus level (P = 0.026, F = 3.313) and on the species level (P = 0.033, F = 2.718). This study has shown that: (1) fungal diversity was changed under the influence different cultivation techniques; (2) techniques of maize cultivation and season were an important factors that can influence the biochemical activity of soil. Maize cultivated in direct sowing did not cause negative changes in the fungal structure, even making it more stable during seasonal changes; (3) full tillage and crop rotation may change fungal community and soil function. PMID:29441054

  14. Improved sample preparation and counting techniques for enhanced tritium measurement sensitivity

    NASA Astrophysics Data System (ADS)

    Moran, J.; Aalseth, C.; Bailey, V. L.; Mace, E. K.; Overman, C.; Seifert, A.; Wilcox Freeburg, E. D.

    2015-12-01

    Tritium (T) measurements offer insight to a wealth of environmental applications including hydrologic tracking, discerning ocean circulation patterns, and aging ice formations. However, the relatively short half-life of T (12.3 years) limits its effective age dating range. Compounding this limitation is the decrease in atmospheric T content by over two orders of magnitude (from 1000-2000 TU in 1962 to < 10 TU currently) since the cessation of above ground nuclear testing in the 1960's. We are developing sample preparation methods coupled to direct counting of T via ultra-low background proportional counters which, when combined, offer improved T measurement sensitivity (~4.5 mmoles of H2 equivalent) and will help expand the application of T age dating to smaller sample sizes linked to persistent environmental questions despite the limitations above. For instance, this approach can be used to T date ~ 2.2 mmoles of CH4 collected from sample-limited systems including microbial communities, soils, or subsurface aquifers and can be combined with radiocarbon dating to distinguish the methane's formation age from C age in a system. This approach can also expand investigations into soil organic C where the improved sensitivity will permit resolution of soil C into more descriptive fractions and provide direct assessments of the stability of specific classes of organic matter in soils environments. We are employing a multiple step sample preparation system whereby organic samples are first combusted with resulting CO2 and H2O being used as a feedstock to synthesize CH4. This CH4 is mixed with Ar and loaded directly into an ultra-low background proportional counter for measurement of T β decay in a shallow underground laboratory. Analysis of water samples requires only the addition of geologic CO2 feedstock with the sample for methane synthesis. The chemical nature of the preparation techniques enable high sample throughput with only the final measurement requiring T decay with total sample analysis time ranging from 2 -5 weeks depending on T content.

  15. Experimental study of nonlinear ultrasonic behavior of soil materials during the compaction.

    PubMed

    Chen, Jun; Wang, Hao; Yao, Yangping

    2016-07-01

    In this paper, the nonlinear ultrasonic behavior of unconsolidated granular medium - soil during the compaction is experimentally studied. The second harmonic generation technique is adopted to investigate the change of microstructural void in materials during the compaction process of loose soils. The nonlinear parameter is measured with the change of two important environmental factors i.e. moisture content and impact energy of compaction. It is found the nonlinear parameter of soil material presents a similar variation pattern with the void ratio of soil samples, corresponding to the increased moisture content and impact energy. A same optimum moisture content is found by observing the variation of nonlinear parameter and void ratio with respect to moisture content. The results indicate that the unconsolidated soil is manipulated by a strong material nonlinearity during the compaction procedure. The developed experimental technique based on the second harmonic generation could be a fast and convenient testing method for the determination of optimum moisture content of soil materials, which is very useful for the better compaction effect of filled embankment for civil infrastructures in-situ. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Monitoring of Cr, Cu, Pb, V and Zn in polluted soils by laser induced breakdown spectroscopy (LIBS).

    PubMed

    Dell'Aglio, Marcella; Gaudiuso, Rosalba; Senesi, Giorgio S; De Giacomo, Alessandro; Zaccone, Claudio; Miano, Teodoro M; De Pascale, Olga

    2011-05-01

    Laser Induced Breakdown Spectroscopy (LIBS) is a fast and multi-elemental analytical technique particularly suitable for the qualitative and quantitative analysis of heavy metals in solid samples, including environmental ones. Although LIBS is often recognised in the literature as a well-established analytical technique, results about quantitative analysis of elements in chemically complex matrices such as soils are quite contrasting. In this work, soil samples of various origins have been analyzed by LIBS and data compared to those obtained by Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). The emission intensities of one selected line for each of the five analytes (i.e., Cr, Cu, Pb, V, and Zn) were normalized to the background signal, and plotted as a function of the concentration values previously determined by ICP-OES. Data showed a good linearity for all calibration lines drawn, and the correlation between ICP-OES and LIBS was confirmed by the satisfactory agreement obtained between the corresponding values. Consequently, LIBS method can be used at least for metal monitoring in soils. In this respect, a simple method for the estimation of the soil pollution degree by heavy metals, based on the determination of an anthropogenic index, was proposed and determined for Cr and Zn.

  17. Radon exhalation rates from some soil samples of Kharar, Punjab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, Vimal; Deptt of Physics, Punjabi University, Patiala- 147 001; Singh, Tejinder Pal, E-mail: tejinders03@gmail.com

    Radon and its progeny are major contributors in the radiation dose received by general population of the world. Because radon is a noble gas, a large portion of it is free to migrate away from radium. The primary sources of radon in the houses are soils and rocks source emanations, emanation from building materials, and entry of radon into a structure from outdoor air. Keeping this in mind the study of radon exhalation rate from some soil samples of the Kharar, Punjab has been carried out using Can Technique. The equilibrium radon concentration in various soil samples of Kharar areamore » of district Mohali varied from 12.7 Bqm{sup −3} to 82.9 Bqm{sup −3} with an average of 37.5 ± 27.0 Bqm{sup −3}. The radon mass exhalation rates from the soil samples varied from 0.45 to 2.9 mBq/kg/h with an average of 1.4 ± 0.9 mBq/kg/h and radon surface exhalation rates varied from 10.4 to 67.2 mBq/m{sup 2}/h with an average of 30.6 ± 21.8 mBq/m{sup 2}/h. The radon mass and surface exhalation rates of the soil samples of Kharar, Punjab were lower than that of the world wide average.« less

  18. A multi-technique approach to assess chemical speciation of phosphate in soils

    NASA Astrophysics Data System (ADS)

    Belchior Abdala, Dalton; Rodrigues, Marcos; Herrera, Wilfrand; Pavinato, Paulo Sergio

    2017-04-01

    Soil scientists see chemical characterization of phosphorus (e.g., chemical speciation) as a winning strategy to increase phosphorus use efficiency in agriculture, to understand the fate of applied P fertilizer in soils and to devise strategies to minimize P losses to the environment. Phosphorus (P) is majorly presented in soils as phosphate, bound to mineral components of soils such as Al-, Ca- and Fe-(hydr)oxides or associated with organic molecules, being thus generally referred to as organic phosphates. In addition, because of the turnover of P between plants and microbes, it delivers P back to soils as a mixture of species with high spatial and chemical heterogeneity, adding complexity to the determination of the P species contained in environmental samples. Therefore, due to the variety of forms that phosphate can present in soils, its precise chemical characterization can only be achieved using a set of analytical techniques. Although established methodologies (e. g., soil test P, sequential chemical fractionation, P isotherms) have been useful to subsidize information for the establishment of policies and guidelines for soil management and P fertilizers use, they have failed to provide detailed information on P chemistry and reactivity in soils in a more satisfactory manner, which are critical to predict P bioavailability to plants and loss potential to the environment. More recently, the association of wet chemistry analysis with spectroscopy and microscopy techniques has arguably represented the most successful means to chemically speciate phosphate in soils. This is because using qualitative (chemical speciation), quantitative (chemical fractionation) and spatial (microscopy) data allows for triangulation of information, thereby reducing bias and increasing validity of the results. The analysis framework that we propose in this study includes the use of (i) sequential chemical fractionation of soil P to determine the partitioning of P within the different P pools considered in the fractionation protocol, (ii) two synchrotron-based X-ray absorption spectroscopic techniques, XANES and EXAFS, for chemical characterization of the P forms and mineralogy of Fe-(hydr)oxides present in a sample, and (iii) Scanning Electron Microscopy and Energy-Dispersive spectroscopy, SEM/EDS, to provide complimentary information to corroborate and aid in the interpretation of our P XANES data. It was shown that the combination of techniques can assist us not only in the determination of the P chemical species present in a given material, but also to better understand the complex and dynamic processes to which P is subjected in soils. The association of spectroscopy (XANES and EXAFS) and microscopy (SEM/EDS) with wet chemistry data in this study was key to shift our understanding of the relationship between P and other soil mineral components from a macroscopic into a microscopic one. This represents a strong driving force to integrate the results of multi-analytical techniques into a more complete understanding of the systems under study. In addition, we provide a library of reference spectra for P K-edge XANES containing P sorbed to single and binary mixtures of mineral analogues intended to assist in the identification of P sorbed species commonly found in soils and sediments. Key-words: P K-edge XANES, Fe K-edge EXAFS, sequential chemical fractionation, soil phosphorus

  19. Particle size analysis of sediments, soils and related particulate materials for forensic purposes using laser granulometry.

    PubMed

    Pye, Kenneth; Blott, Simon J

    2004-08-11

    Particle size is a fundamental property of any sediment, soil or dust deposit which can provide important clues to nature and provenance. For forensic work, the particle size distribution of sometimes very small samples requires precise determination using a rapid and reliable method with a high resolution. The Coulter trade mark LS230 laser granulometer offers rapid and accurate sizing of particles in the range 0.04-2000 microm for a variety of sample types, including soils, unconsolidated sediments, dusts, powders and other particulate materials. Reliable results are possible for sample weights of just 50 mg. Discrimination between samples is performed on the basis of the shape of the particle size curves and statistical measures of the size distributions. In routine forensic work laser granulometry data can rarely be used in isolation and should be considered in combination with results from other techniques to reach an overall conclusion.

  20. Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: a comparison study.

    PubMed

    Trindade, P V O; Sobral, L G; Rizzo, A C L; Leite, S G F; Soriano, A U

    2005-01-01

    The facility with which hydrocarbons can be removed from soils varies inversely with aging of soil samples as a result of weathering. Weathering refers to the result of biological, chemical and physical processes that can affect the type of hydrocarbons that remain in a soil. These processes enhance the sorption of hydrophobic organic contaminants (HOCs) to the soil matrix, decreasing the rate and extent of biodegradation. Additionally, pollutant compounds in high concentrations can more easily affect the microbial population of a recently contaminated soil than in a weathered one, leading to inhibition of the biodegradation process. The present work aimed at comparing the biodegradation efficiencies obtained in a recently oil-contaminated soil (spiked one) from Brazil and an weathered one, contaminated for four years, after the application of bioaugmentation and biostimulation techniques. Both soils were contaminated with 5.4% of total petroleum hydrocarbons (TPHs) and the highest biodegradation efficiency (7.4%) was reached for the weathered contaminated soil. It could be concluded that the low biodegradation efficiencies reached for all conditions tested reflect the treatment difficulty of a weathered soil contaminated with a high crude oil concentration. Moreover, both soils (weathered and recently contaminated) submitted to bioaugmentation and biostimulation techniques presented biodegradation efficiencies approximately twice as higher as the ones without the aforementioned treatment (natural attenuation).

  1. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    USGS Publications Warehouse

    Thorn, K.A.; Cox, L.G.

    2009-01-01

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS 15N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by 15N NMR. Liquid state 15N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (1H-15N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  2. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorn, Kevin A.; Cox, Larry G.

    2009-02-28

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS ¹⁵N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprisedmore » the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by ¹⁵N NMR. Liquid state ¹⁵N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (¹H–¹⁵N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.« less

  3. Using semi-variogram analysis for providing spatially distributed information on soil surface condition for land surface modeling

    NASA Astrophysics Data System (ADS)

    Croft, Holly; Anderson, Karen; Kuhn, Nikolaus J.

    2010-05-01

    The ability to quantitatively and spatially assess soil surface roughness is important in geomorphology and land degradation studies. Soils can experience rapid structural degradation in response to land cover changes, resulting in increased susceptibility to erosion and a loss of Soil Organic Matter (SOM). Changes in soil surface condition can also alter sediment detachment, transport and deposition processes, infiltration rates and surface runoff characteristics. Deriving spatially distributed quantitative information on soil surface condition for inclusion in hydrological and soil erosion models is therefore paramount. However, due to the time and resources involved in using traditional field sampling techniques, there is a lack of spatially distributed information on soil surface condition. Laser techniques can provide data for a rapid three dimensional representation of the soil surface at a fine spatial resolution. This provides the ability to capture changes at the soil surface associated with aggregate breakdown, flow routing, erosion and sediment re-distribution. Semi-variogram analysis of the laser data can be used to represent spatial dependence within the dataset; providing information about the spatial character of soil surface structure. This experiment details the ability of semi-variogram analysis to spatially describe changes in soil surface condition. Soil for three soil types (silt, silt loam and silty clay) was sieved to produce aggregates between 1 mm and 16 mm in size and placed evenly in sample trays (25 x 20 x 2 cm). Soil samples for each soil type were exposed to five different durations of artificial rainfall, to produce progressively structurally degraded soil states. A calibrated laser profiling instrument was used to measure surface roughness over a central 10 x 10 cm plot of each soil state, at 2 mm sample spacing. The laser data were analysed within a geostatistical framework, where semi-variogram analysis quantitatively represented the change in soil surface structure during crusting. The laser data were also used to create digital surface models (DSM) of the soil states for visual comparison. This research has shown that aggregate breakdown and soil crusting can be shown quantitatively by a decrease in sill variance (silt soil: 11.67 (control) to 1.08 (after 90 mins rainfall)). Features present within semi-variograms were spatially linked to features at the soil surface, such as soil cracks, tillage lines and areas of deposition. Directional semi-variograms were used to provide a spatially orientated component, where the directional sill variance associated with a soil crack was shown to increase from 7.95 to 19.33. Periodicity within semi-variogram was also shown to quantify the spatial scale of soil cracking networks and potentially surface flowpaths; an average distance between soil cracks of 37 mm closely corresponded to the distance of 38 mm shown in the semi-variogram. The results provide a strong basis for the future retrieval of spatio-temporal variations in soil surface condition. Furthermore, the presence of process-based information on hydrological pathways within semi-variograms may work towards an inclusion of geostatisically-derived information in land surface models and the understanding of complex surface processes at different spatial scales.

  4. Composite Sampling Approaches for Bacillus anthracis Surrogate Extracted from Soil

    PubMed Central

    France, Brian; Bell, William; Chang, Emily; Scholten, Trudy

    2015-01-01

    Any release of anthrax spores in the U.S. would require action to decontaminate the site and restore its use and operations as rapidly as possible. The remediation activity would require environmental sampling, both initially to determine the extent of contamination (hazard mapping) and post-decon to determine that the site is free of contamination (clearance sampling). Whether the spore contamination is within a building or outdoors, collecting and analyzing what could be thousands of samples can become the factor that limits the pace of restoring operations. To address this sampling and analysis bottleneck and decrease the time needed to recover from an anthrax contamination event, this study investigates the use of composite sampling. Pooling or compositing of samples is an established technique to reduce the number of analyses required, and its use for anthrax spore sampling has recently been investigated. However, use of composite sampling in an anthrax spore remediation event will require well-documented and accepted methods. In particular, previous composite sampling studies have focused on sampling from hard surfaces; data on soil sampling are required to extend the procedure to outdoor use. Further, we must consider whether combining liquid samples, thus increasing the volume, lowers the sensitivity of detection and produces false negatives. In this study, methods to composite bacterial spore samples from soil are demonstrated. B. subtilis spore suspensions were used as a surrogate for anthrax spores. Two soils (Arizona Test Dust and sterilized potting soil) were contaminated and spore recovery with composites was shown to match individual sample performance. Results show that dilution can be overcome by concentrating bacterial spores using standard filtration methods. This study shows that composite sampling can be a viable method of pooling samples to reduce the number of analysis that must be performed during anthrax spore remediation. PMID:26714315

  5. Influence of Effluent Irrigation on Community Composition and Function of Ammonia-Oxidizing Bacteria in Soil

    PubMed Central

    Oved, Tamar; Shaviv, Avi; Goldrath, Tal; Mandelbaum, Raphi T.; Minz, Dror

    2001-01-01

    The effect of effluent irrigation on community composition and function of ammonia-oxidizing bacteria (AOB) in soil was evaluated, using techniques of molecular biology and analytical soil chemistry. Analyses were conducted on soil sampled from lysimeters and from a grapefruit orchard which had been irrigated with wastewater effluent or fertilizer-amended water (FAW). Specifically, comparisons of AOB community composition were conducted using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified fragments of the gene encoding the α-subunit of the ammonia monooxygenase gene (amoA) recovered from soil samples and subsequent sequencing of relevant bands. A significant and consistent shift in the population composition of AOB was detected in soil irrigated with effluent. This shift was absent in soils irrigated with FAW, despite the fact that the ammonium concentration in the FAW was similar. At the end of the irrigation period, Nitrosospira-like populations were dominant in soils irrigated with FAW, while Nitrosomonas-like populations were dominant in effluent-irrigated soils. Furthermore, DGGE analysis of the amoA gene proved to be a powerful tool in evaluating the soil AOB community population and population shifts therein. PMID:11472914

  6. Transport of explosives I: TNT in soil and its equilibrium vapor

    NASA Astrophysics Data System (ADS)

    Baez, Bibiana; Correa, Sandra N.; Hernandez-Rivera, Samuel P.; de Jesus, Maritza; Castro, Miguel E.; Mina, Nairmen; Briano, Julio G.

    2004-09-01

    Landmine detection is an important task for military operations and for humanitarian demining. Conventional methods for landmine detection involve measurements of physical properties. Several of these methods fail on the detection of modern mines with plastic enclosures. Methods based on the detection signature explosives chemicals such as TNT and DNT are specific to landmines and explosive devices. However, such methods involve the measurements of the vapor trace, which can be deceiving of the actual mine location because of the complex transport phenomena that occur in the soil neighboring the buried landmine. We report on the results of the study of the explosives subject to similar environmental conditions as the actual mines. Soil samples containing TNT were used to study the effects of aging, temperature and moisture under controlled conditions. The soil used in the investigation was Ottawa sand. A JEOL GCMate II gas chromatograph +/- mass spectrometer coupled to a Tunable Electron Energy Monochromator (TEEM-GC/MS) was used to develop the method of analysis of explosives under enhanced detection conditions. Simultaneously, a GC with micro cell 63Ni, Electron Capture Detector (μECD) was used for analysis of TNT in sand. Both techniques were coupled with Solid-Phase Micro Extraction (SPME) methodology to collect TNT doped sand samples. The experiments were done in both, headspace and immersion modes of SPME for sampling of explosives. In the headspace experiments it was possible to detect appreciable TNT vapors as early as 1 hour after of preparing the samples, even at room temperature (20 °C). In the immersion experiments, I-SPME technique allowed for the detection of concentrations as low as 0.010 mg of explosive per kilogram of soil.

  7. Soil pyrogenic carbon lacks long-term persistence

    NASA Astrophysics Data System (ADS)

    Lutfalla, Suzanne; Abiven, Samuel; Barré, Pierre; Wiedemeier, Daniel; Christensen, Bent; Houot, Sabine; Kätterer, Thomas; Macdonald, Andy; van Oort, Fok; Chenu, Claire

    2015-04-01

    In the context of climate change, one mitigation technique currently investigated is the use of pyrogenic organic carbon (PyOC) -which is biomass turned into charcoal- to sequester carbon in soils with the hypothesis that PyOC is persistent and will not be biodegraded (or mineralized). In this study, we use the unique opportunity offered by five long term bare fallow (LTBF) experiments across Europe (Askov in Denmark, Grignon and Versailles in France, Ultuna in Sweden and Rothamsted in the United Kingdom) to compare the dynamics of PyOC and soil organic carbon (SOC) in the same plots at the decadal time scale (from 25 to 80 years of bare fallow depending on the site). Bare fallow plots were regularly sampled throughout the bare fallow duration and these samples were carefully archived. In bare fallow plots, with negligible external carbon input and with continuing biodegradation, SOC is depleting. Using the Benzene Polycarboxylic Acid (BPCA) technique to estimate the PyOC quantity and quality in the soils at different sampling dates, we investigated if PyOC content was also decreasing and compared the rates of depletion of PyOC and SOC. We found that PyOC contents decreased rapidly in soils at all sites. The loss of PyOC between the first and the last soil sampling ranged from 19.8 to 57.3% of the initial PyOC content. Furthermore, PyOC quality exhibited a similar evolution at all sites, becoming more enriched in condensed material with time. We applied a one pool model with mono-exponential decay to our data and found an average mean residence time of native PyOC of 116 years across the different sites, with a standard deviation of 15 years, just 1.6 times longer than that of SOC. Our results show that, though having a longer residence time than total SOC, PyOC content can decrease rapidly in soils suggesting that the potential for long-term C storage in soil by PyOC amendments is less than currently anticipated. Our results therefore question the concept of biochar production as a climate change mitigation strategy.

  8. Floodplain Assessment for the Middle Los Alamos Canyon Aggregate Area Investigations in Technical Area 02 at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathcock, Charles Dean

    The proposed action being assessed in this document occurs in TA-02 in the bottom of Los Alamos Canyon. The DOE proposes to conduct soil sampling at AOC 02-011 (d), AOC 02- 011(a)(ii), and SWMU 02-005, and excavate soils in AOC 02-011(a)(ii) as part of a corrective actions effort. Additional shallow surface soil samples (soil grab samples) will be collected throughout the TA-02 area, including within the floodplain, to perform ecotoxicology studies (Figures 1 and 2). The excavation boundaries in AOC 02-011(a)(ii) are slightly within the delineated 100-year floodplain. The project will use a variety of techniques for soil sampling andmore » remediation efforts to include hand/digging, standard hand auger/sampling, excavation using machinery such as backhoe and front end loader and small drill rig. Heavy equipment will traverse the floodplain and spoils piles will be staged in the floodplain within developed or previously disturbed areas (e.g., existing paved roads and parking areas). The project will utilize and maintain appropriate best management practices (BMPs) to contain excavated materials, and all pollutants, including oil from machinery/vehicles. The project will stabilize disturbed areas as appropriate at the end of the project.« less

  9. Effects of sewage sludge amendment on the properties of two Brazilian oxisols and their humic acids.

    PubMed

    Bertoncini, E I; D'Orazio, V; Senesi, N; Mattiazzo, M E

    2008-07-01

    The effect of sewage sludge (SS) amendment on the general properties of the top layers of a sandy and a clayey oxisols and on the nature of their humic acid (HA) fractions was evaluated by chemical and physico-chemical techniques. The amended soils, especially the sandy soil, benefited of SS amendment by increasing their pH to above neutrality and enhancing the contents of C, N, P, and Ca and cation exchange capacity. The SS-HA-like sample showed larger H and N contents and a greater aliphatic character and humification degree than the HAs isolated from non-amended soils. The composition and structure of amended soil HAs were affected by SS application as a function of soil type and layer. In particular, N-containing groups and aliphatic structures of SS-HA-like sample appears to be partially incorporated in the amended soil HAs, and these effects were more evident in the HAs from the sandy oxisol.

  10. Removal of polycyclic aromatic hydrocarbons from soil using a composite material containing iron and activated carbon in the freeze-dried calcium alginate matrix: Novel soil cleanup technique.

    PubMed

    Funada, Mako; Nakano, Takeshi; Moriwaki, Hiroshi

    2018-06-05

    A novel clean-up technology to remove polycyclic aromatic hydrocarbons (PAHs) from solid samples by magnetic separation using a composite containing iron powder as a magnetic material and activated carbon as an adsorbent in the freeze-dried calcium alginate matrix (Fe-AC-alg) has been developed. The Fe-AC-alg powder (50 mg), mixed with 1.0 g of glass beads having 12 kinds of adsorbed PAHs, was shaken without adding solvents at 300 rpm. After shaking, the Fe-AC-alg powder was separated using a permanent magnet. The quantity of the PAHs extracted from the glass beads treated by this method was determined. The removal (%) of the PAHs was over 96%. A roadside soil sample (10 g) was mixed with the Fe-AC-alg (1.0 g) for 2 weeks. The removal (%) of benzo[a]pyrene from the sample by the presented technique was 78%. The toxic equivalent concentration (Σ BaP eq ) for the sample decreased from 0.27 to 0.10 mg kg -1 by this method. The presented method is very simple, economical, and environment-friendly. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Iron Redox Transformations And Phosphorous Cycling In Tropical Soils

    NASA Astrophysics Data System (ADS)

    Peretyazhko, T.; Sposito, G.

    2003-12-01

    We are investigating the hypothesis that in highly weathered tropical soils iron oxidation-reduction reactions may mediate phosphorous solubility. In these soils phosphorous may be removed from the plant-available soil pool by sorption to Fe(III) oxides and by precipitation with Fe(III) to form insoluble minerals. The reduction of iron during episodic anoxic conditions has the potential to release phosphorous in a plant available form. We aim to explore the factors controlling Fe reduction and to evaluate the role of Fe reduction in P solubilization. Soil samples were collected along a toposequence (ridge-slope-valley) in the Luquillo Experimental Forest, Puerto Rico. Besides precipitation, the valley soils receive additional water through subsurface and upland runoff. These soils are poorly-drained and, therefore, periodically saturated with water, which creates anoxic conditions. Two series of incubation experiments were carried out on air-dried and freshly-sampled valley soils. During a 14-day incubation period, increasing production of Fe(II) was detected in both types of soil sample. We also found positive correlations between the concentrations of soluble Fe(II), pH, and soluble P. In general, the total amounts of Fe(II) and P produced were higher in the air-dried soil, mainly due to differences in microbial activity. To examine further the factors controlling Fe reduction and P solubilization, we are performing soil incubation experiments in the presence of "electron shuttle" compound (AQDS). SEM and STXM techniques will be applied to detect the formation of Fe(II) secondary minerals.

  12. Relationships between groundwater, surface water, and soil salinity in Polder 32, Southwest Bangladesh

    NASA Astrophysics Data System (ADS)

    Fry, D. C.; Ayers, J. C.

    2014-12-01

    In the coastal areas of Southwest Bangladesh polders are surrounded by tidal channels filled with brackish water. In the wet season, farmers create openings in the embankments to irrigate rice paddies. In the dry season, farmers do the same to create saline shrimp ponds. Residents on Polder 32, located within the Ganges-Brahmaputra-Meghna delta system, practice these seasonal farming techniques. Soils in the area are entisols, being sediment recently deposited, and contain mostly silt-sized particles. Brackish water in brine shrimp ponds may deposit salt in the soil, causing soil salinization. However, saline connate groundwater could also be contributing to soil salinization. Groundwater, surface water (fresh water pond, rice paddy and tidal channel water) and soil samples have been analyzed via inductively coupled plasma optical emission spectroscopy, inductively coupled plasma mass spectroscopy and ion chromatography in an attempt to correlate salinity measurements with each other in order to determine major sources of soil salinity. Multiple parameters, including distances of samples from tidal channels, inland streams, shrimp ponds and tube wells were measured to see if spatial correlations exist. Similarly, values from wet and dry seasons were compared to quantify temporal variations. Salt content in many soil samples were found to be high enough to significantly decrease rice yields. Continued soil salinization can decrease these yields even more, leading to farmers not producing enough food to sustain their families.

  13. Apollo 15 clastic materials and their relationship to local geologic features

    NASA Technical Reports Server (NTRS)

    Fruchter, J. S.; Stoeser, J. W.; Lindstrom, M. M.; Goles, G. G.

    1973-01-01

    Ninety sub-samples of Apollo 15 materials have been analyzed by instrumental neutron activation analysis techniques for as many as 21 elements. Soil and soil breccia compositions show considerable variation from station to station although at any given station the soils and soil breccias were compositionally very similar to one another. Mixing model calculations show that the station-to-station variations can be related to important local geologic features. These features include the Apennine Front, Hadley Rille and the ray from the craters Aristillus or Autolycus. Compositional similarities between soils and soil breccias at the Apollo 15 site indicate that the breccias and soils are related in some fundamental way, although the exact nature of this relationship is not yet fully understood.

  14. Determination of total carbonates in soil archaeometry using a new pressure method with temperature compensation

    NASA Astrophysics Data System (ADS)

    Barouchas, Pantelis; Koulos, Vasilios; Melfos, Vasilios

    2017-04-01

    For the determination of total carbonates in soil archaeometry a new technique was applied using a multi-sensor philosophy, which combines simultaneous measurement of pressure and temperature. This technology is innovative and complies with EN ISO 10693:2013, ASTM D4373-02(2007) and Soil Science Society of America standard test methods for calcium carbonate content in soils and sediments. The total carbonates analysis is based on a pressure method that utilizes the FOGII Digital Soil CalcimeterTM, which is a portable apparatus. The total carbonate content determined by treating a 1.000 g (+/- 0.001 g) dried sample specimens with 6N hydrochloric acid (HCL) reagent grade, in an enclosed reaction vessel. Carbon dioxide gas evolved during the reaction between the acid and carbonate fraction of the specimen, was measured by the resulting pressure generated, taking in account the temperature conditions during the reaction. Prior to analysis the procedure was validated with Sand/Soil mixtures from BIPEA proficiency testing program with soils of different origins. For applying this new method in archaeometry a total number of ten samples were used from various rocks which are related with cultural constructions and implements in Greece. They represent a large range of periods since the Neolithic times, and were selected because there was an uncertainty about their accurate mineralogical composition especially regarding the presence of carbonate minerals. The results were compared to the results from ELTRA CS580 inorganic carbon analyzer using an infrared cell. The determination of total carbonates for 10 samples from different ancient sites indicated a very good correlation (R2 >0.97) between the pressure method with temperature compensation and the infrared method. The proposed method is quickly and accurate in archaeometry and can replace easily other techniques for total carbonates testing. The FOGII Digital Soil CalcimeterTM is portable and easily can be carried for field work in archaeology.

  15. Spatial prediction of near surface soil water retention functions using hydrogeophysics and empirical orthogonal functions

    NASA Astrophysics Data System (ADS)

    Gibson, Justin; Franz, Trenton E.

    2018-06-01

    The hydrological community often turns to widely available spatial datasets such as the NRCS Soil Survey Geographic database (SSURGO) to characterize the spatial variability of soil properties. When used to spatially characterize and parameterize watershed models, this has served as a reasonable first approximation when lacking localized or incomplete soil data. Within agriculture, soil data has been left relatively coarse when compared to numerous other data sources measured. This is because localized soil sampling is both expensive and time intense, thus a need exists in better connecting spatial datasets with ground observations. Given that hydrogeophysics is data-dense, rapid, non-invasive, and relatively easy to adopt, it is a promising technique to help dovetail localized soil sampling with spatially exhaustive datasets. In this work, we utilize two common near surface geophysical methods, cosmic-ray neutron probe and electromagnetic induction, to identify temporally stable spatial patterns of measured geophysical properties in three 65 ha agricultural fields in western Nebraska. This is achieved by repeat geophysical observations of the same study area across a range of wet to dry field conditions in order to evaluate with an empirical orthogonal function. Shallow cores were then extracted within each identified zone and water retention functions were generated in the laboratory. Using EOF patterns as a covariate, we quantify the predictive skill of estimating soil hydraulic properties in areas without measurement using a bootstrap validation analysis. Results indicate that sampling locations informed via repeat hydrogeophysical surveys, required only five cores to reduce the cross-validation root mean squared error by an average of 64% as compared to soil parameters predicted by a commonly used benchmark, SSURGO and ROSETTA. The reduction to five strategically located samples within the 65 ha fields reduces sampling efforts by up to ∼90% as compared to the common practice of soil grid sampling every 1 ha.

  16. Mapping soil types from multispectral scanner data.

    NASA Technical Reports Server (NTRS)

    Kristof, S. J.; Zachary, A. L.

    1971-01-01

    Multispectral remote sensing and computer-implemented pattern recognition techniques were used for automatic ?mapping' of soil types. This approach involves subjective selection of a set of reference samples from a gray-level display of spectral variations which was generated by a computer. Each resolution element is then classified using a maximum likelihood ratio. Output is a computer printout on which the researcher assigns a different symbol to each class. Four soil test areas in Indiana were experimentally examined using this approach, and partially successful results were obtained.

  17. Detecting management and fertilization effects on the carbon balance of winter oilseed rape with manual closed chamber measurements: Can we outrange gap-filling uncertainty and spatiotemporal variability?

    NASA Astrophysics Data System (ADS)

    Huth, Vytas; Moffat, Antje Maria; Calmet, Anna; Andres, Monique; Laufer, Judit; Pehle, Natalia; Rach, Bernd; Gundlach, Laura; Augustin, Jürgen

    2017-04-01

    Winter oilseed rape is the dominant biofuel crop in the young moraine landscape in North-Eastern Germany. However, studies on the effect of rapeseed cropping on net ecosystem exchange of CO2 (NEE) and the soil carbon (SC) balance are scarce. SC balance estimates are usually derived from long-term soil sampling field trials where rapeseed is part of different crop rotations. The estimated annual differences linked to rapeseed cropping are rather small (varying between losses of 40 g C m-2 and gains of up to 100 g C m-2). Testing management effects on the NEE and SC balance of cropping systems is best done by comparing plots with different treatments at the same site under the same climate. The soil sampling approach is in the need of field trials that run over decades, which has the disadvantage that management strategies of practical farming may have already changed when the results are derived. Continuous eddy covariance measurements of NEE would require large fields in flat terrain for each of the treatments, which is especially complicated in the heterogeneous landscapes of glacigenic origin of North-Eastern Germany. The common approach of using the chamber technique to derive NEE, however, is subject to the local soil and plant stand heterogeneities due to its tiny footprint. This technique might also disturb the ecosystem, the measurements are usually discontinuous requiring elaborate gap-filling techniques, and it has mostly been used on organic soils where large respiratory C losses occur. Therefore, our aim was to answer, if a combined approach of the eddy covariance and the chamber technique can detect the relatively small NEE and SC differences of rapeseed cropping on mineral soils within a shorter period of time than conventional soil sampling field trials can. We tested the new experimental design taking the advantages of both techniques into account: The eddy covariance tower measuring the NEE dynamics during the year; the chamber measurements to detect the flux differences between specific management practices - with additional chamber measurements installed close to the eddy tower as a reference linking the two techniques. In our experiment, we studied the effect of four different treatments of fertilization (mineral versus organic) and tillage (no-till versus mulch-till versus ploughing) on the NEE of rapeseed cropping for the climatic seasons 2013 to 2015. We compared the NEE of the treatments to the "background" NEE measured by the eddy covariance technique in the nearby reference field for the years 2013 and 2014. With this data, we estimated the uncertainty resulting from gap filling discontinuous chamber measurements and relate it to the observed effects of the four different treatments on the NEE. Here, we present first results on the applicability of the manual-chamber technique to derive the relatively small effects of rapeseed cropping on NEE and SC within a short period of three years of study.

  18. Root zone chemical ecology: new techniques for below grounf sampling and mass spectrometric analyses of volatile semiochemicals

    USDA-ARS?s Scientific Manuscript database

    The ban of methyl bromide as a soil fumigant has led to an urgent need to develop novel methods of control of soil-dwelling pests. The use of semiochemicals for below-ground insect and nematode control is one such novel avenue of research. New technologies to study semiochemically mediated below-g...

  19. Progress in the Use of Rapid Molecular Techniques to Detect Life Forms in Soil: Implications for Interplanetary Astrobiology Missions

    NASA Technical Reports Server (NTRS)

    Warmflash, D.; Larios-Sanz, M.; Fox, G. E.; McKay, D. S.

    2002-01-01

    To demonstrate the feasibility of two promising technologies, we have applied Enzyme-Linked Immunosorbent Assay (ELISA) as well as probes that target the 16S rRNA molecule to search for life in terrestrial soil samples, known to contain numerous life forms. Additional information is contained in the original extended abstract.

  20. Simulated In Situ Determination of Soil Profile Organic and Inorganic Carbon With LIBS and VisNIR

    NASA Astrophysics Data System (ADS)

    Bricklemyer, R. S.; Brown, D. J.; Clegg, S. M.; Barefield, J. E.

    2008-12-01

    There is growing need for rapid, accurate, and inexpensive methods to measure, and verify soil organic carbon (SOC) change for national greenhouse gas accounting and the development of a soil carbon trading market. Laser Induced Breakdown Spectroscopy (LIBS) and Visible and Near Infrared Spectroscopy (VisNIR) are complementary analytical techniques that have the potential to fill that need. The LIBS method provides precise elemental analysis of soils, but generally cannot distinguish between organic C and inorganic C. VisNIR has been established as a viable technique for measuring soil properties including SOC and inorganic carbon (IC). As part of the Big Sky Carbon Sequestration Regional Partnership, 240 intact core samples (3.8 x 50 cm) have been collected from six agricultural fields in north central Montana, USA. Each of these core samples were probed concurrently with LIBS and VisNIR at 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 35 and 45 cm (+/- 1.5 cm) depths. VisNIR measurements were taken using an Analytical Spectral Devices (ASD, Boulder, CO, USA) Agrispec spectrometer to determine the partition of SOC vs. IC in the samples. The LIBS scans were collected with the LANL LIBS Core Scanner Instrument which collected the entire 200 - 900 nm plasma emission including the 247.8 nm carbon emission line. This instrument also collected the emission from the elements typically found in inorganic carbon (Ca and Mg) and organic carbon (H, O, and N). Subsamples of soil (~ 4 g) were taken from interrogation points for laboratory determination of SOC and IC. Using this analytical data, we constructed several full spectrum multivariate VisNIR/LIBS calibration models for SOC and IC. These models were then applied to independent validation cores for model evaluation.

  1. SEPARATION AND ISOLATION OF VOLATILE ORGANIC COMPOUNDS USING VACUUM DISTILLATION WITH GC/MS DETERMINATION

    EPA Science Inventory

    Vacuum distillation of water, soil, oil, and fish samples is presented as an alternative technique for determining volatile organic compounds (VOCs). Analyses of samples containing VOCs and non-VOCs at 50ppb concentrations were performed to evaluate method limitations. Analyte re...

  2. Part C: Geochemistry of Soil Samples from 50 Solution-Collapse Features on the Coconino Plateau, Northern Arizona

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Wenrich, Karen J.

    1991-01-01

    Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.

  3. Part B: Geochemistry of Soil Samples from 50 Solution-Collapse Features on the Coconino Plateau, Northern Arizona

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Wenrich, Karen J.

    1991-01-01

    Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.

  4. Geochemistry of Soil Samples from 50 Solution-Collapse Features on the Coconino Plateau, Northern Arizona

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Wenrich, Karen J.

    1991-01-01

    Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.

  5. Part D: Geochemistry of Soil Samples from 50 Solution-Collapse Features on the Coconino Plateau, Northern Arizona

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Wenrich, Karen J.

    1991-01-01

    Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to provide background data. Samples were consistently collected from 3-4 inches depth after the pilot survey showed that metal concentrations were similar in samples from 3-4 inches and 7-8 inches depth. The geochemical analyses of the <80 mesh fractions of the soil samples were performed by the U.S. Geological Survey Analytical Laboratories and Geochemical Services, Inc. The analytical methods applied to these samples by the U.S. Geological Survey laboratories included inductively coupled plasma-atomic emission spectroscopy, X-ray fluorescence spectrometry, neutron activation, atomic absorption, delayed neutron activation, and classical wet chemistry for carbon, fluorine, and sulfur. Geochemical Services, Inc. analyzed the soil samples by inductively coupled plasma emission spectroscopy.

  6. A laboratory rainfall simulator to study the soil erosion and runoff water

    NASA Astrophysics Data System (ADS)

    Cancelo González, Javier; Rial, M. E.; Díaz-Fierros, Francisco

    2010-05-01

    The soil erosion and the runoff water composition in some areas affected by forest fires or submitted to intensive agriculture are an important factor to keep an account, particularly in sensitive areas like estuary and rias that have a high importance in the socioeconomic development of some regions. An understanding of runoff production indicates the processes by which pollutants reach streams and also indicates the management techniques that might be uses to minimize the discharge of these materials into surface waters. One of the most methodology implemented in the soil erosion studies is a rainfall simulation. This method can reproduce the natural soil degradation processes in field or laboratory experiences. With the aim of improve the rainfall-runoff generation, a laboratory rainfall simulator which incorporates a fan-like intermittent water jet system for rainfall generation were modified. The major change made to the rainfall simulator consist in a system to coupling stainless steel boxes, whose dimensions are 12 x 20 x 45 centimeters, and it allows to place soil samples under the rainfall simulator. Previously these boxes were used to take soil samples in field with more of 20 centimeters of depth, causing the minimum disturbance in their properties and structure. These new implementations in the rainfall simulator also allow collect water samples of runoff in two ways: firstly, the rain water that constituted the overland flow or direct runoff and besides the rain water seeps into the soil by the process of infiltration and contributed to the subsurface runoff. Among main the variables controlled in the rainfall simulations were the soil slope and the intensity and duration of rainfall. With the aim of test the prototype, six soil samples were collected in the same sampling point and subjected to rainfall simulations in laboratory with the same intensity and duration. Two samples will constitute the control test, and they were fully undisturbed, and four samples were subjected to controlled burnings with different fire severity: two samples burnt to 250°C and the other two samples burnt to 450°C. Preliminary laboratory data of soil erosion and surface and subsurface runoff were obtained. The water parameters analysed were: pH, electrical conductivity, temperature (in the moment of sampling) and suspended sediments, ammonium, nitrates, total nitrogen (Kjeldahl method), within 24 hours after sampling.

  7. Floral diversity in desert ecosystems: Comparing field sampling to image analyses in assessing species cover

    PubMed Central

    2013-01-01

    Background Developing a quick and reliable technique to estimate floral cover in deserts will assist in monitoring and management. The present attempt was to estimate plant cover in the UAE desert using both digital photography and field sampling. Digital photographs were correlated with field data to estimate floral cover in moderately (Al-Maha) and heavily (DDCR) grazed areas. The Kruskal-Wallis test was also used to assess compatibility between the two techniques within and across grazing intensities and soil substrates. Results Results showed that photographs could be a reliable technique within the sand dune substrate under moderate grazing (r = 0.69). The results were very poorly correlated (r =−0.24) or even inversely proportional (r =−0.48) when performed within DDCR. Overall, Chi-square values for Al-Maha and DDCR were not significant at P > 0.05, indicating similarities between the two methods. At the soil type level, the Kruskal-Wallis analysis was not significant (P > 0.05), except for gravel plains (P < 0.05). Across grazing intensities and soil substrates, the two techniques were in agreement in ranking most plant species, except for Lycium shawii. Conclusions Consequently, the present study has proven that digital photography could not be used reliably to asses floral cover, while further testing is required to support such claim. An image-based sampling approach of plant cover at the species level, across different grazing and substrate variations in desert ecosystems, has its uses, but results are to be cautiously interpreted. PMID:23758667

  8. Cropland Field Monitoring: MMV Page 1 Montana Cropland Enrolled Farm Fields Carbon Sequestration Field Sampling, Measurement, Monitoring, and Verification: Application of Visible-Near Infrared Diffuse Reflectance Spectroscopy (VNIR) and Laser-induced Breakdown Spectroscopy (LIBS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee Spangler; Ross Bricklemyer; David Brown

    2012-03-15

    There is growing need for rapid, accurate, and inexpensive methods to measure, and verify soil organic carbon (SOC) change for national greenhouse gas accounting and the development of a soil carbon trading market. Laboratory based soil characterization typically requires significant soil processing, which is time and resource intensive. This severely limits application for large-region soil characterization. Thus, development of rapid and accurate methods for characterizing soils are needed to map soil properties for precision agriculture applications, improve regional and global soil carbon (C) stock and flux estimates and efficiently map sub-surface metal contamination, among others. The greatest gains for efficientmore » soil characterization will come from collecting soil data in situ, thus minimizing soil sample transportation, processing, and lab-based measurement costs. Visible and near-infrared diffuse reflectance spectroscopy (VisNIR) and laser-induced breakdown spectroscopy (LIBS) are two complementary, yet fundamentally different spectroscopic techniques that have the potential to meet this need. These sensors have the potential to be mounted on a soil penetrometer and deployed for rapid soil profile characterization at field and landscape scales. Details of sensor interaction, efficient data management, and appropriate statistical analysis techniques for model calibrations are first needed. In situ or on-the-go VisNIR spectroscopy has been proposed as a rapid and inexpensive tool for intensively mapping soil texture and organic carbon (SOC). While lab-based VisNIR has been established as a viable technique for estimating various soil properties, few experiments have compared the predictive accuracy of on-the-go and lab-based VisNIR. Eight north central Montana wheat fields were intensively interrogated using on-the-go and lab-based VisNIR. Lab-based spectral data consistently provided more accurate predictions than on-the-go data. However, neither in situ nor lab-based spectroscopy yielded even semi-quantitative SOC predictions. There was little SOC variability to explain across the eight fields, and on-the-go VisNIR was not able to capture the subtle SOC variability in these Montana soils. With more variation in soil clay content compared to SOC, both lab and on-the-go VisNIR showed better explanatory power. There are several potential explanations for poor on-the-go predictive accuracy: soil heterogeneity, field moisture, consistent sample presentation, and a difference between the spatial support of on-the-go measurements and soil samples collected for laboratory analyses. Though the current configuration of a commercially available on-the-go VisNIR system allows for rapid field scanning, on-the-go soil processing (i.e. drying, crushing, and sieving) could improve soil carbon predictions. Laser-induced breakdown spectroscopy (LIBS) is an emerging elemental analysis technology with the potential to provide rapid, accurate and precise analysis of soil constituents, such as carbon, in situ across landscapes. The research team evaluated the accuracy of LIBS for measuring soil profile carbon in field-moist, intact soil cores simulating conditions that might be encountered by a probe-mounted LIBS instrument measuring soil profile carbon in situ. Over the course of three experiments, more than120 intact soil cores from eight north central Montana wheat fields and the Washington State University (WSU) Cook Agronomy Farm near Pullman, WA were interrogated with LIBS for rapid total carbon (TC), inorganic carbon (IC), and SOC determination. Partial least squares regression models were derived and independently validated at field- and regional scales. Researchers obtained the best LIBS validation predictions for IC followed by TC and SOC. Laser-induced breakdown spectroscopy is fundamentally an elemental analysis technique, yet LIBS PLS2 models appeared to discriminate IC from TC. Regression coefficients from initial models suggested a reliance upon stoichiometric relationships between carbon (247.8 nm) and other elements related to total and inorganic carbon in the soil matrix [Ca (210.2 nm, 211.3 nm, and 220.9 nm), Mg (279.55-280.4 nm, 285.26 nm), and Si (251.6 nm, 288.1 nm)]. Expanding the LIBS spectral range to capture emissions from a broader range of elements related to soil organic matter was explored using two spectrometer systems to improve SOC predictions. Results for increasing the spectral range of LIBS to the full 200-800 nm found modest gains in prediction accuracy for IC, but no gains for predicting TC or SOC. Poor SOC predictions are likely a function of (1) the lack of a consistent/definable molecular composition of SOC, (2) relatively little variation in SOC across field sites, and (3) inorganic carbon constituting the primary form of soil carbon, particularly for Montana soils.« less

  9. Assessing the influence of the rhizosphere on soil hydraulic properties using X-ray computed tomography and numerical modelling

    PubMed Central

    Daly, Keith R.; Mooney, Sacha J.; Bennett, Malcolm J.; Crout, Neil M. J.; Roose, Tiina; Tracy, Saoirse R.

    2015-01-01

    Understanding the dynamics of water distribution in soil is crucial for enhancing our knowledge of managing soil and water resources. The application of X-ray computed tomography (CT) to the plant and soil sciences is now well established. However, few studies have utilized the technique for visualizing water in soil pore spaces. Here this method is utilized to visualize the water in soil in situ and in three-dimensions at successive reductive matric potentials in bulk and rhizosphere soil. The measurements are combined with numerical modelling to determine the unsaturated hydraulic conductivity, providing a complete picture of the hydraulic properties of the soil. The technique was performed on soil cores that were sampled adjacent to established roots (rhizosphere soil) and from soil that had not been influenced by roots (bulk soil). A water release curve was obtained for the different soil types using measurements of their pore geometries derived from CT imaging and verified using conventional methods, such as pressure plates. The water, soil, and air phases from the images were segmented and quantified using image analysis. The water release characteristics obtained for the contrasting soils showed clear differences in hydraulic properties between rhizosphere and bulk soil, especially in clay soil. The data suggest that soils influenced by roots (rhizosphere soil) are less porous due to increased aggregation when compared with bulk soil. The information and insights obtained on the hydraulic properties of rhizosphere and bulk soil will enhance our understanding of rhizosphere biophysics and improve current water uptake models. PMID:25740922

  10. Laboratory-based characterization of plutonium in soil particles using micro-XRF and 3D confocal XRF

    DOE PAGES

    McIntosh, Kathryn Gallagher; Cordes, Nikolaus Lynn; Patterson, Brian M.; ...

    2015-03-29

    The investigation of plutonium (Pu) in a soil matrix is of interest in safeguards, nuclear forensics, and environmental remediation activities. The elemental composition of two plutonium contaminated soil particles was characterized nondestructively using a pair of micro X-ray fluorescence spectrometry (micro-XRF) techniques including high resolution X-ray (hiRX) and 3D confocal XRF. The three dimensional elemental imaging capability of confocal XRF permitted the identification two distinct Pu particles within the samples: one external to the Ferich soil matrix and another co-located with Cu within the soil matrix. The size and morphology of the particles was assessed with X-ray transmission microscopy andmore » micro X-ray computed tomography (micro-CT) providing complementary morphological information. Limits of detection for a 30 μm Pu particle are <10 ng for each of the XRF techniques. Ultimately, this study highlights the capability for lab-based, nondestructive, spatially resolved characterization of heterogeneous matrices on the micrometer scale with nanogram sensitivity.« less

  11. K/Ar dating of lunar soils. II

    NASA Technical Reports Server (NTRS)

    Alexander, E. C., Jr.; Bates, A.; Coscio, M. R., Jr.; Dragon, J. C.; Murthy, V. R.; Pepin, R. O.; Venkatesan, T. R.

    1976-01-01

    An attempt is made to identify those K/Ar techniques which extract the most reliable chronological information from lunar soils and to define the situations in which the best data are obtainable. Results are presented for determinations of the exposure and K/Ar ages of five lunar soil samples, which were performed by applying correlation techniques for a two-component argon structure to stepwise-heated and neutron-irradiated aliquots of grain-sized separates. It is found that ages deduced from Ar-40/surface-correlated Ar-36 vs K-40/surface-correlated Ar-36 and analogous plots of data from grain-sized separates appear to be the best available K/Ar ages of submature to mature lunar soils, that ages deduced from Ar-40 vs Ar-36 and analogous plots which assume a uniform K content can be significantly in error, and that stepwise-heating (Ar-40)-(Ar-39) experiments yield useful information only for simple immature soils where the K-Ar systematics are dominated by a single component.

  12. Determining the frequency, depth and velocity of preferential flow by high frequency soil moisture monitoring

    NASA Astrophysics Data System (ADS)

    Hardie, Marcus; Lisson, Shaun; Doyle, Richard; Cotching, William

    2013-01-01

    Preferential flow in agricultural soils has been demonstrated to result in agrochemical mobilisation to shallow ground water. Land managers and environmental regulators need simple cost effective techniques for identifying soil - land use combinations in which preferential flow occurs. Existing techniques for identifying preferential flow have a range of limitations including; often being destructive, non in situ, small sampling volumes, or are subject to artificial boundary conditions. This study demonstrated that high frequency soil moisture monitoring using a multi-sensory capacitance probe mounted within a vertically rammed access tube, was able to determine the occurrence, depth, and wetting front velocity of preferential flow events following rainfall. Occurrence of preferential flow was not related to either rainfall intensity or rainfall amount, rather preferential flow occurred when antecedent soil moisture content was below 226 mm soil moisture storage (0-70 cm). Results indicate that high temporal frequency soil moisture monitoring may be used to identify soil type - land use combinations in which the presence of preferential flow increases the risk of shallow groundwater contamination by rapid transport of agrochemicals through the soil profile. However use of high frequency based soil moisture monitoring to determine agrochemical mobilisation risk may be limited by, inability to determine the volume of preferential flow, difficulty observing macropore flow at high antecedent soil moisture content, and creation of artificial voids during installation of access tubes in stony soils.

  13. Identification of dust storm origin in South -West of Iran.

    PubMed

    Broomandi, Parya; Dabir, Bahram; Bonakdarpour, Babak; Rashidi, Yousef

    2017-01-01

    Deserts are the main sources of emitted dust, and are highly responsive to wind erosion. Low content of soil moisture and lack of vegetation cover lead to fine particle's release. One of the semi-arid bare lands in Iran, located in the South-West of Iran in Khoozestan province, was selected to investigate Sand and Dust storm potential. This paper focused on the metrological parameters of the sampling site, their changes and the relationship between these changes and dust storm occurrence, estimation of Reconaissance Drought Index, the Atterberg limits of soil samples and their relation with soil erosion ability, the chemical composition, size distribution of soil and airborne dust samples, and estimation of vertical mass flux by COMSALT through considering the effect of saffman force and interparticle cohesion forces during warm period (April-September) in 2010. The chemical compositions are measured with X-ray fluorescence, Atomic absorption spectrophotometer and X-ray diffraction. The particle size distribution analysis was conducted by using Laser particle size and sieve techniques. There was a strong negative correlation between dust storm occurrence and annual and seasonal rainfall and relative humidity. Positive strong correlation between annual and seasonal maximum temperature and dust storm frequency was seen. Estimation of RDI st in the studied period showed an extremely dry condition. Using the results of particle size distribution and soil consistency, the weak structure of soil was represented. X-ray diffraction analyses of soil and dust samples showed that soil mineralogy was dominated mainly by Quartz and calcite. X-ray fluorescence analyses of samples indicated that the most important major oxide compositions of the soil and airborne dust samples were SiO 2 , Al 2 O 3 , CaO, MgO, Na 2 O, and Fe 2 O 3 , demonstrating similar percentages for soil and dust samples. Estimation of Enrichment Factors for all studied trace elements in soil samples showed Br, Cl, Mo, S, Zn, and Hg with EF values higher than 10. The findings, showed the possible correlation between the degree of anthropogenic soil pollutants, and the remains of Iraq-Iran war. The results expressed sand and dust storm emission potential in this area, was illustrated with measured vertical mass fluxes by COMSALT.

  14. Regional Characterization of Soil Properties via a Combination of Methods from Remote Sensing, Geophysics and Geopedology

    NASA Astrophysics Data System (ADS)

    Meyer, Uwe; Fries, Elke; Frei, Michaela

    2016-04-01

    Soil is one of the most precious resources on Earth. Preserving, using and enriching soils are most complex processes that fundamentally need a sound regional data base. Many countries lack this sort of extensive data or the existing data must be urgently updated when land use recently changed in major patterns. The project "RECHARBO" (Regional Characterization of Soil Properties) aims at the combination of methods from remote sensing, geophysics and geopedology in order to develop a new system to map soils on a regional scale in a quick and efficient manner. First tests will be performed on existing soil monitoring districts, using newly available sensing systems as well as established techniques. Especially hyperspectral and infrared data measured from satellites or airborne platforms shall be combined. Moreover, a systematic correlation between hyperspectral imagery and gamma-ray spectroscopy shall be established. These recordings will be compared and correlated to measurements upon ground and on soil samples to get hold of properties such as soil moisture, soil density, specific resistance plus analytic properties like clay content, anorganic background, organic matter etc. The goal is to generate a system that enables users to map soil patterns on a regional scale using airborne or satellite data and to fix their characteristics with only a limited number of soil samples.

  15. Detection of an organic-non volatile compound in variable-contaminated volcanic soil samples via Time Domain Reflectometry (TDR) technique: Preliminary results

    NASA Astrophysics Data System (ADS)

    comegna, alessandro; coppola, antonio; dragonetti, giovanna; chaali, nesrine; sommella, angelo

    2014-05-01

    Hydrocarbons may be present in soils as non-aqueous phase liquids (NAPLs), which means that these organic compounds, exist as a separate and immiscible phase with respect to water and air commonly present in the soil. NAPLs, which can be accidentally introduced in the environment (for example by waste disposal sites, industrial spills, gasoline stations, etc), constitutes a serious geo-environmental problem, given the toxicity level and the high mobility. Time domain reflectometry (TDR) has became, over several decades, an important technique for water estimation in soils. In order to expand the potentiality of the TDR technique, the main objective of this study is to explore the capacity of dielectric response to detect the presence of NAPLs in volcanic soils. In laboratory, soil samples were oven dried at 105° C and passed through a 2 mm sieve. Known quantities of soil, water and NAPL (corn oil, a non-volatile and non-toxic organic compound) were mixed and repacked into plastic cylinders (16 cm high and 9.5 cm in diameter); in order to obtain forty different volumetric combinations of water and oil (i.e. θfg = θwater + θNAPL), with θNAPL varying from 0.05 to 0.40 by 0.05 cm3/cm3 increments. Data collected were employed to implement a multiphase mixing model which permitted conversion from a dielectric permittivity domain into a θf domain and vice versa. The results of this study show that, the TDR device is NAPL-sensitive, especially for θf values greater than 0.20. Further works will be built on this initial study, concentrating on improving the dielectric response-database, in order to: i) enhancing the model efficiency in terms of NAPL capability detention, and ii) validating the developed TDR interpretation tool with field results.

  16. Multimedia Sampling During The Application Of Biosolids On A Land Test Site (Presentation)

    EPA Science Inventory

    The goal of this research study was to evaluate air and soil sampling methods and analytical techniques for commercial land application of biosolids. Biosolids, were surface applied at agronomic rates to an agricultural field. During the period of August 2004 to January 2005, 3...

  17. The Soil Spectroscopy Group and the development of a global soil spectral library

    NASA Astrophysics Data System (ADS)

    Rossel, R. Viscarra Rossel; Soil Spectroscopy Group

    2009-04-01

    This collaboration aims to develop a global soil spectral library and to establish a community of practice for soil spectroscopy. This will help progress soil spectroscopy from an almost purely research tool to a more widely adopted and useful technique for soil analysis, proximal soil sensing, soil monitoring and digital soil mapping. The initiative started in April 2008 with a proposal for the project to be conducted in a number of stages to investigate the following topics: Global soil diversity and variation can be characterised using diffuse reflectance spectra. Soil spectral calibrations can be used to predict soil properties globally. Soil spectroscopy can be a useful tool for digital soil mapping. Currently, the soil spectral library is being developed using legacy soil organic carbon (OC) and clay content data and vis-NIR (350-2500 nm) spectra, but in future we aim to include other soil properties and mid-IR (2500-25000 nm) spectra. The group already has more than 40 collaborators from six continents and 20 countries and the library consists of 5223 spectra from 43 countries. The library accounts for spectra from approximately only 22% of the world's countries, some of which are poorly represented with only very few spectra. We would like to encourage participation from as many countries as possible, particularly, we would like contributions from counties in Central and South America, Mexico, Canada, Russia and countries in Eastern Europe, Africa and Asia. We are missing a lot of countries and for some, e.g. China we have only very few data! Do you want to join the group and contribute spectra to the global library? The requirements for contributing spectra to the global library are as follows: Spectra collected in the 350-2500 nm range every 1 nm. At least soil OC and clay content data but also any other soil chemical, physical, biological and mineralogical data, noting which analytical techniques were used. Coordinates (in WGS84 format) for each sample. Soil classification for each sample, preferably using FAO-WRB (FAO, 1998). Future access to soil samples for mid-IR scanning. If you do not have all of the requested metadata for every sample, but would like to contribute to the library, please let us know. Also, if you do not have access to a spectrometer but have a good set of soils that you would like to contribute to the library, we can arrange to have the soils scanned at CSIRO in Australia or in a collaborating institution nearer to you. We have done this with a number of countries already. There are leading collaborators in each continent: Bo Stenberg in Europe, David Brown in USA, Alexandre Dematte in South America, Keith Shepherd in Africa, Eyal Ben-Dor in the Middle East and Asia and Raphael Viscarra Rossel in Oceania and Asia. To make this work we need participation from as many people around the world as possible. If you are interested in contributing spectra to the global library please send me an email (raphael.viscarra-rossel@csiro.au) and join the group!

  18. Fourier transform Raman spectroscopy and archaeology: a preliminary study of human teeth

    NASA Astrophysics Data System (ADS)

    Edwards, Howell G.; Farwell, Dennis W.; Roberts, Charlotte A.; Williams, Adrian C.

    1994-01-01

    The FT-Raman spectra of human bones and teeth in archaeological specimens dating to the 4th and 10th centuries AD from Romano-British and Anglo-Saxon burial sites in the U.K. have been recorded successfully using microscopic and remote sensing techniques. The samples exhibit fluorescence ascribed to mineral absorption from the grave soils but, nevertheless, good quality spectra are obtained. The versatility of the technique for non destructive sampling is demonstrated.

  19. Quantifying Spatial Variability of Selected Soil Trace Elements and Their Scaling Relationships Using Multifractal Techniques

    PubMed Central

    Zhang, Fasheng; Yin, Guanghua; Wang, Zhenying; McLaughlin, Neil; Geng, Xiaoyuan; Liu, Zuoxin

    2013-01-01

    Multifractal techniques were utilized to quantify the spatial variability of selected soil trace elements and their scaling relationships in a 10.24-ha agricultural field in northeast China. 1024 soil samples were collected from the field and available Fe, Mn, Cu and Zn were measured in each sample. Descriptive results showed that Mn deficiencies were widespread throughout the field while Fe and Zn deficiencies tended to occur in patches. By estimating single multifractal spectra, we found that available Fe, Cu and Zn in the study soils exhibited high spatial variability and the existence of anomalies ([α(q)max−α(q)min]≥0.54), whereas available Mn had a relatively uniform distribution ([α(q)max−α(q)min]≈0.10). The joint multifractal spectra revealed that the strong positive relationships (r≥0.86, P<0.001) among available Fe, Cu and Zn were all valid across a wider range of scales and over the full range of data values, whereas available Mn was weakly related to available Fe and Zn (r≥0.18, P<0.01) but not related to available Cu (r = −0.03, P = 0.40). These results show that the variability and singularities of selected soil trace elements as well as their scaling relationships can be characterized by single and joint multifractal parameters. The findings presented in this study could be extended to predict selected soil trace elements at larger regional scales with the aid of geographic information systems. PMID:23874944

  20. Determining the speciation of Zn in soils around the sediment ponds of chemical plants by XRD and XAFS spectroscopy and sequential extraction.

    PubMed

    Minkina, Tatiana; Nevidomskaya, Dina; Bauer, Tatiana; Shuvaeva, Victoria; Soldatov, Alexander; Mandzhieva, Saglara; Zubavichus, Yan; Trigub, Alexander

    2018-09-01

    For a correct assessment of risk of polluted soil, it is crucial to establish the speciation and mobility of the contaminants. The aim of this study was to investigate the speciation and transformation of Zn in strongly technogenically transformed contaminated Spolic Technosols for a long time in territory of sludge collectors by combining analytical techniques and synchrotron techniques. Sequential fractionation of Zn compounds in studied soils revealed increasing metal mobility. Phyllosilicates and Fe and Mn hydroxides were the main stabilizers of Zn mobility. A high degree of transformation was identified for the composition of the mineral phase in Spolic Technosols by X-ray powder diffraction. Technogenic phases (Zn-containing authigenic minerals) were revealed in Spolic Technosols samples through the analysis of their Zn K-edge EXAFS and XANES spectra. In one of the samples Zn local environment was formed by predominantly oxygen atoms, and in the other one mixed ZnS and ZnO bonding was found. Zn speciation in the studied technogenically transformed soils was due to the composition of pollutants contaminating the floodplain landscapes for a long time, and, second, this is the combination of physicochemical properties controlling the buffer properties of investigated soils. X-ray spectroscopic and X-ray powder diffraction analyses combined with sequential extraction assays is an effective tool to check the affinity of the soil components for heavy metal cations. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. New Developments in Hard X-ray Fluorescence Microscopy for In-situ Investigations of Trace Element Distributions in Aqueous Systems of Soil Colloids

    NASA Astrophysics Data System (ADS)

    Gleber, Sophie-Charlotte; Weinhausen, Britta; Köster, Sarah; Ward, Jesse; Vine, David; Finney, Lydia; Vogt, Stefan

    2013-10-01

    The distribution, binding and release of trace elements on soil colloids determine matter transport through the soil matrix, and necessitates an aqueous environment and short length and time scales for their study. However, not many microscopy techniques allow for that. We previously showed hard x-ray fluorescence microscopy capabilities to image aqueous colloidal soil samples [1]. As this technique provides attogram sensitivity for transition elements like Cu, Zn, and other geochemically relevant trace elements at sub micrometer spatial resolution (currently down to 150 nm at 2-ID-E [2]; below 50nm at Bionanoprobe, cf. G.Woloschak et al, this volume) combined with the capability to penetrate tens of micrometer of water, it is ideally suited for imaging the elemental content of soil colloids. To address the question of binding and release processes of trace elements on the surface of soil colloids, we developed a microfluidics based XRF flow cytometer, and expanded the applied methods of hard x-ray fluorescence microscopy towards three dimensional imaging. Here, we show (a) the 2-D imaged distributions of Si, K and Fe on soil colloids of Pseudogley samples; (b) how the trace element distribution is a dynamic, pH-dependent process; and (c) x-ray tomographic applications to render the trace elemental distributions in 3-D. We conclude that the approach presented here shows the remarkable potential to image and quantitate elemental distributions from samles within their natural aqueous microenvironment, particularly important in the environmental, medical, and biological sciences.

  2. Decomposition Odour Profiling in the Air and Soil Surrounding Vertebrate Carrion

    PubMed Central

    2014-01-01

    Chemical profiling of decomposition odour is conducted in the environmental sciences to detect malodourous target sources in air, water or soil. More recently decomposition odour profiling has been employed in the forensic sciences to generate a profile of the volatile organic compounds (VOCs) produced by decomposed remains. The chemical profile of decomposition odour is still being debated with variations in the VOC profile attributed to the sample collection technique, method of chemical analysis, and environment in which decomposition occurred. To date, little consideration has been given to the partitioning of odour between different matrices and the impact this has on developing an accurate VOC profile. The purpose of this research was to investigate the decomposition odour profile surrounding vertebrate carrion to determine how VOCs partition between soil and air. Four pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their odour profile monitored over a period of two months. Corresponding control sites were also monitored to determine the VOC profile of the surrounding environment. Samples were collected from the soil below and the air (headspace) above the decomposed remains using sorbent tubes and analysed using gas chromatography-mass spectrometry. A total of 249 compounds were identified but only 58 compounds were common to both air and soil samples. This study has demonstrated that soil and air samples produce distinct subsets of VOCs that contribute to the overall decomposition odour. Sample collection from only one matrix will reduce the likelihood of detecting the complete spectrum of VOCs, which further confounds the issue of determining a complete and accurate decomposition odour profile. Confirmation of this profile will enhance the performance of cadaver-detection dogs that are tasked with detecting decomposition odour in both soil and air to locate victim remains. PMID:24740412

  3. Decomposition odour profiling in the air and soil surrounding vertebrate carrion.

    PubMed

    Forbes, Shari L; Perrault, Katelynn A

    2014-01-01

    Chemical profiling of decomposition odour is conducted in the environmental sciences to detect malodourous target sources in air, water or soil. More recently decomposition odour profiling has been employed in the forensic sciences to generate a profile of the volatile organic compounds (VOCs) produced by decomposed remains. The chemical profile of decomposition odour is still being debated with variations in the VOC profile attributed to the sample collection technique, method of chemical analysis, and environment in which decomposition occurred. To date, little consideration has been given to the partitioning of odour between different matrices and the impact this has on developing an accurate VOC profile. The purpose of this research was to investigate the decomposition odour profile surrounding vertebrate carrion to determine how VOCs partition between soil and air. Four pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their odour profile monitored over a period of two months. Corresponding control sites were also monitored to determine the VOC profile of the surrounding environment. Samples were collected from the soil below and the air (headspace) above the decomposed remains using sorbent tubes and analysed using gas chromatography-mass spectrometry. A total of 249 compounds were identified but only 58 compounds were common to both air and soil samples. This study has demonstrated that soil and air samples produce distinct subsets of VOCs that contribute to the overall decomposition odour. Sample collection from only one matrix will reduce the likelihood of detecting the complete spectrum of VOCs, which further confounds the issue of determining a complete and accurate decomposition odour profile. Confirmation of this profile will enhance the performance of cadaver-detection dogs that are tasked with detecting decomposition odour in both soil and air to locate victim remains.

  4. A simple and automated sample preparation system for subsequent halogens determination: Combustion followed by pyrohydrolysis.

    PubMed

    Pereira, L S F; Pedrotti, M F; Vecchia, P Dalla; Pereira, J S F; Flores, E M M

    2018-06-20

    A simple and automated system based on combustion followed by a pyrohydrolysis reaction was proposed for further halogens determination. This system was applied for digestion of soils containing high (90%) and also low (10%) organic matter content for further halogens determination. The following parameters were evaluated: sample mass, use of microcrystalline cellulose and heating time. For analytes absorption, a diluted alkaline solution (6 mL of 25 mmol L -1  NH 4 OH) was used in all experiments. Up to 400 mg of soil with high organic matter content and 100 mg of soil with low organic matter content (mixed with 400 mg of cellulose) could be completely digested using the proposed system. Quantitative results for all halogens were obtained using less than 12 min of sample preparation step (about 1.8 min for sample combustion and 10 min for pyrohydrolysis). The accuracy was evaluated using a certified reference material of coal and spiked samples. No statistical difference was observed between the certified values and results obtained by the proposed method. Additionally, the recoveries obtained using spiked samples were in the range of 98-103% with relative standard deviation values lower than 5%. The limits of quantification obtained for F, Cl, Br and I for soil with high (400 mg of soil) and low (100 mg of soil) organic matter were in the range of 0.01-2 μg g -1 and 0.07-59 μg g -1 , respectively. The proposed system was considered as a simple and suitable alternative for soils digestion for further halogens determination by ion chromatography and inductively coupled plasma mass spectrometry techniques. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Computer image analysis of etched tracks from ionizing radiation

    NASA Technical Reports Server (NTRS)

    Blanford, George E.

    1994-01-01

    I proposed to continue a cooperative research project with Dr. David S. McKay concerning image analysis of tracks. Last summer we showed that we could measure track densities using the Oxford Instruments eXL computer and software that is attached to an ISI scanning electron microscope (SEM) located in building 31 at JSC. To reduce the dependence on JSC equipment, we proposed to transfer the SEM images to UHCL for analysis. Last summer we developed techniques to use digitized scanning electron micrographs and computer image analysis programs to measure track densities in lunar soil grains. Tracks were formed by highly ionizing solar energetic particles and cosmic rays during near surface exposure on the Moon. The track densities are related to the exposure conditions (depth and time). Distributions of the number of grains as a function of their track densities can reveal the modality of soil maturation. As part of a consortium effort to better understand the maturation of lunar soil and its relation to its infrared reflectance properties, we worked on lunar samples 67701,205 and 61221,134. These samples were etched for a shorter time (6 hours) than last summer's sample and this difference has presented problems for establishing the correct analysis conditions. We used computer counting and measurement of area to obtain preliminary track densities and a track density distribution that we could interpret for sample 67701,205. This sample is a submature soil consisting of approximately 85 percent mature soil mixed with approximately 15 percent immature, but not pristine, soil.

  6. Analyzing silver concentration in soil using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Prasetyo, S.; Isnaeni; Zaitun; Mitchell, K.; Suliyanti, M. M.; Herbani, Y.

    2018-03-01

    Determination of concentration of heavy metal ions in soil, such as silver, is very important to study soil pollution levels. Several techniques have been developed to determine silver ion concentration in soil. In this paper, we utilized laser-induced breakdown spectroscopy (LIBS) to study silver concentration in soil. We used four different data analysis methods to calculate silver concentration. In this case, we prepared soil samples with different silver ion concentrations from 400 ppm to 1000 ppm. Our analysis was focused on the 843.15 nm silver atomic absorption line. We found that plasma intensity increased as silver concentration increased. Our findings were based on our analysis using four different analysis methods. We believe that these analysis methods are able to calculate silver concentration in soil using LIBS.

  7. Speciation and distribution of copper in a mining soil using multiple synchrotron-based bulk and microscopic techniques.

    PubMed

    Yang, Jianjun; Liu, Jin; Dynes, James J; Peak, Derek; Regier, Tom; Wang, Jian; Zhu, Shenhai; Shi, Jiyan; Tse, John S

    2014-02-01

    Molecular-level understanding of soil Cu speciation and distribution assists in management of Cu contamination in mining sites. In this study, one soil sample, collected from a mining site contaminated since 1950s, was characterized complementarily by multiple synchrotron-based bulk and spatially resolved techniques for the speciation and distribution of Cu as well as other related elements (Fe, Ca, Mn, K, Al, and Si). Bulk X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy revealed that soil Cu was predominantly associated with Fe oxides instead of soil organic matter. This agreed with the closest association of Cu to Fe by microscopic X-ray fluorescence (U-XRF) and scanning transmission X-ray microscopy (STXM) nanoanalysis, along with the non-occurrence of photoreduction of soil Cu(II) by quick Cu L3,2-edge XANES spectroscopy (Q-XANES) which often occurs when Cu organic complexes are present. Furthermore, bulk-EXAFS and STXM-coupled Fe L3,2-edge nano-XANES analysis revealed soil Cu adsorbed primarily to Fe(III) oxides by inner-sphere complexation. Additionally, Cu K-edge μ-XANES, L3,2-edge bulk-XANES, and successive Q-XANES results identified the presence of Cu2S rather than radiation-damage artifacts dominant in certain microsites of the mining soil. This study demonstrates the great benefits in use of multiple combined synchrotron-based techniques for comprehensive understanding of Cu speciation in heterogeneous soil matrix, which facilitates our prediction of Cu reactivity and environmental fate in the mining site.

  8. Spatially explicit rangeland erosion monitoring using high-resolution digital aerial imagery

    USGS Publications Warehouse

    Gillan, Jeffrey K.; Karl, Jason W.; Barger, Nichole N.; Elaksher, Ahmed; Duniway, Michael C.

    2016-01-01

    Nearly all of the ecosystem services supported by rangelands, including production of livestock forage, carbon sequestration, and provisioning of clean water, are negatively impacted by soil erosion. Accordingly, monitoring the severity, spatial extent, and rate of soil erosion is essential for long-term sustainable management. Traditional field-based methods of monitoring erosion (sediment traps, erosion pins, and bridges) can be labor intensive and therefore are generally limited in spatial intensity and/or extent. There is a growing effort to monitor natural resources at broad scales, which is driving the need for new soil erosion monitoring tools. One remote-sensing technique that can be used to monitor soil movement is a time series of digital elevation models (DEMs) created using aerial photogrammetry methods. By geographically coregistering the DEMs and subtracting one surface from the other, an estimate of soil elevation change can be created. Such analysis enables spatially explicit quantification and visualization of net soil movement including erosion, deposition, and redistribution. We constructed DEMs (12-cm ground sampling distance) on the basis of aerial photography immediately before and 1 year after a vegetation removal treatment on a 31-ha Piñon-Juniper woodland in southeastern Utah to evaluate the use of aerial photography in detecting soil surface change. On average, we were able to detect surface elevation change of ± 8−9cm and greater, which was sufficient for the large amount of soil movement exhibited on the study area. Detecting more subtle soil erosion could be achieved using the same technique with higher-resolution imagery from lower-flying aircraft such as unmanned aerial vehicles. DEM differencing and process-focused field methods provided complementary information and a more complete assessment of soil loss and movement than any single technique alone. Photogrammetric DEM differencing could be used as a technique to quantitatively monitor surface change over time relative to management activities.

  9. Estimating of Soil Texture Using Landsat Imagery: a Case Study in Thatta Tehsil, Sindh

    NASA Astrophysics Data System (ADS)

    Khalil, Zahid

    2016-07-01

    Soil texture is considered as an important environment factor for agricultural growth. It is the most essential part for soil classification in large scale. Today the precise soil information in large scale is of great demand from various stakeholders including soil scientists, environmental managers, land use planners and traditional agricultural users. With the increasing demand of soil properties in fine scale spatial resolution made the traditional laboratory methods inadequate. In addition the costs of soil analysis with precision agriculture systems are more expensive than traditional methods. In this regard, the application of geo-spatial techniques can be used as an alternative for examining soil analysis. This study aims to examine the ability of Geo-spatial techniques in identifying the spatial patterns of soil attributes in fine scale. Around 28 samples of soil were collected from the different areas of Thatta Tehsil, Sindh, Pakistan for analyzing soil texture. An Ordinary Least Square (OLS) regression analysis was used to relate the reflectance values of Landsat8 OLI imagery with the soil variables. The analysis showed there was a significant relationship (p<0.05) of band 2 and 5 with silt% (R2 = 0.52), and band 4 and 6 with clay% (R2 =0.40). The equation derived from OLS analysis was then used for the whole study area for deriving soil attributes. The USDA textural classification triangle was implementing for the derivation of soil texture map in GIS environment. The outcome revealed that the 'sandy loam' was in great quantity followed by loam, sandy clay loam and clay loam. The outcome shows that the Geo-spatial techniques could be used efficiently for mapping soil texture of a larger area in fine scale. This technology helped in decreasing cost, time and increase detailed information by reducing field work to a considerable level.

  10. Methods for quantification of soil-transmitted helminths in environmental media: current techniques and recent advances

    PubMed Central

    Collender, Philip A.; Kirby, Amy E.; Addiss, David G.; Freeman, Matthew C.; Remais, Justin V.

    2015-01-01

    Limiting the environmental transmission of soil-transmitted helminths (STH), which infect 1.5 billion people worldwide, will require sensitive, reliable, and cost effective methods to detect and quantify STH in the environment. We review the state of the art of STH quantification in soil, biosolids, water, produce, and vegetation with respect to four major methodological issues: environmental sampling; recovery of STH from environmental matrices; quantification of recovered STH; and viability assessment of STH ova. We conclude that methods for sampling and recovering STH require substantial advances to provide reliable measurements for STH control. Recent innovations in the use of automated image identification and developments in molecular genetic assays offer considerable promise for improving quantification and viability assessment. PMID:26440788

  11. Changes of soil organic matter and microbial activity in irrigated and non irrigated olive groves

    NASA Astrophysics Data System (ADS)

    Kavvadias, Victor; Papadopoulou, Maria; Theocharopoulos, Sideris; Vavoulidou, Evagelia; Doula, Maria; Reppas, Spiros

    2014-05-01

    The implementation of olive cultivation techniques in Greece has not been systematically tested under the prevailing Mediterranean conditions. A LIFE+ project was initiated (oLIVE-CLIMA; LIFE 11/ENV/000942) aiming to introduce new management practices in olive tree crops that lead to increased carbon dioxide uptake by plants as well as carbon sequestration from the atmosphere and reverse the trend of soil organic matter decline, erosion and desertification. This paper presents data on soil organic matter and microbial activity from a soil campaign in a pilot region in Greece, and particularly in the area of Chora, prefecture of Messinia, South west Peloponnese. The soil campaign took place during the period December 2012-February 2013. Twelve soil parcels of olive groves were selected (6 irrigated and 6 rainfed) and in each soil parcel six composite soil samples were taken from 0-10 cm depth at equal intervals along a straight line of the trunk of the tree to the middle of the distance from the nearest tree of the next tree series. The first three samples were under olive tree canopy. An additional composite sample was taken at depth of 10-40 cm. Soil samples were analyzed for soil physicochemical and biological properties. In this study results for total organic carbon (TOC), soil basal microbial respiration (BR), microbial biomass C (MB-C) from the region of Messinia, are presented. Organic matter was determined by dichromate oxidation. The microbial activity was measured by the amount of CO2 evolution, while microbial biomass C was determined by substrate-induced respiration, after the addition of glucose. The results showed considerable differences in TOC, BR and MB-C associated with the sampling position and soil depth. The higher TOC, BR and MB-C values, in most cases, were determined in samples taken from points under the canopy, but not close to the tree trunk compared to the sampling points outside the canopy. This indicates the positive effect of rhizosphere and the favorable soil moisture conditions under tree canopy on soil microbial activities. TOC, BR and MB-C values were considerably lower in soil depth of 10-40cm compared with 0-10 cm in both irrigated and rainfed soil parcels. Moreover BR and MB-C was higher in irrigated soil parcels compared with rainfed ones suggesting that the periodic irrigation significantly enhances the soil microbial activity. There were no considerable differences in TOC. For this the TOC and potential activity of microbial community can contribute in the soil nutrient and irrigation management guidelines in order to exploit the utilization of productive soils in the region under studied.

  12. Assessing soil quality indicator under different land use and soil erosion using multivariate statistical techniques.

    PubMed

    Nosrati, Kazem

    2013-04-01

    Soil degradation associated with soil erosion and land use is a critical problem in Iran and there is little or insufficient scientific information in assessing soil quality indicator. In this study, factor analysis (FA) and discriminant analysis (DA) were used to identify the most sensitive indicators of soil quality for evaluating land use and soil erosion within the Hiv catchment in Iran and subsequently compare soil quality assessment using expert opinion based on soil surface factors (SSF) form of Bureau of Land Management (BLM) method. Therefore, 19 soil physical, chemical, and biochemical properties were measured from 56 different sampling sites covering three land use/soil erosion categories (rangeland/surface erosion, orchard/surface erosion, and rangeland/stream bank erosion). FA identified four factors that explained for 82 % of the variation in soil properties. Three factors showed significant differences among the three land use/soil erosion categories. The results indicated that based upon backward-mode DA, dehydrogenase, silt, and manganese allowed more than 80 % of the samples to be correctly assigned to their land use and erosional status. Canonical scores of discriminant functions were significantly correlated to the six soil surface indices derived of BLM method. Stepwise linear regression revealed that soil surface indices: soil movement, surface litter, pedestalling, and sum of SSF were also positively related to the dehydrogenase and silt. This suggests that dehydrogenase and silt are most sensitive to land use and soil erosion.

  13. Total content and bioavailability of plant essential nutrients and heavy metals in top-soils of an industrialized area of Northwestern Greece

    NASA Astrophysics Data System (ADS)

    Barouchas, Pantelis; Avramidis, Pavlos; Salachas, Georgios; Koulopoulos, Athanasios; Christodoulopoulou, Kyriaki; Liopa-Tsakalidi, Aglaia

    2017-04-01

    Thirty surface soil samples from northwestern Greece in the Ptolemais-Kozani basin, were collected and analyzed for their total content in thirteen elements (Al, Ca, Fe, K, Mg, Mn, Na, P, Cd, Cr, Cu, Ni, Pb, Zn) by ICP-AES and bioavailable content from a plant nutrition scope of view for (Ca, Fe, K, Mg, Mn, Na, P, Zn) by AAS and colorimetric techniques. Particle size distribution, Cation Exchange Capacity (CEC) and the magnetic susceptibility, in a low and a high frequency (at 47kHz and 0.47kHz), of soil samples were measured also in order to correlate the results. Total carbonates were tested by the pressure technique (BD Inventions, FOGII digital soil calcimeter). The concentrations of these elements were compared with international standards and guidelines. The results indicated that Cu, Cd, Zn and Pb are found enriched in the top soils of the study area, mainly as a consequence of natural processes from the surrounding rocks. Moreover, the bioavailability of some of these elements with a plant nutrition interest was tested and results indicate that they do not pose an immediate threat to the environment or crops as it all demonstrated values in an adequate range. Magnetic susceptibility in low and high frequency was correlated with clay content.

  14. Isolation and Identification of Microorganisms in JSC Mars-1 Simulant Soil

    NASA Technical Reports Server (NTRS)

    Mendez, Claudia; Garza, Elizabeth; Gulati, Poonam; Morris, Penny A.; Allen, Carlton C.

    2005-01-01

    Microorganisms were isolated and identified in samples of JSC Mars-1, a Mars simulant soil. JSC Mars-1 is an altered volcanic ash from a cinder cone south of Mauna Kea, Hawaii. This material was chosen because of its similarity to the Martian soil in physical and chemical composition. The soil was obtained by excavating 40 cm deep in a vegetated area to prevent contamination. In previous studies, bacteria from this soil has been isolated by culturing on different types of media, including minimal media, and using biochemical techniques for identification. Isolation by culturing is successful only for a small percentage of the population. As a result, molecular techniques are being employed to identify microorganisms directly from the soil without culturing. In this study, bacteria were identified by purifying and sequencing the DNA encoding the 16s ribosomal RNA (16s rDNA). This gene is well conserved in species and demonstrates species specificity. In addition, biofilm formation, an indicator of microbial life, was studied with this soil. Biofilms are microbial communities consisting of microbes and exopolysaccharides secreted by them. This is a protective way of life for the microbes as they are more resistant to environmental pressures.

  15. Atomic Force Microscopy for Soil Analysis

    NASA Astrophysics Data System (ADS)

    gazze, andrea; doerr, stefan; dudley, ed; hallin, ingrid; matthews, peter; quinn, gerry; van keulen, geertje; francis, lewis

    2016-04-01

    Atomic Force Microscopy (AFM) is a high-resolution surface-sensitive technique, which provides 3-dimensional topographical information and material properties of both stiff and soft samples in their natural environments. Traditionally AFM has been applied to samples with low roughness: hence its use for soil analysis has been very limited so far. Here we report the optimization settings required for a standardization of high-resolution and artefact-free analysis of natural soil with AFM: soil immobilization, AFM probe selection, artefact recognition and minimization. Beyond topography, AFM can be used in a spectroscopic mode to evaluate nanomechanical properties, such as soil viscosity, stiffness, and deformation. In this regards, Bruker PeakForce-Quantitative NanoMechanical (QNM) AFM provides a fast and convenient way to extract physical properties from AFM force curves in real-time to obtain soil nanomechanical properties. Here we show for the first time the ability of AFM to describe the topography of natural soil at nanometre resolution, with observation of micro-components, such as clays, and of nano-structures, possibly of biotic origin, the visualization of which would prove difficult with other instrumentations. Finally, nanomechanical profiling has been applied to different wettability states in soil and the respective physical patterns are discussed.

  16. Rapid prediction of total petroleum hydrocarbons concentration in contaminated soil using vis-NIR spectroscopy and regression techniques.

    PubMed

    Douglas, R K; Nawar, S; Alamar, M C; Mouazen, A M; Coulon, F

    2018-03-01

    Visible and near infrared spectrometry (vis-NIRS) coupled with data mining techniques can offer fast and cost-effective quantitative measurement of total petroleum hydrocarbons (TPH) in contaminated soils. Literature showed however significant differences in the performance on the vis-NIRS between linear and non-linear calibration methods. This study compared the performance of linear partial least squares regression (PLSR) with a nonlinear random forest (RF) regression for the calibration of vis-NIRS when analysing TPH in soils. 88 soil samples (3 uncontaminated and 85 contaminated) collected from three sites located in the Niger Delta were scanned using an analytical spectral device (ASD) spectrophotometer (350-2500nm) in diffuse reflectance mode. Sequential ultrasonic solvent extraction-gas chromatography (SUSE-GC) was used as reference quantification method for TPH which equal to the sum of aliphatic and aromatic fractions ranging between C 10 and C 35 . Prior to model development, spectra were subjected to pre-processing including noise cut, maximum normalization, first derivative and smoothing. Then 65 samples were selected as calibration set and the remaining 20 samples as validation set. Both vis-NIR spectrometry and gas chromatography profiles of the 85 soil samples were subjected to RF and PLSR with leave-one-out cross-validation (LOOCV) for the calibration models. Results showed that RF calibration model with a coefficient of determination (R 2 ) of 0.85, a root means square error of prediction (RMSEP) 68.43mgkg -1 , and a residual prediction deviation (RPD) of 2.61 outperformed PLSR (R 2 =0.63, RMSEP=107.54mgkg -1 and RDP=2.55) in cross-validation. These results indicate that RF modelling approach is accounting for the nonlinearity of the soil spectral responses hence, providing significantly higher prediction accuracy compared to the linear PLSR. It is recommended to adopt the vis-NIRS coupled with RF modelling approach as a portable and cost effective method for the rapid quantification of TPH in soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Integrating auxiliary data and geophysical techniques for the estimation of soil clay content using CHAID algorithm

    NASA Astrophysics Data System (ADS)

    Abbaszadeh Afshar, Farideh; Ayoubi, Shamsollah; Besalatpour, Ali Asghar; Khademi, Hossein; Castrignano, Annamaria

    2016-03-01

    This study was conducted to estimate soil clay content in two depths using geophysical techniques (Ground Penetration Radar-GPR and Electromagnetic Induction-EMI) and ancillary variables (remote sensing and topographic data) in an arid region of the southeastern Iran. GPR measurements were performed throughout ten transects of 100 m length with the line spacing of 10 m, and the EMI measurements were done every 10 m on the same transect in six sites. Ten soil cores were sampled randomly in each site and soil samples were taken from the depth of 0-20 and 20-40 cm, and then the clay fraction of each of sixty soil samples was measured in the laboratory. Clay content was predicted using three different sets of properties including geophysical data, ancillary data, and a combination of both as inputs to multiple linear regressions (MLR) and decision tree-based algorithm of Chi-Squared Automatic Interaction Detection (CHAID) models. The results of the CHAID and MLR models with all combined data showed that geophysical data were the most important variables for the prediction of clay content in two depths in the study area. The proposed MLR model, using the combined data, could explain only 0.44 and 0.31% of the total variability of clay content in 0-20 and 20-40 cm depths, respectively. Also, the coefficient of determination (R2) values for the clay content prediction, using the constructed CHAID model with the combined data, was 0.82 and 0.76 in 0-20 and 20-40 cm depths, respectively. CHAID models, therefore, showed a greater potential in predicting soil clay content from geophysical and ancillary data, while traditional regression methods (i.e. the MLR models) did not perform as well. Overall, the results may encourage researchers in using georeferenced GPR and EMI data as ancillary variables and CHAID algorithm to improve the estimation of soil clay content.

  18. Critical evaluation of 13C natural abundance techniques to partition soil-surface CO2 efflux

    NASA Astrophysics Data System (ADS)

    Snell, H.; Midwood, A. J.; Robinson, D.

    2013-12-01

    Soil is the largest terrestrial store of carbon and the flux of CO2 from soils to the atmosphere is estimated at around 98 Pg (98 billion tonnes) of carbon per year. The CO2 efflux from the soil surface is derived from plant root and rhizosphere respiration (autotrophically fuelled) and microbial degradation of soil organic matter (heterotrophic respiration). Heterotrophic respiration is a key determinant of an ecosystem's long-term C balance, but one that is difficult to measure in the field. One approach involves partitioning the total soil-surface CO2 efflux between heterotrophic and autotrophic components; this can be done using differences in the natural abundance stable isotope ratios (δ13C) of autotrophic and heterotrophic CO2 as the end-members of a simple mixing model. In most natural, temperate ecosystems, current and historical vegetation cover (and therefore also plant-derived soil organic matter) is produced from C3 photosynthesis so the difference in δ13C between the autotrophic and heterotrophic CO2 sources is small. Successful partitioning therefore requires accurate and precise measurements of the δ13CO2 of the autotrophic and heterotrophic end-members (obtained by measuring the δ13CO2 of soil-free roots and root-free soil) and of total soil CO2 efflux. There is currently little consensus on the optimum measurement protocols. Here we systematically tested some of the most commonly used techniques to identify and minimise methodological errors. Using soil-surface chambers to sample total CO2 efflux and a cavity ring-down spectrometer to measure δ13CO2 in a partitioning study on a Scottish moorland, we found that: using soil-penetrating collars leads to a more depleted chamber measurement of total soil δ13CO2 as a result of severing roots and fungal hyphae or equilibrating with δ13CO2 at depth or both; root incubations provide an accurate estimate of in-situ root respired δ13CO2 provided they are sampled within one hour; the δ13CO2 from root-free soil changes rapidly during incubation and even CO2 sampled very soon after excavation is unlikely to give an accurate estimate of the heterotrophic isotope end-member, to solve this we applied non-linear regressions to the change in δ13CO2 with time to derive the heterotrophic end-member in undisturbed soil.

  19. Kinetics of hydrogen release from lunar soil

    NASA Technical Reports Server (NTRS)

    Bustin, Roberta

    1990-01-01

    With increasing interest in a lunar base, there is a need for extensive examination of possible lunar resources. Hydrogen will be needed on a lunar base for many activities including providing fuel, making water, and serving as a reducing agent in the extraction of oxygen from its ores. Previous studies have shown the solar wind has implanted hydrogen in the lunar regolith and that hydrogen is present not only in the outer layer of soil but to considerable depths, depending on the sampling site. If this hydrogen is to be mined and used on the lunar surface, a number of questions need to be answered. How much energy must be expended in order to release the hydrogen from the soil. What temperatures must be attained, and how long must the soil be heated. This study was undertaken to provide answers to practical questions such as these. Hydrogen was determined using a Pyrolysis/GC technique in which hydrogen was released by heating the soil sample contained in a quartz tube in a resistance wire furnace, followed by separation and quantitative determination using a gas chromatograph with a helium ionization detector. Heating times and temperatures were varied, and particle separates were studied in addition to bulk soils. The typical sample size was 10 mg of lunar soil. All of the soils used were mature soils with similar hydrogen abundances. Pre-treatments with air and steam were used in an effort to find a more efficient way of releasing hydrogen.

  20. Improved detection of endoparasite DNA in soil sample PCR by the use of anti-inhibitory substances.

    PubMed

    Krämer, F; Vollrath, T; Schnieder, T; Epe, C

    2002-09-26

    Although there have been numerous microbial examinations of soil for the presence of human pathogenic developmental parasite stages of Ancylostoma caninum and Toxocara canis, molecular techniques (e.g. DNA extraction, purification and subsequent PCR) have scarcely been applied. Here, DNA preparations of soil samples artificially contaminated with genomic DNA or parasite eggs were examined by PCR. A. caninum and T. canis-specific primers based on the ITS-2 sequence were used for amplification. After the sheer DNA preparation a high content of PCR-interfering substances was still detectable. Subsequently, two different inhibitors of PCR-interfering agents (GeneReleaser, Bioventures Inc. and Maximator, Connex GmbH) were compared in PCR. Both substances increased PCR sensitivity greatly. However, comparison of the increase in sensitivity achieved with the two compounds demonstrated the superiority of Maximator, which enhanced sensitivity to the point of permitting positive detection of a single A. caninum egg and three T. canis eggs in a soil sample. This degree of sensitivity could not be achieved with GeneReleaser for either parasite Furthermore, Maximator not only increased sensitivity; it also cost less, required less time and had a lower risk of contamination. Future applications of molecular methods in epidemiological examinations of soil samples are discussed/elaborated.

  1. Differential Scanning Calorimetry and Evolved Gas Analysis at Mars Ambient Conditions Using the Thermal Evolved Gas Analyzer (TEGA)

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Boynton, W. V.; Ming, Douglas W.; Quadlander, G.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.

    2000-01-01

    Differential Scanning Calorimetry (DSC) combined with evolved gas analysis (EGA) is a well developed technique for the analysis of a wide variety of sample types with broad application in material and soil sciences. However, the use of the technique for samples under conditions of pressure and temperature as found on other planets is one of current C development and cutting edge research. The Thermal Evolved Gas Analyzer (MGA), which was designed, built and tested at the University of Arizona's Lunar and Planetary Lab (LPL), utilizes DSC/EGA. TEGA, which was sent to Mars on the ill-fated Mars Polar Lander, was to be the first application of DSC/EGA on the surface of Mars as well as the first direct measurement of the volatile-bearing mineralogy in martian soil.

  2. Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China.

    PubMed

    Cai, Limei; Xu, Zhencheng; Ren, Mingzhong; Guo, Qingwei; Hu, Xibang; Hu, Guocheng; Wan, Hongfu; Peng, Pingan

    2012-04-01

    One hundred and four surface samples and 40 profiles samples in agricultural soils collected from Huizhou in south-east China were monitored for total contents of 8 heavy metals, and analyzed by multivariate statistical techniques and enrichment factor (EF), in order to investigate their origins. The results indicate that the concentrations of Cu, Zn, Ni, Cr, Pb, Cd, As and Hg in soils are 16.74, 57.21, 14.89, 27.61, 44.66, 0.10, 10.19 and 0.22 mg/kg, respectively. Compared to the soil background contents in Guangdong Province, the mean concentrations of Hg, Cd, Zn, Pb and As in soil of Huizhou are higher, especially Hg and Cd, which are 2.82 and 1.79 times the background values, respectively. Cr, Ni, Cu, partially, Zn and Pb mainly originate from a natural source. Cd, As, partially, Zn mainly come from agricultural practices. However, Hg, partially, Pb originate mainly from industry and traffic sources. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Total elemental composition analysis of soil samples using the PIXE technique

    NASA Astrophysics Data System (ADS)

    Bolormaa, Oyuntsetseg; Baasansuren, Jamsranjav; Kawasaki, Katsunori; Watanabe, Makiko; Hattroi, Toshiyuki

    2007-09-01

    The determination of major and trace element contents in soils was developed by acid digestion method combined with particle-induced X-ray emission spectrometry (PIXE). The digestion of soils was achieved by using nitric acid (HNO3), hydrochloric acid HCl and hydrogen peroxide (H2O2) with repeated additions. A 20 μL aliquot from the digested samples was evaporated on the Nuclepore Track-Etch Membrane and irradiated by the 2.5 MeV proton beam from the single-end type Van de Graaff accelerator. The accuracy of this methodology was estimated based on series of measurements done for a reference material of soil CRM 023-050. The proposed experimental procedure was shown to have good reproducibility of the experimental results. The corresponding limits of detection (LODs) for Na, Mg, Al, P, S, Cl, K, Cr, Mn, Fe, Ni, Cu, Zn, As, Sr, Mo and Cd were estimated. Other soil characteristics such as total carbon (TC) and nitrogen (TN) content, pH and electrical conductivity (EC) were also measured.

  4. Vertical and lateral particle and element fluxes across soil catenas in southern Brazil

    NASA Astrophysics Data System (ADS)

    Schoonejans, Jerome; Vanacker, Veerle; Opfergelt, Sophie

    2016-04-01

    At the Earth's surface, mechanical disaggregation and chemical weathering transform bedrock into mobile regolith and soil. Downslope translocation of weathering products by lateral transport of soil particles and elements are determinant for the development of soil catenas. To grasp the rates of soil formation and development along catenas, we need better constraints on the vertical and lateral fluxes of particles and nutrients along hillslopes. Our study aims to analyze soil catena development in a spatio-temporal framework. The data are collected in the central part of the Rio Grande do Sul State in southern Brazil. The sampling area is located on the Serra Geral plateau composed by rhyodacite rocks (˜700 m.a.s.l). The climate is humid subtropical (Cfa), and the natural vegetation is characterized by deciduous tropical forest and native Araucaria angustifolia forests. Two soil catenas with different slope morphology were selected: a steep slope of 190m long with maximum slope angle of 24° , and a gentle one of 140m long with a maximum slope angle of 11° . In total, eight soil profiles were sampled and 67 soil and 8 saprock or bedrock samples have been analysed for total element composition. Bulk densities were determined on undisturbed soil samples. The soil thickness varies along catenas with soil depths of about 90 cm on the ridge top, 30 cm on the convex nose of the steep slope and >2 m on the foot slope. Chemical mass balance techniques are used to constrain chemical weathering intensities (CDF) and absolute chemical mass losses or gains (δj,w). In each one of the eight soil profiles, we notice important absolute chemical mass losses for the most mobile elements (Na, K and Ca). The mass transfer coefficients of Al and Fe do not show a clear pattern, and largely depend on soil depth and position along the soil catena. The weathering intensity of the soil and the absolute chemical mass transfer are correlated with the residence time of the soil. Our data show a systematic increase in chemical weathering intensity with distance from the ridge top.

  5. Lutz's spontaneous sedimentation technique and the paleoparasitological analysis of sambaqui (shell mound) sediments

    PubMed Central

    Camacho, Morgana; Pessanha, Thaíla; Leles, Daniela; Dutra, Juliana MF; Silva, Rosângela; de Souza, Sheila Mendonça; Araujo, Adauto

    2013-01-01

    Parasite findings in sambaquis (shell mounds) are scarce. Although the 121 shell mound samples were previously analysed in our laboratory, we only recently obtained the first positive results. In the sambaqui of Guapi, Rio de Janeiro, Brazil, paleoparasitological analysis was performed on sediment samples collected from various archaeological layers, including the superficial layer as a control. Eggs of Acanthocephala, Ascaridoidea and Heterakoidea were found in the archaeological layers. We applied various techniques and concluded that Lutz's spontaneous sedimentation technique is effective for concentrating parasite eggs in sambaqui soil for microscopic analysis. PMID:23579793

  6. Lutz's spontaneous sedimentation technique and the paleoparasitological analysis of sambaqui (shell mound) sediments.

    PubMed

    Camacho, Morgana; Pessanha, Thaíla; Leles, Daniela; Dutra, Juliana M F; Silva, Rosângela; Souza, Sheila Mendonça de; Araujo, Adauto

    2013-04-01

    Parasite findings in sambaquis (shell mounds) are scarce. Although the 121 shell mound samples were previously analysed in our laboratory, we only recently obtained the first positive results. In the sambaqui of Guapi, Rio de Janeiro, Brazil, paleoparasitological analysis was performed on sediment samples collected from various archaeological layers, including the superficial layer as a control. Eggs of Acanthocephala, Ascaridoidea and Heterakoidea were found in the archaeological layers. We applied various techniques and concluded that Lutz's spontaneous sedimentation technique is effective for concentrating parasite eggs in sambaqui soil for microscopic analysis.

  7. Predicting anthropogenic soils across the Amazonia

    NASA Astrophysics Data System (ADS)

    Mcmichael, C.; Palace, M. W.; Bush, M. B.; Braswell, B. H.; Hagen, S. C.; Silman, M.; Neves, E.; Czarnecki, C.

    2012-12-01

    Hidden under the forest canopy in lowland Amazonia are nutrient-enriched soils, called terra pretas (or Amazonian black earths), which were formed by prehistoric indigenous populations. These anthrosols are in stark contrast to typical nutrient-poor Amazonian soils, and have retained increased nutrient levels for hundreds of years. Because of their long-term nutrient retaining ability, terra pretas may be crucial for developing sustainable agricultural practices in Amazonia, especially given the deforestation necessary for traditional slash-and-burn systems. However, the frequency and distribution of terra preta soils across the landscape remains debatable, and archaeologists have estimated that terra pretas cover anywhere from 0.1% to 10% of the lowland Amazonian forests. The highest concentration of terra preta soils has been found along the central and eastern portions of the Amazon River and its major tributaries, but whether this is a true pattern or simply reflects sampling bias remains unknown. A possible explanation is that specific environmental or biotic conditions were preferred for human settlement and terra preta formation. Here, we use environmental parameters to predict the probabilities of terra preta soils across lowland Amazonian forests. We compiled a database of 2708 sites across Amazonia, including locations that contain terra pretas (n = 917), and those that are known to be terra preta-free (n = 1791). More than 20 environmental variables, including precipitation, elevation, slope, soil fertility, and distance to river were converted into 90-m resolution raster images across Amazonia and used to model the probability of terra preta occurrence. The relationship between the predictor variables and the occurrence of terra preta was examined using three modeling techniques: logistic regression, auto-logistic regression, and maximum entropy estimations. All three techniques provided similar predictions for terra preta distributions and the amount of area covered by terra preta. Distance to river, locations of bluffs, elevation, and soil fertility were important factors in determining distributions of terra preta, while other environmental variables had less effect. Terra pretas were most likely to be found in central and eastern Amazonia near the confluences of the Amazon River and its major tributaries. Within this general area of higher probability, terra pretas are most likely found atop the bluffs overlooking the rivers as opposed to lying on the floodplain. Interestingly, terra pretas are more probable in areas with less-fertile and more highly weathered soils. Although all three modeling techniques provided similar predictions of terra preta across Amazonia, we suggest that maximum entropy modeling is the best technique to predict anthropogenic soils across the vast Amazonian landscape. The auto-logistic regression corrects for spatial autocorrelation inherent to archaeological surveys, but still requires absence data, which was collected at different times and on different spatial scales than the presence data. The maximum entropy model requires presence only data, accounts for spatial autocorrelation, and is not affected by the differential soil sampling techniques.

  8. Assessing the influence of the rhizosphere on soil hydraulic properties using X-ray computed tomography and numerical modelling.

    PubMed

    Daly, Keith R; Mooney, Sacha J; Bennett, Malcolm J; Crout, Neil M J; Roose, Tiina; Tracy, Saoirse R

    2015-04-01

    Understanding the dynamics of water distribution in soil is crucial for enhancing our knowledge of managing soil and water resources. The application of X-ray computed tomography (CT) to the plant and soil sciences is now well established. However, few studies have utilized the technique for visualizing water in soil pore spaces. Here this method is utilized to visualize the water in soil in situ and in three-dimensions at successive reductive matric potentials in bulk and rhizosphere soil. The measurements are combined with numerical modelling to determine the unsaturated hydraulic conductivity, providing a complete picture of the hydraulic properties of the soil. The technique was performed on soil cores that were sampled adjacent to established roots (rhizosphere soil) and from soil that had not been influenced by roots (bulk soil). A water release curve was obtained for the different soil types using measurements of their pore geometries derived from CT imaging and verified using conventional methods, such as pressure plates. The water, soil, and air phases from the images were segmented and quantified using image analysis. The water release characteristics obtained for the contrasting soils showed clear differences in hydraulic properties between rhizosphere and bulk soil, especially in clay soil. The data suggest that soils influenced by roots (rhizosphere soil) are less porous due to increased aggregation when compared with bulk soil. The information and insights obtained on the hydraulic properties of rhizosphere and bulk soil will enhance our understanding of rhizosphere biophysics and improve current water uptake models. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Improved Flotation Technique for Microscopy of In Situ Soil and Sediment Microorganisms

    PubMed Central

    Bone, T. L.; Balkwill, D. L.

    1986-01-01

    An improved flotation method for microscopy of in situ soil and sediment microorganisms was developed. Microbial cells were released into gellike flotation films that were stripped from soil and sediment aggregates as these aggregates were submerged in 0.5% solutions of polyvinylpyrrolidone. The use of polyvinylpyrrolidone solutions instead of water facilitated the release of films from saturated samples such as aquifer sediments as well as from typical surface soils. In situ microbial morphological characteristics could then be surveyed rapidly by light microscopy of films stained with acridine orange. This method effectively determined the ranges of morphological diversity in a variety of sample types. It also detected microcolonies and other spatial relationships among microbial cells. Only a small fraction (3.4 to 10.1%) of the microflora was released into the flotation films, but plating and direct evaluations by microscopy showed that this fraction was representative of the total population. Images PMID:16347005

  10. Matrix effects in applying mono- and polyclonal ELISA systems to the analysis of weathered oils in contaminated soil.

    PubMed

    Pollard, S J T; Farmer, J G; Knight, D M; Young, P J

    2002-01-01

    Commercial mono- and polyclonal enzyme-linked immunosorbent assay (ELISA) systems were applied to the on-site analysis of weathered hydrocarbon-contaminated soils at a former integrated steelworks. Comparisons were made between concentrations of solvent extractable matter (SEM) determined gravimetrically by Soxhlet (dichloromethane) extraction and those estimated immunologically by ELISA determination over a concentration range of 2000-330,000 mg SEM/kg soil dry weight. Both ELISA systems tinder-reported for the more weathered soil samples. Results suggest this is due to matrix effects in the sample rather than any inherent bias in the ELISA systems and it is concluded that, for weathered hydrocarbons typical of steelworks and coke production sites, the use of ELISA requires careful consideration as a field technique. Consideration of the target analyte relative to the composition of the hydrocarbon waste encountered appears critical.

  11. NEOCHIM: An electrochemical method for environmental application

    USGS Publications Warehouse

    Leinz, R.W.; Hoover, D.B.; Meier, A.L.

    1999-01-01

    Ion migration and electroosmosis are the principal processes underlying electrokinetic remediation of hazardous wastes from soils. These processes are a response of charged species to an applied electrical current and they are accompanied by electrolysis of water at the electrodes through which the current is applied. Electrolysis results in the formation of OH- at the cathode and H+ at the anode. The current drives the OH- and H+ thus formed from the electrodes, through the soil and to the electrode of opposite charge. Introduction of OH- and H+ into the soil being treated modifies soil chemistry and can interfere with either the collection or immobilization of hazardous waste ions. The introduction of either OH- or H+ to the soil can be problematic to electrokinetic remediation but the problem caused by OH- has been the focus of most researchers. The problem has been addressed by flushing the OH- from the soil near the cathode or treating the soil with buffers. These treatments would apply as well to soils affected by H+. With the NEOCHIM technology, developed by the U.S. Geological Survey (USGS) for use as a sampling technique in exploration for buried ore deposits, OH- and H+ are retained in the inner compartment of two-compartment electrodes and are thus prevented from reaching the soil. This enables the extraction of cations and anions, including anionic forms of toxic metals such as HAsO42-. One of the principal attributes of NEOCHIM is the large volume of soil from which ions can be extracted. It is mathematically demonstrable that NEOCHIM extraction volumes can be orders of magnitude greater than volumes typically sampled in more conventional geochemical exploration methods or for environmental sampling. The technology may also be used to introduce selected ions into the soil that affect the solubility of ceratin ions present in the soil. Although field tests for mineral exploration have shown NEOCHIM extraction efficiencies of about 25-35%, laboratory experiments suggest that significantly higher efficiencies are possible. The attributes of NEOCHIM combined with relatively low cost of electrical power, indicate that the technology may be useful for remediation and monitoring of hazardous waste sites. Of particular importance is that NEOCHIM extractions affect only dissolved and electrically charged species, hence those prone to move in groundwater.The U.S. Geological Survey (USGS) has developed a technology called NEOCHIM for use as a sampling technique in exploration for buried deposits. With this technology, OH- and H+ are retained in the inner compartment of two-compartment electrodes and are thus prevented from reaching the soil. This enables the extraction of cations and anions. Laboratory experiments suggest extraction efficiencies higher than 25-35%.

  12. Identification of biogeochemical hot spots using time-lapse hydrogeophysics

    NASA Astrophysics Data System (ADS)

    Franz, T. E.; Loecke, T.; Burgin, A.

    2016-12-01

    The identification and monitoring of biogeochemical hot spots and hot moments is difficult using point based sampling techniques and sensors. Without proper monitoring and accounting of water, energy, and trace gas fluxes it is difficult to assess the environmental footprint of land management practices. One key limitation is optimal placement of sensors/chambers that adequately capture the point scale fluxes and thus a reasonable integration to landscape scale flux. In this work we present time-lapse hydrogeophysical imaging at an old agricultural field converted into a wetland mitigation bank near Dayton, Ohio. While the wetland was previously instrumented with a network of soil sensors and surface chambers to capture a suite of state variables and fluxes, we hypothesize that time-lapse hydrogeophysical imaging is an underutilized and critical reconnaissance tool for effective network design and landscape scaling. Here we combine the time-lapse hydrogeophysical imagery with the multivariate statistical technique of Empirical Orthogonal Functions (EOF) in order to isolate the spatial and temporal components of the imagery. Comparisons of soil core information (e.g. soil texture, soil carbon) from around the study site and organized within like spatial zones reveal statistically different mean values of soil properties. Moreover, the like spatial zones can be used to identify a finite number of future sampling locations, evaluation of the placement of existing sensors/chambers, upscale/downscale observations, all of which are desirable techniques for commercial use in precision agriculture. Finally, we note that combining the EOF analysis with continuous monitoring from point sensors or remote sensing products may provide a robust statistical framework for scaling observations through time as well as provide appropriate datasets for use in landscape biogeochemical models.

  13. Diffuse Reflectance Spectroscopy for Total Carbon Analysis of Hawaiian Soils

    NASA Astrophysics Data System (ADS)

    McDowell, M. L.; Bruland, G. L.; Deenik, J. L.; Grunwald, S.; Uchida, R.

    2010-12-01

    Accurate assessment of total carbon (Ct) content is important for fertility and nutrient management of soils, as well as for carbon sequestration studies. The non-destructive analysis of soils by diffuse reflectance spectroscopy (DRS) is a potential supplement or alternative to the traditional time-consuming and costly combustion method of Ct analysis, especially in spatial or temporal studies where sample numbers are large. We investigate the use of the visible to near-infrared (VNIR) and mid-infrared (MIR) spectra of soils coupled with chemometric analysis to determine their Ct content. Our specific focus is on Hawaiian soils of agricultural importance. Though this technique has been introduced to the soil community, it has yet to be fully tested and used in practical applications for all soil types, and this is especially true for Hawaii. In short, DRS characterizes and differentiates materials based on the variation of the light reflected by a material at certain wavelengths. This spectrum is dependent on the material’s composition, structure, and physical state. Multivariate chemometric analysis unravels the information in a set of spectra that can help predict a property such as Ct. This study benefits from the remarkably diverse soils of Hawaii. Our sample set includes 216 soil samples from 145 pedons from the main Hawaiian Islands archived at the National Soil Survey Center in Lincoln, NE, along with more than 50 newly-collected samples from Kauai, Oahu, Molokai, and Maui. In total, over 90 series from 10 of the 12 soil orders are represented. The Ct values of these samples range from < 1% - 55%. We anticipate that the diverse nature of our sample set will ensure a model with applicability to a wide variety of soils, both in Hawaii and globally. We have measured the VNIR and MIR spectra of these samples and obtained their Ct values by dry combustion. Our initial analyses are conducted using only samples obtained from the Lincoln archive. In this preliminary case, we use Partial Least Squares (PLS) regression with cross validation to develop a prediction model for soils of unknown carbon content given only their spectral signature. We find R2 values of greater than 0.93 for the MIR spectra and 0.87 for the VNIR spectra, indicating a strong ability to correlate a soil’s spectrum with its Ct content. We build on these encouraging results by continuing chemometric analyses using the full data set, different data subsets, separate model calibration and validation groups, combined VNIR and MIR spectra, and exploring different data pretreatment options and variations to the PLS parameters.

  14. Artificial neural networks environmental forecasting in comparison with multiple linear regression technique: From heavy metals to organic micropollutants screening in agricultural soils

    NASA Astrophysics Data System (ADS)

    Bonelli, Maria Grazia; Ferrini, Mauro; Manni, Andrea

    2016-12-01

    The assessment of metals and organic micropollutants contamination in agricultural soils is a difficult challenge due to the extensive area used to collect and analyze a very large number of samples. With Dioxins and dioxin-like PCBs measurement methods and subsequent the treatment of data, the European Community advises the develop low-cost and fast methods allowing routing analysis of a great number of samples, providing rapid measurement of these compounds in the environment, feeds and food. The aim of the present work has been to find a method suitable to describe the relations occurring between organic and inorganic contaminants and use the value of the latter in order to forecast the former. In practice, the use of a metal portable soil analyzer coupled with an efficient statistical procedure enables the required objective to be achieved. Compared to Multiple Linear Regression, the Artificial Neural Networks technique has shown to be an excellent forecasting method, though there is no linear correlation between the variables to be analyzed.

  15. Development of a screening method for the determination of 49 priority pollutants in soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiang, P.H.; Grob, R.L.

    1986-01-01

    A screening procedure was develop for the determination of 49 priority pollutants in soil. An extraction procedure followed by the capillary gas chromatographic technique was used. Dual pH solutions with methylene chloride were used as extraction solvent system; no sample clean-up procedure was applied. Both base/neutral and acid fractions were analyzed on the same capillary column (SPB-1). The relative standard deviation for 5.1 ppm (51 ..mu..g/ 10 g) concentration in zero soil was less than 25%.

  16. Fire Effects on Soil and Dissolved Organic Matter in a Southern Appalachian Hardwood Forest: Movement of Fire-Altered Organic Matter Across the Terrestrial-Aquatic Interface Following the Great Smoky Mountains National Park Fire of 2016

    NASA Astrophysics Data System (ADS)

    Matosziuk, L.; Gallo, A.; Hatten, J. A.; Heckman, K. A.; Nave, L. E.; Sanclements, M.; Strahm, B. D.; Weiglein, T.

    2017-12-01

    Wildfire can dramatically affect the quantity and quality of soil organic matter (SOM), producing thermally altered organic material such as pyrogenic carbon (PyC) and polyaromatic hydrocarbons (PAHs). The movement of this thermally altered material through terrestrial and aquatic ecosystems can differ from that of unburned SOM, with far-reaching consequences for soil carbon cycling and water quality. Unfortunately, due to the rapid ecological changes following fire and the lack of robust pre-fire controls, the cycling of fire-altered carbon is still poorly understood. In December 2016, the Chimney Tops 2 fire in Great Smoky Mountains National Park burned over co-located terrestrial and aquatic NEON sites. We have leveraged the wealth of pre-fire data at these sites (chemical, physical, and microbial characterization of soils, continuous measurements of both soil and stream samples, and five soil cores up to 110 cm in depth) to conduct a thorough study of the movement of fire-altered organic matter through terrestrial and aquatic ecosystems. Stream samples have been collected weekly beginning 5 weeks post-fire. Grab samples of soil were taken at discrete time points in the first two months after the fire. Eight weeks post-fire, a second set of cores was taken and resin lysimeters installed at three different depths. A third set of cores and grab samples will be taken 8-12 months after the fire. In addition to routine soil characterization techniques, solid samples from cores and grab samples at all time points will be analyzed for PyC and PAHs. To determine the effect of fire on dissolved organic matter (DOM), hot water extracts of these soil samples, as well as the stream samples and lysimeter samples, will also be analyzed for PyC and PAHs. Selected samples will be analyzed by 1D- and 2D-NMR to further characterize the chemical composition of DOM. This extensive investigation of the quantity and quality of fire-altered organic material at discrete time points will provide insight into the production and cycling of thermally-altered SOM and DOM. We hypothesize that PyC will be an important source of SOM to surface mineral soil horizons, and that the quantity of DOM will increase after fire, providing a rapid pulse of C to deep soils and aquatic systems.

  17. Contaminant concentration in environmental samples using LIBS and CF-LIBS

    NASA Astrophysics Data System (ADS)

    Pandhija, S.; Rai, N. K.; Rai, A. K.; Thakur, S. N.

    2010-01-01

    The present paper deals with the detection and quantification of toxic heavy metals like Cd, Co, Pb, Zn, Cr, etc. in environmental samples by using the technique of laser-induced breakdown spectroscopy (LIBS) and calibration-free LIBS (CF-LIBS). A MATLABTM program has been developed based on the CF-LIBS algorithm given by earlier workers and concentrations of pollutants present in industrial area soil have been determined. LIBS spectra of a number of certified reference soil samples with varying concentrations of toxic elements (Cd, Zn) have been recorded to obtain calibration curves. The concentrations of Cd and Zn in soil samples from the Jajmau area, Kanpur (India) have been determined by using these calibration curves and also by the CF-LIBS approach. Our results clearly demonstrate that the combination of LIBS and CF-LIBS is very useful for the study of pollutants in the environment. Some of the results have also been found to be in good agreement with those of ICP-OES.

  18. Utilizing a polymerase chain reaction method for the detection of Toxocara canis and T. cati eggs in soil.

    PubMed

    Fogt-Wyrwas, R; Jarosz, W; Mizgajska-Wiktor, H

    2007-03-01

    A polymerase chain reaction (PCR) technique has been used for the differentiation of T. canis and T. cati eggs isolated from soil and previously identified from microscopical observations. The method, using specific primers for the identification of the two Toxocara species, was assessed in both the field and laboratory. Successful results were obtained when only a single or large numbers of eggs were recovered from 40 g soil samples. The method is sensitive, allows analysis of material independent of the stage of egg development and can be adapted for the recovery of other species of parasites from soil.

  19. Exploring innovative techniques for identifying geochemical elements as fingerprints of sediment sources in an agricultural catchment of Argentina affected by soil erosion.

    PubMed

    Torres Astorga, Romina; de Los Santos Villalobos, Sergio; Velasco, Hugo; Domínguez-Quintero, Olgioly; Pereira Cardoso, Renan; Meigikos Dos Anjos, Roberto; Diawara, Yacouba; Dercon, Gerd; Mabit, Lionel

    2018-05-15

    Identification of hot spots of land degradation is strongly related with the selection of soil tracers for sediment pathways. This research proposes the complementary and integrated application of two analytical techniques to select the most suitable fingerprint tracers for identifying the main sources of sediments in an agricultural catchment located in Central Argentina with erosive loess soils. Diffuse reflectance Fourier transformed in the mid-infrared range (DRIFT-MIR) spectroscopy and energy-dispersive X-ray fluorescence (EDXRF) were used for a suitable fingerprint selection. For using DRIFT-MIR spectroscopy as fingerprinting technique, calibration through quantitative parameters is needed to link and correlate DRIFT-MIR spectra with soil tracers. EDXRF was used in this context for determining the concentrations of geochemical elements in soil samples. The selected tracers were confirmed using two artificial mixtures composed of known proportions of soil collected in different sites with distinctive soil uses. These fingerprint elements were used as parameters to build a predictive model with the whole set of DRIFT-MIR spectra. Fingerprint elements such as phosphorus, iron, calcium, barium, and titanium were identified for obtaining a suitable reconstruction of the source proportions in the artificial mixtures. Mid-infrared spectra produced successful prediction models (R 2  = 0.91) for Fe content and moderate useful prediction (R 2  = 0.72) for Ti content. For Ca, P, and Ba, the R 2 were 0.44, 0.58, and 0.59 respectively.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, R.F.; Kravchenko, I.I.; Kuharik, J.C.

    Widespread use of chromated copper arsenate (CCA) as a wood preservative has led to increasing public concern regarding possible toxic contamination of areas surrounding CCA-treated structures, e.g., decks, playground equipment, etc. Appreciable leaching of arsenic, chromium, and copper into soils adjacent to such structures has been demonstrated via standard techniques of analytical chemistry. The advantages of PIXE [rapid analysis, quick sample turnover, possible lower cost] suggest its application to this area of interest. PIXE studies in our laboratory of CCA-contaminated soil samples show good agreement with previous analyses of As, Cu, Cr, and other heavy-elemental content, with some variability inmore » diffusion rates.« less

  1. Geologic Controls on Geophysics for Tunnel Detection

    NASA Astrophysics Data System (ADS)

    Kelley, J. R.; Wakeley, L. D.; McKenna, J. R.; Ketcham, S. A.; Weiss, C. A.; Curtis, J. O.

    2006-05-01

    Properties of soils are critical to using near-surface geophysical techniques to search for clandestine tunnels. We have constructed a database of soils sampled at sites on the northern (N) and southern (S) US borders and at sites in Iraq in conjunction with tunnel searches. Geologic materials at these sites consist of glacial gravels (N), volcanic tuff (S), and alluvial sands interbedded with marine clays (Iraq). The depth of interest for detecting clandestine tunneling is < 30m, and as shallow as 2m at some locations. Mineral composition, grain size, moisture content, conductivity, permittivity, and magnetic susceptibility are critical for assessing the effectiveness of near-surface geophysical techniques. Values for these properties are consistent with soil stratigraphy and with vertical and lateral geologic variability. In some environments, in situ moisture content and the arrangement of conductive and resistive materials in the upper few meters limit significantly the depth of investigation using traditional near-surface techniques (electromagnetic induction, ground-penetrating radar). Geologic factors plus the small physical size of the targets limit the usefulness of commercial off-the-shelf techniques, and warrant an investment in new approaches.

  2. Basic Aspects of Deep Soil Mixing Technology Control

    NASA Astrophysics Data System (ADS)

    Egorova, Alexandra A.; Rybak, Jarosław; Stefaniuk, Damian; Zajączkowski, Przemysław

    2017-10-01

    Improving a soil is a process of increasing its physical/mechanical properties without changing its natural structure. Improvement of soil subbase is reached by means of the knitted materials, or other methods when strong connection between soil particles is established. The method of DSM (Deep Soil Mixing) columns has been invented in Japan in 1970s. The main reason of designing cement-soil columns is to improve properties of local soils (such as strength and stiffness) by mixing them with various cementing materials. Cement and calcium are the most commonly used binders. However new research undertaken worldwide proves that apart from these materials, also gypsum or fly ashes can also be successfully implemented. As the Deep Soil Mixing is still being under development, anticipating mechanical properties of columns in particular soils and the usage of cementing materials in formed columns is very difficult and often inappropriate to predict. That is why a research is carried out in order to find out what binders and mixing technology should be used. The paper presents several remarks on the testing procedures related to quality and capacity control of Deep Soil Mixing columns. Soil improvement methods, their advantages and limitations are briefly described. The authors analyse the suitability of selected testing methods on subsequent stages of design and execution of special foundations works. Chosen examples from engineering practice form the basis for recommendations for the control procedures. Presented case studies concerning testing the on capacity field samples and laboratory procedures on various categories of soil-cement samples were picked from R&D and consulting works offered by Wroclaw University of Science and Technology. Special emphasis is paid to climate conditions which may affect the availability of performing and controlling of DSM techniques in polar zones, with a special regard to sample curing.

  3. Tools based on multivariate statistical analysis for classification of soil and groundwater in Apulian agricultural sites.

    PubMed

    Ielpo, Pierina; Leardi, Riccardo; Pappagallo, Giuseppe; Uricchio, Vito Felice

    2017-06-01

    In this paper, the results obtained from multivariate statistical techniques such as PCA (Principal component analysis) and LDA (Linear discriminant analysis) applied to a wide soil data set are presented. The results have been compared with those obtained on a groundwater data set, whose samples were collected together with soil ones, within the project "Improvement of the Regional Agro-meteorological Monitoring Network (2004-2007)". LDA, applied to soil data, has allowed to distinguish the geographical origin of the sample from either one of the two macroaeras: Bari and Foggia provinces vs Brindisi, Lecce e Taranto provinces, with a percentage of correct prediction in cross validation of 87%. In the case of the groundwater data set, the best classification was obtained when the samples were grouped into three macroareas: Foggia province, Bari province and Brindisi, Lecce and Taranto provinces, by reaching a percentage of correct predictions in cross validation of 84%. The obtained information can be very useful in supporting soil and water resource management, such as the reduction of water consumption and the reduction of energy and chemical (nutrients and pesticides) inputs in agriculture.

  4. Representative Elementary Length to Measure Soil Mass Attenuation Coefficient

    PubMed Central

    Borges, J. A. R.; Pires, L. F.; Costa, J. C.

    2014-01-01

    With increasing demand for better yield in agricultural areas, soil physical property representative measurements are more and more essential. Nuclear techniques such as computerized tomography (CT) and gamma-ray attenuation (GAT) have been widely employed with this purpose. The soil mass attenuation coefficient (μ s) is an important parameter for CT and GAT analysis. When experimentally determined (μ es), the use of suitable sized samples enable to evaluate it precisely, as well as to reduce measurement time and costs. This study investigated the representative elementary length (REL) of sandy and clayey soils for μ es measurements. Two radioactive sources were employed (241Am and 137Cs), three collimators (2–4 mm diameters), and 14 thickness (x) samples (2–15 cm). Results indicated ideal thickness intervals of 12–15 and 2–4 cm for the sources 137Cs and 241Am, respectively. The application of such results in representative elementary area (REA) evaluations in clayey soil clods via CT indicated that μ es average values obtained for x > 4 cm and source 241Am might induce to the use of samples which are not large enough for soil bulk density evaluations (ρ s). As a consequence, ρ s might be under- or overestimated, generating inaccurate conclusions about the physical quality of the soil under study. PMID:24672338

  5. Simple Techniques For Assessing Impacts Of Oil And Gas Operations On Federal Lands - A Field Evaluation At Big South Fork National River And Recreation Area, Scott County, Tennessee

    USGS Publications Warehouse

    Otton, James K.; Zielinski, Robert A.

    2000-01-01

    Simple, cost-effective techniques are needed for land managers to assess the environmental impacts of oil and gas production activities on public lands so that sites may be prioritized for further, more formal assessment or remediation. These techniques should allow the field investigator to extend the assessment beyond the surface disturbances documented by simple observation and mapping using field-portable instruments and expendable materials that provide real-time data. The principal contaminants of current concern are hydrocarbons, produced water, and naturally occurring radioactive materials (NORM). Field investigators can examine sites for the impacts of hydrocarbon releases using a photoionization detector (PID) and a soil auger. Volatile organic carbon (VOC) in soil gases in an open auger hole or in the head space of a bagged and gently warmed auger soil sample can be measured by the PID. This allows detection of hydrocarbon movement in the shallow subsurface away from areas of obvious oil-stained soils or oil in pits at a production site. Similarly, a field conductivity meter and chloride titration strips can be used to measure salts in water and soil samples at distances well beyond areas of surface salt scarring. Use of a soil auger allows detection of saline subsoils in areas where salts may be flushed from the surface soil layers. Finally, a microRmeter detects the presence of naturally occurring radioactive materials (NORM) in equipment and soils. NORM often goes undetected at many sites although regulations limiting NORM in equipment and soils are being promulgated in several States and are being considered by the USEPA. With each technique, background sampling should be done for comparison with impacted areas. The authors examined sites in the Big South Fork National River and Recreation Area in November of 1999. A pit at one site at the edge of the flood plain of a small stream had received crude oil releases from a nearby tank. Auger holes down gradient from the pit showed the presence of anomalous concentrations of VOCs at depths of 3 feet for a distance of about 50 feet. PID readings at other sites showed 1) one reclaimed site where hydrocarbon biodegradation was incomplete; 2) one reclaimed site where biodegradation had left no traces of VOCS; and 3) two sites where traces of substantial offsite migration of hydrocarbons occurred. Produced water salts at one site have migrated many 100s of feet downvalley from the area of salt scarring and tree death adjacent to the pits. Naturally occurring radioactivity (NORM) at most sites was at background. One site showed anomalous radioactivity related to NORM in a small brine pit. Some of this NORM has moved downslope from the outlet pipe to the pit.

  6. [Keratinophilic fungi in soils of parks of Corrientes city, Argentina].

    PubMed

    Sarmiento, María Mercedes; Mangiaterra, Magdalena; Bojanich, María Viviana; Basualdo, Juan Ángel; Giusiano, Gustavo

    2016-01-01

    The soil is a natural reservoir of keratinophilic fungi, which are a small but important group of filamentous fungi, some of which typically develop on keratinized tissues of living animals. There are numerous species of saprophytic fungi with recognized keratinophilic abilities, and several studies have been undertaken in order to link their presence to possible human disease. To know the biota of geophilic fungi in general and of keratinophilic fungi particularly in soils from two public parks. Soil samples from two public parks of Corrientes city, Argentina, were studied during two seasons, using the hook technique and serial dilutions for fungal isolation. Using the hook technique, 170 isolates were classified into 17 genera and 21 species, among which it is worth mentioning the presence of Microsporum canis. Shannon index for keratinophilic fungi in autumn was 2.27, and 1.92 in spring. By means of the serial dilutions technique, 278 fungi isolated were identified into 33 genera and 71 species. Shannon index in autumn was 3.9, and 3.5 in spring. The soils studied have particularly favorable conditions for the survival of pathogens and opportunistic geophilic fungi for humans and animals. Copyright © 2014 Asociación Española de Micología. Published by Elsevier Espana. All rights reserved.

  7. Concentrations of polycyclic aromatic hydrocarbons and inorganic constituents in ambient surface soils, Chicago, Illinois: 2001-2002

    USGS Publications Warehouse

    Kay, R.T.; Arnold, T.L.; Cannon, W.F.; Graham, D.

    2008-01-01

    Samples of ambient surface soils were collected from 56 locations in Chicago, Illinois, using stratified random sampling techniques and analyzed for polycyclic aromatic hydrocarbon (PAH) compounds and inorganic constituents. PAHs appear to be derived primarily from combustion of fossil fuels and may be affected by proximity to industrial operations, but do not appear to be substantially affected by the organic carbon content of the soil, proximity to nonindustrial land uses, or proximity to a roadway. Atmospheric settling of particulate matter appears to be an important mechanism for the placement of PAH compounds into soils. Concentrations of most inorganic constituents are affected primarily by soil-forming processes. Concentrations of lead, arsenic, mercury, calcium, magnesium, phosphorus, copper, molybdenum, zinc, and selenium are elevated in ambient surface soils in Chicago in comparison to the surrounding area, indicating anthropogenic sources for these elements in Chicago soils. Concentrations of calcium and magnesium in Chicago soils appear to reflect the influence of the carbonate bedrock parent material on the chemical composition of the soil, although the effects of concrete and road fill cannot be discounted. Concentrations of inorganic constituents appear to be largely unaffected by the type of nearby land use. Copyright ?? Taylor & Francis Group, LLC.

  8. Combining Soil Databases for Topsoil Organic Carbon Mapping in Europe.

    PubMed

    Aksoy, Ece; Yigini, Yusuf; Montanarella, Luca

    2016-01-01

    Accuracy in assessing the distribution of soil organic carbon (SOC) is an important issue because of playing key roles in the functions of both natural ecosystems and agricultural systems. There are several studies in the literature with the aim of finding the best method to assess and map the distribution of SOC content for Europe. Therefore this study aims searching for another aspect of this issue by looking to the performances of using aggregated soil samples coming from different studies and land-uses. The total number of the soil samples in this study was 23,835 and they're collected from the "Land Use/Cover Area frame Statistical Survey" (LUCAS) Project (samples from agricultural soil), BioSoil Project (samples from forest soil), and "Soil Transformations in European Catchments" (SoilTrEC) Project (samples from local soil data coming from six different critical zone observatories (CZOs) in Europe). Moreover, 15 spatial indicators (slope, aspect, elevation, compound topographic index (CTI), CORINE land-cover classification, parent material, texture, world reference base (WRB) soil classification, geological formations, annual average temperature, min-max temperature, total precipitation and average precipitation (for years 1960-1990 and 2000-2010)) were used as auxiliary variables in this prediction. One of the most popular geostatistical techniques, Regression-Kriging (RK), was applied to build the model and assess the distribution of SOC. This study showed that, even though RK method was appropriate for successful SOC mapping, using combined databases was not helpful to increase the statistical significance of the method results for assessing the SOC distribution. According to our results; SOC variation was mainly affected by elevation, slope, CTI, average temperature, average and total precipitation, texture, WRB and CORINE variables for Europe scale in our model. Moreover, the highest average SOC contents were found in the wetland areas; agricultural areas have much lower soil organic carbon content than forest and semi natural areas; Ireland, Sweden and Finland has the highest SOC, on the contrary, Portugal, Poland, Hungary, Spain, Italy have the lowest values with the average 3%.

  9. Combining Soil Databases for Topsoil Organic Carbon Mapping in Europe

    PubMed Central

    Aksoy, Ece

    2016-01-01

    Accuracy in assessing the distribution of soil organic carbon (SOC) is an important issue because of playing key roles in the functions of both natural ecosystems and agricultural systems. There are several studies in the literature with the aim of finding the best method to assess and map the distribution of SOC content for Europe. Therefore this study aims searching for another aspect of this issue by looking to the performances of using aggregated soil samples coming from different studies and land-uses. The total number of the soil samples in this study was 23,835 and they’re collected from the “Land Use/Cover Area frame Statistical Survey” (LUCAS) Project (samples from agricultural soil), BioSoil Project (samples from forest soil), and “Soil Transformations in European Catchments” (SoilTrEC) Project (samples from local soil data coming from six different critical zone observatories (CZOs) in Europe). Moreover, 15 spatial indicators (slope, aspect, elevation, compound topographic index (CTI), CORINE land-cover classification, parent material, texture, world reference base (WRB) soil classification, geological formations, annual average temperature, min-max temperature, total precipitation and average precipitation (for years 1960–1990 and 2000–2010)) were used as auxiliary variables in this prediction. One of the most popular geostatistical techniques, Regression-Kriging (RK), was applied to build the model and assess the distribution of SOC. This study showed that, even though RK method was appropriate for successful SOC mapping, using combined databases was not helpful to increase the statistical significance of the method results for assessing the SOC distribution. According to our results; SOC variation was mainly affected by elevation, slope, CTI, average temperature, average and total precipitation, texture, WRB and CORINE variables for Europe scale in our model. Moreover, the highest average SOC contents were found in the wetland areas; agricultural areas have much lower soil organic carbon content than forest and semi natural areas; Ireland, Sweden and Finland has the highest SOC, on the contrary, Portugal, Poland, Hungary, Spain, Italy have the lowest values with the average 3%. PMID:27011357

  10. Topological data analysis (TDA) applied to reveal pedogenetic principles of European topsoil system.

    PubMed

    Savic, Aleksandar; Toth, Gergely; Duponchel, Ludovic

    2017-05-15

    Recent developments in applied mathematics are bringing new tools that are capable to synthesize knowledge in various disciplines, and help in finding hidden relationships between variables. One such technique is topological data analysis (TDA), a fusion of classical exploration techniques such as principal component analysis (PCA), and a topological point of view applied to clustering of results. Various phenomena have already received new interpretations thanks to TDA, from the proper choice of sport teams to cancer treatments. For the first time, this technique has been applied in soil science, to show the interaction between physical and chemical soil attributes and main soil-forming factors, such as climate and land use. The topsoil data set of the Land Use/Land Cover Area Frame survey (LUCAS) was used as a comprehensive database that consists of approximately 20,000 samples, each described by 12 physical and chemical parameters. After the application of TDA, results obtained were cross-checked against known grouping parameters including five types of land cover, nine types of climate and the organic carbon content of soil. Some of the grouping characteristics observed using standard approaches were confirmed by TDA (e.g., organic carbon content) but novel subtle relationships (e.g., magnitude of anthropogenic effect in soil formation), were discovered as well. The importance of this finding is that TDA is a unique mathematical technique capable of extracting complex relations hidden in soil science data sets, giving the opportunity to see the influence of physicochemical, biotic and abiotic factors on topsoil formation through fresh eyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Laser Diffraction Techniques Replace Sieving for Lunar Soil Particle Size Distribution Data

    NASA Technical Reports Server (NTRS)

    Cooper, Bonnie L.; Gonzalez, C. P.; McKay, D. S.; Fruland, R. L.

    2012-01-01

    Sieving was used extensively until 1999 to determine the particle size distribution of lunar samples. This method is time-consuming, and requires more than a gram of material in order to obtain a result in which one may have confidence. This is demonstrated by the difference in geometric mean and median for samples measured by [1], in which a 14-gram sample produced a geometric mean of approx.52 micrometers, whereas two other samples of 1.5 grams resulted in gave means of approx.63 and approx.69 micrometers. Sample allocations for sieving are typically much smaller than a gram, and many of the sample allocations received by our lab are 0.5 to 0.25 grams in mass. Basu [2] has described how the finest fraction of the soil is easily lost in the sieving process, and this effect is compounded when sample sizes are small.

  12. How Long Can Stool Samples Be Fixed for an Accurate Diagnosis of Soil-Transmitted Helminth Infection Using Mini-FLOTAC?

    PubMed Central

    Barda, Beatrice; Albonico, Marco; Ianniello, Davide; Ame, Shaali M.; Keiser, Jennifer; Speich, Benjamin; Rinaldi, Laura; Cringoli, Giuseppe; Burioni, Roberto; Montresor, Antonio; Utzinger, Jürg

    2015-01-01

    Background Kato-Katz is a widely used method for the diagnosis of soil-transmitted helminth infection. Fecal samples cannot be preserved, and hence, should be processed on the day of collection and examined under a microscope within 60 min of slide preparation. Mini-FLOTAC is a technique that allows examining fixed fecal samples. We assessed the performance of Mini-FLOTAC using formalin-fixed stool samples compared to Kato-Katz and determined the dynamics of prevalence and intensity estimates of soil-transmitted helminth infection over a 31-day time period. Methodology The study was carried out in late 2013 on Pemba Island, Tanzania. Forty-one children were enrolled and stool samples were subjected on the day of collection to a single Kato-Katz thick smear and Mini-FLOTAC examination; 12 aliquots of stool were fixed in 5% formalin and subsequently examined by Mini-FLOTAC up to 31 days after collection. Principal Findings The combined results from Kato-Katz and Mini-FLOTAC revealed that 100% of children were positive for Trichuris trichiura, 85% for Ascaris lumbricoides, and 54% for hookworm. Kato-Katz and Mini-FLOTAC techniques found similar prevalence estimates for A. lumbricoides (85% versus 76%), T. trichiura (98% versus 100%), and hookworm (42% versus 51%). The mean eggs per gram of stool (EPG) according to Kato-Katz and Mini-FLOTAC was 12,075 and 11,679 for A. lumbricoides, 1,074 and 1,592 for T. trichiura, and 255 and 220 for hookworm, respectively. The mean EPG from day 1 to 31 of fixation was stable for A. lumbricoides and T. trichiura, but gradually declined for hookworm, starting at day 15. Conclusions/Significance The findings of our study suggest that for a qualitative diagnosis of soil-transmitted helminth infection, stool samples can be fixed in 5% formalin for at least 30 days. However, for an accurate quantitative diagnosis of hookworm, we suggest a limit of 15 days of preservation. Our results have direct implication for integrating soil-transmitted helminthiasis into transmission assessment surveys for lymphatic filariasis. PMID:25848772

  13. Using the Rasch model as an objective and probabilistic technique to integrate different soil properties

    NASA Astrophysics Data System (ADS)

    Rebollo, Francisco J.; Jesús Moral García, Francisco

    2016-04-01

    Soil apparent electrical conductivity (ECa) is one of the simplest, least expensive soil measurements that integrates many soil properties affecting crop productivity, including, for instance, soil texture, water content, and cation exchange capacity. The ECa measurements obtained with a 3100 Veris sensor, operating in both shallow (0-30 cm), ECs, and deep (0-90 cm), ECd, mode, can be used as an additional and essential information to be included in a probabilistic model, the Rasch model, with the aim of quantifying the overall soil fertililty potential in an agricultural field. This quantification should integrate the main soil physical and chemical properties, with different units. In this work, the formulation of the Rasch model integrates 11 soil properties (clay, silt and sand content, organic matter -OM-, pH, total nitrogen -TN-, available phosphorus -AP- and potassium -AK-, cation exchange capacity -CEC-, ECd, and ECs) measured at 70 locations in a field. The main outputs of the model include a ranking of all soil samples according to their relative fertility potential and the unexpected behaviours of some soil samples and properties. In the case study, the considered soil variables fit the model reasonably, having an important influence on soil fertility, except pH, probably due to its homogeneity in the field. Moreover, ECd, ECs are the most influential properties on soil fertility and, on the other hand, AP and AK the less influential properties. The use of the Rasch model to estimate soil fertility potential (always in a relative way, taking into account the characteristics of the studied soil) constitutes a new application of great practical importance, enabling to rationally determine locations in a field where high soil fertility potential exists and establishing those soil samples or properties which have any anomaly; this information can be necessary to conduct site-specific treatments, leading to a more cost-effective and sustainable field management. Furthermore, from the measures of soil fertility potential at sampled locations, estimates can be computed using, for instance, a geostatistical algorithm, and these estimates can be utilized to map soil fertility potential and delineate with a rational basis the management zones in the field. Keywords: Rasch model; soil management; soil electrical conductivity; probabilistic algorithm.

  14. Comparison of soil solution sampling techniques to assess metal fluxes from contaminated soil to groundwater.

    PubMed

    Coutelot, F; Sappin-Didier, V; Keller, C; Atteia, O

    2014-12-01

    The unsaturated zone plays a major role in elemental fluxes in terrestrial ecosystems. A representative chemical analysis of soil pore water is required for the interpretation of soil chemical phenomena and particularly to assess Trace Elements (TEs) mobility. This requires an optimal sampling system to avoid modification of the extracted soil water chemistry and allow for an accurate estimation of solute fluxes. In this paper, the chemical composition of soil solutions sampled by Rhizon® samplers connected to a standard syringe was compared to two other types of suction probes (Rhizon® + vacuum tube and Rhizon® + diverted flow system). We investigated the effects of different vacuum application procedures on concentrations of spiked elements (Cr, As, Zn) mixed as powder into the first 20 cm of 100-cm columns and non-spiked elements (Ca, Na, Mg) concentrations in two types of columns (SiO2 sand and a mixture of kaolinite + SiO2 sand substrates). Rhizon® was installed at different depths. The metals concentrations showed that (i) in sand, peak concentrations cannot be correctly sampled, thus the flux cannot be estimated, and the errors can easily reach a factor 2; (ii) in sand + clay columns, peak concentrations were larger, indicating that they could be sampled but, due to sorption on clay, it was not possible to compare fluxes at different depths. The different samplers tested were not able to reflect the elemental flux to groundwater and, although the Rhizon® + syringe device was more accurate, the best solution remains to be the use of a lysimeter, whose bottom is kept continuously at a suction close to the one existing in the soil.

  15. Area G Perimeter Surface-Soil and Single-Stage Water Sampling: Environmental Surveillance for Fiscal Years 1996 and 1997, Group ESH-19

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquis Childs; Ron Conrad

    1998-10-01

    Area Gin Technical Area 54, has been the principal facility at Los Alamos National Laboratory for the storage and disposal of low-level, solid mixed, and transuranic radioactive waste since 1957. Soil samples were analyzed for tritium, isotopic plutonium, americium-241, and cesium-137. Thirteen metals-silver, arsenic, barium, beryllium, cadmium, chromium, mercury, nickel, lead, antimony, selenium, thallium and zinc-were analyzed on filtered-sediment fractions of the single-stage samples using standard analytical chemistry techniques. During the two years of sampling discussed in this report elevated levels of tritium (as high as 716,000 pCi/L) in soil were found for sampling sites adjacent to the tritium burialmore » shafts located on the south- central perimeter of Area G. Additionally, tritium concentrations in soil as high as 38,300 pCi/L were detected adjacent to the TRU pads in the northeast comer of Area G. Plutonium-238 activities in FY96 soils ranged from 0.001-2.866 pCi/g, with an average concentration of 0.336& 0.734 pCdg. Pu-238 activities in FY97 soils ranged from 0.002-4.890 pCi/g, with an average concentration of 0.437 & 0.928 pCdg. Pu-239 activities in FY96 soils ranged from 0.009 to 1.62 pCdg, with an average of 0.177- 0.297 pCdg. Pu-239 activities in FY97 soils ranged from 0.005 to 1.71 pCi/g, with an average of 0.290- 0.415 pCi/g. The locations of elevated plutonium readings were consistent with the history of plutonium disposal at Area G. The two areas of elevated Am-241 activity reflected the elevated activities found for plutonium, the average values for Am-241 on soils were 0.6-2.07 pCi/g, and 0.10-0.14 pCi/g respectively for samples collected in FY96 and FY97. CS-137 activities in soils had average values of 0.33 pCi/g, and 0.28 pCi/g respectively for samples collected in FY96 and 97. There was no perimeter area where soil concentrations of CS-137 were significantly elevated.« less

  16. Identification of the nitrogen-based blister agents bis(2-chloroethyl)methylamine (HN-2) and tris(2-chloroethyl)amine (HN-3) and their hydrolysis products on soil using ion trap secondary ion mass spectrometry.

    PubMed

    Gresham, G L; Groenewold, G S; Olson, J E

    2000-12-01

    The nitrogen blister agents HN-2 (bis(2-chloroethyl)methylamine) and HN-3 (tris(2-chloroethyl)amine) were directly analyzed on the surface of soil samples using ion trap secondary ion mass spectrometry (SIMS). In the presence of water, HN-1 (bis(2-choroethyl)ethylamine), HN-2 and HN-3 undergo hydrolysis to form N-ethyldiethanolamine, N-methyldiethanolamine and triethanolamine (TEA), respectively; these compounds can be readily detected as adsorbed species on soil particles. When soil samples spiked with HN-3 in alcohol were analyzed, 2-alkoxyethylamine derivatives were observed on the sample surfaces. This result shows that nitrogen blister agents will undergo condensation reactions with nucleophilic compounds and emphasizes the need for an analytical methodology capable of detecting a range of degradation and condensation products on environmental surfaces. The ability of ion trap SIMS to isolate and accumulate ions, and then perform tandem mass spectrometric analysis improves the detection of low-abundance surface contaminants and the selectivity of the technique. Utilizing these techniques, the limits of detection for HN-3 were studied as a function of surface coverage. It was found that HN-3 could be detected at a surface coverage of 0.01 monolayer, which corresponds to 20 ppm (mass/mass) for a soil having a surface area of 2.2 m(2) g(-1). TEA, the exhaustive hydrolysis product of HN-3, was detected at a surface coverage of 0.001 monolayer, which corresponds to 0.86 ppm. Copyright 2000 John Wiley & Sons, Ltd.

  17. Evaluation of soil water stable isotope analysis by H2O(liquid)-H2O(vapor) equilibration method

    NASA Astrophysics Data System (ADS)

    Gralher, Benjamin; Stumpp, Christine

    2014-05-01

    Environmental tracers like stable isotopes of water (δ18O, δ2H) have proven to be valuable tools to study water flow and transport processes in soils. Recently, a new technique for soil water isotope analysis has been developed that employs a vapor phase being in isothermal equilibrium with the liquid phase of interest. This has increased the potential application of water stable isotopes in unsaturated zone studies as it supersedes laborious extraction of soil water. However, uncertainties of analysis and influencing factors need to be considered. Therefore, the objective of this study was to evaluate different methodologies of analysing stable isotopes in soil water in order to reduce measurement uncertainty. The methodologies included different preparation procedures of soil cores for equilibration of vapor and soil water as well as raw data correction. Two different inflatable sample containers (freezer bags, bags containing a metal layer) and equilibration atmospheres (N2, dry air) were tested. The results showed that uncertainties for δ18O were higher compared to δ2H that cannot be attributed to any specific detail of the processing routine. Particularly, soil samples with high contents of organic matter showed an apparent isotope enrichment which is indicative for fractionation due to evaporation. However, comparison of water samples obtained from suction cups with the local meteoric water line indicated negligible fractionation processes in the investigated soils. Therefore, a method was developed to correct the raw data reducing the uncertainties of the analysis.. We conclude that the evaluated method is advantageous over traditional methods regarding simplicity, resource requirements and sample throughput but careful consideration needs to be made regarding sample handling and data processing. Thus, stable isotopes of water are still a good tool to determine water flow and transport processes in the unsaturated zone.

  18. Evaluation of contaminants retention in soils from Viamão District, Rio Grande do Sul State, Brazil

    NASA Astrophysics Data System (ADS)

    Herlinger, Ronaldo; Viero, Antonio Pedro

    2006-05-01

    Adsorption is one of the most significant processes in the mobility of soluble pollutants in soils. The aim of this work is to characterize and evaluate the adsorption capacity of soils from Viamão District, Brazil. The studied ions were leadtotal, coppertotal, sulfate, phosphate, and potassium. The soils were mapped by remote sensing and characterized by granulometrical and mineralogical techniques. The adsorption tests were made by the contact of soil samples with aqueous solutions. The soils adsorption capacity presented the following trend: Pbtotal>Cutotal≈PO{4/3-}>K+ ≈SO{4/2+}. Adsorption in the soils is strongly influenced by clay content. The adsorption of phosphate, copper, and lead was accentuated by the presence of organic matter. Phosphate adsorption was controlled by oxides and organic matter. Both potassium and sulfate showed insignificant adsorption in the studied soils.

  19. Development of a rapid soil water content detection technique using active infrared thermal methods for in-field applications.

    PubMed

    Antonucci, Francesca; Pallottino, Federico; Costa, Corrado; Rimatori, Valentina; Giorgi, Stefano; Papetti, Patrizia; Menesatti, Paolo

    2011-01-01

    The aim of this study was to investigate the suitability of active infrared thermography and thermometry in combination with multivariate statistical partial least squares analysis as rapid soil water content detection techniques both in the laboratory and the field. Such techniques allow fast soil water content measurements helpful in both agricultural and environmental fields. These techniques, based on the theory of heat dissipation, were tested by directly measuring temperature dynamic variation of samples after heating. For the assessment of temperature dynamic variations data were collected during three intervals (3, 6 and 10 s). To account for the presence of specific heats differences between water and soil, the analyses were regulated using slopes to linearly describe their trends. For all analyses, the best model was achieved for a 10 s slope. Three different approaches were considered, two in the laboratory and one in the field. The first laboratory-based one was centred on active infrared thermography, considered measurement of temperature variation as independent variable and reported r = 0.74. The second laboratory-based one was focused on active infrared thermometry, added irradiation as independent variable and reported r = 0.76. The in-field experiment was performed by active infrared thermometry, heating bare soil by solar irradiance after exposure due to primary tillage. Some meteorological parameters were inserted as independent variables in the prediction model, which presented r = 0.61. In order to obtain more general and wide estimations in-field a Partial Least Squares Discriminant Analysis on three classes of percentage of soil water content was performed obtaining a high correct classification in the test (88.89%). The prediction error values were lower in the field with respect to laboratory analyses. Both techniques could be used in conjunction with a Geographic Information System for obtaining detailed information on soil heterogeneity.

  20. Development of a Rapid Soil Water Content Detection Technique Using Active Infrared Thermal Methods for In-Field Applications

    PubMed Central

    Antonucci, Francesca; Pallottino, Federico; Costa, Corrado; Rimatori, Valentina; Giorgi, Stefano; Papetti, Patrizia; Menesatti, Paolo

    2011-01-01

    The aim of this study was to investigate the suitability of active infrared thermography and thermometry in combination with multivariate statistical partial least squares analysis as rapid soil water content detection techniques both in the laboratory and the field. Such techniques allow fast soil water content measurements helpful in both agricultural and environmental fields. These techniques, based on the theory of heat dissipation, were tested by directly measuring temperature dynamic variation of samples after heating. For the assessment of temperature dynamic variations data were collected during three intervals (3, 6 and 10 s). To account for the presence of specific heats differences between water and soil, the analyses were regulated using slopes to linearly describe their trends. For all analyses, the best model was achieved for a 10 s slope. Three different approaches were considered, two in the laboratory and one in the field. The first laboratory-based one was centred on active infrared thermography, considered measurement of temperature variation as independent variable and reported r = 0.74. The second laboratory–based one was focused on active infrared thermometry, added irradiation as independent variable and reported r = 0.76. The in-field experiment was performed by active infrared thermometry, heating bare soil by solar irradiance after exposure due to primary tillage. Some meteorological parameters were inserted as independent variables in the prediction model, which presented r = 0.61. In order to obtain more general and wide estimations in-field a Partial Least Squares Discriminant Analysis on three classes of percentage of soil water content was performed obtaining a high correct classification in the test (88.89%). The prediction error values were lower in the field with respect to laboratory analyses. Both techniques could be used in conjunction with a Geographic Information System for obtaining detailed information on soil heterogeneity. PMID:22346632

  1. Application of infrared spectroscopy for assessing quality (chemical composition) of peatland plants, litter and soil

    NASA Astrophysics Data System (ADS)

    Straková, Petra; Laiho, Raija

    2016-04-01

    In this presentation, we assess the merits of using Fourier transform infrared (FTIR) spectra to estimate the organic matter composition in different plant biomass and peat soil samples. Infrared spectroscopy has a great potential in large-scale peatland studies that require low cost and high throughput techniques, as it gives a unique "chemical overview" of a sample, with all the chemical compounds present contributing to the spectrum produced. Our extensive sample sets include soil samples ranging from boreal to tropical peatlands, including sites under different environmental and/or land-use changes; above- and below-ground biomass of different peatland plant species; plant root mixtures. We mainly use FTIR to estimate (1) chemical composition of the samples (e.g., total C and N, C:N ratio, holocellulose, lignin and ash content), (2) proportion of each plant species in root mixtures, and (3) respiration of surface peat. The satisfactory results of our predictive models suggest that this experimental approach can, for example, be used as a screening tool in the evaluation of organic matter composition in peatlands during monitoring of their degradation and/or restoration success.

  2. Methods for Quantification of Soil-Transmitted Helminths in Environmental Media: Current Techniques and Recent Advances.

    PubMed

    Collender, Philip A; Kirby, Amy E; Addiss, David G; Freeman, Matthew C; Remais, Justin V

    2015-12-01

    Limiting the environmental transmission of soil-transmitted helminths (STHs), which infect 1.5 billion people worldwide, will require sensitive, reliable, and cost-effective methods to detect and quantify STHs in the environment. We review the state-of-the-art of STH quantification in soil, biosolids, water, produce, and vegetation with regard to four major methodological issues: environmental sampling; recovery of STHs from environmental matrices; quantification of recovered STHs; and viability assessment of STH ova. We conclude that methods for sampling and recovering STHs require substantial advances to provide reliable measurements for STH control. Recent innovations in the use of automated image identification and developments in molecular genetic assays offer considerable promise for improving quantification and viability assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Geometric factor and influence of sensors in the establishment of a resistivity-moisture relation in soil samples

    NASA Astrophysics Data System (ADS)

    López-Sánchez, M.; Mansilla-Plaza, L.; Sánchez-de-laOrden, M.

    2017-10-01

    Prior to field scale research, soil samples are analysed on a laboratory scale for electrical resistivity calibrations. Currently, there are a variety of field instruments to estimate the water content in soils using different physical phenomena. These instruments can be used to develop moisture-resistivity relationships on the same soil samples. This assures that measurements are performed on the same material and under the same conditions (e.g., humidity and temperature). A geometric factor is applied to the location of electrodes, in order to calculate the apparent electrical resistivity of the laboratory test cells. This geometric factor can be determined in three different ways: by means of the use of an analytical approximation, laboratory trials (experimental approximation), or by the analysis of a numerical model. The first case, the analytical approximation, is not appropriate for complex cells or arrays. And both, the experimental and numerical approximation can lead to inaccurate results. Therefore, we propose a novel approach to obtain a compromise solution between both techniques, providing a more precise determination of the geometrical factor.

  4. Electrical resistivity tomography as monitoring tool for unsaturated zone transport: an example of preferential transport of deicing chemicals.

    PubMed

    Wehrer, Markus; Lissner, Heidi; Bloem, Esther; French, Helen; Totsche, Kai Uwe

    2014-01-01

    Non-invasive spatially resolved monitoring techniques may hold the key to observe heterogeneous flow and transport behavior of contaminants in soils. In this study, time-lapse electrical resistivity tomography (ERT) was employed during an infiltration experiment with deicing chemical in a small field lysimeter. Deicing chemicals like potassium formate, which frequently impact soils on airport sites, were infiltrated during snow melt. Chemical composition of seepage water and the electrical response was recorded over the spring period 2010. Time-lapse electrical resistivity tomographs are able to show the infiltration of the melt water loaded with ionic constituents of deicing chemicals and their degradation product hydrogen carbonate. The tomographs indicate early breakthrough behavior in parts of the profile. Groundtruthing with pore fluid conductivity and water content variations shows disagreement between expected and observed bulk conductivity. This was attributed to the different sampling volume of traditional methods and ERT due to a considerable fraction of immobile water in the soil. The results show that ERT can be used as a soil monitoring tool on airport sites if assisted by common soil monitoring techniques.

  5. Measurements of effective non-rainfall in soil with the use of time-domain reflectometry technique

    NASA Astrophysics Data System (ADS)

    Nakonieczna, Anna; Kafarski, Marcin; Wilczek, Andrzej; Szypłowska, Agnieszka; Skierucha, Wojciech

    2014-05-01

    The non-rainfall vectors are fog, dew, hoarfrost and vapour adsorption directly from the atmosphere. The measurements of the amount of water supplied to the soil due to their temporary existence are essential, because in dry areas such water uptake can exceed that of rainfall. Although several devices and methods were proposed for estimating the effective non-rainfall input into the soil, the measurement standard has not yet been established. This is mainly due to obstacles in measuring small water additions to the medium, problems with taking readings in actual soil samples and atmospheric disturbances during their course in natural environment. There still exists the need for automated devices capable of measuring water deposition on real-world soil surfaces, whose resolution is high enough to measure the non-rainfall intensity and increase rate, which are usually very low. In order to achieve the desirable resolution and accuracy of the effective non-rainfall measurements the time-domain reflectometry (TDR) technique was employed. The TDR sensor designed and made especially for the purpose was an untypical waveguide. It consisted of a base made of laminate covered with copper, which served as a bottom of a cuboidal open container in which the examined materials were placed, and a copper signal wire placed on the top of the container. The wire adhered along its entire length to the tested material in order to eliminate the formation of air gaps between the two, what enhanced the accuracy of the measurements. The tested porous materials were glass beads, rinsed sand and three soil samples, which were collected in south-eastern Poland. The diameter ranges of their constituent particles were measured with the use of the laser diffraction technique. The sensor filled with the wetted material was placed on a scale and connected to the TDR meter. The automated readings of mass and TDR time were collected simultaneously every minute. The TDR time was correlated with the mass loss, which was a measure of the amount of water that evaporated from the porous medium. Preliminary measurements demonstrated that the temperature control is dispensable for the conducted laboratory studies, because small temperature variations do not influence the results noticeably. However, field measurements would definitely require advanced temperature calibration. The aim of the research was to test the designed sensor for the effective non-rainfall intensity measurements in actual soil samples. It turned out that the device is highly sensitive to the amount of water present in the investigated medium. The geometry of the sensor allowed obtaining satisfactory resolution, which in the case of soil samples did not exceed 0.015 mm of water. Moreover, the direct translation of the TDR time into the water amount present in the examined media is straightforward and workable among the tested materials, which is the main advantage of the presented measurement method. Hence, both the applied TDR technique and the construction of the sensor proved to be adequate for the planned measurements of the effective non-rainfall intensity.

  6. In situ detection of tree root distribution and biomass by multi-electrode resistivity imaging.

    PubMed

    Amato, Mariana; Basso, Bruno; Celano, Giuseppe; Bitella, Giovanni; Morelli, Gianfranco; Rossi, Roberta

    2008-10-01

    Traditional methods for studying tree roots are destructive and labor intensive, but available nondestructive techniques are applicable only to small scale studies or are strongly limited by soil conditions and root size. Soil electrical resistivity measured by geoelectrical methods has the potential to detect belowground plant structures, but quantitative relationships of these measurements with root traits have not been assessed. We tested the ability of two-dimensional (2-D) DC resistivity tomography to detect the spatial variability of roots and to quantify their biomass in a tree stand. A high-resolution resistivity tomogram was generated along a 11.75 m transect under an Alnus glutinosa (L.) Gaertn. stand based on an alpha-Wenner configuration with 48 electrodes spaced 0.25 m apart. Data were processed by a 2-D finite-element inversion algorithm, and corrected for soil temperature. Data acquisition, inversion and imaging were completed in the field within 60 min. Root dry mass per unit soil volume (root mass density, RMD) was measured destructively on soil samples collected to a depth of 1.05 m. Soil sand, silt, clay and organic matter contents, electrical conductivity, water content and pH were measured on a subset of samples. The spatial pattern of soil resistivity closely matched the spatial distribution of RMD. Multiple linear regression showed that only RMD and soil water content were related to soil resistivity along the transect. Regression analysis of RMD against soil resistivity revealed a highly significant logistic relationship (n = 97), which was confirmed on a separate dataset (n = 67), showing that soil resistivity was quantitatively related to belowground tree root biomass. This relationship provides a basis for developing quick nondestructive methods for detecting root distribution and quantifying root biomass, as well as for optimizing sampling strategies for studying root-driven phenomena.

  7. Effect of three typical sulfide mineral flotation collectors on soil microbial activity.

    PubMed

    Guo, Zunwei; Yao, Jun; Wang, Fei; Yuan, Zhimin; Bararunyeretse, P; Zhao, Yue

    2016-04-01

    The sulfide mineral flotation collectors are wildly used in China, whereas their toxic effect on soil microbial activity remains largely unexplored. In this study, isothermal microcalorimetric technique and soil enzyme assay techniques were employed to investigate the toxic effect of typical sulfide mineral flotation collectors on soil microbial activity. Soil samples were treated with different concentrations (0-100 μg•g - 1 soil) of butyl xanthate, butyl dithiophosphate, and sodium diethyldithiocarbamate. Results showed a significant adverse effect of butyl xanthate (p < 0.05), butyl dithiophosphate, and sodium diethyldithiocarbamate (p < 0.01) on soil microbial activity. The growth rate constants k decreased along with the increase of flotation collectors concentration from 20.0 to 100.0 μg•g(-1). However, the adverse effects of these three floatation collectors showed significant difference. The IC 20 of the investigated flotation reagents followed such an order: IC 20 (butyl xanthate) > IC 20 (sodium diethyldithiocarbamate) > IC 20 (butyl dithiophosphate) with their respective inhibitory concentration as 47.03, 38.36, and 33.34 μg•g(-1). Besides, soil enzyme activities revealed that these three flotation collectors had an obvious effect on fluorescein diacetate hydrolysis (FDA) enzyme and catalase (CAT) enzyme. The proposed methods can provide meaningful toxicological information of flotation reagents to soil microbes in the view of metabolism and biochemistry, which are consistent and correlated to each other.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solc, J.

    The reclamation effort typically deals with consequences of mining activity instead of being planned well before the mining. Detailed assessment of principal hydro- and geochemical processes participating in pore and groundwater chemistry evolution was carried out at three surface mine localities in North Dakota-the Fritz mine, the Indian Head mine, and the Velva mine. The geochemical model MINTEQUA2 and advanced statistical analysis coupled with traditional interpretive techniques were used to determine site-specific environmental characteristics and to compare the differences between study sites. Multivariate statistical analysis indicates that sulfate, magnesium, calcium, the gypsum saturation index, and sodium contribute the most tomore » overall differences in groundwater chemistry between study sites. Soil paste extract pH and EC measurements performed on over 3700 samples document extremely acidic soils at the Fritz mine. The number of samples with pH <5.5 reaches 80%-90% of total samples from discrete depth near the top of the soil profile at the Fritz mine. Soil samples from Indian Head and Velva do not indicate the acidity below the pH of 5.5 limit. The percentage of samples with EC > 3 mS cm{sup -1} is between 20% and 40% at the Fritz mine and below 20% for samples from Indian Head and Velva. The results of geochemical modeling indicate an increased tendency for gypsum saturation within the vadose zone, particularly within the lands disturbed by mining activity. This trend is directly associated with increased concentrations of sulfate anions as a result of mineral oxidation. Geochemical modeling, statistical analysis, and soil extract pH and EC measurements proved to be reliable, fast, and relatively cost-effective tools for the assessment of soil acidity, the extent of the oxidation zone, and the potential for negative impact on pore and groundwater chemistry.« less

  9. Soil as an archive of coal-fired power plant mercury deposition.

    PubMed

    Rodríguez Martín, José Antonio; Nanos, Nikos

    2016-05-05

    Mercury pollution is a global environmental problem that has serious implications for human health. One of the most important sources of anthropogenic mercury emissions are coal-burning power plants. Hg accumulations in soil are associated with their atmospheric deposition. Our study provides the first assessment of soil Hg on the entire Spanish surface obtained from one sampling protocol. Hg spatial distribution was analysed with topsoil samples taken from 4000 locations in a regular sampling grid. The other aim was to use geostatistical techniques to verify the extent of soil contamination by Hg and to evaluate presumed Hg enrichment near the seven Spanish power plants with installed capacity above 1000 MW. The Hg concentration in Spanish soil fell within the range of 1-7564 μg kg(-1) (mean 67.2) and 50% of the samples had a concentration below 37 μg kg(-1). Evidence for human activity was found near all the coal-fired power plants, which reflects that metals have accumulated in the basin over many years. Values over 1000 μg kg(-1) have been found in soils in the vicinity of the Aboño, Soto de Ribera and Castellon power plants. However, soil Hg enrichment was detectable only close to the emission source, within an approximate range of only 15 km from the power plants. We associated this effect with airborne emissions and subsequent depositions as the potential distance through fly ash deposition. Hg associated with particles of ash tends to be deposited near coal combustion sources. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Relating soil solution Zn concentration to diffusive gradients in thin films measurements in contaminated soils.

    PubMed

    Degryse, Fien; Smolders, Erik; Oliver, Ian; Zhang, Hao

    2003-09-01

    The technique of diffusive gradients in thin films (DGT) has been suggested to sample an available fraction of metals in soil. The objectives of this study were to compare DGT measurements with commonly measured fractions of Zn in soil, viz, the soil solution concentration and the total Zn concentration. The DGT technique was used to measure fluxes and interfacial concentrations of Zn in three series of field-contaminated soils collected in transects toward galvanized electricity pylons and in 15 soils amended with ZnCl2 at six rates. The ratio of DGT-measured concentration to pore water concentration of Zn, R, varied between 0.02 and 1.52 (mean 0.29). This ratio decreased with decreasing distribution coefficient, Kd, of Zn in the soil, which is in agreement with the predictions of the DGT-induced fluxes in soils (DIFS) model. The R values predicted with the DIFS model were generally larger than the observed values in the ZnCl2-amended soils at the higher Zn rates. A modification of the DIFS model indicated that saturation of the resin gel was approached in these soils, despite the short deployment times used (2 h). The saturation of the resin with Zn did not occur in the control soils (no Zn salt added) or the field-contaminated soils. Pore water concentration of Zn in these soils was predicted from the DGT-measured concentration and the total Zn content. Predicted values and observations were generally in good agreement. The pore water concentration was more than 5 times underpredicted for the most acid soil (pH = 3) and for six other soils, for which the underprediction was attributed to the presence of colloidal Zn in the soil solution.

  11. Soil salinity study in Northern Great Plains sodium affected soil

    NASA Astrophysics Data System (ADS)

    Kharel, Tulsi P.

    Climate and land-use changes when combined with the marine sediments that underlay portions of the Northern Great Plains have increased the salinization and sodification risks. The objectives of this dissertation were to compare three chemical amendments (calcium chloride, sulfuric acid and gypsum) remediation strategies on water permeability and sodium (Na) transport in undisturbed soil columns and to develop a remote sensing technique to characterize salinization in South Dakota soils. Forty-eight undisturbed soil columns (30 cm x 15 cm) collected from White Lake, Redfield, and Pierpont were used to assess the chemical remediation strategies. In this study the experimental design was a completely randomized design and each treatment was replicated four times. Following the application of chemical remediation strategies, 45.2 cm of water was leached through these columns. The leachate was separated into 120- ml increments and analyzed for Na and electrical conductivity (EC). Sulfuric acid increased Na leaching, whereas gypsum and CaCl2 increased water permeability. Our results further indicate that to maintain effective water permeability, ratio between soil EC and sodium absorption ratio (SAR) should be considered. In the second study, soil samples from 0-15 cm depth in 62 x 62 m grid spacing were taken from the South Dakota Pierpont (65 ha) and Redfield (17 ha) sites. Saturated paste EC was measured on each soil sample. At each sampling points reflectance and derived indices (Landsat 5, 7, 8 images), elevation, slope and aspect (LiDAR) were extracted. Regression models based on multiple linear regression, classification and regression tree, cubist, and random forest techniques were developed and their ability to predict soil EC were compared. Results showed that: 1) Random forest method was found to be the most effective method because of its ability to capture spatially correlated variation, 2) the short wave infrared (1.5 -2.29 mum) and near infrared (0.75-0.90 mum) were very sensitive to soil salinity; 3) EC prediction model using all 3 season (spring, summer and fall) images was better on state wide validation dataset compared to individual season model. Finally, in eastern South Dakota, the model predicted that from 2008 to 2012, EC increased in 569,165 ha or 13.4% of the land seeded to corn (Zea mays L.) or soybeans (Glycine max L).

  12. Comparing Diagnostic Accuracy of Kato-Katz, Koga Agar Plate, Ether-Concentration, and FLOTAC for Schistosoma mansoni and Soil-Transmitted Helminths

    PubMed Central

    Glinz, Dominik; Silué, Kigbafori D.; Knopp, Stefanie; Lohourignon, Laurent K.; Yao, Kouassi P.; Steinmann, Peter; Rinaldi, Laura; Cringoli, Giuseppe; N'Goran, Eliézer K.; Utzinger, Jürg

    2010-01-01

    Background Infections with schistosomes and soil-transmitted helminths exert a considerable yet underappreciated economic and public health burden on afflicted populations. Accurate diagnosis is crucial for patient management, drug efficacy evaluations, and monitoring of large-scale community-based control programs. Methods/Principal Findings The diagnostic accuracy of four copromicroscopic techniques (i.e., Kato-Katz, Koga agar plate, ether-concentration, and FLOTAC) for the detection of Schistosoma mansoni and soil-transmitted helminth eggs was compared using stool samples from 112 school children in Côte d'Ivoire. Combined results of all four methods served as a diagnostic ‘gold’ standard and revealed prevalences of S. mansoni, hookworm, Trichuris trichiura, Strongyloides stercoralis and Ascaris lumbricoides of 83.0%, 55.4%, 40.2%, 33.9% and 28.6%, respectively. A single FLOTAC from stool samples preserved in sodium acetate-acetic acid-formalin for 30 or 83 days showed a higher sensitivity for S. mansoni diagnosis (91.4%) than the ether-concentration method on stool samples preserved for 40 days (85.0%) or triplicate Kato-Katz using fresh stool samples (77.4%). Moreover, a single FLOTAC detected hookworm, A. lumbricoides and T. trichiura infections with a higher sensitivity than any of the other methods used, but resulted in lower egg counts. The Koga agar plate method was the most accurate diagnostic assay for S. stercoralis. Conclusion/Significance We have shown that the FLOTAC method holds promise for the diagnosis of S. mansoni. Moreover, our study confirms that FLOTAC is a sensitive technique for detection of common soil-transmitted helminths. For the diagnosis of S. stercoralis, the Koga agar plate method remains the method of choice. PMID:20651931

  13. Soil chemical insights provided through vibrational spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Vibrational spectroscopy techniques provide a powerful approach to study environmental materials and processes. These multifunctional analysis tools can be used to probe molecular vibrations of solid, liquid, and gaseous samples for characterizing materials, elucidating reaction mechanisms, and exam...

  14. Selected environmental plutonium research reports of the NAEG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, M.G.; Dunaway, P.B.

    Twenty-one papers were presented on various aspects of plutonium and radioisotope ecology at the Nevada Test Site. This includes studies of wildlife, microorganisms, and the plant-soil system. Analysis and sampling techniques are also included.

  15. Differential Scanning Calorimetry and Evolved Gas Analysis at Mars Ambient Conditions Using the Thermal Evolved Gas Analyser (TEGA)

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Boynton, W. V.; Ming, D. W.; Quadlander, G.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.

    2000-01-01

    Differential Scanning Calorimetry (DSC) combined with evolved gas analysis (EGA) is a well developed technique for the analysis of a wide variety of sample types with broad application in material and soil sciences. However, the use of the technique for samples under conditions of pressure and temperature as found on other planets is one of current development and cutting edge research. The Thermal Evolved Gas Analyzer (TEGA), which was designed, built and tested at the University of Arizona's Lunar and Planetary Lab (LPL), utilizes DSC/EGA. TEGA, which was sent to Mars on the ill-fated Mars Polar Lander, was to be the first application of DSC/EGA on the surface of Mars as well as the first direct measurement of the volatile-bearing mineralogy in martian soil. Additional information is available in the original extended abstract.

  16. Development, validation, and uncertainty measurement of multi-residue analysis of organochlorine and organophosphorus pesticides using pressurized liquid extraction and dispersive-SPE techniques.

    PubMed

    Sanyal, Doyeli; Rani, Anita; Alam, Samsul; Gujral, Seema; Gupta, Ruchi

    2011-11-01

    Simple and efficient multi-residue analytical methods were developed and validated for the determination of 13 organochlorine and 17 organophosphorous pesticides from soil, spinach and eggplant. Techniques namely accelerated solvent extraction and dispersive SPE were used for sample preparations. The recovery studies were carried out by spiking the samples at three concentration levels (1 limit of quantification (LOQ), 5 LOQ, and 10 LOQ). The methods were subjected to a thorough validation procedure. The mean recovery for soil, spinach and eggplant were in the range of 70-120% with median CV (%) below 10%. The total uncertainty was evaluated taking four main independent sources viz., weighing, purity of the standard, GC calibration curve and repeatability under consideration. The expanded uncertainty was well below 10% for most of the pesticides and the rest fell in the range of 10-20%.

  17. Ecotoxicological evaluation of diesel-contaminated soil before and after a bioremediation process.

    PubMed

    Molina-Barahona, L; Vega-Loyo, L; Guerrero, M; Ramírez, S; Romero, I; Vega-Jarquín, C; Albores, A

    2005-02-01

    Evaluation of contaminated sites is usually performed by chemical analysis of pollutants in soil. This is not enough either to evaluate the environmental risk of contaminated soil nor to evaluate the efficiency of soil cleanup techniques. Information on the bioavailability of complex mixtures of xenobiotics and degradation products cannot be totally provided by chemical analytical data, but results from bioassays can integrate the effects of pollutants in complex mixtures. In the preservation of human health and environment quality, it is important to assess the ecotoxicological effects of contaminated soils to obtain a better evaluation of the healthiness of this system. The monitoring of a diesel-contaminated soil and the evaluation of a bioremediation technique conducted on a microcosm scale were performed by a battery of ecotoxicological tests including phytotoxicity, Daphnia magna, and nematode assays. In this study we biostimulated the native microflora of soil contaminated with diesel by adding nutrients and crop residue (corn straw) as a bulking agent and as a source of microorganisms and nutrients; in addition, moisture was adjusted to enhance diesel removal. The bioremediation process efficiency was evaluated directly by an innovative, simple phytotoxicity test system and the diesel extracts by Daphnia magna and nematode assays. Contaminated soil samples were revealed to have toxic effects on seed germination, seedling growth, and Daphnia survival. After biostimulation, the diesel concentration was reduced by 50.6%, and the soil samples showed a significant reduction in phytotoxicity (9%-15%) and Daphnia assays (3-fold), confirming the effectiveness of the bioremediation process. Results from our microcosm study suggest that in addition to the evaluation of the bioremediation processes efficiency, toxicity testing is different with organisms representative of diverse phylogenic levels. The integration of analytical, toxicological and bioremediation data is necessary to properly assess the ecological risk of bioremediation processes. (c) 2005 Wiley Periodicals, Inc.

  18. Analysis of CL-20 in environmental matrices: water and soil.

    PubMed

    Larson, Steven L; Felt, Deborah R; Davis, Jeffrey L; Escalon, Lynn

    2002-04-01

    Analytical techniques for the detection of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo(5.5.0.05,9.03,11)dodecane (CL-20) in water and soil are developed by adapting methods traditionally used for the analysis of nitroaromatics. CL-20 (a new explosives compound) is thermally labile, exhibits high polarity, and has low solubility in water. These constraints make the use of specialized sample handling, preparation, extraction, and analysis necessary. The ability to determine the concentrations of this new explosive compound in environmental matrices is helpful in understanding the environmental fate and effects of CL-20; understanding the physical, chemical, and biological fate of CL-20; and can be used in developing remediation technologies and determining their efficiency. The toxicity and mobility of new explosives in soil and groundwater are also of interest, and analytical techniques for quantitating CL-20 and its degradation products in soil and natural waters make these investigations possible.

  19. Some Research into Wetting in Natural Systems

    NASA Astrophysics Data System (ADS)

    Shirtcliffe, Neil; Struck, Alexander; Albiez, Vera; Walker, Shani-Nini

    2017-04-01

    We have been investigating some natural systems that turn out to have some interesting similarities to soil. Our recent focus has been on the wings of insects, in particular locally available butterfly, dragonfly and damselfly species. These can be shown to repel water highly efficiently under some conditions and to become less repellent or even sticky under others. Although we have not fully characterized the system yet, it shows a time delay similar to that observed on water repellent soils and seems to be related in some ways. We are also beginning to investigate how soils, or more particularly composts behave when electrically stimulated at different frequencies. We hope to be able to extract information about the liquid in the soils from this technique and therefore to be able to rapidly characterize samples. Significant parameters being the liquid fraction and the distribution of particles. This technique typically gives considerably more and more robust data than single frequency or D.C. measurements.

  20. Prediction of Root Zone Soil Moisture using Remote Sensing Products and In-Situ Observation under Climate Change Scenario

    NASA Astrophysics Data System (ADS)

    Singh, G.; Panda, R. K.; Mohanty, B.

    2015-12-01

    Prediction of root zone soil moisture status at field level is vital for developing efficient agricultural water management schemes. In this study, root zone soil moisture was estimated across the Rana watershed in Eastern India, by assimilation of near-surface soil moisture estimate from SMOS satellite into a physically-based Soil-Water-Atmosphere-Plant (SWAP) model. An ensemble Kalman filter (EnKF) technique coupled with SWAP model was used for assimilating the satellite soil moisture observation at different spatial scales. The universal triangle concept and artificial intelligence techniques were applied to disaggregate the SMOS satellite monitored near-surface soil moisture at a 40 km resolution to finer scale (1 km resolution), using higher spatial resolution of MODIS derived vegetation indices (NDVI) and land surface temperature (Ts). The disaggregated surface soil moisture were compared to ground-based measurements in diverse landscape using portable impedance probe and gravimetric samples. Simulated root zone soil moisture were compared with continuous soil moisture profile measurements at three monitoring stations. In addition, the impact of projected climate change on root zone soil moisture were also evaluated. The climate change projections of rainfall were analyzed for the Rana watershed from statistically downscaled Global Circulation Models (GCMs). The long-term root zone soil moisture dynamics were estimated by including a rainfall generator of likely scenarios. The predicted long term root zone soil moisture status at finer scale can help in developing efficient agricultural water management schemes to increase crop production, which lead to enhance the water use efficiency.

  1. Quantification of spatial distribution and spread of bacteria in soil at microscale

    NASA Astrophysics Data System (ADS)

    Juyal, Archana; Eickhorst, Thilo; Falconer, Ruth; Baveye, Philippe; Otten, Wilfred

    2015-04-01

    Soil bacteria play an essential role in functioning of ecosystems and maintaining of biogeochemical cycles. Soil is a complex heterogeneous environment comprising of highly variable and dynamic micro-habitats that have significant impacts on the growth and activity of resident microbiota including bacteria and fungi. Bacteria occupy a very small portion of available pore space in soil which demonstrates that their spatial arrangement in soil has a huge impact on the contact to their target and on the way they interact to carry out their functions. Due to limitation of techniques, there is scant information on spatial distribution of indigenous or introduced bacteria at microhabitat scale. There is a need to understand the interaction between soil structure and microorganisms including fungi for ecosystem-level processes such as carbon sequestration and improving the predictive models for soil management. In this work, a combination of techniques was used including X-ray CT to characterize the soil structure and in-situ detection via fluorescence microscopy to visualize and quantify bacteria in soil thin sections. Pseudomonas fluorescens bacteria were introduced in sterilized soil of aggregate size 1-2 mm and packed at bulk-densities 1.3 g cm-3 and 1.5 g cm-3. A subset of samples was fixed with paraformaldehyde and subsequently impregnated with resin. DAPI and fluorescence in situ hybridization (FISH) were used to visualize bacteria in thin sections of soil cores by epifluorescence microscopy to enumerate spatial distribution of bacteria in soil. The pore geometry of soil was quantified after X-ray microtomography scanning. The distribution of bacteria introduced locally reduced significantly (P

  2. Environmental persistence of the nucleopolyhedrosis virus of the gypsy moth, Lymantria dispar L

    Treesearch

    J.D. Podgwaite; Kathleen Stone Shields; R.T. Zerillo; R.B. Bruen

    1979-01-01

    A bioassay technique was used to estimate the concentrations of infectious gypsy moth nucleopolyhedrosis virus (NPV) that occur naturaIly in leaf, bark, litter, and soil samples taken from woodland plots in Connecticut and Pennsylvania. These concentrations were then compared to those in samples taken sequentially after treatment of these plots with NPV. Results...

  3. Use of gas chromatography-mass spectrometry for the assessment of the contamination caused by small concentrations of nitrophenols in soils and sediments

    NASA Astrophysics Data System (ADS)

    Cacho, Juan-Ignacio; Campillo, Natalia; Viñas, Pilar; Hernandez-Cordoba, Manuel

    2015-04-01

    Nitrophenols (NPs) are widely distributed environmental contaminants that can be present in soils and sediments due to the degradation of some pesticides (parathion and fenitrothion) or by accidental spilling in ammunition plants or storage places. This communication reports a rapid and sensitive procedure for the determination of the most common NPs in soils by using gas chromatography coupled to mass spectrometry (GC-MS) as the analytical technique. Ultrasound assisted extraction (UAE) was employed for the extraction of the NPs from the soil samples to an organic solvent. Next, the resulting UAE extracts were submitted to dispersive liquid-liquid microextraction (DLLME) for achieving an effective preconcentration. DLLME is an easy-to-carry out, environmentally friendly separation technique involving minimal amounts of organic solvents. Since the volatility of NPs is low, as a previous stage to the GC-MS measurement the compounds were derivatized using a simple "in-situ" acetylation procedure. The main parameters affecting the UAE stage, as well as the DLLME and derivatization steps, were investigated looking for maximum analytical signals. The optimized procedure provided extraction recoveries in the 72-86% range, with precision values (expressed as relative standard deviation, RSD) ≤ 12%, and detection limits ranging from 1.3 and 3.3 ng g-1, depending on the compound. 20 soil and sediment samples, from military, industrial and agricultural areas were analyzed by the studied procedure in order to check its applicability.

  4. Quantitative detection of Lactarius deliciosus extraradical soil mycelium by real-time PCR and its application in the study of fungal persistence and interspecific competition.

    PubMed

    Parladé, J; Hortal, S; Pera, J; Galipienso, L

    2007-01-30

    Real-Time PCR has been applied to quantify extraradical soil mycelium of the edible ectomycorrhizal fungus Lactarius deliciosus in an interspecific competition experiment under greenhouse conditions. Couples of Pinus pinea seedlings inoculated with either L. deliciosus, Rhizopogon roseolus, or non-inoculated (control) were transplanted into pots filled with two types of soil in all the possible combinations. Total DNA was extracted from soil samples at 3 and 6 months after transplantation to perform real-time PCR analysis. DNA extractions from soil mixed with known amounts of mycelium of L. deliciosus were used as standards. Six months after transplantation, the percentage of mycorrhizas of L. deliciosus and seedling growth were significantly affected by the soil type. Extraradical soil mycelium of L. deliciosus was positively correlated with the final percentage of mycorrhizas and significantly affected by the sampling time and soil depth. The competition effect of R. roseolus was not significant for any of the measured parameters, probably due to the sharp decrease of the mycorrhizal colonization by this fungus. We conclude that real-time PCR is a powerful technique for extraradical mycelium quantification in studies aimed at evaluating the persistence of introduced strains of L. deliciosus in field plantations.

  5. Isolation and identification of soil fungi isolates from forest soil for flooded soil recovery

    NASA Astrophysics Data System (ADS)

    Hazwani Aziz, Nor; Zainol, Norazwina

    2018-04-01

    Soil fungi have been evaluated for their ability in increasing and recovering nitrogen, phosphorus and potassium content in flooded soil and in promoting the growth of the host plant. Host plant was cultivated in a mixture of fertile forest soil (nutrient-rich soil) and simulated flooded soil (nutrient-poor soil) in an optimized soil condition for two weeks. The soil sample was harvested every day until two weeks of planting and was tested for nitrogen, phosphorus and potassium concentration. Soil fungi were isolated by using dilution plating technique and was identified by Biolog’s Microbial Systems. The concentration of nitrogen, phosphorus, and potassium was found to be increasing after two weeks by two to three times approximately from the initial concentration recorded. Two fungi species were identified with probability more than 90% namely Aspergillus aculeatus and Paecilomyces lilacinus. Both identified fungi were found to be beneficial in enhancing plant growth and increasing the availability of nutrient content in the soil and thus recovering the nutrient content in the flooded soil.

  6. Effects of Cd and Pb on soil microbial community structure and activities.

    PubMed

    Khan, Sardar; Hesham, Abd El-Latif; Qiao, Min; Rehman, Shafiqur; He, Ji-Zheng

    2010-02-01

    Soil contamination with heavy metals occurs as a result of both anthropogenic and natural activities. Heavy metals could have long-term hazardous impacts on the health of soil ecosystems and adverse influences on soil biological processes. Soil enzymatic activities are recognized as sensors towards any natural and anthropogenic disturbance occurring in the soil ecosystem. Similarly, microbial biomass carbon (MBC) is also considered as one of the important soil biological activities frequently influenced by heavy metal contamination. The polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) has recently been used to investigate changes in soil microbial community composition in response to environmental stresses. Soil microbial community structure and activities are difficult to elucidate using single monitoring approach; therefore, for a better insight and complete depiction of the soil microbial situation, different approaches need to be used. This study was conducted in a greenhouse for a period of 12 weeks to evaluate the changes in indigenous microbial community structure and activities in the soil amended with different application rates of Cd, Pb, and Cd/Pb mix. In a field environment, soil is contaminated with single or mixed heavy metals; so that, in this research, we used the selected metals in both single and mixed forms at different application rates and investigated their toxic effects on microbial community structure and activities, using soil enzyme assays, plate counting, and advanced molecular DGGE technique. Soil microbial activities, including acid phosphatase (ACP), urease (URE), and MBC, and microbial community structure were studied. A soil sample (0-20 cm) with an unknown history of heavy metal contamination was collected and amended with Cd, Pb, and Cd/Pb mix using the CdSO(4) and Pb(NO(3))(2) solutions at different application rates. The amended soils were incubated in the greenhouse at 25 +/- 4 degrees C and 60% water-holding capacity for 12 weeks. During the incubation period, samples were collected from each pot at 0, 2, 9, and 12 weeks for enzyme assays, MBC, numeration of microbes, and DNA extraction. Fumigation-extraction method was used to measure the MBC, while plate counting techniques were used to numerate viable heterotrophic bacteria, fungi, and actinomycetes. Soil DNAs were extracted from the samples and used for DGGE analysis. ACP, URE, and MBC activities of microbial community were significantly lower (p < 0.05) in the metal-amended samples than those in the control. The enzyme inhibition extent was obvious between different incubation periods and varied as the incubation proceeded, and the highest rate was detected in the samples after 2 weeks. However, the lowest values of ACP and URE activities (35.6% and 36.6% of the control, respectively) were found in the Cd(3)/Pb(3)-treated sample after 2 weeks. Similarly, MBC was strongly decreased in both Cd/Pb-amended samples and highest reduction (52.4%) was detected for Cd(3)/Pb(3) treatment. The number of bacteria and actinomycetes were significantly decreased in the heavy metal-amended samples compared to the control, while fungal cells were not significantly different (from 2.3% to 23.87%). In this study, the DGGE profile indicated that the high dose of metal amendment caused a greater change in the number of bands. DGGE banding patterns confirmed that the addition of metals had a significant impact on microbial community structure. In soil ecosystem, heavy metals exhibit toxicological effects on soil microbes which may lead to the decrease of their numbers and activities. This study demonstrated that toxicological effects of heavy metals on soil microbial community structure and activities depend largely on the type and concentration of metal and incubation time. The inhibition extent varied widely among different incubation periods for these enzymes. Furthermore, the rapid inhibition in microbial activities such as ACP, URE, and MBC were observed in the 2 weeks, which should be related to the fact that the microbes were suddenly exposed to heavy metals. The increased inhibition of soil microbial activities is likely to be related to tolerance and adaptation of the microbial community, concentration of pollutants, and mechanisms of heavy metals. The DGGE profile has shown that the structure of the bacterial community changed in amended heavy metal samples. In this research, the microbial community structure was highly affected, consistent with the lower microbial activities in different levels of heavy metals. Furthermore, a great community change in this study, particularly at a high level of contamination, was probably a result of metal toxicity and also unavailability of nutrients because no nutrients were supplied during the whole incubation period. The added concentrations of heavy metals have changed the soil microbial community structure and activities. The highest inhibitory effects on soil microbial activities were observed at 2 weeks of incubation. The bacteria were more sensitive than actinomycetes and fungi. The DGGE profile indicated that bacterial community structure was changed in the Cd/Pb-amended samples, particularly at high concentrations. The investigation of soil microbial community structure and activities together could give more reliable and accurate information about the toxic effects of heavy metals on soil health.

  7. Vadose zone studies at an industrial contaminated site: the vadose zone monitoring system and cross-hole geophysics

    NASA Astrophysics Data System (ADS)

    Fernandez de Vera, Natalia; Beaujean, Jean; Jamin, Pierre; Nguyen, Frédéric; Dahan, Ofer; Vanclooster, Marnik; Brouyère, Serge

    2014-05-01

    In order to improve risk characterization and remediation measures for soil and groundwater contamination, there is a need to improve in situ vadose zone characterization. However, most available technologies have been developed in the context of agricultural soils. Such methodologies are not applicable at industrial sites, where soils and contamination differ in origin and composition. In addition, most technologies are applicable only in the first meters of soils, leaving deeper vadose zones with lack of information, in particular on field scale heterogeneity. In order to overcome such difficulties, a vadose zone experiment has been setup at a former industrial site in Belgium. Industrial activities carried out on site left a legacy of soil and groundwater contamination in BTEX, PAH, cyanide and heavy metals. The experiment comprises the combination of two techniques: the Vadose Zone Monitoring System (VMS) and cross-hole geophysics. The VMS allows continuous measurements of water content and temperature at different depths of the vadose zone. In addition, it provides the possibility of pore water sampling at different depths. The system is formed by a flexible sleeve containing monitoring units along its depth which is installed in a slanted borehole. The flexible sleeve contains three types of monitoring units in the vadose zone: Time Domain Transmissometry (TDT), which allows water content measurements; Vadose Sampling Ports (VSP), used for collecting water samples coming from the matrix; the Fracture Samplers (FS), which are used for retrieving water samples from the fractures. Cross-hole geophysics techniques consist in the injection of an electrical current using electrodes installed in vertical boreholes. From measured potential differences, detailed spatial patterns about electrical properties of the subsurface can be inferred. Such spatial patterns are related with subsurface heterogeneities, water content and solute concentrations. Two VMS were installed in two slanted boreholes on site, together with four vertical boreholes containing electrodes for geophysical measurements. Currently the site is being monitored under natural recharge conditions. Initial results show the reaction of the vadose zone to rainfall events, as well as chemical evolution of soil water with depth.

  8. Isotopic signatures: An important tool in today`s world

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rokop, D.J.; Efurd, D.W.; Benjamin, T.M.

    1995-12-01

    High-sensitivity/high-accuracy actinide measurement techniques developed to support weapons diagnostic capabilities at the Los Alamos National Laboratory are now being used for environmental monitoring. The measurement techniques used are Thermal Ionization Mass Spectrometry (TIMS), Alpha Spectrometry(AS), and High Resolution Gamma Spectrometry(HRGS). These techniques are used to address a wide variety of actinide inventory issues: Environmental surveillance, site characterizations, food chain member determination, sedimentary records of activities, and treaty compliance concerns. As little as 10 femtograms of plutonium can be detected in samples and isotopic signatures determined on samples containing sub-100 femtogram amounts. Uranium, present in all environmental samples, can generally yieldmore » isotopic signatures of anthropogenic origin when present at the 40 picogam/gram level. Solid samples (soils, sediments, fauna, and tissue) can range from a few particles to several kilograms in size. Water samples can range from a few milliliters to as much as 200 liters.« less

  9. High yield of functional metagenomic library from mangroves constructed in fosmid vector.

    PubMed

    Gonçalves, A C S; dos Santos, A C F; dos Santos, T F; Pessoa, T B A; Dias, J C T; Rezende, R P

    2015-10-02

    In the present study, metagenomic technique and fosmid vectors were used to construct a library of clones for exploring the biotechnological potential of mangrove soils by isolation of functional genes encoding hydrolytic enzymes. The library was built with genomic DNA from the soil samples of mangrove sediments and the functional screening of 1824 clones (~64 Mbp) was performed to detect the hydrolytic activity specific for cellulases, amylases (at acidic, neutral and basic pH), lipases/esterases, proteases, and nitrilases. Significant numbers of clones, positive for the tested enzyme activities were obtained. Our results indicate the importance and biotechnological potential of mangrove soils especially when compared to those obtained using other soil metagenomic libraries.

  10. Characterizing scale- and location-dependent correlation of water retention parameters with soil physical properties using wavelet techniques.

    PubMed

    Shu, Qiaosheng; Liu, Zuoxin; Si, Bingcheng

    2008-01-01

    Understanding the correlation between soil hydraulic parameters and soil physical properties is a prerequisite for the prediction of soil hydraulic properties from soil physical properties. The objective of this study was to examine the scale- and location-dependent correlation between two water retention parameters (alpha and n) in the van Genuchten (1980) function and soil physical properties (sand content, bulk density [Bd], and organic carbon content) using wavelet techniques. Soil samples were collected from a transect from Fuxin, China. Soil water retention curves were measured, and the van Genuchten parameters were obtained through curve fitting. Wavelet coherency analysis was used to elucidate the location- and scale-dependent relationships between these parameters and soil physical properties. Results showed that the wavelet coherence between alpha and sand content was significantly different from red noise at small scales (8-20 m) and from a distance of 30 to 470 m. Their wavelet phase spectrum was predominantly out of phase, indicating negative correlation between these two variables. The strong negative correlation between alpha and Bd existed mainly at medium scales (30-80 m). However, parameter n had a strong positive correlation only with Bd at scales between 20 and 80 m. Neither of the two retention parameters had significant wavelet coherency with organic carbon content. These results suggested that location-dependent scale analyses are necessary to improve the performance for soil water retention characteristic predictions.

  11. [Evaluation on environmental quality of heavy metals in soils and vegetables based on geostatistics and GIS].

    PubMed

    Xie, Zheng-miao; Li, Jing; Wang, Bi-ling; Chen, Jian-jun

    2006-10-01

    Contents of heavy metals (Pb, Zn, Cd, Cu) in soils and vegetables from Dongguan town in Shangyu city, China were studied using geostatistical analysis and GIS technique to evaluate environmental quality. Based on the evaluation criteria, the distribution of the spatial variability of heavy metals in soil-vegetable system was mapped and analyzed. The results showed that the distribution of soil heavy metals in a large number of soil samples in Dongguan town was asymmetric. The contents of Zn and Cu were lower than those of Cd and Pb. The concentrations distribution of Pb, Zn, Cd and Cu in soils and vegetables were different in spatial variability. There was a close relationship between total and available contents of heavy metals in soil. The contents of Pb and Cd in green vegetables were higher than those of Zn and Cu and exceeded the national sanitation standards for vegetables.

  12. Determination of As concentration in earthworm coelomic fluid extracts by total-reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Allegretta, Ignazio; Porfido, Carlo; Panzarino, Onofrio; Fontanella, Maria Chiara; Beone, Gian Maria; Spagnuolo, Matteo; Terzano, Roberto

    2017-04-01

    Earthworms are often used as sentinel organisms to study As bioavailability in polluted soils. Arsenic in earthworms is mainly sequestrated in the coelomic fluids whose As content can therefore be used to asses As bioavalability. In this work, a method for determining As concentration in coelomic fluid extracts using total-reflection X-ray fluorescence spectrometry (TXRF) is presented. For this purpose coelomic fluid extracts from earthworms living in three polluted soils and one non-polluted (control) soil have been collected and analysed. A very simple sample preparation was implemented, consisting of a dilution of the extracts with polyvinyl alcohol (PVA) using a 1:8 ratio and dropwise deposition of the sample on the reflector. A detection limit of 0.2 μg/l and quantification limit of 0.6 μg/l was obtained in the diluted samples, corresponding to 2 μg/l and 6 μg/l in the coelomic fluid extracts, respectively. This allowed to quantify As concentration in coelomic fluids extracted from earthworms living in soils polluted with As at concentrations higher than 20 mg/kg (considered as a pollution threshold for agricultural soils). The TXRF method has been validated by comparison with As concentrations in standards and by analysing the same samples by ICP-MS, after acid digestion of the sample. The low limit of detection, the proven reliability of the method and the little sample preparation make TXRF a suitable, cost-efficient and "green" technique for the analysis of As in earthworm coelomic fluid extracts for bioavailability studies.

  13. Target-specific digital soil mapping supporting terroir mapping in Tokaj Wine Region, Hungary

    NASA Astrophysics Data System (ADS)

    Takács, Katalin; Szabó, József; Laborczi, Annamária; Szatmári, Gábor; László, Péter; Koós, Sándor; Bakacsi, Zsófia; Pásztor, László

    2016-04-01

    Tokaj Wine Region - located in Northeast-Hungary, at Hegyalja, in Tokaj Mountains - is a historical region for botrityzed dessert wine making. Very recently the sustainable quality wine production in the region was targeted, which requires detailed and "terroir-based approach" characterization of viticultural land and the survey of the state of vineyards. Terroir is a homogeneous area that relates to both environmental and cultural factors, that influence the grape and wine quality. Soil plays dominant role determining the viticultural potential and terroir delineation. According to viticultural experts the most relevant soil properties are drainage, water holding capacity, soil depth and pH. Not all of these soil characteristics can be directly measured, therefore the synthesis of observed soil properties is needed to satisfy the requirements of terroir mapping. The sampling strategy was designed to be representative to the combinations of basic environmental parameters (slope, aspect and geology) which determine the main soil properties of the vineyards. Field survey was carried out in two steps. At first soil samples were collected from 200 sites to obtain a general view about the pedology of the area. In the second stage further 650 samples were collected and the sampling strategy was designed based on spatial annealing technique taking into consideration the results of the preliminary survey and the local characteristics of vineyards. The data collection regarded soil type, soil depth, parent material, rate of erosion, organic matter content and further physical and chemical soil properties which support the inference of the proper soil parameters. In the framework of the recent project 33 primary and secondary soil property, soil class and soil function maps were compiled. A set of the resulting maps supports to meet the demands of the Hungarian standard viticultural potential assessment, while the majority of the maps is intended to be applied for terroir delineation. The spatial extension was performed by two, different methods which are widely applied in digital soil mapping. Regression kriging was used for creating continuous soil property maps, category type soil maps were compiled by classification trees method. Accuracy assessment was also provided for all of the soil map products. Our poster will present the summary of the project workflow - the design of sampling strategy, field survey, digital soil mapping process - and some examples of the resulting soil property maps indicating their applicability in terroir delineation. Acknowledgement: The authors are grateful to the Tokaj Kereskedöház Ltd. which has been supporting the project for the survey of the state of vineyards. Digital soil mapping was partly supported by the Hungarian National Scientific Research Foundation (OTKA, Grant No. K105167).

  14. Structural changes of green roof growing substrate layer studied by X-ray CT

    NASA Astrophysics Data System (ADS)

    Jelinkova, Vladimira; Sacha, Jan; Dohnal, Michal; Snehota, Michal

    2017-04-01

    Increasing interest in green infrastructure linked with newly implemented legislation/rules/laws worldwide opens up research potential for field of soil hydrology. A better understanding of function of engineered soils involved in green infrastructure solutions such as green roofs or rain garden is needed. A soil layer is considered as a highly significant component of the aforesaid systems. In comparison with a natural soil, the engineered soil is assumed to be the more challenging case due to rapid structure changes early stages after its build-up. The green infrastructure efficiency depends on the physical and chemical properties of the soil, which are, in the case of engineered soils, a function of its initial composition and subsequent soil formation processes. The project presented in this paper is focused on fundamental processes in the relatively thick layer of engineered soil. The initial structure development, during which the pore geometry is altered by the growth of plant roots, water influx, solid particles translocation and other soil formation processes, is investigated with the help of noninvasive imaging technique  X-ray computed tomography. The soil development has been studied on undisturbed soil samples taken periodically from green roof test system during early stages of its life cycle. Two approaches and sample sizes were employed. In the first approach, undisturbed samples (volume of about 63 cm3) were taken each time from the test site and scanned by X-ray CT. In the second approach, samples (volume of about 630 cm3) were permanently installed at the test site and has been repeatedly removed to perform X-ray CT imaging. CT-derived macroporosity profiles reveal significant temporal changes of soil structure. Clogging of pores by fine particles and fissures development are two most significant changes that would affect the green roof system efficiency. This work has been supported by the Ministry of Education, Youth and Sports within National Sustainability Programme I, project number LO1605 and with financial support from the Czech Science Foundation under project number GAČR 17-21011S.

  15. 10 CFR 51.22 - Criterion for categorical exclusion; identification of licensing and regulatory actions eligible...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... United States, to fund scholarships, fellowships, and stipends for the study of science, engineering, or...-harmful techniques such as taking water or soil samples or collecting non-protected species of flora and...

  16. 10 CFR 51.22 - Criterion for categorical exclusion; identification of licensing and regulatory actions eligible...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... United States, to fund scholarships, fellowships, and stipends for the study of science, engineering, or...-harmful techniques such as taking water or soil samples or collecting non-protected species of flora and...

  17. 10 CFR 51.22 - Criterion for categorical exclusion; identification of licensing and regulatory actions eligible...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... United States, to fund scholarships, fellowships, and stipends for the study of science, engineering, or...-harmful techniques such as taking water or soil samples or collecting non-protected species of flora and...

  18. 10 CFR 51.22 - Criterion for categorical exclusion; identification of licensing and regulatory actions eligible...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... United States, to fund scholarships, fellowships, and stipends for the study of science, engineering, or...-harmful techniques such as taking water or soil samples or collecting non-protected species of flora and...

  19. Field and laboratory procedures used in a soil chronosequence study

    USGS Publications Warehouse

    Singer, Michael J.; Janitzky, Peter

    1986-01-01

    In 1978, the late Denis Marchand initiated a research project entitled "Soil Correlation and Dating at the U.S. Geological Survey" to determine the usefulness of soils in solving geologic problems. Marchand proposed to establish soil chronosequences that could be dated independently of soil development by using radiometric and other numeric dating methods. In addition, by comparing dated chronosequences in different environments, rates of soil development could be studied and compared among varying climates and mineralogical conditions. The project was fundamental in documenting the value of soils in studies of mapping, correlating, and dating late Cenozoic deposits and in studying soil genesis. All published reports by members of the project are included in the bibliography.The project demanded that methods be adapted or developed to ensure comparability over a wide variation in soil types. Emphasis was placed on obtaining professional expertise and on establishing consistent techniques, especially for the field, laboratory, and data-compilation methods. Since 1978, twelve chronosequences have been sampled and analyzed by members of this project, and methods have been established and used consistently for analysis of the samples.The goals of this report are to:Document the methods used for the study on soil chronosequences,Present the results of tests that were run for precision, accuracy, and effectiveness, andDiscuss our modifications to standard procedures.Many of the methods presented herein are standard and have been reported elsewhere. However, we assume less prior analytical knowledge in our descriptions; thus, the manual should be easy to follow for the inexperienced analyst. Each chapter presents one or more references of the basic principle, an equipment and reagents list, and the detailed procedure. In some chapters this is followed by additional remarks or example calculations.The flow diagram in figure 1 outlines the step-by-step procedures used to obtain and analyze soil samples for this study. The soils analyzed had a wide range of characteristics (such as clay content, mineralogy, salinity, and acidity). Initially, a major task was to test and select methods that could be applied and interpreted similarly for the various types of soils. Tests were conducted to establish the effectiveness and comparability of analytical techniques, and the data for such tests are included in figures, tables, and discussions. In addition, many replicate analyses of samples have established a "standard error" or "coefficient of variance" which indicates the average reproducibility of each laboratory procedure. These averaged errors are reported as percentage of a given value. For example, in particle-size determination, 3 percent error for 10 percent clay content equals 10 ± 0.3 percent clay. The error sources were examined to determine, for example, if the error in particle-size determination was dependent on clay content. No such biases were found, and data are reported as percent error in the text and in tables of reproducibility.

  20. Active sampling technique to enhance chemical signature of buried explosives

    NASA Astrophysics Data System (ADS)

    Lovell, John S.; French, Patrick D.

    2004-09-01

    Deminers and dismounted countermine engineers commonly use metal detectors, ground penetrating radar and probes to locate mines. Many modern landmines have a very low metal content, which severely limits the effectiveness of metal detectors. Canines have also been used for landmine detection for decades. Experiments have shown that canines smell the explosives which are known to leak from most types of landmines. The fact that dogs can detect landmines indicates that vapor sensing is a viable approach to landmine detection. Several groups are currently developing systems to detect landmines by "sniffing" for the ultra-trace explosive vapors above the soil. The amount of material that is available to passive vapor sensing systems is limited to no more than the vapor in equilibrium with the explosive related chemicals (ERCs) distributed in the surface soils over and near the landmine. The low equilibrium vapor pressure of TNT in the soil/atmosphere boundary layer and the limited volume of the boundary layer air imply that passive chemical vapor sensing systems require sensitivities in the picogram range, or lower. ADA is working to overcome many of the limitations of passive sampling methods, by the use of an active sampling method that employs a high-powered (1,200+ joules) strobe lamp to create a highly amplified plume of vapor and/or ERC-bearing fine particulates. Initial investigations have demonstrated that this approach can amplify the detectability of TNT by two or three orders of magnitude. This new active sampling technique could be used with any suitable explosive sensor.

  1. Distribution of Keratinophilic Fungi in Soil Across Tunisia: A Descriptive Study and Review of the Literature.

    PubMed

    Anane, Sonia; Al-Yasiri, Mohammed Hashim Yasir; Normand, Anne-Cécile; Ranque, Stéphane

    2015-08-01

    Data on the frequency and distribution of keratinophilic fungi in soil of Tunisia are scanty. The present survey aimed to describe the distribution of keratinophilic fungi in soils collected in Tunisia. Keratinophilic fungi were isolated using Vanbreuseghem's hair-baiting technique from 354 soil samples collected in 15 governorates of Tunisia and identified according to their morphology with further DNA and MALDI-TOF analysis when necessary. Keratinophilic fungi were isolated from 46.3 % of the samples from 14 governorates. Chrysosporium keratinophilum was the predominant species (30.5 %) followed by Microsporum gypseum (27.4 %). Other isolated species included C. tropicum (14.0 %), C. indicum (11.0 %), Chaetomium sp. (4.9 %), Arthroderma curreyi, Arthroderma cuniculi (3.7 % each), C. merdarium (3.1 %), Anixiopsis stercoraria, C. parvum, Paecilomyces lilacinus, Auxarthron zuffianum (2.4 % each), Fusarium oxysporum, Aphanoascus verrucosus, Gymnascella dankaliensis (1.2 % each) and 12 other species (0.6 % each). Two to five distinct fungal species were associated with 11.5 % of the positive samples. Keratinophilic fungi were more frequently isolated in rural (54.8 %) than in urban (41.1 %) areas (p = 0.012). The highest (100 %) positive culture rate was noted in soil collected in stables. Keratinophilic fungi are frequent throughout Tunisian territory, particularly in soils with a high organic matter content that should be regarded as humans and animals mycoses reservoir.

  2. Application of the denaturing gradient gel electrophoresis (DGGE) technique as an efficient diagnostic tool for ciliate communities in soil.

    PubMed

    Jousset, Alexandre; Lara, Enrique; Nikolausz, Marcell; Harms, Hauke; Chatzinotas, Antonis

    2010-02-01

    Ciliates (or Ciliophora) are ubiquitous organisms which can be widely used as bioindicators in ecosystems exposed to anthropogenic and industrial influences. The evaluation of the environmental impact on soil ciliate communities with methods relying on morphology-based identification may be hampered by the large number of samples usually required for a statistically supported, reliable conclusion. Cultivation-independent molecular-biological diagnostic tools are a promising alternative to greatly simplify and accelerate such studies. In this present work a ciliate-specific fingerprint method based on the amplification of a phylogenetic marker gene (i.e. the 18S ribosomal RNA gene) with subsequent analysis by denaturing gradient gel electrophoresis (DGGE) was developed and used to monitor community shifts in a polycyclic aromatic hydrocarbon (PAH) polluted soil. The semi-nested approach generated ciliate-specific amplification products from all soil samples and allowed to distinguish community profiles from a PAH-polluted and a non-polluted control soil. Subsequent sequence analysis of excised bands provided evidence that polluted soil samples are dominated by organisms belonging to the class Colpodea. The general DGGE approach presented in this study might thus in principle serve as a fast and reproducible diagnostic tool, complementing and facilitating future ecological and ecotoxicological monitoring of ciliates in polluted habitats. Copyright 2009 Elsevier B.V. All rights reserved.

  3. Keratinophilic fungi isolated from soils of long-term fold-grazed, degraded pastures in national parks of Slovakia.

    PubMed

    Javoreková, Soňa; Labuda, Roman; Maková, Jana; Novák, Ján; Medo, Juraj; Majerčíková, Kamila

    2012-09-01

    A total of 939 isolates of 11 genera representing 15 species of keratinophilic fungi were isolated and identified from the soils of three long-term fold-grazed pastures in national parks of Slovakia (Pod Ploskou, Strungový príslop, and Pod Kečkou) and one non-fold-grazed pasture in sierra Stolicke vrchy (Diel) using the hair-baiting technique. Keratinophilic fungi were present in all soil samples with a prevalence of Trichophyton ajelloi and Paecilomyces lilacinus. These fungi were more abundant in soil from fold-grazed pasture (Strungový príslop) compared to non-fold-grazed pasture (Diel). The occurrence of the other keratinophilic fungi was substantially lower, likely because of low pH in some soils.

  4. Influence of the biochar application for the recovery of Spanish mine area

    NASA Astrophysics Data System (ADS)

    Gascó Guerrero, Gabriel; Álvarez Calvo, María Luisa; Paz-Ferreiro, Jorge; César Arranz, Julio; Saa, Antonio; Méndez, Ana

    2017-04-01

    The use of organic amendment areas has been a very common technique for the restoration of land affected by mining activities. Recent years, the use of biochar for the treatment of metal-contaminated soils can be an adequate strategy due to biochar can decrease the trace metal mobility. This effect depends on biochar properties as cation exchange capacity, surface area or pH which are highly related with the raw material and pyrolysis conditions. The aim of this work is to study soil response after the use of 4 different biochars in the treatment of different soil samples collected in the Rio Tinto area (Spain) which is the main Spanish Cu mine since 15 years ago. For this purpose, biochars were added to the different soils at a dosage of 8 wt%, and samples were incubated during 6 months. After this period, the influence of biochar on trace metal mobility was assessed. The study was completed determining microbial biomass, soil respiration and several enzymes activities to study the biochar influence on soil biochemical activities. We are very grateful to Ministerio de Economía y Competitividad (Spain) for financial support under Project CGL2014-58322-R.

  5. Determination of essential and toxic elements in clay soil commonly consumed by pregnant women in Tanzania

    NASA Astrophysics Data System (ADS)

    Mwalongo, D.; Mohammed, N. K.

    2013-10-01

    A habit of eating clay soil especially among pregnant women is a common practice in Tanzania. This practice known as geophagy might introduce toxic elements in the consumer's body to endanger the health of the mother and her child. Therefore it is very important to have information on the elemental composition of the eaten soil so as to assess the safety nature of the habit. In this study 100 samples of clay soil, which were reported to be originating from five regions in Tanzania and are consumed by pregnant women were analyzed to determine their levels of essential and toxic elements. The analysis was carried out using energy dispersive X-ray fluorescent technique (EDXRF) of Tanzania Atomic Energy Commission, Arusha. Essential elements Fe, Zn, Cu, Se and Mn and toxic elements As, Pb, Co, Ni, U and Th were detected in concentrations above WHO permissible limits in some of the samples. The results from this study show that the habit of eating soil is exposing the pregnant mothers and their children to metal toxicity which is detrimental to their health. Hence, further actions should be taken to discourage the habit of eating soil at all levels.

  6. Environmental contamination with Toxocara spp. eggs in public parks and playground sandpits of Greater Lisbon, Portugal.

    PubMed

    Otero, David; Alho, Ana M; Nijsse, Rolf; Roelfsema, Jeroen; Overgaauw, Paul; Madeira de Carvalho, Luís

    Toxocarosis is a zoonotic parasitic disease transmitted from companion animals to humans. Environmental contamination with Toxocara eggs is considered to be the main source of human infections. In Portugal, knowledge regarding the current situation, including density, distribution and environmental contamination by Toxocara spp., is largely unknown. The present study investigated environmental contamination with Toxocara spp. eggs, in soil and faecal samples collected from public parks and playground sandpits in Greater Lisbon, Portugal. A total of 151 soil samples and 135 canine faecal samples were collected from 7 public sandpits and 12 public parks, over a 4 month-period. Soil samples were tested by a modified centrifugation and sedimentation/flotation technique and faecal samples were tested by an adaptation of the Cornell-Wisconsin method. Molecular analysis and sequencing were performed to discriminate Toxocara species in the soil. Overall, 85.7% of the sandpits (6/7) and 50.0% of the parks (6/12) were contaminated with Toxocara spp. eggs. The molecular analysis of soil samples showed that, 85.5% of the sandpits and 34.4% of the parks were contaminated with Toxocara cati eggs. Faecal analysis showed that 12.5% of the sandpits and 3.9% of the parks contained Toxocara canis eggs. In total, 53.0% of soil and 5.9% of faecal samples were positive for Toxocara spp. Additionally, 56.0% of the eggs recovered from the samples were embryonated after 60 days of incubation, therefore considered viable and infective. The average density was 4.2 eggs per hundred grams of soil. Public parks and playground sandpits in the Lisbon area were found to be heavily contaminated with T. cati eggs, representing a serious menace to public health as the studied areas represent common places where people of all ages, particularly children, recreate. This study sounds an alarm bell regarding the necessity to undertake effective measures such as reduction of stray animals, active faecal collection by pet owners, awareness campaigns and control strategies to decrease the high risk to both animal and human health. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Stray animal and human defecation as sources of soil-transmitted helminth eggs in playgrounds of Peninsular Malaysia.

    PubMed

    Mohd Zain, S N; Rahman, R; Lewis, J W

    2015-11-01

    Soil contaminated with helminth eggs and protozoan cysts is a potential source of infection and poses a threat to the public, especially to young children frequenting playgrounds. The present study determines the levels of infection of helminth eggs in soil samples from urban and suburban playgrounds in five states in Peninsular Malaysia and identifies one source of contamination via faecal screening from stray animals. Three hundred soil samples from 60 playgrounds in five states in Peninsular Malaysia were screened using the centrifugal flotation technique to identify and determine egg/cyst counts per gram (EPG) for each parasite. All playgrounds, especially those in Penang, were found to be contaminated with eggs from four nematode genera, with Toxocara eggs (95.7%) the highest, followed by Ascaris (93.3%), Ancylostoma (88.3%) and Trichuris (77.0%). In addition, faeces from animal shelters were found to contain both helminth eggs and protozoan cysts, with overall infection rates being 54% and 57% for feline and canine samples, respectively. The most frequently occurring parasite in feline samples was Toxocara cati (37%; EPG, 42.47 ± 156.08), while in dog faeces it was Ancylostoma sp. (54%; EPG, 197.16 ± 383.28). Infection levels also tended to be influenced by season, type of park/playground and the texture of soil/faeces. The occurrence of Toxocara, Ancylostoma and Trichuris eggs in soil samples highlights the risk of transmission to the human population, especially children, while the presence of Ascaris eggs suggests a human source of contamination and raises the issue of hygiene standards and public health risks at sites under investigation.

  8. [Surveillance on the prevalence of soil-transmitted nematode infection in Fujian in 2006-2010].

    PubMed

    Chen, Bao-jian; Li, Li-sha; Zhang, Rong-yan; Li, Yan-rong; Zhang, Zhi-fang; Zheng, Guo-bin; Fang, Yan-yan; Lin, Chen-xin; Jiang, Dian-wei

    2012-02-29

    To analyze the prevalent trend of soil-transmitted nematode infection in Fujian Province during the past 5 year surveillance and evaluate the control effect. From 2006 to 2010, fecal samples of the inhabitants of 3 years old and above were collected every November and examined for intestinal helminth eggs by the modified Kato s thick smear technique at the 2 surveillance sites: Punan village of Zhangzhou and Gushan village of Shaowu. Cellophane tapes were used to detect pinworm eggs for children aged 3-12. Soil samples were also collected from vegetable field, lavatory, courtyard and kitchen of 20 randomly selected families (in 2 villages) each with stool egg-positive findings and examined for ascaris eggs by a modified saturated sodium nitrate floatation method. The prevalence of soil-transmitted nematode infection at the surveillance sites decreased from 45.3% (946/2087) in 2006 to 15.1% (226/1494) in 2010, with a reduction of 66.6%. Among the infected subjects, hookworm infection occupied 75%-85%, while ascaris or trichuris infections each accounted for less than 10%. In terms of infection intensity, 65.2%-85.5% of the hookworm infection was light, and majority of the infected subjects were farmers. The pinworm prevalence in children were still high although it had dropped down from 46.1% (140/304) in 2006 to 29.8% (36/121) in 2010, declined by 35.4%. In the 5 years, totally 400 soil samples from 100 families were examined and 21 samples were found ascaris egg positive with viable eggs in only one sample. The 5 year surveillance reveals a decreasing trend of the soil-transmitted nematode prevalence but shows a relatively high hookworm infection rate in the population and pinworm infection in children.

  9. Development of a screening method for the determination of forty-nine priority pollutants in soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiang, P.H.T.

    1985-01-01

    An extraction procedure followed by capillary GC-MS analysis was used to determine soil pollutants. Dual pH solutions with methylene chloride were used as extraction solvent system. Both base/neutral and acidic fractions were analyzed on the same fused silica 30 meter SPB-1 (SE-30) column. A GC-FID with a 60 meter wide-bore SPB-1 glass capillary column was used for quantitative analysis due to its larger sample capacity and higher sensitivity. The precision and accuracy for 5.1 ppm (51 ..mu..g/10 g) concentration in zero soil was less than 25% RSD. A headspace technique was also developed for the determination of volatile compounds. Themore » same instrumental conditions and columns were used as in the extraction procedure. The precision and accuracy for 3 grams soil sample spiked with 5.1 ppm (52 ..mu..g/10 mL) pollutant mixture in a 20 mL vial was less than 3% RSD.« less

  10. Validation and Application of a PCR Primer Set to Quantify Fungal Communities in the Soil Environment by Real-Time Quantitative PCR

    PubMed Central

    Chemidlin Prévost-Bouré, Nicolas; Christen, Richard; Dequiedt, Samuel; Mougel, Christophe; Lelièvre, Mélanie; Jolivet, Claudy; Shahbazkia, Hamid Reza; Guillou, Laure; Arrouays, Dominique; Ranjard, Lionel

    2011-01-01

    Fungi constitute an important group in soil biological diversity and functioning. However, characterization and knowledge of fungal communities is hampered because few primer sets are available to quantify fungal abundance by real-time quantitative PCR (real-time Q-PCR). The aim in this study was to quantify fungal abundance in soils by incorporating, into a real-time Q-PCR using the SYBRGreen® method, a primer set already used to study the genetic structure of soil fungal communities. To satisfy the real-time Q-PCR requirements to enhance the accuracy and reproducibility of the detection technique, this study focused on the 18S rRNA gene conserved regions. These regions are little affected by length polymorphism and may provide sufficiently small targets, a crucial criterion for enhancing accuracy and reproducibility of the detection technique. An in silico analysis of 33 primer sets targeting the 18S rRNA gene was performed to select the primer set with the best potential for real-time Q-PCR: short amplicon length; good fungal specificity and coverage. The best consensus between specificity, coverage and amplicon length among the 33 sets tested was the primer set FR1 / FF390. This in silico analysis of the specificity of FR1 / FF390 also provided additional information to the previously published analysis on this primer set. The specificity of the primer set FR1 / FF390 for Fungi was validated in vitro by cloning - sequencing the amplicons obtained from a real time Q-PCR assay performed on five independent soil samples. This assay was also used to evaluate the sensitivity and reproducibility of the method. Finally, fungal abundance in samples from 24 soils with contrasting physico-chemical and environmental characteristics was examined and ranked to determine the importance of soil texture, organic carbon content, C∶N ratio and land use in determining fungal abundance in soils. PMID:21931659

  11. Emissions of nitrous acid (HONO), nitric oxide (NO) and nitrous oxide (N2O) from boreal agricultural soil - Effect of N fertilization

    NASA Astrophysics Data System (ADS)

    Bhattarai, Hem Raj; Virkajärvi, Perttu; -Yli Pirilä, Pasi; Maljanen, Marja

    2017-04-01

    There is no doubt that nitrogen (N) fertilization has crucial role in increasing food production. However, in parallel it can cause severe impact in environment such as eutrophication, surface/groundwater pollution via nitrate (NO3-) leaching and emissions of N trace gases. Fertilization increases the emissions of nitrous oxide (N2O) which is 260 stronger greenhouse gas than carbon dioxide (CO2). It also enhances the emissions of nitric oxide (NO); an oxidized and very reactive form of nitrogen which can fluctuate the ozone (O3) concentration in atmosphere and cause acidification. The effects of N- fertilization on the emission of N2O and NO from agricultural soil are well known. However, the effects of N fertilization on nitrous acid (HONO) emissions are unknown. Few studies have shown that HONO is emitted from soil but they lack to interlink fertilization and HONO emission. HONO accounts for 17-34 % of hydroxyl (OH-) radical production? in the atmosphere, OH- radicals have vital role in atmospheric chemistry; they can cause photochemical smog, form O3, oxidize volatile organic compounds and also atmospheric methane (CH4). We formulated hypothesis that N fertilization will increase the HONO emissions as it does for N2O and NO. To study this, we took soil samples from agricultural soil receiving different amount of N-fertilizer (0, 250 and 450 kg ha-1) in eastern Finland. HONO emissions were measured by dynamic chamber technique connected with LOPAP (Quma Elektronik & Analytik GmbH), NO by NOx analyzer (Thermo scientific) and static chamber technique and gas chromatograph was used for N2O gas sampling and analysis. Several soil parameters were also measured to establish the relationship between the soil properties, fertilization rate and HONO emission. This study is important because eventually it will open up more questions regarding the forms of N loss from soils and impact of fertilization on atmospheric chemistry.

  12. Impact of grass cover on the magnetic susceptibility measurements for assessing metal contamination in urban topsoil.

    PubMed

    Golden, Nessa; Zhang, Chaosheng; Potito, Aaron P; Gibson, Paul J; Bargary, Norma; Morrison, Liam

    2017-05-01

    In recent decades, magnetic susceptibility monitoring has developed as a useful technique in environmental pollution studies, particularly metal contamination of soil. This study provides the first ever examination of the effects of grass cover on magnetic susceptibility (MS) measurements of underlying urban soils. Magnetic measurements were taken in situ to determine the effects on κ (volume magnetic susceptibility) when the grass layer was present (κ grass ) and after the grass layer was trimmed down to the root (κ no grass ). Height of grass was recorded in situ at each grid point. Soil samples (n=185) were collected and measurements of mass specific magnetic susceptibility (χ) were performed in the laboratory and frequency dependence (χ fd %) calculated. Metal concentrations (Pb, Cu, Zn and Fe) in the soil samples were determined and a gradiometry survey carried out in situ on a section of the study area. Significant correlations were found between each of the MS measurements and the metal content of the soil at the p<0.01 level. Spatial distribution maps were created using Inverse Distance Weighting (IDW) and Local Indicators of Spatial Association (LISA) to identify common patterns. κ grass (ranged from 1.67 to 301.00×10 -5 SI) and κ no grass (ranged from 2.08 to 530.67×10 -5 SI) measured in situ are highly correlated [r=0.966, n=194, p<0.01]. The volume susceptibility datasets in the presence and absence of grass coverage share a similar spatial distribution pattern. This study re-evaluates in situ κ monitoring techniques and the results suggest that the removal of grass coverage prior to obtaining in situ κ measurements of urban soil is unnecessary. This layer does not impede the MS sensor from accurately measuring elevated κ in soils, and therefore κ measurements recorded with grass coverage present can be reliably used to identify areas of urban soil metal contamination. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Shock-treated Lunar Soil Simulant: Preliminary Assessment as a Construction Material

    NASA Technical Reports Server (NTRS)

    Boslough, Mark B.; Bernold, Leonhard E.; Horie, Yasuyuki

    1992-01-01

    In an effort to examine the feasibility of applying dynamic compaction techniques to fabricate construction materials from lunar regolith, preliminary explosive shock-loading experiments on lunar soil simulants were carried out. Analysis of our shock-treated samples suggests that binding additives, such as metallic aluminum powder, may provide the necessary characteristics to fabricate a strong and durable building material (lunar adobe) that takes advantage of a cheap base material available in abundance: lunar regolith.

  14. A culture-based survey of fungi in soil from bat hibernacula in the eastern United States and its implications for detection of Geomyces destructans, the causal agent of bat white-nose syndrome

    Treesearch

    Jeffrey M. Lorch; Daniel L. Lindner; Andrea Gargas; Laura K Muller; Andrew M. Minnis; David S. Blehert

    2013-01-01

    The recent emergence of white-nose syndrome (WNS), a fungal disease causing unprecedented mortality among hibernating bats of eastern North America, has revealed a knowledge gap regarding fungal communities associated with bats and their hibernacula. We used culture-based techniques to investigate the diversity of fungi in soil samples collected from 24 bat hibernacula...

  15. Effects of elevated CO2 concentrations on denitrifying and nitrifying popualtions at terrestrial CO2 leakeage analogous sites

    NASA Astrophysics Data System (ADS)

    Christine, Dictor Marie; Catherine, Joulian; Valerie, Laperche; Stephanie, Coulon; Dominique, Breeze

    2010-05-01

    CO2 capture and geological storage (CCS) is recognized to be an important option for carbon abatement in Europe. One of the risks of CCS is the leakage from storage site. A laboratory was conducted on soil samples sampled near-surface from a CO2 leakage analogous site (Latera, Italy) in order to evaluate the impact of an elevated soil CO2 concentration on terrestrial bacterial ecosystems form near surface terrestrial environments and to determine a potential bacterial indicator of CO2 leakage from storage site. Surveys were conducted along a 50m long transect across the vent centre, providing a spectrum of CO2 flux rates, soil gas concentrations and compositions (Beaubien et al., 2007). A bacterial diversity studies, performed by CE-SSCP technique, on a soil profile with increasing CO2 soil concentrations (from 0.3% to 100%) showed that a change on bacterial diversity was noted when CO2 concentration was above 50 % of CO2. From this result, 3 soil samples were taken at 70 cm depth in 3 distinct zones (background soil CO2 content, soil CO2 content of 20% and soil CO2 content of 50%). Then theses soil samples were incubated under closed jars flushed with different air atmospheres (20, 50 and 90 % of CO2) during 18 months. At initial, 3, 6, 12 and 18 months, some soil samples were collected in order to estimate the denitrifying, nitrifying activities as a function of CO2 concentration content and times. Theses enzymatic activities were chosen because one occurs under anaerobic conditions (denitrification) and the other occurs under aerobic conditions (nitrification). Both of them were involved in the nitrogen cycle and are major actors of soil function and groundwater quality preservation. Metabolic diversity using BIOLOG Ecoplates was determined on every soil samples. Physico-chemical parameters (e.g. pH, bulk chemistry, mineralogy) were analyzed to have some information about the evolution of the soil during the incubation with increasing soil CO2 concentrations. Statistical analyses were performed to correlate microbiological measures and physico-chemical parameters. For the soil sampled in a zone with background CO2 content, incubation under an atmosphere with 20% of CO2, induce a sharp decrease of denitrifying activity after 6 months of incubation and only after 3 months with an atmosphere of 50% of CO2. On the contrary, concerning the soil sampled in a zone with 25.5% of CO2, incubation with an atmosphere of 50% has no effect on denitrifying activity and moreover this activity was stimulated with an atmosphere of 90% of CO2.Last, with the soil sampled in an area with 65.8% of CO2, denitrifying activity was negatively impacted from the 3th month of incubation with 90% CO2.and the activity was 2 fold lower after 12th of incubation. Concerning the nitrifying activity, soil sampled in an area with background CO2 content, this one remains little affected by increasing CO2 incubation. At initial times, soil sampled in the areas with 25.5 and 65.8 % of CO2 showed low level of nitrifying activities and further CO2 incubations have no effect on these activities. At the end, denitrifying activities seems to be more sensitive to CO2 concentrations evolution in the soil. More studies need to be done as incubation with lower CO2 content (< 10%) in order to determine the threshold of CO2 that can affect the near-surface bacterial activities and identify a possible candidate of CO2 leakage from deep reservoirs.

  16. Monitoring snowmelt and solute transport at Oslo airport by combining time-lapse electrical resistivity, soil water sampling and tensiometer measurements

    NASA Astrophysics Data System (ADS)

    Bloem, E.; French, H. K.

    2013-12-01

    Monitoring contaminant transport at contaminated sites requires optimization of the configuration of a limited number of samplings points combined with heterogeneous flow and preferential flowpaths. Especially monitoring processes in the unsaturated zone is a major challenge due to the limited volume monitored by for example suction cups and their risk to clog in a highly active degradation zone. To make progress on soil contamination assessment and site characterization there is a strong need to integrate field-sale extensively instrumented tools, with non-invasive (geophysical) methods which provide spatially integrated measurements also in the unsaturated zone. Examples of sites that might require monitoring activities in the unsaturated zone are airports with winter frost where large quantities of de-icing chemicals are used each winter; salt and contaminant infiltration along roads; constructed infiltration systems for treatment of sewerage or landfill seepage. Electrical resistivity methods have proved to be useful as an indirect measurement of subsurface properties and processes at the field-scale. The non-uniqueness of the interpretation techniques can be reduced by constraining the inversion through the addition of independent geophysical measurements along the same profile. Or interpretation and understanding of geophysical images can be improved by the combination with classical measurements of soil physical properties, soil suction, contaminant concentration and temperatures. In our experiment, at the research field station at Gardermoen, Oslo airport, we applied a degradable de-icing chemical and an inactive tracer to the snow cover prior to snowmelt. To study the solute transport processes in the unsaturated zone time-lapse cross borehole electrical resistivity tomography (ERT) measurements were conducted at the same time as soil water samples were extracted at multiple depths with suction cups. Measurements of soil temperature, and soil tension were also carried out during the monitoring period. We present a selection of results from the snowmelt experiments and how the combination of measurement techniques can help interpret and understand the relative importance of the various contributions to the bulk electrical conductivity during snowmelt and solute transport.

  17. Microbial biomass carbon and enzyme activities of urban soils in Beijing.

    PubMed

    Wang, Meie; Markert, Bernd; Shen, Wenming; Chen, Weiping; Peng, Chi; Ouyang, Zhiyun

    2011-07-01

    To promote rational and sustainable use of soil resources and to maintain the urban soil quality, it is essential to assess urban ecosystem health. In this study, the microbiological properties of urban soils in Beijing and their spatial distribution patterns across the city were evaluated based on measurements of microbial biomass carbon and urease and invertase activities of the soils for the purpose of assessing the urban ecosystem health of Beijing. Grid sampling design, normal Kriging technique, and the multiple comparisons among different land use types were used in soil sampling and data treatment. The inherent chemical characteristics of urban soils in Beijing, e.g., soil pH, electronic conductivity, heavy metal contents, total N, P and K contents, and soil organic matter contents were detected. The size and diversity of microbial community and the extent of microbial activity in Beijing urban soils were measured as the microbial biomass carbon content and the ratio of microbial biomass carbon content to total soil organic carbon. The microbial community health measured in terms of microbial biomass carbon, urease, and invertase activities varied with the organic substrate and nutrient contents of the soils and were not adversely affected by the presence of heavy metals at p < 0.01. It was shown that the older and the biologically more stable part of city exhibited higher microbial activity levels than the more recently developed part of the city and the road areas of heavy traffic. It was concluded that the land use patterns in Beijing urban soils influenced the nature and activities of the microbial communities.

  18. Abundance and diversity of CO2-fixing bacteria in grassland soils close to natural carbon dioxide springs.

    PubMed

    Videmsek, Urska; Hagn, Alexandra; Suhadolc, Marjetka; Radl, Viviane; Knicker, Heike; Schloter, Michael; Vodnik, Dominik

    2009-07-01

    Gaseous conditions at natural CO2 springs (mofettes) affect many processes in these unique ecosystems. While the response of plants to extreme and fluctuating CO2 concentrations ([CO2]) is relatively well documented, little is known on microbial life in mofette soil. Therefore, it was the aim of this study to investigate the abundance and diversity of CO2-fixing bacteria in grassland soils in different distances to a natural carbon dioxide spring. Samples of the same soil type were collected from the Stavesinci mofette, a natural CO2 spring which is known for very pure CO2 emissions, at different distances from the CO2 releasing vents, at locations that clearly differed in soil CO2 efflux (from 12.5 to over 200 micromol CO2 m(-2) s(-1) yearly average). Bulk and rhizospheric soil samples were included into analyses. The microbial response was followed by a molecular analysis of cbbL genes, encoding for the large subunit of RubisCO, a carboxylase which is of crucial importance for C assimilation in chemolitoautotrophic microbes. In all samples analyzed, the "red-like" type of cbbL genes could be detected. In contrast, the "green-like" type of cbbL could not be measured by the applied technique. Surprisingly, a reduction of "red-like" cbbL genes copies was observed in bulk soil and rhizosphere samples from the sites with the highest CO2 concentrations. Furthermore, the diversity pattern of "red-like" cbbL genes changed depending on the CO(2) regime. This indicates that only a part of the autotrophic CO2-fixing microbes could adapt to the very high CO2 concentrations and adverse life conditions that are governed by mofette gaseous regime.

  19. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Presents a computer program for analyzing diets, a game designed to supplement a topic on insects, a technique for demonstrating the role of ethene in fruit ripening, an apparatus for removing arthropods from soil samples, activities using cichlids, and an activity on bonds stabilizing protein structure. (JN)

  20. ASBESTOS EXPOSURE RESEARCH - AIR, SOIL AND BULK MATERIAL SCENARIOS

    EPA Science Inventory

    Presently, asbestos and other mineral fibers are monitored in the workplace and in the environment using several basic analytical techniques, based primarily upon observing the fiber by either optical or electron microscopy. EPA is conducting research to determine which sampling ...

  1. Applications of synchrotron μ-XRF to study the distribution of biologically important elements in different environmental matrices: a review.

    PubMed

    Majumdar, Sanghamitra; Peralta-Videa, Jose R; Castillo-Michel, Hiram; Hong, Jie; Rico, Cyren M; Gardea-Torresdey, Jorge L

    2012-11-28

    Environmental matrices including soils, sediments, and living organisms are reservoirs of several essential as well as non-essential elements. Accurate qualitative and quantitative information on the distribution and interaction of biologically significant elements is vital to understand the role of these elements in environmental and biological samples. Synchrotron micro-X-ray fluorescence (μ-SXRF) allows in situ mapping of biologically important elements at nanometer to sub-micrometer scale with high sensitivity, negligible sample damage and enable tuning of the incident energy as desired. Beamlines in the synchrotron facilities are rapidly increasing their analytical versatility in terms of focusing optics, detector technologies, incident energy, and sample environment. Although extremely competitive, it is now feasible to find stations offering complimentary techniques like micro-X-ray diffraction (μ-XRD) and micro-X-ray absorption spectroscopy (μ-XAS) that will allow a more complete characterization of complex matrices. This review includes the most recent literature on the emerging applications and challenges of μ-SXRF in studying the distribution of biologically important elements and manufactured nanoparticles in soils, sediments, plants, and microbes. The advantages of using μ-SXRF and complimentary techniques in contrast to conventional techniques used for the respective studies are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Using digital soil maps to infer edaphic affinities of plant species in Amazonia: Problems and prospects.

    PubMed

    Moulatlet, Gabriel Massaine; Zuquim, Gabriela; Figueiredo, Fernando Oliveira Gouvêa; Lehtonen, Samuli; Emilio, Thaise; Ruokolainen, Kalle; Tuomisto, Hanna

    2017-10-01

    Amazonia combines semi-continental size with difficult access, so both current ranges of species and their ability to cope with environmental change have to be inferred from sparse field data. Although efficient techniques for modeling species distributions on the basis of a small number of species occurrences exist, their success depends on the availability of relevant environmental data layers. Soil data are important in this context, because soil properties have been found to determine plant occurrence patterns in Amazonian lowlands at all spatial scales. Here we evaluate the potential for this purpose of three digital soil maps that are freely available online: SOTERLAC, HWSD, and SoilGrids. We first tested how well they reflect local soil cation concentration as documented with 1,500 widely distributed soil samples. We found that measured soil cation concentration differed by up to two orders of magnitude between sites mapped into the same soil class. The best map-based predictor of local soil cation concentration was obtained with a regression model combining soil classes from HWSD with cation exchange capacity (CEC) from SoilGrids. Next, we evaluated to what degree the known edaphic affinities of thirteen plant species (as documented with field data from 1,200 of the soil sample sites) can be inferred from the soil maps. The species segregated clearly along the soil cation concentration gradient in the field, but only partially along the model-estimated cation concentration gradient, and hardly at all along the mapped CEC gradient. The main problems reducing the predictive ability of the soil maps were insufficient spatial resolution and/or georeferencing errors combined with thematic inaccuracy and absence of the most relevant edaphic variables. Addressing these problems would provide better models of the edaphic environment for ecological studies in Amazonia.

  3. Shotgun metagenomic data streams: surfing without fear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berendzen, Joel R

    2010-12-06

    Timely information about bio-threat prevalence, consequence, propagation, attribution, and mitigation is needed to support decision-making, both routinely and in a crisis. One DNA sequencer can stream 25 Gbp of information per day, but sampling strategies and analysis techniques are needed to turn raw sequencing power into actionable knowledge. Shotgun metagenomics can enable biosurveillance at the level of a single city, hospital, or airplane. Metagenomics characterizes viruses and bacteria from complex environments such as soil, air filters, or sewage. Unlike targeted-primer-based sequencing, shotgun methods are not blind to sequences that are truly novel, and they can measure absolute prevalence. Shotgun metagenomicmore » sampling can be non-invasive, efficient, and inexpensive while being informative. We have developed analysis techniques for shotgun metagenomic sequencing that rely upon phylogenetic signature patterns. They work by indexing local sequence patterns in a manner similar to web search engines. Our methods are laptop-fast and favorable scaling properties ensure they will be sustainable as sequencing methods grow. We show examples of application to soil metagenomic samples.« less

  4. Coupling data from U-series and 10Be CRN to evaluate soil steady-state in the Betic Cordillera

    NASA Astrophysics Data System (ADS)

    Schoonejans, Jerome; Vanacker, Veerle; Opfergelt, Sophie; Granet, Mathieu; Chabaux, François

    2015-04-01

    The regolith mantel is produced by weathering of bedrock through physical and biochemical processes. At the same time, the upper part of the regolith is eroded by gravity mass movements, water and wind erosion. Feedback's between production and erosion of soil material are important for soil development, and are essential to reach long-term steady-state in soil chemical and physical properties. Nowadays, long-term denudation rates of regolith can be quantified by using in-situ cosmogenic nuclides (CRN). If the soil thickness remains constant over sufficiently long time, soil production rates can be determined. However, the a priori assumption of long-term steady-state can be questionable in highly dynamic environments. In this study, we present analytical data from two independent isotopic techniques, in-situ cosmogenic nuclides and Uranium series disequilibrium. The disequilibrium of Uranium isotopes (238U, 234U, 230Th, 226Ra) is an alternative method that allows assessing soil formation rates through isotopic analysis of weathering products. Nine soil profiles were sampled in three different mountain ranges of the Betic Cordillera (SE Spain): Sierra Estancias, Filabres, Cabrera. All soils overly fractured mica schist and are very thin (< 60cm). In each soil profile, we sampled 4 to 6 depth slices in the soil profile, the soil-bedrock interface and (weathered) bedrock. Three of the nine soil profiles were sampled for U-series isotope measurements at EOST (University of Strasbourg). The surface denudation rates (CRN) are about the same in the Sierra Estancias and Filabres (26 ± 10 mm/ky) and increase up to 103 ± 47 mm/ky in the Sierra Cabrera. The spatial variation in soil denudation rates is in agreement with the variation in catchment-wide denudation rates presented by Bellin et al. (2014) which present the highest rates in the Sierra Cabrera (104-246mm/kyr). Moreover it roughly coincides with the pattern of long-term exhumation of the Betic Cordillera. Results from first simulations of the U-series disequilibrium model rather suggest that soil production rates are of the same order of magnitude in the Sierra Estancias and Cabrera. In the Sierra Filabres, the U-series disequilibrium in the depth profile do not respect the hypotheses of the model therefore no rates of soil production could be constrain for this profile. Thanks to the coupling of the two isotopic datasets the long term soil development will be explored in two profiles. This study highlights that comparison and combination of analytical techniques is useful to further unravel the mechanisms of chemical and physical weathering in such dynamic environments. Bellin, N., Vanacker, V., and Kubik, P. W., 2014, Denudation rates and tectonic geomorphology of the Spanish Betic Cordillera: Earth and Planetary Science Letters, v. 390, p. 19-30.

  5. Direct push driven in situ color logging tool (CLT): technique, analysis routines, and application

    NASA Astrophysics Data System (ADS)

    Werban, U.; Hausmann, J.; Dietrich, P.; Vienken, T.

    2014-12-01

    Direct push technologies have recently seen a broad development providing several tools for in situ parameterization of unconsolidated sediments. One of these techniques is the measurement of soil colors - a proxy information that reveals to soil/sediment properties. We introduce the direct push driven color logging tool (CLT) for real-time and depth-resolved investigation of soil colors within the visible spectrum. Until now, no routines exist on how to handle high-resolved (mm-scale) soil color data. To develop such a routine, we transform raw data (CIEXYZ) into soil color surrogates of selected color spaces (CIExyY, CIEL*a*b*, CIEL*c*h*, sRGB) and denoise small-scale natural variability by Haar and Daublet4 wavelet transformation, gathering interpretable color logs over depth. However, interpreting color log data as a single application remains challenging. Additional information, such as site-specific knowledge of the geological setting, is required to correlate soil color data to specific layers properties. Hence, we exemplary provide results from a joint interpretation of in situ-obtained soil color data and 'state-of-the-art' direct push based profiling tool data and discuss the benefit of additional data. The developed routine is capable of transferring the provided information obtained as colorimetric data into interpretable color surrogates. Soil color data proved to correlate with small-scale lithological/chemical changes (e.g., grain size, oxidative and reductive conditions), especially when combined with additional direct push vertical high resolution data (e.g., cone penetration testing and soil sampling). Thus, the technique allows enhanced profiling by means of providing another reproducible high-resolution parameter for analysis subsurface conditions. This opens potential new areas of application and new outputs for such data in site investigation. It is our intention to improve color measurements by means method of application and data interpretation, useful to characterize vadose layer/soil/sediment characteristics.

  6. Sorption and speciation of selenium in boreal forest soil.

    PubMed

    Söderlund, Mervi; Virkanen, Juhani; Holgersson, Stellan; Lehto, Jukka

    2016-11-01

    Sorption and speciation of selenium in the initial chemical forms of selenite and selenate were investigated in batch experiments on humus and mineral soil samples taken from a 4-m deep boreal forest soil excavator pit on Olkiluoto Island, on the Baltic Sea coast in southwestern Finland. The HPLC-ICP-MS technique was used to monitor any possible transformations in the selenium liquid phase speciation and to determine the concentrations of selenite and selenate in the samples for calculation of the mass distribution coefficient, K d , for both species. Both SeO 3 2- and SeO 4 2- proved to be resistant forms in the prevailing soil conditions and no changes in selenium liquid phase speciation were seen in the sorption experiments in spite of variations in the initial selenium species, incubation time or conditions, pH, temperature or microbial activity. Selenite sorption on the mineral soil increased with time in aerobic conditions whilst the opposite trend was seen for the anaerobic soil samples. Selenite retention correlated with the contents of organic matter and weakly crystalline oxides of aluminum and iron, solution pH and the specific surface area. Selenate exhibited poorer sorption on soil than selenite and on average the K d values were 27-times lower. Mineral soil was more efficient in retaining selenite and selenate than humus, implicating the possible importance of weakly crystalline aluminum and iron oxides for the retention of oxyanions in Olkiluoto soil. Sterilization of the soil samples decreased the retention of selenite, thus implying some involvement of soil microbes in the sorption processes or a change in sample composition, but it produced no effect for selenate. There was no sorption of selenite by quartz, potassium feldspar, hornblende or muscovite. Biotite showed the best retentive properties for selenite in the model soil solution at about pH 8, followed by hematite, plagioclase and chlorite. The K d values for these minerals were 18, 14, 8 and 7 L/kg, respectively. It is proposed that selenite sorption is affected by the structural Fe(II) in biotite, which is capable of inducing the reduction of SeO 3 2- to Se(0). Selenite probably forms a surface complex with Fe(III) atoms on the surface of hematite, thus explaining its retention on this mineral. None of the minerals retained selenate to any extent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A cross-site comparison of factors influencing soil nitrification rates in northeastern USA forested watersheds

    USGS Publications Warehouse

    Ross, D.S.; Wemple, B.C.; Jamison, A.E.; Fredriksen, G.; Shanley, J.B.; Lawrence, G.B.; Bailey, S.W.; Campbell, J.L.

    2009-01-01

    Elevated N deposition is continuing on many forested landscapes around the world and our understanding of ecosystem response is incomplete. Soil processes, especially nitrification, are critical. Many studies of soil N transformations have focused on identifying relationships within a single watershed but these results are often not transferable. We studied 10 small forested research watersheds in the northeastern USA to determine if there were common factors related to soil ammonification and nitrification. Vegetation varied between mixed northern hardwoods and mixed conifers. Watershed surface soils (Oa or A horizons) were sampled at grid or transect points and analyzed for a suite of chemical characteristics. At each sampling point, vegetation and topographic metrics (field and GIS-based) were also obtained. Results were examined by watershed averages (n = 10), seasonal/watershed averages (n = 28), and individual sampling points (n = 608). Using both linear and tree regression techniques, the proportion of conifer species was the single best predictor of nitrification rates, with lower rates at higher conifer dominance. Similar to other studies, the soil C/N ratio was also a good predictor and was well correlated with conifer dominance. Unlike other studies, the presence of Acer saccharum was not by itself a strong predictor, but was when combined with the presence of Betula alleghaniensis. Topographic metrics (slope, aspect, relative elevation, and the topographic index) were not related to N transformation rates across the watersheds. Although found to be significant in other studies, neither soil pH, Ca nor Al was related to nitrification. Results showed a strong relationship between dominant vegetation, soil C, and soil C/N. ?? 2008 Springer Science+Business Media, LLC.

  8. Soil pollution associated to the El Borracho Pb-Ag mine (Badajoz Province, Spain). Metal transfer to biota: oak-tree and moss.

    NASA Astrophysics Data System (ADS)

    López-Berdonces, Miguel Angel; María Esbrí, José; Fernández-Calderón, Sergio; Naharro, Elena; García-Noguero, Eva Maria; Higueras, Pablo

    2014-05-01

    El Borracho mine was active since Roman times, but with its higher production period on 19th Century. Mine closure occured without restoration works and nowadays the mining area is dedicated to deer hunting activities. In order to evaluate heavy metals distribution on mining tailings and surrounding soils of the studied area, 40 samples of dumps, soils and sediments were taken. Samples from the mine tailings were collected with an Eijkelkamp soil core sampler for undisturbed samples, with a vertical constant spacing of 25 cm. With this procedure, a total of 21 samples were taken in two points at main dump. Samples of Oak-tree leaves and moss were taken to evaluate metal transfer to biota. Analytical determinations have included soil parameters (pH, conductivity, organic matter content), and total metal contents in geological and biological samples by EDXRF. Analytical determinations shows higher metal contents in dumps, especially in surficial samples, 17,700 mg kg-1 and 470 mg kg-1 in average of Pb and Zn respectively, and lower contents in soils, 5,200 mg kg-1 and 300 mg kg-1, and sediments, 3,500 mg kg-1 and 120 mg kg-1. Metal contents in tailings profiles shows higher levels of Pb, Zn and Cu at 3.5 meters depth, a zone with lower grainsize and higher moisture. Differences in efficiency of extraction techniques and metal remobilization inside the dump can be an explanation for this enrichment level. Metal contents in agricultural soils exceeded maximum allowed levels by European Community (300 mg kg-1 for Pb and Zn and 140 mg kg-1 for Cu). Metal contents in biota evidence that Oak-tree bioaccumulates some metals, especially those with higher mobility in acidic conditions like Zn and Sb, with averages Bioaccumulation factor (BAF = plant concentration/soil concentration) of 0.48 and 0.85 respectively. Moss reaches high concentrations of Pb and Zn (3,000 mg kg-1 and 175 mg kg-1 in average respectively). Uptake pattern of Pb and Zn by plants leaves and mosses seems to be similar and can be characterized by logistic curves, with higher affinity of mosses to uptake metals from soils.

  9. Variations in the Rate of Infestations of Dogs with Zoonotic Nematodes and the Contamination of Soil in Different Environments

    PubMed Central

    Demkowska-Kutrzepa, Marta; Borecka, Anna; Meisner, Michał; Tomczuk, Krzysztof; Roczeń-Karczmarz, Monika; Kłapeć, Teresa; Abbass, Zahrai; Cholewa, Alicja

    2017-01-01

    Companion animals are an important aspect in human life. However, they may also be considered a source of pathogens. An example of zoonotic parasitoses is toxocarosis or cutaneous larva migrans (CLM). The aim of the study was to detect zoonotic nematodes of dogs living in different areas and the intensity of contamination in parasite polluted environments that are hazardous to human health. The fecal samples were examined using standard flotation and decantation methods as well as McMaster’s quantitative technique. The soil samples in urban and rural areas were examined using a modified flotation method as described by Quinn et al. Statistical analyses were performed by IBM SPSS Statistics Version 23. The overall prevalence of parasites in dogs was 38%, 17.02% and 56.60% from urban and rural areas, respectively. The percentage values of nematodes important for human health (Toxocara canis, Ancylostomatidae, Trichuris vulpis) remained at the same level (16%). The infected dogs were dominated by a single parasite species, the main was T. canis (28.95%). In total, 54.30% of the soil samples were contaminated with parasite eggs. The contamination of urban and rural sandpits was 40% and 60%, respectively. The molecular examinations of soil samples using LAMP (loop-mediated isothermal amplification) confirmed the presence of nematode eggs of the species T. canis in all samples previously classified as positive PMID:28862690

  10. Bacterial selection by mycospheres of Atlantic Rainforest mushrooms.

    PubMed

    Halsey, Joshua Andrew; de Cássia Pereira E Silva, Michele; Andreote, Fernando Dini

    2016-10-01

    This study focuses on the selection exerted on bacterial communities in the mycospheres of mushrooms collected in the Brazilian Atlantic Rainforest. A total of 24 paired samples (bulk soil vs. mycosphere) were assessed to investigate potential interactions between fungi and bacteria present in fungal mycospheres. Prevalent fungal families were identified as Marasmiaceae and Lepiotaceae (both Basidiomycota) based on ITS partial sequencing. We used culture-independent techniques to analyze bacterial DNA from soil and mycosphere samples. Bacterial communities in the samples were distinguished based on overall bacterial, alphaproteobacterial, and betaproteobacterial PCR-DGGE patterns, which were different in fungi belonging to different taxa. These results were confirmed by pyrosequencing the V4 region of the 16S rRNA gene (based on five bulk soil vs. mycosphere pairs), which revealed the most responsive bacterial families in the different conditions generated beneath the mushrooms, identified as Bradyrhizobiaceae, Burkholderiaceae, and Pseudomonadaceae. The bacterial families Acetobacteraceae, Chrhoniobacteraceae, Planctomycetaceae, Conexibacteraceae, and Burkholderiaceae were found in all mycosphere samples, composing the core mycosphere microbiome. Similarly, some bacterial groups identified as Koribacteriaceae, Acidobacteria (Solibacteriaceae) and an unclassified group of Acidobacteria were preferentially present in the bulk soil samples (found in all of them). In this study we depict the mycosphere effect exerted by mushrooms inhabiting the Brazilian Atlantic Rainforest, and identify the bacteria with highest response to such a specific niche, possibly indicating the role bacteria play in mushroom development and dissemination within this yet-unexplored environment.

  11. Variations in the Rate of Infestations of Dogs with Zoonotic Nematodes and the Contamination of Soil in Different Environments.

    PubMed

    Studzińska, Maria Bernadeta; Demkowska-Kutrzepa, Marta; Borecka, Anna; Meisner, Michał; Tomczuk, Krzysztof; Roczeń-Karczmarz, Monika; Kłapeć, Teresa; Abbass, Zahrai; Cholewa, Alicja

    2017-09-01

    Companion animals are an important aspect in human life. However, they may also be considered a source of pathogens. An example of zoonotic parasitoses is toxocarosis or cutaneous larva migrans (CLM). The aim of the study was to detect zoonotic nematodes of dogs living in different areas and the intensity of contamination in parasite polluted environments that are hazardous to human health. The fecal samples were examined using standard flotation and decantation methods as well as McMaster's quantitative technique. The soil samples in urban and rural areas were examined using a modified flotation method as described by Quinn et al. Statistical analyses were performed by IBM SPSS Statistics Version 23. The overall prevalence of parasites in dogs was 38%, 17.02% and 56.60% from urban and rural areas, respectively. The percentage values of nematodes important for human health ( Toxocara canis , Ancylostomatidae, Trichuris vulpis ) remained at the same level (16%). The infected dogs were dominated by a single parasite species, the main was T. canis (28.95%). In total, 54.30% of the soil samples were contaminated with parasite eggs. The contamination of urban and rural sandpits was 40% and 60%, respectively. The molecular examinations of soil samples using LAMP (loop-mediated isothermal amplification) confirmed the presence of nematode eggs of the species T. canis in all samples previously classified as positive.

  12. Soil Communities of Central Park, New York City: A Biodiversity Melting Pot

    NASA Astrophysics Data System (ADS)

    Ramirez, K. S.; Leff, J. W.; Wall, D. H.; Fierer, N.

    2013-12-01

    The majority of earth's biodiversity lives in and makes up the soil, but the majority of soil biodiversity has yet to be characterized or even quantified. This may be especially true of urban soil systems. The last decade of advances in molecular, technical and bioinformatic techniques have contributed greatly to our understanding of belowground biodiversity, from global distribution to species counts. Yet, much of this work has been done in ';natural' systems and it is not known if established patterns of distribution, especially in relation to soil factors hold up in urban soils. Urban soils are intensively managed and disturbed, often by effects unique to urban settings. It remains unclear how urban pressures influence soil biodiversity, or if there is a defined or typical ';urban soil community'. Here we describe a study to examine the total soil biodiversity - Bacteria, Archaea and Eukarya- of Central Park, New York City and test for patterns of distribution and relationships to soil characteristics. We then compare the biodiversity of Central Park to 57 global soils, spanning a number of biomes from Alaska to Antarctica. In this way we can identify similarities and differences in soil communities of Central Park to soils from ';natural' systems. To generate a broad-scale survey of total soil biodiversity, 596 soil samples were collected from across Central Park (3.41 km2). Soils varied greatly in vegetation cover and soil characteristics (pH, moisture, soil C and soil N). Using high-throughput Illumina sequencing technology we characterized the complete soil community from 16S rRNA (Bacteria and Archaea) and 18S rRNA gene sequences (Eukarya). Samples were rarified to 40,000 sequences per sample. To compare Central Park to the 57 global soils the complete soil community of the global soils was also characterized using Illumina sequencing technology. All samples were rarified to 40,000 sequences per sample. The total measured biodiversity in Central Park was high: >540,000 bacterial and archaeal species; and >97,000 eukaryotic species (as determined using a 97% sequence similarity cutoff). The most dominant bacterial phyla include Proteobacteria, Acidobacteria, Bacteroidetes, Verrucomicrobia and Actinobacteria, and Archaea represent 1-8% of the sequences. Additionally, the distribution patterns of Acidobacteria and consequently beta-diversity, was strongly related to soil pH. The most dominant eukaryotic taxa include many Protists (Rhizara, Gregarinia), Fungi (Basidiomycota, Ascomycota), and Metazoa (Nematodes, Rotifers, Arthropods and Annelids). No single soil factor could predict eukaryotic distribution. Central Park soil diversity was strikingly similar to the diversity of the 57 global soils. Central Park and the global soils had similarities in alpha diversity, taxon abundances. Interestingly, there was significant overlap in a number of dominant species between Central Park and the global soils. Together these results represent the most comprehensive analysis of soil biodiversity conducted to date. Our data suggest that even well-studied locations like Central Park harbor very high levels of unexplored biodiversity, and that Central Park biodiversity is comparable to soil biodiversity found globally.

  13. Towards Understanding Soil Forming in Santa Clotilde Critical Zone Observatory: Modelling Soil Mixing Processes in a Hillslope using Luminescence Techniques

    NASA Astrophysics Data System (ADS)

    Sanchez, A. R.; Laguna, A.; Reimann, T.; Giráldez, J. V.; Peña, A.; Wallinga, J.; Vanwalleghem, T.

    2017-12-01

    Different geomorphological processes such as bioturbation and erosion-deposition intervene in soil formation and landscape evolution. The latter processes produce the alteration and degradation of the materials that compose the rocks. The degree to which the bedrock is weathered is estimated through the fraction of the bedrock which is mixing in the soil either vertically or laterally. This study presents an analytical solution for the diffusion-advection equation to quantify bioturbation and erosion-depositions rates in profiles along a catena. The model is calibrated with age-depth data obtained from profiles using the luminescence dating based on single grain Infrared Stimulated Luminescence (IRSL). Luminescence techniques contribute to a direct measurement of the bioturbation and erosion-deposition processes. Single-grain IRSL techniques is applied to feldspar minerals of fifteen samples which were collected from four soil profiles at different depths along a catena in Santa Clotilde Critical Zone Observatory, Cordoba province, SE Spain. A sensitivity analysis is studied to know the importance of the parameters in the analytical model. An uncertainty analysis is carried out to stablish the better fit of the parameters to the measured age-depth data. The results indicate a diffusion constant at 20 cm in depth of 47 (mm2/year) in the hill-base profile and 4.8 (mm2/year) in the hilltop profile. The model has high uncertainty in the estimation of erosion and deposition rates. This study reveals the potential of luminescence single-grain techniques to quantify pedoturbation processes.

  14. Effect of in-situ disturbance within the soil mass on the stress-strain behaviour of silty soil

    NASA Astrophysics Data System (ADS)

    Noor, Sarah T.; Rabika Rahman, SS; Nahar, Sabiqun

    2018-04-01

    To date, different techniques have been evolved to collect soil in undisturbed condition so that the in-situ soil behaviour can be determined by carrying out laboratory tests. For the same reason, the execution of undisturbed soil sampling in practice is given a lot of efforts. However, this study brings the fact into consideration that the in-situ soil condition may not remain constant, rather it might vary time to time, because of different internal or external reasons. For example, the internal stress state of soil layers, existing below or above the swelling soil layer, become modified during shrinking and swelling resulting from drying and wetting of swelling clay, respectively. Further, foundations of building may transfer cyclic loads (generated by vibration installed in the building) to the soil below the foundation. Therefore, this study investigates the effects of stress-strain behaviour due to the disturbances on the shear strength of the soil with respect to that of undisturbed specimens. The shear strength of disturbed soil shows deviation from that of undisturbed specimen depending on the different parameters defining the severity of disturbance.

  15. Mercury concentrations of food products and of soils in North Dakota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deitz, F.D.; Sell, J.L.; Buchanan, M.L.

    1973-01-01

    Recent discovery of high levels of mercury (Hg) in waterfowl in the state prompted a Hg survey of agricultural products in North Dakota. Milk, eggs, soil, pork and beef tissue (longissimis dorsi and liver) were among the products analyzed. Tissue samples were subjected to wet-oxidation using concentrated HNO/sub 3/ and H/sub 2/SO/sub 4/ acids with vanadium pentoxide as a catalyst. Subsequently, Hg in the digests was determined by the cold-vapor technique, utilizing atomic absorption spectrophotometry. The milk samples analyzed average 0.8 ng/ml (ppb) with a range of 0.0 to 7.0 ng/ml. Beef longissimis dorsi samples average 4.5 ng/g with amore » range of 0.0 to 18.8 ng/g while liver samples from the same animals average 10.1 ng/g (range of 0.0 to 29.5 ng/g). Pork longissimis dorsi samples averaged 5.4 ng/g with a range of 0.0 to 12.5 ng/g while liver samples from the same animals average 12.9 ng/g (range of 0.0 to 26.2 ng/g). Eggs and soil samples had an average mercury content of 15.8 ng/g and 32.7 ng/g respectively.« less

  16. The impact of peasant and industrialized agricultural systems on high productive loess soils in Central Europe

    NASA Astrophysics Data System (ADS)

    Schneider, Christian; Heinrich, Jürgen

    2017-04-01

    The study analyzes the impact of a peasant and an industrialized agricultural land use system on soil degradation in two loess landscapes. The comparative method aims to test the hypothesis that different agricultural systems cause distinct differences in soil properties that can be documented by geo-chemical soil analysis. The two loess landscapes under investigation show great similarities in natural geo-ecological properties. Nevertheless, the land use system makes a significant difference in both research areas. The Polish Proszowice Plateau is characterized by traditional small-scale peasant agriculture. Small plots and fragmented ownership make it difficult to conjointly manage soil erosion. However, the Middle Saxonian Loess Region in Germany represents loess landscapes whose ecological functions were shaped by land consolidation measures resulting in the large-scale, high-input farming system. To identify representative small catchments for soil sampling relief heterogeneity analyses and a cluster analysis were performed to bridge scales between the landscape and the sub-catchment level. Geo-physical and geo-chemical laboratory techniques were used to analyze major soil properties. A total number of 346 sites were sampled and analyzed for geo-ecological, geomorphological, and pedological features. The results show distinct differences in soil properties between the two loess landscapes strongly influenced by agricultural use. However, despite big differences in agricultural management great similarities can also be found especially for mean soil organic carbon contents and plant nutrient values. At the same time, the greater variability of the soil mosaic is depicted by a higher variance of almost all soil properties common to traditional land use systems. Topsoils on arable land at the Proszowice Plateau also show a wider C/N ratio. Therefore, the soils there are less prone to degradation through mineralization of humic substances. The wider ratio is mainly caused by lower inputs of N-fertilizers, at least since 1990. At the same time, soil cultivation techniques and atmospheric deposits are not likely to make a significant difference. The topsoil horizons on arable lands at the Proszowice Plateau do not show significant differences in plant available nutrients like phosphorus, despite much lower P-inputs through mineral fertilizers since 1990. This is because of the high P-sorption capacity of the loess soils. Therefore, a long legacy effect of previous comparatively high mineral P-inputs between the 1960s and 80s can be observed. A similar effect occurs in the Middle Saxonian Loess Region. In contrast to the assumption of many scholars small-scale farming at the Proszowice Plateau has not lead to an under-supply of plant nutrients. The study has shown that significant differences in major soil properties can be observed because of different fertilizer inputs and partly because of different cultivation techniques. Also the traditional system increases soil heterogeneity. Contrary to expectations the study has shown that the small-scale peasant farming system resulted in similar mean soil organic carbon and phosphorus contents like the industrialized high-input farming system. A further study could include investigations of the effects of soil amendments like herbicides and pesticide on soil degradation.

  17. Changes of soil functional diversity induced by the use of different fertilizers

    NASA Astrophysics Data System (ADS)

    Onica, Bogdan-Mihai; Sandor, Valentina; Brad, Traian; Vidican, Roxana; Sandor, Mignon

    2017-04-01

    Agricultural practices like fertilization can change the structure and function of soil microbial community. Monitoring and assessing the soil microbiota and its dynamic related to different factors can be a powerful tool for understanding basic and applied ecological contexts. An important tool to assess changes of community level physiological profile is MicroResp, a colorimetric method that uses a 96-well microtitre plate, 16 carbon sources and a detection plate to quantify the respiratory activity of the soil microbial community. The main objective of this work is to assess the changes of the community level physiological profile when different fertilizers were used. In order to achieve this goal, a microcosm experiment was designed and performed under controlled temperature and humidity, and the soil samples were analyzed using the MicroResp technique. The experiment was designed with two types of soil (chernozem and luvisol), four types of fertilizers (mineral fertilizer, mustard as green manure, slurry manure and cattle manure) with three replicates for each and a control. Soil samples analyzed with MicroResp technique were prepared and loaded into the deep-well plates and incubated for six hours at 25 oC with the 15 carbon sources which were used at the concentration of 30 mg g-1 soil H2O, one in each well and water as control. The detection plates were read with a spectrophotometer before and after six hours incubation at a wavelength of 570 nm. Highest respiratory activity between the two types of soil used in experiment was given by the luvisol compared with chernozem. Regarding to the differences between the types of fertilizers, we observed that the highest microbial metabolic activity was given by green manure followed in order by cattle manure, slurry manure, control and mineral fertilizer with the lowest respiratory values. This pattern was same for both soils. However, highest respiratory activity was given by α-ketoglutaric acid, malic acid, oxalic acid, citric acid carbon sources, while the lowest respiratory activity was obtained in case of arginine.

  18. Visible and infrared spectroscopy to evaluate soil quality in degraded sites: an applicative study in southern Italy

    NASA Astrophysics Data System (ADS)

    Ancona, Valeria; Matarrese, Raffaella; Salvatori, Rosamaria; Salzano, Roberto; Regano, Simona; Calabrese, Angelantonio; Campanale, Claudia; Felice Uricchio, Vito

    2014-05-01

    Land degradation processes like organic matter impoverishment and contamination are growing increasingly all over the world due to a non-rational and often sustainable spread of human activities on the territory. Consequently the need to characterize and monitor degraded sites is becoming very important, with the aim to hinder such main threats, which could compromise drastically, soil quality. Visible and infrared spectroscopy is a well-known technique/tool to study soil properties. Vis-NIR spectral reflectance, in fact, can be used to characterize spatial and temporal variation in soil constituents (Brown et al., 2006; Viscarra Rossel et al., 2006), and potentially its surface structure (Chappell et al., 2006, 2007). It is a rapid, non-destructive, reproducible and cost-effective analytical method to analyse soil properties and therefore, it can be a useful method to study land degradation phenomena. In this work, we present the results of proximal sensing investigations of three degraded sites (one affected by organic and inorganic contamination and two affected by soil organic matter decline) situated southern Italy close to Taranto city (in Apulia Region). A portable spectroradiometer (ASD-FieldSpec) was used to measure the reflectance properties in the spectral range between 350-2500 nm of the soil, in the selected sites, before and after a recovery treatment by using compost (organic fertilizer). For each measurement point the soil was sampled in order to perform chemical analyses to evaluate soil quality status. Three in-situ campaigns have been carried out (September 2012, June 2013, and September 2013), collecting about 20 soil samples for each site and for each campaign. Chemical and spectral analyses have been focused on investigating soil organic carbon, carbonate content, texture and, in the case of polluted site, heavy metals and organic toxic compounds. Statistical analyses have been carried out to test a prediction model of different soil quality indicators based on the spectral signatures behaviour of each sample ranging.

  19. A technique for estimating seed production of common moist soil plants

    USGS Publications Warehouse

    Laubhan, Murray K.

    1992-01-01

    Seeds of native herbaceous vegetation adapted to germination in hydric soils (i.e., moist-soil plants) provide waterfowl with nutritional resources including essential amino acids, vitamins, and minerals that occur only in small amounts or are absent in other foods. These elements are essential for waterfowl to successfully complete aspects of the annual cycle such as molt and reproduction. Moist-soil vegetation also has the advantages of consistent production of foods across years with varying water availability, low management costs, high tolerance to diverse environmental conditions, and low deterioration rates of seeds after flooding. The amount of seed produced differs among plant species and varies annually depending on environmental conditions and management practices. Further, many moist-soil impoundments contain diverse vegetation, and seed production by a particular plant species usually is not uniform across an entire unit. Consequently, estimating total seed production within an impoundment is extremely difficult. The chemical composition of seeds also varies among plant species. For example, beggartick seeds contain high amounts of protein but only an intermediate amount of minerals. In contrast, barnyardgrass is a good source of minerals but is low in protein. Because of these differences, it is necessary to know the amount of seed produced by each plant species if the nutritional resources provided in an impoundment are to be estimated. The following technique for estimating seed production takes into account the variation resulting from different environmental conditions and management practices as well as differences in the amount of seed produced by various plant species. The technique was developed to provide resource managers with the ability to make quick and reliable estimates of seed production. Although on-site information must be collected, the amount of field time required is small (i.e., about 1 min per sample); sampling normally is accomplished on an area within a few days. Estimates of seed production derived with this technique are used, in combination with other available information, to determine the potential number of waterfowl use-days available and to evaluate the effects of various management strategies on a particular site.

  20. Nondestructive characterization of municipal-solid-waste-contaminated surface soil by energy-dispersive X-ray fluorescence and low-Z (atomic number) particle electron probe X-ray microanalysis.

    PubMed

    Gupta, Dhrubajyoti; Ghosh, Rita; Mitra, Ajoy K; Roy, Subinit; Sarkar, Manoranjan; Chowdhury, Subhajit; Bhowmik, Asit; Mukhopadhyay, Ujjal; Maskey, Shila; Ro, Chul-Un

    2011-11-01

    The long-term environmental impact of municipal solid waste (MSW) landfilling is still under investigation due to the lack of detailed characterization studies. A MSW landfill site, popularly known as Dhapa, in the eastern fringe of the metropolis of Kolkata, India, is the subject of present study. A vast area of Dhapa, adjoining the current core MSW dump site and evolving from the raw MSW dumping in the past, is presently used for the cultivation of vegetables. The inorganic chemical characteristics of the MSW-contaminated Dhapa surface soil (covering a 2-km stretch of the area) along with a natural composite (geogenic) soil sample (from a small countryside farm), for comparison, were investigated using two complementary nondestructive analytical techniques, energy-dispersive X-ray fluorescence (EDXRF) for bulk analysis and low-Z (atomic number) particle electron probe X-ray microanalysis (low-Z particle EPMA) for single-particle analysis. The bulk concentrations of K, Rb, and Zr remain almost unchanged in all the soil samples. The Dhapa soil is found to be polluted with heavy metals such as Cu, Zn, and Pb (highly elevated) and Ti, Cr, Mn, Fe, Ni, and Sr (moderately elevated), compared to the natural countryside soil. These high bulk concentration levels of heavy metals were compared with the Ecological Soil Screening Levels for these elements (U.S. Environment Protection Agency) to assess the potential risk on the immediate biotic environment. Low-Z particle EPMA results showed that the aluminosilicate-containing particles were the most abundant, followed by SiO2, CaCO3-containing, and carbonaceous particles in the Dhapa samples, whereas in the countryside sample only aluminosilicate-containing and SiO2 particles were observed. The mineral particles encountered in the countryside sample are solely of geogenic origin, whereas those from the Dhapa samples seem to have evolved from a mixture of raw dumped MSW, urban dust, and other contributing factors such as wind, precipitation, weather patterns, farming, and water logging, resulting in their diverse chemical compositions and the abundant observation of carbonaceous species. Particles containing C and P were more abundant in the Dhapa samples than in the countryside soil sample, suggesting that MSW-contaminated soils are more fertile. However, the levels of particles containing potentially toxic heavy metals such as Cr, Mn, Ni, Cu, Zn, and/or Pb in the Dhapa samples were significant, corroborated by their high bulk concentration levels (EDXRF), causing deep concern for the immediate environment and contamination of the food chain through food crops.

  1. Exploring the potential for using 210Pbex measurements within a re-sampling approach to document recent changes in soil redistribution rates within a small catchment in southern Italy.

    PubMed

    Porto, Paolo; Walling, Desmond E; Cogliandro, Vanessa; Callegari, Giovanni

    2016-11-01

    In recent years, the fallout radionuclides caesium-137 ( 137 Cs) and unsupported lead-210 ( 210 Pb ex) have been successfully used to document rates of soil erosion in many areas of the world, as an alternative to conventional measurements. By virtue of their different half-lives, these two radionuclides are capable of providing information related to different time windows. 137 Cs measurements are commonly used to generate information on mean annual erosion rates over the past ca. 50-60 years, whereas 210 Pb ex measurements are able to provide information relating to a longer period of up to ca. 100 years. However, the time-integrated nature of the estimates of soil redistribution provided by 137 Cs and 210 Pb ex measurements can be seen as a limitation, particularly when viewed in the context of global change and interest in the response of soil redistribution rates to contemporary climate change and land use change. Re-sampling techniques used with these two fallout radionuclides potentially provide a basis for providing information on recent changes in soil redistribution rates. By virtue of the effectively continuous fallout input, of 210 Pb, the response of the 210 Pb ex inventory of a soil profile to changing soil redistribution rates and thus its potential for use with the re-sampling approach differs from that of 137 Cs. Its greater sensitivity to recent changes in soil redistribution rates suggests that 210 Pb ex may have advantages over 137 Cs for use in the re-sampling approach. The potential for using 210 Pb ex measurements in re-sampling studies is explored further in this contribution. Attention focuses on a small (1.38 ha) forested catchment in southern Italy. The catchment was originally sampled for 210 Pb ex measurements in 2001 and equivalent samples were collected from points very close to the original sampling points again in 2013. This made it possible to compare the estimates of mean annual erosion related to two different time windows. This comparison suggests that mean annual rates of net soil loss had increased during the period between the two sampling campaigns and that this increase was associated with a shift to an increased sediment delivery ratio. This change was consistent with independent information on likely changes in the sediment response of the study catchment provided by the available records of annual sediment yield and changes in the annual rainfall documented for the local area. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Comparison of individual and pooled stool samples for the assessment of intensity of Schistosoma mansoni and soil-transmitted helminth infections using the Kato-Katz technique.

    PubMed

    Kure, Ashenafi; Mekonnen, Zeleke; Dana, Daniel; Bajiro, Mitiku; Ayana, Mio; Vercruysse, Jozef; Levecke, Bruno

    2015-09-24

    Our group has recently provided a proof-of-principle for the examination of pooled stool samples using McMaster technique as a strategy for the rapid assessment of intensity of soil-transmitted helminth infections (STH, Ascaris lumbricoides, Trichuris trichiura and hookworm). In the present study we evaluated this pooling strategy for the assessment of intensity of both STH and Schistosoma mansoni infections using the Kato-Katz technique. A cross-sectional survey was conducted in 360 children aged 5-18 years from six schools in Jimma Zone (southwest Ethiopia). We performed faecal egg counts (FECs) in both individual and pooled samples (pools sizes of 5, 10 and 20) to estimate the number of eggs per gram of stool (EPG) using the Kato-Katz technique. We also assessed the time to screen both individual and pooled samples. Except for hookworms, there was a significant correlation (correlation coefficient = 0.53-0.95) between the mean of individual FECs and the FECs of pooled samples for A. lumbricoides, T. trichiura and S. mansoni, regardless of the pool size. Mean FEC were 2,596 EPG, 125 EPG, 47 EPG, and 41 EPG for A. lumbricoides, T. trichiura, S. mansoni and hookworm, respectively. There was no significant difference in FECs between the examination of individual and pooled stool samples, except for hookworms. For this STH, pools of 10 resulted in a significant underestimation of infection intensity. The total time to obtain individual FECs was 65 h 5 min. For pooled FECs, this was 19 h 12 min for pools of 5, 14 h 39 min for pools of 10 and 12 h 42 min for pools of 20. The results indicate that pooling of stool sample holds also promise as a rapid assessment of infections intensity for STH and S. mansoni using the Kato-Katz technique. In this setting, the time in the laboratory was reduced by 70 % when pools of 5 instead of individual stool samples were screened.

  3. Assessment of Two Solid Anaerobic Digestate Soil Amendments for Effects on Soil Quality and Biosolarization Efficacy.

    PubMed

    Fernández-Bayo, Jesús D; Achmon, Yigal; Harrold, Duff R; McCurry, Dlinka G; Hernandez, Katie; Dahlquist-Willard, Ruth M; Stapleton, James J; VanderGheynst, Jean S; Simmons, Christopher W

    2017-05-03

    Anaerobic digestion is an organic waste bioconversion process that produces biofuel and digestates. Digestates have potential to be applied as soil amendment to improve properties for crop production including phytonutrient content and pest load. Our objective was to assess the impact of solid anaerobic digestates on weed seed inactivation and soil quality upon soil biosolarization (a pest control technique that combines solar heating and amendment-induced microbial activity). Two solid digestates from thermophilic (TD) and mesophilic (MD) digesters were tested. The solarized TD-amended samples presented significantly higher mortality of Brassica nigra (71%, P = 0.032) than its equivalent incubated at room temperature. However, biosolarization with digestate amendment led to decreased weed seed mortality in certain treatments. The plant-available water, total C, and extractable P and K were significantly increased (P < 0.05) in the incubated amended soils. The results confirm the potential of digestates as beneficial soil amendments. Further studies are needed to elucidate the impacts of digestate stability on biosolarization efficacy and soil properties.

  4. Reliable quantification of phthalates in environmental matrices (air, water, sludge, sediment and soil): a review.

    PubMed

    Net, Sopheak; Delmont, Anne; Sempéré, Richard; Paluselli, Andrea; Ouddane, Baghdad

    2015-05-15

    Because of their widespread application, phthalates or phthalic acid esters (PAEs) are ubiquitous in the environment. Their presence has attracted considerable attention due to their potential impacts on ecosystem functioning and on public health, so their quantification has become a necessity. Various extraction procedures as well as gas/liquid chromatography and mass spectrometry detection techniques are found as suitable for reliable detection of such compounds. However, PAEs are ubiquitous in the laboratory environment including ambient air, reagents, sampling equipment, and various analytical devices, that induces difficult analysis of real samples with a low PAE background. Therefore, accurate PAE analysis in environmental matrices is a challenging task. This paper reviews the extensive literature data on the techniques for PAE quantification in natural media. Sampling, sample extraction/pretreatment and detection for quantifying PAEs in different environmental matrices (air, water, sludge, sediment and soil) have been reviewed and compared. The concept of "green analytical chemistry" for PAE determination is also discussed. Moreover useful information about the material preparation and the procedures of quality control and quality assurance are presented to overcome the problem of sample contamination and these encountered due to matrix effects in order to avoid overestimating PAE concentrations in the environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Studies concerning the decontamination of hydrocarbons- polluted soil areas using bioremediation techniques

    NASA Astrophysics Data System (ADS)

    Deac, C.; Barbulescu, A.; Gligor, A.; Bibu, M.; Petrescu, V.

    2016-11-01

    The accidental or historic contamination of soils with hydrocarbons, in areas crossed by oil pipelines or where oil- or gas-extraction installations are located, is a major concern and has significant financial and ecological consequences, both for the owners of those areas and for the oil transportation or exploitation companies. Therefore it is very important to find the optimal method for removing the pollution. The current paper presents measures, mainly involving bioremediation, recommended and applied for the depollution of a contaminated area in Romania. While the topic of dealing with polluted soils is well-established in the Romanian speciality literature, bioremediation is a relatively novel approach and this paper presents important considerations in this regard. Contaminated soil samples were taken from 10 different locations within the targeted area and subjected to a thorough physical and chemical analysis, which led to determining a specific scoring table for assessing the bioremediation potential of the various samples. This has allowed the authors to establish for each of the sampled areas the best mix of factors such as nutrients (nitrogen, phosphorus, potassium), gypsum, microelements etc., that would lead to obtaining the best results in terms of the contaminants' biodegradation.

  6. Ligandless surfactant mediated solid phase extraction combined with Fe₃O₄ nano-particle for the preconcentration and determination of cadmium and lead in water and soil samples followed by flame atomic absorption spectrometry: multivariate strategy.

    PubMed

    Jalbani, N; Soylak, M

    2014-04-01

    In the present study, a microextraction technique combining Fe3O4 nano-particle with surfactant mediated solid phase extraction ((SM-SPE)) was successfully developed for the preconcentration/separation of Cd(II) and Pb(II) in water and soil samples. The analytes were determined by flame atomic absorption spectrometry (FAAS). The effective variables such as the amount of adsorbent (NPs), the pH, concentration of non-ionic (TX-114) and centrifugation time (min) were investigated by Plackett-Burman (PBD) design. The important variables were further optimized by central composite design (CCD). Under the optimized conditions, the detection limits (LODs) of Cd(II) and Pb(II) were 0.15 and 0.74 µg/L, respectively. The validation of the proposed procedure was checked by the analysis of certified reference materials of TMDA 53.3 fortified water and GBW07425 soil. The method was successfully applied for the determination of Cd(II) and Pb(II) in water and soil samples. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Dispersive liquid-liquid microextraction for the determination of nitrophenols in soils by microvial insert large volume injection-gas chromatography-mass spectrometry.

    PubMed

    Cacho, J I; Campillo, N; Viñas, P; Hernández-Córdoba, M

    2016-07-22

    A rapid and sensitive procedure for the determination of six NPs in soils by gas chromatography and mass spectrometry (GC-MS) is proposed. Ultrasound assisted extraction (UAE) is used for NP extraction from soil matrices to an organic solvent, while the environmentally friendly technique dispersive liquid-liquid microextraction (DLLME) is used for the preconcentration of the resulting UAE extracts. NPs were derivatized by applying an "in-situ" acetylation procedure, before being injected into the GC-MS system using microvial insert large volume injection (LVI). Several parameters affecting UAE, DLLME, derivatization and injection steps were investigated. The optimized procedure provided recoveries of 86-111% from spiked samples. Precision values of the procedure (expressed as relative standard deviation, RSD) lower than 12%, and limits of quantification ranging from 1.3 to 2.6ngg(-1), depending on the compound, were obtained. Twenty soil samples, obtained from military, industrial and agricultural areas, were analyzed by the proposed method. Two of the analytes were quantified in two of the samples obtained from industrial areas, at concentrations in the 4.8-9.6ngg(-1) range. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Enhanced dissipation of oxyfluorfen, ethalfluralin, trifluralin, propyzamide, and pendimethalin in soil by solarization and biosolarization.

    PubMed

    Fenoll Serrano, José; Ruiz, Encarnación; Hellín, Pilar; Lacasa, Alfredo; Flores, Pilar

    2010-02-24

    This study was conducted to assess the effects of solarization and biosolarization on the degradation of oxyfluorfen, ethalfluralin, trifluralin, propyzamide, and pendimethalin. The experimental design consisted of 17 L pots filled with clay-loam soil, which were contaminated with the studied herbicides. Then, soil disinfection treatments were applied during the summer season, including a control without disinfection (C), solarization (S), and biosolarization (BS). Soil from five pots per treatment was sampled periodically up to 90 days. Herbicide dissipation rates were higher in both S and BS treatments with regard to the control. Similar dissipation rates were observed under S and BS for most of the herbicides studied, except oxyfluorfen and pendimethalin, which were degraded to a greater extent in the BS than in the S treatment. The obtained results showed that both solarization and biosolarization can be considered, in addition to soil disinfection techniques, such as bioremediation tools for herbicide-polluted soils.

  9. Transparent soil microcosms allow 3D spatial quantification of soil microbiological processes in vivo.

    PubMed

    Downie, Helen F; Valentine, Tracy A; Otten, Wilfred; Spiers, Andrew J; Dupuy, Lionel X

    2014-01-01

    The recently developed transparent soil consists of particles of Nafion, a polymer with a low refractive index (RI), which is prepared by milling and chemical treatment for use as a soil analog. After the addition of a RI-matched solution, confocal imaging can be carried out in vivo and without destructive sampling. In a previous study, we showed that the new substrate provides a good approximation of plant growth conditions found in natural soils. In this paper, we present further development of the techniques for detailed quantitative analysis of images of root-microbe interactions in situ. Using this system it was possible for the first time to analyze bacterial distribution along the roots and in the bulk substrate in vivo. These findings indicate that the coupling of transparent soil with light microscopy is an important advance toward the discovery of the mechanisms of microbial colonisation of the rhizosphere.

  10. Evaluation of physico-mechanical properties of clayey soils using electrical resistivity imaging technique

    NASA Astrophysics Data System (ADS)

    Kibria, Golam

    Resistivity imaging (RI) is a promising approach to obtaining continuous profile of soil subsurface. This method offers simple technique to identify moisture variation and heterogeneity of the investigated area. However, at present, only qualitative information of subsurface can be obtained using RI. A study on the quantification of geotechnical properties has become important for rigorous use of this method in the evaluation of geohazard potential and construction quality control of landfill liner system. Several studies have been performed to describe electrical resistivity of soil as a function of pore fluid conductivity and surface conductance. However, characterization tests on pore water and surface charge are not typically performed in a conventional geotechnical investigation. The overall objective of this study is to develop correlations between geotechnical parameters and electrical resistivity of soil, which would provide a mean to estimate geotechnical properties from RI. As a part of the study, multiple regression analyses were conducted to develop practically applicable models correlating resistivity with influential geotechnical parameters. The soil samples considered in this study were classified as highly plastic clay (CH) and low plasticity clay (CL) according to Unified Soil Classification System (USCS). Based on the physical tests, scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDS) analysis, kaolinite was identified as the dominant mineral with some traces of magnesium, calcium, potassium, and iron. Electrical resistivity tests were conducted on compacted clays and undisturbed samples under varied geotechnical conditions. The experimental results indicated that the degree of saturation substantially influenced electrical resistivity. Electrical resistivity decreased as much as 11 times from initial value for the increase of degree of saturation from 23 to 100% in the laboratory tests on compacted clays. In case of undisturbed soil samples, resistivity decreased as much as sixteen fold (49.4 to 3.2 Ohm-m) for an increase of saturation from 31 to 100%. Furthermore, the resistivity results were different for the specimens at a specific degree of saturation because of varied surface activity and isomorphous substitution of clayey soils. In addition to physical properties, compressibility of clays was correlated with electrical conductivity. Based on the investigation, it was determined that the electrical conductivity vs. pressure curves followed similar trends as e vs. logp curves. Multiple linear regression (MLR) models were developed for compacted and undisturbed samples using statistical analysis software SAS (2009). During model development, degree of saturation and CEC were selected as independent variables. The proposed models were validated using experimental results on a different set of samples. Moreover, the applicability of the models in the determination of degrees of saturation was evaluated using field RI tests.

  11. Natural radioactivity in soil in the Baluchistan province of Pakistan.

    PubMed

    Mujahid, S A; Hussain, S

    2010-08-01

    The measurements of natural radioactivity and the assessment of radiological hazards in the soil samples of Baluchistan province of Pakistan have been carried out using HPGe detector. The soil gas radon activities in these areas have also been measured using lucas cell technique. The measured activities of (226)Ra, (232)Th and (40)K were found in the range of 15-27, 20-37 and 328-648 Bq kg(-1), respectively. The calculated absorbed dose rate in air and the annual effective dose were in the range of 35-59 nGy h(-1) and 0.17-0.29 mSv, respectively. Radon activity in the soil gas was found in the range of 357-2476 Bq m(-3).

  12. Towards Validation of SMAP: SMAPEX-4 & -5

    NASA Technical Reports Server (NTRS)

    Ye, Nan; Walker, Jeffrey; Wu, Xiaoling; Jackson, Thomas; Renzullo, Luigi; Merlin, Olivier; Rudiger, Christoph; Entekhabi, Dara; DeJeu, Richard; Kim, Edward

    2016-01-01

    The L-band (1 - 2 GHz) microwave remote sensing has been widely acknowledged as the most promising method to monitor regional to global soil moisture. Consequently, the Soil Moisture Active Passive (SMAP) satellite applied this technique to provide global soil moisture every 2 to 3 days. To verify the performance of SMAP, the fourth and fifth campaign of SMAP Experiments (SMAPEx-4 -5) were carried out at the beginning of the SMAP operational phase in the Murrumbidgee River catchment, southeast Australia. The airborne radar and radiometer observations together with ground sampling on soil moisture, vegetation water content, and surface roughness were collected in coincidence with SMAP overpasses. The SMAPEx-4 and -5 data sets will benefit to SMAP post-launch calibration andvalidation under Australian land surface conditions.

  13. Mercury conversion processes in Amazon soils evaluated by thermodesorption analysis.

    PubMed

    do Valle, Cláudia M; Santana, Genilson P; Windmöller, Cláudia C

    2006-12-01

    This paper reports on the speciation study and the Hg redox behavior in Amazon soils not influenced by gold mining and collected near Manaus, AM, Brazil. The samples were incubated by adding Hg(0) and HgCl(2) to dry soil. Solid phase Hg speciation analysis was carried out using a Hg thermodesorption technique with the aim of distinguishing elemental Hg(0) from Hg(II) binding forms. In the first case, we observed the conversion of Hg(0) to Hg(II) binding forms in the range of 28-68% and a correlation between the percent of oxidation and OM content. Samples incubated with Hg(II) showed the formation of Hg(I) and/or Hg(0) in the range of 19-69%. The lowest values corresponded to the samples with the lowest clay contents. The kinetics of conversion of Hg(0) as well as HgCl(2) were roughly fitted to the two first order reactions, a fast one and a slow one. It was not possible to evaluate differences between sampling sites and types of soils, but the mean half-life of the first order reaction obtained by the addition of Hg(II) was slower (t(1/2)=365d) than the one obtained by the addition of Hg(0) (t(1/2)=148d). Previous studies have shown the predominance of organically bound Hg in these samples. Thus, the kinetic difference between Hg oxidation and reduction in combination with the efficient retention processes by OM may explain the high background values found in Amazon soils.

  14. Comparison of procedures for correction of matrix interferences in the analysis of soils by ICP-OES with CCD detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadler, D.A.; Sun, F.; Littlejohn, D.

    1995-12-31

    ICP-OES is a useful technique for multi-element analysis of soils. However, as a number of elements are present in relatively high concentrations, matrix interferences can occur and examples have been widely reported. The availability of CCD detectors has increased the opportunities for rapid multi-element, multi-wave-length determination of elemental concentrations in soils and other environmental samples. As the composition of soils from industrial sites can vary considerably, especially when taken from different pit horizons, procedures are required to assess the extent of interferences and correct the effects, on a simultaneous multi-element basis. In single element analysis, plasma operating conditions can sometimesmore » be varied to minimize or even remove multiplicative interferences. In simultaneous multi-element analysis, the scope for this approach may be limited, depending on the spectrochemical characteristics of the emitting analyte species. Matrix matching, by addition of major sample components to the analyte calibrant solutions, can be used to minimize inaccuracies. However, there are also limitations to this procedure, when the sample composition varies significantly. Multiplicative interference effects can also be assessed by a {open_quotes}single standard addition{close_quotes} of each analyte to the sample solution and the information obtained may be used to correct the analyte concentrations determined directly. Each of these approaches has been evaluated to ascertain the best procedure for multi-element analysis of industrial soils by ICP-OES with CCD detection at multiple wavelengths. Standard reference materials and field samples have been analyzed to illustrate the efficacy of each procedure.« less

  15. REE Distribution in Cultivated and No Cultivated Soils in Two Viticultural Areas of Central Chile: Mineralogical, Pedological and Anthropic Influences

    NASA Astrophysics Data System (ADS)

    Castillo, P.; Townley, B.; Aburto, F.

    2017-12-01

    Within the scope of a Corfo-Innova Project (I+D Wines of Chile-University of Chile) we have recognized remarkable REE patterns in soils of two vineyards located in traditional vinicultural areas: Casablanca and Santa Cruz. Both vineyards have granitic parent rock, with similar petrographic features and REE patterns. We studied REE distribution on twelve cultivated soil profiles at each vineyard, where a full mineralogical, geochemical and pedogenic sampling and characterization was performed. To establish the effect of management no cultivated soil profiles were included from each vineyard location. REE in soil samples were measured by ICP-MS using two digestion methods: lithium metaborate/tetraborate fusion to obtain REE contents in total soil and MMI® partial extraction technique for REE contents on bioavailable phases.Soils display similar signatures of REEs respect to the rock source at both vineyards, but showing relative enrichments in soils of Casablanca and depletion in soils of Santa Cruz. Bioavailable phase data indicates a relative depletion of LREEs compared to HREEs and different anomalies for Ce (positive vs negative) in different areas of the same vineyard. Similar patterns of soils and parent rock suggest that REEs are adequate tracers of lithological source. Enrichments and/or depletions of REE patterns in soils respect to the rock source and Ce anomalies, evidence differential pedogenetic processes occurring at each sampled site. Results of bioavailable phase are coherent with the immobilization and fractionation of LREEs by stable minerals within soils as clays and Fe oxides. Mineralogical results in soil thin sections of Casablanca evidence the occurrence of Ti phases as sphene, ilmenite and rutile, which probably control the relative REE enrichment, since these minerals are considered more stable under pedogenic conditions.Finally, cultivated soils show a depleted but analogous pattern of REE regarding to no cultivated soil, indicating the REEs loss due to agricultural land use. Our preliminary hypothesis is the existence of organometallic complexes that retain REEs in natural soils, which are degraded with vinicultural management. However other factors as differential weathering rates of minerals, clays mineralogy and fractionation of REE by plants must be considered.

  16. Combining Neutron and Magnetic Resonance Imaging to Study the Interaction of Plant Roots and Soil

    NASA Astrophysics Data System (ADS)

    Oswald, Sascha E.; Tötzke, Christian; Haber-Pohlmeier, Sabina; Pohlmeier, Andreas; Kaestner, Anders P.; Lehmann, Eberhard

    The soil in direct vicinity of the roots, the root-soil interface or so called rhizosphere, is heavily modified by the activity of roots, compared to bulk soil, e.g. in respect to microbiology and soil chemistry. It has turned out that the root-soil interface, though small in size, also plays a decisive role in the hydraulics controlling the water flow from bulk soil into the roots. A promising approach for the non-invasive investigation of water dynamics, water flow and solute transport is the combination of the two imaging techniques magnetic resonance imaging (MRI) and neutron imaging (NI). Both methods are complementary, because NI maps the total proton density, possibly amplified by NI tracers, which usually corresponds to total water content, and is able to detect changes and spatial patterns with high resolution. On the other side, nuclear magnetic resonance relaxation times reflect the interaction between fluid and matrix, while also a mapping of proton spin density and thus water content is possible. Therefore MRI is able to classify different water pools via their relaxation times additionally to the water distribution inside soil as a porous medium. We have started such combined measurements with the approach to use the same samples and perform tomography with each imaging method at different location and short-term sample transfer.

  17. Teaching Ecology in Winter.

    ERIC Educational Resources Information Center

    Clearing: Nature and Learning in the Pacific Northwest, 1984

    1984-01-01

    Presents ideas for teaching ecology in the winter. Suggested topic areas or units include snow insulation and density, snowflakes and snow crystals, goldenrod galls, bird behavior, survival techniques, bacteriology and decomposition, trees and keying, biomass and productivity, pollution, and soil organisms. A sample student activity sheet is…

  18. Soil solution extraction techniques for microbial ecotoxicity testing: a comparative evaluation.

    PubMed

    Tiensing, T; Preston, S; Strachan, N; Paton, G I

    2001-02-01

    The suitability of two different techniques (centrifugation and Rhizon sampler) for obtaining the interstitial pore water of soil (soil solution), integral to the ecotoxicity assessment of metal contaminated soil, were investigated by combining chemical analyses and a luminescence-based microbial biosensor. Two different techniques, centrifugation and Rhizon sampler, were used to extract the soil solution from Insch (a loamy sand) and Boyndie (a sandy loam) soils, which had been amended with different concentrations of Zn and Cd. The concentrations of dissolved organic carbon (DOC), major anions (F- , CI-, NO3, SO4(2-)) and major cations (K+, Mg2+, Ca2+) in the soil solutions varied depending on the extraction technique used. Overall, the concentrations of Zn and Cd were significantly higher in the soil solution extracted using the centrifugation technique compared with that extracted using the Rhizon sampler technique. Furthermore, the differences observed between the two extraction techniques depended on the type of soil from which the solution was being extracted. The luminescence-based biosensor Escherichia coli HB101 pUCD607 was shown to respond to the free metal concentrations in the soil solutions and showed that different toxicities were associated with each soil, depending on the technique used to extract the soil solution. This study highlights the need to characterise the type of extraction technique used to obtain the soil solution for ecotoxicity testing in order that a representative ecotoxicity assessment can be carried out.

  19. Cultivation-Independent Detection of Autotrophic Hydrogen-Oxidizing Bacteria by DNA Stable-Isotope Probing ▿

    PubMed Central

    Pumphrey, Graham M.; Ranchou-Peyruse, Anthony; Spain, Jim C.

    2011-01-01

    Knallgas bacteria are a physiologically defined group that is primarily studied using cultivation-dependent techniques. Given that current cultivation techniques fail to grow most bacteria, cultivation-independent techniques that selectively detect and identify knallgas bacteria will improve our ability to study their diversity and distribution. We used stable-isotope probing (SIP) to identify knallgas bacteria in rhizosphere soil of legumes and in a microbial mat from Obsidian Pool in Yellowstone National Park. When samples were incubated in the dark, incorporation of 13CO2 was H2 dependent. SIP enabled the detection of knallgas bacteria that were not detected by cultivation, and the majority of bacteria identified in the rhizosphere soils were betaproteobacteria predominantly related to genera previously known to oxidize hydrogen. Bacteria in soil grew on hydrogen at concentrations as low as 100 ppm. A hydB homolog encoding a putative high-affinity NiFe hydrogenase was amplified from 13C-labeled DNA from both vetch and clover rhizosphere soil. The results indicate that knallgas bacteria can be detected by SIP and populations that respond to different H2 concentrations can be distinguished. The methods described here should be applicable to a variety of ecosystems and will enable the discovery of additional knallgas bacteria that are resistant to cultivation. PMID:21622787

  20. Cultivation-independent detection of autotrophic hydrogen-oxidizing bacteria by DNA stable-isotope probing.

    PubMed

    Pumphrey, Graham M; Ranchou-Peyruse, Anthony; Spain, Jim C

    2011-07-01

    Knallgas bacteria are a physiologically defined group that is primarily studied using cultivation-dependent techniques. Given that current cultivation techniques fail to grow most bacteria, cultivation-independent techniques that selectively detect and identify knallgas bacteria will improve our ability to study their diversity and distribution. We used stable-isotope probing (SIP) to identify knallgas bacteria in rhizosphere soil of legumes and in a microbial mat from Obsidian Pool in Yellowstone National Park. When samples were incubated in the dark, incorporation of (13)CO(2) was H(2) dependent. SIP enabled the detection of knallgas bacteria that were not detected by cultivation, and the majority of bacteria identified in the rhizosphere soils were betaproteobacteria predominantly related to genera previously known to oxidize hydrogen. Bacteria in soil grew on hydrogen at concentrations as low as 100 ppm. A hydB homolog encoding a putative high-affinity NiFe hydrogenase was amplified from (13)C-labeled DNA from both vetch and clover rhizosphere soil. The results indicate that knallgas bacteria can be detected by SIP and populations that respond to different H(2) concentrations can be distinguished. The methods described here should be applicable to a variety of ecosystems and will enable the discovery of additional knallgas bacteria that are resistant to cultivation.

  1. Characterization of wet aggregate stability of soils by ¹H-NMR relaxometry.

    PubMed

    Buchmann, C; Meyer, M; Schaumann, G E

    2015-09-01

    For the assessment of soil structural stability against hydraulic stress, wet sieving or constant head permeability tests are typically used but rather limited in their intrinsic information value. The multiple applications of several tests is the only possibility to assess important processes and mechanisms during soil aggregate breakdown, e.g. the influences of soil fragment release or differential swelling on the porous systems of soils or soil aggregate columns. Consequently, the development of new techniques for a faster and more detailed wet aggregate stability assessment is required. (1)H nuclear magnetic resonance relaxometry ((1)H-NMR relaxometry) might provide these requirements because it has already been successfully applied on soils. We evaluated the potential of (1)H-NMR relaxometry for the assessment of wet aggregate stability of soils, with more detailed information on occurring mechanisms at the same time. Therefore, we conducted single wet sieving and constant head permeability tests on untreated and 1% polyacrylic acid-treated soil aggregates of different textures and organic matter contents, subsequently measured by (1)H-NMR relaxometry after percolation. The stability of the soil aggregates were mainly depending on their organic matter contents and the type of aggregate stabilization, whereby additional effects of clay swelling on the measured wet aggregate stability were identified by the transverse relaxation time (T2) distributions. Regression analyses showed that only the percentage of water stable aggregates could be determined accurately from percolated soil aggregate columns by (1)H-NMR relaxometry measurements. (1)H-NMR relaxometry seems a promising technique for wet aggregate stability measurements but should be further developed for nonpercolated aggregate columns and real soil samples. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Mapping soil deformation around plant roots using in vivo 4D X-ray Computed Tomography and Digital Volume Correlation.

    PubMed

    Keyes, S D; Gillard, F; Soper, N; Mavrogordato, M N; Sinclair, I; Roose, T

    2016-06-14

    The mechanical impedance of soils inhibits the growth of plant roots, often being the most significant physical limitation to root system development. Non-invasive imaging techniques have recently been used to investigate the development of root system architecture over time, but the relationship with soil deformation is usually neglected. Correlative mapping approaches parameterised using 2D and 3D image data have recently gained prominence for quantifying physical deformation in composite materials including fibre-reinforced polymers and trabecular bone. Digital Image Correlation (DIC) and Digital Volume Correlation (DVC) are computational techniques which use the inherent material texture of surfaces and volumes, captured using imaging techniques, to map full-field deformation components in samples during physical loading. Here we develop an experimental assay and methodology for four-dimensional, in vivo X-ray Computed Tomography (XCT) and apply a Digital Volume Correlation (DVC) approach to the data to quantify deformation. The method is validated for a field-derived soil under conditions of uniaxial compression, and a calibration study is used to quantify thresholds of displacement and strain measurement. The validated and calibrated approach is then demonstrated for an in vivo test case in which an extending maize root in field-derived soil was imaged hourly using XCT over a growth period of 19h. This allowed full-field soil deformation data and 3D root tip dynamics to be quantified in parallel for the first time. This fusion of methods paves the way for comparative studies of contrasting soils and plant genotypes, improving our understanding of the fundamental mechanical processes which influence root system development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Rapid Method of Determining Factors Limiting Bacterial Growth in Soil

    PubMed Central

    Aldén, L.; Demoling, F.; Bååth, E.

    2001-01-01

    A technique to determine which nutrients limit bacterial growth in soil was developed. The method was based on measuring the thymidine incorporation rate of bacteria after the addition of C, N, and P in different combinations to soil samples. First, the thymidine incorporation method was tested in two different soils: an agricultural soil and a forest humus soil. Carbon (as glucose) was found to be the limiting substance for bacterial growth in both of these soils. The effect of adding different amounts of nutrients was studied, and tests were performed to determine whether the additions affected the soil pH and subsequent bacterial activity. The incubation time required to detect bacterial growth after adding substrate to the soil was also evaluated. Second, the method was used in experiments in which three different size fractions of straw (1 to 2, 0.25 to 1, and <0.25 mm) were mixed into the agricultural soil in order to induce N limitation for bacterial growth. When the straw fraction was small enough (<0.25 mm), N became the limiting nutrient for bacterial growth after about 3 weeks. After the addition of the larger straw fractions (1 to 2 and 0.25 to 1 mm), the soil bacteria were C limited throughout the incubation period (10 weeks), although an increase in the thymidine incorporation rate after the addition of C and N together compared with adding them separately was seen in the sample containing the size fraction from 0.25 to 1 mm. Third, soils from high-pH, limestone-rich areas were examined. P limitation was observed in one of these soils, while tendencies toward P limitation were seen in some of the other soils. PMID:11282640

  4. Preliminary use of compound-specific stable isotope (CSSI) technique to identify and apportion sediment origin in a small Austrian catchment

    NASA Astrophysics Data System (ADS)

    Mabit, Lionel; Gibbs, Max; Chen, Xu; Meusburger, Katrin; Toloza, Arsenio; Resch, Christian; Klik, Andreas; Eder, Alexander; Strauss, Peter; Alewell, Christine

    2015-04-01

    The overall impacts of climate change on agriculture are expected to be negative, threatening global food security. In the agricultural areas of the European Union, water erosion risk is expected to increase by about 80% by the year 2050. Reducing soil erosion and sedimentation-related environmental problems represent a key requirement for mitigating the impact of climate change. A new forensic stable isotope technique, using the compound specific stable isotope (CSSI) signatures of inherent soil organic biomarkers, can discriminate and apportion the source soil contribution from different land uses. Plant communities label the soil where they grow by exuding organic biomarkers. Although all plants produce the same biomarkers, the stable isotopic signature of those biomarkers is different for each plant species. For agri-environmental investigation, the CSSI technique is based on the measurement of carbon-13 (13-C) natural abundance signatures of specific organic compounds such as natural fatty acids (FAs) in the soil. By linking fingerprints of land use to the sediment in deposition zones, this approach has been shown to be a useful technique for determining the source of eroded soil and thereby identifying areas prone to soil degradation. The authors have tested this innovative stable isotopic approach in a small Austrian agricultural catchment located 60 km north of Vienna. A previous fallout radionuclide (i.e. 137-Cs) based investigation established a sedimentation rate of 4 mm/yr in the lowest part of the study site. To gain knowledge about the origin of these sediments, the CSSI technique was then tested using representative samples from the different land-uses of the catchment as source material. Values of 13-C signatures of specific FAs (i.e. C22:0 = Behenic Acid ; C24:0 = Lignoceric Acid) and the bulk 13-C of the sediment mixture and potential landscape sources were analyzed with the mixing models IsoSource and CSSIAR v1.00. Using both mixing models, preliminary results highlighted that about 50-55% of the sediment located in the deposition area originated from the main grassed waterway of the catchment.

  5. Development of More Cost-Effective Methods for Long-Term Monitoring of Soil Vapor Intrusion to Indoor Air Using Quantitative Passive Diffusive-Adsorptive Sampling Techniques

    DTIC Science & Technology

    2015-05-01

    challenging component of assessing human health risks associated with contaminated soil and groundwater since the late 1990s, during which time...and analysis. 1.3 REGULATORY DRIVERS Regulatory guidance for assessment and management of risks associated with VI has been issued by at least 27...requirements to assess potential human health risks , and this possibility exists where VOCs are present in the subsurface near occupied buildings

  6. Thermoradiation inactivation of naturally occurring organisms in soil

    NASA Technical Reports Server (NTRS)

    Reynolds, M. C.; Lindell, K. F.; David, T. J.

    1973-01-01

    Samples of soil collected from Kennedy Space Center near spacecraft assembly facilities were found to contain microorganisms very resistant to conventional sterilization techniques. The inactivation behavior of the naturally occurring spores in soil was investigated using dry heat and ionizing radiation, first separately, then in combination. Dry heat inactivation rates of spores were determined for 105 and 125 C. Radiation inactivation rates were determined for dose rates of 660 and 76 krad/hr at 25 C. Simultaneous combinations of heat and radiation were then investigated at 105, 110, 115, 120, and 125 C. Combined treatment was found to be highly synergistic requiring greatly reduced radiation doses to accomplish sterilization.

  7. Effects of X-Ray Dose On Rhizosphere Studies Using X-Ray Computed Tomography

    PubMed Central

    Zappala, Susan; Helliwell, Jonathan R.; Tracy, Saoirse R.; Mairhofer, Stefan; Sturrock, Craig J.; Pridmore, Tony; Bennett, Malcolm; Mooney, Sacha J.

    2013-01-01

    X-ray Computed Tomography (CT) is a non-destructive imaging technique originally designed for diagnostic medicine, which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix of mineral grains, organic matter, air-filled pores and water-filled pores. Additionally, X-ray CT allows visualisation of plant roots in situ without the need for traditional invasive methods such as root washing. However, one routinely unreported aspect of X-ray CT is the potential effect of X-ray dose on the soil-borne microorganisms and plants in rhizosphere investigations. Here we aimed to i) highlight the need for more consistent reporting of X-ray CT parameters for dose to sample, ii) to provide an overview of previously reported impacts of X-rays on soil microorganisms and plant roots and iii) present new data investigating the response of plant roots and microbial communities to X-ray exposure. Fewer than 5% of the 126 publications included in the literature review contained sufficient information to calculate dose and only 2.4% of the publications explicitly state an estimate of dose received by each sample. We conducted a study involving rice roots growing in soil, observing no significant difference between the numbers of root tips, root volume and total root length in scanned versus unscanned samples. In parallel, a soil microbe experiment scanning samples over a total of 24 weeks observed no significant difference between the scanned and unscanned microbial biomass values. We conclude from the literature review and our own experiments that X-ray CT does not impact plant growth or soil microbial populations when employing a low level of dose (<30 Gy). However, the call for higher throughput X-ray CT means that doses that biological samples receive are likely to increase and thus should be closely monitored. PMID:23840640

  8. The Effect of paper mill waste and sewage sludge amendments on soil organic matter

    NASA Astrophysics Data System (ADS)

    Méndez, Ana; Barriga, Sandra; Guerrero, Francisca; Gascó, Gabriel

    2013-04-01

    In general, Mediterranean soils have low organic matter content, due to the climate characteristics of this region and inadequate land management. Traditionally, organic wastes such as manure are used as amendment in order to improve the soil quality, increasing soil fertility by the accumulation of nitrogen, phosphorus and other plant nutrients in the soil. In the last decade, other anthropogenic organic wastes such as sewage sludge or paper waste materials have been studied as soil amendments to improve physical, chemical and biological properties of soils. The objective of the present work was to study the influence of waste from a paper mill and sewage sludge amendments on soil organic matter. For this reason, soil organic matter evolution was studied using thermogravimetric analysis (TGA), the derivative (dTG) and differential thermal analysis (DTA). Thermal analytical techniques have the advantage of using full samples without pre-treatments and have been extensively used to study the evolution of organic matter in soils, to evaluate composting process or to study the evolution of organic matter of growing media.

  9. Can the normalized soil moisture index improve the prediction of soil organic carbon based on hyperspectral remote sensing data?

    NASA Astrophysics Data System (ADS)

    van Wesemael, Bas; Nocita, Marco

    2016-04-01

    One of the problems for mapping of soil organic carbon (SOC) at large-scale based on visible - near and short wave infrared (VIS-NIR-SWIR) remote sensing techniques is the spatial variation of topsoil moisture when the images are collected. Soil moisture is certainly an aspect causing biased SOC estimations, due to the problems in discriminating reflectance differences due to either variations in organic matter or soil moisture, or their combination. In addition, the difficult validation procedures make the accurate estimation of soil moisture from optical airborne a major challenge. After all, the first millimeters of the soil surface reflect the signal to the airborne sensor and show a large spatial, vertical and temporal variation in soil moisture. Hence, the difficulty of assessing the soil moisture of this thin layer at the same moment of the flight. The creation of a soil moisture proxy, directly retrievable from the hyperspectral data is a priority to improve the large-scale prediction of SOC. This paper aims to verify if the application of the normalized soil moisture index (NSMI) to Airborne Prima Experiment (APEX) hyperspectral images could improve the prediction of SOC. The study area was located in the loam region of Wallonia, Belgium. About 40 samples were collected from bare fields covered by the flight lines, and analyzed in the laboratory. Soil spectra, corresponding to the sample locations, were extracted from the images. Once the NSMI was calculated for the bare fields' pixels, spatial patterns, presumably related to within field soil moisture variations, were revealed. SOC prediction models, built using raw and pre-treated spectra, were generated from either the full dataset (general model), or pixels belonging to one of the two classes of NSMI values (NSMI models). The best result, with a RMSE after validation of 1.24 g C kg-1, was achieved with a NSMI model, compared to the best general model, characterized by a RMSE of 2.11 g C kg-1. These results confirmed the advantage to controlling the effect of soil moisture on the detection of SOC. The NSMI proved to be a flexible concept, due to the possible use of different SWIR wavelengths, and ease of use, because measurements of soil moisture by other techniques are not needed. However, in the future, it will be important to assess the effectiveness of the NSMI for different soil types, and other hyperspectral sensors.

  10. Analysis of bacterial populations in the environment using two-dimensional gel electrophoresis of genomic DNA and complementary DNA.

    PubMed

    Liu, Guo-Hua; Nakamura, Tatsuo; Amemiya, Takashi; Rajendran, Narasimmalu; Itoh, Kiminori

    2011-01-01

    Two-dimensional gel electrophoresis (2-DGE) mapping of genomic DNA and complementary DNA (cDNA) amplicons was attempted to analyze total and active bacterial populations within soil and activated sludge samples. Distinct differences in the number and species of bacterial populations and those that were metabolically active at the time of sampling were visually observed especially for the soil community. Statistical analyses and sequencing based on the 2-DGE data further revealed the relationships between total and active bacterial populations within each community. This high-resolution technique would be useful for obtaining a better understanding of bacterial population structures in the environment.

  11. Efficiency of different techniques to identify changes in land use

    NASA Astrophysics Data System (ADS)

    Zornoza, Raúl; Mateix-Solera, Jorge; Gerrero, César

    2013-04-01

    The need for the development of sensitive and efficient methodologies for soil quality evaluation is increasing. The ability to assess soil quality and identify key soil properties that serve as indicators of soil function is complicated by the multiplicity of physical, chemical and biological factors that control soil processes. In the mountain region of the Mediterranean Basin of Spain, almond trees have been cultivated in terraced orchards for centuries. These crops are immersed in the Mediterranean forest scenery, configuring a mosaic landscape where orchards are integrated in the forest masses. In the last decades, almond orchards are being abandoned, leading to an increase in vegetation cover, since abandoned fields are naturally colonized by the surrounded natural vegetation. Soil processes and properties are expected to be associated with vegetation successional dynamics. Thus, the establishment of suitable parameters to monitor soil quality related to land use changes is particularly important to guarantee the regeneration of the mature community. In this study, we selected three land uses, constituted by forest, almond trees orchards, and orchards abandoned between 10 and 15 years previously to sampling. Sampling was carried out in four different locations in SE Spain. The main purpose was to evaluate if changes in management have significantly influenced different sets of soil characteristics. For this purpose, we used a discriminant analysis (DA). The different sets of soil characteristics tested in this study were 1: physical, chemical and biochemical properties; 2: soil near infrared (NIR) spectra; and 3: phospholipid fatty acids (PLFAs). After the DA performed with the sets 1 and 2, the three land uses were clearly separated by the two first discriminant functions, and more than 85 % of the samples were correctly classified (grouped). Using the sets 3 and 4 for DA resulted in a slightly better separation of land uses, being more than 85% of the samples correctly classified. These results suggest that the combination of properties of different nature is effective to show the state of soil quality, owing to the close interaction among physical, chemical and biochemical properties in soil. In addition, NIR spectra offer an integrate vision of soil quality, as they synthesize information regarding mineralogy, soil chemistry, soil biology, organic matter and physical attributes. With the DA developed with the PLFAs, the 100% of samples were correctly classified or grouped, indicating a clear impact of land management. This confirms the higher sensitivity of parameters related to soil microbial community structure to evaluate soil quality, perturbations and management. This result was expected as microbial communities respond very fast to changes in land use, faster than measurements of total microbial biomass and activity. Key Words: Land use changes; Phospholipids fatty acids; Near Infrared Spectroscopy

  12. Vegetation and soils

    USGS Publications Warehouse

    Burke, M.K.; King, S.L.; Eisenbies, M.H.; Gartner, D.

    2000-01-01

    Intro paragraph: Characterization of bottomland hardwood vegetation in relatively undisturbed forests can provide critical information for developing effective wetland creation and restoration techniques and for assessing the impacts of management and development. Classification is a useful technique in characterizing vegetation because it summarizes complex data sets, assists in hypothesis generation about factors influencing community variation, and helps refine models of community structure. Hierarchical classification of communities is particularly useful for showing relationships among samples (Gauche 1982).

  13. Could saponins be used to enhance bioremediation of polycyclic aromatic hydrocarbons in aged-contaminated soils?

    PubMed

    Davin, Marie; Starren, Amandine; Deleu, Magali; Lognay, Georges; Colinet, Gilles; Fauconnier, Marie-Laure

    2018-03-01

    Polycyclic aromatic hydrocarbons (PAH) are persistent organic compounds of major concern that tend to accumulate in the environment, threatening ecosystems and health. Brownfields represent an important tank for PAHs and require remediation. Researches to develop bioremediation and phytoremediation techniques are being conducted as alternatives to environmentally aggressive, expensive and often disruptive soil remediation strategies. The objectives of the present study were to investigate the potential of saponins (natural surfactants) as extracting agents and as bioremediation enhancers on an aged-contaminated soil. Two experiments were conducted on a brownfield soil containing 15 PAHs. In a first experiment, soil samples were extracted with saponins solutions (0; 1; 2; 4 and 8 g.L -1 ). In a second experiment conducted in microcosms (28 °C), soil samples were incubated for 14 or 28 days in presence of saponins (0; 2.5 and 5 mg g -1 ). CO 2 emissions were monitored throughout the experiment. After the incubation, dehydrogenase activity was measured as an indicator of microbiological activity and residual PAHs were determined. In both experiments PAHs were determined using High-Performance Liquid Chromatography and Fluorimetric Detection. The 4 g.L -1 saponins solution extracted significantly more acenaphtene, fluorene, phenanthrene, anthracene, and pyrene than water. PAHs remediation was not enhanced in presence of saponins compared to control samples after 28 days. However CO 2 emissions and dehydrogenase activities were significantly more important in presence of saponins, suggesting no toxic effect of these surfactants towards soil microbiota. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Analysis of poly-beta-hydroxybutyrate in environmental samples by GC-MS/MS.

    PubMed

    Elhottová, D; Tríska, J; Petersen, S O; Santrůcková, H

    2000-05-01

    Application of gas chromatography-mass spectrometry (GC-MS) can significantly improve trace analyses of compounds in complex matrices from natural environments compared to gas chromatography only. A GC-MS/MS technique for determination of poly-beta-hydroxybutyrate (PHB), a bacterial storage compound, has been developed and used for analysis of two soils stored for up to 319 d, fresh samples of sewage sludge, as well as a pure culture of Bacillus megaterium. Specific derivatization of beta-hydroxybutyrate (3-OH C4:0) PHB monomer units by N-tert-butyl-dimethylsilyl-N-methyltrifluoracetamide (MTBSTFA) improved chromatographic and mass spectrometric properties of the analyte. The diagnostic fragmentation scheme of the derivates tert-butyldimethylsilyl ester and ether of beta-hydroxybutyric acid (MTBSTFA-HB) essential for the PHB identification was shown. The ion trap MS was used, therefore the scan gave the best sensitivity and with MS/MS the noise decreased, so the S/N was better and also with second fragmentation the amount of ions increased compared to SIM. The detection limit for MTBSTFA-HB by GC-MS/MS was about 10(-13) g microL(-1) of injected volume, while by GC (FID) and GC-MS (scan) it was around 10(-10) g microL(-1) of injected volume. Sensitivity of GC-MS/MS measurements of PHB in arable soil and activated sludge samples was down to 10 pg of PHB g(-1) dry matter. Comparison of MTBSTFA-HB detection in natural soil sample by GC (FID), GC-MS (scan) and by GC-MS/MS demonstrated potentials and limitations of the individual measurement techniques.

  15. Multivariate analysis of selected metals in tannery effluents and related soil.

    PubMed

    Tariq, Saadia R; Shah, Munir H; Shaheen, N; Khalique, A; Manzoor, S; Jaffar, M

    2005-06-30

    Effluent and relevant soil samples from 38 tanning units housed in Kasur, Pakistan, were obtained for metal analysis by flame atomic absorption spectrophotometric method. The levels of 12 metals, Na, Ca, K, Mg, Fe, Mn, Cr, Co, Cd, Ni, Pb and Zn were determined in the two media. The data were evaluated towards metal distribution and metal-to-metal correlations. The study evidenced enhanced levels of Cr (391, 16.7 mg/L) and Na (25,519, 9369 mg/L) in tannery effluents and relevant soil samples, respectively. The effluent versus soil trace metal content relationship confirmed that the effluent Cr was strongly correlated with soil Cr. For metal source identification the techniques of principal component analysis, and cluster analysis were applied. The principal component analysis yielded two factors for effluents: factor 1 (49.6% variance) showed significant loading for Ca, Fe, Mn, Cr, Cd, Ni, Pb and Zn, referring to a tanning related source for these metals, and factor 2 (12.6% variance) with higher loadings of Na, K, Mg and Co, was associated with the processes during the skin/hide treatment. Similarly, two factors with a cumulative variance of 34.8% were obtained for soil samples: factor 1 manifested the contribution from Mg, Mn, Co, Cd, Ni and Pb, which though soil-based is basically effluent-derived, while factor 2 was found associated with Na, K, Ca, Cr and Zn which referred to a tannery-based source. The dendograms obtained from cluster analysis, also support the observed results. The study exhibits a gross pollution of soils with Cr at levels far exceeding the stipulated safe limit laid down for tannery effluents.

  16. Massive processing of pyro-chromatogram mass spectra (py-GCMS) of soil samples using the PARAFAC2 algorithm

    NASA Astrophysics Data System (ADS)

    Cécillon, Lauric; Quénéa, Katell; Anquetil, Christelle; Barré, Pierre

    2015-04-01

    Due to its large heterogeneity at all scales (from soil core to the globe), several measurements are often mandatory to get a meaningful value of a measured soil property. A large number of measurements can therefore be needed to study a soil property whatever the scale of the study. Moreover, several soil investigation techniques produce large and complex datasets, such as pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) which produces complex 3-way data. In this context, straightforward methods designed to speed up data treatments are needed to deal with large datasets. GC-MS pyrolysis (py-GCMS) is a powerful and frequently used tool to characterize soil organic matter (SOM). However, the treatment of the results of a py-GCMS analysis of soil sample is time consuming (number of peaks, co-elution, etc.) and the treatment of large data set of py-GCMS results is rather laborious. Moreover, peak position shifts and baseline drifts between analyses make the automation of GCMS programs data treatment difficult. These problems can be fixed using the Parallel Factor Analysis 2 (PARAFAC 2, Kiers et al., 1999; Bro et al., 1999). This algorithm has been applied frequently on chromatography data but has never been applied to analyses of SOM. We developed a Matlab routine based on existing Matlab packages dedicated to the simultaneous treatment of dozens of pyro-chromatograms mass spectra. We applied this routine on 40 soil samples. The benefits and expected improvements of our method will be discussed in our poster. References Kiers et al. (1999) PARAFAC2 - PartI. A direct fitting algorithm for the PARAFAC2 model. Journal of Chemometrics, 13: 275-294. Bro et al. (1999) PARAFAC2 - PartII. Modeling chromatographic data with retention time shifts. Journal of Chemometrics, 13: 295-309.

  17. MICROWAVE-ASSISTED EXTRACTION OF ORGANIC COMPOUNDS FROM STANDARD REFERENCE SOILS AND SEDIMENTS

    EPA Science Inventory

    As part of an ongoing evaluation of new sample preparation techniques by the U.S. Environmental Protection Agency (EPA), especially those that minimize waste solvents, microwave-assisted extraction (MAE) of organic compounds from solid materials (or "matrices") was evaluated. Six...

  18. Chemical characterization and spatial distribution of PAHs and heavy hydrocarbons in rural sites of Campania Region, South Italy.

    PubMed

    Monaco, D; Riccio, A; Chianese, E; Adamo, P; Di Rosa, S; Fagnano, M

    2015-10-01

    In this paper, the behaviour and distribution patterns of heavy hydrocarbons and several polycyclic aromatic hydrocarbon (PAH) priority pollutants, as listed by the US Environmental Protection Agency, were evaluated in 891 soil samples. The samples were collected in three expected polluted rural sites in Campania (southern Italy) as part of the LIFE11 ECOREMED project, funded by the European Commission, to test innovative agriculture-based soil restoration techniques. These sites have been selected because they have been used for the temporary storage of urban and building waste (Teverola), subject to illicit dumping of unknown material (Trentola-Ducenta), or suspected to be polluted by metals due to agricultural practices (Giugliano). Chemical analysis of soil samples allowed the baseline pollution levels to be determined prior to any intervention. It was found that these areas can be considered contaminated for residential use, in accordance with Italian environmental law (Law Decree 152/2006). Statistical analysis applied to the data proved that average mean concentrations of heavy hydrocarbons could be as high as 140 mg/kg of dry soil with peaks of 700 mg/kg of dry soil, for the Trentola-Ducenta site; the median concentration of analytical results for hydrocarbon (HC) concentration for the Trentola-Ducenta and Giugliano sites was 63 and 73.4 mg/kg dry soil, respectively; for Teverola, the median level was 35 mg/kg dry soil. Some PAHs (usually benzo(a)pyrene) also exceeded the maximum allowed level in all sites. From the principal component analysis applied to PAH concentrations, it emerged that pollutants can be supposed to derive from a single source for the three sites. Diagnostic ratios calculated to determine possible PAH sources suggest petroleum combustion or disposal practice. Our sampling protocol also showed large dishomogeneity in soil pollutant spatial distribution, even at a scale as small as 3.3 m, indicating that variability could emerge at very short spatial scales.

  19. Evaluating steady-state soil thickness by coupling uranium series and 10Be cosmogenic radionuclides

    NASA Astrophysics Data System (ADS)

    Vanacker, Veerle; Schoonejans, Jerome; Opfergelt, Sophie; Granet, Matthieu; Christl, Marcus; Chabaux, Francois

    2017-04-01

    Within the Critical Zone, the development of the regolith mantle is controlled by the downwards propagation of the weathering front into the bedrock and denudation at the surface of the regolith by mass movements, water and wind erosion. When the removal of surface material is approximately balanced by the soil production, the soil system is assumed to be in steady-state. The steady state soil thickness (or so-called SSST) can be considered as a dynamic equilibrium of the system, where the thickness of the soil mantle stays relatively constant over time. In this study, we present and compare analytical data from two independent isotopic techniques: in-situ produced cosmogenic nuclides and U-series disequilibria to constrain soil development under semi-arid climatic conditions. The Spanish Betic Cordillera (Southeast Spain) was selected for this study, as it offers us a unique opportunity to analyze soil thickness steady-state conditions for thin soils of semiarid environments. Three soil profiles were sampled across the Betic Ranges, at the ridge crest of zero-order catchments with distinct topographic relief, hillslope gradient and 10Be-derived denudation rate. The magnitude of soil production rates determined based on U-series isotopes (238U, 234U, 230Th and 226Ra) is in the same order of magnitude as the 10Be-derived denudation rates, suggesting steady state soil thickness in two out of three sampling sites. The results suggest that coupling U-series isotopes with in-situ produced radionuclides can provide new insights in the rates of soil development; and also illustrate the potential frontiers in applying U-series disequilibria to track soil production in rapidly eroding landscapes characterized by thin weathering depths.

  20. Microextraction techniques at the analytical laboratory: an efficient way for determining low amounts of residual insecticides in soils

    NASA Astrophysics Data System (ADS)

    Viñas, Pilar; Navarro, Tania; Campillo, Natalia; Fenoll, Jose; Garrido, Isabel; Cava, Juana; Hernandez-Cordoba, Manuel

    2017-04-01

    Microextraction techniques allow sensitive measurements of pollutants to be carried out by means of instrumentation commonly available at the analytical laboratory. This communication reports our studies focused to the determination of pyrethroid insecticides in polluted soils. These chemicals are synthetic analogues of pyrethrum widely used for pest control in agricultural and household applications. Because of their properties, pyrethroids tend to strongly absorb to soil particles and organic matter. Although they are considered as pesticides with a low toxicity for humans, long times exposure to them may cause damage in immune system and in the neurological system. The procedure here studied is based on dispersive liquid-liquid microextraction (DLLME), and permits the determination of fifteen pyrethroid compounds (allethrin, resmethrin, tetramethrin, bifenthrin, fenpropathrin, cyhalothrin, acrinathrin, permethrin, λ-cyfluthrin, cypermethrin, flucythrinate, fenvalerate, esfenvalerate, τ-fluvalinate, and deltamethrin) in soil samples using gas chromatography with mass spectrometry (GC-MS). The analytes were first extracted from the soil samples (4 g) by treatment with 2 mL of acetonitrile, 2 mL of water and 0.5 g of NaCl. The enriched organic phase (approximately 0.8 mL) was separated by centrifugation, and this solution used as the dispersant in a DLLME process. The analytes did not need to be derivatized before their injection into the chromatographic system, due to their volatility and thermal stability. The identification of the different pyrethroids was carried out based on their retention times and mass spectra, considering the m/z values of the different fragments and their relative abundances. The detection limits were in the 0.2-23 ng g-1 range, depending on the analyte and the sample under analysis. The authors are grateful to the Comunidad Autonóma de la Región de Murcia, Spain (Fundación Séneca, 19888/GERM/15) and to the Spanish MINECO (Project CTQ2015-68049-R) for financial support

  1. High-Grading Lunar Samples

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Sellar, Glenn; Nunez, Jorge; Mosie, Andrea; Schwarz, Carol; Parker, Terry; Winterhalter, Daniel; Farmer, Jack

    2009-01-01

    Astronauts on long-duration lunar missions will need the capability to high-grade their samples to select the highest value samples for transport to Earth and to leave others on the Moon. We are supporting studies to define the necessary and sufficient measurements and techniques for high-grading samples at a lunar outpost. A glovebox, dedicated to testing instruments and techniques for high-grading samples, is in operation at the JSC Lunar Experiment Laboratory. A reference suite of lunar rocks and soils, spanning the full compositional range found in the Apollo collection, is available for testing in this laboratory. Thin sections of these samples are available for direct comparison. The Lunar Sample Compendium, on-line at http://www-curator.jsc.nasa.gov/lunar/compendium.cfm, summarizes previous analyses of these samples. The laboratory, sample suite, and Compendium are available to the lunar research and exploration community. In the first test of possible instruments for lunar sample high-grading, we imaged 18 lunar rocks and four soils from the reference suite using the Multispectral Microscopic Imager (MMI) developed by Arizona State University and JPL (see Farmer et. al. abstract). The MMI is a fixed-focus digital imaging system with a resolution of 62.5 microns/pixel, a field size of 40 x 32 mm, and a depth-of-field of approximately 5 mm. Samples are illuminated sequentially by 21 light emitting diodes in discrete wavelengths spanning the visible to shortwave infrared. Measurements of reflectance standards and background allow calibration to absolute reflectance. ENVI-based software is used to produce spectra for specific minerals as well as multi-spectral images of rock textures.

  2. Elucidating rhizosphere processes by mass spectrometry - A review.

    PubMed

    Rugova, Ariana; Puschenreiter, Markus; Koellensperger, Gunda; Hann, Stephan

    2017-03-01

    The presented review discusses state-of-the-art mass spectrometric methods, which have been developed and applied for investigation of chemical processes in the soil-root interface, the so-called rhizosphere. Rhizosphere soil's physical and chemical characteristics are to a great extent influenced by a complex mixture of compounds released from plant roots, i.e. root exudates, which have a high impact on nutrient and trace element dynamics in the soil-root interface as well as on microbial activities or soil physico-chemical characteristics. Chemical characterization as well as accurate quantification of the compounds present in the rhizosphere is a major prerequisite for a better understanding of rhizosphere processes and requires the development and application of advanced sampling procedures in combination with highly selective and sensitive analytical techniques. During the last years, targeted and non-targeted mass spectrometry-based methods have emerged and their combination with specific separation methods for various elements and compounds of a wide polarity range have been successfully applied in several studies. With this review we critically discuss the work that has been conducted within the last decade in the context of rhizosphere research and elemental or molecular mass spectrometry emphasizing different separation techniques as GC, LC and CE. Moreover, selected applications such as metal detoxification or nutrient acquisition will be discussed regarding the mass spectrometric techniques applied in studies of root exudates in plant-bacteria interactions. Additionally, a more recent isotope probing technique as novel mass spectrometry based application is highlighted. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Mercury dispersion in soils of an abandoned lead-zinc-silver mine, San Quintín (Spain)

    NASA Astrophysics Data System (ADS)

    Esbrí, José Maria; Martín-Crespo, T.; Gómez-Ortiz, D.; Monescillo, C. I.; Lorenzo, S.; Higueras, P.

    2010-05-01

    The mine considered on this work, namely San Quintín, is a filonian field with hydrothermal ores exploited during almost fifty years (1887-1934), producing 550.000Tm of galena, 550Tm of silver and 5.000 of sphalerite. Some rewashing works of tailings muds was achieved in recent times (1973-1985), including flotation tests of cinnabar ore from Almadén mines. The main problems remaining on the site are an active acid mine drainage (with pH ~ 2) and heavy metal dispersion on soils including gaseous mercury emissions. We present here results of a survey including soils sampling with mercury analysis and other pedological parameters, as well as determinations of mercury inmission in the atmosphere, using a common sampling grid. Analysis of soils samples has been carried out using an atomic absorption spectrometer AMA254, while air determinations were made by the same technique, using a Lumex RA-915+. The maps have been obtained by means of SURFER 8 software, as well as by ArcGIS software, and puts forward dispersion of mercury from cinnabar ore dump (108 ?g×g-1) to nearby soils (0.3 ?g×g-1 at 700 m of distance). The dispersion of mercury vapor exceed WHO level for chronic exposure (200 ng×m-3) in a small area (250 meters from cinnabar dump).

  4. Soil moisture sensors for continuous monitoring

    USGS Publications Warehouse

    Amer, Saud A.; Keefer, T. O.; Weltz, M.A.; Goodrich, David C.; Bach, Leslie

    1995-01-01

    Certain physical and chemical properties of soil vary with soil water content. The relationship between these properties and water content is complex and involves both the pore structure and constituents of the soil solution. One of the most economical techniques to quantify soil water content involves the measurement of electrical resistance of a dielectric medium that is in equilibrium with the soil water content. The objective of this research was to test the reliability and accuracy of fiberglass soil-moisture electrical resistance sensors (ERS) as compared to gravimetric sampling and Time Domain Reflectometry (TDR). The response of the ERS was compared to gravimetric measurements at eight locations on the USDA-ABS Walnut Gulch Experimental Watershed. The comparisons with TDR sensors were made at three additional locations on the same watershed. The high soil rock content (>45 percent) at seven locations resulted in consistent overestimation of soil water content by the ERS method. Where rock content was less than 10 percent, estimation of soil water was within 5 percent of the gravimetric soil water content. New methodology to calibrate the ERS sensors for rocky soils will need to be developed before soil water content values can be determined with these sensors. (KEY TERMS: soil moisture; soil water; infiltration; instrumentation; soil moisture sensors.)

  5. Mobile Soil Moisture Management in High Elevations: Applications of the Cosmic Ray Neutron Sensor Technique for Estimating Field Scale Soil Water Content

    NASA Astrophysics Data System (ADS)

    Avery, William Alexander; Wahbi, Ammar; Dercon, Gerd; Heng, Lee; Franz, Trenton; Strauss, Peter

    2017-04-01

    Meeting the demands of a growing global population is one of the principal challenges of the 21st century. Meeting this challenge will require an increase in food production around the world. Currently, approximately two thirds of freshwater use by humans is devoted to agricultural production. As such, an expansion of agricultural activity will place additional pressure on freshwater resources. The incorporation of novel soil moisture sensing technologies into agricultural practices carries the potential to make agriculture more precise thus increasing water use efficiency. One such technology is known as the Cosmic Ray Neutron Sensor (CRNS). The CRNS technique is capable of quantifying soil moisture on a large spatial scale ( 30 ha) compared with traditional point based in-situ soil moisture sensing technology. Recent years have seen the CRNS to perform well when deployed in agricultural environments at low to mid elevations. However, the performance of the CRNS technique in higher elevations, particularly alpine environments, has yet to be demonstrated or understood. Mountainous environments are more vulnerable to changing climates and land use practices, yet are often responsible for the headwaters of major river systems sustaining cultivated lands or support important agricultural activity on their own. As such, the applicability of a mobile version of the CRNS technology in high alpine environments needs to be explored. This research details the preliminary efforts to determine if established calibration and validation techniques associated with the use of the CRNS can be applied at higher elevations. Field work was conducted during the summer of 2016 in the mountains of western Austria. Initial results indicate that the relationship between in-situ soil moisture data determined via traditional soil sampling and soil moisture data determined via the mobile CRNS is not clear. It is possible that the increasing intensity of incoming cosmic rays at higher altitudes may have an effect on the signal of the CRNS, however, more work is required to fully understand this phenomenon and is scheduled to resume in the summer of 2017.

  6. Speciation and Release Kinetics of Cadmium in an Alkaline Paddy Soil Under Various Flooding Periods and Draining Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Khaokaew; R Chaney; G Landrot

    2011-12-31

    This study determined Cd speciation and release kinetics in a Cd-Zn cocontaminated alkaline paddy soil, under various flooding periods and draining conditions, by employing synchrotron-based techniques, and a stirred-flow kinetic method. Results revealed that varying flooding periods and draining conditions affected Cd speciation and its release kinetics. Linear least-squares fitting (LLSF) of bulk X-ray absorption fine structure (XAFS) spectra of the air-dried, and the 1 day-flooded soil samples, showed that at least 50% of Cd was bound to humic acid. Cadmium carbonates were found as the major species at most flooding periods, while a small amount of cadmium sulfide wasmore » found after the soils were flooded for longer periods. Under all flooding and draining conditions, at least 14 mg/kg Cd was desorbed from the soil after a 2-hour desorption experiment. The results obtained by micro X-ray fluorescence ({mu}-XRF) spectroscopy showed that Cd was less associated with Zn than Ca, in most soil samples. Therefore, it is more likely that Cd and Ca will be present in the same mineral phases rather than Cd and Zn, although the source of these two latter elements may originate from the same surrounding Zn mines in the Mae Sot district.« less

  7. Environmentally Persistent Free Radicals in Soils of Past Coking Sites: Distribution and Stabilization.

    PubMed

    Jia, Hanzhong; Zhao, Song; Nulaji, Gulimire; Tao, Kelin; Wang, Fu; Sharma, Virender K; Wang, Chuanyi

    2017-06-06

    This study presents the existence of environmentally persistent free radicals (EPFRs) in soils of past coking sites, mainly contaminated by polycyclic aromatic hydrocarbons (PAHs). Measurements of EPFRs were conducted by electron paramagnetic resonance (EPR) technique with numerous soil samples, which were collected from different distances (0-1000 m) and different depths (0-30 cm) of three contaminant sources. EPR signals with ∼3 × 10 17 radicals/g of the soil samples were obtained, which are very similar to that generated in PAHs contaminated clays, that is, g = 2.0028-2.0036. Concentrations of PAHs and soil components were determined to understand their role in producing EPFRs. PAHs, clay, and iron predominately contributed to generating EPRFs. Meanwhile, organic matter negatively influenced the production of EPRFs. The effects of environmental factors (moisture and oxic/anoxic) were also studied to probe the persistency of EPFRs under various simulated conditions. The EPFRs are stable under relatively dry and oxic conditions. Under anoxic conditions without O 2 and H 2 O, the spin densities decrease initially, followed by gradual increase before attaining constant values in two months period time. The present work implies that continuous formation of EPFRs induced by PAHs is largely responsible for the presence of relatively stable radicals in soils of coking sites.

  8. Comparative cost assessment of the Kato-Katz and FLOTAC techniques for soil-transmitted helminth diagnosis in epidemiological surveys

    PubMed Central

    2010-01-01

    Background The Kato-Katz technique is widely used for the diagnosis of soil-transmitted helminthiasis in epidemiological surveys and is believed to be an inexpensive method. The FLOTAC technique shows a higher sensitivity for the diagnosis of light-intensity soil-transmitted helminth infections but is reported to be more complex and expensive. We assessed the costs related to the collection, processing and microscopic examination of stool samples using the Kato-Katz and FLOTAC techniques in an epidemiological survey carried out in Zanzibar, Tanzania. Methods We measured the time for the collection of a single stool specimen in the field, transfer to a laboratory, preparation and microscopic examination using standard protocols for the Kato-Katz and FLOTAC techniques. Salaries of health workers, life expectancy and asset costs of materials, and infrastructure costs were determined. The average cost for a single or duplicate Kato-Katz thick smears and the FLOTAC dual or double technique were calculated. Results The average time needed to collect a stool specimen and perform a single or duplicate Kato-Katz thick smears or the FLOTAC dual or double technique was 20 min and 34 sec (20:34 min), 27:21 min, 28:14 min and 36:44 min, respectively. The total costs for a single and duplicate Kato-Katz thick smears were US$ 1.73 and US$ 2.06, respectively, and for the FLOTAC double and dual technique US$ 2.35 and US$ 2.83, respectively. Salaries impacted most on the total costs of either method. Conclusions The time and cost for soil-transmitted helminth diagnosis using either the Kato-Katz or FLOTAC method in epidemiological surveys are considerable. Our results can help to guide healthcare decision makers and scientists in budget planning and funding for epidemiological surveys, anthelminthic drug efficacy trials and monitoring of control interventions. PMID:20707931

  9. Automated fluid analysis apparatus and techniques

    DOEpatents

    Szecsody, James E.

    2004-03-16

    An automated device that couples a pair of differently sized sample loops with a syringe pump and a source of degassed water. A fluid sample is mounted at an inlet port and delivered to the sample loops. A selected sample from the sample loops is diluted in the syringe pump with the degassed water and fed to a flow through detector for analysis. The sample inlet is also directly connected to the syringe pump to selectively perform analysis without dilution. The device is airtight and used to detect oxygen-sensitive species, such as dithionite in groundwater following a remedial injection to treat soil contamination.

  10. A statistical method for estimating rates of soil development and ages of geologic deposits: A design for soil-chronosequence studies

    USGS Publications Warehouse

    Switzer, P.; Harden, J.W.; Mark, R.K.

    1988-01-01

    A statistical method for estimating rates of soil development in a given region based on calibration from a series of dated soils is used to estimate ages of soils in the same region that are not dated directly. The method is designed specifically to account for sampling procedures and uncertainties that are inherent in soil studies. Soil variation and measurement error, uncertainties in calibration dates and their relation to the age of the soil, and the limited number of dated soils are all considered. Maximum likelihood (ML) is employed to estimate a parametric linear calibration curve, relating soil development to time or age on suitably transformed scales. Soil variation on a geomorphic surface of a certain age is characterized by replicate sampling of soils on each surface; such variation is assumed to have a Gaussian distribution. The age of a geomorphic surface is described by older and younger bounds. This technique allows age uncertainty to be characterized by either a Gaussian distribution or by a triangular distribution using minimum, best-estimate, and maximum ages. The calibration curve is taken to be linear after suitable (in certain cases logarithmic) transformations, if required, of the soil parameter and age variables. Soil variability, measurement error, and departures from linearity are described in a combined fashion using Gaussian distributions with variances particular to each sampled geomorphic surface and the number of sample replicates. Uncertainty in age of a geomorphic surface used for calibration is described using three parameters by one of two methods. In the first method, upper and lower ages are specified together with a coverage probability; this specification is converted to a Gaussian distribution with the appropriate mean and variance. In the second method, "absolute" older and younger ages are specified together with a most probable age; this specification is converted to an asymmetric triangular distribution with mode at the most probable age. The statistical variability of the ML-estimated calibration curve is assessed by a Monte Carlo method in which simulated data sets repeatedly are drawn from the distributional specification; calibration parameters are reestimated for each such simulation in order to assess their statistical variability. Several examples are used for illustration. The age of undated soils in a related setting may be estimated from the soil data using the fitted calibration curve. A second simulation to assess age estimate variability is described and applied to the examples. ?? 1988 International Association for Mathematical Geology.

  11. Estimating soil matric potential in Owens Valley, California

    USGS Publications Warehouse

    Sorenson, Stephen K.; Miller, R.F.; Welch, M.R.; Groeneveld, D.P.; Branson, F.A.

    1988-01-01

    Much of the floor of the Owens Valley, California, is covered with alkaline scrub and alkaline meadow plant communities, whose existence is dependent partly on precipitation and partly on water infiltrated into the rooting zone from the shallow water table. The extent to which these plant communities are capable of adapting to and surviving fluctuations in the water table depends on physiological adaptations of the plants and on the water content, matric potential characteristics of the soils. Two methods were used to estimate soil matric potential in test sites in Owens Valley. The first was the filter-paper method, which uses water content of filter papers equilibrated to water content of soil samples taken with a hand auger. The other method of estimating soil matric potential was a modeling approach based on data from this and previous investigations. These data indicate that the base 10 logarithm of soil matric potential is a linear function of gravimetric soil water content for a particular soil. Estimates of soil water characteristic curves were made at two sites by averaging the gravimetric soil water content and soil matric potential values from multiple samples at 0.1 m depths derived by using the hand auger and filter paper method and entering these values in the soil water model. The characteristic curves then were used to estimate soil matric potential from estimates of volumetric soil water content derived from neutron-probe readings. Evaluation of the modeling technique at two study sites indicated that estimates of soil matric potential within 0.5 pF units of the soil matric potential value derived by using the filter paper method could be obtained 90 to 95% of the time in soils where water content was less than field capacity. The greatest errors occurred at depths where there was a distinct transition between soils of different textures. (Lantz-PTT)

  12. Analysis of chromium status in the revegetated flora of a tannery waste site and microcosm studies using earthworm E. fetida.

    PubMed

    Nirola, Ramkrishna; Megharaj, Mallavarapu; Subramanian, Avudainayagam; Thavamani, Palanisami; Ramadass, Kavitha; Aryal, Rupak; Saint, Christopher

    2018-02-01

    Chromium from tannery waste dump site causes significant environmental pollution affecting surrounding flora and fauna. The primary aims of this study were to survey vegetation, investigate the degree of soil pollution occurring near tannery waste dump site and make a systematic evaluation of soil contamination based on the chromium levels found in plants and earthworms from the impacted areas. This paper presents the pollution load of toxic heavy metals, and especially chromium, in 10 soil samples and 12 species of plants. Soil samples were analysed for heavy metals by using ICP-MS/ICP-OES method. Results indicated that Cr in soils exceeded soil quality guideline limits (SQGL). The total chromium present in the above ground parts of plants ranged from 1.7 mg kg -1 in Casuarina sp. to 1007 mg kg -1 in Sonchus asper. The Cr bioaccumulation in Eisenia fetida from tannery waste soil ranged from 5 to 194 mg kg -1 . The high enrichment factor of Cr in S. asper and bioaccumulation factor in earthworms indicate that there is a steady increase of toxic chromium risk in this area, which could be correlated with the past dumping activity. Emphasis needs to be put on control measures of pollution and remediation techniques in such areas to achieve an ecologically sustainable industrialisation.

  13. Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils.

    PubMed

    Zornoza, R; Guerrero, C; Mataix-Solera, J; Scow, K M; Arcenegui, V; Mataix-Beneyto, J

    2008-07-01

    The potential of near infrared (NIR) reflectance spectroscopy to predict various physical, chemical and biochemical properties in Mediterranean soils from SE Spain was evaluated. Soil samples (n=393) were obtained by sampling thirteen locations during three years (2003-2005 period). These samples had a wide range of soil characteristics due to variations in land use, vegetation cover and specific climatic conditions. Biochemical properties also included microbial biomarkers based on phospholipid fatty acids (PLFA). Partial least squares (PLS) regression with cross validation was used to establish relationships between the NIR spectra and the reference data from physical, chemical and biochemical analyses. Based on the values of coefficient of determination (r(2)) and the ratio of standard deviation of validation set to root mean square error of cross validation (RPD), predicted results were evaluated as excellent (r(2)>0.90 and RPD>3) for soil organic carbon, Kjeldahl nitrogen, soil moisture, cation exchange capacity, microbial biomass carbon, basal soil respiration, acid phosphatase activity, β-glucosidase activity and PLFA biomarkers for total bacteria, Gram positive bacteria, actinomycetes, vesicular-arbuscular mycorrhizal fungi and total PLFA biomass. Good predictions (0.81

  14. Determination of (90)Sr in soil samples using inductively coupled plasma mass spectrometry equipped with dynamic reaction cell (ICP-DRC-MS).

    PubMed

    Feuerstein, J; Boulyga, S F; Galler, P; Stingeder, G; Prohaska, T

    2008-11-01

    A rapid method is reported for the determination of (90)Sr in contaminated soil samples in the vicinity of the Chernobyl Nuclear Power Plant by ICP-DRC-MS. Sample preparation and measurement procedures focus on overcoming the isobaric interference of (90)Zr, which is present in soils at concentrations higher by more than six orders of magnitude than (90)Sr. Zirconium was separated from strontium in two steps to reduce the interference by (90)Zr(+) ions by a factor of more than 10(7): (i) by ion exchange using a Sr-specific resin and (ii) by reaction with oxygen as reaction gas in a dynamic reaction cell (DRC) of a quadrupole ICP-MS. The relative abundance sensitivity of the ICP-MS was studied systematically and the peak tailing originating from (88)Sr on mass 90 u was found to be about 3 x 10(-9). Detection limits of 4 fg g(-1) (0.02 Bq g(-1)) were achieved when measuring Sr solutions containing no Zr. In digested uncontaminated soil samples after matrix separation as well as in a solution of 5 microg g(-1) Sr and 50 ng g(-1) Zr a detection limit of 0.2 pg g(-1) soil (1 Bq g(-1) soil) was determined. (90)Sr concentrations in three soil samples collected in the vicinity of the Chernobyl Nuclear Power Plant were 4.66+/-0.27, 13.48+/-0.68 and 12.9+/-1.5 pg g(-1) corresponding to specific activities of 23.7+/-1.3, 68.6+/-3.5 and 65.6+/-7.8 Bq g(-1), respectively. The ICP-DRC-MS results were compared to the activities measured earlier by radiometry. Although the ICP-DRC-MS is inferior to commonly used radiometric methods with respect to the achievable minimum detectable activity it represents a time- and cost-effective alternative technique for fast monitoring of high-level (90)Sr contamination in environmental or nuclear industrial samples down to activities of about 1 Bq g(-1).

  15. ELECTRON AFFINITIES OF POLYNUCLEAR AROMATIC HYDROCARBONS AND NEGATIVE ION CHEMICAL IONIZATION SENSITIVITIES

    EPA Science Inventory

    Negative-ion chemical-ionization mass spectrometry (NICI MS) has the potential to be a very useful technique in identifying various polycyclic aromatic hydrocarbons (PAHs) in soil and sediment samples. Some PAHs give much stronger signals under NICI MS conditions than others. On ...

  16. Do biochars influence the availability and human oral bioaccessibility of Cd, Pb, and Zn in a contaminated slightly alkaline soil?

    PubMed

    Janus, Adeline; Waterlot, Christophe; Heymans, Sophie; Deboffe, Christophe; Douay, Francis; Pelfrêne, Aurélie

    2018-03-14

    Different remediation techniques have been used to restore metal-contaminated sites, including stabilizing metals by adding amendments to the soils. This study experimented three biochars, made from wood and miscanthus, cultivated on contaminated and uncontaminated soils, used as amendments at a 2% application rate on a metal-contaminated soil for 9 months in laboratory-controlled conditions. The objective was to evaluate whether biochars were able to decrease the availability and human oral bioaccessibility of metals in an alkaline soil. To meet this goal, the modifications of the soil's physicochemical parameters, metal distribution in soil, and human bioaccessibility were evaluated at different sampling times. The results showed that biochar application to the alkaline soil did not always decrease the soil metal availability, which challenges the value of using biochars in already slightly alkaline soils at a low application rate. However, differences in efficiency between the three biochars tested were highlighted. The biochar produced with miscanthus cultivated on uncontaminated soil led to higher soil metal bioaccessibility. Moreover, because of the absence of any increase in soil metal availability with the biochar produced from biomass cultivated on contaminated soil, the use of such biochars can be recommended for the remediation of contaminated soil.

  17. Test plan for the soils facility demonstration: A petroleum contaminated soil bioremediation facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombard, K.H.

    1994-08-01

    The objectives of this test plan are to show the value added by using bioremediation as an effective and environmentally sound method to remediate petroleum contaminated soils (PCS) by: demonstrating bioremediation as a permanent method for remediating soils contaminated with petroleum products; establishing the best operating conditions for maximizing bioremediation and minimizing volatilization for SRS PCS during different seasons; determining the minimum set of analyses and sampling frequency to allow efficient and cost-effective operation; determining best use of existing site equipment and personnel to optimize facility operations and conserve SRS resources; and as an ancillary objective, demonstrating and optimizing newmore » and innovative analytical techniques that will lower cost, decrease time, and decrease secondary waste streams for required PCS assays.« less

  18. Nutrients levels in paddy soils and flood waters from Tagus-Sado basin: the impact of farming system

    NASA Astrophysics Data System (ADS)

    Santos, Erika S.; Abreu, Maria Manuela; Magalhães, Maria Clara; Viegas, Wanda; Amâncio, Sara; Cordovil, Cláudia

    2017-04-01

    Application of fertilizers for crops can contribute to nutrients surplus, namely nitrogen, in both groundwater and surface waters resulting in serious environmental problems. The impacts on water quality due to fertilizers are related to land management. In paddy fields using high amounts of water, the nutrient dynamic knowledge is essential to evaluate the impact of farming system. The aims of this study were to evaluate: i)nutrients levels in soils and floodwaters from rice cultivation in Tagus-Sado basin (Portugal); ii)the effect, under controlled conditions, of different irrigation techniques on nutrient enrichment of floodwaters from rice cultivation. Composite samples (n=24) of paddy soils (0-15 cm) and floodwaters were collected, during rice flooding period. In the field, pH and electrical conductivity (EC) were determined in waters. Soil pH, concentrations of Corganic, NPK and nutrients (Ca, Cu, Fe, Mg, Mn, Zn) in soils and floodwaters (nitrites, nitrates, phosphates) were determined. A mesocosm assay was performed in lysimeters with a paddy soil (pH: 5.6; g/kg- Ntotal: 2.0, Pextractable: 0.04, Kextractable: 0.6, Corganic: 35.5) and different irrigation techniques (n=3): a)flood; b)four floods per day (great water renewal); c)flood until rice flowering and then a normal superficial irrigation. Rice cultivation was done by transplant as in the field. Irrigation water come from a well. Same chemical characterization than in field assay were determined in floodwater and irrigation water. In field conditions, paddy soils had values of pH between 5.1 and 8.1 and a great fertility range (g/kg; Ntotal: 0.4‒2.2; Pextractable: 0.01‒0.2; Kextractable: 0.04‒0.7; Corganic: 6.5‒37.9). Total soil concentrations of Cu, Fe, and Zn in soils were in same range and below maximum admissible values for agriculture. Total soil concentrations of Ca, Mg and Mn, showed higher heterogeneity (g/kg; 1.2‒19.3, 7.6‒34.2 and 0.2‒1.5 respectively). Floodwaters presented pH ≈7 and, usually, EC>1 mS/cm (MRV‒maximum recommended value for irrigation water). Nitrites concentrations were <0.1 mg/L in floodwaters, while concentrations of nitrates (<2.4 mg/L), Cu (<2‒12.3 µg/L), Fe (<0.1‒0.9 mg/L) and Zn (0.04‒1.9 mg/L) were below MRV. The fertilizers used in rice cultivation did not seem to affect the water quality. Nitrates concentration in irrigation water of lysimeters (24 mg/L) was close to MVR for irrigation water. Intensive agriculture of corn surrounding the well can explain the greater nutrients concentrations, especially nitrates, nitrites and phosphates, in this water compared to water from river used for paddy fields irrigation. Independently of irrigation technique, nutrient concentrations in lysimeters floodwaters (except phosphates in some samples) were in same range of those in irrigation water from well. The nutrients excess in water seems not to be uptake by rice contributing to nutrient enrichment of nearby waters and soils. Studied paddy fields from Tejo-Sado basin are not a potential pollution source of nutrients. However, according mesocosm assay, the potential irrigation of paddy soils with water rich in nitrates can contribute to serious environmental risks. The authors are thankful to: Atlantic Meals for financial and sampling support, and NitroPortugal, H2020-TWINN-2015, EU coordination and support action n. 692331 funding.

  19. Fundamental Studies of Adhesion of Dust to PV Module Surfaces: Chemical and Physical Relationships at the Microscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazmerski, Lawrence L.; Diniz, Antonia Sonia A. C.; Maia, Cristiana Brasil

    Photovoltaic (PV) module soiling is a growing area of concern for performance and reliability. This paper provides evaluations of the fundamental interactions of dust/soiling particles with several PV module surfaces. The purpose is to investigate the basic mechanisms involving the chemistry, morphology, and resulting particle adhesion to the first photon-incident surface. The evaluation and mapping of the chemistry and composition of single dust particles collected from operating PV module surfaces are presented. The first correlated direct measurements of the adhesive force of individual grains from field-operating collectors on identical PV module glass are reported, including correlations with specific compositions. Specialmore » microscale atomic force microscopy techniques are adapted to determine the force between the particle and the module glass surface. Results are presented for samples under dry and moisture-exposed conditions, confirming the effects of cementation for surfaces having soluble mineral and/or organic concentrations. Additionally, the effects of hydrocarbon fuels on the enhanced bonding of soiling particles to surfaces are determined for samples from urban and highly trafficked regions. Comparisons between glass and dust-mitigating superhydrophobic and superhydrophilic coatings are presented. Potential limitations of this proximal probe technique are discussed in terms of results and initial proof-of-concept experiments.« less

  20. Optical molecular fluorescence determination of ultra-trace beryllium in occupational and environmental samples using highly alkaline conditions.

    PubMed

    Adams, Lori; Agrawal, Anoop; Cronin, John P; Ashley, Kevin

    2017-01-01

    Exposures to beryllium (Be), even at extremely low levels, can cause severe health effects in a percentage of those exposed; consequently, occupational exposure limits (OELs) promulgated for this element are the lowest established for any element. This work describes the advantages of using highly alkaline dye solutions for determination of Be in occupational hygiene and environmental samples by means of an optical molecular fluorescence technique after sample extraction in 1-3% (w˖w -1 ) aqueous ammonium bifluoride (NH 4 HF 2 ). Improved attributes include the ability to further enhance the detection limits of Be in extraction solutions of high acidity with minimal dilution, which is particularly beneficial when NH 4 HF 2 solutions of higher concentration are used for extraction of Be from soil samples. Significant improvements in Be method detection limits (MDLs) are obtained at levels many-fold below those reported previously for this methodology. Notably, MDLs for Be of <0.01 ng l -1 / 0.1 ng per sample have been attained, which are superior to MDLs routinely reported for this element by means of the most widely used ultra-trace elemental measurement technique, inductively coupled plasma mass spectrometry (ICP-MS). Very low MDLs for Be are essential in consideration of reductions in OELs for this element in workplace air by health organizations and regulatory agencies in the USA and internationally. Applications of enhanced Be measurements to air filter samples, surface wipe samples, soils and newly-designed occupational air sampler inserts are illustrated.

  1. Effects of digestion, chemical separation, and deposition on Po-210 quantitative analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiner, Brienne N.; Morley, Shannon M.; Beacham, Tere A.

    Polonium-210 is a radioactive isotope often used to study sedimentation processes, food chains, aerosol behavior, and atmospheric circulations related to environmental sciences. Materials for the analysis of Po-210 range from tobacco leaves or cotton fibers, to soils and sediments. The purpose of this work was to determine polonium losses from a variety of sample types (soil, cotton fiber, and air filter) due to digestion technique, chemical separation, and deposition method for alpha energy analysis. Results demonstrated that yields from a perchloric acid wet-ash were similar to that from a microwave digestion. Both were greater than the dry-ash procedure. The poloniummore » yield from the perchloric acid wet ash was 87 ± 5%, the microwave digestion had a yield of 100 ± 7%, and the dry ash had a yield of 38 ± 5%. The chemical separation of polonium by an anion exchange resin was used only on the soil samples due to the complex nature of this sample. The yield of Po-209 tracer after chemical separation and deposition for alpha analysis was 83 ± 7% for the soil samples. Spontaneous deposition yields for the cotton and air filters were 87 ± 4% and 92 ± 6%, respectively. Based on the overall process yields for each sample type the amount of Po-210 was quantified using alpha energy analysis. The soil contained 0.18 ± 0.08 Bq/g, the cotton swipe contained 0.7 mBq/g, and the air filter contained 0.04 ± 0.02 mBq/g. High and robust yields of polonium are possible using a suitable digestion, separation, and deposition method.« less

  2. Nondestructive Analysis of Astromaterials by Micro-CT and Micro-XRF Analysis for PET Examination

    NASA Technical Reports Server (NTRS)

    Zeigler, R. A.; Righter, K.; Allen, C. C.

    2013-01-01

    An integral part of any sample return mission is the initial description and classification of returned samples by the preliminary examination team (PET). The goal of the PET is to characterize and classify returned samples and make this information available to the larger research community who then conduct more in-depth studies on the samples. The PET tries to minimize the impact their work has on the sample suite, which has in the past limited the PET work to largely visual, nonquantitative measurements (e.g., optical microscopy). More modern techniques can also be utilized by a PET to nondestructively characterize astromaterials in much more rigorous way. Here we discuss our recent investigations into the applications of micro-CT and micro-XRF analyses with Apollo samples and ANSMET meteorites and assess the usefulness of these techniques in future PET. Results: The application of micro computerized tomography (micro-CT) to astromaterials is not a new concept. The technique involves scanning samples with high-energy x-rays and constructing 3-dimensional images of the density of materials within the sample. The technique can routinely measure large samples (up to approx. 2700 cu cm) with a small individual voxel size (approx. 30 cu m), and has the sensitivity to distinguish the major rock forming minerals and identify clast populations within brecciated samples. We have recently run a test sample of a terrestrial breccia with a carbonate matrix and multiple igneous clast lithologies. The test results are promising and we will soon analyze a approx. 600 g piece of Apollo sample 14321 to map out the clast population within the sample. Benchtop micro x-ray fluorescence (micro-XRF) instruments can rapidly scan large areas (approx. 100 sq cm) with a small pixel size (approx. 25 microns) and measure the (semi) quantitative composition of largely unprepared surfaces for all elements between Be and U, often with sensitivity on the order of a approx. 100 ppm. Our recent testing of meteorite and Apollo samples on micro-XRF instruments has shown that they can easily detect small zircons and phosphates (approx. 10 m), distinguish different clast lithologies within breccias, and identify different lithologies within small rock fragments (2-4 mm soil Apollo soil fragments).

  3. Soil sampling kit and a method of sampling therewith

    DOEpatents

    Thompson, Cyril V.

    1991-01-01

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allow an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds.

  4. Soil sampling kit and a method of sampling therewith

    DOEpatents

    Thompson, C.V.

    1991-02-05

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allows an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds. 11 figures.

  5. In-vitro predatory activity of nematophagous fungi from Costa Rica with potential use for controlling sheep and goat parasitic nematodes.

    PubMed

    Soto-Barrientos, Natalia; de Oliveira, Jaqueline; Vega-Obando, Rommel; Montero-Caballero, Danilo; Vargas, Bernardo; Hernández-Gamboa, Jorge; Orozco-Solano, Claudio

    2011-03-01

    In tropical and subtropical regions of the world, parasitic diseases are a main cause of losses in livestock productivity. The increased acquired resistence to anthelmintics by gastrointestinal nematodes, requires biological control be considered as a potential feasible and effective alternative. The most effective natural soil enemies of nematodes are nematophagous fungi. In order to collect and identify predator nematophagous fungi (PNF), samples were obtained from 51 farms distributed throughout the seven provinces of Costa Rica. The origin samples included: soil from different crops (potatoes, tomatoes, bananas, ornamental plants, squash and coffee); animal feces (cattle, sheep, goat and horse); soil and fallen leaves from forest; and plants with signs of nematode infection. Each sample was processed using three techniques for the extraction of fungi from soil: sprinkling technique, soil dilution and humidity chamber. Twenty four strains of nematophagous fungi were found in 19 farms; 83.3% of the fungi were isolated by sprinkling technique. The following fungi were identified: Arthrobotrys oligospora (n = 13); Candelabrella musiformis (n = 9); and for the first time there was isolation of A. conoides (n = 1) and A. dactyloides (n = 1) in the country. Moreover, 16 strains from Trichoderma (n=13), Beauveria (n = 1), Clonostachys (n = 1) and Lecanicillium (n = 1) were obtained. In addition, pH of each possible fungal isolation source was measured, and it varied from 5.2 to 9.9, however PNF isolates fell within the range of 5.6 to 7.5. The PNF strains were cultivated in four different media for the production of chhlamydospores: potato dextrose agar (PDA); corn meal agar (CMA); malt extract agar (MEA) and potato carrot agar (PCA). Out of these cultures, 95.8% of the strains formed chlamydospores primarily in the PCA. Of these strains, the profilic spore producers were subjected to ruminant artificial gastrointestinal conditions. A total of 14 fungi were tested, out of which 42.9% survived the digestive analysis. Neither A. conoides nor A. dactyloides were viable following the in vitro gastrointestinal test. The PNF isolated in this study demonstrated an action against ovine and caprine gastrointestinal nematodes and are candidates for use in biological control of these organisms. Among these microorganisms, Candelabrella musiformis appears to be the most promising fungi for use as a biological control agent in Costa Rica.

  6. Isolation and Characterization of Fipronil Degrading Acinetobacter calcoaceticus and Acinetobacter oleivorans from Rhizospheric Zone of Zea mays.

    PubMed

    Uniyal, Shivani; Paliwal, Rashmi; Verma, Megha; Sharma, R K; Rai, J P N

    2016-06-01

    An enrichment culture technique was used for the isolation of bacteria capable of utilizing fipronil as a sole source of carbon and energy. Based on morphological, biochemical characteristics and phylogenetic analysis of 16S rRNA sequence, the bacterial strains were identified as Acinetobacter calcoaceticus and Acinetobacter oleivorans. Biodegradation experiments were conducted in loamy sand soil samples fortified with fipronil (50 µg kg(-1)) and inoculated with Acinetobacter sp. cells (45 × 10(7) CFU mL(-1)) for 90 days. Soil samples were periodically analyzed by gas liquid chromatography equipped with electron capture detector. Biodegradation of fipronil fitted well with the pseudo first-order kinetics, with rate constant value between 0.041 and 0.051 days(-1). In pot experiments, fipronil and its metabolites fipronil sulfide, fipronil sulfone and fipronil amide were found below quantifiable limit in soil and root, shoot and leaves of Zea mays. These results demonstrated that A. calcoaceticus and A. oleivorans may serve as promising strains in the bioremediation of fipronil-contaminated soils.

  7. Radon exhalation rates and effective radium contents of the soil samples in Adapazarı, Turkey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuş, Adem, E-mail: adem.kus@ogr.sakarya.edu.tr; Yakut, Hakan, E-mail: hyakut@sakarya.edu.tr; Tabar, Emre, E-mail: etabar@sakarya.edu.tr

    In this study effective radium content and radon exhalation rates in soil samples collected from Adapazarı district of Sakarya, Turkey have been measured using LR-115 type-II plastic track detectors by closed-can technique for the first time. The obtained effective radium contents are found to vary from 6.66 to 34.32 Bqkg{sup −1} with a mean value of 18.01 Bqkg{sup −1}. The radon exhalation rates measured in terms of mass and area of soil samples are found to vary from 50.35-259.41 mBqkg{sup −1}h{sup −1} with a mean value of 136.12 mBqkg{sup −1}h{sup −1} and 1035.18-5333.39 mBqm{sup −2}h{sup −1} with a mean valuemore » of mBqm{sup −2}h{sup −1}. All the measurements show that the values of radium content are under the safe limit recommended by Organization for Cooperation and Development.« less

  8. Applicability of radon emanometry in lithologically discontinuous sites contaminated by organic chemicals.

    PubMed

    De Miguel, Eduardo; Barrio-Parra, Fernando; Elío, Javier; Izquierdo-Díaz, Miguel; García-González, Jerónimo Emilio; Mazadiego, Luis Felipe; Medina, Rafael

    2018-06-02

    The applicability of radon ( 222 Rn) measurements to delineate non-aqueous phase liquids (NAPL) contamination in subsoil is discussed at a site with lithological discontinuities through a blind test. Three alpha spectroscopy monitors were used to measure radon in soil air in a 25,000-m 2 area, following a regular sampling design with a 20-m 2 grid. Repeatability and reproducibility of the results were assessed by means of duplicate measurements in six sampling positions. Furthermore, three points not affected by oil spills were sampled to estimate radon background concentration in soil air. Data histograms, Q-Q plots, variograms, and cluster analysis allowed to recognize two data populations, associated with the possible path of a fault and a lithological discontinuity. Even though the concentration of radon in soil air was dominated by this discontinuity, the characterization of the background emanation in each lithological unit allowed to distinguish areas potentially affected by NAPL, thus justifying the application of radon emanometry as a screening technique for the delineation of NAPL plumes in sites with lithological discontinuities.

  9. A procedure for estimating Bacillus cereus spores in soil and stream-sediment samples - A potential exploration technique

    USGS Publications Warehouse

    Watterson, J.R.

    1985-01-01

    The presence of bacterial spores of the Bacillus cereus group in soils and stream sediments appears to be a sensitive indicator of several types of concealed mineral deposits, including vein-type gold deposits. The B. cereus assay is rapid, inexpensive, and inherently reproducible. The test, currently under investigation for its potential in mineral exploration, is recommended for use on a research basis. Among the aerobic spore-forming bacilli, only B. cereus and closely related strains produce an opaque zone in egg-yolk emulsion agar. This characteristic, also known as the Nagler of lecitho-vitellin reaction, has long been used to rapidly indentify and estimate presumptive B. cereus. The test is here adapted to permit rapid estimation of B. cereus spores in soil and stream-sediment samples. Relative standard deviation was 10.3% on counts obtained from two 40-replicate pour-plate determinations. As many as 40 samples per day can be processed. Enough procedural detail is included to permit investigation of the test in conventional geochemical laboratories using standard microbiological safety precautions. ?? 1985.

  10. Investigation of cloud point extraction for the analysis of metallic nanoparticles in a soil matrix

    PubMed Central

    Hadri, Hind El; Hackley, Vincent A.

    2017-01-01

    The characterization of manufactured nanoparticles (MNPs) in environmental samples is necessary to assess their behavior, fate and potential toxicity. Several techniques are available, but the limit of detection (LOD) is often too high for environmentally relevant concentrations. Therefore, pre-concentration of MNPs is an important component in the sample preparation step, in order to apply analytical tools with a LOD higher than the ng kg−1 level. The objective of this study was to explore cloud point extraction (CPE) as a viable method to pre-concentrate gold nanoparticles (AuNPs), as a model MNP, spiked into a soil extract matrix. To that end, different extraction conditions and surface coatings were evaluated in a simple matrix. The CPE method was then applied to soil extract samples spiked with AuNPs. Total gold, determined by inductively coupled plasma mass spectrometry (ICP-MS) following acid digestion, yielded a recovery greater than 90 %. The first known application of single particle ICP-MS and asymmetric flow field-flow fractionation to evaluate the preservation of the AuNP physical state following CPE extraction is demonstrated. PMID:28507763

  11. Mixed cropping regimes promote the soil fungal community under zero tillage.

    PubMed

    Silvestro, L B; Biganzoli, F; Stenglein, S A; Forjan, H; Manso, L; Moreno, M V

    2018-07-01

    Fungi of yield soils represent a significant portion of the microbial biomass and reflect sensitivity to changes in the ecosystem. Our hypothesis was that crops included in cropping regimes under the zero tillage system modify the structure of the soil fungi community. Conventional and molecular techniques provide complementary information for the analysis of diversity of fungal species and successful information to accept our hypothesis. The composition of the fungal community varied according to different crops included in the cropping regimes. However, we detected other factors as sources of variation among them, season and sampling depth. The mixed cropping regimes including perennial pastures and one crop per year promote fungal diversity and species with potential benefit to soil and crop. The winter season and 0-5 cm depth gave the largest evenness and fungal diversity. Trichoderma aureoviride and Rhizopus stolonifer could be used for monitoring changes in soil under zero tillage.

  12. Simultaneous field measurements of biogenic emissions of nitric oxide and nitrous oxide

    NASA Technical Reports Server (NTRS)

    Anderson, Iris Cofman; Levine, Joel S.

    1987-01-01

    Seasonal and diurnal emissions of NO and N2O from agricultural sites in Jamestown, Virginia and Boulder, Colorado are estimated in terms of soil temperature; percent moisture; and exchangeable nitrate, nitrite, and ammonium concentrations. The techniques and procedures used to analyze the soil parameters are described. The spatial and temporal variability of the NO and N2O emissions is studied. A correlation between NO fluxes in the Virginia sample and nitrate concentration, temperature, and percent moisture is detected, and NO fluxes for the Colorado site correspond with temperature and moisture. It is observed that the N2O emissions are only present when percent moisture approaches or exceeds the field capacity of the soil. The data suggest that NO is produced primarily by nitrification in aerobic soils, and N2O is formed by denitrification in anaerobic soils.

  13. Environmental Controls of Soil Organic Carbon in Soils Across Amazonia

    NASA Astrophysics Data System (ADS)

    Quesada, Carlos Alberto; Paz, Claudia; Phillips, Oliver; Nonato Araujo Filho, Raimundo; Lloyd, Jon

    2015-04-01

    Amazonian forests store and cycle a significant amount of carbon on its soils and vegetation. Yet, Amazonian forests are now subject to strong environmental pressure from both land use and climate change. Some of the more dramatic model projections for the future of the Amazon predict a major change in precipitation followed by savanization of most currently forested areas, resulting in major carbon losses to the atmosphere. However, how soil carbon stocks will respond to climatic and land use changes depend largely on how soil carbon is stabilized. Amazonian soils are highly diverse, being very variable in their weathering levels and chemical and physical properties, and thus it is important to consider how the different soils of the Basin stabilize and store soil organic carbon (SOC). The wide variation in soil weathering levels present in Amazonia, suggests that soil groups with contrasting pedogenetic development should differ in their predominant mechanism of SOC stabilization. In this study we investigated the edaphic, mineralogical and climatic controls of SOC concentration in 147 pristine forest soils across nine different countries in Amazonia, encompassing 14 different WRB soil groups. Soil samples were collected in 1 ha permanent plots used for forest dynamics studies as part of the RAINFOR project. Only 0-30 cm deep averages are reported here. Soil samples were analyzed for carbon and nitrogen and for their chemical (exchangeable bases, phosphorus, pH) and physical properties, (particle size, bulk density) and mineralogy through standard selective dissolution techniques (Fe and Al oxides) and by semi-quantitative X-Ray diffraction. In Addition, selected soils from each soil group had SOC fractionated by physical and chemical techniques. Our results indicate that different stabilization mechanisms are responsible for SOC stabilization in Amazonian soils with contrasting pedogenetic level. Ferralsols and Acrisols were found to have uniform mineralogy (kaolinitic) and thus the clay plus silt fraction was the best correlate for SOC but with crystalline iron oxides (dithionite-citrate minus ammonium oxalate - oxalic acid extractable iron) being also correlated to SOC in these soils (R2 = 0.74). Most of SOC in these soils was found on the clay+silt fraction and in stable, clay rich aggregates. However, SOC of high activity clays and other less weathered soils such as Alisols, Cambisols and Plinthosols showed no correlation with particle size or iron oxides, being mostly stabilized by aluminium complexes. We found SOC of these soils to be better explained by a three way interaction among soil pH, carbon quality and dithionite-citrate extractable Al (R2 = 0.85). Consistent with this observation, SOC in the less weathered soils was mostly found in the colloidal fraction (75%). SOC of Podzols and Arenosols on the other hand had only a small but significant influence from their clay plus silt fraction (R2 = 0.31), with particulate organic matter accounting for most of its SOC.

  14. Mapping CO2 emission in highly urbanized region using standardized microbial respiration approach

    NASA Astrophysics Data System (ADS)

    Vasenev, V. I.; Stoorvogel, J. J.; Ananyeva, N. D.

    2012-12-01

    Urbanization is a major recent land-use change pathway. Land conversion to urban has a tremendous and still unclear effect on soil cover and functions. Urban soil can act as a carbon source, although its potential for CO2 emission is also very high. The main challenge in analysis and mapping soil organic carbon (SOC) in urban environment is its high spatial heterogeneity and temporal dynamics. The urban environment provides a number of specific features and processes that influence soil formation and functioning and results in a unique spatial variability of carbon stocks and fluxes at short distance. Soil sealing, functional zoning, settlement age and size are the predominant factors, distinguishing heterogeneity of urban soil carbon. The combination of these factors creates a great amount of contrast clusters with abrupt borders, which is very difficult to consider in regional assessment and mapping of SOC stocks and soil CO2 emission. Most of the existing approaches to measure CO2 emission in field conditions (eddy-covariance, soil chambers) are very sensitive to soil moisture and temperature conditions. They require long-term sampling set during the season in order to obtain relevant results. This makes them inapplicable for the analysis of CO2 emission spatial variability at the regional scale. Soil respiration (SR) measurement in standardized lab conditions enables to overcome this difficulty. SR is predominant outgoing carbon flux, including autotrophic respiration of plant roots and heterotrophic respiration of soil microorganisms. Microbiota is responsible for 50-80% of total soil carbon outflow. Microbial respiration (MR) approach provides an integral CO2 emission results, characterizing microbe CO2 production in optimal conditions and thus independent from initial difference in soil temperature and moisture. The current study aimed to combine digital soil mapping (DSM) techniques with standardized microbial respiration approach in order to analyse and map CO2 emission and its spatial variability in highly urbanized Moscow region. Moscow region with its variability of bioclimatic conditions and high urbanization level (10 % from the total area) was chosen as an interesting case study. Random soil sampling in different soil zones (4) and land-use types (3 non-urban and 3 urban) was organized in Moscow region in 2010-2011 (n=242). Both topsoil (0-10 cm) and subsoil (10-150 cm) were included. MR for each point was analysed using standardized microbial (basal) respiration approach, including the following stages: 1) air dried soil samples were moisturised up to 55% water content and preincubated (7 days, 22° C) in a plastic bag with air exchange; 2) soil MR (in μg CO2-C g-1) was measured as the rate of CO2 production (22° C, 24 h) after incubating 2g soil with 0.2 μl distilled water; 3) the MR results were used to estimate CO2 emission (kg C m-2 yr-1). Point MR and CO2 emission results obtained were extrapolated for the Moscow region area using regression model. As a result, two separate CO2 maps for topsoil and subsoil were created. High spatial variability was demonstrated especially for the urban areas. Thus standardized MR approach combined with DSM techniques provided a unique opportunity for spatial analysis of soil carbon temporal dynamics at the regional scale.

  15. Modeling the transport of engineered nanoparticles in saturated porous media - an experimental setup

    NASA Astrophysics Data System (ADS)

    Braun, A.; Neukum, C.; Azzam, R.

    2011-12-01

    The accelerating production and application of engineered nanoparticles is causing concerns regarding their release and fate in the environment. For assessing the risk that is posed to drinking water resources it is important to understand the transport and retention mechanisms of engineered nanoparticles in soil and groundwater. In this study an experimental setup for analyzing the mobility of silver and titanium dioxide nanoparticles in saturated porous media is presented. Batch and column experiments with glass beads and two different soils as matrices are carried out under varied conditions to study the impact of electrolyte concentration and pore water velocities. The analysis of nanoparticles implies several challenges, such as the detection and characterization and the preparation of a well dispersed sample with defined properties, as nanoparticles tend to form agglomerates when suspended in an aqueous medium. The analytical part of the experiments is mainly undertaken with Flow Field-Flow Fractionation (FlFFF). This chromatography like technique separates a particulate sample according to size. It is coupled to a UV/Vis and a light scattering detector for analyzing concentration and size distribution of the sample. The advantage of this technique is the ability to analyze also complex environmental samples, such as the effluent of column experiments including soil components, and the gentle sample treatment. For optimization of the sample preparation and for getting a first idea of the aggregation behavior in soil solutions, in sedimentation experiments the effect of ionic strength, sample concentration and addition of a surfactant on particle or aggregate size and temporal dispersion stability was investigated. In general the samples are more stable the lower the concentration of particles is. For TiO2 nanoparticles, the addition of a surfactant yielded the most stable samples with smallest aggregate sizes. Furthermore the suspension stability is increasing with electrolyte concentration. Depending on the dispersing medium the results show that TiO2 nanoparticles tend to form aggregates between 100-200 nm in diameter while the primary particle size is given as 21 nm by the manufacturer. Aggregate sizes are increasing with time. The particle size distribution of the silver nanoparticle samples is quite uniform in each medium. The fresh samples show aggregate sizes between 40 and 45 nm while the primary particle size is 15 nm according to the manufacturer. Aggregate size is only slightly increasing with time during the sedimentation experiments. These results are used as a reference when analyzing the effluent of column experiments.

  16. Impact of Long-Term Diesel Contamination on Soil Microbial Community Structure

    PubMed Central

    Maphosa, Farai; Morillo, Jose A.; Abu Al-Soud, Waleed; Langenhoff, Alette A. M.; Grotenhuis, Tim; Rijnaarts, Huub H. M.; Smidt, Hauke

    2013-01-01

    Microbial community composition and diversity at a diesel-contaminated railway site were investigated by pyrosequencing of bacterial and archaeal 16S rRNA gene fragments to understand the interrelationships among microbial community composition, pollution level, and soil geochemical and physical properties. To this end, 26 soil samples from four matrix types with various geochemical characteristics and contaminant concentrations were investigated. The presence of diesel contamination significantly impacted microbial community composition and diversity, regardless of the soil matrix type. Clean samples showed higher diversity than contaminated samples (P < 0.001). Bacterial phyla with high relative abundances in all samples included Proteobacteria, Firmicutes, Actinobacteria, Acidobacteria, and Chloroflexi. High relative abundances of Archaea, specifically of the phylum Euryarchaeota, were observed in contaminated samples. Redundancy analysis indicated that increased relative abundances of the phyla Chloroflexi, Firmicutes, and Euryarchaeota correlated with the presence of contamination. Shifts in the chemical composition of diesel constituents across the site and the abundance of specific operational taxonomic units (OTUs; defined using a 97% sequence identity threshold) in contaminated samples together suggest that natural attenuation of contamination has occurred. OTUs with sequence similarity to strictly anaerobic Anaerolineae within the Chloroflexi, as well as to Methanosaeta of the phylum Euryarchaeota, were detected. Anaerolineae and Methanosaeta are known to be associated with anaerobic degradation of oil-related compounds; therefore, their presence suggests that natural attenuation has occurred under anoxic conditions. This research underscores the usefulness of next-generation sequencing techniques both to understand the ecological impact of contamination and to identify potential molecular proxies for detection of natural attenuation. PMID:23144139

  17. Detection and quantification of soil-transmitted helminths in environmental samples: A review of current state-of-the-art and future perspectives.

    PubMed

    Amoah, Isaac Dennis; Singh, Gulshan; Stenström, Thor Axel; Reddy, Poovendhree

    2017-05-01

    It is estimated that over a billion people are infected with soil-transmitted helminths (STHs) globally with majority occurring in tropical and subtropical regions of the world. The roundworm (Ascaris lumbricoides), whipworm (Trichuris trichiura), and hookworms (Ancylostoma duodenale and Necator americanus) are the main species infecting people. These infections are mostly gained through exposure to faecally contaminated water, soil or contaminated food and with an increase in the risk of infections due to wastewater and sludge reuse in agriculture. Different methods have been developed for the detection and quantification of STHs eggs in environmental samples. However, there is a lack of a universally accepted technique which creates a challenge for comparative assessments of helminths egg concentrations both in different samples matrices as well as between locations. This review presents a comparison of reported methodologies for the detection of STHs eggs, an assessment of the relative performance of available detection methods and a discussion of new emerging techniques that could be applied for detection and quantification. It is based on a literature search using PubMed and Science Direct considering all geographical locations. Original research articles were selected based on their methodology and results sections. Methods reported in these articles were grouped into conventional, molecular and emerging techniques, the main steps in each method were then compared and discussed. The inclusion of a dissociation step aimed at detaching helminth eggs from particulate matter was found to improve the recovery of eggs. Additionally the selection and application of flotation solutions that take into account the relative densities of the eggs of different species of STHs also results in higher egg recovery. Generally the use of conventional methods was shown to be laborious and time consuming and prone to human error. The alternate use of nucleic acid-based techniques has improved the sensitivity of detection and made species specific identification possible. However, these nucleic acid based methods are expensive and less suitable in regions with limited resources and skill. The loop mediated isothermal amplification method shows promise for application in these settings due to its simplicity and use of basic equipment. In addition, the development of imaging soft-ware for the detection and quantification of STHs shows promise to further reduce human error associated with the analysis of environmental samples. It may be concluded that there is a need to comparatively assess the performance of different methods to determine their applicability in different settings as well as for use with different sample matrices (wastewater, sludge, compost, soil, vegetables etc.). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Easy and fast extraction methods to determine organochlorine pesticides in sewage sludge, soil, and water samples based at low temperature.

    PubMed

    Mesquita, Tayane C R; Santos, Rizia R; Cacique, Ane P; De Sá, Ludimara J; Silvério, Flaviano O; Pinho, Gevany P

    2018-03-04

    Organochlorine pesticides present in sewage sludge can contaminate soil and water when they are used as either fertilizer or agricultural soil conditioner. In this study, the technique solid-liquid extraction with low temperature purification was optimized and validated for determination of ten organochlorine pesticides in sewage sludge and soil samples. Liquid-liquid extraction with low temperature purification was also validated for the same compounds in water. Analyses were performed by gas chromatography-mass spectrometry operating in the selective ion monitoring mode. After optimization, the methods showed recoveries between 70% and 115% with relative standard deviation lower than 13% for all target analytes in the three matrices. The linearity was demonstrated in the range of 20 to 70 µg L -1 , 0.5 to 60 µg L -1 , and 3 to 13 µg L -1 , for sludge, soil, and acetonitrile, respectively. The limit of quantification ranged between 2 and 40 µg kg -1 , 1 and 6 µg kg -1 , and 0.5 µg L -1 for sludge, soil, and water, respectively. The methods were used in the study of pesticide lixiviation carried out in a poly vinyl chlorine column filled with soil, which had its surface layer mixed with sludge. The results showed that pesticides are not leached into soil, part of them is adsorbed by the sewage sludge (4-40%), and most pesticides are lost by volatilization.

  19. Chitinolytic and pectinolytic community in the vertical structure of chernozem's zone ecosystems

    NASA Astrophysics Data System (ADS)

    Lukacheva, E.; Manucharova, N.

    2012-04-01

    Chitin is a long-chain polymer of a N-acetylglucosamine and is found in many places throughout the natural world. Pectin is a structural heteropolysaccharide contained in the primary cell walls of terrestrial plants. Roots of the plants and root crops contain pectin. Chitin and pectin are widely distributed throughout the natural world. For this reason it is important to investigate the structural and functional properties of complex organisms, offering degradation of these biopolymers in the terrestrial and soil ecosystems. It is known that ecosystems have their own structure. It is possible to allocate some vertical tiers: phylloplane, litter (soil covering), soil. We investigated chitinolytic and pektinolytic microbial communities dedicated to different layers of the ecosystem of the chernozem zone. Quantity of eukaryote and procaryote organisms increased in the test samples with chitin and pectin. Increasing of eukaryote in samples with pectin was more then in samples with chitin. Also should be noted the significant increasing of actinomycet`s quantity in the samples with chitin in comparison with samples with pectin. The variety and abundance of bacteria in the litter samples increased an order of magnitude as compared to other options investigated. Further prokaryote community was investigated by method FISH (fluorescence in situ hybridization). FISH is a cytogenetic technique developed that is used to detect and localize the presence or absence of specific DNA sequences on chromosomes. Quantity of Actinomycets and Firmicutes was the largest among identified cells with metabolic activity in soil samples. Should be noted significant increasing of the quantity of Acidobateria and Bacteroidetes in pectinolytic community and Alphaproteobacteria in chitinolytic community. In considering of the phylogenetic structure investigated communities in samples of the litter should be noted increase in the segment of Proteobacteria. Increasing of this group of microorganisms was also detected in samples of the phylloplane. Also should be noted increasing of Baceroidetes in these samples. Further inoculation from investigated samples was provided. The dominant species of microorganisms were isolated on dense nutrient media. These microorganisms were detected by sequence analysis. Thus the differences of decomposing biopolymers were educed in the microbial communities in the terrestrial and soil ecosystems.

  20. Magnesium Sulfate as a Key Mineral for the Detection of Organic Molecules on Mars Using Pyrolysis

    NASA Technical Reports Server (NTRS)

    Francois, P.; Szopa, C.; Buch, A.; Coll, P.; McAdam, A. C.; Mahaffy, P. R.; Freissinet, C.; Glavin, D. P.; Navarro-Gonzalez, R.; Cabane, M.

    2016-01-01

    Pyrolysis of soil or rock samples is the preferred preparation technique used on Mars to search for organic molecules up today. During pyrolysis, oxichlorines present in the soil of Mars release oxidant species that alter the organic molecules potentially contained in the samples collected by the space probes.This process can explain the difficulty experienced by in situ exploration probes to detect organic materials in Mars soil samples until recently. Within a few months, the Curiosity rover should reach and analyze for the first time soils rich in sulfates which could induce a different behavior of the organics during the pyrolysis compared with the types of soils analyzed up today. For this reason, we systematically studied the pyrolysis of organic molecules trapped in magnesium sulfate, in the presence or absence of calcium perchlorate. Our results show that organics trapped in magnesium sulfate can undergo some oxidation and sulfuration during the pyrolysis. But these sulfates are also shown to protect organics trapped inside the crystal lattice and/or present in fluid inclusions from the oxidation induced by the decomposition of calcium perchlorate and probably other oxychlorine phases currently detected on Mars. Trapped organics may also be protected from degradation processes induced by other minerals present in the sample, at least until these organics are released from the pyrolyzed sulfate mineral (700C in our experiment). Hence, we suggest magnesium sulfate as one of the minerals to target in priority for the search of organic molecules by the Curiosity and ExoMars 2018 rovers.

  1. Natural Radioactivity in Bananas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zagatto, V. A. B.; Medina, N. H.; Okuno, E.

    The content of {sup 40}K natural radionuclide in bananas (Musa sapientum) from the Vale do Ribeira region, Sao Paulo, Brazil, has been measured. We have collected several samples of bananas prata and nanica, its peels, leaves, and also different soils where the banana tree was planted, such as soil with a standard amount of fertilizer, the fertilizer itself and also soil without fertilizer for comparison. We have used the gamma-ray spectroscopy technique with a NaI(T1) crystal inside a 12 cm thick lead shield to detect the gamma-radiation. The results indicate that only part of the available potassium is absorbed bymore » the plant, which is mainly concentrated in the banana peel.« less

  2. Natural Radioactivity in Bananas

    NASA Astrophysics Data System (ADS)

    Zagatto, V. A. B.; Medina, N. H.; Okuno, E.; Umisedo, N. K.

    2008-08-01

    The content of 40K natural radionuclide in bananas (Musa sapientum) from the Vale do Ribeira region, São Paulo, Brazil, has been measured. We have collected several samples of bananas prata and nanica, its peels, leaves, and also different soils where the banana tree was planted, such as soil with a standard amount of fertilizer, the fertilizer itself and also soil without fertilizer for comparison. We have used the gamma-ray spectroscopy technique with a NaI(T1) crystal inside a 12 cm thick lead shield to detect the gamma-radiation. The results indicate that only part of the available potassium is absorbed by the plant, which is mainly concentrated in the banana peel.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parrado, G., E-mail: gparrado@sgc.gov.co; Cañón, Y.; Peña, M., E-mail: mlpena@sgc.gov.co

    The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes withmore » medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.« less

  4. Improvement of analytical capabilities of neutron activation analysis laboratory at the Colombian Geological Survey

    NASA Astrophysics Data System (ADS)

    Parrado, G.; Cañón, Y.; Peña, M.; Sierra, O.; Porras, A.; Alonso, D.; Herrera, D. C.; Orozco, J.

    2016-07-01

    The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes with medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.

  5. Habitat associations of two entomopathogenic nematodes: a quantitative study using real-time quantitative polymerase chain reactions.

    PubMed

    Torr, Peter; Spiridonov, Sergei E; Heritage, Stuart; Wilson, Michael J

    2007-03-01

    1. Despite nematodes being the most abundant animals on earth, very few animal ecologists study them, probably because of the difficulties of identifying them to species by morphological methods. 2. A group of nematodes that are important both ecologically and economically is the entomopathogenic nematodes, which play a key role in regulating soil food webs and are sold throughout the world as biological insecticides, yet for which very little is known of their population ecology. 3. A novel detection and quantification method was developed for soil nematodes using real-time polymerase chain reaction (PCR), and the technique was used to estimate numbers of two closely related species of entomopathogenic nematodes, Steinernema kraussei and S. affine in 50 soil samples from 10 sites in Scotland representing two distinct habitats (woodland and grassland). 4. There was a high degree of correlation between our molecular and traditional morphological estimates of population size and our data clearly showed that Steinernema affine occurred only in grassland areas, whereas S. kraussei was found in grassland and woodland samples to a similar degree. 5. Real-time PCR offers a rapid and accurate method of detecting individual nematode species from soil samples without the need for a specialist taxonomist, and has much potential for use in studies of nematode population ecology.

  6. Measurement of 222Rn and 220Rn exhalation rate from soil samples of Kumaun Hills, India

    NASA Astrophysics Data System (ADS)

    Semwal, Poonam; Singh, Kuldeep; Agarwal, T. K.; Joshi, Manish; Pant, Preeti; Kandari, Tushar; Ramola, R. C.

    2018-03-01

    The source terms, i.e., exhalation and emanation from soil and building materials are the primary contributors to the radon (222Rn)/thoron (220Rn) concentration levels in the dwellings, while the ecological constraints like ventilation rate, temperature, pressure, humidity, etc., are the influencing factors. The present study is focused on Almora District of Kumaun, located in Himalayan belt of Uttarakhand, India. For the measurement of 222Rn and 220Rn exhalation rates, 24 soil samples were collected from different locations. Gamma radiation level was measured at each of these locations. Chamber technique associated with Smart Rn Duo portable monitor was employed for the estimation of 222Rn and 220Rn exhalation rates. Radionuclides (226Ra, 232Th and 40K) concentrations were also measured in soil samples using NaI(Tl) scintillation based gamma ray spectrometry. The mass exhalation rate for 222Rn was varying between 16 and 54 mBq/kg/h, while the 220Rn surface exhalation rate was in the range of 0.65-6.43 Bq/m2/s. Measured gamma dose rate for the same region varied from 0.10 to 0.31 µSv/h. Inter-correlation of exhalation rates and intra-correlation with background gamma levels were studied.

  7. Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland.

    PubMed

    Zhang, Chaosheng

    2006-08-01

    Galway is a small but rapidly growing tourism city in western Ireland. To evaluate its environmental quality, a total of 166 surface soil samples (0-10 cm depth) were collected from parks and grasslands at the density of 1 sample per 0.25 km2 at the end of 2004. All samples were analysed using ICP-AES for the near-total concentrations of 26 chemical elements. Multivariate statistics and GIS techniques were applied to classify the elements and to identify elements influenced by human activities. Cluster analysis (CA) and principal component analysis (PCA) classified the elements into two groups: the first group predominantly derived from natural sources, the second being influenced by human activities. GIS mapping is a powerful tool in identifying the possible sources of pollutants. Relatively high concentrations of Cu, Pb and Zn were found in the city centre, old residential areas, and along major traffic routes, showing significant effects of traffic pollution. The element As is enriched in soils of the old built-up areas, which can be attributed to coal and peat combustion for home heating. Such significant spatial patterns of pollutants displayed by urban soils may imply potential health threat to residents of the contaminated areas of the city.

  8. Development of Novel Method for Rapid Extract of Radionuclides from Solution Using Polymer Ligand Film

    NASA Astrophysics Data System (ADS)

    Rim, Jung H.

    Accurate and fast determination of the activity of radionuclides in a sample is critical for nuclear forensics and emergency response. Radioanalytical techniques are well established for radionuclides measurement, however, they are slow and labor intensive, requiring extensive radiochemical separations and purification prior to analysis. With these limitations of current methods, there is great interest for a new technique to rapidly process samples. This dissertation describes a new analyte extraction medium called Polymer Ligand Film (PLF) developed to rapidly extract radionuclides. Polymer Ligand Film is a polymer medium with ligands incorporated in its matrix that selectively and rapidly extract analytes from a solution. The main focus of the new technique is to shorten and simplify the procedure necessary to chemically isolate radionuclides for determination by alpha spectrometry or beta counting. Five different ligands were tested for plutonium extraction: bis(2-ethylhexyl) methanediphosphonic acid (H2DEH[MDP]), di(2-ethyl hexyl) phosphoric acid (HDEHP), trialkyl methylammonium chloride (Aliquat-336), 4,4'(5')-di-t-butylcyclohexano 18-crown-6 (DtBuCH18C6), and 2-ethylhexyl 2-ethylhexylphosphonic acid (HEH[EHP]). The ligands that were effective for plutonium extraction further studied for uranium extraction. The plutonium recovery by PLFs has shown dependency on nitric acid concentration and ligand to total mass ratio. H2DEH[MDP] PLFs performed best with 1:10 and 1:20 ratio PLFs. 50.44% and 47.61% of plutonium were extracted on the surface of PLFs with 1M nitric acid for 1:10 and 1:20 PLF, respectively. HDEHP PLF provided the best combination of alpha spectroscopy resolution and plutonium recovery with 1:5 PLF when used with 0.1M nitric acid. The overall analyte recovery was lower than electrodeposited samples, which typically has recovery above 80%. However, PLF is designed to be a rapid field deployable screening technique and consistency is more important than recovery. PLFs were also tested using blind quality control samples and the activities were accurately measured. It is important to point out that PLFs were consistently susceptible to analytes penetrating and depositing below the surface. The internal radiation within the body of PLF is mostly contained and did not cause excessive self-attenuation and peak broadening in alpha spectroscopy. The analyte penetration issue was beneficial in the destructive analysis. H2DEH[MDP] PLF was tested with environmental samples to fully understand the capabilities and limitations of the PLF in relevant environments. The extraction system was very effective in extracting plutonium from environmental water collected from Mortandad Canyon at Los Alamos National Laboratory with minimal sample processing. Soil samples were tougher to process than the water samples. Analytes were first leached from the soil matrixes using nitric acid before processing with PLF. This approach had a limitation in extracting plutonium using PLF. The soil samples from Mortandad Canyon, which are about 1% iron by weight, were effectively processed with the PLF system. Even with certain limitations of the PLF extraction system, this technique was able to considerably decrease the sample analysis time. The entire environmental sample was analyzed within one to two days. The decrease in time can be attributed to the fact that PLF is replacing column chromatography and electrodeposition with a single step for preparing alpha spectrometry samples. The two-step process of column chromatography and electrodeposition takes a couple days to a week to complete depending on the sample. The decrease in time and the simplified procedure make this technique a unique solution for application to nuclear forensics and emergency response. A large number of samples can be quickly analyzed and selective samples can be further analyzed with more sensitive techniques based on the initial data. The deployment of a PLF system as a screening method will greatly reduce a total analysis time required to gain meaningful isotopic data for the nuclear forensics application. (Abstract shortened by UMI.)

  9. Detection techniques for tenuous planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Hoenig, S. A.

    1972-01-01

    The research for the development of new types of detectors for analysis of planetary atmospheres is summarized. Topics discussed include: corona discharge humidity detector, surface catalysis and exo-electron emission, and analysis of soil samples by means of exo-electron emission. A report on the exo-electron emission during heterogeneous catalysis is included.

  10. Evaluation of Electromagnetic Induction to Characterize and Map Sodium-Affected Soils in the Northern Great Plains of the United States

    NASA Astrophysics Data System (ADS)

    Brevik, E. C.; Heilig, J.; Kempenich, J.; Doolittle, J.; Ulmer, M.

    2012-04-01

    Sodium-affected soils (SAS) cover over 4 million hectares in the Northern Great Plains of the United States. Improving the classification, interpretation, and mapping of SAS is a major goal of the United States Department of Agriculture-Natural Resource Conservation Service (USDA-NRCS) as Northern Great Plains soil surveys are updated. Apparent electrical conductivity (ECa) as measured with ground conductivity meters has shown promise for mapping SAS, however, this use of this geophysical tool needs additional evaluation. This study used an EM-38 MK2-2 meter (Geonics Limited, Mississauga, Ontario), a Trimble AgGPS 114 L-band DGPS (Trimble, Sunnyvale, CA) and the RTmap38MK2 program (Geomar Software, Inc., Mississauga, Ontario) on an Allegro CX field computer (Juniper Systems, North Logan, UT) to collect, observe, and interpret ECa data in the field. The ECa map generated on-site was then used to guide collection of soil samples for soil characterization and to evaluate the influence of soil properties in SAS on ECa as measured with the EM-38MK2-2. Stochastic models contained in the ESAP software package were used to estimate the SAR and salinity levels from the measured ECa data in 30 cm depth intervals to a depth of 90 cm and for the bulk soil (0 to 90 cm). This technique showed promise, with meaningful spatial patterns apparent in the ECa data. However, many of the stochastic models used for salinity and SAR for individual depth intervals and for the bulk soil had low R-squared values. At both sites, significant variability in soil clay and water contents along with a small number of soil samples taken to calibrate the ECa values to soil properties likely contributed to these low R-squared values.

  11. Minimising methodological biases to improve the accuracy of partitioning soil respiration using natural abundance 13C.

    PubMed

    Snell, Helen S K; Robinson, David; Midwood, Andrew J

    2014-11-15

    Microbial degradation of soil organic matter (heterotrophic respiration) is a key determinant of net ecosystem exchange of carbon, but it is difficult to measure because the CO2 efflux from the soil surface is derived not only from heterotrophic respiration, but also from plant root and rhizosphere respiration (autotrophic). Partitioning total CO2 efflux can be achieved using the different natural abundance stable isotope ratios (δ(13)C) of root and soil CO2. Successful partitioning requires very accurate measurements of total soil efflux δ(13)CO2 and the δ(13)CO2 of the autotrophic and heterotrophic sources, which typically differ by just 2-8‰. In Scottish moorland and grass mesocosm studies we systematically tested some of the most commonly used techniques in order to identify and minimise methodological errors. Typical partitioning methods are to sample the total soil-surface CO2 efflux using a chamber, then to sample CO2 from incubated soil-free roots and root-free soil. We investigated the effect of collar depth on chamber measurements of surface efflux δ(13)CO2 and the effect of incubation time on estimates of end-member δ(13)CO2. (1) a 5 cm increase in collar depth affects the measurement of surface efflux δ(13)CO2 by -1.5‰ and there are fundamental inconsistencies between modelled and measured biases; (2) the heterotrophic δ(13)CO2 changes by up to -4‰ within minutes of sampling; we recommend using regression to estimate the in situ δ(13)CO2 values; (3) autotrophic δ(13)CO2 measurements are reliable if root CO2 is sampled within an hour of excavation; (4) correction factors should be used to account for instrument drift of up to 3‰ and concentration-dependent non-linearity of CRDS (cavity ringdown spectroscopy) analysis. Methodological biases can lead to large inaccuracies in partitioning estimates. The utility of stable isotope partitioning of soil CO2 efflux will be enhanced by consensus on the optimum measurement protocols and by minimising disturbance, particularly during chamber measurements. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Moessbauer Spectroscopy for Lunar Resource Assessment: Measurement of Mineralogy and Soil Maturity

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Agresti, D. G.; Shelfer, T. D.; Pimperl, M. M.; Shen, M.-H.; Gibson, M. A.; Wills, E. L.

    1992-01-01

    First-order assessment of lunar soil as a resource includes measurement of its mineralogy and maturity. Soils in which the mineral ilmenite is present in high concentrations are desirable feedstock for the production of oxygen at a lunar base. The maturity of lunar soils is a measure of their relative residence time in the upper 1 mm of the lunar surface. Increasing maturity implies increasing load of solar wind species (e.g., N, H, and He-3), decreasing mean grain size, and increasing glass content. All these physicochemical properties that vary in a regular way with maturity are important parameters for assessing lunar soil as a resource. For example, He-3 can be extracted and potentially used for nuclear fusion. A commonly used index for lunar soil maturity is I(sub s)/FeO, which is the concentration of fine-grained metal determined by ferromagnetic resonance (I(sub s)) normalized to the total iron content (as FeO). I(sub s)/FeO has been measured for virtually every soil returned by the Apollo and Luna missions to the Moon. Because the technique is sensitive to both oxidation state and mineralogy, iron Moessbauer spectroscopy (FeMS) is a viable technique for in situ lunar resource assessment. Its utility for mineralogy is apparent from examination of published FeMS data for lunar samples. From the data published, it can be inferred that FeMS data can also be used to determine soil maturity. The use of FeMS to determine mineralogy and maturity and progress on development of a FeMS instrument for lunar surface use are discussed.

  13. Environmental distribution of PAHs in pine needles, soils, and sediments.

    PubMed

    Navarro-Ortega, Alícia; Ratola, Nuno; Hildebrandt, Alain; Alves, Arminda; Lacorte, Sílvia; Barceló, Damià

    2012-03-01

    The content of 16 polycyclic aromatic hydrocarbons (PAHs) was determined in 60 samples from three environmental matrices (soils, sediments, and pine needles) in an effort to assess their distribution on a river basin scale. A sampling campaign was carried out in 2006, selecting urban, industrial, and agricultural sampling sites along the northeast of Spain. Techniques used included pressurized liquid extraction and solid-liquid ultrasonic extraction followed by gas chromatography-electron impact ionization mass spectrometry. The mean total PAHs concentrations were 290 < 613 < 1,628 ng/g (dry weight) in pine needles, soil, and sediments, respectively. There is a good correspondence between the total concentration of soils and pine needles, as opposed to the levels between sediments and pine needles. The high concentrations found in some Pinus halepensis samples may reflect a superior uptake potential of this species in comparison to the others studied. The three matrices present a very different PAH distribution pattern, with pine needles showing a predominance of the lighter (2-, 3-, and 4-ring) PAHs, whereas 5- and 6-ring PAHs are the most abundant in soils. Sediments display a more heterogeneous pattern, with contributions of all the PAHs but different distribution depending on the site, suggesting a wider range of input sources. Established PAH molecular ratios and principal component analysis were used to identify the origins and profiles of PAHs. While sediments showed a wide range attributed to historical inputs, soils and pine needles confirmed the compartmentalization of the PAHs, with lighter airborne PAHs accumulated in pine needles and heavier ones in soils. It can be suggested that the monitoring of several matrices is a strong tool to elucidate the contamination sources and accumulation patterns of PAHs. However, given the influence of the matrix type on this assessment, the information should be considered complementary, yet allowing a more comprehensive depiction of the area in question.

  14. Assessment the effect of homogenized soil on soil hydraulic properties and soil water transport

    NASA Astrophysics Data System (ADS)

    Mohawesh, O.; Janssen, M.; Maaitah, O.; Lennartz, B.

    2017-09-01

    Soil hydraulic properties play a crucial role in simulating water flow and contaminant transport. Soil hydraulic properties are commonly measured using homogenized soil samples. However, soil structure has a significant effect on the soil ability to retain and to conduct water, particularly in aggregated soils. In order to determine the effect of soil homogenization on soil hydraulic properties and soil water transport, undisturbed soil samples were carefully collected. Five different soil structures were identified: Angular-blocky, Crumble, Angular-blocky (different soil texture), Granular, and subangular-blocky. The soil hydraulic properties were determined for undisturbed and homogenized soil samples for each soil structure. The soil hydraulic properties were used to model soil water transport using HYDRUS-1D.The homogenized soil samples showed a significant increase in wide pores (wCP) and a decrease in narrow pores (nCP). The wCP increased by 95.6, 141.2, 391.6, 3.9, 261.3%, and nCP decreased by 69.5, 10.5, 33.8, 72.7, and 39.3% for homogenized soil samples compared to undisturbed soil samples. The soil water retention curves exhibited a significant decrease in water holding capacity for homogenized soil samples compared with the undisturbed soil samples. The homogenized soil samples showed also a decrease in soil hydraulic conductivity. The simulated results showed that water movement and distribution were affected by soil homogenizing. Moreover, soil homogenizing affected soil hydraulic properties and soil water transport. However, field studies are being needed to find the effect of these differences on water, chemical, and pollutant transport under several scenarios.

  15. Application of Synchrotron Microprobe Methods to Solid-Phase Speciation of Metals and Metalloids in House Dust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Walker; H Jamieson; P Rasmussen

    2011-12-31

    Determination of the source and form of metals in house dust is important to those working to understand human and particularly childhood exposure to metals in residential environments. We report the development of a synchrotron microprobe technique for characterization of multiple metal hosts in house dust. We have applied X-ray fluorescence for chemical characterization and X-ray diffraction for crystal structure identification using microfocused synchrotron X-rays at a less than 10 {micro}m spot size. The technique has been evaluated by application to archived house dust samples containing elevated concentrations of Pb, Zn, and Ba in bedroom dust, and Pb and Asmore » in living room dust. The technique was also applied to a sample of soil from the corresponding garden to identify linkages between indoor and outdoor sources of metals. Paint pigments including white lead (hydrocerussite) and lithopone (wurtzite and barite) are the primary source of Pb, Zn, and Ba in bedroom dust, probably related to renovation activity in the home at the time of sampling. The much lower Pb content in the living room dust shows a relationship to the exterior soil and no specific evidence of Pb and Zn from the bedroom paint pigments. The technique was also successful at confirming the presence of chromated copper arsenate treated wood as a source of As in the living room dust. The results of the study have confirmed the utility of this approach in identifying specific metal forms within the dust.« less

  16. Comparison of DGT with traditional extraction methods for assessing arsenic bioavailability to Brassica chinensis in different soils.

    PubMed

    Dai, Yunchao; Nasir, Mubasher; Zhang, Yulin; Gao, Jiakai; Lv, Yamin; Lv, Jialong

    2018-01-01

    Several predictive models and methods have been used for heavy metals bioavailability, but there is no universally accepted approach in evaluating the bioavailability of arsenic (As) in soil. The technique of diffusive gradients in thin-films (DGT) is a promising tool, but there is a considerable debate with respect to its suitability. The DGT method was compared with other traditional chemical extractions techniques (soil solution, NaHCO 3 , NH 4 Cl, HCl, and total As method) for estimating As bioavailability in soil based on a greenhouse experiment using Brassica chinensis grown in various soils from 15 provinces in China. In addition, we assessed whether these methods are independent of soil properties. The correlations between plant and soil As concentration measured with traditional extraction techniques were pH and iron oxide (Fe ox ) dependent, indicating that these methods are influenced by soil properties. In contrast, DGT measurements were independent of soil properties and also showed a better correlation coefficient than other traditional techniques. Thus, DGT technique is superior to traditional techniques and should be preferable for evaluating As bioavailability in different type of soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Ascribing soil erosion of hillslope components to river sediment yield.

    PubMed

    Nosrati, Kazem

    2017-06-01

    In recent decades, soil erosion has increased in catchments of Iran. It is, therefore, necessary to understand soil erosion processes and sources in order to mitigate this problem. Geomorphic landforms play an important role in influencing water erosion. Therefore, ascribing hillslope components soil erosion to river sediment yield could be useful for soil and sediment management in order to decrease the off-site effects related to downstream sedimentation areas. The main objectives of this study were to apply radionuclide tracers and soil organic carbon to determine relative contributions of hillslope component sediment sources in two land use types (forest and crop field) by using a Bayesian-mixing model, as well as to estimate the uncertainty in sediment fingerprinting in a mountainous catchment of western Iran. In this analysis, 137 Cs, 40 K, 238 U, 226 Ra, 232 Th and soil organic carbon tracers were measured in 32 different sampling sites from four hillslope component sediment sources (summit, shoulder, backslope, and toeslope) in forested and crop fields along with six bed sediment samples at the downstream reach of the catchment. To quantify the sediment source proportions, the Bayesian mixing model was based on (1) primary sediment sources and (2) combined primary and secondary sediment sources. The results of both approaches indicated that erosion from crop field shoulder dominated the sources of river sediments. The estimated contribution of crop field shoulder for all river samples was 63.7% (32.4-79.8%) for primary sediment sources approach, and 67% (15.3%-81.7%) for the combined primary and secondary sources approach. The Bayesian mixing model, based on an optimum set of tracers, estimated that the highest contribution of soil erosion in crop field land use and shoulder-component landforms constituted the most important land-use factor. This technique could, therefore, be a useful tool for soil and sediment control management strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Development of a standard soil-to-skin adherence probability density function for use in Monte Carlo analyses of dermal exposure.

    PubMed

    Finley, B L; Scott, P K; Mayhall, D A

    1994-08-01

    It has recently been suggested that "standard" data distributions for key exposure variables should be developed wherever appropriate for use in probabilistic or "Monte Carlo" exposure analyses. Soil-on-skin adherence estimates represent an ideal candidate for development of a standard data distribution: There are several readily available studies which offer a consistent pattern of reported results, and more importantly, soil adherence to skin is likely to vary little from site-to-site. In this paper, we thoroughly review each of the published soil adherence studies with respect to study design, sampling, and analytical methods, and level of confidence in the reported results. Based on these studies, probability density functions (PDF) of soil adherence values were examined for different age groups and different sampling techniques. The soil adherence PDF developed from adult data was found to resemble closely the soil adherence PDF based on child data in terms of both central tendency (mean = 0.49 and 0.63 mg-soil/cm2-skin, respectively) and 95th percentile values (1.6 and 2.4 mg-soil/cm2-skin, respectively). Accordingly, a single, "standard" PDF is presented based on all data collected for all age groups. This standard PDF is lognormally distributed; the arithmetic mean and standard deviation are 0.52 +/- 0.9 mg-soil/cm2-skin. Since our review of the literature indicates that soil adherence under environmental conditions will be minimally influenced by age, sex, soil type, or particle size, this PDF should be considered applicable to all settings. The 50th and 95th percentile values of the standard PDF (0.25 and 1.7 mg-soil/cm2-skin, respectively) are very similar to recent U.S. EPA estimates of "average" and "upper-bound" soil adherence (0.2 and 1.0 mg-soil/cm2-skin, respectively).

  19. Relaxometry in soil science

    NASA Astrophysics Data System (ADS)

    Schaumann, G. E.; Jaeger, F.; Bayer, J. V.

    2009-04-01

    NMR relaxometry is a sensitive, informative and promising method to study pore size distribution in soils as well as many kinds of soil physicochemical processes, among which are wetting, swelling or changes in the macromolecular status. Further, it is a very helpful method to study interactions between molecules in soil organic matter and it can serve to study the state of binding of water or organic chemicals to soil organic matter. The method of Relaxometry excite the nuclei of interest and their relaxation kinetics are observed. The relaxation time is the time constant of this first order relaxation process. Most applications of relaxometry concentrate on protons, addressing water molecules or H-containing organic molecules. In this context, 1H-NMR relaxometry may be used as an analysis method to determine water uptake characteristics of soils, thus gaining information about water distribution and mobility as well as pore size distribution in wet and moist samples. Additionally, it can also serve as a tool to study mobility of molecular segments in biopolymers. Principally, relaxometry is not restricted to protons. In soil science, relaxometry is also applied using deuterium, xenon and other nuclei to study pore size distribution and interactions. The relaxation time depends on numerous parameters like surface relaxivity, diffusion and interactions between nuclei as well as between nuclei and the environment. One- and two-dimensional methods address the relation between relaxation time and diffusion coefficients and can give information about the interconnectivity of pores. More specific information can be gained using field cycling techniques. Although proton NMR relaxometry is a very promising method in soil science, it has been applied scarcely up to now. It was used to assess changes in molecular rigidity of humic substances. A very recent study shows the potential of NMR relaxometry to assess the pore size distribution of soils in a fast and non-destructive way. Recent studies investigated wetting and swelling processes in soil samples, as well as the formation of microbial biofilms in soil the formation. This contribution gives an overview of current applications and the potential of NMR relaxometry in soil science with special emphasis on proton NMR relaxometry. References Bird, N.R.A., Preston, A.R., Randall, E.W., Whalley, W.R. & Whitmore, A.P. 2005. Measurement of the size distribution of water-filled pores at different matric potentials by stray field nuclear magnetic resonance. 56, 135-143. Bryar, T.R. & Knight, R.J. 2002. Sensitivity of Nuclear Magnetic Resonance Relaxation Measurements to Changing Soil Redox Conditions. Geophysical Research Letters, 29, 50/1-50/4. Conte, P., Spaccini, R. & Piccolo, A. 2006. Advanced CPMAS-13C NMR techniques for molecular characterization of size-separated fractions from a soil humic acid. Analytical and Bioanalytical Chemistry, 386, 382-390. Gunasekara, A.S., Simpson, M.I. & Xing, B. 2003. Identification and characterization of sorption domains in soil organic matter using strucuturally modified humic acids. Environmental Science & Technology, 37, 852-858. Jaeger, F., Grohmann, E., Boeckelmann, U. & Schaumann, G.E. 2006. Microbial effects on 1H NMR Relaxometry in soil samples and glass bead reactors. In Humic Substances - Linking Structure to Functions. Proceedings of the 13th Meeting of the International Humic Substances Societyin Karlsruhe eds. F.H. Frimmel & G. Abbt-Braun), pp. 929-932. Universität Karlsruhe, Karlsruhe. Hurraß, J. & Schaumann, G.E. 2007. Hydration kinetics of wettable and water repellent soil samples. Soil Science Society of America Journal, 71, 280-288. Jaeger, F., Grohmann, E. & Schaumann, G.E. 2006. 1H NMR Relaxometry in natural humous soil samples: Insights in microbial effects on relaxation time distributions. Plant and Soil, 280, 209-222. Jaeger, F., Rudolph, N., Lang, F. & Schaumann, G.E. 2008. Effects of soil solution's constituents on proton NMR relaxometry of soil samples. Soil Science Society of America Journal, 72, 1694-1707. Jaeger, F., Bowe, S. & Schaumann, G.E. in preparation. Evaluation of 1H NMR relaxometry for the assessment of pore size distribution in soil samples. European Journal of Soil Science. Jähnert, S., Vaca Chavez, F., Schaumann, G.E., Schreiber, A., Schönhoff, M. & Findenegg, G.H. 2008. Melting and freezing of water in cylindrical silica nanopores. Physical Chemistry Chemical Physics, 39, 6039-6051. Schaumann, G.E., Hurraß, J., Müller, M. & Rotard, W. 2004. Swelling of organic matter in soil and peat samples: insights from proton relaxation, water absorption and PAH extraction. In Humic Substances: Nature's Most Versatile Materials eds. E.A. Ghabbour & G. Davies), pp. 101-117. Taylor and Francis, Inc., New York. Schaumann, G.E., Hobley, E., Hurraß, J. & Rotard, W. 2005. H-NMR Relaxometry to monitor wetting and swelling kinetics in high organic matter soils. Plant and Soil, 275, 1-20. Schaumann, G.E. & Bertmer, M. 2008. Do water molecules bridge soil organic matter molecule segments? European Journal of Soil Science, 59, 423-429. Todoruk, T.R., Langford, C.H. & Kantzas, A. 2003. Pore-Scale Redistribution of Water during Wetting of Air-Dried Soils As Studied by Low-Field NMR Relaxometry. Environmental Science and Technology, 37, 2707-2713. Todoruk, T.R., Litvina, M., Kantzas, A. & Langford, C.H. 2003. Low-Field NMR Relaxometry: A Study of Interactions of Water with Water-Repellant Soils. Environmental Science and Technology, 37, 2878-2882. Van As, H. & van Dusschoten, D. 1997. NMR methods for imaging of transport processes in micro-porous systems. Geoderma, 80, 389-403. Van As, H. & Lens, P. 2001. Use of 1H NMR to study transport processes in porous biosystems. Journal of Industrial Microbiology & Biotechnology, 26, 43-52.

  20. Nuclear and non-nuclear techniques for area-wide assessment of water use efficiency and ecohydrology outcomes among mixed land uses

    NASA Astrophysics Data System (ADS)

    Burgess, S. S. O.; Nguyen, M. L.

    2009-04-01

    Managing water use efficiency and ecohydrology is important for providing food, water and essential ecosystem services. Many agricultural, ecological, atmospheric and hydrological processes cannot be meaningfully managed without an area-wide or catchment-level perspective. However a vast number of factors, including mixed land uses are incorporated at such scales. There is a need for integrative, mobile and adaptable techniques to make water related measurements over large areas and mixed land uses. Nuclear techniques and analogous non-nuclear techniques may be deployed in a number of spheres within the soil-plant-atmosphere continuum (e.g. rhizosphere and above-canopy microclimate) with nuclear techniques having a distinct contribution owing to their unique ability to trace biogeochemical processes including the movement and transformation of water, nutrients and agrochemicals. 1) Soils. Isotopes can be used to trace water sources to understand groundwater dependence, rooting depth, etc. but not at all sites: early success in central USA studies has not always been repeatable in climates which produce more uniform isotopic signatures in various water sources. Soil water resources available to crops can also be studied using neutron moisture meters, but training, transport and safety issues argue for stringent management and inclusion of electrical capacitance probes for routine or automated applications. Results from capacitance probes can benefit from benchmarking against neutron probe measurements, which remain more powerful for sampling larger volumes in cases of heterogenous soils or where salinity levels are problematic. Because interpretation of soil water content in terms of plant available water also requires knowledge of soil organic matter characteristics, 13C and compound specific stable isotopes can help to identify changes in soil organic matter composition and hence water and plant nutrient availability. 2) Plants. Analysis of carbon isotope discrimination can be used to monitor water use efficiency and seasonal water stress. This includes analysis of carbon in structural leaf material and soluble sugars for different temporal scales. Some progress is also being made using 18O signatures to estimate transpiration. Furthermore xylem sap can be measured for isotopic composition can be used and absolute flow rates in the plant can be measured with thermometric tracers. Information on transpiration can help differentiate between wasteful evaporative processes versus efficient plant gas exchange. 3) Atmosphere (above & within canopy). Whilst traditional vapour related techniques such as Bowen ratio and eddy flux can measure total ET, modern cavity ring-down laser spectrometers can sample isotopes in water vapour. These devices hold much promise to identify water sources and evaporative processes using dual isotope mixing models and Keeling plots analysis: the result is improved partitioning of transpiration and evaporation. This above suite of measurements can provide knowledge to choose correct plant species, manage irrigation and microclimate, compare land uses and predict impacts on the environment, including nutrient and agrochemical movement in the landscape. We discuss current progress in IAEA and related projects which are aimed at bringing an integrated, multi-disciplinary framework for area-wide water management that can promote food security, water resources and essential ecosystem services.

Top