Smith, David B.; Sweat, Michael J.
2012-01-01
Soil samples were collected and chemically analyzed from the Riverton Uranium Mill Tailings Remedial Action Site, which lies within the Wind River Indian Reservation in Fremont County, Wyoming. Nineteen soil samples from a depth of 0 to 5 centimeters were collected in August 2011 from the site. The samples were sieved to less than 2 millimeters and analyzed for 44 major and trace elements following a near-total multi-acid extraction. Soil pH was also determined. The geochemical data were compared to a background dataset consisting of 160 soil samples previously collected from the same depth throughout the State of Wyoming as part of another ongoing study by the U.S. Geological Survey. Risk from potentially toxic elements in soil from the site to biologic receptors and humans was estimated by comparing the concentration of these elements with soil screening values established by the U.S. Environmental Protection Agency. All 19 samples exceeded the carcinogenic human health screening level for arsenic in residential soils of 0.39 milligrams per kilogram (mg/kg), which represents a one-in-one-million cancer risk (median arsenic concentration in the study area is 2.7 mg/kg). All 19 samples also exceeded the lead and vanadium screening levels for birds. Eighteen of the 19 samples exceeded the manganese screening level for plants, 13 of the 19 samples exceeded the antimony screening level for mammals, and 10 of 19 samples exceeded the zinc screening level for birds. However, these exceedances are also found in soils at most locations in the Wyoming Statewide soil database, and elevated concentrations alone are not necessarily cause for alarm. Uranium and thorium, two other elements of environmental concern, are elevated in soils at the site as compared to the Wyoming dataset, but no human or ecological soil screening levels have been established for these elements.
Ecological Soil Screening Level
The Eco-SSL derivation process is used to derive a set of risk-based ecological soil screening levels (Eco-SSLs) for many of the soil contaminants that are frequently of ecological concern for plants and animals at hazardous waste sites.
2017-10-01
USER GUIDE 1,4-Dioxane Remediation by Extreme Soil Vapor Extraction (XSVE) Screening-Level Feasibility Assessment and Design Tool in...Support of 1,4-Dioxane Remediation by Extreme Soil Vapor Extraction (XSVE) ESTCP Project ER-201326 OCTOBER 2017 Rob Hinchee Integrated Science...Technology, Inc. 1509 Coastal Highway Panacea, FL 32346 8/8/2013 - 8/8/2018 10-2017 1,4-Dioxane Remediation by Extreme Soil Vapor Extraction (XSVE) Screening
The U.S. Environmental Protection Agency, as part of a collaborative effort among government and industry representatives, is developing Ecologic Soil Screening Levels (Eco-SSLs) for approximately 25 of the most common pollutants found at Superfund sites. As part of this effort, ...
Ecological Soil Screening Levels (Eco-SSLs) protective of terrestrial wildlife were developed by the USEPA Superfund. The wildlife Eco-SSL is the soil contaminant concentration where the Effect Dose (TRV) and Exposure Dose are equal (amount of contaminant in the diet that is take...
DEVELOPING SOIL SCREENING LEVELS FOR SOIL INVERTEBRATES AND PLANTS
U.S. Environmental Protection Agency (USEPA), as part of a collaborative effort among USEPA, DoD, DOE, states, universities and industry, is developing Ecological Screening Levels (Eco-SSLs) for approximately 24 of the most common contaminants founrd at Superfund sites. Eco-SSLs ...
Five radionuclide vadose zone models with different degrees of complexity (CHAIN, MULTIMED_DP, FECTUZ, HYDRUS, and CHAIN 2D) were selected for use in soil screening level (SSL) calculations. A benchmarking analysis between the models was conducted for a radionuclide (99Tc) rele...
Sample, Bradley E; Fairbrother, Anne; Kaiser, Ashley; Law, Sheryl; Adams, Bill
2014-10-01
Ecological soil-screening levels (Eco-SSLs) were developed by the United States Environmental Protection Agency (USEPA) for the purposes of setting conservative soil screening values that can be used to eliminate the need for further ecological assessment for specific analytes at a given site. Ecological soil-screening levels for wildlife represent a simplified dietary exposure model solved in terms of soil concentrations to produce exposure equal to a no-observed-adverse-effect toxicity reference value (TRV). Sensitivity analyses were performed for 6 avian and mammalian model species, and 16 metals/metalloids for which Eco-SSLs have been developed. The relative influence of model parameters was expressed as the absolute value of the range of variation observed in the resulting soil concentration when exposure is equal to the TRV. Rank analysis of variance was used to identify parameters with greatest influence on model output. For both birds and mammals, soil ingestion displayed the broadest overall range (variability), although TRVs consistently had the greatest influence on calculated soil concentrations; bioavailability in food was consistently the least influential parameter, although an important site-specific variable. Relative importance of parameters differed by trophic group. Soil ingestion ranked 2nd for carnivores and herbivores, but was 4th for invertivores. Different patterns were exhibited, depending on which parameter, trophic group, and analyte combination was considered. The approach for TRV selection was also examined in detail, with Cu as the representative analyte. The underlying assumption that generic body-weight-normalized TRVs can be used to derive protective levels for any species is not supported by the data. Whereas the use of site-, species-, and analyte-specific exposure parameters is recommended to reduce variation in exposure estimates (soil protection level), improvement of TRVs is more problematic. © 2014 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc.
Sample, Bradley E; Fairbrother, Anne; Kaiser, Ashley; Law, Sheryl; Adams, Bill
2014-01-01
Ecological soil-screening levels (Eco-SSLs) were developed by the United States Environmental Protection Agency (USEPA) for the purposes of setting conservative soil screening values that can be used to eliminate the need for further ecological assessment for specific analytes at a given site. Ecological soil-screening levels for wildlife represent a simplified dietary exposure model solved in terms of soil concentrations to produce exposure equal to a no-observed-adverse-effect toxicity reference value (TRV). Sensitivity analyses were performed for 6 avian and mammalian model species, and 16 metals/metalloids for which Eco-SSLs have been developed. The relative influence of model parameters was expressed as the absolute value of the range of variation observed in the resulting soil concentration when exposure is equal to the TRV. Rank analysis of variance was used to identify parameters with greatest influence on model output. For both birds and mammals, soil ingestion displayed the broadest overall range (variability), although TRVs consistently had the greatest influence on calculated soil concentrations; bioavailability in food was consistently the least influential parameter, although an important site-specific variable. Relative importance of parameters differed by trophic group. Soil ingestion ranked 2nd for carnivores and herbivores, but was 4th for invertivores. Different patterns were exhibited, depending on which parameter, trophic group, and analyte combination was considered. The approach for TRV selection was also examined in detail, with Cu as the representative analyte. The underlying assumption that generic body-weight–normalized TRVs can be used to derive protective levels for any species is not supported by the data. Whereas the use of site-, species-, and analyte-specific exposure parameters is recommended to reduce variation in exposure estimates (soil protection level), improvement of TRVs is more problematic. Environ Toxicol Chem 2014;33:2386–2398. PMID:24944000
Soils are repositories for environmental contaminants (COCs) in terrestrial ecosystems. Time, effort, and money repeatedly are invested in literature-based evaluations of potential soil-ecotoxicity...
Ford, Karl L; Beyer, W Nelson
2014-03-01
Thousands of hard rock mines exist in the western USA and in other parts of the world as a result of historic and current gold, silver, lead, and mercury mining. Many of these sites in the USA are on public lands. Typical mine waste associated with these sites are tailings and waste rock dumps that may be used by wildlife and open-range livestock. This report provides wildlife screening criteria levels for metals in soil and mine waste to evaluate risk and to determine the need for site-specific risk assessment, remediation, or a change in management practices. The screening levels are calculated from toxicity reference values based on maximum tolerable levels of metals in feed, on soil and plant ingestion rates, and on soil to plant uptake factors for a variety of receptors. The metals chosen for this report are common toxic metals found at mining sites: arsenic, cadmium, copper, lead, mercury, and zinc. The resulting soil screening values are well above those developed by the US Environmental Protection Agency. The difference in values was mainly a result of using toxicity reference values that were more specific to the receptors addressed rather than the most sensitive receptor.
Ford, Karl L; Beyer, W. Nelson
2014-01-01
Thousands of hard rock mines exist in the western USA and in other parts of the world as a result of historic and current gold, silver, lead, and mercury mining. Many of these sites in the USA are on public lands. Typical mine waste associated with these sites are tailings and waste rock dumps that may be used by wildlife and open-range livestock. This report provides wildlife screening criteria levels for metals in soil and mine waste to evaluate risk and to determine the need for site-specific risk assessment, remediation, or a change in management practices. The screening levels are calculated from toxicity reference values based on maximum tolerable levels of metals in feed, on soil and plant ingestion rates, and on soil to plant uptake factors for a variety of receptors. The metals chosen for this report are common toxic metals found at mining sites: arsenic, cadmium, copper, lead, mercury, and zinc. The resulting soil screening values are well above those developed by the US Environmental Protection Agency. The difference in values was mainly a result of using toxicity reference values that were more specific to the receptors addressed rather than the most sensitive receptor.
EVALUATION OF LITERATURE ESTABLISHING SCREENING LEVELS FOR TERRESTRIAL PLANTS/INVERTEBRATES
Scientific publications often lack key information on experimental design or do not follow appropriate test methods and therefore cannot be used in deriving reliable benchmarks. Risk based soil screening levels (Eco-SSLs) are being established for chemicals of concern to terrestr...
Chapman, E Emily V; Hedrei Helmer, Stephanie; Dave, Göran; Murimboh, John D
2012-06-01
The objective of this study was to assess selected bioassays and ecological screening tools for their suitability in a weight of evidence risk screening process of acidic metal contaminated soil. Intact soil cores were used for the tests, which minimizes changes in pH and metal bioavailability that may result from homogenization and drying of the soil. Soil cores were spiked with ZnCl(2) or CaCl(2). Leachate collected from the soil cores was used to account for the exposure pathways through pore water and groundwater. Tests assessed included MetSTICK in soil cores and Microtox in soil leachate, lettuce (Lactuca sativa), red fescue (Festuca rubra) and red clover (Trifolium pratense) in the soil cores and lettuce and red clover in soil leachate, Hyallella azteca in soil leachate, and an ecological soil function test using Bait Lamina in soil cores. Microtox, H. azteca, lettuce and red fescue showed higher sensitivity to low pH than to Zn concentrations and are therefore not recommended as tests on intact acidic soil cores and soil leachate. The Bait Lamina test appeared sensitive to pH levels below 3.7 but should be investigated further as a screening tool in less acidic soils. Among the bioassays, the MetSTICK and the T. pratense bioassays in soil cores were the most sensitive to Zn, with the lowest nominal NOEC of 200 and 400mg Zn/kg d.w., respectively. These bioassays were also tolerant of low pH, which make them suitable for assessing hazards of metal contaminated acid soils. Copyright © 2012 Elsevier Inc. All rights reserved.
Hinck, Jo E.; Linder, Greg L.; Otton, James K.; Finger, Susan E.; Little, Edward E.; Tillitt, Donald E.
2013-01-01
Chemical data from soil and weathered waste material samples collected from five uranium mines north of the Grand Canyon (three reclaimed, one mined but not reclaimed, and one never mined) were used in a screening-level risk analysis for the Arizona chisel-toothed kangaroo rat (Dipodomys microps leucotis); risks from radiation exposure were not evaluated. Dietary toxicity reference values were used to estimate soil-screening thresholds presenting risk to kangaroo rats. Sensitivity analyses indicated that body weight critically affected outcomes of exposed-dose calculations; juvenile kangaroo rats were more sensitive to the inorganic constituent toxicities than adult kangaroo rats. Species-specific soil-screening thresholds were derived for arsenic (137 mg/kg), cadmium (16 mg/kg), copper (1,461 mg/kg), lead (1,143 mg/kg), nickel (771 mg/kg), thallium (1.3 mg/kg), uranium (1,513 mg/kg), and zinc (731 mg/kg) using toxicity reference values that incorporate expected chronic field exposures. Inorganic contaminants in soils within and near the mine areas generally posed minimal risk to kangaroo rats. Most exceedances of soil thresholds were for arsenic and thallium and were associated with weathered mine wastes.
2016-07-01
ecotoxicological benchmarks for developing the ecological soil screening levels (Eco-SSLs) for risk assessments of contaminated soils. For the present study, we...or manufacturers ’ names in this report does not constitute an official endorsement of any commercial products. This report may not be cited for...Disposal of Se in commercial products and waste can also contribute to Se contaminant levels in soil. Se has been found in at least 508 of the 1623
The Ecological Soil Screening Level (Eco-SSL) work group, composed of scientists and risk assessors from EPA, Environment Canada, DOE, Army, Navy, Air Force, states, industry, academia, and consulting companies, has developed scientifically sound, ecologically-based, soil screeni...
Numerical, mathematical models of water and chemical movement in soils are used as decision aids for determining soil screening levels (SSLs) of radionuclides in the unsaturated zone. Many models require extensive input parameters which include uncertainty due to soil variabil...
Landmeyer, James E.; Falls, W. Fred; Ratliff, W. Hagan; Wellborn, John B.
2011-01-01
Inorganic concentrations in all four soil samples did not exceed regional screening levels established by the U.S. Environmental Protection Agency. Barium concentrations, however, were two to three times higher than the background concentrations reported in similar Coastal Plain sediments of South Carolina.
2012-11-01
TSL Soils Utilizing Growth Benchmarks for Alfalfa , Barnyard Grass, and Perennial Ryegrass ............................................. 5 3...Derivation of Terrestrial Plant-Based Draft Eco-SSL Value for RDX Weathered-and-Aged in SSL or TSL Soils Utilizing Growth Benchmarks for Alfalfa ...studies were conducted using the following plant species: Dicotyledonous symbiotic species alfalfa (Medicago sativa L.) Monocotyledonous
Improved exposure estimation in soil screening and cleanup criteria for volatile organic chemicals.
DeVaull, George E
2017-09-01
Soil cleanup criteria define acceptable concentrations of organic chemical constituents for exposed humans. These criteria sum the estimated soil exposure over multiple pathways. Assumptions for ingestion, dermal contact, and dust exposure generally presume a chemical persists in surface soils at a constant concentration level for the entire exposure duration. For volatile chemicals, this is an unrealistic assumption. A calculation method is presented for surficial soil criteria that include volatile depletion of chemical for these uptake pathways. The depletion estimates compare favorably with measured concentration profiles and with field measurements of soil concentration. Corresponding volatilization estimates compare favorably with measured data for a wide range of volatile and semivolatile chemicals, including instances with and without the presence of a mixed-chemical residual phase. Selected examples show application of the revised factors in estimating screening levels for benzene in surficial soils. Integr Environ Assess Manag 2017;13:861-869. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Checkai, Ron; Van Genderen, Eric; Sousa, José Paulo; Stephenson, Gladys; Smolders, Erik
2014-01-01
Soil contaminant concentration limits for the protection of terrestrial plants and soil invertebrates are commonly based on thresholds derived using data from laboratory ecotoxicity tests. A comprehensive assessment has been made for the derivation of ecological soil screening levels (Eco-SSL) in the United States; however, these limits are conservative because of their focus on high bioavailability scenarios. Here, we explain and evaluate approaches to soil limit derivation taken by 4 jurisdictions, 2 of which allow for correction of data for factors affecting bioavailability among soils, and between spiked and field-contaminated soils (Registration Evaluation Authorisation and Restriction of Chemicals [REACH] Regulation, European Union [EU], and the National Environment Protection Council [NEPC], Australia). Scientifically advanced features from these methods have been integrated into a newly developed method for deriving soil clean-up values (SCVs) within the context of site-specific baseline ecological risk assessment. Resulting site-specific SCVs that account for bioavailability may permit a greater residual concentration in soil when compared to generic screening limit concentrations (e.g., Eco-SSL), while still affording acceptable protection. Two choices for selecting the level of protection are compared (i.e., allowing higher effect levels per species, or allowing a higher percentile of species that are potentially unprotected). Implementation of this new method is presented for the jurisdiction of the United States, with a focus on metal and metalloid contaminants; however, the new method can be used in any jurisdiction. A case study for molybdate shows the large effect of bioavailability corrections and smaller effects of protection level choices when deriving SCVs. Integr Environ Assess Manag 2014;10:346–357. PMID:24470189
Met Éireann high resolution reanalysis for Ireland
NASA Astrophysics Data System (ADS)
Gleeson, Emily; Whelan, Eoin; Hanley, John
2017-03-01
The Irish Meteorological Service, Met Éireann, has carried out a 35-year very high resolution (2.5 km horizontal grid) regional climate reanalysis for Ireland using the ALADIN-HIRLAM numerical weather prediction system. This article provides an overview of the reanalysis, called MÉRA, as well as a preliminary analysis of surface parameters including screen level temperature, 10 m wind speeds, mean sea-level pressure (MSLP), soil temperatures, soil moisture and 24 h rainfall accumulations. The quality of the 3-D variational data assimilation used in the reanalysis is also assessed. Preliminary analysis shows that it takes almost 12 months to spin up the deep soil in terms of moisture, justifying the choice of running year-long spin up periods. Overall, the model performed consistently over the time period. Small biases were found in screen-level temperatures (less than -0.5 °C), MSLP (within 0.5 hPa) and 10 m wind speed (up to 0.5 m s-1) Soil temperatures are well represented by the model. 24 h accumulations of precipitation generally exhibit a small positive bias of ˜ 1 mm per day and negative biases over mountains due to a mismatch between the model orography and the geography of the region. MÉRA outperforms the ERA-Interim reanalysis, particularly in terms of standard deviations in screen-level temperatures and surface winds. This dataset is the first of its kind for Ireland that will be made publically available during spring 2017.
Beyer, W. Nelson; Sample, Bradley E.
2017-01-01
When performing screening-level and baseline risk assessments, assessors usually compare estimated exposures of wildlife receptor species with toxicity reference values (TRVs). We modeled the exposure of American robins (Turdus migratorius) to 10 elements (As, Cd, Cr, Cu, Hg, Mn, Pb, Se, Zn, and V) in spring and early summer, a time when earthworms are the preferred prey. We calculated soil benchmarks associated with possible toxic effects to these robins from 6 sets of published TRVs. Several of the resulting soil screening-level benchmarks were inconsistent with each other and less than soil background concentrations. Accordingly, we examined the derivations of the TRVs as a possible source of error. In the case of V, a particularly toxic chemical compound (ammonium vanadate) containing V, not normally present in soil, had been used to estimate a TRV. In the cases of Zn and Cu, use of uncertainty values of 10 in estimating TRVs led to implausibly low soil screening values. In the case of Pb, a TRV was calculated from studies demonstrating reductions in egg production in Japanese quail (Coturnix coturnix japonica) exposed to Pb concentrations well below than those causing toxic effects in other species of birds. The results on quail, which were replicated in additional trials, are probably not applicable to other, unrelated species, although we acknowledge that only a small fraction of all species of birds has been tested. These examples underscore the importance of understanding the derivation and relevance of TRVs before selecting them for use in screening or in ecological risk assessment.
INVERTEBRATE AND PLANT ECO-SSLS DERIVED FROM PUBLISHED TOXICITY STUDIES
The U.S. Environmental Protection Agency (USEPA), in collaboration with other federal, state, and industry groups has developed Ecological Soil Screening Levels (Eco-SSLs) for common contaminants found at Superfund sites. The Eco-SSLs were created as a tool to identify soil conta...
EVALUATING THE SENSITIVITY OF SCREENING-LEVEL VAPOR INTRUSTION MODELS
Vapor intrusion is defined as the migration of volatile chemicals from the subsurface into overlying buildings. Volatile organic contaminants (VOCs) in soil or ground water can volatilize into soil gas and be transported towards the land surface where it can enter homes or busin...
Lin, Lijin; Jin, Qian; Liu, Yingjie; Ning, Bo; Liao, Ming'an; Luo, Li
2014-11-01
A new method, the artificially high soil cadmium (Cd) concentration method, was used to screen for Cd hyperaccumulators among winter farmland weeds. Galinsoga parviflora was the most promising remedial plant among 5 Cd accumulators or hyperaccumulators. In Cd concentration gradient experiments, as soil Cd concentration increased, root and shoot biomass decreased, and their Cd contents increased. In additional concentration gradient experiments, superoxide dismutase and peroxidase activities increased with soil Cd concentrations up to 75 mg kg(-1) , while expression of their isoenzymes strengthened. Catalase (CAT) activity declined and CAT isoenzyme expression weakened at soil Cd concentrations less than 50 mg kg(-1) . The maxima of Cd contents in shoots and roots were 137.63 mg kg(-1) and 105.70 mg kg(-1) , respectively, at 100 mg kg(-1) Cd in soil. The root and shoot bioconcentration factors exceeded 1.0, as did the translocation factor. In a field experiment, total extraction of Cd by shoots was 1.35 mg m(-2) to 1.43 mg m(-2) at soil Cd levels of 2.04 mg kg(-1) to 2.89 mg kg(-1) . Therefore, the artificially high soil Cd concentration method was effective for screening Cd hyperaccumulators. Galinsoga parviflora is a Cd hyperaccumulator that could be used to efficiently remediate Cd-contaminated farmland soil. © 2014 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, Annetta Paule; Dolislager, Fredrick G
2007-05-01
This report evaluates whether new information and updated scientific models require that changes be made to previously published health-based environmental soil screening levels (HBESLs) and associated environmental fate/breakdown information for chemical warfare agents (USACHPPM 1999). Specifically, the present evaluation describes and compares changes that have been made since 1999 to U.S. Environmental Protection Agency (EPA) risk assessment models, EPA exposure assumptions, as well as to specific chemical warfare agent parameters (e.g., toxicity values). Comparison was made between screening value estimates recalculated with current assumptions and earlier health-based environmental screening levels presented in 1999. The chemical warfare agents evaluated include themore » G-series and VX nerve agents and the vesicants sulfur mustard (agent HD) and Lewisite (agent L). In addition, key degradation products of these agents were also evaluated. Study findings indicate that the combined effect of updates and/or changes to EPA risk models, EPA default exposure parameters, and certain chemical warfare agent toxicity criteria does not result in significant alteration to the USACHPPM (1999) health-based environmental screening level estimates for the G-series and VX nerve agents or the vesicant agents HD and L. Given that EPA's final position on separate Tier 1 screening levels for indoor and outdoor worker screening assessments has not yet been released as of May 2007, the study authors find that the 1999 screening level estimates (see Table ES.1) are still appropriate and protective for screening residential as well as nonresidential sites. As such, risk management decisions made on the basis of USACHPPM (1999) recommendations do not require reconsideration. While the 1999 HBESL values are appropriate for continued use as general screening criteria, the updated '2007' estimates (presented below) that follow the new EPA protocols currently under development are also protective. When EPA finalizes and documents a position on the matter of indoor and outdoor worker screening assessments, site-specific risk assessments should make use of modified models and criteria. Screening values such as those presented in this report may be used to assess soil or other porous media to determine whether chemical warfare agent contamination is present as part of initial site investigations (whether due to intentional or accidental releases) and to determine whether weather/decontamination has adequately mitigated the presence of agent residual to below levels of concern. However, despite the availability of scientifically supported health-based criteria, there are significant resources needs that should be considered during sample planning. In particular, few analytical laboratories are likely to be able to meet these screening levels. Analyses will take time and usually have limited confidence at these concentrations. Therefore, and particularly for the more volatile agents, soil/destructive samples of porous media should be limited and instead enhanced with headspace monitoring and presence-absence wipe sampling.« less
ERIC Educational Resources Information Center
Gutiérrez, Mélida; Baker, Becky
2013-01-01
A class exercise was designed for a college-level geochemistry class to promote inquiry and student participation. In this exercise, real soil data available online was analyzed to evaluate geochemical associations among different soil orders and as a screening tool for anthropogenic metal contamination. Students were asked to read a peer-reviewed…
Mahmood, Adeel; Malik, Riffat Naseem; Li, Jun; Zhang, Gan; Jones, Kevin C
2014-05-15
There is a lack of scientific literature regarding the bioaccumulation, dietary and toxicity exposure of PCN via food crops. The current study presents the information of dietary intake, distribution pattern and screening level risk assessment of PCN in wheat, rice, soil and air along upstream feeding tributaries of the River Chenab, Punjab Province, Pakistan. A total six air and twenty eight of soil, wheat and rice samples were collected during Jan, 2013 to June, 2013 to analyze the thirty nine PCN congeners. ∑39PCN concentrations were ranged between 0.02 and 0.21 ng g(-1) dw, 0.02-1.21 ng g(-1) dw, 24.6-233 ng g(-1) dw and 1,222-5,052 pg m(-3) in wheat, rice, soil and air samples, respectively. In this study soil exhibited higher TEQ values while in case of air, wheat and rice TEQ concentrations were in accordance with the previously reported pattern from other parts of the world. Estimated daily intake (EDI) of ∑39PCN through consumption of wheat and rice was estimated as 0.21 ng kg(-1) (body weight)day(-1) and 0.03 ng kg(-1) (body weight)day(-1), respectively. This is the first report of PCN dietary intake and screening-level risk assessment by consumption of cereal crops from Pakistan. The results of dietary and toxicity exposure of PCN warrant auxiliary devotion in future, to this group of contaminant. Copyright © 2014 Elsevier B.V. All rights reserved.
Tier 1 Rice Model for Estimating Pesticide Concentrations in Rice Paddies
The Tier 1 Rice Model estimates screening level aquatic concentrations of pesticides in rice paddies. It is a simple pesticide soil:water partitioning model with default values for water volume, soil mass, and organic carbon. Pesticide degradation is not considered in the mode...
Beyer, W Nelson; Sample, Bradley E
2017-03-01
When performing screening-level and baseline risk assessments, assessors usually compare estimated exposures of wildlife receptor species with toxicity reference values (TRVs). We modeled the exposure of American robins (Turdus migratorius) to 10 elements (As, Cd, Cr, Cu, Hg, Mn, Pb, Se, Zn, and V) in spring and early summer, a time when earthworms are the preferred prey. We calculated soil benchmarks associated with possible toxic effects to these robins from 6 sets of published TRVs. Several of the resulting soil screening-level benchmarks were inconsistent with each other and less than soil background concentrations. Accordingly, we examined the derivations of the TRVs as a possible source of error. In the case of V, a particularly toxic chemical compound (ammonium vanadate) containing V, not normally present in soil, had been used to estimate a TRV. In the cases of Zn and Cu, use of uncertainty values of 10 in estimating TRVs led to implausibly low soil screening values. In the case of Pb, a TRV was calculated from studies demonstrating reductions in egg production in Japanese quail (Coturnix coturnix japonica) exposed to Pb concentrations well below than those causing toxic effects in other species of birds. The results on quail, which were replicated in additional trials, are probably not applicable to other, unrelated species, although we acknowledge that only a small fraction of all species of birds has been tested. These examples underscore the importance of understanding the derivation and relevance of TRVs before selecting them for use in screening or in ecological risk assessment. Integr Environ Assess Manag 2017;13:352-359. © 2016 SETAC. © 2016 SETAC.
Lead Levels in Landfill Areas and Childhood Exposure: An Integrative Review.
Kim, M Angela; Williams, Kimberly A
2017-01-01
Landfills are high-risk areas for environmental lead exposure for children living in poverty stricken areas in many countries. This review examines landfills and lead toxicity in children. The review discusses the effects of lead toxicity, provides evidenced based recommendations to reduce lead exposure, and identify gaps in the evidence. A database search was conducted of articles in English from 1985 to 2014. Ten articles met the inclusion criteria. The Whittemore and Knafl framework and the John Hopkins Research Evidence Appraisal Tool © were used for reviewing the data. Elevated blood lead levels (BLLs) of children living near landfills were related to increased soil lead levels. Toxic effects of lead included adverse outcomes such as encephalopathy or death for children. Different approaches to decrease lead level include environmental surveillance, BLL screening, and soil abatement which are costly. Increased BLL through environmental exposure is connected with poor health outcomes and death among children. Evidence-based prevention included monitoring and screening and costly soil abatement. It is recommended that future studies focus on community education for exposure avoidance for children living near landfill areas. © 2016 Wiley Periodicals, Inc.
Marston, Thomas M.; Beisner, Kimberly R.; Naftz, David L.; Snyder, Terry
2012-01-01
During August of 2008, 35 solid-phase samples were collected from abandoned uranium waste dumps, undisturbed geologic background sites, and adjacent streambeds in Browns Hole in southeastern Utah. The objectives of this sampling program were (1) to assess impacts on human health due to exposure to radium, uranium, and thorium during recreational activities on and around uranium waste dumps on Bureau of Land Management lands; (2) to compare concentrations of trace elements associated with mine waste dumps to natural background concentrations; (3) to assess the nonpoint source chemical loading potential to ephemeral and perennial watersheds from uranium waste dumps; and (4) to assess contamination from waste dumps to the local perennial stream water in Muleshoe Creek. Uranium waste dump samples were collected using solid-phase sampling protocols. Solid samples were digested and analyzed for major and trace elements. Analytical values for radium and uranium in digested samples were compared to multiple soil screening levels developed from annual dosage calculations in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act's minimum cleanup guidelines for uranium waste sites. Three occupancy durations for sites were considered: 4.6 days per year, 7.0 days per year, and 14.0 days per year. None of the sites exceeded the radium soil screening level of 96 picocuries per gram, corresponding to a 4.6 days per year exposure. Two sites exceeded the radium soil screening level of 66 picocuries per gram, corresponding to a 7.0 days per year exposure. Seven sites exceeded the radium soil screening level of 33 picocuries per gram, corresponding to a 14.0 days per year exposure. A perennial stream that flows next to the toe of a uranium waste dump was sampled, analyzed for major and trace elements, and compared with existing aquatic-life and drinking-water-quality standards. None of the water-quality standards were exceeded in the stream samples.
Junker, Thomas; Coors, Anja; Schüürmann, Gerrit
2016-02-15
Two new screening-test systems for biodegradation in water-sediment systems (WSST; Water-Sediment Screening Tool) and soil (SST; Soil Screening Tool) were developed in analogy with the water-only test system OECD 301C (MITI-test). The test systems could be applied successfully to determine reproducible experimental mineralization rates and kinetics on the screening-test level for fifteen organic chemicals in water (MITI), water-sediment (WSST) and soil (SST). Substance-specific differences were observed for mineralization compared among the three test systems. Based on mineralization rate and mineralization half-life, the fifteen compounds could be grouped into four biodegradation categories: substances with high mineralization and a half-life <28 days in (1) all three test systems, (2) only in the MITI test and in the WSST, (3) only in the SST, and (4) none of the test systems. The observed differences between the MITI results and the WSST and SST biodegradation rates of the compounds do not reflect their (reversible) sorption into organic matter in terms of experimental K(oc) values and log D values for the relevant pH range. Regarding mineralization kinetics we recommend to determine the lag-phase, mineralization half-life and mineralization rate using a 5-parameter logistic regression for degradation curves with and without lag-phase. Experimental data obtained with the WSST and the SST could be verified by showing good agreement with biodegradation data from databases and literature for the majority of compounds tested. Thus, these new screening-tools for water-sediment and soil are considered suitable to determine sound and reliable quantitative mineralization data including mineralization kinetics in addition to the water-only ready biodegradability tests according to OECD 301. Copyright © 2015 Elsevier B.V. All rights reserved.
I.D. Yesilonis; R.V. Pouyat; N.K. Neerchal
2008-01-01
We investigated the spatial distribution of heavy metal above-background (anthropic) contents of Cd, Co, Cu, Cr, Fe, Mn, Ni, Pb, Ti, V, and Zn in Baltimore City surface soils and related these levels to potential contaminating sources. Composite soil samples (0?10 cm depth) were digested using a nitric and hydrochloric extraction technique. Slightly more than 10% of...
Ecological Screening Values for Surface Water, Sediment, and Soil: 2005 Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friday, G. P.
2005-07-18
One of the principal components of the environmental remediation program at the Savannah River Site (SRS) is the assessment of ecological risk. Used to support CERCLA, RCRA, and DOE orders, the ecological risk assessment (ERA) can identify environmental hazards and evaluate remedial action alternatives. Ecological risk assessment is also an essential means for achieving DOE's risk based end state vision for the disposition of nuclear material and waste hazards, the decommissioning of facilities, and the remediation of inactive waste units at SRS. The complexity of an ERA ranges from a screening level ERA (SLERA) to a full baseline ERA. Amore » screening level ecological risk assessments, although abbreviated from a baseline risk assessment, is nonetheless considered a complete risk assessment (EPA, 2001a). One of the initial tasks of any ERA is to identify constituents that potentially or adversely affect the environment. Typically, this is accomplished by comparing a constituent's maximum concentration in surface water, sediment, or soil with an ecological screening value (ESV). The screening process can eliminate many constituents from further consideration in the risk assessment, but it also identifies those that require additional evaluation. This document is an update of a previous compilation (Friday, 1998) and provides a comprehensive listing of ecological screening values for surface water, sediment, and soil. It describes how the screening values were derived and recommends benchmarks that can be used for ecological risk assessment. The sources of these updated benchmarks include the U.S. Environmental Protection Agency (EPA), U.S. Fish and Wildlife Service (USFWS), U.S. Geological Survey (USGS), National Oceanic and Atmospheric Administration (NOAA), Oak Ridge National Laboratory (ORNL), the State of Florida, the Canadian Council of Ministers of the Environment (CCME), the Dutch Ministry of the Environment (RIVM), and the scientific literature. It should be noted that ESV's are continuously revised by the various issuing agencies. The references in this report provide the citations of each source and, where applicable, the internet address where they can be accessed. Although radiological screening values are not included herein due to space limitations, these have been recently derived by a technical working committee sponsored by the U.S. Department of Energy (DOE 2002, 2004). The recommended ecological screening values represent the most conservative concentrations of the cited sources, and are to be used for screening purposes only. They do not represent remedial action cleanup levels. Their use at locations other than SRS should take into account environmental variables such as water quality, soil chemistry, flora and fauna, and other ecological attributes specific to the ecosystem potentially at risk.« less
NASA Astrophysics Data System (ADS)
Wawer, Małgorzata; Magiera, Tadeusz; Szuszkiewicz, Marcin
2015-04-01
Roads constructed nowadays should by all means be functional for their motorized users but at the same time their effect on the environment ought to be limited to the minimum. Despite the existence of various methods for preventing from negative influence of roads on the environment, there is still lack of adequate techniques to monitor and reduce the spreading of roadside pollution in the air and soils. The aim of the study was to assess the influence of acoustic screens on spreading and deposition of solid pollutants deriving from car emissions, based on their quantitative and qualitative analysis. During this study, measurements of magnetic susceptibility and analyses of heavy metals as well as Pt and Rh contents in soil and plant samples (Taraxacum officinale, Plantago major, Parthenocissus quinquefolia) collected near different kinds of acoustic screens ("green walls", Plexiglass, sawdust concrete, steel panels and earth embankments) have been done. Previous investigations showed showed that most of traffic emission is deposited in the close vicinity of the roads (up to 10 m) and the level of contamination decreased with increasing distance from the road edge. However, the results of this project indicate that, in the area where the acoustic screens are located, this distribution is disturbed and the additional enrichment of heavy metals in soil about 10 - 15 m behind screens is observed. Spatial distribution of heavy metal contents in soil samples corresponds to its magnetic susceptibility values. High contents of Fe, Zn, Mn and Pb was observed next to acoustic screens made of sawdust concrete and steel panels. Additionally, concentration of Zn in soil samples collected close to these screens exceeded threshold value. Analyses of plants showed that the highest content of examined elements and highest values of magnetic susceptibility were recorded near road edge. What is more, samples of Parthenocissus quinquefolia collected at height 0.2 m were characterized by higher contents of Cu, Pb, Zn, Mn and Fe and higher magnetic susceptibility values than samples collected at height 2 m.
Potential soil cleanup objectives for nitrogen-containing fertilizers at agrichemical facilities
Roy, W.R.; Krapac, I.G.
2006-01-01
Accidental and incidental chemical releases of nitrogen-containing fertilizers occur at retail agrichemical facilities. Because contaminated soil may threaten groundwater quality, the facility may require some type of site remediation. The purpose of this study was to apply the concepts of the Soil Screening Levels of the U.S. Environmental Protection Agency to derive soil cleanup objectives (SCO) that are protective of groundwater quality in Illinois for nitrogen as nitrate and as ammonium. The Soil Screening Levels are based on the solute transport mechanisms of sorption, volatilization, and groundwater dilution, and the contaminant-specific groundwater cleanup objective used to derive the SCO. Because nitrate is relatively unreactive, only groundwater dilution could be taken into account in the derivation of a SCO. Using a default groundwater objective for potable groundwater, an SCO of 38 mg N-NO3/kg was derived. For ammonium, however, the extent of sorption was measured using an uncontaminated, surface-soil sample (0 to 15 cm) of 10 different soil types that occur in Illinois and three gravel-fill samples from three different agrichemical facilities. Using a default groundwater objective, an SCO was derived for each soil type. The median SCO was 989 mg N-NH4/kg. The SCO calculated for each of the 10 soil and 3 fill samples was positively correlated with cation exchange capacity, clay content, and surface area. It was concluded that this approach can be used to derive either default of site-specific SCOs for nitrogen as nitrate and as ammonium for chemical releases. Copyright ?? Taylor & Francis Group, LLC.
Liu, Geng; Niu, Junjie; Guo, Wenjiong; An, Xiangsheng; Zhao, Long
2016-11-01
Polycyclic aromatic hydrocarbons (PAHs) from chemical plants can cause serious pollution of surrounding agricultural soils. A comprehensive study of agricultural soils was conducted in the vicinity of a chemical plant in China to characterize the soil PAH concentration, as well as their composition and sources. Human health and a screening-level ecological risk assessment were conducted for PAH contamination in agricultural soils. The results showed that the total concentrations of 16 priority PAHs ranged from 250.49 to 9387.26 ng g(-1), with an average of 2780.42 ng g(-1). High molecular weight PAHs (four to six rings) were the dominant component, accounting for more than 60% of all PAHs. Principal component analysis (PCA) and positive matrix factorization model (PMF) suggested that diesel emissions, coal combustion, coke ovens, and fuel combustion and gasoline emissions were the main sources of PAHs in agricultural soils. The ecological risk assessment results based on the effects range-low (ERL), the effects range-median (ERM), and the ecological screening levels (ESL) indicated that the exposure to ∑PAH16 was >ERL, >ERM, and ≥ERL and
[Discovery and follow-up of a lead-poisoning outbreak in a shantytown of Le Port, Reunion Island].
Solet, J-L; Renault, P; Denys, J-C; Teulé, G; Dennemont, R-M; Domonte, F; Garnier, C; Aubert, L; Filleul, L; Polycarpe, D
2013-08-01
A national survey conducted in 2008-2009 by the French Institute for Public Health Surveillance for detection of lead impact in childhood identified a high blood lead level in a young boy living in the town of "Le Port", Reunion Island. Previously, cases of lead-poisoning on the island had been exceptional; only a dozen cases were reported in the 1980s in adults, related to the use of lead-containing instruments for food preparations. The family of the index case was invited to participate in screening tests and an environmental investigation was conducted using a standardized questionnaire. Screening was then broadened to the neighborhood of the index case and samples of soil outside the home and in the immediate vicinity were taken. The environmental survey was then extended with soil samples taken from the entire geographical area. Information was then provided to local inhabitants (87 families and 287 people) in order to encourage lead blood testing for all children under six years and all pregnant women living in the area. The index case lived in the neighborhood of "The Oasis", a shantytown of Le Port. The results of soil analysis revealed heterogeneous pollution of superficial soils by lead throughout the area of the shantytown, the highest level recorded (5200mg/kg) reached more than 300 times the background level of the natural soils of the island. The screening identified 76 cases of childhood lead-poisoning (blood lead level greater or equal to 100μg/L) among 148 samples (51%). All cases of blood poisoning involved children under the age of 15 years. The median age of children with a positive test was 5.6 years; the median blood lead level was 196μg/L [102-392μg/L]. The main hypothesis to explain the contamination of the soil in the area of the shantytown is the presence of waste deposits (car batteries) and diffuse activities of metal recovery. The authorities managed to remove all the families from the environmental exposure to lead by rapidly ensuring rehousing outside the contaminated area. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Evaluation of a standard test method for screening fuels in soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorini, S.S.; Schabron, J.F.
1996-12-31
A new screening method for fuel contamination in soils was recently developed as American Society for Testing and Materials (ASTM) Method D-5831-95, Standard Test Method for Screening Fuels in Soils. This method uses low-toxicity chemicals and can be sued to screen organic- rich soils, as well as being fast, easy, and inexpensive to perform. Fuels containing aromatic compounds, such as diesel fuel and gasoline, as well as other aromatic-containing hydrocarbon materials, such as motor oil, crude oil, and cola oil, can be determined. The screening method for fuels in soils was evaluated by conducting a Collaborative study on the method.more » In the Collaborative study, a sand and an organic soil spiked with various concentrations of diesel fuel were tested. Data from the Collaborative study were used to determine the reproducibility (between participants) and repeatability (within participants) precision of the method for screening the test materials. The Collaborative study data also provide information on the performance of portable field equipment (patent pending) versus laboratory equipment for performing the screening method and a comparison of diesel concentration values determined using the screening method versus a laboratory method.« less
Sugarcane trash levels in soil affects the fungi but not bacteria in a short-term field experiment.
Rachid, C T C C; Pires, C A; Leite, D C A; Coutinho, H L C; Peixoto, R S; Rosado, A S; Salton, J; Zanatta, J A; Mercante, F M; Angelini, G A R; Balieiro, Fabiano de Carvalho
2016-01-01
The sugarcane in Brazil is passing through a management transition that is leading to the abolition of pre-harvest burning. Without burning, large amounts of sugarcane trash is generated, and there is a discussion regarding the utilization of this biomass in the industry versus keeping it in the field to improve soil quality. To study the effects of the trash removal on soil quality, we established an experimental sugarcane plantation with different levels of trash over the soil (0%, 50% and 100% of the original trash deposition) and analyzed the structure of the bacterial and fungal community as the bioindicators of impacts. The soil DNA was extracted, and the microbial community was screened by denaturing gradient gel electrophoresis in two different seasons. Our results suggest that there are no effects from the different levels of trash on the soil chemistry and soil bacterial community. However, the fungal community was significantly impacted, and after twelve months, the community presented different structures among the treatments. Copyright © 2016. Published by Elsevier Editora Ltda.
Falls, W. Fred; Caldwell, Andral W.; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2011-01-01
Soil gas and soil were assessed for organic and inorganic contaminants at the former military police range at Fort Gordon, Georgia, from May to September 2010. The assessment evaluated organic contaminants in soil-gas samplers and inorganic contaminants in soil samples. This assessment was conducted to provide environmental contamination data to Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Soil-gas samplers deployed and collected from May 20 to 24, 2010, identified masses above method detection level for total petroleum hydrocarbons, gasoline-related and diesel-related compounds, and chloroform. Most of these detections were in the southwestern quarter of the study area and adjacent to the road on the eastern boundary of the site. Nine of the 11 chloroform detections were in the southern half of the study area. One soil-gas sampler deployed adjacent to the road on the southern boundary of the site detected a mass of tetrachloroethene greater than, but close to, the method detection level of 0.02 microgram. For soil-gas samplers deployed and collected from September 15 to 22, 2010, none of the selected organic compounds classified as chemical agents and explosives were detected above method detection levels. Inorganic concentrations in the five soil samples collected at the site did not exceed the U.S. Environmental Protection Agency regional screening levels for industrial soil and were at or below background levels for similar rocks and strata in South Carolina.
WILDLIFE TOXICITY REFERENCE VALUES FOR POLYNUCLEAR AROMATIC HYDROCARBONS AND DDT
The presentation will provide an overview of the procedures used in deriving mammalian and avian wildlife toxicity reference values to be used in development of ecological soil screening levels (Eco-SSLs).
NASA Astrophysics Data System (ADS)
Joseph, C. N.; Waugh, W.; Glenn, E.
2015-12-01
The U.S. Department of Energy (DOE) is responsible for long-term stewardship of disposal cells for uranium mill tailings throughout the United States. Rock-armored disposal cell covers create favorable habitat for deep-rooted plants by reducing soil evaporation, increasing soil water storage, and trapping windblown dust, thereby providing water and nutrients for plant germination and establishment. DOE is studying the tradeoffs of potential detrimental and beneficial effects of plants growing on disposal cell covers to develop a rational and consistent vegetation management policy. Plant roots often extend vertically through disposal cell covers into underlying tailings, therefore, uptake of tailings contaminants and dissemination through animals foraging on stems and leaves is a possible exposure pathway. The literature shows that plant uptake of contaminants in uranium mill tailings occurs, but levels can vary widely depending on plant species, tailings and soil chemistry, and cover soil hydrology. Our empirical field study measured concentrations of uranium, radium, thorium, molybdenum, selenium, manganese, lead, and arsenic in above ground tissues harvested from plants growing on disposal cells near Native American communities in western states that represent a range of climates, cover designs, cover soil types, and vegetation types. For risk screening, contaminant levels in above ground tissues harvested from plants on disposal cells were compared to Maximum Tolerance Levels (MTLs) set for livestock by the National Research Council, and to tissue levels in the same plant species growing in reference areas near disposal cells. Although tailings were covered with uncontaminated soils, for 14 of 46 comparisons, levels of uranium and other contaminants were higher in plants growing on disposal cells compared to reference area plants, indicating possible mobilization of these elements from the tailing into plant tissues. However, with one exception, all plant levels were well below MTLs. Selenium, the only element that exceeded its MTL, likely originated in local seleniferous soil found both at reference areas and in disposal cell covers, and not in the underlying tailings. Our screening risk assessment suggests that allowing plants to grow on disposal cells appears to be safe.
Presley, Steven M; Abel, Michael T; Austin, Galen P; Rainwater, Thomas R; Brown, Ray W; McDaniel, Les N; Marsland, Eric J; Fornerette, Ashley M; Dillard, Melvin L; Rigdon, Richard W; Kendall, Ronald J; Cobb, George P
2010-06-01
The long-term environmental impact and potential human health hazards resulting from Hurricanes Katrina and Rita throughout much of the United States Gulf Coast, particularly in the New Orleans, Louisiana, USA area are still being assessed and realized after more than four years. Numerous government agencies and private entities have collected environmental samples from throughout New Orleans and found concentrations of contaminants exceeding human health screening values as established by the United States Environmental Protection Agency (USEPA) for air, soil, and water. To further assess risks of exposure to toxic concentrations of soil contaminants for citizens, particularly children, returning to live in New Orleans following the storms, soils collected from schoolyards prior to Hurricane Katrina and after Hurricane Rita were screened for 26 metals. Concentrations exceeding USEPA Regional Screening Levels (USEPA-RSL), total exposure, non-cancer endpoints, for residential soils for arsenic (As), iron (Fe), lead (Pb), and thallium (Tl) were detected in soil samples collected from schoolyards both prior to Hurricane Katrina and after Hurricane Rita. Approximately 43% (9/21) of schoolyard soils collected prior to Hurricane Katrina contained Pb concentrations greater than 400mgkg(-1), and samples from four schoolyards collected after Hurricane Rita contained detectable Pb concentrations, with two exceeding 1700mgkg(-1). Thallium concentrations exceeded USEPA-RSL in samples collected from five schoolyards after Hurricane Rita. Based upon these findings and the known increased susceptibility of children to the effects of Pb exposure, a more extensive assessment of the soils in schoolyards, public parks and other residential areas of New Orleans for metal contaminants is warranted. 2010 Elsevier Ltd. All rights reserved.
Bulle, Cécile; Samson, Réjean; Deschênes, Louise
2010-03-01
Field samples were collected around six pentachlorophenol (PCP)-treated wooden poles (in clay, organic soil, and sand) to evaluate the vertical migration of polychlorodibenzo-p-dioxins and furans (PCDD/Fs). Soils were characterized, PCDD/Fs, C(10)-C(50), and PCP were analyzed for seven composite samples located at a depth from 0 to 100 cm and at a distance from 0 to 50 cm from each pole. Concentrations of PCDD/Fs measured in organic soils were the highest (maximum 1.2E + 05 pg toxic equivalent TEQ/g soil), followed by clay (maximum 3.8E + 04 pg TEQ/g soil) and sand (maximum 1.8E + 04 pg TEQ/g soil). Model predictions, including the influence of wood treatment oil, were validated using measured concentration values in soils around poles. The model predicts a migration of PCDD/Fs due to the migration of oil, which differs depending on the type of soil: in clay, 90% of PCDD/Fs are predicted to remain in the first 29 cm, whereas in sand, 80 to 90% of the emitted PCDD/Fs are predicted to migrate deeper than 185 cm. For the organic soil, the predicted migration depth varies from 90 to 155 cm. This screening model allows evaluating the danger of microcontaminated sites around PCP-treated wooden poles: from a risk assessment perspective, in the case of organic soil and clay, no PCDD/F contamination is to be expected below the pole, but high levels of PCDD/Fs can be found in the first 2 m below the surface. For sand, however, significantly lower levels of PCDD/Fs were predicted in the surface soil, while the migration depth remains elevated, posing an inherent danger of aquifer contamination under the pole.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manning, Karessa L.; Dolislager, Fredrick G.; Bellamy, Michael B.
The Preliminary Remediation Goal (PRG) and Dose Compliance Concentration (DCC) calculators are screening level tools that set forth Environmental Protection Agency's (EPA) recommended approaches, based upon currently available information with respect to risk assessment, for response actions at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites, commonly known as Superfund. The screening levels derived by the PRG and DCC calculators are used to identify isotopes contributing the highest risk and dose as well as establish preliminary remediation goals. Each calculator has a residential gardening scenario and subsistence farmer exposure scenarios that require modeling of the transfer of contaminants frommore » soil and water into various types of biota (crops and animal products). New publications of human intake rates of biota; farm animal intakes of water, soil, and fodder; and soil to plant interactions require updates be implemented into the PRG and DCC exposure scenarios. Recent improvements have been made in the biota modeling for these calculators, including newly derived biota intake rates, more comprehensive soil mass loading factors (MLFs), and more comprehensive soil to tissue transfer factors (TFs) for animals and soil to plant transfer factors (BV's). New biota have been added in both the produce and animal products categories that greatly improve the accuracy and utility of the PRG and DCC calculators and encompass greater geographic diversity on a national and international scale.« less
Soil ingestion: a concern for acute toxicity in children.
Calabrese, E J; Stanek, E J; James, R C; Roberts, S M
1997-01-01
Several soil ingestion studies have indicated that some children ingest substantial amounts of soil on given days. Although the EPA has assumed that 95% of children ingest 200 mg soil/day or less for exposure assessment purposes, some children have been observed to ingest up to 25-60 g soil during a single day. In light of the potential for children to ingest such large amounts of soil, an assessment was made of the possibility for soil pica episodes to result in acute intoxication from contaminant concentrations the EPA regards as representing conservative screening values (i.e., EPA soil screening levels and EPA Region III risk-based concentrations for residential soils). For a set of 13 chemicals included in the analysis, contaminant doses resulting from a one-time soil pica episode (5-50 g of soil ingested) were compared with acute dosages shown to produce toxicity in humans in clinical studies or case reports. For four of these chemicals, a soil pica episode was found to result in a contaminant dose approximating or exceeding the acute human lethal dose. For five of the remaining chemicals, the contaminant dose from a soil pica episode was well within the reported dose range in humans for toxicity other than lethality. Because both the exposure episodes and the toxicological response information are derived from observations in humans, these findings are regarded as particularly relevant for human health risk assessment. They suggest that, for some chemicals, ostensibly conservative soil criteria based on chronic exposure using current EPA methodology may not be protective of children during acute soil pica episodes. PMID:9405323
Kirman, C. R.; Gargas, M. L.; Collins, J. J.; Rowlands, J. C.
2012-01-01
A screening-level risk assessment was conducted for styrene-acrylonitrile (SAN) Trimer detected at the Reich Farm Superfund site in Toms River, NJ. Consistent with a screening-level approach, on-site and off-site exposure scenarios were evaluated using assumptions that are expected to overestimate actual exposures and hazards at the site. Environmental sampling data collected for soil and groundwater were used to estimate exposure point concentrations. Several exposure scenarios were evaluated to assess potential on-site and off-site exposures, using parameter values for exposures to soil (oral, inhalation of particulates, and dermal contact) and groundwater (oral, dermal contact) to reflect central tendency exposure (CTE) and reasonable maximum exposure (RME) conditions. Three reference dose (RfD) values were derived for SAN Trimer for short-term, subchronic, and chronic exposures, based upon its effects on the liver in exposed rats. Benchmark (BMD) methods were used to assess the relationship between exposure and response, and to characterize appropriate points of departure (POD) for each RfD. An uncertainty factor of 300 was applied to each POD to yield RfD values of 0.1, 0.04, and 0.03 mg/kg-d for short-term, subchronic, and chronic exposures, respectively. Because a chronic cancer bioassay for SAN Trimer in rats (NTP 2011a) does not provide evidence of carcinogenicity, a cancer risk assessment is not appropriate for this chemical. Potential health hazards to human health were assessed using a hazard index (HI) approach, which considers the ratio of exposure dose (i.e., average daily dose, mg/kg-d) to toxicity dose (RfD, mg/kg-d) for each scenario. All CTE and RME HI values are well below 1 (where the average daily dose is equivalent to the RfD), indicating that there is no concern for potential noncancer effects in exposed populations even under the conservative assumptions of this screening-level assessment. PMID:23030654
Henry, Heather; Naujokas, Marisa F; Attanayake, Chammi; Basta, Nicholas T; Cheng, Zhongqi; Hettiarachchi, Ganga M; Maddaloni, Mark; Schadt, Christopher; Scheckel, Kirk G
2015-08-04
Recently the Centers for Disease Control and Prevention lowered the blood Pb reference value to 5 μg/dL. The lower reference value combined with increased repurposing of postindustrial lands are heightening concerns and driving interest in reducing soil Pb exposures. As a result, regulatory decision makers may lower residential soil screening levels (SSLs), used in setting Pb cleanup levels, to levels that may be difficult to achieve, especially in urban areas. This paper discusses challenges in remediation and bioavailability assessments of Pb in urban soils in the context of lower SSLs and identifies research needs to better address those challenges. Although in situ remediation with phosphate amendments is a viable option, the scope of the problem and conditions in urban settings may necessitate that SSLs be based on bioavailable rather than total Pb concentrations. However, variability in soil composition can influence bioavailability testing and soil amendment effectiveness. More data are urgently needed to better understand this variability and increase confidence in using these approaches in risk-based decision making, particularly in urban areas.
Henry, Heather; Naujokas, Marisa F.; Attanayake, Chammi; ...
2015-07-03
Recently the Centers for Disease Control and Prevention lowered the blood Pb reference value to 5 μg/dL. The lower reference value combined with increased repurposing of postindustrial lands are heightening concerns and driving interest in reducing soil Pb exposures. As a result, regulatory decision makers may lower residential soil screening levels (SSLs), used in setting Pb cleanup levels, to levels that may be difficult to achieve, especially in urban areas. This study discusses challenges in remediation and bioavailability assessments of Pb in urban soils in the context of lower SSLs and identifies research needs to better address those challenges. Althoughmore » in situ remediation with phosphate amendments is a viable option, the scope of the problem and conditions in urban settings may necessitate that SSLs be based on bioavailable rather than total Pb concentrations. However, variability in soil composition can influence bioavailability testing and soil amendment effectiveness. Finally, more data are urgently needed to better understand this variability and increase confidence in using these approaches in risk-based decision making, particularly in urban areas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, Heather; Naujokas, Marisa F.; Attanayake, Chammi
Recently the Centers for Disease Control and Prevention lowered the blood Pb reference value to 5 μg/dL. The lower reference value combined with increased repurposing of postindustrial lands are heightening concerns and driving interest in reducing soil Pb exposures. As a result, regulatory decision makers may lower residential soil screening levels (SSLs), used in setting Pb cleanup levels, to levels that may be difficult to achieve, especially in urban areas. This study discusses challenges in remediation and bioavailability assessments of Pb in urban soils in the context of lower SSLs and identifies research needs to better address those challenges. Althoughmore » in situ remediation with phosphate amendments is a viable option, the scope of the problem and conditions in urban settings may necessitate that SSLs be based on bioavailable rather than total Pb concentrations. However, variability in soil composition can influence bioavailability testing and soil amendment effectiveness. Finally, more data are urgently needed to better understand this variability and increase confidence in using these approaches in risk-based decision making, particularly in urban areas.« less
Tavakkoli, Ehsan; Fatehi, Foad; Rengasamy, Pichu; McDonald, Glenn K.
2012-01-01
Success in breeding crops for yield and other quantitative traits depends on the use of methods to evaluate genotypes accurately under field conditions. Although many screening criteria have been suggested to distinguish between genotypes for their salt tolerance under controlled environmental conditions, there is a need to test these criteria in the field. In this study, the salt tolerance, ion concentrations, and accumulation of compatible solutes of genotypes of barley with a range of putative salt tolerance were investigated using three growing conditions (hydroponics, soil in pots, and natural saline field). Initially, 60 genotypes of barley were screened for their salt tolerance and uptake of Na+, Cl–, and K+ at 150 mM NaCl and, based on this, a subset of 15 genotypes was selected for testing in pots and in the field. Expression of salt tolerance in saline solution culture was not a reliable indicator of the differences in salt tolerance between barley plants that were evident in saline soil-based comparisons. Significant correlations were observed in the rankings of genotypes on the basis of their grain yield production at a moderately saline field site and their relative shoot growth in pots at ECe 7.2 [Spearman’s rank correlation (rs)=0.79] and ECe 15.3 (rs=0.82) and the crucial parameter of leaf Na+ (rs=0.72) and Cl– (rs=0.82) concentrations at ECe 7.2 dS m−1. This work has established screening procedures that correlated well with grain yield at sites with moderate levels of soil salinity. This study also showed that both salt exclusion and osmotic tolerance are involved in salt tolerance and that the relative importance of these traits may differ with the severity of the salt stress. In soil, ion exclusion tended to be more important at low to moderate levels of stress but osmotic stress became more important at higher stress levels. Salt exclusion coupled with a synthesis of organic solutes were shown to be important components of salt tolerance in the tolerant genotypes and further field tests of these plants under stress conditions will help to verify their potential utility in crop-improvement programmes. PMID:22442423
Changes in spectral signatures of red lettuce regards to Zinc uptake
NASA Astrophysics Data System (ADS)
Shin, J.; Yu, J.; Koh, S. M.; Park, G.; Kim, S.
2017-12-01
Heavy metal contaminations caused by human activities such as mining and industrial activities caused serious soil contamination. Soil contaminations causes secondary impact on vegetation by uptake processes. Intakes of vegetables harvested from heavy metal contaminated soil may cause serious health problems. It would be very effective if screening tool could be developed before the vegetables are distributed over the market. This study investigated spectral response of red lettuce regards to Zn uptake from the treated soil in a laboratory condition. Zn solutions at different levels of concentration are injected to potted lettuce. The chemical composition and spectral characteristics of the leaves are analyzed every 2 days and the correlation between the Zn concentration and spectral reflectance is investigated. The experiment reveals that Zn uptake of red lettuce is significantly higher for the leaves from treated pot compared to untreated pot showing highly contaminated concentrations beyond the standard Zn concentrations for food. The spectral response regards to Zn is manifested at certain level of concentration threshold. Below the threshold, reflectance at NIR regions increases regards to increase in Zn concentration. On the other hand, above the threshold, IR reflectance decreases and slope of NIR shoulder increases regards to higher Zn concentration. We think this result may contribute for development of screening tools for heavy metal contaminations in vegetables.
Cachada, A; Coelho, C; Gavina, A; Dias, A C; Patinha, C; Reis, A P; da Silva, E Ferreira; Duarte, A C; Pereira, R
2018-01-01
Polycyclic aromatic hydrocarbons (PAHs) are a global problem, and in urban soils they can be found at potentially hazard levels. Nevertheless, the real risks that these contaminants pose to the environment are not well known, since the bioavailability of PAHs in urban soils has been poorly studied. Therefore, the bioavailability of PAHs in some selected urban soils from Lisbon (Portugal) was evaluated. Moreover, the applicability of a first screening phase based on total contents of PAHs was assessed. Results show that bioavailability of PAHs is reduced (low levels in earthworms, low accumulation percentages, and low biota-to-soil accumulation factors values), especially in more contaminated soils. The aging of these compounds explains this low availability, and confirms the generally accepted assumption that accumulation of PAHs in urban areas is mostly related with a long-term deposition of contaminated particles. The comparison of measured PAHs concentrations in earthworm tissues with the ones predicted based on theoretical models, reinforce that risks based on total levels are overestimated, but it can be a good initial approach for urban soils. This study also highlights the need of more reliable ecotoxicological data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tsubokura, Masaharu; Nomura, Shuhei; Sakaihara, Kikugoro; Kato, Shigeaki; Leppold, Claire; Furutani, Tomoyuki; Morita, Tomohiro; Oikawa, Tomoyoshi; Kanazawa, Yukio
2016-01-01
Objectives Measurement of soil contamination levels has been considered a feasible method for dose estimation of internal radiation exposure following the Chernobyl disaster by means of aggregate transfer factors; however, it is still unclear whether the estimation of internal contamination based on soil contamination levels is universally valid or incident specific. Methods To address this issue, we evaluated relationships between in vivo and soil cesium-137 (Cs-137) contamination using data on internal contamination levels among Minamisoma (10–40 km north from the Fukushima Daiichi nuclear power plant), Fukushima residents 2–3 years following the disaster, and constructed three models for statistical analysis based on continuous and categorical (equal intervals and quantiles) soil contamination levels. Results A total of 7987 people with a mean age of 55.4 years underwent screening of in vivo Cs-137 whole-body counting. A statistically significant association was noted between internal and continuous Cs-137 soil contamination levels (model 1, p value <0.001), although the association was slight (relative risk (RR): 1.03 per 10 kBq/m2 increase in soil contamination). Analysis of categorical soil contamination levels showed statistical (but not clinical) significance only in relatively higher soil contamination levels (model 2: Cs-137 levels above 100 kBq/m2 compared to those <25 kBq/m2, RR=1.75, p value <0.01; model 3: levels above 63 kBq/m2 compared to those <11 kBq/m2, RR=1.45, p value <0.05). Conclusions Low levels of internal and soil contamination were not associated, and only loose/small associations were observed in areas with slightly higher levels of soil contamination in Fukushima, representing a clear difference from the strong associations found in post-disaster Chernobyl. These results indicate that soil contamination levels generally do not contribute to the internal contamination of residents in Fukushima; thus, individual measurements are essential for the precise evaluation of chronic internal radiation contamination. PMID:27357196
Caldwell, Andral W.; Falls, W. Fred; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2011-01-01
Soil gas and soil were assessed for contaminants at the Old Metal Workshop Hog Farm Area at Fort Gordon, Georgia, from October 2009 to September 2010. The assessment included delineating organic contaminants present in soil-gas and inorganic contaminants present in soil samples collected from the area estimated to be the Old Metal Workshop Hog Farm Area. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements for the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. All soil-gas samplers contained total petroleum hydrocarbons above the method detection level. The highest total petroleum hydrocarbon mass detected was 121.32 micrograms in a soil-gas sampler from the western corner of the Old Metal Workshop Hog Farm Area along Sawmill Road. The highest undecane mass detected was 73.28 micrograms at the same location as the highest total petroleum hydrocarbon mass. Some soil-gas samplers detected toluene mass greater than the method detection level of 0.02 microgram; the highest detection of toluene mass was 0.07 microgram. Some soil-gas samplers were installed in areas of high-contaminant mass to assess for explosives and chemical agents. Explosives or chemical agents were not detected above their respective method detection levels for all soil-gas samplers installed. Inorganic concentrations in five soil samples collected did not exceed regional screening levels established by the U.S. Environmental Protection Agency. Barium concentrations, however, were up to eight times higher than the background concentrations reported in similar Coastal Plain sediments of South Carolina.
NASA Astrophysics Data System (ADS)
Shin, K. H.; Kim, K. H.; Ki, S. J.; Lee, H. G.
2017-12-01
The vulnerability assessment tool at a Tier 1 level, although not often used for regulatory purposes, helps establish pollution prevention and management strategies in the areas of potential environmental concern such as soil and ground water. In this study, the Neural Network Pattern Recognition Tool embedded in MATLAB was used to allow the initial screening of soil and groundwater pollution based on data compiled across about 1000 previously contaminated sites in Korea. The input variables included a series of parameters which were tightly related to downward movement of water and contaminants through soil and ground water, whereas multiple classes were assigned to the sum of concentrations of major pollutants detected. Results showed that in accordance with diverse pollution indices for soil and ground water, pollution levels in both media were strongly modulated by site-specific characteristics such as intrinsic soil and other geologic properties, in addition to pollution sources and rainfall. However, classification accuracy was very sensitive to the number of classes defined as well as the types of the variables incorporated, requiring careful selection of input variables and output categories. Therefore, we believe that the proposed methodology is used not only to modify existing pollution indices so that they are more suitable for addressing local vulnerability, but also to develop a unique assessment tool to support decision making based on locally or nationally available data. This study was funded by a grant from the GAIA project(2016000560002), Korea Environmental Industry & Technology Institute, Republic of Korea.
DEMONSTRATION BULLETIN: CLOR-N-SOIL PCB TEST KIT L2000 PCB/CHLORIDE ANALYZER - DEXSIL CORP.
DEXSIL CORP(Environmental Test Kits)The Dexsil Corporation (Dexsil) produces two test kits that detect polychlorinated biphenyls (PCB) in soil: the Dexsil Clor-N-Soil PCB Screening Kit, and the Dexsil L2000 PCB/Chloride Analyzer. The Dexsil Clor-N-Soil PCB Screening Kit extr...
Characterizing Soil Lead Contamination Near Streams in Oakland, California
NASA Astrophysics Data System (ADS)
Tanouye, D.
2017-12-01
Lead (Pb) contamination of soils, groundwater, and surface waters is a major concern because of the potential health risks related to accumulation of high levels of lead in blood. This is a pervasive issue in many low-income neighborhoods throughout the United States, and is documented to be particularly acute in West Oakland, California. The fate and transport of lead in the environment is largely dependent on how it will bind to various solids and compounds in solution. These adsorption mechanisms are a principal aspect of metal dissolution and chemical speciation. Stream channels are natural drainage areas for urban runoff, and may represent a hot spot for increased levels of lead. This study evaluates the environmental conditions at 15 sites near streams in West Oakland using in-situ soil sampling with the handheld X-Ray Fluorescence (XRF) analyzer to measure concentrations of lead in soil. Results from this study suggest that the levels of lead in soils near stream channels are generally lower than the regional regulatory screening level of 80 milligrams per kilogram (mg/kg), but the highest concentrations are found near stream banks. The spatial distribution can be explained by a contaminant transport process related to the presence of fluvial channels.
Orta-García, Sandra Teresa; Ochoa-Martinez, Angeles Catalina; Carrizalez-Yáñez, Leticia; Varela-Silva, José Antonio; Pérez-Vázquez, Francisco Javier; Pruneda-Álvarez, Lucia Guadalupe; Torres-Dosal, Arturo; Guzmán-Mar, Jorge Luis; Pérez-Maldonado, Iván N
2016-04-01
The purpose of this study was to assess the levels of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethane (DDE), and four heavy metals (arsenic, cadmium, and lead) in outdoor surface soils (50 samples) collected from the metropolitan area of Monterrey in Mexico. Total PBDEs levels ranged from 1.80 to 127 µg/kg, with mean total PBDEs level of 14.2 ± 21.5 µg/kg (geometric mean ± standard deviation). For PCBs, the mean total level in the studied soils was 23.5 ± 20.2 µg/kg (range 4.0-65.5 µg/kg). An important finding in our study was that all soil samples (100%) had detectable levels of the metabolite p,p'-DDE. Moreover, the mean total DDT level (∑p'p-DDT and p'p-DDE) was approximately 132 ± 175 µg/kg. The mean levels for arsenic, cadmium, and lead in soil were 5.30 ± 1.35 (range 1.55-7.85) mg/kg, 2.20 ± 1.20 (range 0.65-6.40) mg/kg, and 455 ± 204 (range 224-1230) mg/kg, respectively. Our study has several limitations, the most notable of which is the small sample of soils evaluated. However, this screening study provided concentration data for the occurrence of POPs and four heavy metals in soil from the metropolitan area of Monterrey, Nuevo Leon, Mexico, and taking into consideration that soil is an important pathway of exposure for people, a biomonitoring program for the surveillance of the general population in the metropolitan area of Monterrey, Nuevo Leon is deemed necessary.
Różański, Szymon; Jaworska, Hanna; Matuszczak, Katarzyna; Nowak, Joanna; Hardy, Amber
2017-05-01
Recent years have witnessed intensification of road traffic and, with it, the amount of substances emitted by vehicles. Such emissions need to be monitored for public health purposes. The aim of this study was to evaluate the impact of the highway traffic on the total content and bioavailability of Zn, Cu, Ni, Cd, Cr and Pb in nearby soils as well as influence of an acoustic screen on spatial distribution of the metals. The material included 40 soil samples collected from 15 research points located 5, 10, 25 and 50 m away from the road acoustic screen and from 4 points between the screen and the highway. Additionally, 5 research points were located next to the metal barrier. Selected physicochemical properties of soils were determined: soil texture, soil pH, TOC and CaCO 3 content. The total content of heavy metals in the soils was determined by AAS after digestion in aqua regia and bioavailable forms in 1 M diethylenetriaminepentaacetic acid. The research found low impact of the highway traffic on the content of heavy metals in soils; however, due to a very short period of this potential impact (5 years), the moderately polluted category of geo-accumulation index of cadmium and high bioavailability of lead indicate the need of repeating the research within the next several years. Furthermore, the road acoustic screen significantly influenced spatial distribution of the metals in soils.
Assessment of Dioxin-Like Soil Contamination in Mexico by Enzyme-Linked Immunosorbent Assay
Nichkova, M.; Yáñez, L.; Costilla-Salazar, R.; Torres-Dosal, A.; Gee, S. J.; Hammock, B. D.; Juárez-Santacruz, L.; Díaz-Barriga, F.
2011-01-01
In this work, we describe the results of a preliminary soil assessment program for the detection of dioxins at different sites in Mexico performed by immunoassay. We studied five different sectors considered relevant sources of dioxins: Anaversa and Tekchem industrial areas where organochlorine pesticides were manufactured and released by accidental explosions, secondary smelters, brick kilns, and rural dwellings. In the context of the Agency for Toxic Substances and Disease Registry (ATSDR) guidelines, only the brick kilns sites can be considered as low-risk areas. The dioxin concentrations detected in the vicinity of the Anaversa and Tekchem chemical plants and secondary smelters exceed the screening level of 0.05 ppb set by the ATSDR, and therefore further site-specific studies are needed. The dioxin levels found in all soot samples from indigenous dwellings where wood is used for indoor cooking were above the evaluation level. Considering that the studied areas are representative examples of dioxin sources in less developed countries, our work demonstrates the useful application of dioxin immunoassays as a tool for dioxin screening for environmental assessment programs in developing countries. PMID:20091164
Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice.
Yu, Hui; Wang, Junli; Fang, Wei; Yuan, Jiangang; Yang, Zhongyi
2006-11-01
Large areas of contaminated land are being used for agricultural production in some countries due to the high demand for food. To minimize the influx of pollutants to the human food chain through consumption of agricultural products, we propose the concept of pollution-safe cultivars (PSCs), i.e. cultivars whose edible parts accumulate a specific pollutant at a level low enough for safe consumption, even when grown in contaminated soil. We tested the feasibility of the PSC concept by growing 43 cultivars of paddy rice (Oryza sativa L., including 20 normal and 23 hybrid cultivars) under a high (75.69-77.55 mg kg(-1)) and a low (1.75-1.85 mg kg(-1)) cadmium (Cd) exposure. These pot experiments took place in the spring and summer of 2004. At the low level of Cd exposure, 30 out of the 43 tested cultivars were found to be Cd-PSCs. Grain Cd concentrations were highly correlated (p<0.01) between the two experiments, suggesting that Cd accumulation in rice grain is genotype-dependent and that the selection of PSCs is possible, at least at a certain level of soil contamination. No Cd-PSCs were found under the high level of Cd exposure. Yield was enhanced in some cultivars and depressed in others in response to elevated soil Cd, indicating that farmers cannot rely on yield depression as an indicator of toxicity of the grains. It is therefore important and feasible to screen for PSCs and to establish PSC breeding programs to effectively and efficiently reduce the risk of human exposure to soil pollutants, such as Cd, through crop consumption.
Tsubokura, Masaharu; Nomura, Shuhei; Sakaihara, Kikugoro; Kato, Shigeaki; Leppold, Claire; Furutani, Tomoyuki; Morita, Tomohiro; Oikawa, Tomoyoshi; Kanazawa, Yukio
2016-06-29
Measurement of soil contamination levels has been considered a feasible method for dose estimation of internal radiation exposure following the Chernobyl disaster by means of aggregate transfer factors; however, it is still unclear whether the estimation of internal contamination based on soil contamination levels is universally valid or incident specific. To address this issue, we evaluated relationships between in vivo and soil cesium-137 (Cs-137) contamination using data on internal contamination levels among Minamisoma (10-40 km north from the Fukushima Daiichi nuclear power plant), Fukushima residents 2-3 years following the disaster, and constructed three models for statistical analysis based on continuous and categorical (equal intervals and quantiles) soil contamination levels. A total of 7987 people with a mean age of 55.4 years underwent screening of in vivo Cs-137 whole-body counting. A statistically significant association was noted between internal and continuous Cs-137 soil contamination levels (model 1, p value <0.001), although the association was slight (relative risk (RR): 1.03 per 10 kBq/m(2) increase in soil contamination). Analysis of categorical soil contamination levels showed statistical (but not clinical) significance only in relatively higher soil contamination levels (model 2: Cs-137 levels above 100 kBq/m(2) compared to those <25 kBq/m(2), RR=1.75, p value <0.01; model 3: levels above 63 kBq/m(2) compared to those <11 kBq/m(2), RR=1.45, p value <0.05). Low levels of internal and soil contamination were not associated, and only loose/small associations were observed in areas with slightly higher levels of soil contamination in Fukushima, representing a clear difference from the strong associations found in post-disaster Chernobyl. These results indicate that soil contamination levels generally do not contribute to the internal contamination of residents in Fukushima; thus, individual measurements are essential for the precise evaluation of chronic internal radiation contamination. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Mohd Zain, S N; Rahman, R; Lewis, J W
2015-11-01
Soil contaminated with helminth eggs and protozoan cysts is a potential source of infection and poses a threat to the public, especially to young children frequenting playgrounds. The present study determines the levels of infection of helminth eggs in soil samples from urban and suburban playgrounds in five states in Peninsular Malaysia and identifies one source of contamination via faecal screening from stray animals. Three hundred soil samples from 60 playgrounds in five states in Peninsular Malaysia were screened using the centrifugal flotation technique to identify and determine egg/cyst counts per gram (EPG) for each parasite. All playgrounds, especially those in Penang, were found to be contaminated with eggs from four nematode genera, with Toxocara eggs (95.7%) the highest, followed by Ascaris (93.3%), Ancylostoma (88.3%) and Trichuris (77.0%). In addition, faeces from animal shelters were found to contain both helminth eggs and protozoan cysts, with overall infection rates being 54% and 57% for feline and canine samples, respectively. The most frequently occurring parasite in feline samples was Toxocara cati (37%; EPG, 42.47 ± 156.08), while in dog faeces it was Ancylostoma sp. (54%; EPG, 197.16 ± 383.28). Infection levels also tended to be influenced by season, type of park/playground and the texture of soil/faeces. The occurrence of Toxocara, Ancylostoma and Trichuris eggs in soil samples highlights the risk of transmission to the human population, especially children, while the presence of Ascaris eggs suggests a human source of contamination and raises the issue of hygiene standards and public health risks at sites under investigation.
Megharaj, M; Singleton, I; McClure, N C; Naidu, R
2000-05-01
Petroleum hydrocarbons are widespread environmental pollutants. Although biodegradation of petroleum hydrocarbons has been the subject of numerous investigations, information on their toxicity to microorganisms in soil is limited, with virtually no work conducted on soil algae. We carried out a screening experiment for total petroleum hydrocarbons (TPH) and their toxicity to soil algal populations, microbial biomass, and soil enzymes (dehydrogenase and urease) in a long-term TPH-polluted site with reference to an adjacent unpolluted site. Microbial biomass, soil enzyme activity, and microalgae declined in medium to high-level (5,200-21,430 mg kg(-1) soil) TPH-polluted soils, whereas low-level (<2,120 mg kg(-1) soil) pollution stimulated the algal populations and showed no effect on microbial biomass and enzymes. However, inhibition of all the tested parameters was more severe in soil considered to have medium-level pollution than in soils that were highly polluted. This result could not be explained by chemical analysis alone. Of particular interest was an observed shift in the species composition of algae in polluted soils with elimination of sensitive species in the medium to high polluted soils. Also, an algal growth inhibition test carried out using aqueous eluates prepared from polluted soils supported these results. Given the sensitivity of algae to synthetic pollutants, alteration in the algal species composition can serve as a useful bioindicator of pollution. The results of this experiment suggest that chemical analysis alone is not adequate for toxicological estimations and should be used in conjunction with bioassays. Furthermore, changes in species composition of algae proved to be more sensitive than microbial biomass and soil enzyme activity measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillis, Jessica M.; Whicker, Jeffrey J.
2016-01-26
Three separate Sampling and Analysis Plans (SAPs) were prepared for tracts C-2, C-3, and C-4. The objective of sampling was to confirm, within the stated statistical confidence limits, that the mean levels of potential radioactive residual contamination in soils in the C Tracts are documented, in appropriate units, and are below the 15 mrem/y (150 μSv/y) Screening Action Levels (SALs). Results show that radionuclide concentration upper-bound 95% confidence levels were close to background levels, with the exception of Pu-239 and Cs-137 being slightly elevated above background, and all measurements were below the ALs and meet the real property release criteriamore » for future construction or recreational use. A follow-up ALARA analysis showed that the costs of cleanup of the soil in areas of elevated concentration and confirmatory sampling would far exceed any benefit from dose reduction.« less
THE ECOTOX DATABASE AND ECOLOGICAL SOIL SCREENING LEVEL (ECO-SSL) WEB SITES
The EPA's ECOTOX database (http://www.epa.gov/ecotox/) provides a web browser search interface for locating aquatic and terrestrial toxic effects information. Data on more than 8100 chemicals and 5700 terrestrial and aquatic species are included in the database. Information is ...
Wang, Jingjie; Yu, Nan; Mu, Guangmao; Shinwari, Kamran I; Shen, Zhenguo; Zheng, Luqing
2017-04-07
With the rapid progress of industrialization, the effects of environmental contamination on plant toxicity, and subsequently on human health, is a growing concern. For example, the heavy metal pollution of soil such as that caused by cadmium (Cd) is a serious threat. Therefore, screening for pollution-safe edible plants is an essential approach for growing plants under heavy metal-contaminated soils. In the current study, 35 Chinese cabbage ( Brassica pekinensis L.) cultivars were selected with the aim of screening for Cd-safe cultivars (CSCs), analyzing their safety, and exploring the mechanism of Cd accumulation. Our field-culture experiments revealed that the Cd content in the edible parts of the cultivars were varied and were determined to possibly be CSCs. Hydroponics experiments were used to simulate six different degrees of soil contamination (high and low Cd concentrations) on possible CSCs. The results indicated a significant difference ( p < 0.05) in Cd concentration in the cultivars, and verified the safety of these possible CSCs. The analyses of the transport coefficient and expression levels showed that the differences in Cd accumulation among the Chinese cabbage cultivars were related to the expression of genes involved in absorption and transport rather than a root-to-shoot translocation limitation.
Wang, Jingjie; Yu, Nan; Mu, Guangmao; Shinwari, Kamran I.; Shen, Zhenguo; Zheng, Luqing
2017-01-01
With the rapid progress of industrialization, the effects of environmental contamination on plant toxicity, and subsequently on human health, is a growing concern. For example, the heavy metal pollution of soil such as that caused by cadmium (Cd) is a serious threat. Therefore, screening for pollution-safe edible plants is an essential approach for growing plants under heavy metal-contaminated soils. In the current study, 35 Chinese cabbage (Brassica pekinensis L.) cultivars were selected with the aim of screening for Cd-safe cultivars (CSCs), analyzing their safety, and exploring the mechanism of Cd accumulation. Our field-culture experiments revealed that the Cd content in the edible parts of the cultivars were varied and were determined to possibly be CSCs. Hydroponics experiments were used to simulate six different degrees of soil contamination (high and low Cd concentrations) on possible CSCs. The results indicated a significant difference (p < 0.05) in Cd concentration in the cultivars, and verified the safety of these possible CSCs. The analyses of the transport coefficient and expression levels showed that the differences in Cd accumulation among the Chinese cabbage cultivars were related to the expression of genes involved in absorption and transport rather than a root-to-shoot translocation limitation. PMID:28387709
Childhood lead poisoning investigations: evaluating a portable instrument for testing soil lead.
Reames, Ginger; Lance, Larrie L
2002-04-01
The Childhood Lead Poisoning Prevention Branch of the California Department of Health Services evaluated a portable X-ray fluorescence (XRF) instrument for use as a soil lead-testing tool during environmental investigations of lead-poisoned children's homes. A Niton XRF was used to test soil at 119 sampling locations in the yards of 11 San Francisco Bay Area houses. Niton XRF readings were highly correlated with laboratory results and met the study criteria for an acceptable screening method. The data suggest that the most health-protective and time-efficient approach to testing for soil lead above regulatory levels is to take either surface readings or readings of a test cup of soil prepared by grinding with a mortar and pestle. The advantage of the test cup method is that the test cup with soil may be submitted to a laboratory for confirmatory analysis.
NASA Technical Reports Server (NTRS)
Easterling, Donald F.; Hovanitz, Edward S.; Street, Kenneth W.
2000-01-01
A field screening method for the determination of elemental mercury in environmental soil samples involves the thermal desorption of the mercury from the sample onto gold and then the thermal desorption from the gold to a gold-film mercury vapor analyzer. This field screening method contains a large number of conditions that could be optimized for the various types of soils encountered. In this study, the conditions were optimized for the determination of mercury in silty clay materials, and the results were comparable to the cold-vapor atomic absorption spectrophotometric method of determination. This paper discusses the benefits and disadvantages of employing the field screening method and provides the sequence of conditions that must be optimized to employ this method of determination on other soil types.
a procedure for the analysis of (PCDDs/PCDFs) in soil at 500 ppt (pg/g) using a simple onestep liquid phase oxidative cleanup or, at mid to low ppt levels, using a two step coupled column cleanup (oxidation and activated carbon binding)
The objectives of this demonstration were to test these field screening technologies for accuracy and precision in detecting Pentachlorophenol (PCP) levels in soil and water by comparing their results with those of a confirmatory laboratory. The three immunoassay technologies ...
Asensio, Vega; Rodríguez-Ruiz, Amaia; Garmendia, Larraitz; Andre, Jane; Kille, Peter; Morgan, Andrew John; Soto, Manu; Marigómez, Ionan
2013-01-01
This is a pilot study for assessing soil ecosystem health in chronically polluted sites on the basis of a 3-tier approach (screening+scoring+understanding) designed to be cost-effective and scientifically based, and to provide straightforward advice and support to managers and stakeholders involved in environmental protection. For the initial screening (Tier 1), the use of a highly sensitive, low-cost biomarker such as neutral red uptake (NRU) in earthworm coelomocytes is proposed. In sites where an alteration in NRU has been established, the stress level may be further assessed by utilising a suite of low-cost and rapid biomarkers of effect integrated in an integrative biological response (IBR) index to obtain an objective (scored) assessment of the induced stress syndrome (Tier 2). The IBR/n index is based on the integration of biomarkers at different levels of biological organisation. Acyl-CoA oxidase activity (AOX), catalase activity (CAT), lipofuscin optical density (LOD%), NRU and the mean epithelial thickness (MET) have been used to calculate the IBR/n index. Biomarkers are determined in earthworms, Eisenia fetida, exposed ex situ to real soils (three mining sites and a reference) for 3, 10 and 17d. The 3d NRU (Tier 1) provided signal of stress. After 3d, PCA, based on the suite of biomarkers (Tier 2), discriminated reference and polluted sites according to toxicity profiles and at 17d, the most polluted site is segregated from less polluted and reference sites. Soils were classified as harmful, unhealthy (not apparently toxic) or healthy. Soils were investigated by microarray transcriptomics (Tier 3), to understand the causes (aetiology) and consequences (prognosis) of health impairment. Tier 3 discriminates, according to stress syndrome traits, soils that did not fall into the category of highly stressed and revealed the main agent causing toxicity at each site by identifying the toxicity mechanisms and biological responses. Copyright © 2012 Elsevier B.V. All rights reserved.
Durán, Paola; Jorquera, Milko; Viscardi, Sharon; Carrion, Victor J; Mora, María de la Luz; Pozo, María J
2017-01-01
Wheat production around the world is severely compromised by the occurrence of "take-all" disease, which is caused by the soil-borne pathogen Gaeumannomyces graminis var. tritici (Ggt). In this context, suppressive soils are those environments in which plants comparatively suffer less soil-borne pathogen diseases than expected, owing to native soil microorganism activities. In southern Chile, where 85% of the national cereal production takes place, several studies have suggested the existence of suppressive soils under extensive wheat cropping. Thus, this study aimed to screen Ggt-suppressive soil occurrence in 16 locations managed by indigenous "Mapuche" communities, using extensive wheat cropping for more than 10 years. Ggt growth inhibition in vitro screenings allowed the identification of nine putative suppressive soils. Six of these soils, including Andisols and Ultisols, were confirmed to be suppressive, since they reduced take-all disease in wheat plants growing under greenhouse conditions. Suppressiveness was lost upon soil sterilization, and recovered by adding 1% of the natural soil, hence confirming that suppressiveness was closely associated to the soil microbiome community composition. Our results demonstrate that long-term extensive wheat cropping, established by small Mapuche communities, can generate suppressive soils that can be used as effective microorganism sources for take-all disease biocontrol. Accordingly, suppressive soil identification and characterization are key steps for the development of environmentally-friendly and efficient biotechnological applications for soil-borne disease control.
Screening of antagonistic bacteria isolated from Amorphophallus konjac rhizosphere soil
NASA Astrophysics Data System (ADS)
Lin, Tianxing; Gong, Mingfu; Guan, Qinlan; Huang, Ying; Qin, Fang
2018-04-01
Bacteria lived in Amorphaphallus konjac rhizosphere soil have the potential ability of antagonistic bacterial pathogen activity against to Erwinia carotovora subsp carotovora (Ecc). The paper was to study and analyze all strains of 18 bacteria isolated from A. konjac rhizosphere soil with strong antagonistic effect against to Ecc and to identify antagonistic bacteria with morphology, physiology and biochemistry characteristic. The antagonistic bacterial pathogen activity of different bacterial strains were significantly different. Five of 18 strains isolated from A. konjac rhizosphere soil, including AKSB03, AKSB05, AKSB08, AKSB13 and AKSB16 was screened with antagonistic wider more than 15 mm in first screening test. Strain AKSB08 and strain AKSB16 had a strong antagonism activity for Ecc with antagonistic wider more than 20 mm in second screening test. Strain AKSB08 and strain AKSB16 belonged to Bacillus with morphology, physiology and biochemistry characteristic.
Plasmid Frequency Fluctuations in Bacterial Populations from Chemically Stressed Soil Communities
Wickham, Gene S.; Atlas, Ronald M.
1988-01-01
The frequency of plasmids in chemically stressed bacterial populations was investigated by individually adding various concentration of kanamycin, ampicillin, and mercuric chloride to soil samples. Viable bacterial populations were enumerated, soil respiration was monitored for up to 6 weeks as an indicator of physiological stress, and bacterial isolates from stressed and control soils were screened for the presence of plasmids. Low levels of the chemical stress factors did not for the most part significantly alter population viability, soil respiration, or plasmid frequency. Exposure to high stress levels of mercury and ampicillin, however, resulted in altered numbers of viable organisms, soil respiration, and plasmid frequency. Plasmid frequency increased in response to ampicillin exposure but was not significantly changed after exposure to kanamycin. In mercuric chloride-stressed soils, there was a decrease in plasmid frequency despite an increase in overall mercury resistance of the isolates, suggesting that mercury resistance in these populations is largely, if not completely, chromosome encoded. Chemical stress did not cause an increase in plasmid-mediated multiple resistance. A genetic response (change in plasmid frequency) was not found unless a physiological (phenotypic) response (change in viable cells and respiratory activity) was also observed. The results indicate that a change in plasmid frequency is dependent on both the amount and type of chemical stress. PMID:16347730
McErlean, Colum; Marchant, Roger; Banat, Ibrahim M
2006-08-01
Initially sixteen fungi were screened for potential ligninolytic activity using decolourisation of a polymeric dye Poly R-478. From this, four fungi were selected, Trametes versicolor, Pleurotus ostreatus, Collybia sp., and an isolate (identified as Rhizoctonia solani) isolated from a grassland soil. Differences in the ligninolytic enzyme profiles of each of the fungi were observed. All of the four fungi tested produced MnP and laccase while the Collybia sp. and R. solani produced LiP in addition. Enzyme activity levels also varied greatly over the 21 days of testing with T. versicolor producing levels of MnP and laccase three to four times greater than the other fungi. The four fungi were then tested for their ability to colonise sand, peat (forest) and basalt and marl mixed till (field) soils through visual measurement and biomass detection in soil microcosms. Trametes versicolor and the Collybia sp. failed to grow in any of the non-sterilised soils whereas the R. solani and P. ostreatus isolates grew satisfactorily. Primers were designed to detect MnP and laccase genes in P. ostreatus and RTPCR was used to detect that these genes are expressed in forest and field soils.
Introduction to Toxicity and Risk Assessment for Project Chemists
2012-03-27
Toxicity of Hexavalent Chromium External review complete EPA will wait until studies underway on carcinogenic mode of action are complete to...finalize the assessment NJ and Cal values for hex chrome 16 Risk-Based Screening Levels Resident Soil (mg/kg) Resident Water Use (µg/L) DRAFT 0.04
Durán, Paola; Jorquera, Milko; Viscardi, Sharon; Carrion, Victor J.; Mora, María de la Luz; Pozo, María J.
2017-01-01
Wheat production around the world is severely compromised by the occurrence of “take-all” disease, which is caused by the soil-borne pathogen Gaeumannomyces graminis var. tritici (Ggt). In this context, suppressive soils are those environments in which plants comparatively suffer less soil-borne pathogen diseases than expected, owing to native soil microorganism activities. In southern Chile, where 85% of the national cereal production takes place, several studies have suggested the existence of suppressive soils under extensive wheat cropping. Thus, this study aimed to screen Ggt-suppressive soil occurrence in 16 locations managed by indigenous “Mapuche” communities, using extensive wheat cropping for more than 10 years. Ggt growth inhibition in vitro screenings allowed the identification of nine putative suppressive soils. Six of these soils, including Andisols and Ultisols, were confirmed to be suppressive, since they reduced take-all disease in wheat plants growing under greenhouse conditions. Suppressiveness was lost upon soil sterilization, and recovered by adding 1% of the natural soil, hence confirming that suppressiveness was closely associated to the soil microbiome community composition. Our results demonstrate that long-term extensive wheat cropping, established by small Mapuche communities, can generate suppressive soils that can be used as effective microorganism sources for take-all disease biocontrol. Accordingly, suppressive soil identification and characterization are key steps for the development of environmentally-friendly and efficient biotechnological applications for soil-borne disease control. PMID:28861064
Caldwell, Andral W.; Falls, W. Fred; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2011-01-01
Soil gas and soil were assessed for contaminants at the South Prong Creek Disposal Area at Fort Gordon, Georgia, from October 2009 to September 2010. The assessment included identifying and delineating organic contaminants present in soil-gas and inorganic contaminants present in soil samples collected from the area estimated to be the South Prong Creek Disposal Area, including two seeps and the hyporheic zone. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements for the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. All soil-gas samplers in the two seeps and the hyporheic zone contained total petroleum hydrocarbons above the method detection level. The highest total petroleum hydrocarbon concentration detected from the two seeps was 54.23 micrograms per liter, and the highest concentration in the hyporheic zone was 344.41 micrograms per liter. The soil-gas samplers within the boundary of the South Prong Creek Disposal Area and along the unnamed road contained total petroleum hydrocarbon mass above the method detection level. The highest total petroleum hydrocarbon mass detected was 147.09 micrograms in a soil-gas sampler near the middle of the unnamed road that traverses the South Prong Creek Disposal Area. The highest undecane mass detected was 4.48 micrograms near the location of the highest total petroleum hydrocarbon mass. Some soil-gas samplers detected undecane mass greater than the method detection level of 0.04 micrograms, with the highest detection of toluene mass of 109.72 micrograms in the same location as the highest total petroleum hydrocarbon mass. Soil-gas samplers installed in areas of high contaminant mass had no detections of explosives and chemical agents above their respective method detection levels. Inorganic concentrations in five soil samples did not exceed regional screening levels established by the U.S. Environmental Protection Agency. Barium concentrations, however, were up to four times higher than the background concentrations reported in similar Coastal Plain sediments of South Carolina.
Kuperman, Roman G; Checkai, Ronald T; Simini, Michael; Phillips, Carlton T; Kolakowski, Jan E; Kurnas, Carl W
2005-10-01
Energetic materials are employed in a wide range of commercial and military activities and often are released into the environment. Scientifically based ecological soil-screening levels (Eco-SSLs) are needed to identify contaminant explosive levels in soil that present an acceptable ecological risk. Insufficient information for 2,4,6-trinitrotoluene (TNT) to generate Eco-SSLs for soil invertebrates necessitated toxicity testing. We adapted the standardized Enchytraeid Reproduction Test and selected Enchytraeus crypticus for these studies. Tests were conducted in Sassafras sandy loam soil, which supports relatively high bioavailability of TNT. Weathering and aging procedures for TNT amended to test soil were incorporated into the study design to produce toxicity data that better reflect the soil exposure conditions in the field compared with toxicity in freshly amended soils. This included exposing hydrated TNT-amended soils in open glass containers in the greenhouse to alternating wetting and drying cycles. Definitive tests showed that toxicity for E. crypticus adult survival and juvenile production was increased significantly in weathered and aged soil treatments compared with toxicity in freshly amended soil based on 95% confidence intervals. The median effect concentration and 20% effective concentration for reproduction were 98 and 77 mg/kg, respectively, for TNT freshly amended into soil and 48 and 37 mg/kg, respectively, for weathered and aged TNT soil treatments. These findings of increased toxicity to E. crypticus in weathered and aged TNT soil treatments compared with exposures in freshly amended soils show that future investigations should include a weathering and aging component to generate toxicity data that provide more complete information on ecotoxicological effects of energetic contaminants in soil.
Dos Santos-Araujo, Sabrina N; Swartjes, Frank A; Versluijs, Kees W; Moreno, Fabio Netto; Alleoni, Luís R F
2017-11-07
In Brazil, there is a lack of combined soil-plant data attempting to explain the influence of specific climate, soil conditions, and crop management on heavy metal uptake and accumulation by plants. As a consequence, soil-plant relationships to be used in risk assessments or for derivation of soil screening values are not available. Our objective in this study was to develop empirical soil-plant models for Cd, Cu, Pb, Ni, and Zn, in order to derive appropriate soil screening values representative of humid tropical regions such as the state of São Paulo (SP), Brazil. Soil and plant samples from 25 vegetable species in the production areas of SP were collected. The concentrations of metals found in these soil samples were relatively low. Therefore, data from temperate regions were included in our study. The soil-plant relations derived had a good performance for SP conditions for 8 out of 10 combinations of metal and vegetable species. The bioconcentration factor (BCF) values for Cd, Cu, Ni, Pb, and Zn in lettuce and for Cd, Cu, Pb, and Zn in carrot were determined under three exposure scenarios at pH 5 and 6. The application of soil-plant models and the BCFs proposed in this study can be an important tool to derive national soil quality criteria. However, this methodological approach includes data assessed under different climatic conditions and soil types and need to be carefully considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Will, M.E.; Suter, G.W. II
1994-09-01
One of the initial stages in ecological risk assessments for hazardous waste sites is the screening of contaminants to determine which of them are worthy of further consideration as {open_quotes}contaminants of potential concern.{close_quotes} This process is termed {open_quotes}contaminant screening.{close_quotes} It is performed by comparing measured ambient concentrations of chemicals to benchmark concentrations. Currently, no standard benchmark concentrations exist for assessing contaminants in soil with respect to their toxicity to soil- and litter-dwelling invertebrates, including earthworms, other micro- and macroinvertebrates, or heterotrophic bacteria and fungi. This report presents a standard method for deriving benchmarks for this purpose, sets of data concerningmore » effects of chemicals in soil on invertebrates and soil microbial processes, and benchmarks for chemicals potentially associated with United States Department of Energy sites. In addition, literature describing the experiments from which data were drawn for benchmark derivation. Chemicals that are found in soil at concentrations exceeding both the benchmarks and the background concentration for the soil type should be considered contaminants of potential concern.« less
Use of a geographic information system (GIS) for targeting radon screening programs in South Dakota
Kearfott, Kimberlee J.; Whetstone, Zachary D.; Rafique Mir, Khwaja M.
2016-01-01
Because 222Rn is a progeny of 238U, the relative abundance of uranium may be used to predict the areas that have the potential for high indoor radon concentration and therefore determine the best areas to conduct future surveys. Geographic Information System (GIS) mapping software was used to construct maps of South Dakota that included levels of uranium concentrations in soil and stream water and uranium deposits. Maps of existing populations and the types of land were also generated. Existing data about average indoor radon levels by county taken from a databank were included for consideration. Although the soil and stream data and existing recorded average indoor radon levels were sparse, it was determined that the most likely locations of elevated indoor radon would be in the northwest and southwest corners of the state. Indoor radon levels were only available for 9 out of 66 counties in South Dakota. This sparcity of data precluded a study of correlation of radon to geological features, but further motivates the need for more testing in the state. Only actual measurements should be used to determine levels of indoor radon because of the strong roles home construction and localized geology play in radon concentration. However, the data visualization method demonstrated here is potentially useful for directing resources relating to radon screening campaigns. PMID:26472478
Application of Citizen Science Risk Communication Tools in a Vulnerable Urban Community
Jiao, Yuqin; Bower, Julie K.; Im, Wansoo; Basta, Nicholas; Obrycki, John; Al-Hamdan, Mohammad Z.; Wilder, Allison; Bollinger, Claire E.; Zhang, Tongwen; Hatten, Luddie Sr.; Hatten, Jerrie; Hood, Darryl B.
2015-01-01
A public participatory geographical information systems (PPGIS) demographic, environmental, socioeconomic, health status portal was developed for the Stambaugh-Elwood (SE) community in Columbus, OH. We hypothesized that soil at SE residences would have metal concentrations above natural background levels. Three aims were developed that allowed testing of this hypothesis. Aim 1 focused on establishing partnerships between academia, state agencies and communities to assist in the development of a community voice. Aim 2 was to design and conduct soil sampling for residents of the SE community. Aim 3 was to utilize our interactive, customized portal as a risk communication tool by allowing residents to educate themselves as to the potential risks from industrial sources in close proximity to their community. Multiple comparisons of means were used to determine differences in soil element concentration by sampling location at p < 0.05. The results demonstrated that eight metals (As, Cd, Cu, Pb, Mo, Se, Tl, Zn) occurred at statistically-significantly greater levels than natural background levels, but most were below risk-based residential soil screening levels. Results were conveyed to residents via an educational, risk-communication informational card. This study demonstrates that community-led coalitions in collaboration with academic teams and state agencies can effectively address environmental concerns. PMID:26703664
Mid-Level Soil Sample for Oven Number Seven
NASA Technical Reports Server (NTRS)
2008-01-01
Soil from a sample called Burning Coals was delivered through the doors of cell number seven (left) of the Thermal and Evolved-Gas Analyzer on NASA's Phoenix Mars Lander on Aug. 20, 2008, during the 85th Martian day, or sol, since Phoenix landed. This image from Phoenix's Robotic Arm Camera shows some of the soil on the screen beneath the doors. One of the cell's two doors is fully open, the other partially open. This soil sample comes from an intermediate depth between the ground surface and the hard, underground icy layer at the Phoenix site. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Metabolic efficiency and turnover of soil microbial communities in biodegradation tests.
Shen, J; Bartha, R
1996-01-01
Biodegradability screening tests of soil commonly measure 14CO2 evolution from radiolabeled test compounds, and glucose has often served as a positive control. When constant amounts of radiolabel were added to soil in combination with increasing amounts of unlabeled substrates, glucose and some related hexoses behaved in an anomalous manner. In contrast to that of formate, benzoate, n-hexadecane, or bis(2-ethylhexyl) phthalate, dilution of glucose radiocarbon with unlabeled glucose increased rather than decreased the rate and extent of 14CO2 evolution. [14C]glucose incorporation into biomass and Vmax values were consistent with the interpretation that application of relatively high concentrations of glucose to soil shifts the balance of the soil microbial community from the autochthonous (humus-degrading) to the zymogeneous (opportunistic) segment. The higher growth and turnover rates that define zymogeneous microorganisms, combined with a lower level of carbon incorporation into their biomass, result in the evolution of disproportionate percentages of 14CO2. When used as positive controls, glucose and related hexoses may raise the expectations for percent 14CO2 evolution to levels that are not realistic for other biodegradable compounds. PMID:8779580
Gil, Fátima N; Moreira-Santos, Matilde; Chelinho, Sónia; Pereira, Carla; Feliciano, Joana R; Leitão, Jorge H; Sousa, José P; Ribeiro, Rui; Viegas, Cristina A
2015-02-01
The present study is aimed at evaluating whether a gene expression assay with the microbial eukaryotic model Saccharomyces cerevisiae could be used as a suitable warning tool for the rapid preliminary screening of potential toxic effects on organisms due to scenarios of soil and water contamination with pyrimethanil. The assay consisted of measuring changes in the expression of the selected pyrimethanil-responsive genes ARG3 and ARG5,6 in a standardized yeast population. Evaluation was held by assessing the toxicity of surface runoff, a major route of pesticide exposure in aquatic systems due to non-point-source pollution, which was simulated with a pyrimethanil formulation at a semifield scale mimicking worst-case scenarios of soil contamination (e.g. accident or improper disposal). Yeast cells 2-h exposure to the runoff samples led to a significant 2-fold increase in the expression of both indicator genes. These results were compared with those from assays with organisms relevant for the aquatic and soil compartments, namely the nematode Caenorhabditis elegans (reproduction), the freshwater cladoceran Daphnia magna (survival and reproduction), the benthic midge Chironomus riparius (growth), and the soil invertebrates Folsomia candida and Enchytraeus crypticus (survival and reproduction). Under the experimental conditions used to simulate accidental discharges into soil, runoff waters were highly toxic to the standard test organisms, except for C. elegans. Overall, results point out the usefulness of the yeast assay to provide a rapid preview of the toxicity level in preliminary screenings of environmental samples in situations of inadvertent high pesticide contamination. Advantages and limitations of this novel method are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
De La Torre-Roche, Roberto J.; Lee, Wen-Yee; Campos-Díaz, Sandra I.
2009-01-01
Ultrasonic extraction followed by Stir Bar Sorptive Extraction (SBSE) and thermal desorption inline coupled with Gas Chromatography and Mass Spectrometry (TD/GC/MS)was used to perform a comprehensive determination of soil-borne polycyclic aromatic hydrocarbons (PAHs) in El Paso, Texas. The method provided good sensitivity and faster processing time for the analysis. The total PAHs in El Paso soil ranged from 0.1 to 2225.5 µg kg−1. Although the majority of PAH concentrations did not exceed the soil screening levels regulated by the United States Environmental Protection Agency, the existence of PAHs in this ecosystem is ubiquitous. Naphthalene were found in 100% of the soil samples; while the heavy PAHs (five- and six-ring) were not often detected and mostly remained in closer proximity to industrial areas and major traffic points. The results ruled out the possibility of petroleum refining as the significant source of local soil-borne PAH contamination, but they suggested that the PAHs found in El Paso soil were closely linked to human activities and possible other industrial processes. PMID:18768257
DOE Office of Scientific and Technical Information (OSTI.GOV)
Will, M.E.; Suter, G.W. II
1994-09-01
One of the initial stages in ecological risk assessment for hazardous waste sites is screening contaminants to determine which of them are worthy of further consideration as contaminants of potential concern. This process is termed contaminant screening. It is performed by comparing measured ambient concentrations of chemicals to benchmark concentrations. Currently, no standard benchmark concentrations exist for assessing contaminants in soil with respect to their toxicity to plants. This report presents a standard method for deriving benchmarks for this purpose (phytotoxicity benchmarks), a set of data concerning effects of chemicals in soil or soil solution on plants, and a setmore » of phytotoxicity benchmarks for 38 chemicals potentially associated with United States Department of Energy (DOE) sites. In addition, background information on the phytotoxicity and occurrence of the chemicals in soils is presented, and literature describing the experiments from which data were drawn for benchmark derivation is reviewed. Chemicals that are found in soil at concentrations exceeding both the phytotoxicity benchmark and the background concentration for the soil type should be considered contaminants of potential concern.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suter, G.W. II
1993-01-01
One of the initial stages in ecological risk assessment for hazardous waste sites is screening contaminants to determine which of them are worthy of further consideration as contaminants of potential concern. This process is termed contaminant screening. It is performed by comparing measured ambient concentrations of chemicals to benchmark concentrations. Currently, no standard benchmark concentrations exist for assessing contaminants in soil with respect to their toxicity to plants. This report presents a standard method for deriving benchmarks for this purpose (phytotoxicity benchmarks), a set of data concerning effects of chemicals in soil or soil solution on plants, and a setmore » of phytotoxicity benchmarks for 38 chemicals potentially associated with United States Department of Energy (DOE) sites. In addition, background information on the phytotoxicity and occurrence of the chemicals in soils is presented, and literature describing the experiments from which data were drawn for benchmark derivation is reviewed. Chemicals that are found in soil at concentrations exceeding both the phytotoxicity benchmark and the background concentration for the soil type should be considered contaminants of potential concern.« less
Using pre-screening methods for an effective and reliable site characterization at megasites.
Algreen, Mette; Kalisz, Mariusz; Stalder, Marcel; Martac, Eugeniu; Krupanek, Janusz; Trapp, Stefan; Bartke, Stephan
2015-10-01
This paper illustrates the usefulness of pre-screening methods for an effective characterization of polluted sites. We applied a sequence of site characterization methods to a former Soviet military airbase with likely fuel and benzene, toluene, ethylbenzene, and xylene (BTEX) contamination in shallow groundwater and subsoil. The methods were (i) phytoscreening with tree cores; (ii) soil gas measurements for CH4, O2, and photoionization detector (PID); (iii) direct-push with membrane interface probe (MIP) and laser-induced fluorescence (LIF) sensors; (iv) direct-push sampling; and (v) sampling from soil and from groundwater monitoring wells. Phytoscreening and soil gas measurements are rapid and inexpensive pre-screening methods. Both indicated subsurface pollution and hot spots successfully. The direct-push sensors yielded 3D information about the extension and the volume of the subsurface plume. This study also expanded the applicability of tree coring to BTEX compounds and tested the use of high-resolution direct-push sensors for light hydrocarbons. Comparison of screening results to results from conventional soil and groundwater sampling yielded in most cases high rank correlation and confirmed the findings. The large-scale application of non- or low-invasive pre-screening can be of help in directing and focusing the subsequent, more expensive investigation methods. The rapid pre-screening methods also yielded useful information about potential remediation methods. Overall, we see several benefits of a stepwise screening and site characterization scheme, which we propose in conclusion.
Perez-Vazquez, Francisco Javier; Flores-Ramirez, Rogelio; Ochoa-Martinez, Angeles Catalina; Orta-Garcia, Sandra Teresa; Hernandez-Castro, Berenice; Carrizalez-Yañez, Leticia; Pérez-Maldonado, Iván N
2015-01-01
The aim of this study was to assess the levels of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), p,p'-dichlorodiphenyltrichloroethane (DDT), p,p'-dichlorodiphenyldichloroethylene (DDE), and four heavy metals (arsenic, cadmium, lead, and mercury) in soil from the city of San Luis Potosí in Mexico. In order to confirm the presence of the previously mentioned compounds, outdoor surface soil samples were collected and analyzed by gas chromatography/mass spectrometer for PBDEs, PCBs, DDT, and DDE. Meanwhile, heavy metals were quantified using the atomic absorption spectrophotometry technique. The total PBDEs levels ranged from 5.0 to 134 μg/kg dry weight (dw), with a total mean PBDEs level of 22.0 ± 32.5 μg/kg dw (geometric mean ± standard deviation). For PCBs, the total mean level in the studied soil was 21.6 ± 24.7 μg/kg dw (range,
Ramadass, Kavitha; Palanisami, Thavamani; Smith, Euan; Mayilswami, Srinithi; Megharaj, Mallavarapu; Naidu, Ravi
2016-11-01
Earthworm toxicity assays contribute to ecological risk assessment and consequently standard toxicological endpoints, such as mortality and reproduction, are regularly estimated. These endpoints are not enough to better understand the mechanism of toxic pollutants. We employed an additional endpoint in the earthworm Eisenia andrei to estimate the pollutant-induced stress. In this study, comet assay was used as an additional endpoint to evaluate the genotoxicity of weathered hydrocarbon contaminated soils containing 520 to 1450 mg hydrocarbons kg -1 soil. Results showed that significantly higher DNA damage levels (two to sixfold higher) in earthworms exposed to hydrocarbon impacted soils. Interestingly, hydrocarbons levels in the tested soils were well below site-specific screening guideline values. In order to explore the reasons for observed toxicity, the contaminated soils were leached with rainwater and subjected to earthworm tests, including the comet assay, which showed no DNA damage. Soluble hydrocarbon fractions were not found originally in the soils and hence no hydrocarbons leached out during soil leaching. The soil leachate's Electrical Conductivity (EC) decreased from an average of 1665 ± 147 to 204 ± 20 µS cm -1 . Decreased EC is due to the loss of sodium, magnesium, calcium, and sulphate. The leachate experiment demonstrated that elevated salinity might cause the toxicity and not the weathered hydrocarbons. Soil leaching removed the toxicity, which is substantiated by the comet assay and soil leachate analysis data. The implication is that earthworm comet assay can be included in future eco (geno) toxicology studies to assess accurately the risk of contaminated soils.
Heavy-metal contamination on training ranges at the Grafenwoehr Training Area, Germany
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zellmer, S.D.; Schneider, J.F.
1993-05-01
Large quantities of lead and other heavy metals are deposited in the environment of weapons ranges during training exercises. This study was conducted to determine the type, degree, and extent of heavy-metal contamination on selected handgun, rifle, and hand-grenade ranges at Grafenwoehr Training Area, Germany. Soil, vegetation, and surface-water samples were collected and analyzed using the inductively-coupled plasma atomic-emission spectroscopy (ICP-AES) method and the toxic characterization leaching procedure (TCLP). The ICP-AES results show that above-normal levels of lead and copper are in the surface soil at the handgun range, high concentrations of lead and copper are in the berm andmore » soil surface at the rifle range, and elevated levels of cadmium and above-normal concentrations of arsenic, copper, and zinc are present in the surface soil at the hand-grenade range. The TCLP results show that surface soils can be considered hazardous waste because of lead content at the rifle range and because of cadmium concentration at the hand-grenade range. Vegetation at the handgun and rifle ranges has above-normal concentrations of lead. At the hand-grenade range, both vegetation and surface water have high levels of cadmium. A hand-held X-ray fluorescence (XRF) spectrum analyzer was used to measure lead concentrations in soils in a field test of the method. Comparison of XRF readings with ICP-AES results for lead indicate that the accuracy and precision of the hand-held XRF unit must improve before the unit can be used as more than a screening tool. Results of this study show that heavy-metal contamination at all three ranges is limited to the surface soil; heavy metals are not being leached into the soil profile or transported into adjacent areas.« less
Effect of organic manure on sorption and degradation of azoxystrobin in soil.
Ghosh, Rakesh Kumar; Singh, Neera
2009-01-28
Information on pesticide degradation and factors influencing are important in predicting the levels of pesticide remaining in soils and allow assessment of potential risk associated with exposure. The present study reports the sorption and degradation of azoxystrobin [methyl (E)-2-{2-(6-(2-cyanophenoxy)pyrimidin-4-yloxy)phenyl}-3-methoxyacrylate] in a sandy loam soil. The fungicide was moderately sorbed, and the Freundlich adsorption parameter K(f) (1/n) values in natural and 5% compost-amended soils were 9.31 and 13.72, respectively. Sorption showed hysteresis with 32.5 and 14.7% of sorbed fungicide desorbed from the natural and 5% compost-amended soils, respectively. Azoxystrobin was more persistent in the aerobic soil than the anaerobic soil with half-life values of 107.47 and 62.69 days, respectively. Amendment of compost (5%) to the soil enhanced the degradation of fungicide, and the respective half-life values in aerobic and anaerobic soils were 73.39 and 38.58 days, respectively. Azoxystrobin acid was recovered as the only metabolite of azoxystrobin degradation in soils. Both sunlight and UV light affected the persistence of azoxystrobin with fungicide degraded at a faster rate in UV light than in sunlight. Soil acts as a screen and slows the fungicide degradation under sunlight and UV light.
Landmeyer, James E.; Harrelson, Larry G.; Ratliff, W. Hagan; Wellborn, John B.
2010-01-01
The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, assessed soil gas, surface water, and soil for contaminants at the Installation Railhead (IR) at Fort Gordon, Georgia, from October 2008 to September 2009. The assessment included delineation of organic contaminants present in soil-gas samples beneath the IR, and in a surface-water sample collected from an unnamed tributary to Marcum Branch in the western part of the IR. Inorganic contaminants were determined in a surface-water sample and in soil samples. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Soil-gas samples collected within a localized area on the western part of the IR contained total petroleum hydrocarbons; benzene, toluene, ethylbenzene, and total xylenes (referred to as BTEX); and naphthalene above the method detection level. These soil-gas samples were collected where buildings had previously stood. Soil-gas samples collected within a localized area contained perchloroethylene (PCE). These samples were collected where buildings 2410 and 2405 had been. Chloroform and toluene were detected in a surface-water sample collected from an unnamed tributary to Marcum Branch but at concentrations below the National Primary Drinking Water Standard maximum contaminant level (MCL) for each compound. Iron was detected in the surface-water sample at 686 micrograms per liter (ug/L) and exceeded the National Secondary Drinking Water Standard MCL for iron. Metal concentrations in composite soil samples collected at three locations from land surface to a depth of 6 inches did not exceed the U.S. Environmental Protection Agency Regional Screening Levels for industrial soil.
Kuperman, Roman G; Checkai, Ronald T; Simini, Michael; Phillips, Carlton T; Kolakowski, Jan E; Lanno, Roman
2013-11-01
The authors investigated individual toxicities of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to the potworm Enchytraeus crypticus using the enchytraeid reproduction test. Studies were designed to generate ecotoxicological benchmarks that can be used for developing ecological soil-screening levels for ecological risk assessments of contaminated soils and to identify and characterize the predominant soil physicochemical parameters that can affect the toxicities of TNT and RDX to E. crypticus. Soils, which had a wide range of physicochemical parameters, included Teller sandy loam, Sassafras sandy loam, Richfield clay loam, Kirkland clay loam, and Webster clay loam. Analyses of quantitative relationships between the toxicological benchmarks for TNT and soil property measurements identified soil organic matter content as the dominant property mitigating TNT toxicity for juvenile production by E. crypticus in freshly amended soil. Both the clay and organic matter contents of the soil modulated reproduction toxicity of TNT that was weathered and aged in soil for 3 mo. Toxicity of RDX for E. crypticus was greater in the coarse-textured sandy loam soils compared with the fine-textured clay loam soils. The present studies revealed alterations in toxicity to E. crypticus after weathering and aging TNT in soil, and these alterations were soil- and endpoint-specific. © 2013 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagaraty, G.; Johnson, J.; Middlebrooks, P.
The Phase II EBS results document the extent of environmental contamination believed to be present on McCormick Ranch. Explosive test areas having the greatest potential for containing soil contaminants were identified using several geophysical survey methods: EM 31 terrain conductivity meter, magnetometer/gradiometer, and ground penetrating radar. From the geophysical surveys, five areas selected to conduct further environmental analysis. A total of 310 soil samples were collected from the five areas and 13 specific high explosive test sites. The samples were screened for semi-volatile organic compounds, PETN, TNT, TNT-degradation products, nitrates and radioactivity. Laboratory analyses were performed and no explosives ormore » degradation products were identified. Semi-volatile organic compounds were in 2 samples, manganese was detected in 3 samples, nitrates were discovered below soil action levels, and radiation levels were below background. Consequently, it is unlikely that significant contamination exists.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagaraty, G.; Johnson, J.; Middlebrooks, P.
The Phase II EBS results document the extent of environmental contamination believed to be present on McCormick Ranch. Explosive test areas having the greatest potential for containing soil contaminants were identified using several geophysical survey methods: EM 31 terrain conductivity meter, magnetometer/gradiometer, and ground penetrating radar. From the geophysical surveys, five areas were selected to conduct further environmental analysis. A total of 310 soil samples were collected from the five areas and 13 specific high explosive test sites. The samples were screened for semi-volatile organic compounds, PETN, TNT, TNT-degradation products, nitrates and radioactivity. Laboratory analyses were and no explosives ormore » degradation products were identified. Semi-volatile organic compounds were in 2 samples, manganese was detected in 3 samples, nitrates were discovered below soil action levels, and radiation levels were below background. Consequently, it is unlikely that significant contamination exists.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagaraty, G.; Johnson, J.; Middlebrooks, P.
The Phase II EBS results document the extent of environmental contamination believed to be present on McCormick Ranch. Explosive test areas having the greatest potential for containing soil contaminants were identified using several geophysical survey methods: EM 31 terrain conductivity meter, magnetometer/gradiometer, and ground penetrating radar. From the geophysical surveys, five areas were selected to conduct further environmental analysis. A total of 310 soil samples were collected from the and 13 specific high explosive test sites. The samples were screened for semi-volatile organic PETN, TNT, TNT-degradation products, nitrates and radioactivity. Laboratory analyses were and no explosives or degradation products weremore » identified. Semi-volatile organic compounds were in 2 samples, manganese was detected in 3 samples, nitrates were discovered below soil action levels, and radiation levels were below background. Consequently, it is unlikely that significant contamination exists.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagaraty, G.; Johnson, J.; Middlebrooks, P.
The Phase II EBS results document the extent of environmental contamination believed to be present on McCormick Ranch. Explosive test areas having the greatest potential for containing soil contaminants were identified using several geophysical survey methods: EM 31 terrain conductivity meter, magnetometer/gradiometer, and ground penetrating radar. From the geophysical surveys, five areas were selected to conduct further environmental analysis. A total of 310 soil samples were collected from the five areas and 13 specific high explosive test sites. The samples were screened for semi-volatile organic compounds, PETN, TNT, TNT-degradation products, nitrates and radioactivity. Laboratory analyses were performed and no explosivesmore » or degradation products were identified. Semi-volatile organic compounds were found in 2 samples, manganese was detected in 3 samples, nitrates were discovered below soil action levels, and radiation levels were below background. Consequently, it is unlikely that significant contamination exists.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagaraty, G.; Johnson, J.; Middlebrooks, P.
The Phase II EBS results document the extent of environmental contamination believed to be present on McCormick Ranch. Explosive test areas having the greatest potential for containing soil contaminants were identified using several geophysical survey methods: EM 31 terrain conductivity meter, magnetometer/gradiometer, and ground penetrating radar. From the geophysical surveys, five areas were selected to conduct further environmental analysis. A total of 310 soil samples were collected from the areas and 13 specific high explosive test sites. The samples were screened for semi-volatile organic compounds, PETN, TNT, TNT-degradation products, nitrates and radioactivity. Laboratory analyses were performed and no explosives ormore » degradation products were identified. Semi-volatile organic compounds were in 2 samples, manganese was detected in 3 samples, nitrates were discovered below soil action levels and radiation levels were below background. Consequently, it is unlikely that significant contamination exists.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruedig, Elizabeth; Whicker, Jeffrey Jay
In 2017, soil sampling for radiological materials was conducted within Tract A-18-2 at Los Alamos National Laboratory (LANL) for land conveyance decisions. Measurements of radionuclides in soil samples were evaluated against a recreational use scenario, and all measurements were below screening action levels for each radionuclide. The total estimated dose was less than 1 mrem/yr (<10 μSv/yr) for a hypothetical recreational user (compared with a dose limit of 25 mrem/yr [250 μSv/yr]). Dose estimates were based on the 95% upper confidence levels for radionuclide concentrations within the Tract. Dose estimates less than 3 mrem/yr are considered to be as lowmore » as reasonably achievable (ALARA), therefore no follow-up analysis was conducted. Release of this property is consistent with the requirements of DOE Order 458.1 (DOE 2013) and Policy 412 (LANL 2014).« less
Rain‐induced subsurface airflow and Lisse effect
Guo, Haipeng; Jiao, Jiu J.; Weeks, Edwin P.
2008-01-01
Water‐level increase after rainfall is usually indicative of rainfall recharge to groundwater. This, however, may not be true if the Lisse effect occurs. This effect represents the water‐level increase in a well driven by airflow induced by an advancing wetting front during highly intensive rains. The rainwater, which may behave like a low‐permeability lid, seals the ground surface so that the air pressure beneath the wetting front is increased because of air compression due to downward movement of the wetting front. A rapid and substantial rise of the water level in the well screened below water table, which bears no relationship to groundwater recharge, can be induced when various factors such as soil properties and the rain‐runoff condition combine favorably. A transient, three‐dimensional and variably saturated flow model was employed to study the air and groundwater flows in the soil under rain conditions. The objectives of this paper are two‐fold: to evaluate the reliability of the theory of the Lisse effect presented by Weeks to predict its magnitude in modeled situations that mimic the physical complexity of real aquifers, and to conduct parametric studies on the sensitivity of the water‐level rise in the well to soil properties and the rain event. The simulation results reveal that the magnitude of the Lisse effect increases with the ponding depth. Soil permeability plays a key role in generating the Lisse effect. The water‐level rise in the well is delayed relative to the air‐pressure rise in the unsaturated zone when the soil permeability is low, and the maximum water‐level rise is less than the maximum air pressure induced by rain infiltration. The simulation also explores the sensitivity of the Lisse effect to the van Genuchten parameters and the water table depth.
Development of water quality criteria and screening benchmarks for 2,4,6 trinitrotoluene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talmage, S.S.; Opresko, D.M.
1995-12-31
Munitions compounds and their degradation products are present at many Army Ammunition Plant Superfund sites. Neither Water Quality Criteria (WQC) for aquatic organisms nor safe soil levels for terrestrial plants and animals have been developed for munitions compounds including trinitrotoluene (TNT). Data are available for the calculation of an acute WQC for TNT according to US EPA guidelines but are insufficient to calculate a chronic criterion. However, available data can be used to determine a Secondary Chronic Value (SCV) and to determine lowest chronic values for fish and daphnids (used by EPA in the absence of criteria). Based on datamore » from eight genera of aquatic organisms, an acute WOC of 0.566 mg/L was calculated. Using available data, a SCV of 0.137 mg/L was calculated. Lowest chronic values for fish and for daphnids are 0.04 mg/L and 1.03 mg/L, respectively. The lowest concentration that affected the growth of aquatic plants was 1.0 mg/L. For terrestrial animals, data from studies of laboratory animals can be extrapolated to derive screening benchmarks in the same way in which human toxicity values are derived from laboratory animal data. For terrestrial animals, a no-observed-adverse-effect-level (NOAEL) for reproductive effects of 1.60 mg/kg/day was determined from a subchronic laboratory feeding study with rats. By scaling the test NOAEL on the basis of differences in body size, screening benchmarks were calculated for oral intake for selected mammalian wildlife species. Screening benchmarks were also derived for protection of benthic organisms in sediment, for soil invertebrates, and for terrestrial plants.« less
2006-11-01
disinfection) was tested using soil microcosms and respirometry to determine diesel range and total organic compound degradation. These tests were...grease) such as benzo(a)pyrene were detected above chronic (long term-measured in years) screening levels. Levels of diesel and oil range organics... bioremediation , and toxicity of liquid and solid samples. The Comput-OX 4R is a 4 reactor unit with no stirring modules or temperature controlled water bath
A brief review and evaluation of earthworm biomarkers in soil pollution assessment.
Shi, Zhiming; Tang, Zhiwen; Wang, Congying
2017-05-01
Earthworm biomarker response to pollutants has been widely investigated in the assessment of soil pollution. However, whether and how the earthworm biomarker-approach can be actually applied to soil pollution assessment is still a controversial issue. This review is concerned about the following points: 1. Despite much debate, biomarker is valuable to ecotoxicology and biomarker approach has been properly used in different fields. Earthworm biomarker might be used in different scenarios such as large-scale soil pollution survey and soil pollution risk assessment. Compared with physicochemical analysis, they can provide more comprehensive and straightforward information about soil pollution at low cost. 2. Although many earthworm species from different ecological categories have been tested, Eisenia fetida/andrei is commonly used. Many earthworm biomarkers have been screened from the molecular to the individual level, while only a few biomarkers, such as avoidance behavior and lysosomal membrane stability, have been focused on. Other aspects of the experimental design were critically reviewed. 3. More studies should focus on determining the reliability of various earthworm biomarkers in soil pollution assessment in future research. Besides, establishing a database of a basal level of each biomarker, exploring biomarker response in different region/section/part of earthworm, and other issues are also proposed. 4. A set of research guideline for earthworm biomarker studies was recommended, and the suitability of several earthworm biomarkers was briefly evaluated with respect to their application in soil pollution assessment. This review will help to promote further studies and practical application of earthworm biomarker in soil pollution assessment.
Research on screening of suitable forage grasses in coastal saline - alkaline soil
NASA Astrophysics Data System (ADS)
Yue, Xiaoyu; Han, Xin; Song, Qianhong; Yang, Xu; Zhou, Qingyun
2017-11-01
The screening of salt-tolerant plants can provide suitable tree species for the afforestation of coastal salinity and maintain biodiversity and ecological stability. The research was based on the study of seven grasses, such as high fescue, the bermuda grass, the thyme, the rye grass, the precocious grass, the third leaf, and the red three leaves. Each pasture was planted in three different kinds of soil, such as salt alkali soil, salt alkali soil + ecological bag and non-saline alkali soil. The effect of salt alkali soil on germinating time, germination rate and grass growth was analyzed. The effects of ecological bag on soil salt and the growth and germination of grass was also analyzed in order to provide the reference basis for the widespread and systematic selection of salt-tolerant plants, with the grass being selected for the suitable ecological bag.
Terrestrial Eco-Toxicological Tests as Screening Tool to Assess Soil Contamination in Krompachy Area
NASA Astrophysics Data System (ADS)
Ol'ga, Šestinová; Findoráková, Lenka; Hančuľák, Jozef; Fedorová, Erika; Tomislav, Špaldon
2016-10-01
In this study, we present screening tool of heavy metal inputs to agricultural and permanent grass vegetation of the soils in Krompachy. This study is devoted to Ecotoxicity tests, Terrestrial Plant Test (modification of OECD 208, Phytotoxkit microbiotest on Sinapis Alba) and chronic tests of Earthworm (Dendrobaena veneta, modification of OECD Guidelines for the testing of chemicals 317, Bioaccumulation in Terrestrial Oligochaetes) as practical and sensitive screening method for assessing the effects of heavy metals in Krompachy soils. The total Cu, Zn, As, Pb and Hg concentrations and eco-toxicological tests of soils from the Krompachy area were determined of 4 sampling sites in 2015. An influence of the sampling sites distance from the copper smeltery on the absolutely concentrations of metals were recorded for copper, lead, zinc, arsenic and mercury. The highest concentrations of these metals were detected on the sampling sites up to 3 km from the copper smeltery. The samples of soil were used to assess of phytotoxic effect. Total mortality was established at earthworms using chronic toxicity test after 7 exposure days. The results of our study confirmed that no mortality was observed in any of the study soils. Based on the phytotoxicity testing, phytotoxic effects of the metals contaminated soils from the samples 3KR (7-9) S.alba seeds was observed.
A strategy to facilitate cleanup at the Mare Island Naval Station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, J.; Albert, D.
1995-12-31
A strategy based on an early realistic estimation of ecological risk was devised to facilitate cleanup of installation restoration units at the Mare Island Naval Station. The strategy uses the results of 100 years of soil-plant studies, which centered on maximizing the bioavailability of nutrients for crop growth. The screening strategy classifies sites according to whether they present (1) little or no ecological risk and require no further action, (2) an immediate and significant risk, and (3) an ecological risk that requires further quantification. The strategy assumes that the main focus of screening level risk assessment is quantification of themore » potential for abiotic-to-biotic transfer (bioavailability) of contaminants, especially at lower trophic levels where exposure is likely to be at a maximum. Sediment screening criteria developed by the California Environmental Protection Agency is used as one regulatory endpoint for evaluating total chemical concentrations. A realistic estimation of risk is then determined by estimating the bioavailability of contaminants.« less
LOSS OF ORGANIC CHEMICALS IN SOIL: PURE COMPOUND TREATABILITY STUDIES
Comprehensive screening data on the treatability of 32 organic chemicals in soil were developed. Of the evaluated chemicals, 22 were phenolic compounds. Aerobic batch laboratory microcosm experiments were conducted using two soils: an acidic clay soil with <1% organic matter and ...
Wei, Yanyan; Zheng, Xiaoman; Shohag, Md. Jahidul Islam; Gu, Minghua
2017-01-01
In many countries cadmium (Cd) and arsenic (As) commonly coexist in soils contaminated by mining activities, and can easily enter the human body via consumption of leafy vegetables, like the popularly consumed pakchoi (Brassica chinensis L.), causing major health concerns. In the present study, bioaccessibility and human exposure of Cd and As were assessed in twenty genotypes of pakchoi cultured at two different levels of co-contamination to identify low health risk genotypes. The bioaccessibilities of Cd and As represent a fraction of the total metals content could be bioaccessible for human, in the present study, significant differences in pakchoi Cd and As bioaccessibility were observed among all tested genotypes and co-contaminated levels. Cd and As bioaccessibility of pakchoi were in the ranges of 24.0–87.6% and 20.1–82.5%, respectively, for in the high level co-contaminated soils, which was significantly higher than for low level co-contaminated soils with 7.9–71.8% for Cd bioaccessibility and 16.1–59.0% for As bioaccessibility. The values of bioaccessible established daily intakes (BEDI) and the total bioaccessible target hazard quotients (TBTHQ) of Cd and As were also considerably higher in high level co-contaminated soils than in low level co-contaminated soils. Two genotypes (Meiguanqinggengcai and Zhenqing60F1) contained relatively low concentrations and bioaccessible Cd and As and, their BEDI and TBTHQ for Cd and As ranged below the tolerable limits set by the FAO/WHO (BEDI of Cd < 0.83 μg kg−1 bw day−1, BEDI of As < 3 μg kg−1 bw day−1) and United States Environmental Protection Agency (TBTHQ for Cd and As < 1), this applied for both levels of co-contaminated soils for adults and children. Consequently, these findings suggest identification of safe genotypes in leafy vegetable with low health risk via genotypic screening and breeding methods could be a useful strategy to ensure the safety of food crops grown in those Cd and As co-contaminated fields due to mining activities. PMID:28850097
Wei, Yanyan; Zheng, Xiaoman; Shohag, Md Jahidul Islam; Gu, Minghua
2017-08-29
In many countries cadmium (Cd) and arsenic (As) commonly coexist in soils contaminated by mining activities, and can easily enter the human body via consumption of leafy vegetables, like the popularly consumed pakchoi ( Brassica chinensis L.), causing major health concerns. In the present study, bioaccessibility and human exposure of Cd and As were assessed in twenty genotypes of pakchoi cultured at two different levels of co-contamination to identify low health risk genotypes. The bioaccessibilities of Cd and As represent a fraction of the total metals content could be bioaccessible for human, in the present study, significant differences in pakchoi Cd and As bioaccessibility were observed among all tested genotypes and co-contaminated levels. Cd and As bioaccessibility of pakchoi were in the ranges of 24.0-87.6% and 20.1-82.5%, respectively, for in the high level co-contaminated soils, which was significantly higher than for low level co-contaminated soils with 7.9-71.8% for Cd bioaccessibility and 16.1-59.0% for As bioaccessibility. The values of bioaccessible established daily intakes (BEDI) and the total bioaccessible target hazard quotients (TBTHQ) of Cd and As were also considerably higher in high level co-contaminated soils than in low level co-contaminated soils. Two genotypes (Meiguanqinggengcai and Zhenqing60F1) contained relatively low concentrations and bioaccessible Cd and As and, their BEDI and TBTHQ for Cd and As ranged below the tolerable limits set by the FAO/WHO (BEDI of Cd < 0.83 μg kg -1 bw day -1 , BEDI of As < 3 μg kg -1 bw day -1 ) and United States Environmental Protection Agency (TBTHQ for Cd and As < 1), this applied for both levels of co-contaminated soils for adults and children. Consequently, these findings suggest identification of safe genotypes in leafy vegetable with low health risk via genotypic screening and breeding methods could be a useful strategy to ensure the safety of food crops grown in those Cd and As co-contaminated fields due to mining activities.
Xiao, Feng; Simcik, Matt F; Halbach, Thomas R; Gulliver, John S
2015-04-01
Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are emerging anthropogenic compounds that have recently become the target of global concern due to their ubiquitous presence in the environment, persistence, and bioaccumulative properties. This study was carried out to investigate the migration of PFOS and PFOA in soils and groundwater in a U.S. metropolitan area. We observed elevated levels in surface soils (median: 12.2 ng PFOS/g dw and 8.0 ng PFOA/g dw), which were much higher than the soil-screening levels for groundwater protection developed in this study. The measured levels in subsurface soils show a general increase with depth, suggesting a downward movement toward the groundwater table and a potential risk of aquifer contamination. Furthermore, concentrations of PFOS and PFOA in monitoring wells in the source zone varied insignificantly over 5 years (2009-2013), suggesting limited or no change in either the source or the magnitude of the source. The analysis also shows that natural processes of dispersion and dilution can significantly attenuate the groundwater contamination; the adsorption on aquifer solids, on the other hand, appears to have limited effects on the transport of PFOS and PFOA in the aquifer. The probabilistic exposure assessment indicates that ingestion of contaminated groundwater constitutes a much more important exposure route than ingestion of contaminated soil. Overall, the results suggest that (i) the transport of PFOS and PFOA is retarded in the vadose zone, but not in the aquifer; (ii) the groundwater contamination of PFOS and PFOA often follows their release to surface soils by years, if not decades; and (iii) the aquifer can be a major source of exposure for communities living near point sources. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mikkonen, Hannah G; Clarke, Bradley O; Dasika, Raghava; Wallis, Christian J; Reichman, Suzie M
2017-02-15
Understanding ambient background concentrations in soil, at a local scale, is an essential part of environmental risk assessment. Where high resolution geochemical soil surveys have not been undertaken, soil data from alternative sources, such as environmental site assessment reports, can be used to support an understanding of ambient background conditions. Concentrations of metals/metalloids (As, Mn, Ni, Pb and Zn) were extracted from open-source environmental site assessment reports, for soils derived from the Newer Volcanics basalt, of Melbourne, Victoria, Australia. A manual screening method was applied to remove samples that were indicated to be contaminated by point sources and hence not representative of ambient background conditions. The manual screening approach was validated by comparison to data from a targeted background soil survey. Statistical methods for exclusion of contaminated samples from background soil datasets were compared to the manual screening method. The statistical methods tested included the Median plus Two Median Absolute Deviations, the upper whisker of a normal and log transformed Tukey boxplot, the point of inflection on a cumulative frequency plot and the 95th percentile. We have demonstrated that where anomalous sample results cannot be screened using site information, the Median plus Two Median Absolute Deviations is a conservative method for derivation of ambient background upper concentration limits (i.e. expected maximums). The upper whisker of a boxplot and the point of inflection on a cumulative frequency plot, were also considered adequate methods for deriving ambient background upper concentration limits, where the percentage of contaminated samples is <25%. Median ambient background concentrations of metals/metalloids in the Newer Volcanic soils of Melbourne were comparable to ambient background concentrations in Europe and the United States, except for Ni, which was naturally enriched in the basalt-derived soils of Melbourne. Copyright © 2016 Elsevier B.V. All rights reserved.
Development of a screening method for the determination of 49 priority pollutants in soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiang, P.H.; Grob, R.L.
1986-01-01
A screening procedure was develop for the determination of 49 priority pollutants in soil. An extraction procedure followed by the capillary gas chromatographic technique was used. Dual pH solutions with methylene chloride were used as extraction solvent system; no sample clean-up procedure was applied. Both base/neutral and acid fractions were analyzed on the same capillary column (SPB-1). The relative standard deviation for 5.1 ppm (51 ..mu..g/ 10 g) concentration in zero soil was less than 25%.
Lead stabilization by phosphate amendments in soil impacted by paint residue.
Schwab, A P; Lewis, K; Banks, M K
2006-01-01
The addition of phosphate was evaluated for contaminant stabilization in soils impacted by lead paint residue. Soils sampled from 15 highway bridge sites in Indiana were screened based on residual lead concentrations from paint contamination. Two appropriate bridge sites were identified in Tippecanoe County, Indiana. Soluble phosphate was added to the soil at a mole ratio of 3:1 P:Pb. The efficacy of phosphate treatment was evaluated by a physiologically based extraction test (PBET), uptake of lead by sunflowers, and leaching of lead from soil columns. Sunflowers were established on both field sites, and the mean Pb concentration in the above-ground biomass indicated that the rate of uptake was similar to plants growing in uncontaminated soil. The second bioavailability assessment was the physiologically based extraction test, designed to evaluate heavy metal availability during ingestion. After 1 year at both sites, the addition of phosphate significantly reduced the concentrations of lead extracted by PBET, indicating that the lead in the amended soils had lower bioavailability than in the unamended soils. In the column study, the contaminated soil produced the highest mass of leached Pb, and the addition of P reduced the mass of Pb in the leachate to similar levels found in the uncontaminated soil. Overall, the addition of soluble phosphate to these soils appears to be an effective approach for immobilizing Pb and reducing the associated bio-accessibility.
A survey on polycyclic aromatic hydrocarbon concentrations in soil in Chiang-Mai, Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amagai, Takashi; Takahashi, Yukari; Matsushita, Hidetsuru
Soil samples were collected at 30 sampling sites along roadsides in the city of Chiang-Mai, Thailand, in February 1996, and concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were determined. The distribution of PAH concentration in the soil samples was almost log-normal for all PAHs. Concentrations of pyrene (Py) and fluoranthene (Fluor) were the highest, followed by those of benzo[ghi]perylene and coronene (Cor). Since PAH concentrations were highest on the roadside where the traffic density was high, vehicles were the main determinants of PAH concentration in soil in Chiang-Mai. Significant correlations among PAH concentrations were found for almost all PAHs. PAHmore » profiles in the air were different from those in the soil. For example, relative benzo[a]pyrene (BaP) concentration in the soil was significantly lower than that in the air. Relative concentrations of Fluor, Py, chrysene, and Cor in the soil were considerably higher than those in the air, due presumably to their difference in photochemical reactivities and in sources. The sampling of soil has advantages relative to that of air: (1) collection of soil is easy; (2) it needs no special equipment and electricity; (3) it takes little time; and (4) it can be collected anywhere. Therefore PAH analysis in soil was useful as a proxy-screening tool for air pollution levels with consideration of compositional differences between soil and air samples.« less
Bojes, Heidi K; Pope, Peter G
2007-04-01
The purpose of this study was to determine the concentration and types of polycyclic aromatic hydrocarbons (PAHs), a group of environmentally toxic and persistent chemicals, at contaminated oil exploration and production (E&P) sites located in environmentally sensitive and geographically distinct areas throughout Texas. Samples of tank bottom solids, the oily sediment that collects at the bottom of the tanks, were collected from inactive crude oil storage tanks at E&P sites and hydrocarbon contaminated soil samples were collected from the area surrounding each tank that was sampled. All samples were analyzed for the 16 PAH priority pollutant listed by US EPA and for total petroleum hydrocarbons (TPH). The results demonstrate that overall average PAH concentrations were significantly higher in tank bottom solids than in contaminated soils. Total PAH concentrations decreased predictably with diminishing hydrocarbon concentrations; but the percent fraction of carcinogenic PAHs per total measured PAH content increased from approximately 12% in tank bottom solids to about 46% in the contaminated soils. These results suggest that the PAH content found in tank bottom solids cannot reliably be used to predict the PAH content in associated contaminated soil. Comparison of PAHs to conservative risk-based screening levels for direct exposure to soil and leaching from soil to groundwater indicate that PAHs are not likely to exceed default risk-based thresholds in soils containing TPH of 1% (10,000mg/kg) or less. These results show that the magnitude of TPH concentration may be a useful indicator of potential risk from PAHs in crude oil-contaminated soils. The results also provide credibility to the 1% (10,000mg/kg) TPH cleanup level, used in Texas as a default management level at E&P sites located in non-sensitive areas, with respect to PAH toxicity.
CHARACTERIZATION OF CHROMIUM-CONTAMINATED SOILS USING FIELD-PORTABLE X-RAY FLUORESCENCE
A detailed characterization of the underlying and adjacent soils near a chrome plating shop utilized field-portable X- ray fluorescence (XRF) as a screening tool. XRF permitted real-time acquisition of estimates for total metal content of soils. A trailer-mounted soil coring unit...
Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2011-01-01
The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the groundwater, soil gas, and soil for contaminants at the Vietnam Armor Training Facility (VATF) at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic compounds in the groundwater and soil gas, and inorganic compounds in the soil. In addition, organic contaminant assessment included organic compounds classified as explosives and chemical agents in selected areas. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Four passive samplers were deployed in groundwater wells at the VATF in Fort Gordon. Total petroleum hydrocarbons were detected above the method detection level at all four wells. The only other volatile organic compounds detected above their method detection level were undecane and pentadecane, which were detected in two of the four wells sampled. Soil-gas samplers were deployed at 72 locations in a grid pattern across the VATF. Total petroleum hydrocarbons were detected in 71 of the 72 samplers (one sampler was destroyed in the field and not analyzed) at levels above the method detection level, and the combined mass of benzene, toluene, ethylbenzene, and total xylene was detected above the detection level in 31 of the 71 samplers that were analyzed. Other volatile organic compounds detected above their respective method detection levels were naphthalene, 2-methyl-naphthalene, tridecane, 1,2,4-trimethylbenzene, and perchloroethene. Subsequent to the soil-gas survey, four areas determined to have elevated contaminant mass were selected and sampled for explosives and chemical agents. No detections of explosives or chemical agents above their respective method detection levels were found at any of the sampling locations. The same four locations that were sampled for explosives and chemical agents were selected for the collection of soil samples. A fifth location also was selected on the basis of the elevated contaminant mass of the soil-gas survey. No metals that exceeded the Regional Screening Levels for Industrial Soils as classified by the U.S. Environmental Protection Agency were detected at any of the five VATF locations. The soil samples also were compared to values from the ambient, uncontaminated (background) levels for soils in South Carolina, as classified by the South Carolina Department of Health and Environmental Control. Because South Carolina is adjacent to Georgia and the soils in the coastal plain are similar, these comparisons are valid. No similar values are available for Georgia to use for comparison purposes. The metals that were detected above the ambient background levels for South Carolina, as classified by the South Carolina Department of Health and Environmental Control, include aluminum, arsenic, barium, beryllium, calcium, chromium, copper, iron, lead, magnesium, manganese, nickel, potassium, sodium, and zinc.
Faucher, Stéphane; Cugnet, Cyril; Authier, Laurent; Lespes, Gaëtane
2014-02-01
The objective of the study is to evaluate modified-carbon screen-printed working electrodes (SPE) combined with square wave anodic stripping voltammetry (SWASV) to determine electrolabile and total copper in soils with the perspective to assess the environmental hazard resulting from copper anthropogenic contamination. The voltammetric method was investigated using a mineralized certified reference soil such that it can be assumed that the copper was totally under electrolabile form in the solution of mineralized soil. In optimal conditions, a copper recovery of 97% and a relative standard deviation (RSD) of 9% were found. The limits of detection and quantification for copper were 0.4 and 1.3 μg L(-1), respectively. Finally, the method was applied on soil leachates, which allowed evaluating the cupric transfer from the soil to the leachates and quantifying the electrolabile copper part in leachates.
Plant-uptake of uranium: Hydroponic and soil system studies
Ramaswami, A.; Carr, P.; Burkhardt, M.
2001-01-01
Limited information is available on screening and selection of terrestrial plants for uptake and translocation of uranium from soil. This article evaluates the removal of uranium from water and soil by selected plants, comparing plant performance in hydroponic systems with that in two soil systems (a sandy-loam soil and an organic-rich soil). Plants selected for this study were Sunflower (Helianthus giganteus), Spring Vetch (Vicia sativa), Hairy Vetch (Vicia villosa), Juniper (Juniperus monosperma), Indian Mustard (Brassica juncea), and Bush Bean (Phaseolus nanus). Plant performance was evaluated both in terms of the percent uranium extracted from the three systems, as well as the biological absorption coefficient (BAC) that normalized uranium uptake to plant biomass. Study results indicate that uranium extraction efficiency decreased sharply across hydroponic, sandy and organic soil systems, indicating that soil organic matter sequestered uranium, rendering it largely unavailable for plant uptake. These results indicate that site-specific soils must be used to screen plants for uranium extraction capability; plant behavior in hydroponic systems does not correlate well with that in soil systems. One plant species, Juniper, exhibited consistent uranium extraction efficiencies and BACs in both sandy and organic soils, suggesting unique uranium extraction capabilities.
Challenges in Bulk Soil Sampling and Analysis for Vapor Intrusion Screening of Soil
This draft Engineering Issue Paper discusses technical issues with monitoring soil excavations for VOCs and describes options for such monitoring as part of a VI pathway assessment at sites where soil excavation is being considered or used as part of the remedy for VOC-contaminat...
Otton, James K.; Asher-Bolinder, Sigrid; Owen, Douglass E.; Hall, Laurel
1997-01-01
The authors conducted limited site surveys in the Wildhorse and Burbank oilfields on the Osage Indian Reservation, northeastern Oklahoma. The purpose was to document salt scarring, erosion, and soil and water salinization, to survey for radioactivity in oilfield equipment, and to determine if trace elements and naturally occurring radioactive materials (NORM) were present in soils affected by oilfield solid waste and produced waters. These surveys were also designed to see if field gamma spectrometry and field soil conductivity measurements were useful in screening for NORM contamination and soil salinity at these sites. Visits to oilfield production sites in the Wildhorse field in June of 1995 and 1996 confirmed the presence of substantial salt scarring, soil salinization, and slight to locally severe erosion. Levels of radioactivity on some oil field equipment, soils, and road surfaces exceed proposed state standards. Radium activities in soils affected by tank sludge and produced waters also locally exceed proposed state standards. Laboratory analyses of samples from two sites show moderate levels of copper, lead, and zinc in brine-affected soils and pipe scale. Several sites showed detectable levels of bromine and iodine, suggesting that these trace elements may be present in sufficient quantity to inhibit plant growth. Surface waters in streams at two sampled sites exceed total dissolved solid limits for drinking waters. At one site in the Wildhorse field, an EM survey showed that saline soils in the upper 6m extend from a surface salt scar downvalley about 150 m. (Photo [95k]: Dead oak trees and partly revegetated salt scar at Site OS95-2 in the Wildhorse field, Osage County, Oklahoma.) In the Burbank field, limited salt scarring and slight erosion occurs in soils at some sites and low to moderate levels of radioactivity were observed in oil field equipment at some sites. The levels of radioactivity and radium observed in some soils and equipment at these sites are above levels of concern as defined in regulations proposed by the Conference of Radiation Control Program Directors. The volumes of material involved appear to be relatively small for most sites. The lead levels observed in soils affected by tank sludge wastes are about one half of the US Environmental Protection Agency (USEPA) interim remedial action levels used for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and Resource Conservation and Recovery Act (RCRA) sites (400 ppm). Field gamma spectrometry proved useful in delineating areas where radium has been added to the natural soil by oilfield solid waste and produced water, although the technique does not meet standards of assessment used in the state of Louisiana which require core sampling of 15 cm intervals and radiochemical analysis in the laboratory. Further work is needed to develop field gamma spectrometry as a substitute for the more expensive coring and laboratory analysis. The ratio of radium-228 to radium-226 may hold promise in evaluating the relative ages of NORM contamination at a site.
Organic amendments for risk mitigation of organochlorine pesticide residues in old orchard soils.
Centofanti, Tiziana; McConnell, Laura L; Chaney, Rufus L; Beyer, W Nelson; Andrade, Natasha A; Hapeman, Cathleen J; Torrents, Alba; Nguyen, Anh; Anderson, Marya O; Novak, Jeffrey M; Jackson, Dana
2016-03-01
Performance of compost and biochar amendments for in situ risk mitigation of aged DDT, DDE and dieldrin residues in an old orchard soil was examined. The change in bioavailability of pesticide residues to Lumbricus terrestris L. relative to the unamended control soil was assessed using 4-L soil microcosms with and without plant cover in a 48-day experiment. The use of aged dairy manure compost and biosolids compost was found to be effective, especially in the planted treatments, at lowering the bioavailability factor (BAF) by 18-39%; however, BAF results for DDT in the unplanted soil treatments were unaffected or increased. The pine chip biochar utilized in this experiment was ineffective at lower the BAF of pesticides in the soil. The US EPA Soil Screening Level approach was used with our measured values. Addition of 10% of the aged dairy manure compost reduced the average hazard quotient values to below 1.0 for DDT + DDE and dieldrin. Results indicate this sustainable approach is appropriate to minimize risks to wildlife in areas of marginal organochlorine pesticide contamination. Application of this remediation approach has potential for use internationally in areas where historical pesticide contamination of soils remains a threat to wildlife populations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Organic amendments for risk mitigation of organochlorine pesticide residues in old orchard soils
Centofantia, Tiziana; McConnell, Laura L.; Chaney, Rufus L.; Beyer, W. Nelson; Andradea, Natasha A.; Hapeman, Cathleen J.; Torrents, Alba; Nguyen, Anh; Anderson, Marya O.; Novak, J. M.; Jackson, Dana
2015-01-01
Performance of compost and biochar amendments for in situ risk mitigation of aged DDT, DDE and dieldrin residues in an old orchard soil was examined. The change in bioavailability of pesticide residues to Lumbricus terrestris L. relative to the unamended control soil was assessed using 4-L soil microcosms with and without plant cover in a 48-day experiment. The use of aged dairy manure compost and biosolids compost was found to be effective, especially in the planted treatments, at lowering the bioavailability factor (BAF) by 18–39%; however, BAF results for DDT in the unplanted soil treatments were unaffected or increased. The pine chip biochar utilized in this experiment was ineffective at lower the BAF of pesticides in the soil. The US EPA Soil Screening Level approach was used with our measured values. Addition of 10% of the aged dairy manure compost reduced the average hazard quotient values to below 1.0 for DDT + DDE and dieldrin. Results indicate this sustainable approach is appropriate to minimize risks to wildlife in areas of marginal organochlorine pesticide contamination. Application of this remediation approach has potential for use internationally in areas where historical pesticide contamination of soils remains a threat to wildlife populations.
Azarbad, Hamed; Niklińska, Maria; Laskowski, Ryszard; van Straalen, Nico M; van Gestel, Cornelis A M; Zhou, Jizhong; He, Zhili; Wen, Chongqing; Röling, Wilfred F M
2015-01-01
Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the phylogenetic and functional level to long-term metal pollution. Studying 12 sites located along two distinct gradients of metal pollution in Southern Poland revealed that functional potential and diversity (assessed using GeoChip 4.2) were highly similar across the gradients despite drastically diverging metal contamination levels. Metal pollution level did, however, significantly impact bacterial community structure (as shown by MiSeq Illumina sequencing of 16S rRNA genes), but not bacterial taxon richness and community composition. Metal pollution caused changes in the relative abundance of specific bacterial taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and Proteobacteria. Also, a group of metal-resistance genes showed significant correlations with metal concentrations in soil. Our study showed that microbial communities are resilient to metal pollution; despite differences in community structure, no clear impact of metal pollution levels on overall functional diversity was observed. While screens of phylogenetic marker genes, such as 16S rRNA genes, provide only limited insight into resilience mechanisms, analysis of specific functional genes, e.g. involved in metal resistance, appears to be a more promising strategy. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Zhang, Kun; Yuan, Jiangang; Kong, Wei; Yang, Zhongyi
2013-06-01
Heavy-metals in polluted soils can accumulate in plants and threaten crop safety. To evaluate the risk of heavy-metal pollution in leafy lettuce (Lactuca sativa L.), two pot experiments were conducted to investigate Cd and Pb accumulation and transfer potential in 28 cultivars of lettuce and to screen for low-Cd and low-Pb accumulative cultivars. In the three treatments, 5.2-fold, 4.8-fold and 4.8-fold differences in the shoot Cd concentration were observed between the cultivars with the highest and the lowest Cd concentrations, respectively. This genotype variation was sufficiently large to identify low-Cd accumulative genotypes to reduce Cd contamination in food. Cadmium accumulation in the low-Cd accumulative genotypes was significantly positively correlated with Pb accumulation. At the cultivar level, Cd and Pb accumulation in lettuce was stable and genotype-dependent. High Pb soil levels did not affect shoot Cd accumulation in lettuce. Lettuce was concluded to be at high risk for Cd pollution and low risk for Pb pollution. Among the tested cultivars, cvs. SJGT, YLGC, N518, and KR17 had the lowest Cd and Pb accumulation abilities in shoots and are thus important parental material for breeding pollution-safe cultivars to minimize Cd and Pb accumulation.
Kifle, Medhin H.; Laing, Mark D.
2016-01-01
Poor soil fertility is one of the major constraints for crop production. Nitrogen is the most limiting nutrient for increasing crop productivity. Therefore, there is a need to identify diazotrophic inoculants as an alternative or supplement to N-fertilizers for sustainable agriculture. In the current study, a number of free-living diazotrophic bacteria were isolated from soils collected from maize rhizosphere and from leaves and roots of maize within the KwaZulu-Natal Province, Republic of South Africa. Ninety-two isolates were selected for further screening because they were able to grow on N-free media containing different carbon sources. Isolates that were very slow to grow on N-free media were discarded. The isolates were screened in vitro for diazotrophic potential tests for ammonia production and acetylene reduction. Ethylene (C2H4) production was quantified and ranged from 4 to 73 nmoles of C2H4h−1 culture−1. The top 20 isolates were re-screened on maize seedlings, and eight isolates significantly (P = 0.001) enhanced some growth parameters of maize above the un-inoculated control. Isolates that showed significant effect on at least two growth parameters were identified at species or genera level. In conclusion, selected diazotrophic isolates may be potentially beneficial but they should be tested more in greenhouse and field conditions with maize to confirm their potential for application as biofertilizers. PMID:26779245
Kifle, Medhin H; Laing, Mark D
2015-01-01
Poor soil fertility is one of the major constraints for crop production. Nitrogen is the most limiting nutrient for increasing crop productivity. Therefore, there is a need to identify diazotrophic inoculants as an alternative or supplement to N-fertilizers for sustainable agriculture. In the current study, a number of free-living diazotrophic bacteria were isolated from soils collected from maize rhizosphere and from leaves and roots of maize within the KwaZulu-Natal Province, Republic of South Africa. Ninety-two isolates were selected for further screening because they were able to grow on N-free media containing different carbon sources. Isolates that were very slow to grow on N-free media were discarded. The isolates were screened in vitro for diazotrophic potential tests for ammonia production and acetylene reduction. Ethylene (C2H4) production was quantified and ranged from 4 to 73 nmoles of C2H4h(-1) culture(-1). The top 20 isolates were re-screened on maize seedlings, and eight isolates significantly (P = 0.001) enhanced some growth parameters of maize above the un-inoculated control. Isolates that showed significant effect on at least two growth parameters were identified at species or genera level. In conclusion, selected diazotrophic isolates may be potentially beneficial but they should be tested more in greenhouse and field conditions with maize to confirm their potential for application as biofertilizers.
The Foote House (10-AA-96), An Historic Archaeological Complex in the Boise River Canyon, Idaho.
1982-01-01
into four or perhaps five basic rooms, three of which opened into one another (Paul 1972:293). The main front entrance faced west, and consisted of low...sediments were dry screened through 1/4 in. hardward mesh. Four areas in or adjacent to the Foote House were tested to provide structural and (if possible...down into the soil matrix through the first excavation level, to 10 cm depth. At this level, in the northwest quadrant of the unit, a thin layer of
Gavina, Ana; Antunes, Sara C.; Pinto, Glória; Claro, Maria Teresa; Santos, Conceição; Gonçalves, Fernando; Pereira, Ruth
2013-01-01
Site-specific risk assessment of contaminated areas indicates prior areas for intervention, and provides helpful information for risk managers. This study was conducted in the Ervedosa mine area (Bragança, Portugal), where both underground and open pit exploration of tin and arsenic minerals were performed for about one century (1857 – 1969). We aimed at obtaining ecotoxicological information with terrestrial and aquatic plant species to integrate in the risk assessment of this mine area. Further we also intended to evaluate if the assessment of other parameters, in standard assays with terrestrial plants, can improve the identification of phytotoxic soils. For this purpose, soil samples were collected on 16 sampling sites distributed along four transects, defined within the mine area, and in one reference site. General soil physical and chemical parameters, total and extractable metal contents were analyzed. Assays were performed for soil elutriates and for the whole soil matrix following standard guidelines for growth inhibition assay with Lemna minor and emergence and seedling growth assay with Zea mays. At the end of the Z. mays assay, relative water content, membrane permeability, leaf area, content of photosynthetic pigments (chlorophylls and carotenoids), malondialdehyde levels, proline content, and chlorophyll fluorescence (Fv/Fm and ΦPSII) parameters were evaluated. In general, the soils near the exploration area revealed high levels of Al, Mn, Fe and Cu. Almost all the soils from transepts C, D and F presented total concentrations of arsenic well above soils screening benchmark values available. Elutriates of several soils from sampling sites near the exploration and ore treatment areas were toxic to L. minor, suggesting that the retention function of these soils was seriously compromised. In Z. mays assay, plant performance parameters (other than those recommended by standard protocols), allowed the identification of more phytotoxic soils. The results suggest that these parameters could improve the sensitivity of the standard assays. PMID:23565165
DOE Office of Scientific and Technical Information (OSTI.GOV)
Will, M.E.
1994-01-01
This report presents a standard method for deriving benchmarks for the purpose of ''contaminant screening,'' performed by comparing measured ambient concentrations of chemicals. The work was performed under Work Breakdown Structure 1.4.12.2.3.04.07.02 (Activity Data Sheet 8304). In addition, this report presents sets of data concerning the effects of chemicals in soil on invertebrates and soil microbial processes, benchmarks for chemicals potentially associated with United States Department of Energy sites, and literature describing the experiments from which data were drawn for benchmark derivation.
Assessing the ecological risk of soil irrigated with wastewater using in vitro cell bioassays.
Yu, Guo; Xiao, Ruiyang; Wang, Donghong; Zhou, Jun; Wang, Zijian
2008-12-01
In the most recent research work, the accumulation of toxicants in soil was always assessed through concentration level of the target contaminants. However, assessments based on chemical analysis were limited in numbers and in their unpredictable bioavailability. An alternative assessment could be based on toxicity assessment. It means that a screening bioassay is a necessary tool for identifying and defining contaminants at the sites, which should warrant further attention. In the present study, three in vitro cell bioassays, including the SOS/umu bioassay for genotoxic effects, human estrogen receptor recombinant yeast bioassay for estrogenic effects, and ethoxyresorfin O-deethylase (EROD) with H4IIE rat hepatoma cells bioassay for Ah-receptor agonistic effects, were used for the evaluation of the accumulation of toxicants in soils irrigated with wastewater in the suburb of Beijing, China. The results indicated that there were significant increases of genotoxic, estrogenic, and Ah-receptor agonistic effects in soils irrigated with wastewater, as compared with soils irrigated with groundwater. There was the decreased effect gradient following the increase of the distances from the inlet of the wastewater. It was concluded that wastewater irrigation could cause accumulation of genotoxic, estrogenic, and Ah-receptor agonistic chemicals in soil.
A New Screening Method for Methane in Soil Gas Using Existing Groundwater Monitoring Wells
Methane in soil gas may have undesirable consequences. The soil gas may be able to form a flammable mixture with air and present an explosion hazard. Aerobic biodegradation of the methane in soil gas may consume oxygen that would otherwise be available for biodegradation of gasol...
Managing environmental lead in Broken Hill: a public health success.
Boreland, Frances; Lesjak, Margaret S; Lyle, David M
2008-01-01
To describe locality-specific changes in blood lead levels of 1-4-year-old children in Broken Hill, NSW between 1991 and 2007. Annual age-sex standardised mean blood lead levels, blood lead screening clinic attendance rates and lead-dust levels for five lead-risk zones were calculated from routinely collected data. Blood lead levels were similar in all localities in 2002, 2003, 2005 and 2006, after having been consistently higher in localities with highest environmental lead since 1991. Combining health promotion with a targeted clean-up has reduced the effect of locality on blood lead levels. Results are consistent with reduced contamination due to effective soil stabilisation and storm-water control.
Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2011-01-01
The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface-water for contaminants at the Old Incinerator Area at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Total petroleum hydrocarbons were detected above the method detection level in all 13 samplers deployed in the hyporheic zone and flood plain of an unnamed tributary to Spirit Creek. The combined concentrations of benzene, toluene, ethylbenzene, and total xylene were detected at 3 of the 13 samplers. Other organic compounds detected in one sampler included octane and trichloroethylene. In the passive soil-gas survey, 28 of the 60 samplers detected total petroleum hydrocarbons above the method detection level. Additionally, 11 of the 60 samplers detected the combined masses of benzene, toluene, ethylbenzene, and total xylene above the method detection level. Other compounds detected above the method detection level in the passive soil-gas survey included octane, trimethylbenzene, perchlorethylene, and chloroform. Subsequent to the passive soil-gas survey, six areas determined to have relatively high contaminant mass were selected, and soil-gas samplers were deployed, collected, and analyzed for explosives and chemical agents. No explosives or chemical agents were detected above their method detection levels, but those that were detected were above the nondetection level. The same six locations that were sampled for explosives and chemical agents were selected for the collection of soil samples. No metals that exceeded the Regional Screening Levels for Industrial Soils as classified by the U.S. Environmental Protection Agency were detected at any of the six Old Incinerator Area locations. The soil samples also were compared to values from the ambient, uncontaminated (background) levels for soils in South Carolina. Because South Carolina is adjacent to Georgia and the soils in the coastal plain are similar, these comparisons are valid. No similar values are available for Georgia to use for comparison purposes. The only metal detected above the ambient background levels for South Carolina was barium. A surface-water sample collected from a tributary west and north of the Old Incinerator Area was analyzed for volatile organic compounds, semivolatile organic compounds, and inorganic compounds (metals). The only volatile organic and (or) semivolatile organic compound that was detected above the laboratory reporting level was toluene. The compounds 4-isopropyl-1-methylbenzene and isophorone were detected above the nondetection level but below the laboratory reporting level and were estimated. These compounds were detected at levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency National Primary Drinking Water Standard. Iron was the only inorganic compound detected in the surface-water sample that exceeded the maximum contaminant level set by the U.S. Environmental Protection Agency National Secondary Drinking Water Standard. No other inorganic compounds exceeded the maximum contaminant levels for the U.S. Environmental Protection Agency National Primary Drinking Water Standard, National Secondary Drinking Water Standard, or the Georgia In-Stream Water Quality Standard.
Soil Sampling Operating Procedure
EPA Region 4 Science and Ecosystem Support Division (SESD) document that describes general and specific procedures, methods, and considerations when collecting soil samples for field screening or laboratory analysis.
TREATABILITY POTENTIAL FOR EPA LISTED HAZARDOUS WASTES IN SOIL
This study developed comprehensive screening data on the treatability in soil of: (a) specific listed hazardous organic chemicals, and (b) waste sludge from explosives production (K044) and related chemicals. Laboratory experiments were conducted using two soil types, an acidic s...
Nissim, Werther Guidi; Hasbroucq, Séverine; Kadri, Hafssa; Pitre, Frederic E; Labrecque, Michel
2015-01-01
In this preliminary screening study, we tested the phytoextraction potential of nine Canadian native/well-adapted plant species on a soil highly polluted by trace elements (TE) from a copper refinery. Plant physiological parameters and soil cover index were monitored for a 12-week period. At the end of the trial, biomass yield, bioconcentration (BFC) and translocation (TF) factors for the main TE as well as phytoextraction potential were determined. Most plants were severely injured by the high pollution levels, showing symptoms of toxicity including chlorosis, mortality and very low biomass yield. However, Indian mustard showed the highest selenium extraction potential (65 mg m(-2)), even under harsh growing conditions. Based on our results, tall fescue and ryegrass, which mainly stored As, Cu, Pb and Zn within roots, could be used effectively for phytostabilization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruedig, Elizabeth; Whicker, Jeffrey Jay
In 2017, soil sampling for radiological materials was conducted within Tract A-18-2 specifically for land conveyance decisions. Measurements of radionuclides in soil samples were evaluated against a recreational use scenario, and all measurements were below screening action levels for each radionuclide. The total estimated dose was less than 1 mrem/y (< 10 μSv/y) for a hypothetical recreational user (compared to a dose limit of 25 mrem/y (250 μSv/y)). Dose estimates were based on the 95% upper confidence limits for radionuclide concentrations within the Tract. Additionally, dose estimates less than 3 mrem/y are considered to be As Low As Reasonably Achievable,more » so no follow-up analysis was conducted. Release of this property is consistent with the requirements of DOE Order 458.1 and Policy 412.« less
Lipase assay in soils by copper soap colorimetry.
Saisuburamaniyan, N; Krithika, L; Dileena, K P; Sivasubramanian, S; Puvanakrishnan, R
2004-07-01
A simple and sensitive method for the estimation of lipase activity in soils is reported. In this method, 50mg of soil is incubated with emulsified substrate, the fatty acids liberated are treated with cupric acetate-pyridine reagent, and the color developed is measured at 715 nm. Use of olive oil in this protocol leads to an estimation of true lipase activity in soils. The problem of released fatty acids getting adsorbed onto the soil colloids is obviated by the use of isooctane, and separate standards for different soils need not be developed. Among the various surfactants used for emulsification, polyvinyl alcohol is found to be the most effective. Incubation time of 20 min, soil concentration of 50 mg, pH 6.5, and incubation temperature of 37 degrees C were found to be the most suitable conditions for this assay. During the process of enrichment of the soils with oil, interference by the added oil is avoided by the maintenance of a suitable control, wherein 50 mg of soil is added after stopping the reaction. This assay is sensitive and it could be adopted to screen for lipase producers from enriched soils and oil-contaminated soils before resorting to isolation of the microbes by classical screening methods.
Screening of polymers on selected Hawaii soils for erosion reduction and particle settling
NASA Astrophysics Data System (ADS)
Teo, James A.; Ray, Chittaranjan; El-Swaify, Samir A.
2006-01-01
In recent years, high-molecular-weight anionic polyacrylamides (PAMs) have been tested on a variety of soils, primarily in temperate climates. However, little information is available regarding the effectiveness of PAM for preventing soil loss through runoff in tropical settings. Screening tests were performed using three negatively charged PAMs and one positively charged PAM on five Hawaii soils (two Oxisols, one Vertisol, and two Aridisols) to determine erosion loss, sediment settling, and aggregate stability. A laboratory-scale rainfall simulator was used to apply erosive rainfall at intensities from 5 to 8.5 cm h-1 at various PAM doses applied in both dry and solution forms. Soil detachment due to splash and runoff, as well as the runoff and percolate water volumes, were measured for initial and successive storms. The impact of PAM on particle settling and aggregate stability was also evaluated for selected soil-treatment combinations. Among the PAMs, Superfloc A-836 was most effective, and significantly reduced runoff and splash sediment loss for the Wahiawa Oxisol and Pakini Andisol at rates varying between 10 and 50 kg ha-1. Reduced runoff and splash sediment loss were also noted for PAM Aerotil-D when applied in solution form to the Wahiawa Oxisol. Significant reductions in soil loss were not noted for either the Lualualei Vertisol or the Holomua Oxisol. It is believed that the high montmorillonite content of the Lualualei Vertisol and the low cation-exchange capacity of the Holomua Oxisol diminished the effectiveness of the various PAMs tested. The polymers were also found to enhance sediment settling of all soils and helped improve their aggregate stability. This screening study shows the potential use of PAM for tropical soils for applications such as infiltration enhancement, runoff reduction, and enhanced sedimentation of detention ponds.
Singh, Amit Kishore; Rai, Govind Kumar; Singh, Major; Dubey, Suresh Kumar
2013-11-01
To elucidate whether the transgenic crop alters the rhizospheric bacterial community structure, a 2-year study was performed with Cry1Ac gene-inserted brinjal crop (Bt) and their near isogenic non-transformed trait (non-Bt). The event of Bt crop (VRBT-8) was screened using an insect bioassay and enzyme-linked immunosorbent assay. Soil moisture, NH4 (+)-N, NO3 (-)-N, and PO4 (-)-P level had non-significant variation. Quantitative polymerase chain reaction revealed that abundance of bacterial 16S rRNA gene copies were lower in soils associated with Bt brinjal. Microbial biomass carbon (MBC) showed slight reduction in Bt brinjal soils. Higher MBC values in the non-Bt crop soil may be attributed to increased root activity and availability of readily metabolizable carbon compounds. The restriction fragment length polymorphism of PCR-amplified rRNA gene fragments detected 13 different bacterial groups with the exclusive presence of β-Proteobacteria, Chloroflexus, Planctomycetes, and Fusobacteria in non-Bt, and Cyanobacteria and Bacteroidetes in Bt soils, respectively, reflecting minor changes in the community structure. Despite the detection of Cry1Ac protein in the rhizospheric soil, the overall impact of Cry1Ac expressing Bt brinjal was less compared to that due to seasonal changes.
In cities nationwide, urban agriculture has been put on hold because of the high costs of soil testing for historical contaminants such as lead (Pb). The Mehlich-3 soil test is commonly used to determine plant available nutrients, is inexpensive, and has the potential to estimate...
Tulliani, Jean-Marc; Baroni, Chiara; Zavattaro, Laura; Grignani, Carlo
2013-01-01
The aim of this work is to study the sensing behavior of Sr-doped hematite for soil water content measurement. The material was prepared by solid state reaction from commercial hematite and strontium carbonate heat treated at 900 °C. X-Ray diffraction, scanning electron microscopy and mercury intrusion porosimetry were used for microstructural characterization of the synthesized powder. Sensors were then prepared by uniaxially pressing and by screen-printing, on an alumina substrate, the prepared powder and subsequent firing in the 800–1,000 °C range. These sensors were first tested in a laboratory apparatus under humid air and then in an homogenized soil and finally in field. The results evidenced that the screen printed film was able to give a response for a soil matric potential from about 570 kPa, that is to say well below the wilting point in the used soil. PMID:24025555
Soil Gas Sampling Operating Procedure
EPA Region 4 Science and Ecosystem Support Division (SESD) document that describes general and specific procedures, methods, and considerations when collecting soil gas samples for field screening or laboratory analysis.
Martian Soil Delivery to Analytical Instrument on Phoenix
NASA Technical Reports Server (NTRS)
2008-01-01
The Robotic Arm of NASA's Phoenix Mars Lander released a sample of Martian soil onto a screened opening of the lander's Thermal and Evolved-Gas Analyzer (TEGA) during the 12th Martian day, or sol, since landing (June 6, 2008). TEGA did not confirm that any of the sample had passed through the screen. The Robotic Arm Camera took this image on Sol 12. Soil from the sample delivery is visible on the sloped surface of TEGA, which has a series of parallel doors. The two doors for the targeted cell of TEGA are the one positioned vertically, at far right, and the one partially open just to the left of that one. The soil between those two doors is resting on a screen designed to let fine particles through while keeping bigger ones Efrom clogging the interior of the instrument. Each door is about 10 centimeters (4 inches) long. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.The design of disengaging mechanism of radix pseudostellariae and soil
NASA Astrophysics Data System (ADS)
Xiao, Shungen; Song, Mengmeng; Chen, Chanwei
2017-12-01
With the continuous development of the scale of the cultivation of the radix pseudostellariae, the traditional separation mode cannot adapt to the mass production of the crown prince, and the existing manual separation mode is of great labor intensity and low degree of mechanization. Therefore, it is necessary to design a disengaging mechanism of radix pseudostellariae and soil on the basis of the design principle of modern agricultural machinery. According to the physical characteristics and growing environment of radix pseudostellariae, a drum-type separating component is presented, and the drum screen separating mechanism and vibration mechanism of the disengaging mechanism are designed. In this paper, the movement rule and time of the mixture of radix pseudostellariae and soil are determined in the drum screen. Rotation speed of the drum screen is calculated, and the operation rules of the eccentric wheel in the vibration mechanism are summarized.
Field Branches Quality System and Technical Procedures: This document describes general and specific procedures, methods and considerations to be used and observed when collecting soil gas samples for field screening or laboratory analysis.
Dizer, Halim; Fischer, Birgit; Sepulveda, Isabel; Loffredo, Elisabetta; Senesi, Nicola; Santana, Fernando; Hansen, Peter-D
2002-01-01
Several experiments were conducted to evaluate the behavior and performance of some potential endocrine disrupters (ECDs). Two in vitro screening assays, one based on MCF7-cell proliferation (E-screen test) and the other on estrogenic receptor activity [enzyme-linked receptor assay (ELRA)], were used for the tests, which were done in lysimeters 80 cm in diameter with depth of 30 cm (shallow) or 90 cm (deep). A sandy soil was used to fill in all lysimeters, which were spiked on the surface with either: (a) a sewage sludge (SS) at a dose equivalent to 20 tons ha-1; (b) a mixture of reference ECDs, comprising 17 alpha- and 17 beta-estradiol (E2), nonylphenol, octylphenol, and bisphenol A at doses 100 times higher than the maximum concentrations respectively found in the applied SS; or (c) a mixture of ECDs and SS. After percolation of the lysimeters with rain and/or artificial water, five leachates were sampled from each lysimeter during a period of 210 days. Immediately after the lysimeter percolation experiments, four and six soil fractions were dissected from, respectively, the 30-cm and 90-cm lysimeters and extracted by water. Both the leachate and soil extract samples were analyzed for their estrogenicity using the assays indicated above. The E-screen assay was highly sensitive only for some leachate and extract samples but gave no response for most leachates and soil extracts. The results of the ELRA assay suggests a significantly higher estrogenicity of leachate samples from shallow lysimeters compared with that of leachates from deep lysimeters. In contrast, the estrogenic effect measured for soil extracts of shallow lysimeters was lower than that measured for soil extracts of deep lysimeters. The results of the E-screen assay suggests the occurrence of a fast mobilization of applied ECDs and a moderate retardation effect of native ECDs contained in applied SS in the sandy soil used in the lysimeters. In lysimeters spiked with a mixture of SS and ECDs, the washing-out effect of ECDs in the first leachate fraction decreased, but the distribution of ECDs in the lysimeters increased. The relatively high estrogenic impact measured for soil water extracts suggests that the ECDs were mostly associated with water-soluble fractions of organic matter and/or water-suspended fractions of the mineral soil matrix. The application of SS to agricultural and forest fields may determine the immobilization of ECDs in soil or their movement to surface and/or groundwater. Therefore, an endocrine risk of exposure exists for the water and soil organisms.
Adrion, Alden C; Nakamura, Jun; Shea, Damian; Aitken, Michael D
2016-04-05
A total of five nonionic surfactants (Brij 30, Span 20, Ecosurf EH-3, polyoxyethylene sorbitol hexaoleate, and R-95 rhamnolipid) were evaluated for their ability to enhance PAH desorption and biodegradation in contaminated soil after treatment in an aerobic bioreactor. Surfactant doses corresponded to aqueous-phase concentrations below the critical micelle concentration in the soil-slurry system. The effect of surfactant amendment on soil (geno)toxicity was also evaluated for Brij 30, Span 20, and POESH using the DT40 B-lymphocyte cell line and two of its DNA-repair-deficient mutants. Compared to the results from no-surfactant controls, incubation of the bioreactor-treated soil with all surfactants increased PAH desorption, and all except R-95 substantially increased PAH biodegradation. POESH had the greatest effect, removing 50% of total measured PAHs. Brij 30, Span 20, and POESH were particularly effective at enhancing biodegradation of four- and five-ring PAHs, including five of the seven carcinogenic PAHs, with removals up to 80%. Surfactant amendment also significantly enhanced the removal of alkyl-PAHs. Most treatments significantly increased soil toxicity. Only the no-surfactant control and Brij 30 at the optimum dose significantly decreased soil genotoxicity, as evaluated with either mutant cell line. Overall, these findings have implications for the feasibility of bioremediation to achieve cleanup levels for PAHs in soil.
Van Emon, Jeanette M.; Chuang, Jane C.; Lordo, Robert A.; Schrock, Mary E.; Nichkova, Mikaela; Gee, Shirley J.; Hammock, Bruce D.
2010-01-01
A 96-microwell enzyme-linked immunosorbent assay (ELISA) method was evaluated to determine PCDDs/PCDFs in sediment and soil samples from an EPA Superfund site. Samples were prepared and analyzed by both the ELISA and a gas chromatography/high resolution mass spectrometry (GC/HRMS) method. Comparable method precision, accuracy, and detection level (8 ng kg−1) were achieved by the ELISA method with respect to GC/HRMS. However, the extraction and cleanup method developed for the ELISA requires refinement for the soil type that yielded a waxy residue after sample processing. Four types of statistical analyses (Pearson correlation coefficient, paired t-test, nonparametric tests, and McNemar’s test of association) were performed to determine whether the two methods produced statistically different results. The log-transformed ELISA-derived 2,3,7,8-tetrachlorodibenzo-p-dioxin values and logtransformed GC/HRMS-derived TEQ values were significantly correlated (r = 0.79) at the 0.05 level. The median difference in values between ELISA and GC/HRMS was not significant at the 0.05 level. Low false negative and false positive rates (<10%) were observed for the ELISA when compared to the GC/HRMS at 1000 ng TEQ kg−1. The findings suggest that immunochemical technology could be a complementary monitoring tool for determining concentrations at the 1000 ng TEQ kg−1 action level for contaminated sediment and soil. The ELISA could also be used in an analytical triage approach to screen and rank samples prior to instrumental analysis. PMID:18313102
On the assimilation of satellite derived soil moisture in numerical weather prediction models
NASA Astrophysics Data System (ADS)
Drusch, M.
2006-12-01
Satellite derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analysed from the modelled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. Three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-range Weather Forecasts (ECMWF) have been performed for the two months period of June and July 2002: A control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating bias corrected TMI (TRMM Microwave Imager) derived soil moisture over the southern United States through a nudging scheme using 6-hourly departures. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analysed in the nudging experiment is the most accurate estimate when compared against in-situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage. The transferability of the results to other satellite derived soil moisture data sets will be discussed.
Basavaiah, N; Blaha, U; Das, P K; Deenadayalan, K; Sadashiv, M B; Schulz, H
2011-08-01
Soils of basaltic origin cause difficulties in environmental magnetic screening for heavy metal pollution due to their natural high background values. Magnetic parameters and heavy metal content of highly magnetic topsoils from the Deccan Trap basalts are investigated to assess their potential for use in environmental magnetic pollution screening. This work extends the fast and cost-effective magnetic pollution screening techniques into soils with high natural magnetic signals. Fifty-five topsoil samples from N-S and W-E transects were collected and subdivided according to grain size using wet sieving technique. Magnetic susceptibility, soft isothermal remanent magnetization (Soft IRM), thermomagnetic analysis, scanning electron microscopy (SEM), and heavy metal analysis were performed on the samples. Magnetic analyses reveal a significant input of anthropogenic magnetic particulate matter within 6 km of the power plant and the adjacent ash pond. Results depend strongly on the stage of soil development and vary spatially. While results in the W, E, and S directions are easily interpretable, in the N direction, the contribution of the anthropogenic magnetic matter is difficult to assess due to high magnetic background values, less developed soils, and a more limited contribution from the fly ash sources. Prevailing winds towards directions with more enhanced values seem to have a certain effect on particulate matter accumulation in the topsoil. Thermomagnetic measurements show Verwey transition and Hopkinson peak, thus proving the presence of ferrimagnetic mineral phases close to the pollution source. A quantitative decrease of the anthropogenic ferrimagnetic mineral concentration with increased distance is evident in Soft IRM measurements. SEM investigations of quantitatively extracted magnetic particles confirm the fly ash distribution pattern obtained from the magnetic and heavy metal analyses. Evaluation of magnetic and chemical data in concert with the Pollution Load IndiceS (PLIS) of Pb, Zn, and Cu reveals a good relationship between magnetic susceptibility and the metal content. Integrated approaches in data acquisition of magnetic and chemical parameters enable the application of magnetic screening methods in highly magnetic soils. Combined data evaluation allows identification of sampling sites that are affected by human activity, through the deviation of the magnetic and chemical data from the general trend. It is shown that integrative analysis of magnetic parameters and a limited metal concentration dataset can enhance the quality of the output of environmental magnetic pollution screening significantly.
Contamination by trace elements at e-waste recycling sites in Bangalore, India.
Ha, Nguyen Ngoc; Agusa, Tetsuro; Ramu, Karri; Tu, Nguyen Phuc Cam; Murata, Satoko; Bulbule, Keshav A; Parthasaraty, Peethmbaram; Takahashi, Shin; Subramanian, Annamalai; Tanabe, Shinsuke
2009-06-01
The recycling and disposal of electronic waste (e-waste) in developing countries is causing an increasing concern due to its effects on the environment and associated human health risks. To understand the contamination status, we measured trace elements (TEs) in soil, air dust, and human hair collected from e-waste recycling sites (a recycling facility and backyard recycling units) and the reference sites in Bangalore and Chennai in India. Concentrations of Cu, Zn, Ag, Cd, In, Sn, Sb, Hg, Pb, and Bi were higher in soil from e-waste recycling sites compared to reference sites. For Cu, Sb, Hg, and Pb in some soils from e-waste sites, the levels exceeded screening values proposed by US Environmental Protection Agency (EPA). Concentrations of Cr, Mn, Co, Cu, In, Sn, Sb, Tl, Pb and Bi in air from the e-waste recycling facility were relatively higher than the levels in Chennai city. High levels of Cu, Mo, Ag, Cd, In, Sb, Tl, and Pb were observed in hair of male workers from e-waste recycling sites. Our results suggest that e-waste recycling and its disposal may lead to the environmental and human contamination by some TEs. To our knowledge, this is the first study on TE contamination at e-waste recycling sites in Bangalore, India.
Maryland Water Resources Research Center
your links and references accordingly. Celebrating Soil 2015 Maryland Water Symposium Monday, Dec. 7 reception, followed by a screening of the award-winning documentary, "Symphony of the Soil". Click
Hardware cloth seed-spot screens reduce high surface soil temperature
H.A. Fowells; R.K. Arnold
1939-01-01
Screens made of hardware cloth are commonly used to protect seed-spots in forest plantations from the depredations of birds and rodents. It is important to know whether or not the screens influence germination and survival of seedlings in addition to furnishing protection against animals.
Suppressive soils: back on the radar screen
USDA-ARS?s Scientific Manuscript database
Suppressive soils are those in which a pathogen does not establish or persist, establishes but causes little or no damage, or establishes and causes disease for a while but thereafter the disease is less important, although the pathogen may persist in the soil (Weller, 2002). ‘General suppression,’ ...
Laidlaw, Mark A.S.; Mielke, Howard W.; Filippelli, Gabriel M.; Johnson, David L.; Gonzales, Christopher R.
2005-01-01
On a community basis, urban soil contains a potentially large reservoir of accumulated lead. This study was undertaken to explore the temporal relationship between pediatric blood lead (BPb), weather, soil moisture, and dust in Indianapolis, Indiana; Syracuse, New York; and New Orleans, Louisiana. The Indianapolis, Syracuse, and New Orleans pediatric BPb data were obtained from databases of 15,969, 14,467, and 2,295 screenings, respectively, collected between December 1999 and November 2002, January 1994 and March 1998, and January 1998 and May 2003, respectively. These average monthly child BPb levels were regressed against several independent variables: average monthly soil moisture, particulate matter < 10 μm in diameter (PM10), wind speed, and temperature. Of temporal variation in urban children’s BPb, 87% in Indianapolis (R2 = 0.87, p = 0.0004), 61% in Syracuse (R2 = 0.61, p = 0.0012), and 59% in New Orleans (R2 = 0.59, p = 0.0000078) are explained by these variables. A conceptual model of urban Pb poisoning is suggested: When temperature is high and evapotranspiration maximized, soil moisture decreases and soil dust is deposited. Under these combined weather conditions, Pb-enriched PM10 dust disperses in the urban environment and causes elevated Pb dust loading. Thus, seasonal variation of children’s Pb exposure is probably caused by inhalation and ingestion of Pb brought about by the effect of weather on soils and the resulting fluctuation in Pb loading. PMID:15929906
Read, J J; Jensen, E H
1989-02-01
Problems associated with continuously planting alfalfa (Medicago saliva L.) or seeding to thicken depleted alfalfa stands may be due to autotoxicity, an intraspecific form of allelopathy. A bioassay approach was utilized to characterize the specificity and chemical nature of phytotoxins in extracts of alfalfa soils as compared to fallow soil or soil where a cereal was the previous crop. In germination chamber experiments, water-soluble substances present in methanol extracts of soil cropped to alfalfa or barley (Hordeum vulgare L.) decreased seedling root length of alfalfa L-720, winter wheat (Triticum aestivum L. Nugaines) and radish (Raphanus sativa L. Crimson Giant). Five days after germination, seedling dry weights of alfalfa and radish in alfalfa soil extracts were lower compared to wheat or red clover (Trifolium pralense L. Kenland). Growth of red clover was not significantly reduced by soil extracts from cropped soil. Extracts of crop residue screened from soil cropped to alfalfa or barley significantly reduced seedling root length; extracts of alfalfa residue caused a greater inhibition of seedling dry weight than extracts of barely residue. A phytotoxic, unidentified substance present in extracts of crop residue screened from alfalfa soil, which inhibited seedling root length of alfalfa, was isolated by thin-layer chromatography (TLC). Residues from a soil cropped continuously to alfalfa for 10 years had the greatest phytotoxic activity.
Beaugelin-Seiller, K
2014-12-01
The classical approach to environmental radioprotection is based on the assumption of homogeneously contaminated media. However, in soils and sediments there may be a significant variation of radioactivity with depth. The effect of this heterogeneity was investigated by examining the external exposure of various sediment and soil organisms, and determining the resulting dose rates, assuming a realistic combination of locations and radionuclides. The results were dependent on the exposure situation, i.e., the organism, its location, and the quality and quantity of radionuclides. The dose rates ranged over three orders of magnitude. The assumption of homogeneous contamination was not consistently conservative (if associated with a level of radioactivity averaged over the full thickness of soil or sediment that was sampled). Dose assessment for screening purposes requires consideration of the highest activity concentration measured in a soil/sediment that is considered to be homogeneously contaminated. A more refined assessment (e.g., higher tier of a graded approach) should take into consideration a more realistic contamination profile, and apply different dosimetric approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.
Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2012-01-01
The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the groundwater, soil gas, and soil for contaminants at the Vietnam Armor Training Facility (VATF) at Fort Gordon, from October 2009 to September 2011. The assessment included the detection of organic compounds in the groundwater and soil gas, and inorganic compounds in the soil. In addition, organic contaminant assessment included organic compounds classified as explosives and chemical agents in selected areas. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. This report is a revision of "Assessment of soil-gas, surface-water, and soil contamination at the Vietnam Armor Training Facility, Fort Gordon, Georgia, 2009-2010," Open-File Report 2011-1200, and supersedes that report to include results of additional samples collected in July 2011. Four passive samplers were deployed in groundwater wells at the VATF in Fort Gordon. Total petroleum hydrocarbons and benzene and octane were detected above the method detection level at all four wells. The only other volatile organic compounds detected above their method detection level were undecane and pentadecane, which were detected in two of the four wells. Soil-gas samplers were deployed at 72 locations in a grid pattern across the VATF on June 3, 2010, and then later retrieved on June 9, 2010. Total petroleum hydrocarbons were detected in 71 of the 72 samplers (one sampler was destroyed in the field and not analyzed) at levels above the method detection level, and the combined mass of benzene, toluene, ethylbenzene, and total xylene (BTEX) was detected above the detection level in 31 of the 71 samplers that were analyzed. Other volatile organic compounds detected above their respective method detection levels were naphthalene, 2-methyl-naphthalene, tridecane, 1,2,4-trimethylbenzene, and perchloroethylene. After the results of the 71 soil-gas samplers were received, 31 additional passive soil-gas samplers were deployed on July 14, 2011, and retrieved on July 18, 2011. These 31 samplers were deployed on a larger areal scale to better define the extent of the contamination. Total petroleum hydrocarbons were detected above their method detection level at all 31 samplers, whereas BTEX was detected above its method detection level at 17 of the 31 samplers. Other organic compounds detected above their method detection levels were naphthalene, 2-methyl-naphthalene, octane, undecane, tridecane, pentadecane, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, chloroform, and perchloroethylene. Subsequent to the 2010 soil-gas survey, four areas determined to have elevated contaminant mass were selected and sampled for explosives and chemical agents. No detections of explosives or chemical agents above their respective method detection levels were found at any of the sampling locations. The same four locations that were sampled for explosives and chemical agents were selected for the collection of soil samples. A fifth location also was selected on the basis of the elevated contaminant mass of the soil-gas survey. No metals that exceeded the Regional Screening Levels for Industrial Soils, as classified by the U.S. Environmental Protection Agency, were detected at any of the five VATF locations. The soil samples also were compared to values from the ambient, uncontaminated (background) levels for soils in South Carolina, as classified by the South Carolina Department of Health and Environmental Control. Because South Carolina is adjacent to Georgia and the soils in the Coastal Plain are similar, these comparisons are valid. No similar values are available for Georgia to use for comparison purposes. The metals that were detected above the ambient background levels for South Carolina, as classified by the South Carolina Department of Health and Environmental Control, include aluminum, arsenic, barium, beryllium, calcium, chromium, copper, iron, lead, magnesium, manganese, nickel, potassium, sodium, and zinc.
deGraffenried, Jeff B; Shepherd, Keith D
2009-12-15
Human induced soil erosion has severe economic and environmental impacts throughout the world. It is more severe in the tropics than elsewhere and results in diminished food production and security. Kenya has limited arable land and 30 percent of the country experiences severe to very severe human induced soil degradation. The purpose of this research was to test visible near infrared diffuse reflectance spectroscopy (VNIR) as a tool for rapid assessment and benchmarking of soil condition and erosion severity class. The study was conducted in the Saiwa River watershed in the northern Rift Valley Province of western Kenya, a tropical highland area. Soil 137 Cs concentration was measured to validate spectrally derived erosion classes and establish the background levels for difference land use types. Results indicate VNIR could be used to accurately evaluate a large and diverse soil data set and predict soil erosion characteristics. Soil condition was spectrally assessed and modeled. Analysis of mean raw spectra indicated significant reflectance differences between soil erosion classes. The largest differences occurred between 1,350 and 1,950 nm with the largest separation occurring at 1,920 nm. Classification and Regression Tree (CART) analysis indicated that the spectral model had practical predictive success (72%) with Receiver Operating Characteristic (ROC) of 0.74. The change in 137 Cs concentrations supported the premise that VNIR is an effective tool for rapid screening of soil erosion condition.
Multilaboratory evaluation of methods for detecting enteric viruses in soils.
Hurst, C J; Schaub, S A; Sobsey, M D; Farrah, S R; Gerba, C P; Rose, J B; Goyal, S M; Larkin, E P; Sullivan, R; Tierney, J T
1991-01-01
Two candidate methods for the recovery and detection of viruses in soil were subjected to round robin comparative testing by members of the American Society for Testing and Materials D19:24:04:04 Subcommittee Task Group. Selection of the methods, designated "Berg" and "Goyal," was based on results of an initial screening which indicated that both met basic criteria considered essential by the task group. Both methods utilized beef extract solutions to achieve desorption and recovery of viruses from representative soils: a fine sand soil, an organic muck soil, a sandy loam soil, and a clay loam soil. One of the two methods, Goyal, also used a secondary concentration of resulting soil eluants via low-pH organic flocculation to achieve a smaller final assay volume. Evaluation of the two methods was simultaneously performed in replicate by nine different laboratories. Each of the produced samples was divided into portions, and these were respectively subjected to quantitative viral plaque assay by both the individual, termed independent, laboratory which had done the soil processing and a single common reference laboratory, using a single cell line and passage level. The Berg method seemed to produce slightly higher virus recovery values; however, the differences in virus assay titers for samples produced by the two methods were not statistically significant (P less than or equal to 0.05) for any one of the four soils. Despite this lack of a method effect, there was a statistically significant laboratory effect exhibited by assay titers from the independent versus reference laboratories for two of the soils, sandy loam and clay loam. PMID:1849712
Multilaboratory evaluation of methods for detecting enteric viruses in soils.
Hurst, C J; Schaub, S A; Sobsey, M D; Farrah, S R; Gerba, C P; Rose, J B; Goyal, S M; Larkin, E P; Sullivan, R; Tierney, J T
1991-02-01
Two candidate methods for the recovery and detection of viruses in soil were subjected to round robin comparative testing by members of the American Society for Testing and Materials D19:24:04:04 Subcommittee Task Group. Selection of the methods, designated "Berg" and "Goyal," was based on results of an initial screening which indicated that both met basic criteria considered essential by the task group. Both methods utilized beef extract solutions to achieve desorption and recovery of viruses from representative soils: a fine sand soil, an organic muck soil, a sandy loam soil, and a clay loam soil. One of the two methods, Goyal, also used a secondary concentration of resulting soil eluants via low-pH organic flocculation to achieve a smaller final assay volume. Evaluation of the two methods was simultaneously performed in replicate by nine different laboratories. Each of the produced samples was divided into portions, and these were respectively subjected to quantitative viral plaque assay by both the individual, termed independent, laboratory which had done the soil processing and a single common reference laboratory, using a single cell line and passage level. The Berg method seemed to produce slightly higher virus recovery values; however, the differences in virus assay titers for samples produced by the two methods were not statistically significant (P less than or equal to 0.05) for any one of the four soils. Despite this lack of a method effect, there was a statistically significant laboratory effect exhibited by assay titers from the independent versus reference laboratories for two of the soils, sandy loam and clay loam.
Yenn, R; Borah, M; Boruah, H P Deka; Roy, A Sarma; Baruah, R; Saikia, N; Sahu, O P; Tamuli, A K
2014-01-01
Environmental deterioration due to crude oil contamination and abandoned drill sites is an ecological concern in Assam. To revive such contaminated sites, afield study was conducted to phytoremediate four crude oil abandoned drill sites of Assam (Gelakey, Amguri, Lakwa, and Borholla) with the aid of two hydrocarbon-degrading Pseudomonas strains designated N3 and N4. All the drill sites were contaminated with 15.1 to 32.8% crude oil, and the soil was alkaline in nature (pH8.0-8.7) with low moisture content, low soil conductivity and low activities of the soil enzymes phosphatase, dehydrogenase and urease. In addition, N, P, K, and C contents were below threshold limits, and the soil contained high levels of heavy metals. Bio-augmentation was achieved by applying Pseudomonas aeruginosa strains N3 and N4 followed by the introduction of screened plant species Tectona grandis, Gmelina arborea, Azadirachta indica, and Michelia champaca. The findings established the feasibility of the phytoremediation of abandoned crude oil-contaminated drill sites in Assam using microbes and native plants.
Itai, Takaaki; Otsuka, Masanari; Asante, Kwadwo Ansong; Muto, Mamoru; Opoku-Ankomah, Yaw; Ansa-Asare, Osmund Duodu; Tanabe, Shinsuke
2014-02-01
Illegal import and improper recycling of electronic waste (e-waste) are an environmental issue in developing countries around the world. African countries are no exception to this problem and the Agbogbloshie market in Accra, Ghana is a well-known e-waste recycling site. We have studied the levels of metal(loid)s in the mixtures of residual ash, formed by the burning of e-waste, and the cover soil, obtained using a portable X-ray fluorescence spectrometer (P-XRF) coupled with determination of the 1M HCl-extractable fraction by an inductively coupled plasma mass spectrometer. The accuracy and precision of the P-XRF measurements were evaluated by measuring 18 standard reference materials; this indicated the acceptable but limited quality of this method as a screening tool. The HCl-extractable levels of Al, Co, Cu, Zn, Cd, In, Sb, Ba, and Pb in 10 soil/ash mixtures varied by more than one order of magnitude. The levels of these metal(loid)s were found to be correlated with the color (i.e., soil/ash ratio), suggesting that they are being released from disposed e-waste via open burning. The source of rare elements could be constrained using correlation to the predominant metals. Human hazard quotient values based on ingestion of soil/ash mixtures exceeded unity for Pb, As, Sb, and Cu in a high-exposure scenario. This study showed that along with common metals, rare metal(loid)s are also enriched in the e-waste burning site. We suggest that risk assessment considering exposure to multiple metal(loid)s should be addressed in studies of e-waste recycling sites. © 2013. Published by Elsevier B.V. All rights reserved.
Screening for heat transport by groundwater in closed geothermal systems.
Ferguson, Grant
2015-01-01
Heat transfer due to groundwater flow can significantly affect closed geothermal systems. Here, a screening method is developed, based on Peclet numbers for these systems and Darcy's law. Conduction-only conditions should not be expected where specific discharges exceed 10(-8) m/s. Constraints on hydraulic gradients allow for preliminary screening for advection based on rock or soil types. Identification of materials with very low hydraulic conductivity, such as shale and intact igneous and metamorphic rock, allow for analysis with considering conduction only. Variability in known hydraulic conductivity allows for the possibility of advection in most other rocks and soil types. Further screening relies on refinement of estimates of hydraulic gradients and hydraulic conductivity through site investigations and modeling until the presence or absence of conduction can be confirmed. © 2014, National Ground Water Association.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-13
... contaminated soils on Site above applicable Michigan Act 451, Part 201 Direct Contact Criteria for residential sites (``Part 201''); if field screening indicates that soil contamination exceeds Part 201 requirements... sidewall and floor confirmation soil samples in accordance with the State of Michigan Sampling Strategies...
Menz, Jakob; Müller, Julia; Olsson, Oliver; Kümmerer, Klaus
2018-06-05
There are growing concerns that antibiotic pollution impacts environmental microbiota and facilitates the propagation of antibiotic resistance. However, the prediction or analytical determination of bioavailable concentrations of antibiotics in soil is still subject to great uncertainty. Biological assays are increasingly recognized as valuable complementary tools that allow a more direct determination of the residual antibiotic activity. This study assessed the bioavailability of structurally diverse antibiotics at a soil-water interface applying activity-based analyses in conjunction with equilibrium partitioning (EqP) modeling. The activity against Gram-positive and Gram-negative bacteria of nine antibiotics from different classes was determined in the presence and absence of standard soil (LUFA St. 2.2). The addition of soil affected the activity of different antibiotics to highly varying degrees. Moreover, a highly significant correlation ( p < 0.0001) between the experimentally observed and the EqP-derived log EC 50 (half-maximal effective concentration) values was observed. The innovative experimental design of this study provided new insights on the bioavailability of antibiotics at soil-water interfaces. EqP appears to be applicable to a broad range of antibiotics for the purpose of screening-level risk assessment. However, EqP estimates cannot replace soil-specific ecotoxicity testing in higher-tier assessments, since their accuracy is still compromised by a number of factors.
Status of microbial diversity in agroforestry systems in Tamil Nadu, India.
Radhakrishnan, Srinivasan; Varadharajan, Mohan
2016-06-01
Soil is a complex and dynamic biological system. Agroforestry systems are considered to be an alternative land use option to help and prevent soil degradation, improve soil fertility, microbial diversity, and organic matter status. An increasing interest has emerged with respect to the importance of microbial diversity in soil habitats. The present study deals with the status of microbial diversity in agroforestry systems in Tamil Nadu. Eight soil samples were collected from different fields in agroforestry systems in Cuddalore, Villupuram, Tiruvanamalai, and Erode districts, Tamil Nadu. The number of microorganisms and physico-chemical parameters of soils were quantified. Among different microbial population, the bacterial population was recorded maximum (64%), followed by actinomycetes (23%) and fungi (13%) in different samples screened. It is interesting to note that the microbial population was positively correlated with the physico-chemical properties of different soil samples screened. Total bacterial count had positive correlation with soil organic carbon (C), moisture content, pH, nitrogen (N), and micronutrients such as Iron (Fe), copper (Cu), and zinc (Zn). Similarly, the total actinomycete count also showed positive correlations with bulk density, moisture content, pH, C, N, phosphorus (P), potassium (K), calcium (Ca), copper (Cu), magnesium (Mg), manganese (Mn), and zinc (Zn). It was also noticed that the soil organic matter, vegetation, and soil nutrients altered the microbial community under agroforestry systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Khan, Waheed Ullah; Yasin, Nasim Ahmad; Ahmad, Sajid Rashid; Ali, Aamir; Ahmed, Shakil; Ahmad, Aqeel
2017-05-04
In our current study, four nickel-tolerant (Ni-tolerant) bacterial species viz, Bacillus thuringiensis 002, Bacillus fortis 162, Bacillus subtilis 174, and Bacillus farraginis 354, were screened using Ni-contaminated media. The screened microbes exhibited positive results for synthesis of indole acetic acid (IAA), siderophore production, and phosphate solubilization. The effects of these screened microbes on Ni mobility in the soil, root elongation, plant biomass, and Ni uptake in Althea rosea plants grown in Ni-contaminated soil (200 mg Ni kg -1 ) were evaluated. Significantly higher value for water-extractable Ni (38 mg kg -1 ) was observed in case of Ni-amended soils inoculated with B. subtilis 174. Similarly, B. thuringiensis 002, B. fortis 162, and B. subtilis 174 significantly enhanced growth and Ni uptake in A. rosea. The Ni uptake in the shoots and roots of B. subtilis 174-inoculated plants enhanced up to 1.7 and 1.6-fold, respectively, as compared to that in the un-inoculated control. Bacterial inoculation also significantly improved the root and shoot biomass of treated plants. The current study presents a novel approach for bacteria-assisted phytoremediation of Ni-contaminated areas.
Verrot, Lucile; Destouni, Georgia
2015-01-01
Soil moisture influences and is influenced by water, climate, and ecosystem conditions, affecting associated ecosystem services in the landscape. This paper couples snow storage-melting dynamics with an analytical modeling approach to screening basin-scale, long-term soil moisture variability and change in a changing climate. This coupling enables assessment of both spatial differences and temporal changes across a wide range of hydro-climatic conditions. Model application is exemplified for two major Swedish hydrological basins, Norrström and Piteälven. These are located along a steep temperature gradient and have experienced different hydro-climatic changes over the time period of study, 1950-2009. Spatially, average intra-annual variability of soil moisture differs considerably between the basins due to their temperature-related differences in snow dynamics. With regard to temporal change, the long-term average state and intra-annual variability of soil moisture have not changed much, while inter-annual variability has changed considerably in response to hydro-climatic changes experienced so far in each basin.
General well function for soil vapor extraction
NASA Astrophysics Data System (ADS)
Perina, Tomas
2014-04-01
This paper develops a well function applicable to extraction of groundwater or soil vapor from a well under the most common field test conditions. The general well function (Perina and Lee, 2006) [12] is adapted to soil vapor extraction and constant head boundary at the top. For groundwater flow, the general well function now applies to an extraction well of finite diameter with uniform drawdown along the screen, finite-thickness skin, and partially penetrating an unconfined, confined, and leaky aquifer, or an aquifer underneath a reservoir. With a change of arguments, the model applies to soil vapor extraction from a vadose zone with no cover or with leaky cover at the ground surface. The extraction well can operate in specified drawdown (pressure for soil vapor) or specified flowrate mode. Frictional well loss is computed as flow-only dependent component of the drawdown inside the extraction well. In general case, the calculated flow distribution is not proportional to screen length for a multiscreen well.
Isotopic Evolution of Soil Organic Matter Affects Paleo-vegetation and Paleo-pCO2 Reconstructions
NASA Astrophysics Data System (ADS)
Bowen, G. J.; Beerling, D. J.
2004-12-01
The stable carbon isotope ratio (\\delta13C) of fossil terrestrial organic matter is used to study several aspects of biosphere/atmosphere coupling in the geologic past. These range from vegetation response to climatic and pCO2 shifts to reconstruction of paleo-pCO2 levels. Although screening for diagenesis is typical in these studies, few have taken into account the ubiquitous but poorly understood phenomenon of progressive 13C-enrichment of soil organic matter during its decay, which is observed in modern soils worldwide. We present a simple model that describes this phenomenon and the interaction of soil organic carbon and CO2 concentrations, fluxes and \\delta13C values. At its most basic level, the model suggests that bulk organic matter from sub-surface soil horizons will be variably enriched in 13C relative to the vegetation living on the soil surface. This complicates interpretation of paleo-isotopic records used in C3/C4 vegetation reconstructions, and may account for anomalously heavy fossil organic carbon isotope values measured in some paleosols pre-dating the end-Miocene expansion of C4 floras. The model also demonstrates that the \\delta13C evolution of soil organic carbon during its decay generates 2 types of biases that may affect soil mineral paleo-pCO2 proxies. The first type of bias results from a steady-state inequality between the \\delta13C of organic carbon at a single depth within the soil and that of respired CO2 in the soil. This bias is present when fossil organic matter is used to reconstruct the \\delta13C of soil-respired carbon, and can be minimized with appropriate sampling methods. The second type of bias results from a dynamic, seasonal imbalance in respiration, which may cause the soil \\delta13CO2 flux during times of soil mineral formation to deviate from that of the annually integrated flux. At present, this bias can not be fully described or corrected for due to inadequacies in our knowledge of soil \\delta13C dynamics and the timing of soil mineral formation. Given the strong dependence of paleo-pCO2 reconstructions on data from soil mineral isotopes, further work on these topics is warranted.
Pivato, Alberto; Lavagnolo, Maria Cristina; Manachini, Barbara; Vanin, Stefano; Raga, Roberto; Beggio, Giovanni
2017-04-01
The Italian legislation on contaminated soils does not include the Ecological Risk Assessment (ERA) and this deficiency has important consequences for the sustainable management of agricultural soils. The present research compares the results of two ERA procedures applied to agriculture (i) one based on the "substance-based" approach and (ii) a second based on the "matrix-based" approach. In the former the soil screening values (SVs) for individual substances were derived according to institutional foreign guidelines. In the latter, the SVs characterizing the whole-matrix were derived originally by the authors by means of experimental activity. The results indicate that the "matrix-based" approach can be efficiently implemented in the Italian legislation for the ERA of agricultural soils. This method, if compared to the institutionalized "substance based" approach is (i) comparable in economic terms and in testing time, (ii) is site specific and assesses the real effect of the investigated soil on a battery of bioassays, (iii) accounts for phenomena that may radically modify the exposure of the organisms to the totality of contaminants and (iv) can be considered sufficiently conservative.
Next steps in the development of ecological soil clean-up values for metals.
Wentsel, Randall; Fairbrother, Anne
2014-07-01
This special series in Integrated Environmental Assessment Management presents the results from 6 workgroups that were formed at the workshop on Ecological Soil Levels-Next Steps in the Development of Metal Clean-Up Values (17-21 September 2012, Sundance, Utah). This introductory article presents an overview of the issues assessors face when conducting risk assessments for metals in soils, key US Environmental Protection Agency (USEPA) documents on metals risk assessment, and discusses the importance of leveraging from recent major terrestrial research projects, primarily to address Registration, Evaluation, Authorization and Restriction of Chemical Substances (REACH) requirements in Europe, that have significantly advanced our understanding of the behavior and toxicity of metals in soils. These projects developed large data sets that are useful for the risk assessment of metals in soil environments. The workshop attendees met to work toward developing a process for establishing ecological soil clean-up values (Eco-SCVs). The goal of the workshop was to progress from ecological soil screening values (Eco-SSLs) to final clean-up values by providing regulators with the methods and processes to incorporate bioavailability, normalize toxicity thresholds, address food-web issues, and incorporate background concentrations. The REACH data sets were used by workshop participants as case studies in the development of the ecological standards for soils. The workshop attendees discussed scientific advancements in bioavailability, soil biota and wildlife case studies, soil processes, and food-chain modeling. In addition, one of the workgroups discussed the processes needed to frame the topics to gain regulatory acceptance as a directive or guidance by Canada, the USEPA, or the United States. © 2013 SETAC.
A two-stage extraction procedure for insensitive munition (IM) explosive compounds in soils.
Felt, Deborah; Gurtowski, Luke; Nestler, Catherine C; Johnson, Jared; Larson, Steven
2016-12-01
The Department of Defense (DoD) is developing a new category of insensitive munitions (IMs) that are more resistant to detonation or promulgation from external stimuli than traditional munition formulations. The new explosive constituent compounds are 2,4-dinitroanisole (DNAN), nitroguanidine (NQ), and nitrotriazolone (NTO). The production and use of IM formulations may result in interaction of IM component compounds with soil. The chemical properties of these IM compounds present unique challenges for extraction from environmental matrices such as soil. A two-stage extraction procedure was developed and tested using several soil types amended with known concentrations of IM compounds. This procedure incorporates both an acidified phase and an organic phase to account for the chemical properties of the IM compounds. The method detection limits (MDLs) for all IM compounds in all soil types were <5 mg/kg and met non-regulatory risk-based Regional Screening Level (RSL) criteria for soil proposed by the U.S. Army Public Health Center. At defined environmentally relevant concentrations, the average recovery of each IM compound in each soil type was consistent and greater than 85%. The two-stage extraction method decreased the influence of soil composition on IM compound recovery. UV analysis of NTO established an isosbestic point based on varied pH at a detection wavelength of 341 nm. The two-stage soil extraction method is equally effective for traditional munition compounds, a potentially important point when examining soils exposed to both traditional and insensitive munitions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Batlle, J Vives I; Sweeck, L; Wannijn, J; Vandenhove, H
2016-10-01
The potential radiological impact of releases from a low-level radioactive waste (Category A waste) repository in Dessel, Belgium on the local fauna and flora was assessed under a reference scenario for gradual leaching. The potential impact situations for terrestrial and aquatic fauna and flora considered in this study were soil contamination due to irrigation with contaminated groundwater from a well at 70 m from the repository, contamination of the local wetlands receiving the highest radionuclide flux after migration through the aquifer and contamination of the local river receiving the highest radionuclide flux after migration through the aquifer. In addition, an exploratory study was carried out for biota residing in the groundwater. All impact assessments were performed using the Environmental Risk from Ionising Contaminants: Assessment and Management (ERICA) tool. For all scenarios considered, absorbed dose rates to biota were found to be well below the ERICA 10 μGy h -1 screening value. The highest dose rates were observed for the scenario where soil was irrigated with groundwater from the vicinity of the repository. For biota residing in the groundwater well, a few dose rates were slightly above the screening level but significantly below the dose rates at which the smallest effects are observed for those relevant species or groups of species. Given the conservative nature of the assessment, it can be concluded that manmade radionuclides deposited into the environment by the near surface disposal of category A waste at Dessel do not have a significant radiological impact to wildlife. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mapping soil total nitrogen of cultivated land at county scale by using hyperspectral image
NASA Astrophysics Data System (ADS)
Gu, Xiaohe; Zhang, Li Yan; Shu, Meiyan; Yang, Guijun
2018-02-01
Monitoring total nitrogen content (TNC) in the soil of cultivated land quantitively and mastering its spatial distribution are helpful for crop growing, soil fertility adjustment and sustainable development of agriculture. The study aimed to develop a universal method to map total nitrogen content in soil of cultivated land by HSI image at county scale. Several mathematical transformations were used to improve the expression ability of HSI image. The correlations between soil TNC and the reflectivity and its mathematical transformations were analyzed. Then the susceptible bands and its transformations were screened to develop the optimizing model of map soil TNC in the Anping County based on the method of multiple linear regression. Results showed that the bands of 14th, 16th, 19th, 37th and 60th with different mathematical transformations were screened as susceptible bands. Differential transformation was helpful for reducing the noise interference to the diagnosis ability of the target spectrum. The determination coefficient of the first order differential of logarithmic transformation was biggest (0.505), while the RMSE was lowest. The study confirmed the first order differential of logarithm transformation as the optimal inversion model for soil TNC, which was used to map soil TNC of cultivated land in the study area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson-Nichols, M.J.
2000-12-07
The Oak Ridge National Laboratory (ORNL) Environmental Technology Section conducted an independent verification (IV) survey of the clean storage pile at the Johnston Atoll Plutonium Contaminated Soil Remediation Project (JAPCSRP) from January 18-25, 1999. The goal of the JAPCSRP is to restore a 24-acre area that was contaminated with plutonium oxide particles during nuclear testing in the 1960s. The selected remedy was a soil sorting operation that combined radiological measurements and mining processes to identify and sequester plutonium-contaminated soil. The soil sorter operated from about 1990 to 1998. The remaining clean soil is stored on-site for planned beneficial use onmore » Johnston Island. The clean storage pile currently consists of approximately 120,000 m{sup 3} of coral. ORNL conducted the survey according to a Sampling and Analysis Plan, which proposed to provide an IV of the clean pile by collecting a minimum number (99) of samples. The goal was to ascertain with 95% confidence whether 97% of the processed soil is less than or equal to the accepted guideline (500-Bq/kg or 13.5-pCi/g) total transuranic (TRU) activity. In previous IV tasks, ORNL has (1) evaluated and tested the soil sorter system software and hardware and (2) evaluated the quality control (QC) program used at the soil sorter plant. The IV has found that the soil sorter decontamination was effective and significantly reduced plutonium contamination in the soil processed at the JA site. The Field Command Defense Threat Reduction Agency currently plans to re-use soil from the clean pile as a cover to remaining contamination in portions of the radiological control area. Therefore, ORNL was requested to provide an IV. The survey team collected samples from 103 random locations within the top 4 ft of the clean storage pile. The samples were analyzed in the on-site radioanalytical counting laboratory with an American Nuclear Systems (ANS) field instrument used for the detection of low-energy radiation. Nine results exceeded the JA soil screening guideline for distributed contamination of 13.5 pCi/g for total TRUs, ranging from 13.7 to 125.9 pCi/g. Because of these results, the goal of showing with 95% confidence that 97% of the processed soil is less than or equal to 13.5 pCi/g-TRU activity cannot be met. The value of 13.5 pCi/g represents the 88th percentile rather than the 95th percentile in a nonparametric one-sided upper 90% confidence limit. Therefore, at the 95% confidence level, 88% of the clean pile is projected to be below the 13.5-pCi/g goal. The Multi-Agency Radiation Survey and Site Investigation Manual recommends use of a nonparametric statistical ''Sign Test'' to demonstrate compliance with release criteria for TRU. Although this survey was not designed to use the sign test, the data herein would demonstrate that the median (50%) of the clean storage pile is below the l3.5-pCi/g derived concentration guideline level. In other words, with the caveat that additional investigation of elevated concentrations was not performed, the data pass the sign test at the 13.5-pCi/g level. Additionally, the lateral extent of the pile was gridded, and 10% of the grid blocks was scanned with field instruments for the detection of low-energy radiation coupled to ratemeter/scalers to screen for the presence of hot particles. No hot particles were detected in the top 1 cm of the grid blocks surveyed.« less
Riber, Leise; Poulsen, Pernille H B; Al-Soud, Waleed A; Skov Hansen, Lea B; Bergmark, Lasse; Brejnrod, Asker; Norman, Anders; Hansen, Lars H; Magid, Jakob; Sørensen, Søren J
2014-10-01
We investigated immediate and long-term effects on bacterial populations of soil amended with cattle manure, sewage sludge or municipal solid waste compost in an ongoing agricultural field trial. Soils were sampled in weeks 0, 3, 9 and 29 after fertilizer application. Pseudomonas isolates were enumerated, and the impact on soil bacterial community structure was investigated using 16S rRNA amplicon pyrosequencing. Bacterial community structure at phylum level remained mostly unaffected. Actinobacteria, Proteobacteria and Chloroflexi were the most prevalent phyla significantly responding to sampling time. Seasonal changes seemed to prevail with decreasing bacterial richness in week 9 followed by a significant increase in week 29 (springtime). The Pseudomonas population richness seemed temporarily affected by fertilizer treatments, especially in sludge- and compost-amended soils. To explain these changes, prevalence of antibiotic- and mercury-resistant pseudomonads was investigated. Fertilizer amendment had a transient impact on the resistance profile of the soil community; abundance of resistant isolates decreased with time after fertilizer application, but persistent strains appeared multiresistant, also in unfertilized soil. Finally, the ability of a P. putida strain to take up resistance genes from indigenous soil bacteria by horizontal gene transfer was present only in week 0, indicating a temporary increase in prevalence of transferable antibiotic resistance genes. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Screening ornamentals for their potential as As Accumulator Plants
USDA-ARS?s Scientific Manuscript database
Arsenic-based pesticides, herbicides and insecticides are used in horticultural operations resulting in soil contamination around greenhouse structures. Phytoremediation and phytostabilization are two techniques for treating arsenic (As) contaminated soil. Several ornamental plant species, Iris (Ir...
Rodriguez-Ruiz, A; Etxebarria, J; Boatti, L; Marigómez, I
2015-09-01
Lanestosa is a chronically polluted site (derelict mine) where the soil (Lanestosa (LA) soil) exceeds screening values (SVs) of regulatory policies in force (Basque Country; Europe) for Zn, Pb and Cd. A scenario-targeted toxicity assessment was carried out on the basis of a multi-endpoint bioassay approach. Acute and chronic toxicity bioassays were conducted with selected test species (Vibrio fischeri, Dictyostelium discoideum, Lactuca sativa, Raphanus sativus and Eisenia fetida) in combination with chemical analysis of soils and elutriates and with bioaccumulation studies in earthworms. Besides, the toxicity profile was compared with that of the mine runoff (RO) soil and of a fresh artificially polluted soil (LAAPS) resembling LA soil pollutant profile. Extractability studies in LA soil revealed that Pb, Zn and Cd were highly available for exchange and/or release into the environment. Indeed, Pb and Zn were accumulated in earthworms and LA soil resulted to be toxic. Soil respiration, V. fischeri, vegetative and developmental cycles of D. discoideum and survival and juvenile production of E. fetida were severely affected. These results confirmed that LA soil had unacceptable environmental risk and demanded intervention. In contrast, although Pb and Zn concentrations in RO soil revealed also unacceptable risk, both metal extractability and toxicity were much lower than in LA soil. Thus, within the polluted site, the need for intervention varied between areas that posed dissimilar risk. Besides, since LAAPS, with a high exchangeable metal fraction, was the most toxic, ageing under in situ natural conditions seemingly contributed to attenuate LA soil risk. As a whole, combining multi-endpoint bioassays with scenario-targeted analysis (including leaching and ageing) provides reliable risk assessment in soils posing unacceptable environmental risk according to SVs, which is useful to optimise the required intervention measures.
7 CFR 301.85 - Quarantine; restriction on interstate movement of specified regulated articles.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Soil, compost, humus, muck, peat, and decomposed manure, separately or with other things. (2) Plants with roots, except soil-free aquatic plants. (3) Grass sod. (4) Plant crowns and roots for propagation... measurement by a sizing screen or sizing chain, each is substantially free of soil as a result of grading (a...
7 CFR 301.85 - Quarantine; restriction on interstate movement of specified regulated articles.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Soil, compost, humus, muck, peat, and decomposed manure, separately or with other things. (2) Plants with roots, except soil-free aquatic plants. (3) Grass sod. (4) Plant crowns and roots for propagation... measurement by a sizing screen or sizing chain, each is substantially free of soil as a result of grading (a...
7 CFR 301.85 - Quarantine; restriction on interstate movement of specified regulated articles.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Soil, compost, humus, muck, peat, and decomposed manure, separately or with other things. (2) Plants with roots, except soil-free aquatic plants. (3) Grass sod. (4) Plant crowns and roots for propagation... measurement by a sizing screen or sizing chain, each is substantially free of soil as a result of grading (a...
7 CFR 301.85 - Quarantine; restriction on interstate movement of specified regulated articles.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Soil, compost, humus, muck, peat, and decomposed manure, separately or with other things. (2) Plants with roots, except soil-free aquatic plants. (3) Grass sod. (4) Plant crowns and roots for propagation... measurement by a sizing screen or sizing chain, each is substantially free of soil as a result of grading (a...
7 CFR 301.85 - Quarantine; restriction on interstate movement of specified regulated articles.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Soil, compost, humus, muck, peat, and decomposed manure, separately or with other things. (2) Plants with roots, except soil-free aquatic plants. (3) Grass sod. (4) Plant crowns and roots for propagation... measurement by a sizing screen or sizing chain, each is substantially free of soil as a result of grading (a...
FIELD ANALYTICAL SCREENING PROGRAM: PCB METHOD - INNOVATIVE TECHNOLOGY REPORT
This innovative technology evaluation report (ITER) presents information on the demonstration of the U.S. Environmental Protection Agency (EPA) Region 7 Superfund Field Analytical Screening Program (FASP) method for determining polychlorinated biphenyl (PCB) contamination in soil...
Falls, W. Fred; Caldwell, Andral W.; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2011-01-01
Soil gas, soil, and water were assessed for organic and inorganic constituents at the former 19th Street landfill at Fort Gordon, Georgia, from February to September 2010. Passive soil-gas samplers were analyzed to evaluate organic constituents in the hyporheic zone and flood plain of a creek and soil gas within the estimated boundaries of the former landfill. Soil and water samples were analyzed to evaluate inorganic constituents in soil samples, and organic and inorganic constituents in the surface water of a creek adjacent to the landfill, respectively. This assessment was conducted to provide environmental constituent data to Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. The passive soil-gas samplers deployed in the water-saturated hyporheic zone and flood plain of the creek adjacent to the former landfill indicated the presence of total petroleum hydrocarbon (TPH) and octane above method detection levels in groundwater beneath the creek bed and flood plain at all 12 soil-gas sampler locations. The TPH concentrations ranged from 51.4 to 81.4 micrograms per liter. Octane concentrations ranged from 1.78 to 2.63 micrograms per liter. These detections do not clearly identify specific source areas in the former landfill; moreover, detections of TPH and octane in a soil-gas sampler installed at a seep on the western bank of the creek indicated the potential for these constituents to be derived from source areas outside the estimated boundaries of the former landfill. A passive soil-gas sampler survey was conducted in the former landfill from June 30 to July 5, 2010, and involved 56 soil-gas samplers that were analyzed for petroleum and halogenated compounds not classified as chemical agents or explosives. The TPH soil-gas mass exceeded 2.0 micrograms in 21 samplers. Most noticeable are the two sites with TPH detections which are located in and near the hyporheic zone and are likely to affect the creek. However, most TPH detections were located in and immediately adjacent to a debris field located within the former landfill and in areas where debris was not visible, including the northwestern and southeastern parts of the study area. Two of the four soil-gas samplers installed within a former military training area adjacent to the landfill also had TPH detections above the method detection level. Benzene, toluene, ethylbenzene, and xylene (as combined BTEX mass) were detected at 0.02 microgram or greater in three soil-gas samplers installed at the northwestern boundary and in five samplers installed in the southeastern part of the study area. There was no BTEX mass detected above the method detection level in samplers installed in the debris field. Toluene was the most frequently detected BTEX compound. Compounds indicative of diesel-range organics were detected above 0.04 microgram in 12 soil-gas samplers and had a distribution similar to that of TPH, including being detected in the debris field. Undecane was the most frequently detected diesel compound. Chloroform and naphthalene were detected in eight and two soil-gas samplers, respectively. Five soil-gas samplers deployed during September 2010 were analyzed for organic compounds classified as chemical agents and explosives, but none exceeded the method detection levels. Five composite soil samples collected from within the estimated boundaries of the former landfill were analyzed for 35 inorganic constituents, but none of the constituents detected exceeded regional screening levels for industrial soils. The sample collected in the debris field exceeded background levels for aluminum, barium, calcium, chromium, lead, nickel, potassium, sodium, and zinc. Three surface-water samples were collected in September 2010 from a stormwater outfall culvert that drains to the creek and from the open channel of the creek at upstream and downstream locations relative to the outfall. Toluene was detected at 0.661 mi
Sexton, Ken; Adgate, John L; Eberly, Lynn E; Clayton, C Andrew; Whitmore, Roy W; Pellizzari, Edo D; Lioy, Paul J; Quackenboss, James J
2003-01-01
The ability of questionnaires to predict children's exposure to pesticides was examined as part of the Minnesota Children's Pesticide Exposure Study (MNCPES). The MNCPES focused on a probability sample of 102 children between the ages of 3 and 13 years living in either urban (Minneapolis and St. Paul, MN) or nonurban (Rice and Goodhue Counties in Minnesota) households. Samples were collected in a variety of relevant media (air, food, beverages, tap water, house dust, soil, urine), and chemical analyses emphasized three organophosphate insecticides (chlorpyrifos, diazinon, malathion) and a herbicide (atrazine). Results indicate that the residential pesticide-use questions and overall screening approach used in the MNCPES were ineffective for identifying and oversampling children/households with higher levels of individual target pesticides. PMID:12515690
NASA Astrophysics Data System (ADS)
Drusch, M.
2007-02-01
Satellite-derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analyzed from the modeled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. For this study, three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) have been performed for the 2-month period of June and July 2002: a control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating TMI (TRMM Microwave Imager) derived soil moisture over the southern United States. In this experimental run the satellite-derived soil moisture product is introduced through a nudging scheme using 6-hourly increments. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analyzed in the nudging experiment is the most accurate estimate when compared against in situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage.
Kuperman, Roman G; Siciliano, Steven D; Römbke, Jörg; Oorts, Koen
2014-01-01
Although it is widely recognized that microorganisms are essential for sustaining soil fertility, structure, nutrient cycling, groundwater purification, and other soil functions, soil microbial toxicity data were excluded from the derivation of Ecological Soil Screening Levels (Eco-SSL) in the United States. Among the reasons for such exclusion were claims that microbial toxicity tests were too difficult to interpret because of the high variability of microbial responses, uncertainty regarding the relevance of the various endpoints, and functional redundancy. Since the release of the first draft of the Eco-SSL Guidance document by the US Environmental Protection Agency in 2003, soil microbial toxicity testing and its use in ecological risk assessments have substantially improved. A wide range of standardized and nonstandardized methods became available for testing chemical toxicity to microbial functions in soil. Regulatory frameworks in the European Union and Australia have successfully incorporated microbial toxicity data into the derivation of soil threshold concentrations for ecological risk assessments. This article provides the 3-part rationale for including soil microbial processes in the development of soil clean-up values (SCVs): 1) presenting a brief overview of relevant test methods for assessing microbial functions in soil, 2) examining data sets for Cu, Ni, Zn, and Mo that incorporated soil microbial toxicity data into regulatory frameworks, and 3) offering recommendations on how to integrate the best available science into the method development for deriving site-specific SCVs that account for bioavailability of metals and metalloids in soil. Although the primary focus of this article is on the development of the approach for deriving SCVs for metals and metalloids in the United States, the recommendations provided in this article may also be applicable in other jurisdictions that aim at developing ecological soil threshold values for protection of microbial processes in contaminated soils. PMID:24376192
Shahzad, Raheem; Hamayun, Muhammad; Asaf, Sajjad; Khan, Abdul Latif; Kang, Sang-Mo; Yun, Sopheap; Kim, Kyung-Min; Lee, In-Jung
2018-01-01
Biochar addition to soil not only sequesters carbon for the long-term but enhances agricultural productivity. Several well-known benefits arise from biochar amendment, including constant provision of nutrients, increased soil moisture retention, decreased soil bulk density, and sometimes the induction of systemic resistance against foliar and soil borne plant pathogens. However, no research has investigated the potential of biochar to increase resistance against herbivory. The white-backed plant hopper (WBPH) (Sogatella furcifera Horváth) is a serious agricultural pest that targets rice (Oryza sativa L.), a staple crop that feeds half of the world’s human population. Therefore, we investigated the (1) optimization of biochar amendment levels for two rice varieties (‘Cheongcheong’ and ‘Nagdong’) and (2) subsequent effects of different biochar amendments on resistance and susceptibility of these two varieties to WBPH infestation. Initial screening results for the optimization level revealed that the application of biochar 10% (w/w) to the rooting media significantly improved plant physiological characteristics of both rice varieties. However, levels of biochar amendment, mainly 1, 2, 3, and 20%, resulted in negative effects on plant growth characteristics. Cheongcheong and Nagdong rice plants grown with the optimum biochar level showed contrasting reactions to WBPH infestation. Specifically, biochar application significantly increased plant growth characteristics of Nagdong when exposed to WBPH infestation and significantly decreased these characteristics in Cheongcheong. The amount of WBPH-induced damage to plants was significantly lower and higher in Nagdong and Cheongcheong, respectively, compared to that in the controls. Higher levels of jasmonic acid caused by the biochar priming effect could have accumulated in response to WBPH infestation, resulting in a maladaptive response to stress, negatively affecting growth and resistance to WBPH in Cheongcheong. This study highlights the importance of investigating the effects of biochar on different rice varieties before application on a commercial scale to avoid potential crop losses. PMID:29373575
Waqas, Muhammad; Shahzad, Raheem; Hamayun, Muhammad; Asaf, Sajjad; Khan, Abdul Latif; Kang, Sang-Mo; Yun, Sopheap; Kim, Kyung-Min; Lee, In-Jung
2018-01-01
Biochar addition to soil not only sequesters carbon for the long-term but enhances agricultural productivity. Several well-known benefits arise from biochar amendment, including constant provision of nutrients, increased soil moisture retention, decreased soil bulk density, and sometimes the induction of systemic resistance against foliar and soil borne plant pathogens. However, no research has investigated the potential of biochar to increase resistance against herbivory. The white-backed plant hopper (WBPH) (Sogatella furcifera Horváth) is a serious agricultural pest that targets rice (Oryza sativa L.), a staple crop that feeds half of the world's human population. Therefore, we investigated the (1) optimization of biochar amendment levels for two rice varieties ('Cheongcheong' and 'Nagdong') and (2) subsequent effects of different biochar amendments on resistance and susceptibility of these two varieties to WBPH infestation. Initial screening results for the optimization level revealed that the application of biochar 10% (w/w) to the rooting media significantly improved plant physiological characteristics of both rice varieties. However, levels of biochar amendment, mainly 1, 2, 3, and 20%, resulted in negative effects on plant growth characteristics. Cheongcheong and Nagdong rice plants grown with the optimum biochar level showed contrasting reactions to WBPH infestation. Specifically, biochar application significantly increased plant growth characteristics of Nagdong when exposed to WBPH infestation and significantly decreased these characteristics in Cheongcheong. The amount of WBPH-induced damage to plants was significantly lower and higher in Nagdong and Cheongcheong, respectively, compared to that in the controls. Higher levels of jasmonic acid caused by the biochar priming effect could have accumulated in response to WBPH infestation, resulting in a maladaptive response to stress, negatively affecting growth and resistance to WBPH in Cheongcheong. This study highlights the importance of investigating the effects of biochar on different rice varieties before application on a commercial scale to avoid potential crop losses.
Ecological risk of heavy metals in sediments of the Luan River source water.
Liu, Jingling; Li, Yongli; Zhang, Bao; Cao, Jinling; Cao, Zhiguo; Domagalski, Joseph
2009-08-01
Distribution and characteristics of heavy metals enrichment in sediment were surveyed including the bio-available form analyzed for assessment of the Luan River source water quality. The approaches of sediment quality guidelines (SQG), risk assessment code and Hakanson potential ecological risk index were used for the ecological risk assessment. According to SQG, The results show that in animal bodies, Hg at the sampling site of Wuliehexia was 1.39 mg/kg, Cr at Sandaohezi was 152.37 mg/kg and Cu at Hanjiaying was 178.61 mg/kg exceeding the severe effect screening level. There were 90% of sampling sites of Cr and Pb and 50% sites of Cu exceeded the lowest effect screening level. At Boluonuo and Wuliehexia, the exchangeable and carbonate fractions for above 50% of sites were at high risk levels and that for above 30% of sites at Xiahenan and Wulieheshang were also at high risk levels. Other sites were at medium risk level. Compared to soil background values of China, Hg and Cd showed very strong ecological risk, and the seven heavy metals of Hg, Cd, Cu, As, Pb, Cr, Zn at ecological risk levels were in the descending order. The results could give insight into risk assessment of environmental pollution and decision-making for water source security.
Mota, Kelem Cristina Pereira; Grama, Daliane Faria; Fava, Natália M. Nasser; Úngari, Letícia Pereira; Faria, Elaine Silva Marques; Cury, Márcia Cristina
2018-01-01
ABSTRACT Among the geohelminths, parasites from the Ascarididae family have a significant role in the human and animal health. This research aims to determine the prevalence of Ascarididae species in the soil in different areas located in a city of Minas Gerais State, Brazil (South America). The study was developed in squares, parks, sports clubs, orchards and municipal children's schools. Samples of sand/soil/grass were collected from January to August 2014. The optical microscope screening was performed through formal-ether and spontaneous sedimentation techniques. Out of the 183 collected samples, eight (4.4%) belonged to parks, 16 (8.7%) to sports clubs, 76 (41.5%) to squares, 23 (12.6%) to orchards, and 60 (32.8%) to schools. Out of the total, 28 (15.3%) contained Ascarididae eggs. Higher levels of positivity were demonstrated in the raining season (25.0%), in samples collected in the southern region of the town (25.1%), on ground soils (27.3%). Twenty-three (12.6%) were detected by the formal-ether sedimentation technique and 10 (5.5%) by spontaneous sedimentation technique. Therefore, it was concluded that the soils in the city of Uberlandia are contaminated with eggs and larvae of geohelminths, enabling dissemination of illnesses among animals and human beings. PMID:29694601
Mota, Kelem Cristina Pereira; Grama, Daliane Faria; Fava, Natália M Nasser; Úngari, Letícia Pereira; Faria, Elaine Silva Marques; Cury, Márcia Cristina
2018-01-01
Among the geohelminths, parasites from the Ascarididae family have a significant role in the human and animal health. This research aims to determine the prevalence of Ascarididae species in the soil in different areas located in a city of Minas Gerais State, Brazil (South America). The study was developed in squares, parks, sports clubs, orchards and municipal children's schools. Samples of sand/soil/grass were collected from January to August 2014. The optical microscope screening was performed through formal-ether and spontaneous sedimentation techniques. Out of the 183 collected samples, eight (4.4%) belonged to parks, 16 (8.7%) to sports clubs, 76 (41.5%) to squares, 23 (12.6%) to orchards, and 60 (32.8%) to schools. Out of the total, 28 (15.3%) contained Ascarididae eggs. Higher levels of positivity were demonstrated in the raining season (25.0%), in samples collected in the southern region of the town (25.1%), on ground soils (27.3%). Twenty-three (12.6%) were detected by the formal-ether sedimentation technique and 10 (5.5%) by spontaneous sedimentation technique. Therefore, it was concluded that the soils in the city of Uberlandia are contaminated with eggs and larvae of geohelminths, enabling dissemination of illnesses among animals and human beings.
CHOL-N-SOIL PCB TEST KIT, DEXSIL CORP. - INNOVATIVE TECHNOLOGY Evaluation REPORT
This innovative technology evaluation report (ITER) presents the evaluation of two field screening technologies for determining polychlorinated biphenyl (PCB) contamination in soil. The demonstration was conducted by PRC Environmental Management, Inc. (PRC), under contract to the...
Considerations in Deciding to Treat Contaminated Unsaturated Soils In Situ
The purpose of this Issue Paper is to assist the user in deciding if in situ treatment of contaminated soil is a potentially feasible remedial alternative and to assist in the process of reviewing and screening in situ technologies.
Gupta, Dhrubajyoti; Ghosh, Rita; Mitra, Ajoy K; Roy, Subinit; Sarkar, Manoranjan; Chowdhury, Subhajit; Bhowmik, Asit; Mukhopadhyay, Ujjal; Maskey, Shila; Ro, Chul-Un
2011-11-01
The long-term environmental impact of municipal solid waste (MSW) landfilling is still under investigation due to the lack of detailed characterization studies. A MSW landfill site, popularly known as Dhapa, in the eastern fringe of the metropolis of Kolkata, India, is the subject of present study. A vast area of Dhapa, adjoining the current core MSW dump site and evolving from the raw MSW dumping in the past, is presently used for the cultivation of vegetables. The inorganic chemical characteristics of the MSW-contaminated Dhapa surface soil (covering a 2-km stretch of the area) along with a natural composite (geogenic) soil sample (from a small countryside farm), for comparison, were investigated using two complementary nondestructive analytical techniques, energy-dispersive X-ray fluorescence (EDXRF) for bulk analysis and low-Z (atomic number) particle electron probe X-ray microanalysis (low-Z particle EPMA) for single-particle analysis. The bulk concentrations of K, Rb, and Zr remain almost unchanged in all the soil samples. The Dhapa soil is found to be polluted with heavy metals such as Cu, Zn, and Pb (highly elevated) and Ti, Cr, Mn, Fe, Ni, and Sr (moderately elevated), compared to the natural countryside soil. These high bulk concentration levels of heavy metals were compared with the Ecological Soil Screening Levels for these elements (U.S. Environment Protection Agency) to assess the potential risk on the immediate biotic environment. Low-Z particle EPMA results showed that the aluminosilicate-containing particles were the most abundant, followed by SiO2, CaCO3-containing, and carbonaceous particles in the Dhapa samples, whereas in the countryside sample only aluminosilicate-containing and SiO2 particles were observed. The mineral particles encountered in the countryside sample are solely of geogenic origin, whereas those from the Dhapa samples seem to have evolved from a mixture of raw dumped MSW, urban dust, and other contributing factors such as wind, precipitation, weather patterns, farming, and water logging, resulting in their diverse chemical compositions and the abundant observation of carbonaceous species. Particles containing C and P were more abundant in the Dhapa samples than in the countryside soil sample, suggesting that MSW-contaminated soils are more fertile. However, the levels of particles containing potentially toxic heavy metals such as Cr, Mn, Ni, Cu, Zn, and/or Pb in the Dhapa samples were significant, corroborated by their high bulk concentration levels (EDXRF), causing deep concern for the immediate environment and contamination of the food chain through food crops.
A simple nudging scheme to assimilate ASCAT soil moisture data in the WRF model
NASA Astrophysics Data System (ADS)
Capecchi, V.; Gozzini, B.
2012-04-01
The present work shows results obtained in a numerical experiment using the WRF (Weather and Research Forecasting, www.wrf-model.org) model. A control run where soil moisture is constrained by GFS global analysis is compared with a test run where soil moisture analysis is obtained via a simple nudging scheme using ASCAT data. The basic idea of the assimilation scheme is to "nudge" the first level (0-10 cm below ground in NOAH model) of volumetric soil moisture of the first-guess (say θ(b,1) derived from global model) towards the ASCAT derived value (say ^θ A). The soil moisture analysis θ(a,1) is given by: { θ + K (^θA - θ ) l = 1 θ(a,1) = θ(b,l) (b,l) l > 1 (b,l) (1) where l is the model soil level. K is a constant scalar value that is user specified and in this study it is equal to 0.2 (same value as in similar studies). Soil moisture is critical for estimating latent and sensible heat fluxes as well as boundary layer structure. This parameter is, however, poorly assimilated in current global and regional numerical models since no extensive soil moisture observation network exists. Remote sensing technologies offer a synoptic view of the dynamics and spatial distribution of soil moisture with a frequent temporal coverage and with a horizontal resolution similar to mesoscale NWP model. Several studies have shown that measurements of normalized backscatter (surface soil wetness) from the Advanced Scatterometer (ASCAT) operating at microwave frequencies and boarded on the meteorological operational (Metop) satellite, offer quality information about surface soil moisture. Recently several studies deal with the implementation of simple assimilation procedures (nudging, Extended Kalman Filter, etc...) to integrate ASCAT data in NWP models. They found improvements in screen temperature predictions, particularly in areas such as North-America and in the Tropics, where it is strong the land-atmosphere coupling. The ECMWF (Newsletter No. 127) is currently implementing and testing an EKF for combining conventional observations and remote sensed soil moisture data in order to produce a more accurate analysis. In the present work verification skills (RMSE, BIAS, correlation) of both control and test run are presented using observed data collected by International Soil Moisture Network. Moreover improvements in temperature predictions are evaluated.
El Azhari, Najoi; Dermou, Eftychia; Barnard, Romain L; Storck, Veronika; Tourna, Maria; Beguet, Jérémie; Karas, Panagiotis A; Lucini, Luigi; Rouard, Nadine; Botteri, Lucio; Ferrari, Federico; Trevisan, Marco; Karpouzas, Dimitrios G; Martin-Laurent, Fabrice
2018-05-12
Tebuconazole (TBZ) is a widely used triazole fungicide at EU level on cereals and vines. It is relatively persistent in soil where it is transformed to various transformation products (TPs) which might be environmentally relevant. We assessed the dissipation of TBZ in soil under contrasting incubation conditions (standard vs winter simulated) that are relevant to its application scheme, determined its transformation pathway using advanced analytical tools and 14 C-labeled TBZ and assessed its soil microbial toxicity. Mineralization of 14 C-triazole-ring-labeled TBZ was negligible but up to 11% of 14 C-penyl-ring-labeled TBZ evolved as 14 CO 2 within 150 days of incubation. TBZ persistence increased at higher dose rates (×10 compared to the recommended agronomical dose ×1) and under winter simulated conditions compared to standard incubation conditions (at ×1 dose rate DT 50 of 202 and 88 days, respectively). Non-target suspect screening enabled the detection of 22 TPs of TBZ, among which 17 were unknown. Mass spectrometry analysis led to the identification of 1-(4-chlorophenyl) ethanone, a novel TP of TBZ, the formation of which and decay in soil was determined by gas chromatography mass spectrometry. Three hypothetical transformation pathways of TBZ, all converging to 1H-1,2,4-triazole are proposed based on suspect screening. The ecotoxicological effect of TBZ and of its TPs was assessed by measuring by qPCR the abundance of the total bacteria and the relative abundance of 11 prokaryotic taxa and 4 functional groups. A transient impact of TBZ on the relative abundance of all prokaryotic taxa (except α-proteobacteria and Bacteroidetes) and one functional microbial group (pcaH-carrying microorganisms) was observed. However the direction of the effect (positive or negative) varied, and in certain cases, depended on the incubation conditions. Proteobacteria was the most responsive phylum to TBZ with recovery observed 20 days after treatment. The ecotoxicological effects on the soil microorganisms were not correlated with 1-(4-chlorophenyl) ethanone. Copyright © 2018 Elsevier B.V. All rights reserved.
Nehnevajova, Erika; Herzig, Rolf; Federer, Guido; Erismann, Karl-Hans; Schwitzguébel, Jean-Paul
2005-01-01
Sunflower can be used for the remediation of metal-contaminated soils. Its high biomass production makes this plant species interestingfor phytoextraction and using sunflower oil for a technical purpose may improve the economic balance of phytoremediation. The aim of the present field study was to screen 15 commercial cultivars of Helianthus annuus L. grown on metal-contaminated soil, to find out the variety with the highest metal extraction, which can be further improved by mutation or in vitro breeding procedures. Two different fertilizers (ammonium sulphate and ammonium nitrate) were also used to enhance the bioavailability of metals in soil Highly significant differences were observed within tested varieties for metal accumulation and extraction efficiency. Furthermore, ammonium nitrate increased cadmium extraction, whereas ammonium sulphate enhanced zinc and lead uptake in most tested cultivars. In this field-based sunflower screening, we found enhanced cumulative Cd, Zn, and Pb extraction efficiency by a factor 4.4 for Salut cultivar. We therefore emphasize that prior to any classical breeding or genetic engineering enhancing metal uptake potential, a careful screening of various genotypes should be done to select the cultivar with the naturally highest metal uptake and to start the genetic improvement with the best available plant material.
A service for the application of data quality information to NASA earth science satellite records
NASA Astrophysics Data System (ADS)
Armstrong, E. M.; Xing, Z.; Fry, C.; Khalsa, S. J. S.; Huang, T.; Chen, G.; Chin, T. M.; Alarcon, C.
2016-12-01
A recurring demand in working with satellite-based earth science data records is the need to apply data quality information. Such quality information is often contained within the data files as an array of "flags", but can also be represented by more complex quality descriptions such as combinations of bit flags, or even other ancillary variables that can be applied as thresholds to the geophysical variable of interest. For example, with Level 2 granules from the Group for High Resolution Sea Surface Temperature (GHRSST) project up to 6 independent variables could be used to screen the sea surface temperature measurements on a pixel-by-pixel basis. Quality screening of Level 3 data from the Soil Moisture Active Passive (SMAP) instrument can be become even more complex, involving 161 unique bit states or conditions a user can screen for. The application of quality information is often a laborious process for the user until they understand the implications of all the flags and bit conditions, and requires iterative approaches using custom software. The Virtual Quality Screening Service, a NASA ACCESS project, is addressing these issues and concerns. The project has developed an infrastructure to expose, apply, and extract quality screening information building off known and proven NASA components for data extraction and subset-by-value, data discovery, and exposure to the user of granule-based quality information. Further sharing of results through well-defined URLs and web service specifications has also been implemented. The presentation will focus on overall description of the technologies and informatics principals employed by the project. Examples of implementations of the end-to-end web service for quality screening with GHRSST and SMAP granules will be demonstrated.
DEMONSTRATION BULLETIN: RAPID OPTICAL SCREEN TOOL (ROST™) - LORAL CORPORATION
The Loral Rapid Optical Screen Tool (ROST™) is a tunable dye laser system used for the detection of petroleum, semi-volatile, and some volatile organic compounds in soils. The technology is used in conjunction with a cone penetrometer (CP).
Screening identification of aerobic denitrification bacteria with high soil desalinization capacity
NASA Astrophysics Data System (ADS)
Jin, H.; Chen, H.; Jin, H.; Qian, Y.; Zhang, K.
2017-08-01
In order to study the mechanism of bacteria used in the saline soil remediation process, the aerobic denitrification bacteria were isolated from an agricultural greenhouse soil in a farm in East China’s Zhejiang Province. The identification, nitrogen reducing characteristics and the denitrification effect of bacteria from different soils at various locations were investigated. The results showed that the NO3- removal rate was 91% with bacteria from the greenhouse soil under aerobic conditions in 52 h, and the bacteria were identified as Gram-positive Castellaniella denitrification bacteria.
McComb, Jacqueline Q.; Rogers, Christian; Han, Fengxiang X.; Tchounwou, Paul B.
2014-01-01
With industrialization, great amounts of trace elements and heavy metals have been excavated and released on the surface of the earth and dissipated into the environments. Rapid screening technology for detecting major and trace elements as well as heavy metals in variety of environmental samples is most desired. The objectives of this study were to determine the detection limits, accuracy, repeatability and efficiency of a X-ray fluorescence spectrometer (Niton XRF analyzer) in comparison with the traditional analytical methods, inductively coupled plasma optical emission spectrometer (ICP-OES) and inductively coupled plasma optical emission spectrometer (ICP-MS) in screening of major and trace elements of environmental samples including estuary soils and sediments, contaminated soils, and biological samples. XRF is a fast and non-destructive method in measuring the total concentration of multi--elements simultaneously. Contrary to ICP-OES and ICP-MS, XRF analyzer is characterized by the limited preparation required for solid samples, non-destructive analysis, increased total speed and high throughout, the decreased production of hazardous waste and the low running costs as well as multi-elemental determination and portability in the fields. The current comparative study demonstrates that XRF is a good rapid non-destructive method for contaminated soils, sediments and biological samples containing higher concentrations of major and trace elements. Unfortunately, XRF does not have sensitive detection limits of most major and trace elements as ICP-OES or ICP-MS but it may serve as a rapid screening tool for locating hot spots of uncontaminated field soils and sediments. PMID:25861136
Report: Review of Hotline Complaint Regarding Residential Soil Contamination in Cherryvale, Kansas
Report #13-P-0207, March 28, 2013. EPA Region 7 screened residential properties for soil contamination during its 2001–2002 removal activities near the former National Zinc Company smelter, but could not provide us with complete documentation.
DeLuca, Mara; King, Riley; Morsy, Mustafa
2017-08-11
Antibiotic-resistant bacteria are becoming a global crisis, causing death of thousands of people and significant economic impact. The discovery of novel antibiotics is crucial to saving lives and reducing healthcare costs. To address the antibiotic-resistant crisis, in collaboration the Small World Initiative, which aims to crowdsource novel antibiotic discovery, this study aimed to identify antimicrobial producing bacteria and bacterial diversity in the soil of the Stimpson Wildlife Sanctuary, an inland area with a soil salt gradient. Approximately 4500 bacterial colonies were screened for antimicrobial activity and roughly 100 bacteria were identified as antimicrobial producers, which belong to Entrococcaceae (74%), Yersiniaceae (19%), and unidentified families (7%). Several bacterial isolates showed production of broad spectrum inhibitory compounds, while others were more specific to certain pathogens. The data obtained from the current study provide a resource for further characterization of the soil bacteria with antimicrobial activity, with an aim to discover novel ones. The study showed no correlation between soil salt level and the presence of bacteria with antimicrobial activities. However, most of the identified antimicrobial producing bacteria do not belong to actinomycetes, the most common phyla of antibiotic producing bacteria and this could potentially lead to the discovery of novel antibiotics.
An analytical model for in situ extraction of organic vapors
Roy, W.R.; Griffin, R.A.
1991-01-01
This paper introduces a simple convective-flow model that can be used as a screening tool and for conducting sensitivity analyses for in situ vapor extraction of organic compounds from porous media. An assumption basic to this model was that the total mass of volatile organic chemicals (VOC) exists in three forms: as vapors, in the soil solution, and adsorbed to soil particles. The equilibrium partitioning between the vapor-liquid phase was described by Henry's law constants (K(H)) and between the liquid-soil phase by soil adsorption constants (K(d)) derived from soil organic carbon-water partition coefficients (K(oc)). The model was used to assess the extractability of 36 VOCs from a hypothetical site. Most of the VOCs appeared to be removable from soil by this technology, although modeling results suggested that rates for the alcohols and ketones may be very slow. In general, rates for weakly adsorbed compounds (K(oc) < 100 mL/g) were significantly higher when K(H) was greater than 10-4 atm??m3??mol-1. When K(oc) was greater than about 100 mL/g, the rates of extraction were sensitive to the amount of organic carbon present in the soil. The air permeability of the soil material (k) was a critical factor. In situ extraction needs careful evaluation when k is less than 10 millidarcies to determine its applicability. An increase in the vacuum applied to an extraction well accelerated removal rates but the diameter of the well had little effect. However, an increase in the length of the well screen open to the contaminated zone significantly affected removal rates, especially in low-permeability materials.This paper introduces a simple convective-flow model that can be used as a screening tool and for conducting sensitivity analyses for in situ vapor extraction of organic compounds from porous media. An assumption basic to this model was that the total mass of volatile organic chemicals (VOC) exists in three forms: as vapors, in the soil solution, and adsorbed to soil particles. The equilibrium partitioning between the vapor-liquid phase was described by Henry's law constants (KH) and between the liquid-soil phase by soil adsorption constants (Kd) derived from soil organic carbon-water partition coefficients (Koc). The model was used to assess the extractability of 36 VOCs from a hypothetical site. Most of the VOCs appeared to be removable from soil by this technology, although modeling results suggested that rates for the alcohols and ketones may be very slow. In general, rates for weakly adsorbed compounds (Koc < 100 mL/g) were significantly higher when KH was greater than 10-4atm-m3-mol-1. When Koc was greater than about 100 mL/g, the rates of extraction were sensitive to the amount of organic carbon present in the soil. The air permeability of the soil material (k) was a critical factor. In situ extraction needs careful evaluation when k is less than 10 millidarcies to determine its applicability. An increase in the vacuum applied to an extraction well accelerated removal rates but the diameter of the well had little effect. However, an increase in the length of the well screen open to the contaminated zone significantly affected removal rates, especially in low-permeability materials.
Identification of the sources of PM10 in a subway tunnel using positive matrix factorization.
Park, Duckshin; Lee, Taejeong; Hwang, Doyeon; Jung, Wonseok; Lee, Yongil; Cho, KiChul; Kim, Dongsool; Lees, Kiyoung
2014-12-01
The level of particulate matter of less than 10 μm diameter (PM10) at subway platforms can be significantly reduced by installing a platform screen-door system. However, both workers and passengers might be exposed to higher PM10 levels while the cars are within the tunnel because it is a more confined environment. This study determined the PM10 levels in a subway tunnel, and identified the sources of PM10 using elemental analysis and receptor modeling. Forty-four PM10 samples were collected in the tunnel between the Gireum and Mia stations on Line 4 in metropolitan Seoul and analyzed using inductively coupled plasma-atomic emission spectrometry and ion chromatography. The major PM10 sources were identified using positive matrix factorization (PMF). The average PM10 concentration in the tunnels was 200.8 ± 22.0 μg/m3. Elemental analysis indicated that the PM10 consisted of 40.4% inorganic species, 9.1% anions, 4.9% cations, and 45.6% other materials. Iron was the most abundant element, with an average concentration of 72.5 ± 10.4 μg/m3. The PM10 sources characterized by PMF included rail, wheel, and brake wear (59.6%), soil combustion (17.0%), secondary aerosols (10.0%), electric cable wear (8.1%), and soil and road dust (5.4%). Internal sources comprising rail, wheel, brake, and electric cable wear made the greatest contribution to the PM10 (67.7%) in tunnel air. Implications: With installation of a platform screen door, PM10 levels in subway tunnels were higher than those on platforms. Tunnel PM10 levels exceeded 150 µg/m3 of the Korean standard for subway platform. Elemental analysis of PM10 in a tunnel showed that Fe was the most abundant element. Five PM10 sources in tunnel were identified by positive matrix factorization. Railroad-related sources contributed 68% of PM10 in the subway tunnel.
Effect of plant growth-promoting rhizobacteria inoculation on cadmium (Cd) uptake by Eruca sativa.
Kamran, Muhammad Aqeel; Syed, Jabir Hussain; Eqani, Syed Ali Musstjab Akber Shah; Munis, Muhammad Farooq Hussain; Chaudhary, Hassan Javed
2015-06-01
Microbe-assisted phyto-remediation approach is widely applied and appropriate choice to reduce the environmental risk of heavy metals originated from contaminated soils. The present study was designed to screen out the nested belongings of Eruca sativa plants and Pseudomonas putida (ATCC 39213) at varying cadmium (Cd) levels and their potential to deal with Cd uptake from soils. We carried out pot trial experiment by examining the soil containing E. sativa seedlings either treated with P. putida and/or untreated plants subjected to three different levels (ppm) of Cd (i.e., 150, 250, and 500). In all studied cases, we observed an increase in Cd uptake for E. sativa plants inoculated with P. putida than those of un-inoculated plants. Cd toxicity was assessed by recording different parameters including stunted shoot growth, poor rooting, and Cd residual levels in the plants that were not inoculated with P. putida. Significant difference (p < 0.05) of different growth parameters for inoculated vs non-inoculated plants was observed at all given treatments. However, among the different treatments, E. sativa exhibited increased values for different growth parameters (except proline contents) at lower Cd levels than those of their corresponding higher levels, shoot length (up to 27 %), root length (up to 32 %), whole fresh plant (up to 40 %), dry weight (up to 22 %), and chlorophyll contents (up to 26 %). Despite the hyperaccumulation of Cd in whole plant of E. sativa, P. putida improved the plant growth at varying levels of Cd supply than those of associated non-inoculated plants. Present results indicated that inoculation with P. putida enhanced the Cd uptake potential of E. sativa and favors the healthy growth under Cd stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ITLV.
1999-03-01
The Corrective Action Investigation Plan for Corrective Action Unit 428, Area 3 Septic Waste Systems 1 and 5, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U. S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U. S. Department of Defense. Corrective Action Unit 428 consists of Corrective Action Sites 03- 05- 002- SW01 and 03- 05- 002- SW05, respectively known as Area 3 Septic Waste System 1 and Septic Waste System 5. This Corrective Action Investigation Plan is used inmore » combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada , Rev. 1 (DOE/ NV, 1998c). The Leachfield Work Plan was developed to streamline investigations at leachfield Corrective Action Units by incorporating management, technical, quality assurance, health and safety, public involvement, field sampling, and waste management information common to a set of Corrective Action Units with similar site histories and characteristics into a single document that can be referenced. This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 428. A system of leachfields and associated collection systems was used for wastewater disposal at Area 3 of the Tonopah Test Range until a consolidated sewer system was installed in 1990 to replace the discrete septic waste systems. Operations within various buildings at Area 3 generated sanitary and industrial wastewaters potentially contaminated with contaminants of potential concern and disposed of in septic tanks and leachfields. Corrective Action Unit 428 is composed of two leachfield systems in the northern portion of Area 3. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern for the site include oil/ diesel range total petroleum hydrocarbons, and Resource Conservation and Recovery Act characteristic volatile organic compounds, semivolatile organic compounds, and metals. A limited number of samples will be analyzed for gamma- emitting radionuclides and isotopic uranium from four of the septic tanks and if radiological field screening levels are exceeded. Additional samples will be analyzed for geotechnical and hydrological properties and a bioassessment may be performed. The technical approach for investigating this Corrective Action Unit consists of the following activities: Perform video surveys of the discharge and outfall lines. Collect samples of material in the septic tanks. Conduct exploratory trenching to locate and inspect subsurface components. Collect subsurface soil samples in areas of the collection system including the septic tanks and outfall end of distribution boxes. Collect subsurface soil samples underlying the leachfield distribution pipes via trenching. Collect surface and near- surface samples near potential locations of the Acid Sewer Outfall if Septic Waste System 5 Leachfield cannot be located. Field screen samples for volatile organic compounds, total petroleum hydrocarbons, and radiological activity. Drill boreholes and collect subsurface soil samples if required. Analyze samples for total volatile organic compounds, total semivolatile organic compounds, total Resource Conservation and Recovery Act metals, and total petroleum hydrocarbons (oil/ diesel range organics). Limited number of samples will be analyzed for gamma- emitting radionuclides and isotopic uranium from particular septic tanks and if radiological field screening levels are exceeded. Collect samples from native soils beneath the distribution system and analyze for geotechnical/ hydrologic parameters. Collect and analyze bioassessment samples at the discretion of the Site Supervisor if total petroleum hydrocarbons exceed field- screening levels.« less
EFFECTS OF THE VARIATION OF SELECT SAMPLING PARAMETERS ON SOIL VAPOR CONCENTRATIONS
Currently soil vapor surveys are commonly used as a screening technique to delineate subsurface volatile organic compound (VOC) contaminant plumes and to provide information for vapor intrusion and contaminated site evaluations. To improve our understanding of the fate and transp...
ELECTROCHEMICAL TECHNIQUE FOR DETECTION OF TNT USING DISPOSABLE SCREEN-PRINTED ELECTRODES
Nitroaromatic and nitroamine explosives have been found in the soil and water from many government military bases due to disposal, storage and weapons testing. Run-off from contaminated soil and water can enter groundwater and potentially contaminate drinking water for near-by ...
Application of a Permethrin Immunosorbent Assay Method to Residential Soil and Dust Samples
A low-cost, high throughput bioanalytical screening method was developed for monitoring cis/trans-permethrin in dust and soil samples. The method consisted of a simple sample preparation procedure [sonication with dichloromethane followed by a solvent exchange into methanol:wate...
García-Santos, Glenda; Keller-Forrer, Karin
2011-07-01
Earthworm avoidance behaviour test is an important screening tool in soil eco-toxicology. This test has been developed and validated under North American and European conditions. However, little research has been performed on the avoidance test in the tropics. This work demonstrates the potential suitability of the avoidance behaviour test as screening method in the highlands of Colombia using Eisenia fetida as the bio-indicator species on contaminated soils with carbofuran and chlorpyrifos. Though for the two active ingredients 100% avoidance was not reached, a curve with six meaningful concentrations is provided. No significant avoidance behaviour trend was found for mancozeb and methamidophos. Tests were conducted in the field yielded similar results to the tests carried out in the laboratory for chlorpyrifos and mancozeb. However, for the case of carbofuran and methamidophos, differences of more than double in avoidance were obtained. Divergence might be explained by soil and temperature conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Thomas, Jennifer L; Donnelly, Christopher C; Lloyd, Erin W; Mothershead, Robert F; Miller, Mark L
2018-03-01
An improved cleanup method has been developed for the recovery of trace levels of 12 nitro-organic explosives in soil, which is important not only for the forensic community, but also has environmental implications. A wide variety of explosives or explosive-related compounds were evaluated, including nitramines, nitrate esters, nitroaromatics, and a nitroalkane. Fortified soil samples were extracted with acetone, processed via solid phase extraction (SPE), and then analyzed by gas chromatography with electron capture detection. The following three SPE sorbents in cartridge format were compared: Empore™ SDB-XC, Oasis ® HLB, and Bond Elut NEXUS cartridges. The NEXUS cartridges provided the best overall recoveries for the 12 explosives in potting soil (average 48%) and the fastest processing times (<30min). It also rejected matrix components from spent motor oil on potting soil. The SPE method was validated by assessing limit of detection (LOD), processed sample stability, and interferences. All 12 compounds were detectable at 0.02μg explosive/gram of soil or lower in the three matrices tested (potting soil, sand, and loam) over three days. Seven explosives were stable up to seven days at 2μg/g and three were stable at 0.2μg/g, both in processed loam, which was the most challenging matrix. In the interference study, five interferences above the determined LOD for soil were detected in matrices collected across the United States and in purchased all-purpose sand, potting soil, and loam. This represented a 3.2% false positive rate for the 13 matrices processed by the screening method for interferences. The reported SPE cleanup method provides a fast and simple extraction process for separating organic explosives from matrix components, facilitating sample throughput and reducing instrument maintenance. In addition, a comparison study of the validated SPE method versus conventional syringe filtration was completed and highlighted the benefits of sample cleanup for removing matrix interferences, while also providing lower supply cost, order of magnitude lower LODs for most explosives, higher percent recoveries for complex matrices, and fewer instrument maintenance issues. Published by Elsevier B.V.
Mashburn, Shana L.; Smith, S. Jerrod
2007-01-01
The U.S. Geological Survey, in cooperation with the Absentee Shawnee Tribe of Oklahoma, began a reconnaissance study of a site in Pottawatomie County, Oklahoma, in 2005 by testing soil, shallow ground water, and plant material for the presence of trace elements and semivolatile organic compounds. Chemical analysis of plant material at the site was investigated as a preliminary tool to determine the extent of contamination at the site. Thirty soil samples were collected from 15 soil cores during October 2005 and analyzed for trace elements and semivolatile organic compounds. Five small-diameter, polyvinyl-chloride-cased wells were installed and ground-water samples were collected during December 2005 and May 2006 and analyzed for trace elements and semivolatile organic compounds. Thirty Johnsongrass samples and 16 Coralberry samples were collected during September 2005 and analyzed for 53 constituents, including trace elements. Results of the soil, ground-water, and plant data indicate that the areas of trace element and semivolatile organic compound contamination are located in the shallow (A-horizon) soils near the threading barn. Most of the trace-element concentrations in the soils on the study site were either similar to or less than trace-element concentrations in background soils. Several trace elements and semivolatile organic compounds exceeded the U.S. Environmental Protection Agency, Region 6, Human Health Medium-Specific Screening Levels 2007 for Tap Water, Residential Soils, Industrial Indoor Soils, and Industrial Outdoor Soils. There was little or no correlation between the plant and soil sample concentrations and the plant and ground-water concentrations based on the current sample size and study design. The lack of correlation between trace-element concentrations in plants and soils, and plants and ground water indicate that plant sampling was not useful as a preliminary tool to assess contamination at the study site.
2007-04-19
These levels are provided to assist in making decisions in case of a large accident. Assessment can be made based on what health effects can be...a beta particle to become polonium -214 (99.98% of decays), or it can emit an alpha particle to become thallium- 210 (0.02% of decays). Bismuth-214...lead- 210 , and polonium - 210 . A decay of bismuth-214 will eventually yield 5 alpha particles and 4 beta particles. Four radionuclides that occur in
Witt, Emitt C.
2016-01-01
Historic lead and zinc (Pb-Zn) mining in southeast Missouri’s ―Old Lead Belt‖ has left large chat piles dominating the landscape where prior to 1972 mining was the major industry of the region. As a result of variable beneficiation methods over the history of mining activity, these piles remain with large quantities of unrecovered Pb and Zn and to a lesser extent cadmium (Cd). Quantifying the residual content of trace metals in chat piles is problematic because of the extensive field effort that must go into collecting elevation points for volumetric analysis. This investigation demonstrates that publicly available lidar point data from the U.S. Geological Survey 3D Elevation Program (3DEP) can be used to effectively calculate chat pile volumes as a method of more accurately estimating the total residual trace metal content in these mining wastes. Five chat piles located in St. Francois County, Missouri, were quantified for residual trace metal content. Utilizing lidar point cloud data collected in 2011 and existing trace metal concentration data obtained during remedial investigations, residual content of these chat piles ranged from 9247 to 88,579 metric tons Pb, 1925 to 52,306 metric tons Zn, and 51 to 1107 metric tons Cd. Development of new beneficiation methods for recovering these constituents from chat piles would need to achieve current Federal soil screening standards. To achieve this for the five chat piles investigated, 42 to 72% of residual Pb would require mitigation to the 1200 mg/kg Federal non-playground standard, 88 to 98% of residual Zn would require mitigation to the Ecological Soil Screening level (ESSL) for plant life, and 70% to 98% of Cd would require mitigation to achieve the ESSL. Achieving these goals through an existing or future beneficiation method(s) would remediate chat to a trace metal concentration level that would support its use as a safe agricultural soil amendment.
Kisetu, Eliakira; Teveli, Christina Ngomzee Medutieki
2013-11-15
A screen-house pot experiment was conducted to assess the response of green gram (Vigna radiata L.) to the application of Minjingu Mazao fertilizer (31% P2O5) on Olasiti soil, Manyara Region-Tanzania. This study was prompted by very low or limited use of Minjingu Mazao fertilizer by smallholder farmers in the country while yields turnout of most crops, green gram inclusive, is not promising. The soil was clay with medium pH (pH 5.5-7.0) and neutral reaction (pH 6.6-7.3). The results showed that the number of pods and seeds increased from 3-6 and 7-9, respectively, at 40 to 160 mg per 4 kg soil of fertilizer applied. Similarly, the tissue N and P increased with treatment levels. The number of pods per plant and seeds per pod showed similar increase, signifying the role of these nutrients in protein synthesis in leguminous plants like green gram. Soil properties could be the spearhead to low responses obtained at low (< 80 mg per 4 kg soil) and high (> 320 mg per 4 kg soil) rates of Minjingu Mazao fertilizer applied. It was concluded that to optimize green gram production in Olasiti soil, Minjingu Mazao fertilizer containing 31% P2O5 should be applied at a rate of 160-320 kg ha(-1) while considering other necessary agronomic practices. However, field studies to confirm the findings of this study and verify the usefulness of this fertilizer brand to green gram in Olasiti soil under field conditions could practically be the viable option before its recommendation to the smallholder farmers.
INITIAL SCREENING OF THERMAL DESORPTION FOR SOIL REMEDIATION
The purpose of the paper is to present procedures for collecting and evaluating key data that affect the potential application of thermal desorption for a specific site. These data are defined as 'criticalsuccess factors'. The screening prodcedure can be used to peerform an ini...
Air modelling as an alternative to sampling for low-level radioactive airborne releases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgenstern, M.Y.; Hueske, K.
1995-05-01
This paper describes our efforts to assess the effect of airborne releases at one DOE laboratory using air modelling based on historical data. Among the facilities affected by these developments is Los Alamos National Laboratory (LANL) in New Mexico. RCRA, as amended by the Hazardous and Solid Waste Amendments (HSWA) in 1984, requires all facilities which involve the treatment, storage, and disposal of hazardous waste obtain a RCRA/HSWA waste facility permit. LANL complied with CEARP by initiating a process of identifying potential release sites associated with LANL operations prior to filing a RCRA/HSWA permit application. In the process of preparingmore » the RCRA/HSWA waste facility permit application to the U.S. Environmental Protection Agency (EPA), a total of 603 Solid Waste Management Units (SWMUs) were identified as part of the requirements of the HSWA Module VIH permit requirements. The HSWA Module VIII permit requires LANL to determine whether there have been any releases of hazardous waste or hazardous constituents from SWMUs at the facility dating from the 1940`s by performing a RCRA Facility Investigation to address known or suspected releases from specified SWMUs to affected media (i.e. soil, groundwater, surface water, and air). Among the most troublesome of the potential releases sites are those associated with airborne radioactive releases. In order to assess health risks associated with radioactive contaminants in a manner consistent with exposure standards currently in place, the DOE and LANL have established Screening Action Levels (SALs) for radioactive soil contamination. The SALs for each radionuclide in soil are derived from calculations based on a residential scenario in which individuals are exposed to contaminated soil via inhalation and ingestion as well as external exposure to gamma emitters in the soil. The applicable SALs are shown.« less
Radon in Soil Gas Above Bedrock Fracture Sets at the Shepley’s Hill Superfund Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.R. Giles; T.L. McLing; M.V. Carpenter
2012-12-01
The Idaho National Laboratory (INL) recently provided technical support for ongoing environmental remediation activities at the Shepley’s Hill remediation site near Devens, MA (Figure 1). The technical support was requested as follow-on work to an initial screening level radiation survey conducted in 2008. The purpose of the original study was to assess the efficacy of the INL-developed Backpack Sodium Iodide System (BaSIS) for detecting elevated areas of natural radioactivity due to the decay of radon-222 gases emanating from the underlying fracture sets. Although the results from the initial study were mixed, the BaSIS radiation surveys did confirm that exposed bedrockmore » outcrops have higher natural radioactivity than the surficial soils, thus a high potential for detecting elevated levels of radon and/or radon daughter products. (INL 2009) The short count times associated with the BaSIS measurements limited the ability of the system to respond to elevated levels of radioactivity from a subsurface source, in this instance radon gas emanating from fracture sets. Thus, it was postulated that a different methodology be employed to directly detect the radon in the soil gases. The CR-39 particle track detectors were investigated through an extensive literature and technology search. The relatively long deployment or “detection” time of several days, as well as the sensitivity of the measurement and robustness of the detectors made the CR-39 technology promising for deployment at the Shepley’s Hill site.« less
Wang, Na; Guo, Xinyan; Xu, Jing; Kong, Xiangji; Gao, Shixiang; Shan, Zhengjun
2014-01-01
Scientific interest in pollution from antibiotics in animal husbandry has increased during recent years. However, there have been few studies on the vertical exposure characteristics of typical veterinary antibiotics in different exposure matrices from different livestock farms. This study explores the distribution and migration of antibiotics from feed to manure, from manure to soil, and from soil to vegetables, by investigating the exposure level of typical antibiotics in feed, manure, soil, vegetables, water, fish, and pork in livestock farms. A screening environmental risk assessment was conducted to identify the hazardous potential of veterinary antibiotics from livestock farms in southeast China. The results show that adding antibiotics to drinking water as well as the excessive use of antibiotic feed additives may become the major source of antibiotics pollution in livestock farms. Physical and chemical properties significantly affect the distribution and migration of various antibiotics from manure to soil and from soil to plant. Simple migration models can predict the accumulation of antibiotics in soil and plants. The environmental risk assessment results show that more attention should be paid to the terrestrial eco-risk of sulfadiazine, sulfamethazine, sulfamethoxazole, tetracycline, oxytetracycline, chlorotetracycline, ciprofloxacin, and enrofloxacin, and to the aquatic eco-risk of chlorotetracycline, ciprofloxacin, and enrofloxacin. This is the first systematic analysis of the vertical pollution characteristics of typical veterinary antibiotics in livestock farms in southeast China. It also identifies the ecological and human health risk of veterinary antibiotics.
The Molecular Biology of Nitroamine Degradation in Soils
2015-07-26
analysis and activity assays .............................................................................. 28 Determination of a putative...81 Figure 52: Specific XplA activity in cells treated with different nitrogen sources. .......... 83 Figure 53: Effect of... activity . Our efforts to develop a functional screen for genes from the soil metagenome were unsuccessful. We developed efficient methods of
TO PURGE OR NOT TO PURGE? VOC CONCENTRATION CHANGES DURING LINE VOLUME PURGING
Soil vapor surveys are commonly used as a screening technique to delineate volatile organic compound (VOC) contaminant plumes and provide information for soil sampling plans. Traditionally, three purge volumes of vapor are removed before a sample is collected. One facet of this s...
In the EPA document Predicting Attenuation of Viruses During Percolation in Soils 1. Probabilistic Model the conceptual, theoretical, and mathematical foundations for a predictive screening model were presented. In this current volume we present a User's Guide for the computer mo...
Screening fusarium resistant rootstocks for plant parasitic nematode resistance
USDA-ARS?s Scientific Manuscript database
The phase out of methyl bromide has directed research toward alternative methods of managing soil-borne pathogens. A limiting factor in many watermelon producing regions is Fusarium wilt caused by the soil-borne fungi Fusarium oxysporum f.sp. niveum (FON). There is no varietal resistance to FON depl...
PERFORMANCE OF THE CAPE TECHNOLOGIES DF1 DIOXIN/FURAN IMMUNOASSAY KIT FOR SOIL AND SEDIMENT SAMPLES
A demonstration of screening technologies for determining the presence of dioxin and dioxin-like compounds in soil and sediment was conducted under the U.S. Environmental Protection Agency’s (EPA’s) Superfund Innovative Technology Evaluation Program in Saginaw, Michigan in 2004. ...
7 CFR 319.37-8 - Growing media.
Code of Federal Regulations, 2011 CFR
2011-01-01
... offer for importation into the United States shall be free of sand, soil, earth, and other growing media...) Approved growing media are baked expanded clay pellets, coal cinder, coir, cork, glass wool, organic and... pests, and other plant pests. The greenhouse must be free from sand and soil and must have screening...
Risk assessment of soils identified on firefighter turnout gear.
Easter, Elizabeth; Lander, Deborah; Huston, Tabitha
2016-09-01
The purpose of this research was to identify the composition of soils on firefighter turnout gear and to determine the dermal exposure risks associated with the soils. Nine used Nomex hoods from the Philadelphia fire department were analyzed for the presence of trace metals and seven sets of used turnout gear were analyzed for semi-volatile organics. Turnout gear samples were removed from areas of the gear known to have high levels of dermal absorption including the collar, armpit, wrist, and crotch areas, from either the outer shell or thermal liner layers. The following compounds were detected: polycyclic aromatic hydrocarbons (PAHs), phthalate plasticizers, and polybrominated diphenyl ether flame retardants (PBDEs). A screening risk assessment was conducted by converting the measured concentrations to an estimated dermally absorbed dose based on estimates for the permeation coefficient (Kp) and an assumed firefighting exposure scenario. Benzo(a) pyrene had the highest dermal exposure risk based on carcinogenic effects and PBDE-99 had the highest dermal exposure risk based on non-carcinogenic effects. For the metals, arsenic had the highest dermal exposure risk for the use hoods.
Psychrotrophic strain of Janthinobacterium lividum from a cold Alaskan soil produces prodigiosin.
Schloss, Patrick D; Allen, Heather K; Klimowicz, Amy K; Mlot, Christine; Gross, Jessica A; Savengsuksa, Sarah; McEllin, Jennifer; Clardy, Jon; Ruess, Roger W; Handelsman, Jo
2010-09-01
We have explored the microbial community in a nonpermafrost, cold Alaskan soil using both culture-based and culture-independent approaches. In the present study, we cultured >1000 bacterial isolates from this soil and characterized the collection of isolates phylogenetically and functionally. A screen for antibiosis identified an atypical, red-pigmented strain of Janthinobacterium lividum (strain BR01) that produced prodigiosin when grown at cool temperatures as well as strains (e.g., strain BP01) that are more typical of J. lividium, which produce a purple pigment, violacein. Both purple- and red-pigmented strains exhibited high levels of resistance to beta-lactam antibiotics. The prodigiosin pathway cloned from J. lividium BR01 was expressed in the heterologous host, Escherichia coli, and the responsible gene cluster differs from that of a well-studied prodigiosin producer, Serratia sp. J. lividum BR01 is the first example of a prodigiosin-producer among the beta-Proteobacteria. The results show that characterization of cultured organisms from previously unexplored environments can expand the current portrait of the microbial world.
Palmer, Sherry; McIlwaine, Rebekka; Ofterdinger, Ulrich; Cox, Siobhan F; McKinley, Jennifer M; Doherty, Rory; Wragg, Joanna; Cave, Mark
2015-03-01
Lead (Pb) is a non-threshold toxin capable of inducing toxic effects at any blood level but availability of soil screening criteria for assessing potential health risks is limited. The oral bioaccessibility of Pb in 163 soil samples was attributed to sources through solubility estimation and domain identification. Samples were extracted following the Unified BARGE Method. Urban, mineralisation, peat and granite domains accounted for elevated Pb concentrations compared to rural samples. High Pb solubility explained moderate-high gastric (G) bioaccessible fractions throughout the study area. Higher maximum G concentrations were measured in urban (97.6 mg kg(-1)) and mineralisation (199.8 mg kg(-1)) domains. Higher average G concentrations occurred in mineralisation (36.4 mg kg(-1)) and granite (36.0 mg kg(-1)) domains. Findings suggest diffuse anthropogenic and widespread geogenic contamination could be capable of presenting health risks, having implications for land management decisions in jurisdictions where guidance advises these forms of pollution should not be regarded as contaminated land. Copyright © 2015 Elsevier Ltd. All rights reserved.
Atkins, Simon D; Hidalgo-Diaz, Leopoldo; Clark, Ian M; Morton, C Oliver; de Oca, Nivian Montes; Gray, Paul A; Kerry, Brian R
2003-02-01
Pochonia chlamydosporia var. catenulata is a potential biocontrol agent against root-knot nematodes. Diagnosis of isolates has relied on morphological identification, and is both time-consuming and difficult. beta-tubulin primers have been developed for the identification of this fungus that were specific enough to distinguish between varieties of the fungus within the same species. Separate primers have been developed for the specific detection of P. chlamydosporia var. catenulata based on ITS sequences, which were able to detect the fungus in soil from various sites in Cuba where the biocontrol agent had been added. When the PCR diagnosis was combined with serial dilution of soil samples on selective medium, colonies were rapidly identified. The fungus was still present, albeit at low densities, in soils inoculated five years previously. The development of a baiting method allowed quick in situ screening of the isolates' ability to infect nematode eggs, and when combined with PCR diagnosis both varieties of the fungus could be detected in infected eggs. RFLP analysis of ITS sequences from P. chlamydosporia provided an extra level of discrimination between isolates.
Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2011-01-01
The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface water for contaminants at the McCoys Creek Chemical Training Area (MCTA) at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of organic compounds classified as explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Ten passive samplers were deployed in the hyporheic zone and flood plain, and total petroleum hydrocarbons (TPH) and octane were detected above the method detection level in every sampler. Other organic compounds detected above the method detection level in the hyporheic zone and flood-plain samplers were trichloroethylene, and cis- and trans- 1, 2-dichloroethylene. One trip blank detected TPH below the method detection level but above the nondetection level. The concentrations of TPH in the samplers were many times greater than the concentrations detected in the blank; therefore, all other TPH concentrations detected are considered to represent environmental conditions. Seventy-one soil-gas samplers were deployed in a grid pattern across the MCTA. Three trip blanks and three method blanks were used and not deployed, and TPH was detected above the method detection level in two trip blanks and one method blank. Detection of TPH was observed at all 71 samplers, but because TPH was detected in the trip and method blanks, TPH was censored and, therefore, only 7 of the 71 samplers were reported as detecting TPH. In addition, benzene, toluene, ethylbenzene, and total xylene were detected above the method detection level in 22 samplers. Other compounds detected above the method detection level included naphthalene, octane, undecane, tridecane, 1,2,4-trimethylbenzene, trichloroethylene, perchloroethylene, chloroform, and 1,4-dichlorobenzene. Subsequent to the soil-gas survey, five locations with elevated contaminant mass were selected and a passive sampler was deployed at those locations to detect the presence of organic compounds classified as explosives or chemical agents. No explosives or chemical agents were detected above the method detection level, but some compounds were detected below the method detection level but above the nondetection level. Dimethyl disulfide, benzothiazole, chloroacetophenones, and para-chlorophenyl methyl sulfide were all detected below the method detection level but above the nondetection level. The compounds 2,4-dinitrotoluene, and para-chlorophenyl methyl sulfone were detected in samplers but also were detected in trip blanks and are not considered as present in the MCTA. The same five locations that were selected for sampling of explosives and chemical agents were selected for soil sampling. Metal concentrations in composite soil samples collected at five locations from land surface to a depth of 6 inches did not exceed the U.S. Environmental Protection Agency Regional Screening Levels for Industrial Soil. Concentrations in some compounds were higher than the South Carolina Department of Health and Environmental Control background levels for nearby South Carolina, including aluminum, arsenic, barium, beryllium, chromium, copper, iron, lead, manganese, nickel, and potassium. A surface-water sample was collected from McCoys Creek and analyzed for volatile organic compounds, semivolatile organic compounds, and inorganic compounds (metals). No volatile organic compounds and (or) semivolatile organic compounds were detected at levels above the maximum contaminant level of the U.S. Environmental Protection Agency (USEPA) National Primary Drinking Water Standard, and no inorganic compounds exceeded the maximum contaminant level of the USEPA National Primary Drinking Water Standard or the Georgia In-Stream Water-Quality Standard. Iron was the only inorganic compound detected in the surface-water sample (578 micrograms per liter) that exceeded the USEPA National Secondary Drinking Water Standard of 300 micrograms per liter.
Ecological risk of heavy metals in sediments of the luan river source water
Liu, J.; Li, Y.; Zhang, B.; Cao, J.; Cao, Z.; Domagalski, Joseph L.
2009-01-01
Distribution and characteristics of heavy metals enrichment in sediment were surveyed including the bio-available form analyzed for assessment of the Luan River source water quality. The approaches of sediment quality guidelines (SQG), risk assessment code and Hakanson potential ecological risk index were used for the ecological risk assessment. According to SQG, The results show that in animal bodies, Hg at the sampling site of Wuliehexia was 1.39 mg/kg, Cr at Sandaohezi was 152.37 mg/kg and Cu at Hanjiaying was 178.61 mg/kg exceeding the severe effect screening level. There were 90% of sampling sites of Cr and Pb and 50% sites of Cu exceeded the lowest effect screening level. At Boluonuo and Wuliehexia, the exchangeable and carbonate fractions for above 50% of sites were at high risk levels and that for above 30% of sites at Xiahenan and Wulieheshang were also at high risk levels. Other sites were at medium risk level. Compared to soil background values of China, Hg and Cd showed very strong ecological risk, and the seven heavy metals of Hg, Cd, Cu, As, Pb, Cr, Zn at ecological risk levels were in the descending order. The results could give insight into risk assessment of environmental pollution and decision-making for water source security. ?? 2009 Springer Science+Business Media, LLC.
Caetano, Ana Luisa; Marques, Catarina R.; Gavina, Ana; Carvalho, Fernando; Gonçalves, Fernando; da Silva, Eduardo Ferreira; Pereira, Ruth
2014-01-01
In order to regulate the management of contaminated land, many countries have been deriving soil screening values (SSV). However, the ecotoxicological data available for uranium is still insufficient and incapable to generate SSVs for European soils. In this sense, and so as to make up for this shortcoming, a battery of ecotoxicological assays focusing on soil functions and organisms, and a wide range of endpoints was carried out, using a natural soil artificially spiked with uranium. In terrestrial ecotoxicology, it is widely recognized that soils have different properties that can influence the bioavailability and the toxicity of chemicals. In this context, SSVs derived for artificial soils or for other types of natural soils, may lead to unfeasible environmental risk assessment. Hence, the use of natural regional representative soils is of great importance in the derivation of SSVs. A Portuguese natural reference soil PTRS1, from a granitic region, was thereby applied as test substrate. This study allowed the determination of NOEC, LOEC, EC20 and EC50 values for uranium. Dehydrogenase and urease enzymes displayed the lowest values (34.9 and <134.5 mg U Kg, respectively). Eisenia andrei and Enchytraeus crypticus revealed to be more sensitive to uranium than Folsomia candida. EC50 values of 631.00, 518.65 and 851.64 mg U Kg were recorded for the three species, respectively. Concerning plants, only Lactuca sativa was affected by U at concentrations up to 1000 mg U kg1. The outcomes of the study may in part be constrained by physical and chemical characteristics of soils, hence contributing to the discrepancy between the toxicity data generated in this study and that available in the literature. Following the assessment factor method, a predicted no effect concentration (PNEC) value of 15.5 mg kg−1 dw was obtained for U. This PNEC value is proposed as a SSV for soils similar to the PTRS1. PMID:25353962
Falls, Fred W.; Caldwell, Andral W.; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2011-01-01
Soil gas, soil, and water were assessed for organic and inorganic constituents at the former hospital landfill located in a 75-acre study area near the Dwight D. Eisenhower Army Medical Center, Fort Gordon, Georgia, from April to September 2010. Passive soil-gas samplers were analyzed to evaluate organic constituents in the hyporheic zone of a creek adjacent to the landfill and soil gas within the estimated boundaries of the former landfill. Soil and water samples were analyzed to evaluate inorganic constituents in soil samples, and organic and inorganic constituents in the surface water of a creek adjacent to the landfill, respectively. This assessment was conducted to provide environmental constituent data to Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Results from the hyporheic-zone assessment in the unnamed tributary adjacent to the study area indicated that total petroleum hydrocarbons and octane were the most frequently detected organic compounds in groundwater beneath the creek bed. The highest concentrations for these compounds were detected in the upstream samplers of the hyporheic-zone study area. The effort to delineate landfill activity in the study area focused on the western 14 acres of the 75-acre study area where the hyporheic-zone study identified the highest concentrations of organic compounds. This also is the part of the study area where a debris field also was identified in the southern part of the 14 acres. The southern part of this 14-acre study area, including the debris field, is steeper and not as heavily wooded, compared to the central and northern parts. Fifty-two soil-gas samplers were used for the July 2010 soil-gas survey in the 14-acre study area and mostly detected total petroleum hydrocarbons, and gasoline and diesel compounds. The highest soil-gas masses for total petroleum hydrocarbons, diesel compounds, and the only valid detection of perchloroethene were in the southern part of the study area to the west of the debris field. However, all other detections of total petroleum hydrocarbons greater than 10 micrograms and diesel greater than 0.04 micrograms, and all detections of the combined mass of benzene, toluene, ethylbenzene, and xylene were found down slope from the debris field in the central and northern parts of the study area. Five soil-gas samplers were deployed and recovered from September 16 to 22, 2010, and were analyzed for organic compounds classified as chemical agents or explosives. Chloroacetophenones (a tear gas component) were the only compounds detected above a method detection level and were detected at the same location as the highest total petroleum hydrocarbons and diesel detections in the southern part of the 14-acre study area. Composite soil samples collected at five locations were analyzed for 35 inorganic constituents. None of the inorganic constituents exceeded the regional screening levels. One surface-water sample collected in the western end of the hyporheic-zone study area had a trichlorofluoromethane concentration above the laboratory reporting level and estimated concentrations of chloroform, fluoranthene, and isophorone below laboratory reporting levels.
NASA Astrophysics Data System (ADS)
Orzechowska, G. E.; Kidd, R. D.; Foing, B. H.; Kanik, I.; Stoker, C.; Ehrenfreund, P.
2011-07-01
Polycyclic aromatic hydrocarbons (PAHs) are robust and abundant molecules in extraterrestrial environments. They are found ubiquitously in the interstellar medium and have been identified in extracts of meteorites collected on Earth. PAHs are important target molecules for planetary exploration missions that investigate the organic inventory of planets, moons and small bodies. This study is part of an interdisciplinary preparation phase to search for organic molecules and life on Mars. We have investigated PAH compounds in desert soils to determine their composition, distribution and stability. Soil samples (Mars analogue soils) were collected at desert areas of Utah in the vicinity of the Mars Desert Research Station (MDRS), in the Arequipa region in Peru and from the Jutland region of Denmark. The aim of this study was to optimize the solid-phase microextraction (SPME) method for fast screening and determination of PAHs in soil samples. This method minimizes sample handling and preserves the chemical integrity of the sample. Complementary liquid extraction was used to obtain information on five- and six-ring PAH compounds. The measured concentrations of PAHs are, in general, very low, ranging from 1 to 60 ng g-1. The texture of soils is mostly sandy loam with few samples being 100 % silt. Collected soils are moderately basic with pH values of 8-9 except for the Salten Skov soil, which is slightly acidic. Although the diverse and variable microbial populations of the samples at the sample sites might have affected the levels and variety of PAHs detected, SPME appears to be a rapid, viable field sampling technique with implications for use on planetary missions.
NASA Technical Reports Server (NTRS)
Orzechowska, G. E.; Kidd, R. D.; Foing, B. H.; Kanik, I.; Stoker, C.; Ehrenfreund, P.
2011-01-01
Polycyclic aromatic hydrocarbons (PAHs) are robust and abundant molecules in extraterrestrial environments. They are found ubiquitously in the interstellar medium and have been identified in extracts of meteorites collected on Earth. PAHs are important target molecules for planetary exploration missions that investigate the organic inventory of planets, moons and small bodies. This study is part of an interdisciplinary preparation phase to search for organic molecules and life on Mars. We have investigated PAH compounds in desert soils to determine their composition, distribution and stability. Soil samples (Mars analogue soils) were collected at desert areas of Utah in the vicinity of the Mars Desert Research Station (MDRS), in the Arequipa region in Peru and from the Jutland region of Denmark. The aim of this study was to optimize the solid-phase microextraction (SPME) method for fast screening and determination of PAHs in soil samples. This method minimizes sample handling and preserves the chemical integrity of the sample. Complementary liquid extraction was used to obtain information on five- and six-ring PAH compounds. The measured concentrations of PAHs are, in general, very low, ranging from 1 to 60 ng g(sup -1). The texture of soils is mostly sandy loam with few samples being 100% silt. Collected soils are moderately basic with pH values of 8-9 except for the Salten Skov soil, which is slightly acidic. Although the diverse and variable microbial populations of the samples at the sample sites might have affected the levels and variety of PAHs detected, SPME appears to be a rapid, viable field sampling technique with implications for use on planetary missions.
After Sample-Delivery Attempt, Sol 62
NASA Technical Reports Server (NTRS)
2008-01-01
NASA's Phoenix Mars Lander collected a soil sample and attempted to deliver some of it to a laboratory oven on the deck during the mission's 62nd Martian day, or sol, (July 28, 2008). The sample came from a hard layer at the bottom of the 'Snow White' trench and might have contained water ice mixed with the soil. This image taken after the attempt to deliver the sample through the open doors to cell number zero on the Thermal and Evolved-Gas Analyzer shows that very little of the soil fell onto the screened opening. Not enough material reached the oven, through a funnel under the screen, to proceed with analysis of the sample material. Phoenix's Robotic Arm Camera took this image at 7:54 a.m. local solar time on Sol 62. The size of the screened opening is about 10 centimeters (4 inches) long by 4 centimeters (1.5 inches) wide. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.DOE Office of Scientific and Technical Information (OSTI.GOV)
Will, M.E.; Suter, G.W. II
1995-09-01
An important step in ecological risk assessments is screening the chemicals occur-ring on a site for contaminants of potential concern. Screening may be accomplished by comparing reported ambient concentrations to a set of toxicological benchmarks. Multiple endpoints for assessing risks posed by soil-borne contaminants to organisms directly impacted by them have been established. This report presents benchmarks for soil invertebrates and microbial processes and addresses only chemicals found at United States Department of Energy (DOE) sites. No benchmarks for pesticides are presented. After discussing methods, this report presents the results of the literature review and benchmark derivation for toxicity tomore » earthworms (Sect. 3), heterotrophic microbes and their processes (Sect. 4), and other invertebrates (Sect. 5). The final sections compare the benchmarks to other criteria and background and draw conclusions concerning the utility of the benchmarks.« less
Metatranscriptomics of Soil Eukaryotic Communities.
Yadav, Rajiv K; Bragalini, Claudia; Fraissinet-Tachet, Laurence; Marmeisse, Roland; Luis, Patricia
2016-01-01
Functions expressed by eukaryotic organisms in soil can be specifically studied by analyzing the pool of eukaryotic-specific polyadenylated mRNA directly extracted from environmental samples. In this chapter, we describe two alternative protocols for the extraction of high-quality RNA from soil samples. Total soil RNA or mRNA can be converted to cDNA for direct high-throughput sequencing. Polyadenylated mRNA-derived full-length cDNAs can also be cloned in expression plasmid vectors to constitute soil cDNA libraries, which can be subsequently screened for functional gene categories. Alternatively, the diversity of specific gene families can also be explored following cDNA sequence capture using exploratory oligonucleotide probes.
Shuib, Fatin Nur Sufinas; Husaini, Ahmad; Zulkharnain, Azham; Roslan, Hairul Azman; Guan, Tay Meng
2016-01-01
In many industrial areas such as in food, pharmaceutical, cosmetic, printing, and textile, the use of synthetic dyes has been integral with products such as azo dye, anthrax, and dyestuffs. As such, these industries produce a lot of waste by-products that could contaminate the environment. Bioremediation, therefore, has become an important emerging technology due to its cost-sustainable, effective, natural approach to cleaning up contaminated groundwater and soil via the use of microorganisms. The use of microorganisms in bioremediation requires the optimisation of parameters used in cultivating the organism. Thus the aim of the work was to assess the degradation of Remazol Brilliant Blue R (RBBR) dye on soil using Plackett-Burman design by the basidiomycete, M. cladophyllus UMAS MS8. Biodegradation analyses were carried out on a soil spiked with RBBR and supplemented with rice husk as the fungus growth enhancer. A two-level Plackett-Burman design was used to screen the medium components for the effects on the decolourization of RBBR. For the analysis, eleven variables were selected and from these four parameters, dye concentration, yeast extract concentration, inoculum size, and incubation time, were found to be most effective to degrade RBBR with up to 91% RBBR removal in soil after 15 days.
Shuib, Fatin Nur Sufinas
2016-01-01
In many industrial areas such as in food, pharmaceutical, cosmetic, printing, and textile, the use of synthetic dyes has been integral with products such as azo dye, anthrax, and dyestuffs. As such, these industries produce a lot of waste by-products that could contaminate the environment. Bioremediation, therefore, has become an important emerging technology due to its cost-sustainable, effective, natural approach to cleaning up contaminated groundwater and soil via the use of microorganisms. The use of microorganisms in bioremediation requires the optimisation of parameters used in cultivating the organism. Thus the aim of the work was to assess the degradation of Remazol Brilliant Blue R (RBBR) dye on soil using Plackett-Burman design by the basidiomycete, M. cladophyllus UMAS MS8. Biodegradation analyses were carried out on a soil spiked with RBBR and supplemented with rice husk as the fungus growth enhancer. A two-level Plackett-Burman design was used to screen the medium components for the effects on the decolourization of RBBR. For the analysis, eleven variables were selected and from these four parameters, dye concentration, yeast extract concentration, inoculum size, and incubation time, were found to be most effective to degrade RBBR with up to 91% RBBR removal in soil after 15 days. PMID:27803944
This study is an evaluation of empirical data and select modeling studies of the behavior of petroleum hydrocarbon (PHC) vapors in subsurface soils and how they can affect subsurface-to-indoor air vapor intrusion (VI), henceforth referred to as petroleum vapor intrusion or “PVI” ...
A demonstration of screening technologies for determining the presence of dioxin and dioxin-like compounds in soil and sediment was conducted under the U.S. Environmental Protection Agency’s (EPA’s) Superfund Innovative Technology Evaluation Program in Saginaw, Michigan in 2004. ...
A demonstration of screening technologies for determining the presence of dioxin and dioxin-like compounds in soil and sediment was conducted under the U.S. Environmental Protection Agency's(EPA's) Superfund Innovative Technology Evaluation Program in Saginaw, Michigan in 2004. T...
A major product recovered from the processing and recycling of construction and demolition (C&D) debris is screened soil, also referred to as fines. A proposed reuse option for C&D debris fines is fill material, typically in construction projects as a substitute for natural soil....
Historically, conventional practice to estimate intrusion of fuel vapors from soil and ground water to buildings measures the concentration of BTEX beneath the building using vapor probes or monitoring wells screened across the water table. Standard practice assumes that the co...
Field and Laboratory Evaluations of Insecticides for Southern Pine Beetle Control
Felton L. Hastings; Jack E. Coster; [Editors
1981-01-01
Reports results of laboratory screenings and field studies of insecticides for use against the southern pine beetle. Preventive as webas remedial efficacywere observed, along with phytotoxicity to pine and understory hardwood species, effects of insecticides on soil microbial and mesofaunal populations, and degradation of insecticides by selected soil microbes.
7 CFR 319.37-8 - Growing media.
Code of Federal Regulations, 2013 CFR
2013-01-01
... shall be free of sand, soil, earth, and other growing media, except as provided in paragraph (b), (c..., coir, cork, glass wool, organic and inorganic fibers, peat, perlite, phenol formaldehyde, plastic... greenhouse must be free from sand and soil and must have screening with openings of not more than 0.6 mm (0.2...
7 CFR 319.37-8 - Growing media.
Code of Federal Regulations, 2014 CFR
2014-01-01
... shall be free of sand, soil, earth, and other growing media, except as provided in paragraph (b), (c..., coir, cork, glass wool, organic and inorganic fibers, peat, perlite, phenol formaldehyde, plastic... greenhouse must be free from sand and soil and must have screening with openings of not more than 0.6 mm (0.2...
7 CFR 319.37-8 - Growing media.
Code of Federal Regulations, 2012 CFR
2012-01-01
... shall be free of sand, soil, earth, and other growing media, except as provided in paragraph (b), (c..., coir, cork, glass wool, organic and inorganic fibers, peat, perlite, phenol formaldehyde, plastic... greenhouse must be free from sand and soil and must have screening with openings of not more than 0.6 mm (0.2...
Cai, Kui-Zheng; Liu, Jun-Lin; Liu, Wei; Wang, Bo-Bo; Xu, Qiang; Sun, Long-Jie; Chen, Ming-Yue; Zhao, Ming-Wang; Wu, Jia-Yan; Li, Xiao-Shan; Yang, Jing; Wei, Shuan; Chen, Chun-Rong; Ma, Zhong-Ren; Xu, Chun-Lan; Wang, Feng; Hu, Qian-Lin; Fang, Wen-Xiu; Zheng, Tian-Hui; Wang, Yue-Ying; Zhu, Wen-Long; Li, Dan; Li, Qing; Zhang, Chao; Cai, Bing; Wang, Fan; Yang, Zai-Yun; Liu, Yan-Qiu
2016-03-01
A total of 1502 samples, including feces of sheep (793) and cattle (348), pasture soil (118), dung compost (147) and barn soil (96), were examined between October 2012 and August 2014 to discover potential strains of nematophagous fungi for the biological control of livestock-parasitic nematodes. These samples were collected from 87 sites located in 48 counties of 20 provinces (autonomous regions/municipalities) of China. Fungi were identified down to a species level. Four hundred and seventy-seven isolates, which were distributed in 8 genera and 28 taxa, were identified as nematophagous fungi. Nematode-trapping fungi included 17 species and one unidentified species of Arthrobotrys, two of Dactylella, Drechslerella dactyloides, and Duddingtonia flagrans. Five identified species and two unidentified species of endoparasitic fungi were isolated. The predominant species from all regions were Arthrobotrys oligospora, followed by Arthrobotrys musiformis, Arthrobotrys (Monacrosporium) thaumasiun, and Arthrobotrys (Monacrosporium) microscaphoides. Species with adhesive networks were the most frequently isolated. Among the endoparasitic fungi, Podocrella harposporifera (Harposporium anguillulae) was the most common species, followed by Harposporium lilliputanum and Harposporium arcuatum. Based on Shannon diversity index, the diversity levels of nematophagous fungi were relatively higher in samples associated with cattle, barn soil, and subtropical monsoon climate zone. Three species isolated from this study, namely, Duddingtonia flagrans, Arthrobotrys salina (Monacrosporium salinum), and Arthrobotrys oligospora var. sarmatica, are newly recorded in China, and 20 species (including one unidentified species) are newly recorded in sheep and cattle barn soils worldwide. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Xiong; Zhang, Xiaoming; Yang, Ya; Li, Boqun; Wu, Yuansheng; Sun, Hang; Yang, Yongping
2016-01-01
Heavy metal (HM) pollution is a global environmental problem that threatens ecosystem and human health. Cadmium (Cd) pollution is the most prominent HM pollution type because of its high toxicity, strong migration, and the large polluted area globally. Phytoremediation of contaminated soil is frequently practiced because of its cost-effectiveness and operability and because it has no associated secondary pollution. High-accumulation plants, including those identified as hyperaccumulators, play an important role in phytoremediation. Therefore, screening of plants to identify hyperaccumulators is important for continued phytoremediation. In the present study, we investigated the Cd tolerance and accumulation capabilities of 18 turnip landraces from China under a soil experiment with known Cd level. The results indicated that turnip has a high capacity for Cd accumulation. Furthermore, significant differences in Cd tolerance and accumulation characteristics were found among different landraces when they grew at 50 mg kg -1 (dry weight) Cd concentration. Among the studied landraces, five turnip landraces met the requirements of Cd hyperaccumulators and three landraces were identified as potential candidates. However, the total Cd content accumulated by individual plant of different turnip landraces was dependent on both the Cd accumulation capacity and plant biomass. Compared with some reported Cd hyperaccumulators, turnip not only shows a high Cd-accumulation capacity but also has rapid growth and a wide distribution area. These advantages indicate that turnip may have considerable potential for phytoremediation of Cd-contaminated soil. Furthermore, the study also indicates that it is not advisable to consume turnip cultivated in an environment that exceeds safe Cd levels.
Zhang, Zhuo; Guo, Guanlin; Teng, Yanguo; Wang, Jinsheng; Rhee, Jae Seong; Wang, Sen; Li, Fasheng
2015-05-15
Lead exposure via ingestion of soil and dust generally occurs at lead-acid battery manufacturing and recycling sites. Screening solidification/stabilization (S/S) amendments suitable for lead contaminated soil in an abandoned lead-acid battery factory site was conducted based on its chemical forms and environmental risks. Twelve amendments were used to immobilize the Pb in soil and assess the solidification/stabilization efficiency by toxicity leaching tests. The results indicated that three amendments, KH₂PO₄ (KP), KH₂PO₄:oyster shell power=1:1 (by mass ratio; SPP), and KH₂PO₄:sintered magnesia=1:1 (by mass ratio; KPM) had higher remediation efficiencies that led to a 92% reduction in leachable Pb with the addition of 5% amendments, while the acid soluble fraction of Pb (AS-Pb) decreased by 41-46% and the residual fraction (RS-Pb) increased by 16-25%. The S/S costs of the three selected amendments KP, SPP, and KPM could be controlled to $22.3 per ton of soil when the Pb concentration in soil ranged from 2000 to 3000 mg/kg. The results of this study demonstrated that KP, SPP, and KPM can effectively decrease bioavailability of Pb. These findings could provide basis for decision-making of S/S remediation of lead-acid battery contaminated sites. Copyright © 2015 Elsevier B.V. All rights reserved.
Levine, Keith E; Redmon, Jennifer Hoponick; Elledge, Myles F; Wanigasuriya, Kamani P; Smith, Kristin; Munoz, Breda; Waduge, Vajira A; Periris-John, Roshini J; Sathiakumar, Nalini; Harrington, James M; Womack, Donna S; Wickremasinghe, Rajitha
2016-10-01
The emergence of a new form of chronic kidney disease of unknown etiology (CKDu) in Sri Lanka's North Central Province (NCP) has become a catastrophic health crisis. CKDu is characterized as slowly progressing, irreversible, and asymptomatic until late stages and, importantly, not attributed to diabetes, hypertension, or other known risk factors. It is postulated that the etiology of CKDu is multifactorial, involving genetic predisposition, nutritional and dehydration status, exposure to one or more environmental nephrotoxins, and lifestyle factors. The objective of this limited geochemical laboratory analysis was to determine the concentration of a suite of heavy metals and trace element nutrients in biological samples (human whole blood and hair) and environmental samples (drinking water, rice, soil, and freshwater fish) collected from two towns within the endemic NCP region in 2012 and 2013. This broad panel, metallomics/mineralomics approach was used to shed light on potential geochemical risk factors associated with CKDu. Based on prior literature documentation of potential nephrotoxins that may play a role in the genesis and progression of CKDu, heavy metals and fluoride were selected for analysis. The geochemical concentrations in biological and environmental media areas were quantified. Basic statistical measurements were subsequently used to compare media against applicable benchmark values, such as US soil screening levels. Cadmium, lead, and mercury were detected at concentrations exceeding US reference values in many of the biological samples, suggesting that study participants are subjected to chronic, low-level exposure to these elements. Within the limited number of environmental media samples, arsenic was determined to exceed initial risk screening and background concentration values in soil, while data collected from drinking water samples reflected the unique hydrogeochemistry of the region, including the prevalence of hard or very hard water, and fluoride, iron, manganese, sodium, and lead exceeding applicable drinking water standards in some instances. Current literature suggests that the etiology of CKDu is likely multifactorial, with no single biological or hydrogeochemical parameter directly related to disease genesis and progression. This preliminary screening identified that specific constituents may be present above levels of concern, but does not compare results against specific kidney toxicity values or cumulative risk related to a multifactorial disease process. The data collected from this limited investigation are intended to be used in the subsequent study design of a comprehensive and multifactorial etiological study of CKDu risk factors that includes sample collection, individual surveys, and laboratory analyses to more fully evaluate the potential environmental, behavioral, genetic, and lifestyle risk factors associated with CKDu.
Xu, Feng; Liang, Xinmiao; Lin, Bingcheng; Schramm, Karl-Werner; Kettrup, Antonius
2002-08-30
The retention factors (k) of 104 hydrophobic organic chemicals (HOCs) were measured in soil column chromatography (SCC) over columns filled with three naturally occurring reference soils and eluted with Milli-Q water. A novel method for the estimation of soil organic partition coefficient (Koc) was developed based on correlations with k in soil/water systems. Strong log Koc versus log k correlations (r>0.96) were found. The estimated Koc values were in accordance with the literature values with a maximum deviation of less than 0.4 log units. All estimated Koc values from three soils were consistent with each other. The SCC approach is promising for fast screening of a large number of chemicals in their environmental applications.
NASA Astrophysics Data System (ADS)
Yogabaanu, U.; Weber, Jean-Frederic Faizal; Convey, Peter; Rizman-Idid, Mohammed; Alias, Siti Aisyah
2017-12-01
The Arctic and Antarctic share environmental extremes. To survive in such environments, microbes such as soil fungi need to compete with or protect themselves effectively from other soil microbiota and to obtain the often scarce nutrients available, and many use secondary metabolites to facilitate this. We therefore (i) screened for antimicrobial properties of cold-environment Arctic and Antarctic soil fungi, and (ii) identified changes in the secreted secondary metabolite profiles of a subset of these strains in response to temperature variation. A total of 40 polar soil fungal strains from King George Island, maritime Antarctic and Hornsund, Svalbard, High Arctic, were obtained from the Malaysian National Antarctic Research Centre culture collections. The plug assay technique was used to screen for antimicrobial potential against Gram-positive and Gram-negative human pathogenic bacteria (Bacillus subtilis, B. cereus, Pseudomonas aeruginosa, Enterococcus faecalis and Escherichia coli). About 45% of the tested fungal strains showed antimicrobial activity against at least one tested microorganism. Three fungal isolates showed good bioactivity and were subjected to secondary metabolite profiling at different temperatures (4, 10, 15 and 28 °C). We observed a range of responses in fungal metabolite production when incubated at varying temperatures, confirming an influence of environmental conditions such as temperature on the production of secondary metabolites.
Wang, Jianxu; Xia, Jicheng; Feng, Xinbin
2017-01-15
Screening of optimal chelating ligands which not only have high capacities to enhance plant uptake of mercury (Hg) from soil but also can decrease bioavailable Hg concentration in soil is necessary to establish a viable chemically-assisted phytoextraction. Therefore, Brassica juncea was exposed to historically Hg-contaminated soil (total Hg, 90 mg kg -1 ) to investigate the efficiency of seven chelating agents [ammonium thiosulphate, sodium thiosulphate, ammonium sulfate, ammonium chloride, sodium nitrate, ethylenediaminetetraacetic acid (EDTA), and sodium sulfite] at enhancing Hg phytoextraction; the leaching of bioavailable Hg caused by these chelating agents was also investigated. The Hg concentration in control (treated with double-distilled water) plant tissues was below 1 mg kg -1 . The remarkably higher Hg concentration was found in plants receiving ammonium thiosulphate and sodium sulfite treatments. The bioaccumulation factors and translocation factors of ammonium thiosulphate and sodium sulfite treatments were significantly higher than those of the other treatments. The more efficient uptake of Hg by plants upon treatment with ammonium thiosulphate and sodium sulfite compared to the other treatments might be explained by the formation of special Hg-thiosulphate complexes that could be preferentially taken up by the roots and transported in plant tissues. The application of sulfite significantly increased bioavailable Hg concentration in soil compared with that in initial soil and control soil, whereas ammonium thiosulphate significantly decreased bioavailable Hg concentration. The apparent decrease of bioavailable Hg in ammonium thiosulphate-treated soil compared with that in sodium sulfite-treated soil might be attributable to the unstable Hg-thiosulphate complexes formed between thiosulphate and Hg; they could react to produce less bioavailable Hg in the soil. The results of this study indicate that ammonium thiosulphate may be an optimal chelating ligand for phytoextraction due to its great potential to enhance Hg accumulation in plants while decreasing bioavailable Hg concentration in the soil. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ancona, Valeria; Campanale, Claudia; Calabrese, Angelantonio; Vito Felice, Uricchio; Simona, Regano
2014-05-01
Soil pollution is one of the most soil relevant threats recognized in the world. Contamination affects soil quality and soil capacity to react against several land degradation processes (erosion, organic depletion, desertification, etc.). The identification of opportune strategies to hinder pollution is a fundamental requirement to restore soil quality. In particular, large attentions have got the techniques, which promote the decontamination, and at the same time, improve fertility allowing a new use of a soil restored. In this work we present a preliminary study to assess the use of compost (an organic fertilizer produced through a process of transformation and controlled stabilization of selected organic waste at the source) in remediating a heavily polluted soil in southern Italy. The study site is located in Taranto city (Apulia Region) and is contaminated predominantly by heavy metals and lightly by organic toxic compounds such us polychlorinated biphenyls (PCBs). An exhaustive chemical characterization has been carried out on soil samples and then, a treatment with compost was applied on the study site. Successively, two data acquisition campaigns have been realized (after 4 and 7 months by compost treatment, respectively). Soil chemical analyses of texture, electrical conductivity, pH, organic carbon content, total nitrogen, available phosphorous, carbonate and water content have been carried out to investigate soil properties. In the polluted site chemical analyses of characterization showed low content of nutrients (nitrogen and phosphorous) and high level of carbonate. Heavy metals screenings, carried out through ICP-MS equipment, evidenced a massive contamination by Be, Se, Sn, Pb, Cr, Zn, while GC-MS investigations revealed a lower pollution by PCBs. The results of the monitoring campaigns showed a consistent reduction of the heavy metals concentrations: a higher decrease is observed after 7 months by compost treatment. At the same time, a considerable increase of organic carbon, nitrogen and phosphorus is also registered. The overall results suggest that the use of compost contributed to improve soil physico-chemical properties and promote a relevant decrease of pollution suggesting that a process of soil quality restoration is performing.
Rosende, María; Beesley, Luke; Moreno-Jimenez, Eduardo; Miró, Manuel
2016-02-01
An automatic in-vitro bioaccessibility test based upon dynamic microcolumn extraction in a programmable flow setup is herein proposed as a screening tool to evaluate bio-char based remediation of mine soils contaminated with trace elements as a compelling alternative to conventional phyto-availability tests. The feasibility of the proposed system was evaluated by extracting the readily bioaccessible pools of As, Pb and Zn in two contaminated mine soils before and after the addition of two biochars (9% (w:w)) of diverse source origin (pine and olive). Bioaccessible fractions under worst-case scenarios were measured using 0.001 mol L(-1) CaCl2 as extractant for mimicking plant uptake, and analysis of the extracts by inductively coupled optical emission spectrometry. The t-test of comparison of means revealed an efficient metal (mostly Pb and Zn) immobilization by the action of olive pruning-based biochar against the bare (control) soil at the 0.05 significance level. In-vitro flow-through bioaccessibility tests are compared for the first time with in-vivo phyto-toxicity assays in a microcosm soil study. By assessing seed germination and shoot elongation of Lolium perenne in contaminated soils with and without biochar amendments the dynamic flow-based bioaccessibility data proved to be in good agreement with the phyto-availability tests. Experimental results indicate that the dynamic extraction method is a viable and economical in-vitro tool in risk assessment explorations to evaluate the feasibility of a given biochar amendment for revegetation and remediation of metal contaminated soils in a mere 10 min against 4 days in case of phyto-toxicity assays. Copyright © 2015 Elsevier B.V. All rights reserved.
Adrion, Alden C.; Singleton, David R.; Nakamura, Jun; Shea, Damian; Aitken, Michael D.
2016-01-01
Abstract Efficacy of bioremediation for soil contaminated with polycyclic aromatic hydrocarbons (PAHs) may be limited by the fractions of soil-bound PAHs that are less accessible to PAH-degrading microorganisms. In previous test-tube-scale work, submicellar doses of nonionic surfactants were screened for their ability to enhance the desorption and biodegradation of residual PAHs in soil after conventional bioremediation in a laboratory-scale, slurry-phase bioreactor. Polyoxyethylene sorbitol hexaoleate (POESH) was the optimum surfactant for enhancing PAH removal, especially the high–molecular weight PAHs. This work extends that concept by treating the effluent from the slurry-phase bioreactor in a second-stage batch reactor, to which POESH was added, for an additional 7 or 12 days. Surfactant amendment removed substantial amounts of the PAHs and oxy-PAHs remaining after conventional slurry-phase bioremediation, including more than 80% of residual 4-ring PAHs. Surfactant-amended treatment decreased soil cytotoxicity, but often increased the genotoxicity of the soil as measured using the DT-40 chicken lymphocyte DNA damage response assay. Potential ecotoxicity, measured using a seed germination assay, was reduced by bioreactor treatment and was reduced further after second-stage treatment with POESH. Of bacteria previously implicated as potential PAH degraders under POESH-amended conditions in a prior study, members of the Terrimonas genus were associated with differences in high–molecular weight PAH removal in the current study. Research using submicellar doses of surfactant as a second-stage treatment step is limited and these findings can inform the design of bioremediation systems at field sites treating soil contaminated with PAHs and other hydrophobic contaminants that have low bioaccessibility. PMID:27678476
Suedel, Burton C; Nicholson, Andrew; Day, Christopher H; Spicer, James
2006-10-01
When evaluating the risk chemicals may pose to mammals and birds in ecological risk assessments (ERAs), it is common practice to conservatively assume that all (100%) of a chemical in an environmental medium is bioavailable to receptors. This assumption often leads to overestimating ecological risk and may ultimately result in costly and unnecessary risk management actions. While effects of bioavailability and speciation of metals such as arsenic (As) and lead (Pb) have been considered in human health risk assessment, these effects are rarely taken into consideration when assessing risks to mammals and birds. An ERA was conducted at the former Col-Tex refinery site in Colorado City, Texas, USA, to characterize risks to select wildlife species from exposure to chromium (Cr) and Pb found in soils. The focus on these metals was based on results of a screening-level ERA that found that Cr and Pb were posing ecological risks at the site. Soils were analyzed for total Cr and Pb, trivalent Cr (CrIII), hexavalent Cr (CrVI), organic Pb, and the bioavailability and speciation of Pb. Results for Pb and Cr indicated that >94% of the Cr was present as the less toxic and immobile Cr(III) and that >99% of the Pb in soils was present as inorganic Pb. Lead bioaccessibility measured by in vitro testing ranged from 8% to 77.8%, depending on location of individual soil samples. Results demonstrated that Pb and Cr bioavailability and speciation information can raise soil cleanup concentrations while being protective of ecological receptors. The costs of performing the ERA were de minimus compared to the reduction in remediation costs at the site. The refined hazard estimates allowed informed decision making in the management and segregation of soils, allowing for effective risk management at the site.
Adrion, Alden C; Singleton, David R; Nakamura, Jun; Shea, Damian; Aitken, Michael D
2016-09-01
Efficacy of bioremediation for soil contaminated with polycyclic aromatic hydrocarbons (PAHs) may be limited by the fractions of soil-bound PAHs that are less accessible to PAH-degrading microorganisms. In previous test-tube-scale work, submicellar doses of nonionic surfactants were screened for their ability to enhance the desorption and biodegradation of residual PAHs in soil after conventional bioremediation in a laboratory-scale, slurry-phase bioreactor. Polyoxyethylene sorbitol hexaoleate (POESH) was the optimum surfactant for enhancing PAH removal, especially the high-molecular weight PAHs. This work extends that concept by treating the effluent from the slurry-phase bioreactor in a second-stage batch reactor, to which POESH was added, for an additional 7 or 12 days. Surfactant amendment removed substantial amounts of the PAHs and oxy-PAHs remaining after conventional slurry-phase bioremediation, including more than 80% of residual 4-ring PAHs. Surfactant-amended treatment decreased soil cytotoxicity, but often increased the genotoxicity of the soil as measured using the DT-40 chicken lymphocyte DNA damage response assay. Potential ecotoxicity, measured using a seed germination assay, was reduced by bioreactor treatment and was reduced further after second-stage treatment with POESH. Of bacteria previously implicated as potential PAH degraders under POESH-amended conditions in a prior study, members of the Terrimonas genus were associated with differences in high-molecular weight PAH removal in the current study. Research using submicellar doses of surfactant as a second-stage treatment step is limited and these findings can inform the design of bioremediation systems at field sites treating soil contaminated with PAHs and other hydrophobic contaminants that have low bioaccessibility.
Screening of fungi for soil remediation potential
Richard T. Lamar; Laura M. Main; Diane M. Dietrich; John A. Glaser
1999-01-01
The purpose of the present investigation was to determine if physiological and/or biochemical factors such as growth rate, tolerance to and ability to degrade PCP or creosote have use for predicting the potential bioremediation performance of fungi. Because we have focused the initial development of a fungal-based soil remediation technology on PCP- and/or creosote-...
Takeda, Akira; Tsukada, Hirofumi; Takaku, Yuichi; Akata, Naofumi; Hisamatsu, Shun'ichi
2008-06-01
For a better understanding of the soil-to-plant transfer of radionuclides, their behavior in the soil solution should be elucidated, especially at the interface between plant roots and soil particles, where conditions differ greatly from the bulk soil because of plant activity. This study determined the concentration of stable Cs and Sr, and U in the soil solution, under plant growing conditions. The leafy vegetable komatsuna (Brassica rapa L.) was cultivated for 26 days in pots, where the rhizosphere soil was separated from the non-rhizosphere soil by a nylon net screen. The concentrations of Cs and Sr in the rhizosphere soil solution decreased with time, and were controlled by K+NH(4)(+) and Ca, respectively. On the other hand, the concentration of U in the rhizosphere soil solution increased with time, and was related to the changes of DOC; however, this relationship was different between the rhizosphere and non-rhizosphere soil.
Trindade, Mirta; Nording, Malin; Nichkova, Mikaela; Spinnel, Erik; Haglund, Peter; Last, Michael S.; Gee, Shirley; Hammock, Bruce; Last, Jerold A.; González-Sapienza, Gualberto; Brena, Beatriz M.
2010-01-01
Uncontrolled combustion due to garbage recycling is a widespread activity among slum dwellers in distressed economy countries and has been indicated as a major source of dioxin contamination. However, because of the high cost and complexity of gas chromatography/high-resolution mass spectrometry (GC-HRMS) analysis, the magnitude of the problem remains largely unknown. The present study describes a first approach toward the use of a dioxin antibody-based enzyme-linked immunosorbent assay (ELISA) as the basis for a sustainable, simple, and low-cost monitoring program to assess the toxicological impact of uncontrolled combustion in slums. A panel of 16 samples was analyzed by GC-HRMS and ELISA on split extracts. Close to 20% of the analyzed samples showed dioxin concentrations up to almost twice the guidance level for residential soil in several countries, pointing out the need for performing a large-scale monitoring program. Despite the potential for variations in dioxin congener distribution due to the mixed nature of the incinerated material, there was a good correlation between the toxic equivalents as determined by GC-HRMS and ELISA. Furthermore, an interlaboratory ELISA validation showed that the capacity to perform the dioxin ELISA was successfully transferred between laboratories. It was concluded that the ELISA method performed very well as a screening tool to prioritize samples for instrumental analysis, which allows cutting down costs significantly. PMID:18522475
Nitrous Oxide Reductase (nosZ) Gene Fragments Differ between Native and Cultivated Michigan Soils
Stres, Blaž; Mahne, Ivan; Avguštin, Gorazd; Tiedje, James M.
2004-01-01
The effect of standard agricultural management on the genetic heterogeneity of nitrous oxide reductase (nosZ) fragments from denitrifying prokaryotes in native and cultivated soil was explored. Thirty-six soil cores were composited from each of the two soil management conditions. nosZ gene fragments were amplified from triplicate samples, and PCR products were cloned and screened by restriction fragment length polymorphism (RFLP). The total nosZ RFLP profiles increased in similarity with soil sample size until triplicate 3-g samples produced visually identical RFLP profiles for each treatment. Large differences in total nosZ profiles were observed between the native and cultivated soils. The fragments representing major groups of clones encountered at least twice and four randomly selected clones with unique RFLP patterns were sequenced to verify nosZ identity. The sequence diversity of nosZ clones from the cultivated field was higher, and only eight patterns were found in clone libraries from both soils among the 182 distinct nosZ RFLP patterns identified from the two soils. A group of clones that comprised 32% of all clones dominated the gene library of native soil, whereas many minor groups were observed in the gene library of cultivated soil. The 95% confidence intervals of the Chao1 nonparametric richness estimator for nosZ RFLP data did not overlap, indicating that the levels of species richness are significantly different in the two soils, the cultivated soil having higher diversity. Phylogenetic analysis of deduced amino acid sequences grouped the majority of nosZ clones into an interleaved Michigan soil cluster whose cultured members are α-Proteobacteria. Only four nosZ sequences from cultivated soil and one from the native soil were related to sequences found in γ-Proteobacteria. Sequences from the native field formed a distinct, closely related cluster (Dmean = 0.16) containing 91.6% of the native clones. Clones from the cultivated field were more distantly related to each other (Dmean = 0.26), and 65% were found outside of the cluster from the native soil, further indicating a difference in the two communities. Overall, there appears to be a relationship between use and richness, diversity, and the phylogenetic position of nosZ sequences, indicating that agricultural use of soil caused a shift to a more diverse denitrifying community. PMID:14711656
Winery wastewater treatment using the land filter technique.
Christen, E W; Quayle, W C; Marcoux, M A; Arienzo, M; Jayawardane, N S
2010-08-01
This study outlines a new approach to the treatment of winery wastewater by application to a land FILTER (Filtration and Irrigated cropping for Land Treatment and Effluent Reuse) system. The land FILTER system was tested at a medium size rural winery crushing approximately 20,000 tonnes of grapes. The approach consisted of a preliminary treatment through a coarse screening and settling in treatment ponds, followed by application to the land FILTER planted to pasture. The land FILTER system efficiently dealt with variable volumes and nutrient loads in the wastewater. It was operated to minimize pollutant loads in the treated water (subsurface drainage) and provide adequate leaching to manage salt in the soil profile. The land FILTER system was effective in neutralizing the pH of the wastewater and removing nutrient pollutants to meet EPA discharge limits. However, suspended solids (SS) and biological oxygen demand (BOD) levels in the subsurface drainage waters slightly exceeded EPA limits for discharge. The high organic content in the wastewater initially caused some soil blockage and impeded drainage in the land FILTER site. This was addressed by reducing the hydraulic loading rate to allow increased soil drying between wastewater irrigations. The analysis of soil characteristics after the application of wastewater found that there was some potassium accumulation in the profile but sodium and nutrients decreased after wastewater application. Thus, the wastewater application and provision of subsurface drainage ensured adequate leaching, and so was adequate to avoid the risk of soil salinisation. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.
Transport capabilities of environmental Pseudomonads for sulfur compounds
Zerbs, Sarah; Korajczyk, Peter J.; Noirot, Philippe H.; ...
2017-01-27
Sulfur is an essential element in plant rhizospheres and microbial activity plays a key role in increasing the biological availability of sulfur in soil environments. To better understand the mechanisms facilitating the exchange of sulfur-containing molecules in soil, we profiled the binding specificities of eight previously uncharacterized ABC transporter solute-binding proteins from plant-associated Pseudomonads. A high-throughput screening procedure indicated eighteen significant organosulfur binding ligands, with at least one high-quality screening hit for each protein target. Calorimetric and spectroscopic methods were used to validate the best ligand assignments and catalog the thermodynamic properties of the protein-ligand interactions. Two novel high-affinity ligandmore » binding activities were identified and quantified in this set of solute binding proteins. Bacteria were cultured in minimal media with screening library components supplied as the sole sulfur sources, demonstrating that these organosulfur compounds can be metabolized and confirming the relevance of ligand assignments. These results expand the set of experimentally validated ligands amenable to transport by this ABC transporter family and demonstrate the complex range of protein-ligand interactions that can be accomplished by solute-binding proteins. As a result, characterizing new nutrient import pathways provides insight into Pseudomonad metabolic capabilities which can be used to further interrogate bacterial survival and participation in soil and rhizosphere communities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zerbs, Sarah; Korajczyk, Peter J.; Noirot, Philippe H.
Sulfur is an essential element in plant rhizospheres and microbial activity plays a key role in increasing the biological availability of sulfur in soil environments. To better understand the mechanisms facilitating the exchange of sulfur-containing molecules in soil, we profiled the binding specificities of eight previously uncharacterized ABC transporter solute-binding proteins from plant-associated Pseudomonads. A high-throughput screening procedure indicated eighteen significant organosulfur binding ligands, with at least one high-quality screening hit for each protein target. Calorimetric and spectroscopic methods were used to validate the best ligand assignments and catalog the thermodynamic properties of the protein-ligand interactions. Two novel high-affinity ligandmore » binding activities were identified and quantified in this set of solute binding proteins. Bacteria were cultured in minimal media with screening library components supplied as the sole sulfur sources, demonstrating that these organosulfur compounds can be metabolized and confirming the relevance of ligand assignments. These results expand the set of experimentally validated ligands amenable to transport by this ABC transporter family and demonstrate the complex range of protein-ligand interactions that can be accomplished by solute-binding proteins. As a result, characterizing new nutrient import pathways provides insight into Pseudomonad metabolic capabilities which can be used to further interrogate bacterial survival and participation in soil and rhizosphere communities.« less
Molecular Physiology of Root System Architecture in Model Grasses
NASA Astrophysics Data System (ADS)
Hixson, K.; Ahkami, A. H.; Anderton, C.; Veličković, D.; Myers, G. L.; Chrisler, W.; Lindenmaier, R.; Fang, Y.; Yabusaki, S.; Rosnow, J. J.; Farris, Y.; Khan, N. E.; Bernstein, H. C.; Jansson, C.
2017-12-01
Unraveling the molecular and physiological mechanisms involved in responses of Root System Architecture (RSA) to abiotic stresses and shifts in microbiome structure is critical to understand and engineer plant-microbe-soil interactions in the rhizosphere. In this study, accessions of Brachypodium distachyon Bd21 (C3 model grass) and Setaria viridis A10.1 (C4 model grass) were grown in phytotron chambers under current and elevated CO2 levels. Detailed growth stage-based phenotypic analysis revealed different above- and below-ground morphological and physiological responses in C3 and C4 grasses to enhanced CO2 levels. Based on our preliminary results and by screening values of total biomass, water use efficiency, root to shoot ratio, RSA parameters and net assimilation rates, we postulated a three-phase physiological mechanism, i.e. RootPlus, BiomassPlus and YieldPlus phases, for grass growth under elevated CO2 conditions. Moreover, this comprehensive set of morphological and process-based observations are currently in use to develop, test, and calibrate biophysical whole-plant models and in particular to simulate leaf-level photosynthesis at various developmental stages of C3 and C4 using the model BioCro. To further link the observed phenotypic traits at the organismal level to tissue and molecular levels, and to spatially resolve the origin and fate of key metabolites involved in primary carbohydrate metabolism in different root sections, we complement root phenotypic observations with spatial metabolomics data using mass spectrometry imaging (MSI) methods. Focusing on plant-microbe interactions in the rhizosphere, six bacterial strains with plant growth promoting features are currently in use in both gel-based and soil systems to screen root growth and development in Brachypodium. Using confocal microscopy, GFP-tagged bacterial systems are utilized to study the initiation of different root types of RSA, including primary root (PR), coleoptile node axile root (CNR) and leaf node axile root (LNR) during developmental stages of root formation. The root exudates also will be quantified and preliminary data will be used to engineer our microbial consortium to improve plant growth.
Weeks, E.P.
2002-01-01
The Lisse effect is a rarely noted phenomenon occurring when infiltration caused by intense rain seals the surface soil layer to airflow, trapping air in the unsaturated zone. Compression of air by the advancing front results in a pressure increase that produces a water-level rise in an observation well screened below the water table that is several times as large as the distance penetrated by the wetting front. The effect is triggered by intense rains and results in a very rapid water-level rise, followed by a recession lasting a few days. The Lisse effect was first noted and explained by Thal Larsen in 1932 from water-level observations obtained in a shallow well in the village of Lisse, Holland. The original explanation does not account for the increased air pressure pushing up on the bottom of the wetting front. Analysis of the effect of this upward pressure indicates that a negative pressure head at the base of the wetting front, ??f, analogous to that postulated by Green and Ampt (1911) to explain initially rapid infiltration rates into unsaturated soils, is involved in producing the Lisse effect. Analysis of recorded observations of the Lisse effect by Larsen and others indicates that the water-level rise, which typically ranges from 0.10 to 0.55 m, should be only slightly larger than |??f| and that the depth of penetration of the wetting front is no more than several millimeters.
Assessment of Child Lead Exposure in a Philadelphia Community, 2014.
Dignam, Timothy; Pomales, Ana; Werner, Lora; Newbern, E Claire; Hodge, James; Nielsen, Jay; Grober, Aaron; Scruton, Karen; Young, Rand; Kelly, Jack; Brown, Mary Jean
2018-01-10
Several urban neighborhoods in Philadelphia, Pennsylvania, have a history of soil, household lead paint, and potential lead-emitting industry contamination. To (1) describe blood lead levels (BLLs) in target neighborhoods, (2) identify risk factors and sources of lead exposure, (3) describe household environmental lead levels, and (4) compare results with existing data. A simple, random, cross-sectional sampling strategy was used to enroll children 8 years or younger living in selected Philadelphia neighborhoods with a history of lead-emitting industry during July 2014. Geometric mean of child BLLs and prevalence of BLLs of 5 μg/dL or more were calculated. Linear and logistic regression analyses were used to ascertain risk factors for elevated BLLs. Among 104 children tested for blood lead, 13 (12.4%; 95% confidence interval [CI], 7.5-20.2) had BLLs of 5 μg/dL or more. The geometric mean BLL was 2.0 μg/dL (95% CI, 1.7-2.3 μg/dL). Higher geometric mean BLLs were significantly associated with front door entryway dust lead content, residence built prior to 1900, and a child currently or ever receiving Medicaid. Seventy-one percent of households exceeded the screening level for soil, 25% had an elevated front door floor dust lead level, 28% had an elevated child play area floor dust lead level, and 14% had an elevated interior window dust lead level. Children in households with 2 to 3 elevated environmental lead samples were more likely to have BLLs of 5 μg/dL or more. A spatial relationship between household proximity to historic lead-emitting facilities and child BLL was not identified. Entryway floor dust lead levels were strongly associated with blood lead levels in participants. Results underscore the importance to make housing lead safe by addressing all lead hazards in and around the home. Reduction of child lead exposure is crucial, and continued blood lead surveillance, testing, and inspection of homes of children with BLLs of 5 μg/dL or more to identify and control lead sources are recommended. Pediatric health care providers can be especially vigilant screening Medicaid-eligible/enrolled children and children living in very old housing.
Evidence of adaptive tolerance to nickel in isolates of Cenococcum geophilum from serpentine soils.
Gonçalves, Susana C; Martins-Loução, M Amélia; Freitas, Helena
2009-04-01
Selection for metal-tolerant ecotypes of ectomycorrhizal (ECM) fungi has been reported in instances of metal contamination of soils as a result of human activities. However, no study has yet provided evidence that natural metalliferous soils, such as serpentine soils, can drive the evolution of metal tolerance in ECM fungi. We examined in vitro Ni tolerance in isolates of Cenococcum geophilum from serpentine and non-serpentine soils to assess whether isolates from serpentine soils exhibited patterns consistent with adaptation to elevated levels of Ni, a typical feature of serpentine. A second objective was to investigate the relationship between Ni tolerance and specific growth rates (micro) among isolates to increase our understanding of possible tolerance/growth trade-offs. Isolates from both soil types were screened for Ni tolerance by measuring biomass production in liquid media with increasing Ni concentrations, so that the effective concentration of Ni inhibiting fungal growth by 50% (EC(50)) could be determined. Isolates of C. geophilum from serpentine soils exhibited significantly higher tolerance to Ni than non-serpentine isolates. The mean Ni EC(50) value for serpentine isolates (23.4 microg ml(-1)) was approximately seven times higher than the estimated value for non-serpentine isolates (3.38 microg ml(-1)). Although there was still a considerable variation in Ni sensitivity among the isolates, none of the serpentine isolates had EC(50) values for Ni within the range found for non-serpentine isolates. We found a negative correlation between EC(50) and micro values among isolates (r = -0.555). This trend, albeit only marginally significant (P = 0.06), indicates a potential trade-off between tolerance and growth, in agreement with selection against Ni tolerance in "normal" habitats. Overall, these results suggest that Ni tolerance arose among serpentine isolates of C. geophilum as an adaptive response to Ni exposure in serpentine soils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorber, M.; Cleverly, D.; Schaum, J.
1996-12-31
Testing for emissions of dioxins from the stack of the Columbus, Ohio Waste to Energy (WTE) municipal solid waste combustion facility in 1992 implied that dioxin emissions could approach 1,000 grams of dioxin toxic equivalents (TEQs) per year. The incinerator has been in operation since the early 1980s. Several varying activities to further evaluate or curtail emissions were conducted by local, state and federal agencies in 1994. Also in that year, US EPA`s Region 5 issued an emergency order under Section 7003 of RCRA requiring the facility to install maximum Achievable Control Technology (MACT). As part of their justification formore » this emergency order, Region 5 used a screening level risk assessment of potential indirect impacts. This paper describes this assessment. The exposure setting is a hypothetical dairy farm where individuals on the farm obtain their beef, milk, and vegetables from home sources. A 70-year exposure scenario is considered, which includes 45 years of facility operation at the pre- and post-MACT emission rates, followed by 25 years of impact due to residual soil concentrations. Soil dermal contact, inhalation, and breast milk exposures were also considered for this assessment. The source term, or dioxin loadings to this setting, were derived from air dispersion modeling of emissions from the Columbus WTE. A key finding of the assessment was that exposures to dioxin in beef and milk dominated the estimated risks, with excess cancer risk form these two pathways estimated at 2.8 {times} 10{sup {minus}4}. A second key finding was that over 90% of a lifetime of impact from these two pathways, and the inhalation and vegetable ingestion pathways, has already occurred due to pre-MACT emissions.« less
Witt, Emitt C.; Shi, Honglan; Karstensen, Krista A.; Wang, Jianmin; Adams, Craig D.
2008-01-01
In October 2005, nearly one month after Hurricanes Katrina and Rita, a team of scientists from the U.S. Geological Survey and the Missouri University of Science and Technology deployed to southern Louisiana to collect perishable environmental data resulting from the impacts of these storms. Perishable samples collected for this investigation are subject to destruction or ruin by removal, mixing, or natural decay; therefore, collection is time-critical following the depositional event. A total of 238 samples of sediment, soil, and vegetation were collected to characterize chemical quality. For this analysis, 157 of the 238 samples were used to characterize trace element, iron, total organic carbon, pesticide, and polychlorinated biphenyl concentrations of deposited sediment and associated shallow soils. In decreasing order, the largest variability in trace element concentration was detected for lead, vanadium, chromium, copper, arsenic, cadmium, and mercury. Lead was determined to be the trace element of most concern because of the large concentrations present in the samples ranging from 4.50 to 551 milligrams per kilogram (mg/kg). Sequential extraction analysis of lead indicate that 39.1 percent of the total lead concentration in post-hurricane sediment is associated with the iron-manganese oxide fraction. This fraction is considered extremely mobile under reducing environmental conditions, thereby making lead a potential health hazard. The presence of lead in post-hurricane sediments likely is from redistribution of pre-hurricane contaminated soils and sediments from Lake Pontchartrain and the flood control canals of New Orleans. Arsenic concentrations ranged from 0.84 to 49.1 mg/kg. Although Arsenic concentrations generally were small and consistent with other research results, all samples exceeded the U.S. Environmental Protection Agency’s Human Health Medium-Specific Screening Level of 0.39 mg/kg. Mercury concentrations ranged from 0.02 to 1.30 mg/kg. Comparing the mean mercury concentration present in post-hurricane samples with regional background data from the U.S. Geological Survey National Geochemical Dataset, indicates that mercury concentrations in post-hurricane sediment generally are larger. Sequential extraction analysis of 51 samples for arsenic indicate that 54.5 percent of the total arsenic concentration is contained in the extremely mobile iron-manganese oxide fraction. Pesticide and polychlorinated biphenyl Arochlor concentrations in post-hurricane samples were small. Prometon was the most frequently detected pesticide with concentrations ranging from 2.4 to 193 micrograms per kilogram (µg/kg). Methoxychlor was present in 22 samples with a concentration ranging from 3.5 to 3,510 µg/kg. Although methoxychlor had the largest detected pesticide concentration, it was well below the U.S. Environmental Protection Agency’s High-Priority Screening Level for residential soils. Arochlor congeners were not detected for any sample above the minimum detection level of 7.9 µg/kg.
Comparison of screening-level and Monte Carlo approaches for wildlife food web exposure modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pastorok, R.; Butcher, M.; LaTier, A.
1995-12-31
The implications of using quantitative uncertainty analysis (e.g., Monte Carlo) and site-specific tissue residue data for wildlife exposure modeling were examined with data on trace elements at the Clark Fork River Superfund Site. Exposure of white-tailed deer, red fox, and American kestrel was evaluated using three approaches. First, a screening-level exposure model was based on conservative estimates of exposure parameters, including estimates of dietary residues derived from bioconcentration factors (BCFs) and soil chemistry. A second model without Monte Carlo was based on site-specific data for tissue residues of trace elements (As, Cd, Cu, Pb, Zn) in key dietary species andmore » plausible assumptions for habitat spatial segmentation and other exposure parameters. Dietary species sampled included dominant grasses (tufted hairgrass and redtop), willows, alfalfa, barley, invertebrates (grasshoppers, spiders, and beetles), and deer mice. Third, the Monte Carlo analysis was based on the site-specific residue data and assumed or estimated distributions for exposure parameters. Substantial uncertainties are associated with several exposure parameters, especially BCFS, such that exposure and risk may be greatly overestimated in screening-level approaches. The results of the three approaches are compared with respect to realism, practicality, and data gaps. Collection of site-specific data on trace elements concentrations in plants and animals eaten by the target wildlife receptors is a cost-effective way to obtain realistic estimates of exposure. Implications of the results for exposure and risk estimates are discussed relative to use of wildlife exposure modeling and evaluation of remedial actions at Superfund sites.« less
Tao, Jing; Barry, Terrell; Segawa, Randy; Neal, Rosemary; Tuli, Atac
2013-01-01
Kettleman City, California, reported a higher than expected number of birth defect cases between 2007 and 2010, raising the concern of community and government agencies. A pesticide exposure evaluation was conducted as part of a complete assessment of community chemical exposure. Nineteen pesticides that potentially cause birth defects were investigated. The Industrial Source Complex Short-Term Model Version 3 (ISCST3) was used to estimate off-site air concentrations associated with pesticide applications within 8 km of the community from late 2006 to 2009. The health screening levels were designed to indicate potential health effects and used for preliminary health evaluations of estimated air concentrations. A tiered approach was conducted. The first tier modeled simple, hypothetical worst-case situations for each of 19 pesticides. The second tier modeled specific applications of the pesticides with estimated concentrations exceeding health screening levels in the first tier. The pesticide use report database of the California Department of Pesticide Regulation provided application information. Weather input data were summarized from the measurements of a local weather station in the California Irrigation Management Information System. The ISCST3 modeling results showed that during the target period, only two application days of one pesticide (methyl isothiocyanate) produced air concentration estimates above the health screening level for developmental effects at the boundary of Kettleman City. These results suggest that the likelihood of birth defects caused by pesticide exposure was low. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
QA/QC requirements for physical properties sampling and analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Innis, B.E.
1993-07-21
This report presents results of an assessment of the available information concerning US Environmental Protection Agency (EPA) quality assurance/quality control (QA/QC) requirements and guidance applicable to sampling, handling, and analyzing physical parameter samples at Comprehensive Environmental Restoration, Compensation, and Liability Act (CERCLA) investigation sites. Geotechnical testing laboratories measure the following physical properties of soil and sediment samples collected during CERCLA remedial investigations (RI) at the Hanford Site: moisture content, grain size by sieve, grain size by hydrometer, specific gravity, bulk density/porosity, saturated hydraulic conductivity, moisture retention, unsaturated hydraulic conductivity, and permeability of rocks by flowing air. Geotechnical testing laboratories alsomore » measure the following chemical parameters of soil and sediment samples collected during Hanford Site CERCLA RI: calcium carbonate and saturated column leach testing. Physical parameter data are used for (1) characterization of vadose and saturated zone geology and hydrogeology, (2) selection of monitoring well screen sizes, (3) to support modeling and analysis of the vadose and saturated zones, and (4) for engineering design. The objectives of this report are to determine the QA/QC levels accepted in the EPA Region 10 for the sampling, handling, and analysis of soil samples for physical parameters during CERCLA RI.« less
Williamson, Lynn L; Borlee, Bradley R; Schloss, Patrick D; Guan, Changhui; Allen, Heather K; Handelsman, Jo
2005-10-01
The goal of this study was to design and evaluate a rapid screen to identify metagenomic clones that produce biologically active small molecules. We built metagenomic libraries with DNA from soil on the floodplain of the Tanana River in Alaska. We extracted DNA directly from the soil and cloned it into fosmid and bacterial artificial chromosome vectors, constructing eight metagenomic libraries that contain 53,000 clones with inserts ranging from 1 to 190 kb. To identify clones of interest, we designed a high throughput "intracellular" screen, designated METREX, in which metagenomic DNA is in a host cell containing a biosensor for compounds that induce bacterial quorum sensing. If the metagenomic clone produces a quorum-sensing inducer, the cell produces green fluorescent protein (GFP) and can be identified by fluorescence microscopy or captured by fluorescence-activated cell sorting. Our initial screen identified 11 clones that induce and two that inhibit expression of GFP. The intracellular screen detected quorum-sensing inducers among metagenomic clones that a traditional overlay screen would not. One inducing clone carries a LuxI homologue that directs the synthesis of an N-acyl homoserine lactone quorum-sensing signal molecule. The LuxI homologue has 62% amino acid sequence identity to its closest match in GenBank, AmfI from Pseudomonas fluorescens, and is on a 78-kb insert that contains 67 open reading frames. Another inducing clone carries a gene with homology to homocitrate synthase. Our results demonstrate the power of an intracellular screen to identify functionally active clones and biologically active small molecules in metagenomic libraries.
NASA Astrophysics Data System (ADS)
Hernandez-Soriano, Maria C.; Dalal, Ram C.; Menzies, Neal W.; Kopittke, Peter M.
2015-04-01
Carbon stabilization in soil microaggregates results from chemical and biological processes that are highly sensitive to changes in land use. Indeed, such processes govern soil capability to store carbon, this being essential for soil health and productivity and to regulate emissions of soil organic carbon (SOC) as CO2. The identification of carbon functionalities using traditional mid-infrared analysis can be linked to carbon metabolism in soil but differences associated to land use are generally limited. The spatial resolution of synchrotron-based Infrared-microspectroscopy allows mapping microaggregate-associated forms of SOC because it has 1000 times higher brightness than a conventional thermal globar source. These maps can contribute to better understand molecular organization of SOC, physical protection in the soil particles and co-localization of carbon sources with microbial processes. Spatially-resolved analyses of carbon distribution in micro-aggregates (<200 μm diameter) have been conducted using FTIR microspectroscopy (Infrared Microspectroscopy beamline, Australian Synchrotron). Two soil types (Ferralsol and Vertisol, World Reference Base 2014) were collected from undisturbed areas and from a location(s) immediately adjacent which has a long history of agricultural use (>20 years). Soils were gently screened (250 μm) to obtain intact microaggregates which were humidified and frozen at -20°C, and sectioned (200 μm thickness) using a diamond knife and a cryo-ultramicrotome. The sections were placed between CaF2 windows and the spectra were acquired in transmission mode. The maps obtained (5 µm step-size over ca. 150 × 150 µm) revealed carbon distribution in microaggregates from soils under contrasting land management, namely undisturbed and cropping land. Accumulation of aromatic and carboxylic functions on specific spots and marginal co-localization with clays was observed, which suggests processes other than organo-mineral associations being responsible for carbon stabilization. A substantial decrease in carboxylic compounds was observed for agricultural soils. Clays were mostly co-localized with alkenes and polysaccharides, particularly in agricultural soils, likely due to enhanced microbial activity in those spots. Results will be linked to currently ongoing analysis of soil enzymes activities and characterization of dissolved organic carbon components. This novel methodological approach combines biological and chemical information on organic carbon dynamics in soil at a molecular level and will constitute a substantial advance towards understanding carbon storage in soil and the long term impact of land management.
Yager, Tracy J.B.; Smith, David B.; Crock, James G.
2004-01-01
The U.S. Geological Survey, in cooperation with Metro Wastewater Reclamation District and North Kiowa Bijou Groundwater Management District, studied natural geochemical effects and the effects of biosolids applications to the Metro Wastewater Reclamation District properties near Deer Trail, Colorado, during 1999 through 2003 because of public concern about potential contamination of soil, crops, ground water, and surface water from biosolids applications. Parameters analyzed for each monitoring component included arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc (the nine trace elements regulated by Colorado for biosolids), gross alpha and gross beta radioactivity, and plutonium, as well as other parameters. Concentrations of the nine regulated trace elements in biosolids were relatively uniform and did not exceed applicable regulatory standards. All plutonium concentrations in biosolids were below the minimum detectable level and were near zero. The most soluble elements in biosolids were arsenic, molybdenum, nickel, phosphorus, and selenium. Elevated concentrations of bismuth, mercury, phosphorus, and silver would be the most likely inorganic biosolids signature to indicate that soil or streambed sediment has been affected by biosolids. Molybdenum and tungsten, and to a lesser degree antimony, cadmium, cobalt, copper, mercury, nickel, phosphorus, and selenium, would be the most likely inorganic 'biosolids signature' to indicate ground water or surface water has been affected by biosolids. Soil data indicate that biosolids have had no measurable effect on the concentration of the constituents monitored. Arsenic concentrations in soil of both Arapahoe and Elbert County monitoring sites (like soil from all parts of Colorado) exceed the Colorado soil remediation objectives and soil cleanup standards, which were determined by back-calculating a soil concentration equivalent to a one-in-a-million cumulative cancer risk. Lead concentrations in soil slightly exceed the U.S. Environmental Protection Agency toxicity-derived ecological soil-screening levels for avian wildlife. Plutonium concentration in the soil was near zero. Wheat-grain data were insufficient to determine any measurable effects from biosolids. Comparison with similar data from other parts of North America where biosolids were not applied indicates similar concentrations. However, the Deer Trail study area had higher nickel concentrations in wheat from both the biosolids-applied fields and the control fields. Plutonium content of the wheat was near zero. Ground-water levels generally declined at most wells during 1999 through 2003. Ground-water quality did not correlate with ground-water levels. Vertical ground-water gradients during 1999 through 2003 indicate that bedrock ground-water resources downgradient from the biosolids-applied areas are not likely to be contaminated by biosolids applications unless the gradients change as a result of pumping. Ground-water quality throughout the study area varied over time at each site and from site to site at the same time, but plutonium concentrations in the ground water always were near zero. Inorganic concentrations at well D6 were relatively high compared to other ground-water sites studied. Ground-water pH and concentrations of fluoride, nitrite, aluminum, arsenic, barium, chromium, cobalt, copper, lead, mercury, nickel, silver, zinc, and plutonium in the ground water of the study area met Colorado standards. Concentrations of chloride, sulfate, nitrate, boron, iron, manganese, and selenium exceeded Colorado ground-water standards at one or more wells. Nitrate concentrations at well D6 significantly (alpha = 0.05) exceeded the Colorado regulatory standard. Concentrations of arsenic, cadmium, chromium, lead, mercury, nickel, and zinc in ground water had no significant (alpha = 0.05) upward trends. During 1999-2003, concentrations of nitrate, copper, molybdenum, and selenium
Saminathan, Thangasamy; Malkaram, Sridhar A; Patel, Dharmesh; Taylor, Kaitlyn; Hass, Amir; Nimmakayala, Padma; Huber, David H; Reddy, Umesh K
2015-09-01
Efficient postmining reclamation requires successful revegetation. By using RNA sequencing, we evaluated the growth response of two invasive plants, goutweed (Aegopodium podagraria L.) and mugwort (Artemisia vulgaris), grown in two Appalachian acid-mine soils (MS-I and -II, pH ∼ 4.6). Although deficient in macronutrients, both soils contained high levels of plant-available Al, Fe and Mn. Both plant types showed toxicity tolerance, but metal accumulation differed by plant and site. With MS-I, Al accumulation was greater for mugwort than goutweed (385 ± 47 vs 2151 ± 251 μg g-1). Al concentration was similar between mine sites, but its accumulation in mugwort was greater with MS-I than MS-II, with no difference in accumulation by site for goutweed. An in situ approach revealed deregulation of multiple factors such as transporters, transcription factors, and metal chelators for metal uptake or exclusion. The two plant systems showed common gene expression patterns for different pathways. Both plant systems appeared to have few common heavy-metal pathway regulators addressing mineral toxicity/deficiency in both mine sites, which implies adaptability of invasive plants for efficient growth at mine sites with toxic waste. Functional genomics can be used to screen for plant adaptability, especially for reclamation and phytoremediation of contaminated soils and waters.
A case study of risk assessment in contaminated site remediation in China
NASA Astrophysics Data System (ADS)
Ye, S.; Guo, J.; Wu, J.; Wang, J.; Chien, C.; Stahl, R.; Mack, E.; Grosso, N.
2013-12-01
A field site in Nanjing, China was selected for a case study of risk assessment in contaminated site remediation. This site is about 100m long and 100m wide. A chemical plant (1999-2010) at the site manufactured optical brightener PF, 2-Amino-4-methylphenol and 2-Nitro-4-methylphenol, totally three products. Soil and groundwater samples were collected and analyzed for PPL 126 (126 pollutants in the 'Priority Pollutants List' issued by US EPA). Values of the Dutch Standards were used as the screening criteria for soil and ground water. Low levels of ethylbenezene, chlorobenzene, 1,3-dichlorobenzene and 1,4- dichlorobenzene were detected in one soil sample. Concentrations above Dutch Target Value (DTV) of benzene, toluene, ethylbenzene, chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, and/or 1,2,4-trichlorobenzene, phenol, and/or 2,4-dichlorophenol were exhibited in two groundwater samples. The ground water was especially highly impacted by bichlorobenzenes and trichlorobenzenes. The maximum concentration of impacts was 7.3 mg/L of 1,2,4-trichlorobenzene in groundwater which was 730 times higher than Dutch Intervention Values (DIV). Risk of soil and groundwater at this site was assessed according to the guidelines issued by Chinese MEP and US EPA, respectively. Finally, remedy techniques were selected according to the result of risk assessment and the characteristics of hydrogeology conditions and contaminants.
Kelly, L C; Colin, Y; Turpault, M-P; Uroz, S
2016-08-01
Understanding how minerals affect bacterial communities and their in situ activities in relation to environmental conditions are central issues in soil microbial ecology, as minerals represent essential reservoirs of inorganic nutrients for the biosphere. To determine the impact of mineral type and solution chemistry on soil bacterial communities, we compared the diversity, composition, and functional abilities of a soil bacterial community incubated in presence/absence of different mineral types (apatite, biotite, obsidian). Microcosms were prepared containing different liquid culture media devoid of particular essential nutrients, the nutrients provided only in the introduced minerals and therefore only available to the microbial community through mineral dissolution by biotic and/or abiotic processes. By combining functional screening of bacterial isolates and community analysis by bromodeoxyuridine DNA immunocapture and 16S rRNA gene pyrosequencing, we demonstrated that bacterial communities were mainly impacted by the solution chemistry at the taxonomic level and by the mineral type at the functional level. Metabolically active bacterial communities varied with solution chemistry and mineral type. Burkholderia were significantly enriched in the obsidian treatment compared to the biotite treatment and were the most effective isolates at solubilizing phosphorous or mobilizing iron, in all the treatments. A detailed analysis revealed that the 16S rRNA gene sequences of the OTUs or isolated strains assigned as Burkholderia in our study showed high homology with effective mineral-weathering bacteria previously recovered from the same experimental site.
PAHs contamination in urban soils from Lisbon: spatial variability and potential risks
NASA Astrophysics Data System (ADS)
Cachada, Anabela; Pereira, Ruth; Ferreira da Silva, Eduardo; Duarte, Armando
2015-04-01
Polycyclic Aromatic hydrocarbons (PAHs) can become major contaminants in urban and industrial areas, due to the existence of a plethora of diffuse and point sources. Particularly diffuse pollution, which is normally characterized by continuous and long-term emission of contaminants below risk levels, can be a major problem in urban areas. Since PAHs are persistent and tend to accumulate in soils, levels are often above the recommended guidelines indicating that ecological functions of soils may be affected. Moreover, due to the lipophilic nature, hydrophobicity and low chemical and biological degradation rates of PAHs, which leads to their bioconcentration and bioamplification, they may reach toxicological relevant concentrations in organisms. The importance and interest of studying this group of contaminants is magnified due to their carcinogenic, mutagenic and endocrine disrupting effects. In this study, a risk assessment framework has been followed in order to evaluate the potential hazards posed by the presence of PAHs in Lisbon urban soils. Hence, the first step consisted in screening the total concentrations of PAHs followed by the calculation of risks based on existing models. Considering these models several samples were identified as representing a potential risk when comparing with the guidelines for soil protection. Moreover, it was found that for 38% of samples more than 50% of species can be potentially affected by the mixture of PAHs. The use of geostatistical methods allowed to visualize the predicted distribution of PAHs in Lisbon area and identify the areas where possible risk to the environment are likely occurring However, it is known that total concentration may not allow a direct prediction of environmental risk, since in general only a fraction of total concentration is available for partitioning between soil and solution and thus to be uptake or transformed by organisms (bioacessible or bioavailable) or to be leached to groundwater. The reason is that once PAHs reach the soils, they can be incorporated into more stable solid phases over time, for instance, they can be retained in the organic phase, and this process known as aging, can be virtually irreversible. This phenomenon can be particularly relevant in urban soils since the highest levels are normally found in historical sites, suggesting a long-term accumulation as observed in the present study. The estimation of this fraction is traditionally performed by using bioassays (bioavailability), yet chemical methods can also be used (chemical availability). Following a higher tier of the risk assessment framework, some selected samples previously identified as representing a potential hazard were tested for their bioavailability (earthworm bioaccumulation assay, OECD test n° 317) and chemical availability (solid phase extraction with Tenax® and water). Results showed that in spite of the very high levels found in some samples, the risks can be negligible, since both the bioavailable and water soluble fractions were very low. The relationship between available fraction and soil properties is not clear, and differences observed between samples are probably related to the age of contamination since lower available fractions were observed in the most contaminated soils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DOE /NV
1999-03-26
The Corrective Action Investigation Plan for Corrective Action Unit 428, Area 3 Septic Waste Systems 1 and 5, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U. S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U. S. Department of Defense. Corrective Action Unit 428 consists of Corrective Action Sites 03- 05- 002- SW01 and 03- 05- 002- SW05, respectively known as Area 3 Septic Waste System 1 and Septic Waste System 5. This Corrective Action Investigation Plan is used inmore » combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada , Rev. 1 (DOE/ NV, 1998c). The Leachfield Work Plan was developed to streamline investigations at leachfield Corrective Action Units by incorporating management, technical, quality assurance, health and safety, public involvement, field sampling, and waste management information common to a set of Corrective Action Units with similar site histories and characteristics into a single document that can be referenced. This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 428. A system of leachfields and associated collection systems was used for wastewater disposal at Area 3 of the Tonopah Test Range until a consolidated sewer system was installed in 1990 to replace the discrete septic waste systems. Operations within various buildings at Area 3 generated sanitary and industrial wastewaters potentially contaminated with contaminants of potential concern and disposed of in septic tanks and leachfields. Corrective Action Unit 428 is composed of two leachfield systems in the northern portion of Area 3. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern for the site include oil/ diesel range total petroleum hydrocarbons, and Resource Conservation and Recovery Act characteristic volatile organic compounds, semivolatile organic compounds, and metals. A limited number of samples will be analyzed for gamma- emitting radionuclides and isotopic uranium from four of the septic tanks and if radiological field screening levels are exceeded. Additional samples will be analyzed for geotechnical and hydrological properties and a bioassessment may be performed. The technical approach for investigating this Corrective Action Unit consists of the following activities: (1) Perform video surveys of the discharge and outfall lines. (2) Collect samples of material in the septic tanks. (3) Conduct exploratory trenching to locate and inspect subsurface components. (4) Collect subsurface soil samples in areas of the collection system including the septic tanks and outfall end of distribution boxes. (5) Collect subsurface soil samples underlying the leachfield distribution pipes via trenching. (6) Collect surface and near- surface samples near potential locations of the Acid Sewer Outfall if Septic Waste System 5 Leachfield cannot be located. (7) Field screen samples for volatile organic compounds, total petroleum hydrocarbons, and radiological activity. (8) Drill boreholes and collect subsurface soil samples if required. (9) Analyze samples for total volatile organic compounds, total semivolatile organic compounds, total Resource Conservation and Recovery Act metals, and total petroleum hydrocarbons (oil/ diesel range organics). Limited number of samples will be analyzed for gamma- emitting radionuclides and isotopic uranium from particular septic tanks and if radiological field screening levels are exceeded. (10) Collect samples from native soils beneath the distribution system and analyze for geotechnical/ hydrologic parameters. (11) Collect and analyze bioassessment samples at the discretion of the Site Supervisor if total petroleum hydrocarbons exceed field- screening levels.« less
Azizi, Abu Bakar; Choy, May Yee; Noor, Zalina Mahmood; Noorlidah, Abdullah
2015-04-01
Spent Pleurotus sajor-caju compost mixed with livestock excreta, i.e. cow dung or goat manure, was contaminated with landfill leachate and vermiremediated in 75 days. Results showed an extreme decrease of heavy metals, i.e. Cd, Cr and Pb up to 99.81% removal as effect of vermiconversion process employing epigeic earthworms i.e. Lumbricus rubellus. In addition, there were increments of Cu and Zn from 15.01% to 85.63%, which was expected as non-accumulative in L. rubellus and secreted out as contained in vermicompost. This phenomenon is due to dual effects of heavy metal excretion period and mineralisation. Nonetheless, the increments were 50-fold below the limit set by EU and USA compost limits and the Malaysian Recommended Site Screening Levels for Contaminated Land (SSLs). Moreover, the vermicompost C:N ratio range is 20.65-22.93 and it can be an advantageous tool to revitalise insalubrious soil by acting as soil stabiliser or conditioner. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zahir, Z A; Munir, A; Asghar, H N; Shaharoona, B; Arshad, M
2008-05-01
A series of experiments were conducted to assess the effectiveness of rhizobacteria containing 1-aminocyclopropane- 1-carboxylate (ACC) deaminase for growth promotion of peas under drought conditions. Ten rhizobacteria isolated from the rhizosphere of different crops (peas, wheat, and maize) were screened for their growth promoting ability in peas under axenic condition. Three rhizobacterial isolates, Pseudomonas fluorescens biotype G (ACC-5), P. fluorescens (ACC-14), and P. putida biotype A (Q-7), were selected for pot trial on the basis of their source, ACC deaminase activity, root colonization, and growth promoting activity under axenic conditions. Inoculated and uninoculated (control) seeds of pea cultivar 2000 were sown in pots (4 seeds/pot) at different soil moisture levels (25, 50, 75, and 100% of field capacity). Results revealed that decreasing the soil moisture levels from 100 to 25% of field capacity significantly decreased the growth of peas. However, inoculation of peas with rhizobacteria containing ACC deaminase significantly decreased the "drought stress imposed effects" on growth of peas, although with variable efficacy at different moisture levels. At the lowest soil moisture level (25% field capacity), rhizobacterial isolate Pseudomonas fluorescens biotype G (ACC-5) was found to be more promising compared with the other isolates, as it caused maximum increases in fresh weight, dry weight, root length, shoot length, number of leaves per plant, and water use efficiency on fresh and dry weight basis (45, 150, 92, 45, 140, 46, and 147%, respectively) compared with respective uninoculated controls. It is highly likely that rhizobacteria containing ACC deaminase might have decreased the drought-stress induced ethylene in inoculated plants, which resulted in better growth of plants even at low moisture levels. Therefore, inoculation with rhizobacteria containing ACC deaminase could be helpful in eliminating the inhibitory effects of drought stress on the growth of peas.
NASA Astrophysics Data System (ADS)
Velasco Ayuso, Sergio; María Giraldo Silva, Ana; Nelson, Corey; Barger, Nichole; Antoninka, Anita; Bowker, Matthew; Garcia-Pichel, Ferran
2016-04-01
Biological soil crusts (= biocrusts) are topsoil communities comprise of, but not limited to, cyanobacteria, algae, lichens, and mosses that grow intimately associated with soil particles in drylands. Biocrusts have central ecological roles in these areas as sources of carbon and nutrients, and efficiently retain water and prevent soil erosion, which improves soil structure and promotes soil fertility. However, human activities, such as cattle grazing, hiking or military training, are rapidly striking biocrusts. Although it is well known that the inoculation with cyanobacteria or lichens can enhance the recovery of biocrusts in degraded soils, little is known about the factors that control their growth rates. Using soil and inocula from four different sites located in one cold desert (Utah) and in one hot desert (New Mexico), we performed a fractional factorial experiment involving seven factors (water, light, P, N, calcium carbonate, trace metals and type of inoculum) to screen their effects on the growth of biocrusts. After four months, we measured the concentration of chlorophyll a, and we discovered that water, light and P, N or P+N were the most important factors controlling the growth of biocrusts. In the experimental treatments involving these three factors we measured a similar concentration of chlorophyll a (or even higher) to this found in the field locations. Amplification of the 16S rRNA gene segment using universal bacteria primers revealed a microbial community composition in the biocrusts grown that closely corresponds to initial measurements made on inocula. In summary, based on our success in obtaining biocrust biomass from natural communities in greenhouse facilities, without significantly changing its community composition at the phylum and cyanobacterial level, we are paving the road to propose a protocol to produce a high quality-nursed inoculum aiming to assist restoration of arid and semi-arid ecosystems affected by large-scale disturbances.
Spatial distribution of lead concentrations in urban surface soils of New Orleans, Louisiana USA.
Abel, Michael T; Suedel, Burton; Presley, Steven M; Rainwater, Thomas R; Austin, Galen P; Cox, Stephen B; McDaniel, Les N; Rigdon, Richard; Goebel, Timothy; Zartman, Richard; Leftwich, Blair D; Anderson, Todd A; Kendall, Ronald J; Cobb, George P
2010-10-01
Immediately following hurricane Katrina concern was raised over the environmental impact of floodwaters on the city of New Orleans, especially in regard to human health. Several studies were conducted to determine the actual contaminant distribution throughout the city and surrounding wetlands by analyzing soil, sediment, and water for a variety of contaminants including organics, inorganics, and biologics. Preliminary investigations by The Institute of Environmental and Human Health at Texas Tech University concluded that soils and sediments contained pesticides, semi-volatiles, and metals, specifically arsenic, iron, and lead, at concentrations that could pose a significant risk to human health. Additional studies on New Orleans floodwaters revealed similar constituents as well as compounds commonly found in gasoline. More recently, it has been revealed that lead (Pb), arsenic, and vanadium are found intermittently throughout the city at concentrations greater than the human health soil screening levels (HHSSLs) of 400, 22 (non-cancer endpoint) and 390 μg/g, respectively. Of these, Pb appears to present the greatest exposure hazard to humans as a result of its extensive distribution in city soils. In this study, we spatially evaluated Pb concentrations across greater New Orleans surface soils. We established 128 sampling sites throughout New Orleans at approximately half-mile intervals. A soil sample was collected at each site and analyzed for Pb by ICP-AES. Soils from 19 (15%) of the sites had Pb concentrations exceeding the HHSSL threshold of 400 μg/g. It was determined that the highest concentrations of Pb were found in the south and west portions of the city. Pb concentrations found throughout New Orleans in this study were then incorporated into a geographic information system to create a spatial distribution model that can be further used to predict Pb exposure to humans in the city.
Vapor intrusion risk of lead scavengers 1,2-dibromoethane (EDB) and 1,2-dichloroethane (DCA).
Ma, Jie; Li, Haiyan; Spiese, Richard; Wilson, John; Yan, Guangxu; Guo, Shaohui
2016-06-01
Vapor intrusion of synthetic fuel additives represented a critical yet still neglected problem at sites impacted by petroleum fuel releases. This study used an advanced numerical model to simulate the vapor intrusion risk of lead scavengers 1,2-dibromoethane (ethylene dibromide, EDB) and 1,2-dichloroethane (DCA) under different site conditions. We found that simulated EDB and DCA indoor air concentrations can exceed USEPA screening level (4.7 × 10(-3) μg/m(3) for EDB and 1.1 × 10(-1) μg/m(3) for DCA) if the source concentration is high enough (is still within the concentration range found at leaking UST site). To evaluate the chance that vapor intrusion of EDB might exceed the USEPA screening levels for indoor air, the simulation results were compared to the distribution of EDB at leaking UST sites in the US. If there is no degradation of EDB or only abiotic degradation of EDB, from 15% to 37% of leaking UST sites might exceed the USEPA screening level. This study supports the statements made by USEPA in the Petroleum Vapor Intrusion (PVI) Guidance that the screening criteria for petroleum hydrocarbon may not provide sufficient protectiveness for fuel releases containing EDB and DCA. Based on a thorough literature review, we also compiled previous published data on the EDB and DCA groundwater source concentrations and their degradation rates. These data are valuable in evaluating EDB and DCA vapor intrusion risk. In addition, a set of refined attenuation factors based on site-specific information (e.g., soil types, source depths, and degradation rates) were provided for establishing site-specific screening criteria for EDB and DCA. Overall, this study points out that lead scavengers EDB and DCA may cause vapor intrusion problems. As more field data of EDB and DCA become available, we recommend that USEPA consider including these data in the existing PVI database and possibly revising the PVI Guidance as necessary. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chen, Lie-zhong; Li, Yan-li; Yu, Yun-long
2014-01-01
Chlorpyrifos is a widely used insecticide in recent years, and it will produce adverse effects on soil when applied on crops or mixed with soil. In this study, nested polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) were combined to explore the bacterial and fungal community successions in soil treated with 5 and 20 mg/kg of chlorpyrifos. Furthermore, isolates capable of efficiently decomposing chlorpyrifos were molecular-typed using enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR). Under the experimental conditions, degradation of chlorpyrifos in soil was interpreted with the first-order kinetics, and the half-lives of chlorpyrifos at 5 and 20 mg/kg doses were calculated to be 8.25 and 8.29 d, respectively. DGGE fingerprint and principal component analysis (PCA) indicated that the composition of the fungal community was obviously changed with the chlorpyrifos treatment, and that samples of chlorpyrifos treatment were significantly separated from those of the control from the beginning to the end. While for the bacterial community, chlorpyrifos-treated soil samples were apparently different in the first 30 d and recovered to a similar level of the control up until 60 d, and the distance in the PCA between the chlorpyrifos-treated samples and the control was getting shorter through time and was finally clustered into one group. Together, our results demonstrated that the application of chlorpyrifos could affect the fungal community structure in a quick and lasting way, while only affecting the bacterial community in a temporary way. Finally, nine typical ERIC types of chlorpyrifos-degrading isolates were screened. PMID:24711353
Measurement and Modeling of Fugitive Dust from Off Road DoD Activities
2017-12-08
each soil and vehicle type (see Table 2). Note, no tracked vehicles were run at YTC. CT is the curve track sampling location, CR is the curve ridge...Soil is SL = sandy loam. ...................... 116 Figure 35. Single-event Wind Erosion Evaluation Program (SWEEP) Run example results. ... 121...Figure 36. Single-event Wind Erosion Evaluation Program (SWEEP) Threshold Run example results screen
Liao, Guojian; Wu, Qianhua; Feng, Renwei; Guo, Junkang; Wang, Ruigang; Xu, Yingming; Ding, Yongzhen; Fan, Zhilian; Mo, Liangyu
2016-04-01
Paddy soils in many regions of China have been seriously polluted by multiple heavy metals or metalloids, such as arsenic (As), cadmium (Cd) and lead (Pb). In order to ensure the safety of food and take full advantage of the limited farmland resources of China, exploring an effective technology to repair contaminated soils is urgent and necessary. In this study, three technologies were employed, including variety screening, water management and foliage dressing, to assess their abilities to reduce the accumulation of Cd and As in the grains of different rice varieties, and meanwhile monitor the related yields. The results of variety screening under insufficient field drying condition showed that the As and Cd contents in the grains of only four varieties [Fengliangyouxiang 1 (P6), Zhongzheyou 8 (P7), Guangliangyou 1128 (P10), Y-liangyou 696 (P11)] did not exceed their individual national standard. P6 gained a relatively high grain yield but accumulated less As and Cd in the grains despite of the relatively high As and Cd concentrations in the rhizosphere soil. However, long-playing field drying in water management trial significantly increased Cd but decreased As content in the grains of all tested three varieties including P6, suggesting an important role of water supply in controlling the accumulation of grain As and Cd. Selenium (Se) showed a stronger ability than silicon (Si) to reduce As and Cd accumulation in the grains of Fengliangyou 4 (P2) and Teyou 524 (P13), and keep the yields. The results of this study suggest that combined application of water management and foliage dressing may be an efficient way to control As and Cd accumulation in the grains of paddy rice exposing to As- and Cd-contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kydralieva, Kamilia; Uzbekov, Beksultan; Khudaibergenova, Bermet; Terekhova, Vera; Jorobekova, Sharipa
2014-05-01
This research is aimed to develop a high-effective system of an ecological risk assessment and risk-based decision making for anthropogenic ecosystems, with particular focus on the soils of the Kyrgyz Republic. The study is focused on the integration of Triad data including chemical, biological and ecotoxicological soil markers to estimate the potential risk from soils of highly anthropized areas impacted by deposition of different pollutants from mining operation. We focus on technogenic areas of Kyrgyzstan, the former uranium-producing province. Triad-based ecological risk assessment for technogenic sites are not currently used in Kyrgyzstan. However, the vitality of such research is self-evident. There are about 50 tailing dumps and more than 80 tips of radioactive waste which are formed as a result of uranium and complex ores (mercury, antimony, lead, cadmium and etc) mining around the unfavorable aforementioned places. According to the Mining Wastes' Tailings and Fills Rehabilitation Centre established in 1999 by a special Government's Resolution, one of the most ecologically dangerous uranium tailings resides in Kadzhi-Say. Although uranium processing is no longer practiced in Kadzhi-Say, a large number of open landfills and uranium ore storages still remain abandoned at the vicinity of this settlement. These neglected sites have enormous problems associated with soil erosion known as "technogenic deserts". The upper soil horizons are deprived of humus and vegetation, which favor the formation of low-buffer landscapes in the zones of maximum contamination. As a result, most of these areas are not re-cultivated and remain in critical environmental condition (Bykovchenko, et al., 2005; Tukhvatshin, 2005; Suranova, 2006). Triad data for assessing environmental risk and biological vulnerability at contaminated sites will be integrated. The following Triad-based parameters will be employed: 1) chemical soil analyses (revealing the presence of potentially dangerous substances), 2) ecological parameters (assessing changes in microorganism's community structure and functions, bioindication); and 3) toxicological bioassays (utilizing classical endpoints such as survival and reproduction rates, genotoxicity). The output will be consisted of 3 indexes: 1) Environmental Risk Index, quantifying the level of biological damage at population-community level, 2) Biological Vulnerability Index, assessing the potential threats to biological equilibria, and 3) Genotoxicity Index, screening genotoxic effects. Multi-criteria Decision Analysis (MCDA) will be used to integrate a set of environmental Triad data to be obtained during the project, which will be carried out in order to estimate the potential risk from soil contamination of the highly anthropized areas of Kadzhi-Say, which have been impacted by deposition of heavy metals. The basis of the development under this research is studies with a particular focus concerning the biocenosis mapping of Kyrgyz soils (Mamytova et al., 2003, 2010), investigations on interaction of humic substances with soil contaminants (Jorobekova, Kydralieva, Khudaibergenova, 2004; Khudaibergenova, 2005, 2007), and in addition, technical approach for ecotoxicological assessment of soils (Terekhova, 2007, 2011). Soil ecotoxicological estimation has been studied with a battery of tests using test-organisms of many trophic levels. Currently, bioindication of soils with various humus states is under study (Senesi, Yakimenko 2007; Yakimenko, et al., 2008).
High-Resolution Melt Analysis for Rapid Comparison of Bacterial Community Compositions
Hjelmsø, Mathis Hjort; Hansen, Lars Hestbjerg; Bælum, Jacob; Feld, Louise; Holben, William E.
2014-01-01
In the study of bacterial community composition, 16S rRNA gene amplicon sequencing is today among the preferred methods of analysis. The cost of nucleotide sequence analysis, including requisite computational and bioinformatic steps, however, takes up a large part of many research budgets. High-resolution melt (HRM) analysis is the study of the melt behavior of specific PCR products. Here we describe a novel high-throughput approach in which we used HRM analysis targeting the 16S rRNA gene to rapidly screen multiple complex samples for differences in bacterial community composition. We hypothesized that HRM analysis of amplified 16S rRNA genes from a soil ecosystem could be used as a screening tool to identify changes in bacterial community structure. This hypothesis was tested using a soil microcosm setup exposed to a total of six treatments representing different combinations of pesticide and fertilization treatments. The HRM analysis identified a shift in the bacterial community composition in two of the treatments, both including the soil fumigant Basamid GR. These results were confirmed with both denaturing gradient gel electrophoresis (DGGE) analysis and 454-based 16S rRNA gene amplicon sequencing. HRM analysis was shown to be a fast, high-throughput technique that can serve as an effective alternative to gel-based screening methods to monitor microbial community composition. PMID:24610853
Lead toxicity thresholds in 17 Chinese soils based on substrate-induced nitrification assay.
Li, Ji; Huang, Yizong; Hu, Ying; Jin, Shulan; Bao, Qiongli; Wang, Fei; Xiang, Meng; Xie, Huiting
2016-06-01
The influence of soil properties on toxicity threshold values for Pb toward soil microbial processes is poorly recognized. The impact of leaching on the Pb threshold has not been assessed systematically. Lead toxicity was screened in 17 Chinese soils using a substrate-induced nitrification (SIN) assay under both leached and unleached conditions. The effective concentration of added Pb causing 50% inhibition (EC50) ranged from 185 to >2515mg/kg soil for leached soil and 130 to >2490mg/kg soil for unleached soil. These results represented >13- and >19-fold variations among leached and unleached soils, respectively. Leaching significantly reduced Pb toxicity for 70% of both alkaline and acidic soils tested, with an average leaching factor of 3.0. Soil pH and CEC were the two most useful predictors of Pb toxicity in soils, explaining over 90% of variance in the unleached EC50 value. The relationships established in the present study predicted Pb toxicity within a factor of two of measured values. These relationships between Pb toxicity and soil properties could be used to establish site-specific guidance on Pb toxicity thresholds. Copyright © 2016. Published by Elsevier B.V.
Dong, Yan; Zhong, Zhao-hui; Li, Hong; Li, Jie; Wang, Ying-xiong; Peng, Bin; Zhang, Mao-zhong; Huang, Qiao; Yan, Ju; Xu, Fei-long
2013-10-01
To explore the correlation between the incidence of birth defects and the contents of soil elements so as to provide a scientific basis for screening the related pathogenic factors that inducing birth defects for the development of related preventive and control strategies. MapInfo 7.0 software was used to draw the maps on spatial distribution regarding the incidence rates of birth defects and the contents of 11 chemical elements in soil in the 33 studied areas. Variables on the two maps were superposed for analyzing the spatial correlation. SAS 8.0 software was used to analyze single factor, multi-factors and principal components as well as to comprehensively evaluate the degrees of relevance. Different incidence rates of birth defects showed in the maps of spatial distribution presented certain degrees of negative correlation with anomalies of soil chemical elements, including copper, chrome, iodine, selenium, zinc while positively correlated with the levels of lead. Results from the principal component regression equation indicating that the contents of copper(0.002), arsenic(-0.07), cadmium(0.05), chrome (-0.001), zinc (0.001), iodine(-0.03), lead (0.08), fluorine(-0.002)might serve as important factors that related to the prevalence of birth defects. Through the study on spatial distribution, we noticed that the incidence rates of birth defects were related to the contents of copper, chrome, iodine, selenium, zinc, lead in soil while the contents of chrome, iodine and lead might lead to the occurrence of birth defects.
Mobile genetic elements and antibiotic resistance in mine soil amended with organic wastes.
Garbisu, Carlos; Garaiyurrebaso, Olatz; Lanzén, Anders; Álvarez-Rodríguez, Itxaso; Arana, Lide; Blanco, Fernando; Smalla, Kornelia; Grohmann, Elisabeth; Alkorta, Itziar
2018-04-15
Metal resistance has been associated with antibiotic resistance due to co- or cross-resistance mechanisms. Here, metal contaminated mine soil treated with organic wastes was screened for the presence of mobile genetic elements (MGEs). The occurrence of conjugative IncP-1 and mobilizable IncQ plasmids, as well as of class 1 integrons, was confirmed by PCR and Southern blot hybridization, suggesting that bacteria from these soils have gene-mobilizing capacity with implications for the dissemination of resistance factors. Moreover, exogenous isolation of MGEs from the soil bacterial community was attempted under antibiotic selection pressure by using Escherichia coli as recipient. Seventeen putative transconjugants were identified based on increased antibiotic resistance. Metabolic traits and metal resistance of putative transconjugants were investigated, and whole genome sequencing was carried out for two of them. Most putative transconjugants displayed a multi-resistant phenotype for a broad spectrum of antibiotics. They also displayed changes regarding the ability to metabolise different carbon sources, RNA: DNA ratio, growth rate and biofilm formation. Genome sequencing of putative transconjugants failed to detect genes acquired by horizontal gene transfer, but instead revealed a number of nonsense mutations, including in ubiH, whose inactivation was linked to the observed resistance to aminoglycosides. Our results confirm that mine soils contain MGEs encoding antibiotic resistance. Moreover, they point out the role of spontaneous mutations in achieving low-level antibiotic resistance in a short time, which was associated with a trade-off in the capability to metabolise specific carbon sources. Copyright © 2017. Published by Elsevier B.V.
High yield of functional metagenomic library from mangroves constructed in fosmid vector.
Gonçalves, A C S; dos Santos, A C F; dos Santos, T F; Pessoa, T B A; Dias, J C T; Rezende, R P
2015-10-02
In the present study, metagenomic technique and fosmid vectors were used to construct a library of clones for exploring the biotechnological potential of mangrove soils by isolation of functional genes encoding hydrolytic enzymes. The library was built with genomic DNA from the soil samples of mangrove sediments and the functional screening of 1824 clones (~64 Mbp) was performed to detect the hydrolytic activity specific for cellulases, amylases (at acidic, neutral and basic pH), lipases/esterases, proteases, and nitrilases. Significant numbers of clones, positive for the tested enzyme activities were obtained. Our results indicate the importance and biotechnological potential of mangrove soils especially when compared to those obtained using other soil metagenomic libraries.
Worldwide Abundance and Distribution of Bacillus thuringiensis Isolates
Martin, Phyllis A. W.; Travers, Russell S.
1989-01-01
We found the insect control agent Bacillus thuringiensis to be a ubiquitous soil microorganism. Using acetate selection to screen soil samples, we isolated B. thuringiensis in 785 of 1,115 soil samples. These samples were obtained in the United States and 29 other countries. A total of 48% of the B. thuringiensis isolates (8,916 isolates) fit the biochemical description of known varieties, while 52% represented undescribed B. thuringiensis types. Over 60% (1,052 isolates) of the isolates tested for toxicity were toxic to insects in the orders Lepidoptera or Diptera. Soil samples were collected from various habitats, including those habitats with different numbers of insects. The current presence of insects did not predict the presence of B. thuringiensis in a particular soil sample. B. thuringiensis was most abundant in samples from Asia. PMID:16348022
Pan, Hong-Wei; Lei, Hong-Jun; He, Xiao-Song; Xi, Bei-Dou; Han, Yu-Ping; Xu, Qi-Gong
2017-04-01
To study the influence of long-term pesticide application on the distribution of organochlorine pesticides (OCPs) in the soil-groundwater system, 19 soil samples and 19 groundwater samples were collected from agricultural area with long-term pesticide application history in Northern China. Results showed that the composition of OCPs changed significantly from soil to groundwater. For example, ∑DDT, ∑HCH, and ∑heptachlor had high levels in the soil and low levels in the groundwater; in contrast, endrin had low level in the soil and high level in the groundwater. Further study showed that OCP distribution in the soil was significantly influenced by its residue time, soil organic carbon level, and small soil particle contents (i.d. <0.0002 mm). Correlation analysis also indicates that the distribution of OCPs in the groundwater was closely related to the levels of OCPs in the soil layer, which may act as a pollution source.
1990-09-01
Initially, cuttings from the borings and wells will be placed on plastic sheeting, covered, and left at the drilling site until a determination can be...Spwmxds Solids (K160.2) X X X X X Nitrate - Nitrate (PE3M.1) X X X X X tPhysical Caracteristics : Soil Enginering Classificatim X X X X X X X X (MQ8-84...site, soil cuttings from drilling the borings and wells will be placed on a plastic tarp and covered until samples of the soil have been screened using
dos Santos, Lisia M G; Welz, Bernhard; Araujo, Rennan G O; Jacob, Silvana do C; Vale, Maria Goreti R; Martens, Andreas; Gonzaga Martens, Irland B; Becker-Ross, Helmut
2009-11-11
A fast routine screening method for the simultaneous determination of cadmium and iron in bean and soil samples is proposed, using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling. The primary absorption line at 228.802 nm has been used for the determination of cadmium, and an adjacent secondary line, at 228.726 nm, for iron. Fourteen bean samples and 10 soil samples from nine states all over Brazil have been analyzed. The limits of detection (3 sigma, n = 10) were 2.0 microg kg(-1) for Cd and 4.5 mg kg(-1) for Fe. The relative standard deviation ranged from 4 to 7% for Cd and from 5 to 28% for Fe, which is usually acceptable for a screening method. The accuracy of the method has been confirmed by the analysis of two certified reference materials; the results were in agreement with the certified values at a 95% confidence interval.
Beauchamp, Vanessa B.; Walz, C.; Shafroth, P.B.
2009-01-01
Restoration of salt-affected soils is a global concern. In the western United States, restoration of salinized land, particularly in river valleys, often involves control of Tamarix, an introduced species with high salinity tolerance. Revegetation of hydrologically disconnected floodplains and terraces after Tamarix removal is often difficult because of limited knowledge regarding the salinity tolerance of candidate native species for revegetation. Additionally, Tamarix appears to be non-mycorrhizal. Extended occupation of Tamarix may deplete arbuscular mycorrhizal fungi in the soil, further decreasing the success of revegetation efforts. To address these issues, we screened 42 species, races, or ecotypes native to southwestern U.S. for salinity tolerance and mycorrhizal responsiveness. As expected, the taxa tested showed a wide range of responses to salinity and mycorrhizal fungi. This variation also occurred between ecotypes or races of the same species, indicating that seed collected from high-salinity reference systems is likely better adapted to harsh conditions than seed originating from less saline environments. All species tested had a positive or neutral response to mycorrhizal inoculation. We found no clear evidence that mycorrhizae increased salinity tolerance, but some species were so dependent on mycorrhizal fungi that they grew poorly at all salinity levels in pasteurized soil. ?? 2009 Elsevier B.V.
Mrdakovic Popic, Jelena; Bhatt, Chhavi Raj; Salbu, Brit; Skipperud, Lindis
2012-01-01
The present study was done in the Fen Complex, a Norwegian area rich in naturally occurring radionuclides, especially in thorium ((232)Th). Measurement of radioactivity levels was conducted at the decommissioned iron (Fe) and niobium (Nb) mining sites (TENORM) as well as at the undisturbed wooded sites (NORM), all open for free public access. The soil activity concentrations of (232)Th (3280-8395 Bq kg(-1)) were significantly higher than the world and the Norwegian average values and exceeded the Norwegian screening level (1000 Bq kg(-1)) for radioactive waste, while radium ((226)Ra) was present at slightly elevated levels (89-171 Bq kg(-1)). Terrestrial gamma dose rates were also elevated, ranging 2.6-4.4 μGy h(-1). Based on long-term surveys, the air concentrations of thoron ((220)Rn) and radon ((222)Rn) reached 1786 and 82 Bq m(-3), respectively. Seasonal variation in the outdoor gamma dose rates and Rn concentrations was confirmed. Correlation analyses showed a linear relationship between air radiation levels and the abundance of (232)Th in soil. The annual outdoor effective radiation doses for humans (occupancy 5 h day(-1)) were estimated to be in the range of 3.0-7.7 mSv, comparable or higher than the total average (summarized indoor and outdoor) exposure dose for the Norwegian population (2.9 mSv year(-1)). On the basis of all obtained results, this Norwegian area should be considered as enhanced natural radiation area (ENRA).
Broadhurst, C Leigh; Chaney, Rufus L; Davis, Allen P; Cox, Albert; Kumar, Kuldip; Reeves, Roger D; Green, Carrie E
2015-01-01
Past applications of biosolids to soils at some locations added higher Cd levels than presently permitted. Cadmium phytoextraction would alleviate current land use constraints. Unamended farm soil, and biosolids amended farm and mine soils were obtained from a Fulton Co., IL biosolids management facility. Soils contained 0.16, 22.8, 45.3 mg Cd kg(-1) and 43.1, 482, 812 mg Zn kg(-1) respectively with initial pH 6.0, 6.1, 6.4. In greenhouse studies, Swiss chard (Beta vulgaris var. cicla), a Cd-accumulator maize (inbred B37 Zea mays) and a southern France Cd-hyperaccumulator genotype of Noccaea caerulescens were tested for Cd accumulation and phytoextraction. Soil pH was adjusted from ∼5.5-7.0. Additionally 100 rice (Oryza sativa) genotypes and the Ni-hyperaccumulator Alyssum murale were screened for potential phytoextraction use. Chard suffered phytotoxicity at low pH and accumulated up to 90 mg Cd kg(-1) on the biosolids amended mine soil. The maize inbred accumulated up to 45 mg Cd kg(-1) with only mild phytotoxicity symptoms during early growth at pH>6.0. N. caerulescens did not exhibit phytotoxicity symptoms at any pH, and accumulated up to 235 mg Cd kg(-1) in 3 months. Reharvested N. caerulescens accumulated up to 900 mg Cd kg(-1) after 10 months. Neither Alyssum nor 90% of rice genotypes survived acceptably. Both N. caerulescens and B37 maize show promise for Cd phytoextraction in IL and require field evaluation; both plants could be utilized for nearly continuous Cd removal. Other maize inbreds may offer higher Cd phytoextraction at lower pH, and mono-cross hybrids higher shoot biomass yields. Further, maize grown only for biomass Cd maximum removal could be double-cropped.
NASA Astrophysics Data System (ADS)
Wang, L.; Shi, Z. H.; Wang, J.; Fang, N. F.; Wu, G. L.; Zhang, H. Y.
2014-05-01
Rainfall kinetic energy (KE) can break down aggregates in the soil surface. A better understanding of sediment sorting associated with various KEs is essential for the development and verification of soil erosion models. A clay loam soil was used in the experiments. Six KEs were obtained (76, 90, 105, 160, 270, and 518 J m-2 h-1) by covering wire screens located above the soil surface with different apertures to change the size of raindrops falling on the soil surface, while maintaining the same rainfall intensity (90 ± 3.5 mm h-1). For each rainfall simulation, runoff and sediment were collected at 3-min intervals to investigate the temporal variation of the sediment particle size distribution (PSD). Comparison of the sediment effective PSD (undispersed) and ultimate PSD (dispersed) was used to investigate the detachment and transport mechanisms involved in sediment mobilization. The effective-ultimate ratios of clay-sized particles were less than 1, whereas that of sand-sized particles were greater than 1, suggesting that these particles were transported as aggregates. Under higher KE, the effective-ultimate ratios were much closer to 1, indicating that sediments were more likely transported as primary particles at higher KE owing to an increased severity of aggregate disaggregation for the clay loam soil. The percentage of clay-sized particles and the relative importance of suspension-saltation increased with increasing KE when KE was greater than 105 J m-2 h-1, while decreased with increasing KE when KE was less than 105 J m-2 h-1. A KE of 105 J m-2 h-1 appeared to be a threshold level beyond which the disintegration of aggregates was severe and the influence of KE on erosion processes and sediment sorting may change. Results of this study demonstrate the need for considering KE-influenced sediment transport when predicting erosion.
An, Yan; Ji, Qiang; Zhao, Shi-xiang; Wang, Xu-dong
2016-01-15
Applying biochar to soil has been considered to be one of the important practices in improving soil properties and increasing carbon sequestration. In order to investigate the effects of biochar application on soil aggregates distribution and its organic matter content and soil moisture constant in different size aggregates, various particle-size fractions of soil aggregates were obtained with the dry-screening method. The results showed that, compared to the treatment without biochar (CK), the application of biochar reduced the mass content of 5-8 mm and < 0.25 mm soil aggregates at 0-10 cm soil horizon, while increased the content of 1-2 mm and 2-5 mm soil aggregates at this horizon, and the content of 1-2 mm aggregates significantly increased along with the rates of biochar application. The mean diameter of soil aggregates was reduced by biochar application at 0-10 cm soil horizon. However, the effect of biochar application on the mean diameter of soil aggregates at 10-20 cm soil horizon was not significant. Compared to CK, biochar application significantly increased soil organic carbon content in aggregates, especially in 1-2 mm aggregates which was increased by > 70% compared to CK. Both the water holding capacity and soil porosity were significantly increased by biochar application. Furthermore, the neutral biochar was more effective than alkaline biochar in increasing soil moisture.
Novikov, S M; Shashina, T A; Dodina, N S; Kislitsin, V A; Vorobieva, L M; Goriaev, D V; Tikhonova, I V; Kurkatov, S V
2015-01-01
Krasnoyarsk Krai is a region with developed mining and processing industries, notoriously known industries, as sources of carcinogenic emission. For 55 administrative units of the Krai 303 large enterprises' industrial emissions were preliminary prioritized and their location was designated. Only 52% out of the carcinogens emitted into the ambient air by industries were controlled, in other environments the figures ranged from 20% (soil, food) to 48% (drinking water), 10 carcinogens were not controlled in the environment at all. Based on the results of ranking carcinogenic emission and analysis of the carcinogens monitoring in the environment in 2007-2011 31 substances were selected. A comparative analysis of multiple environmental carcinogenic risks showed that 78% of the areas, based on the receipt ofcarcinogensfrom two media, and 80% ofthe areas taking into account the receipt ofcarcinogens from three media attributed to the alarming level of risk for population, that requires continuous monitoring and routine health interventions for its mitigation. The maximal multiple environmental risk values that took into account inputs from all sources were close to the upper boundary alarming level of risk, in Divnogorsk (7,80E-04), Norilsk (7,97 E-04), Krasnoyarsk (8,84E-04) and Achinsk (9,4 E-04). The greatest inputs to total individual cancer risk from polluted ambient air were made by benzene, chromium VI, formaldehyde and nickel, from drinking water--by arsenic, aldrin and heptachlor from soil--by arsenic and lead. The ambient air input into total multiple environmental carcinogenic risk ranged from 31.5 to 99.5%, drinking water input--from 0.5 to 68.5%, soil--up to 0.1%. Areas with maximum levels of total carcinogenic risk are characterized by the highest levels of average long-term indices of cancer development. The study discussed in this article has screening nature. Further in-depth researches for carcinogenic and toxic multimedia risks are required.
A screening tool for delineating subregions of steady recharge within groundwater models
Dickinson, Jesse; Ferré, T.P.A.; Bakker, Mark; Crompton, Becky
2014-01-01
We have developed a screening method for simplifying groundwater models by delineating areas within the domain that can be represented using steady-state groundwater recharge. The screening method is based on an analytical solution for the damping of sinusoidal infiltration variations in homogeneous soils in the vadose zone. The damping depth is defined as the depth at which the flux variation damps to 5% of the variation at the land surface. Groundwater recharge may be considered steady where the damping depth is above the depth of the water table. The analytical solution approximates the vadose zone diffusivity as constant, and we evaluated when this approximation is reasonable. We evaluated the analytical solution through comparison of the damping depth computed by the analytic solution with the damping depth simulated by a numerical model that allows variable diffusivity. This comparison showed that the screening method conservatively identifies areas of steady recharge and is more accurate when water content and diffusivity are nearly constant. Nomograms of the damping factor (the ratio of the flux amplitude at any depth to the amplitude at the land surface) and the damping depth were constructed for clay and sand for periodic variations between 1 and 365 d and flux means and amplitudes from nearly 0 to 1 × 10−3 m d−1. We applied the screening tool to Central Valley, California, to identify areas of steady recharge. A MATLAB script was developed to compute the damping factor for any soil and any sinusoidal flux variation.
Engineering a plant community to deliver multiple ecosystem services.
Storkey, Jonathan; Döring, Thomas; Baddeley, John; Collins, Rosemary; Roderick, Stephen; Jones, Hannah; Watson, Christine
2015-06-01
The sustainable delivery of multiple ecosystem services requires the management of functionally diverse biological communities. In an agricultural context, an emphasis on food production has often led to a loss of biodiversity to the detriment of other ecosystem services such as the maintenance of soil health and pest regulation. In scenarios where multiple species can be grown together, it may be possible to better balance environmental and agronomic services through the targeted selection of companion species. We used the case study of legume-based cover crops to engineer a plant community that delivered the optimal balance of six ecosystem services: early productivity, regrowth following mowing, weed suppression, support of invertebrates, soil fertility building (measured as yield of following crop), and conservation of nutrients in the soil. An experimental species pool of 12 cultivated legume species was screened for a range of functional traits and ecosystem services at five sites across a geographical gradient in the United Kingdom. All possible species combinations were then analyzed, using a process-based model of plant competition, to identify the community that delivered the best balance of services at each site. In our system, low to intermediate levels of species richness (one to four species) that exploited functional contrasts in growth habit and phenology were identified as being optimal. The optimal solution was determined largely by the number of species and functional diversity represented by the starting species pool, emphasizing the importance of the initial selection of species for the screening experiments. The approach of using relationships between functional traits and ecosystem services to design multifunctional biological communities has the potential to inform the design of agricultural systems that better balance agronomic and environmental services and meet the current objective of European agricultural policy to maintain viable food production in the context of the sustainable management of natural resources.
Antibiotic Production by Anaerobic Bacteria1
Sturgen, Nancy O.; Casida, L. E.
1962-01-01
Soils from aerobic and anaerobic sources were investigated for the possible presence of bacteria which produce antibiotics under anaerobic conditions of growth. The screening techniques devised for this study yielded 157 soil bacteria which, during anaerobic growth, produced antibiotic activity against aerobic test bacteria. Studies on choice of media, presence of oxygen, and changes in antibiotic activity during growth indicated that representative strains of these bacteria produced mixtures of antibiotics. The activity was heat labile. PMID:13918037
Nano-Sized Natural Colorants from Rocks and Soils
NASA Astrophysics Data System (ADS)
Ahmad, W. Y. W.; Ruznan, W. S.; Hamid, H. A.; Kadir, M. I. A.; Yusoh, M. K. M.; Ahmad, M. R.
2010-03-01
Colored rocks (lateritic) and soils (shales) are available in abundant all around Malaysia and they are from natural sources. The colorants will be useful if they can be transferred to substrates using dyeing, printing or brushing with acceptable fastness. First of all the rocks need to be crushed into powder form before coloration can take place. The sizes of the colorants particles obtained with coffee grinder were of 7-8 microns. They can be reduced to 3-5 micron using fluidized bed jetmill and to nano sizes with the help of planetary mono mill grinders. The experiment was conducted in both dyeing and printing of textiles using all three sizes (7-8 microns, 3-5 microns and nano sizes) of colorants on silk fabric. The colorants were applied on silk fabrics by dyeing and tie and dye techniques. In addition, the colorants can also be applied by brushing technique as in batik canting or batik block as well as silk screen printing. The evaluations of colored materials were based on the levelness of dyeing, fastness properties (washing, light and rubbing fastness) and color strength. The wash fastness testing shows that all colorants sizes have more or less the same fastness to washing but nano sized colorants produced better uniform dyes distribution (levelness of dyeing) and higher color strength.
The effectiveness of mitigation for reducing radon risk in single-family Minnesota homes.
Steck, Daniel J
2012-09-01
Increased lung cancer incidence has been linked with long-term exposure to elevated residential radon. Experimental studies have shown that soil ventilation can be effective in reducing radon concentrations in single-family homes. Most radon mitigation systems in the U.S. are installed by private contractors. The long-term effectiveness of these systems is not well known, since few state radon programs regulate or independently confirm post-mitigation radon concentrations. The effectiveness of soil ventilation systems in Minnesota was measured for 140 randomly selected clients of six professional mitigators. Homeowners reported pre-mitigation radon screening concentrations that averaged 380 Bq m (10.3 pCi L). Long term post-mitigation radon measurements on the two lowest floors show that, even years after mitigation, 97% of these homes have concentrations below the 150 Bq m U.S. Environmental Protection Agency action level. The average post-mitigation radon in the houses was 30 Bq m, an average observed reduction of >90%. If that reduction was maintained over the lifetime of the 1.2 million Minnesotans who currently reside in single-family homes with living space radon above the EPA action level, approximately 50,000 lives could be extended for nearly two decades by preventing radon-related lung cancers.
Campos-Herrera, Raquel; Gutiérrez, Carmen
2009-02-01
Entomopathogenic nematodes (EPNs) are one of the best non-chemical alternatives for insect pest control, with native EPN strains that are adapted to local conditions considered to be ideal candidates for regional biological control programs. Virulence screening of 17 native Mediterranean EPN strains was performed to select the most promising strain for regional insect pest control. Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae) Rioja strain produced 7%, 91% and 33% larval mortality for the insects Agriotes sordidus (Illiger) (Coleoptera: Elateridae), Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) and Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), respectively, and was selected as the most promising strain. The S. feltiae Rioja strain-S. littoralis combination was considered the most suitable to develop the Rioja strain as a biocontrol agent for soil applications. The effect of soil texture on the virulence of the Rioja strain against S. littoralis was determined through dose-response experiments. The estimated LC(90) to kill larvae in two days was 220, 753 and 4178 IJs/cm(2) for soils with a clay content of 5%, 14% and 24%, respectively, which indicates that heavy soils produced negative effects on the virulence of the Rioja strain. The nematode dose corresponding to the LC(90) for soils with a 5% and 14% clay content reduced insect damage to Capsicum annuum Linnaeus (Solanales: Solanaceae) plants under greenhouse microcosm conditions. The results of this research suggest that an accurate characterization of new EPN strains to select the most suitable combination of insect, nematode and soil texture might provide valuable data to obtain successful biological control under different ecological scenarios in future field applications.
Garvin, Ean M; Bridge, Cas F; Garvin, Meredith S
2017-04-01
Metal releases have been received by the Grand Lake watershed from the Tri-State Mining District (TSMD) since the mid 1800s. To address data gaps in metal distributions in the Oklahoma portion of the watershed, streambed sediment and floodplain soil was sampled on various streams. The <63-µm fraction was analyzed for Cd, Pb, and Zn concentrations by portable X-ray fluorescence spectroscopy and inductively coupled plasma-mass spectrometry. Mean metal concentration results at reference transects indicated that background sediment/soil concentrations for Cd, Pb, and Zn within the watershed were 0.5, 19, and 68 mg/kg, respectively. A significant difference in the distributions of metal concentrations was found between reference and impacted transects (Cd, Pb, Zn: p = 0.00; Cd: n = 29; Pb, Zn: n = 283). These results demonstrated that concentrations of metals in streambed sediments and floodplain soils were significantly higher in areas downstream of major mining influences relative to upstream reference sites, and the source of metal contamination within these media was the result of mining releases from the TSMD. Toxicity risks to benthic macroinvertebrates were evaluated using a TSMD-specific sediment mixture model (∑PEC-Q Cd,Pb,Zn ) for metals (MacDonald et al. in Development and evaluation of sediment and pore-water toxicity thresholds to support sediment quality assessments in the Tri-State Mining District (TSMD), Missouri, Oklahoma, and Kansas. Draft Final Technical Report. Volume I: Text. Prepared for the U.S. Environmental Protection Agency and the U.S. Fish and Wildlife Service. Prepared by MacDonald Environmental Sciences Ltd., U.S. Geological Survey, and CH2M Hill, Nanaimo, 2009). Toxicity risks to plant populations were also assessed by comparing soil metal concentrations to Ecological Soil Screening Levels (Eco-SSLs). It was found that the survival and/or biomass of benthic invertebrates was highly impacted at Tar Creek, highly to moderately impacted at Spring River and Elm Creek, and unimpacted at Lost Creek and Grand Lake as a result of sediment metal concentrations. It also was found that soil metal concentrations were likely sufficient to impact plant populations at all streams. Within the Oklahoma portion of the watershed, the majority of environmental studies, remediation, and restoration efforts by local, state, and federal agencies have been primarily focused within the Tar Creek Superfund Site (TCSS) boundary. Importantly, the findings of this study highlighted the downstream extent of metals contamination as well as the resulting potential toxicities to benthic invertebrates and plants that is present outside of the TCSS boundary. Because the Oklahoma portion of the watershed comprises the jurisdictional lands of ten tribes, these results emphasized the potential tribal loss of use of benthic invertebrates and plants due to their decline in population as a result of metal toxicity. These overall findings provide an important basis for future data needs in assessing metal concentrations in aquatic and terrestrial biota that are consumed by tribal communities within the watershed to determine if certain organisms are unsafe to consume or warrant consumption advisories. This will allow risk assessors and risk managers to better understand the potential loss of use of tribal biological resources as well as improving risk-based decision making to be protective of these resources and tribal human health.
Effects of ten antibiotics on seed germination and root elongation in three plant species.
Hillis, Derek G; Fletcher, James; Solomon, Keith R; Sibley, Paul K
2011-02-01
We applied a screening-level phytotoxicity assay to evaluate the effects of 10 antibiotics (at concentrations ranging from 1 to 10,000 μg/L) on germination and early plant growth using three plant species: lettuce (Lactuca sativa), alfalfa (Medicago sativa), and carrot (Daucus carota). The range of phytotoxicity of the antibiotics was large, with EC₂₅s ranging from 3.9 μg/L to >10,000 μg/L. Chlortetracycline, levofloxacin, and sulfamethoxazole were the most phytotoxic antibiotics. D. carota was the most sensitive plant species, often by an order of magnitude or more, followed by L. sativa and then M. sativa. Plant germination was insensitive to the antibiotics, with no significant decreases up to the highest treatment concentration of 10,000 μg/L. Compared with shoot and total length measurements, root elongation was consistently the most sensitive end point. Overall, there were few instances where measured soil concentrations, if available in the publicly accessible literature, would be expected to exceed the effect concentrations of the antibiotics evaluated in this study. The use of screening assays as part of a tiered approach for evaluating environmental impacts of antibiotics can provide insight into relative species sensitivity and serve as a basis by which to screen the potential for toxic effects of novel compounds to plants.
Kogan, M; Rojas, S; Gómez, P; Suárez, F; Muñoz, J F; Alister, C
2007-01-01
A field study was performed to evaluate the accuracy of six pesticide screening leaching indexes for herbicide movement. Adsorption, dissipation and soil movement were studied in a vineyard in a sandy loam soil during 2005 season. Simazine, diuron, pendimethalin, oxyfluorfen and flumioxazin were applied to bare soil at rates commonly used, and their soil concentrations throughout soil profile were determined at 0, 10, 20, 40 and 90 days after application (DAA). Herbicides were subjected to two pluviometric regimens, natural field condition and modified conditions (plus natural rainfall 180 mm). Leaching indexes utilized were: Briggs's Rf, Hamaker's Rf, LEACH, LPI, GUS and LIX. Simazine reached 120 cm, diuron 90 cm, flumioxazin 30 cm soil depth respectively. Pendimethalin and oxyfluorfen were retained up to 5 cm. None of the herbicides leaching was affected by rainfall regimen. Only flumioxazin field dissipation was clearly affected by pluviometric condition. The best representation of the herbicide soil depth movement and leaching below 15 cm soil depth were: Hamaker's Rf < Briggs's Rf < GUS < LPI, < LEACH < LIX. Field results showed a good correlation between herbicides K(d) and their soil depth movement and mass leached below 15 cm soil depth.
Gray, John E; Theodorakos, Peter M; Fey, David L; Krabbenhoft, David P
2015-02-01
Samples of soil, water, mine waste leachates, soil gas, and air were collected from areas mined for mercury (Hg) and baseline sites in the Big Bend area, Texas, to evaluate potential Hg contamination in the region. Soil samples collected within 300 m of an inactive Hg mine contained elevated Hg concentrations (3.8-11 µg/g), which were considerably higher than Hg in soil collected from baseline sites (0.03-0.05 µg/g) distal (as much as 24 km) from mines. Only three soil samples collected within 300 m of the mine exceeded the probable effect concentration for Hg of 1.06 µg/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of Hg in mine water runoff (7.9-14 ng/L) were generally higher than those found in springs and wells (0.05-3.1 ng/L), baseline streams (1.1-9.7 ng/L), and sources of drinking water (0.63-9.1 ng/L) collected in the Big Bend region. Concentrations of Hg in all water samples collected in this study were considerably below the 2,000 ng/L drinking water Hg guideline and the 770 ng/L guideline recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic wildlife from chronic effects of Hg. Concentrations of Hg in water leachates obtained from leaching of mine wastes varied widely from <0.001 to 760 µg of Hg in leachate/g of sample leached, but only one leachate exceeded the USEPA Hg industrial soil screening level of 31 µg/g. Concentrations of Hg in soil gas collected at mined sites (690-82,000 ng/m(3)) were highly elevated compared to soil gas collected from baseline sites (1.2-77 ng/m(3)). However, air collected from mined areas at a height of 2 m above the ground surface contained concentrations of Hg (4.9-64 ng/m(3)) that were considerably lower than Hg in soil gas from the mined areas. Although concentrations of Hg emitted from mine-contaminated soils and mine wastes were elevated, persistent wind in southwest Texas disperses Hg in the air within a few meters of the ground surface.
Risk-Based Evaluation of Total Petroleum Hydrocarbons in Vapor Intrusion Studies
Brewer, Roger; Nagashima, Josh; Kelley, Michael; Heskett, Marvin; Rigby, Mark
2013-01-01
This paper presents a quantitative method for the risk-based evaluation of Total Petroleum Hydrocarbons (TPH) in vapor intrusion investigations. Vapors from petroleum fuels are characterized by a complex mixture of aliphatic and, to a lesser extent, aromatic compounds. These compounds can be measured and described in terms of TPH carbon ranges. Toxicity factors published by USEPA and other parties allow development of risk-based, air and soil vapor screening levels for each carbon range in the same manner as done for individual compounds such as benzene. The relative, carbon range makeup of petroleum vapors can be used to develop weighted, site-specific or generic screening levels for TPH. At some critical ratio of TPH to a targeted, individual compound, the overwhelming proportion of TPH will drive vapor intrusion risk over the individual compound. This is particularly true for vapors associated with diesel and other middle distillate fuels, but can also be the case for low-benzene gasolines or even for high-benzene gasolines if an adequately conservative, target risk is not applied to individually targeted chemicals. This necessitates a re-evaluation of the reliance on benzene and other individual compounds as a stand-alone tool to evaluate vapor intrusion risk associated with petroleum. PMID:23765191
NASA Astrophysics Data System (ADS)
Zeraatpisheh, Mojtaba; Ayoubi, Shamsollah; Jafari, Azam; Finke, Peter
2017-05-01
The efficiency of different digital and conventional soil mapping approaches to produce categorical maps of soil types is determined by cost, sample size, accuracy and the selected taxonomic level. The efficiency of digital and conventional soil mapping approaches was examined in the semi-arid region of Borujen, central Iran. This research aimed to (i) compare two digital soil mapping approaches including Multinomial logistic regression and random forest, with the conventional soil mapping approach at four soil taxonomic levels (order, suborder, great group and subgroup levels), (ii) validate the predicted soil maps by the same validation data set to determine the best method for producing the soil maps, and (iii) select the best soil taxonomic level by different approaches at three sample sizes (100, 80, and 60 point observations), in two scenarios with and without a geomorphology map as a spatial covariate. In most predicted maps, using both digital soil mapping approaches, the best results were obtained using the combination of terrain attributes and the geomorphology map, although differences between the scenarios with and without the geomorphology map were not significant. Employing the geomorphology map increased map purity and the Kappa index, and led to a decrease in the 'noisiness' of soil maps. Multinomial logistic regression had better performance at higher taxonomic levels (order and suborder levels); however, random forest showed better performance at lower taxonomic levels (great group and subgroup levels). Multinomial logistic regression was less sensitive than random forest to a decrease in the number of training observations. The conventional soil mapping method produced a map with larger minimum polygon size because of traditional cartographic criteria used to make the geological map 1:100,000 (on which the conventional soil mapping map was largely based). Likewise, conventional soil mapping map had also a larger average polygon size that resulted in a lower level of detail. Multinomial logistic regression at the order level (map purity of 0.80), random forest at the suborder (map purity of 0.72) and great group level (map purity of 0.60), and conventional soil mapping at the subgroup level (map purity of 0.48) produced the most accurate maps in the study area. The multinomial logistic regression method was identified as the most effective approach based on a combined index of map purity, map information content, and map production cost. The combined index also showed that smaller sample size led to a preference for the order level, while a larger sample size led to a preference for the great group level.
2013-11-01
primarily of granite, metamorphic rock , and marine carbonate rocks that are approximately 57 million years old (Kirtland AFB 2012a). The dominant soils...erosion. Tijeras soils are commonly used as rangeland, but tracts can be divided for urban development and building. Rock outcrop – Orthids complex...health or the environment. Although six sites have been identified and meet the screening criteria, these same criteria may be used to select other
Whelan, M J; Davenport, E J; Smith, B G
2007-05-15
A screening model of pesticide leaching loss is described which forms part of a multi-criteria risk-based indicator system called PRoMPT (Pesticide Risk Management and Profiling Tool). The leaching model evaluates pesticide fate in soil for any application rate and time of application (including multiple applications), for any land-based location in the world. It considers a generic evaluative environment with fixed dimensions and soil properties. The soil profile is conceptualised as a number of discrete layers. Equilibrium partitioning between adsorbed and dissolved chemical (based on the organic carbon-water partition coefficient [K(OC)]) is assumed in each time step, in each layer. Non-leaching losses are described using first order kinetics. Drainage is assumed to be uniform throughout the soil profile but varies temporally. The drainage rate, which can be augmented by evapotranspiration-adjusted irrigation, is derived from long-term mean monthly water balance model calculations performed for 30 arc-minute grid cells across the entire ice-free land surface of the earth. Although, such predictions are approximate, they do capture the seasonality and relative magnitude of drainage and allow the model to be applied anywhere, without the need for extensive data compilation. PRoMPT predictions are shown to be consistent with those made by more sophisticated models (PRZM, PELMO and PEARL) for the FOCUS groundwater scenarios.
Mao, Qizheng; Huang, Ganlin; Ma, Keming; Sun, Zexiang
2014-01-01
Understanding the spatial pattern of soil lead (Pb) levels is essential to protecting human health. Most previous studies have examined soil Pb distributions by either urbanization gradient or land-use type. Few studies, however, have examined both factors together. It remains unclear whether the impacts of land use on soil Pb levels are consistent along the urbanization gradient. To fill this gap, we investigated variations in soil Pb level under different land-use types along the urbanization gradient in Beijing, China. We classified the degree of urbanization as the urban core, transitional zone, or suburban area and the land-use type as industrial area, roadside, residential area, institutional area, road greenbelt, park, or forest. Our results showed that the range of soil Pb levels in Beijing is <1 mg/kg–292 mg/kg, with a mean of 22 mg/kg. Along the urbanization gradient, the mean soil Pb level increased from the suburban area to the urban core. Land-use types have an impact on soil Pb levels, however, when the degree of urbanization is considered, the impact from land use on soil Pb level was only significant in the transitional zone. Parks and road greenbelts were found to have lower soil Pb, primarily due to soil restoration. Roadside and residential areas were found to have higher soil Pb because of traffic emissions, leaded paint, and previous industrial contamination. In the urban core and suburban area, the soil Pb level showed no significant differences among various land-use types. Given the results of soil Pb in various land-use types, we suggest that future studies consider the urbanization gradient in which different land-use samples are located. PMID:24646863
Mao, Qizheng; Huang, Ganlin; Ma, Keming; Sun, Zexiang
2014-03-18
Understanding the spatial pattern of soil lead (Pb) levels is essential to protecting human health. Most previous studies have examined soil Pb distributions by either urbanization gradient or land-use type. Few studies, however, have examined both factors together. It remains unclear whether the impacts of land use on soil Pb levels are consistent along the urbanization gradient. To fill this gap, we investigated variations in soil Pb level under different land-use types along the urbanization gradient in Beijing, China. We classified the degree of urbanization as the urban core, transitional zone, or suburban area and the land-use type as industrial area, roadside, residential area, institutional area, road greenbelt, park, or forest. Our results showed that the range of soil Pb levels in Beijing is <1 mg/kg-292 mg/kg, with a mean of 22 mg/kg. Along the urbanization gradient, the mean soil Pb level increased from the suburban area to the urban core. Land-use types have an impact on soil Pb levels, however, when the degree of urbanization is considered, the impact from land use on soil Pb level was only significant in the transitional zone. Parks and road greenbelts were found to have lower soil Pb, primarily due to soil restoration. Roadside and residential areas were found to have higher soil Pb because of traffic emissions, leaded paint, and previous industrial contamination. In the urban core and suburban area, the soil Pb level showed no significant differences among various land-use types. Given the results of soil Pb in various land-use types, we suggest that future studies consider the urbanization gradient in which different land-use samples are located.
Survey of Microbial Enzymes in Soil, Water, and Plant Microenvironments
Alves, Priscila Divina Diniz; Siqueira, Flávia de Faria; Facchin, Susanne; Horta, Carolina Campolina Rebello; Victória, Júnia Maria Netto; Kalapothakis, Evanguedes
2014-01-01
Detection of microbial enzymes in natural environments is important to understand biochemical activities and to verify the biotechnological potential of the microorganisms. In the present report, 346 isolates from soil, water, and plants were screened for enzyme production (caseinase, gelatinase, amylase, carboxymethyl cellulase, and esterase). Our results showed that 89.6% of isolates produced at least one tested enzyme. A predominance of amylase in soil samples, carboxymethyl cellulase in plants, as well as esterase and gelatinase in water was observed. Interesting enzymatic profiles were found in some microenvironments, suggesting specificity of available nutrients and/or natural selection. This study revealed the potential of microorganisms present in water, soil, and plant to produce important enzymes for biotechnological exploration. A predominance of certain enzymes was found, depending on the type of environmental sample. The distribution of microbial enzymes in soil, water and plants has been little exploited in previous reports. PMID:24847390
Phytoremediation of radiocesium-contaminated soil in the vicinity of Chernobyl, Ukraine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dushenkov, S.; Mikheev, A.; Prokhnevsky, A.
1999-02-01
Remediation of soil contaminated with {sup 137}Cs remains one of the most challenging tasks after the Chernobyl 1986 accident. The objectives of this research were to (1) identify extractants that may be used to solubilize {sup 137}Cs in soil solution, (2) study the effect of soil amendments on {sup 137}Cs accumulation by plants, and (3) evaluate the applicability of phytoextraction for environmental restoration of soil contaminated with {sup 137}Cs. The availability of {sup 137}Cs to the plants in Chernobyl soil was limited, because this radionuclide was tightly bound to exchange sites of soil particles or incorporated into the crystalline structuremore » of primary and secondary minerals. Out of 20 soil amendments tested to increase {sup 137}Cs desorption/solubility in the soil, ammonium salts were found to be the most practical soil amendment that can potentially increase {sup 137}Cs bioavailability. Among the screened plants, Amaranth cultivars had the highest {sup 137}Cs accumulation. Three sequential crops of Indian mustard grown in one vegetation season at the experimental plot resulted in a small decrease of {sup 137}Cs specific activity within the top 15 cm of soil. Further improvements are necessary to make phytoremediation technology a feasible option for restoration of {sup 137}Cs-contaminated territories.« less
NASA Astrophysics Data System (ADS)
Gianotti, R. L.; Bomblies, A.; Eltahir, E. A.
2008-12-01
This study describes the use of HYDREMATS, a physically-based distributed hydrology model, to investigate environmental management methods for malaria vector control in the Sahelian village of Banizoumbou, Niger. The model operates at fine spatial and temporal scales to enable explicit simulation of individual pool dynamics and isolation of mosquito breeding habitats. The results showed that leveling of topographic depressions where temporary breeding habitats form during the rainy season could reduce the persistence time of a pool to less than the time needed for establishment of mosquito breeding, approximately 7 days. Increasing the surface soil permeability by ploughing could also reduce the persistence time of a pool but this technique was not as effective as leveling. Therefore it is considered that leveling should be the preferred of the two options where possible. This investigation demonstrates that management methods that modify the hydrologic environment have significant potential to contribute to malaria vector control and human health improvement in Sahelian Africa.
Reid, Brian J; Papanikolaou, Niki D; Wilcox, Ronah K
2005-02-01
The catabolic activity with respect to the systemic herbicide isoproturon was determined in soil samples by (14)C-radiorespirometry. The first experiment assessed levels of intrinsic catabolic activity in soil samples that represented three dissimilar soil series under arable cultivation. Results showed average extents of isoproturon mineralisation (after 240 h assay time) in the three soil series to be low. A second experiment assessed the impact of addition of isoproturon (0.05 microg kg(-1)) into these soils on the levels of catabolic activity following 28 days of incubation. Increased catabolic activity was observed in all three soils. A third experiment assessed levels of intrinsic catabolic activity in soil samples representing a single soil series managed under either conventional agricultural practice (including the use of isoproturon) or organic farming practice (with no use of isoproturon). Results showed higher (and more consistent) levels of isoproturon mineralisation in the soil samples collected from conventional land use. The final experiment assessed the impact of isoproturon addition on the levels of inducible catabolic activity in these soils. The results showed no significant difference in the case of the conventional farm soil samples while the induction of catabolic activity in the organic farm soil samples was significant.
Should there be a "Wet" Soil Order in Soil Taxonomy?
NASA Astrophysics Data System (ADS)
Rabenhorst, Martin; Wessel, Barret; Stolt, Mark; Lindbo, David
2017-04-01
Early soil classification systems recognized wet soils at the highest categorical level. Among the Intrazonal Soils of the US classification utilized between the 1920s and 1960, were included as Great Soil Groups, the Wiesenboden, Bog, Half-Bog, Ground-Water Podzols and Ground-Water Laterites. In other systems, groups named with such terms as ground water gley and pseudogley were also used. With the advent of Soil Taxonomy and it's precursor (1960, 1975), Histosols (organic soils) were distinguished as one of the initial 10 soil orders, and while many of these organic soils are wet soils, some are not (Folists for example). Thus, for over 50 years, with the exception of Histosols, wet soils (which typically represent the wettest end of subaerial wet soils) have not been collectively recognized within taxa at the highest categorical level (order) in the US soil classification system. Rather, the wettest soils were designated at the second categorical level as wet (Aqu) suborders among the various soil orders, and more recently, subaqueous soils as "Wass" suborders of Entisols and Histosols. Soils with less-wet conditions have been recognized at the subgroup (4th) level. Further, in impoundments and regions of transgressing coastlines, submerged upland soils have been found that still classify in soil orders that do not accommodate subaqueous soils ("Wass" suborders). Notwithstanding, other contemporary soil classification systems do (have continued to) recognize wet soils at the highest level. In the World Reference Base (WRB) for example, wet soils are designated as Gleysols or Stagnosols. As efforts are underway to revisit, simplify, and revise Soil Taxonomy, questions have been raised regarding whether wet soils should again be moved back with a place among taxa at the highest category using a name such as Hydrasols, Aquasols, etc. This paper will explore and consider the questions and arguments for and against such proposals and the difficult question regarding where along the soil wetness continuum would be the best point for recognizing a wet soil order.
Wang, Xu; Chen, Can; Wang, Jianlong
2017-03-01
Phytoremediation of strontium contaminated soil by Sorghum bicolor (L.) Moench was investigated, and the soil microbial community-level physiological profiles (CLPPs) were examined. The growth and the stable strontium ( 88 Sr) accumulations of the energy crop S. bicolor grown on the Sr-spiked soil at the level of 0, 50, 100, 200, and 400 mg/kg soil were characterized through pot soil system after the entire growth period (140 days). Correspondingly, the available content of strontium in soil extracted by Mehlich III extraction solution reached 42.0, 71.9, 151.8, and 242.2 mg/kg, respectively. The Sr-polluted soil microbial community was assessed by a Biolog Eco-plate method. The results showed that the spiked Sr significantly increased the height and the stem biomass weight of the plant. Sr contents in roots, stems, and leaves of the sorghum increased linearly (R 2 > 0.95) with the elevation of the Sr-spiked level in soil. The average Sr concentration in roots, stems, and leaves reached 68.9, 61.3, and 132.6 mg/kg dry weight (DW) under Sr-spiked 400 mg/kg soil, respectively. Sr content in tissues decreased in the order of leaves > roots > stems. The bioconcentration factor (BCF; Sr contents in shoots to soil) values of S. bicolor in soil system was lower than 1 (0.21∼0.39) whether based on the spiked Sr level or on the available Sr level in soil. The transfer factor (TF; Sr contents in shoots to roots) values of S. bicolor in soil system usually is higher than 1 or near to 1 (0.92∼1.29). TF values increased while BCF values decreased as the soil Sr increased. The Biolog Eco-plate assay showed that Sr at the spiked level of 400 mg/kg soil enhanced the soil microbial diversity and activity.
Geographic variation and effect of area-level poverty rate on colorectal cancer screening.
Lian, Min; Schootman, Mario; Yun, Shumei
2008-10-16
With a secular trend of increasing colorectal cancer (CRC) screening, concerns about disparities in CRC screening also have been rising. It is unclear if CRC screening varies geographically, if area-level poverty rate affects CRC screening, and if individual-level characteristics mediate the area-level effects on CRC screening. Using 2006 Missouri Behavioral Risk Factor Surveillance System (BRFSS) data, a multilevel study was conducted to examine geographic variation and the effect of area-level poverty rate on CRC screening use among persons age 50 or older. Individuals were nested within ZIP codes (ZIP5 areas), which in turn, were nested within aggregations of ZIP codes (ZIP3 areas). Six groups of individual-level covariates were considered as potential mediators. An estimated 51.8% of Missourians aged 50 or older adhered to CRC screening recommendations. Nearly 15% of the total variation in CRC screening lay between ZIP5 areas. Persons residing in ZIP5 areas with > or = 10% of poverty rate had lower odds of CRC screening use than those residing in ZIP5 areas with <10% poverty rate (unadjusted odds ratio [OR], 0.69; 95% confidence interval [95% CI], 0.58-0.81; adjusted OR, 0.81; 95% CI, 0.67-0.98). Persons who resided in ZIP3 areas with > or = 20% poverty rate also had lower odds of following CRC screening guidelines than those residing in ZIP3 areas with <20% poverty rate (unadjusted OR, 0.66; 95% CI, 0.52-0.83; adjusted OR, 0.64; 95% CI, 0.50-0.83). Obesity, history of depression/anxiety and access to care were associated with CRC screening, but did not mediate the effect of area-level poverty on CRC screening. Large geographic variation of CRC screening exists in Missouri. Area-level poverty rate, independent of individual-level characteristics, is a significant predictor of CRC screening, but it only explains a small portion of the geographic heterogeneity of CRC screening. Individual-level factors we examined do not mediate the effect of the area-level poverty rate on CRC screening. Future studies should identify other area- and individual-level characteristics associated with CRC screening in Missouri.
Sequence-based screening for self-sufficient P450 monooxygenase from a metagenome library.
Kim, B S; Kim, S Y; Park, J; Park, W; Hwang, K Y; Yoon, Y J; Oh, W K; Kim, B Y; Ahn, J S
2007-05-01
Cytochrome P450 monooxygenases (CYPs) are useful catalysts for oxidation reactions. Self-sufficient CYPs harbour a reductive domain covalently connected to a P450 domain and are known for their robust catalytic activity with great potential as biocatalysts. In an effort to expand genetic sources of self-sufficient CYPs, we devised a sequence-based screening system to identify them in a soil metagenome. We constructed a soil metagenome library and performed sequence-based screening for self-sufficient CYP genes. A new CYP gene, syk181, was identified from the metagenome library. Phylogenetic analysis revealed that SYK181 formed a distinct phylogenic line with 46% amino-acid-sequence identity to CYP102A1 which has been extensively studied as a fatty acid hydroxylase. The heterologously expressed SYK181 showed significant hydroxylase activity towards naphthalene and phenanthrene as well as towards fatty acids. Sequence-based screening of metagenome libraries is expected to be a useful approach for searching self-sufficient CYP genes. The translated product of syk181 shows self-sufficient hydroxylase activity towards fatty acids and aromatic compounds. SYK181 is the first self-sufficient CYP obtained directly from a metagenome library. The genetic and biochemical information on SYK181 are expected to be helpful for engineering self-sufficient CYPs with broader catalytic activities towards various substrates, which would be useful for bioconversion of natural products and biodegradation of organic chemicals.
The Soil Series in Soil Classifications of the United States
NASA Astrophysics Data System (ADS)
Indorante, Samuel; Beaudette, Dylan; Brevik, Eric C.
2014-05-01
Organized national soil survey began in the United States in 1899, with soil types as the units being mapped. The soil series concept was introduced into the U.S. soil survey in 1903 as a way to relate soils being mapped in one area to the soils of other areas. The original concept of a soil series was all soil types formed in the same parent materials that were of the same geologic age. However, within about 15 years soil series became the primary units being mapped in U.S. soil survey. Soil types became subdivisions of soil series, with the subdivisions based on changes in texture. As the soil series became the primary mapping unit the concept of what a soil series was also changed. Instead of being based on parent materials and geologic age, the soil series of the 1920s was based on the morphology and composition of the soil profile. Another major change in the concept of soil series occurred when U.S. Soil Taxonomy was released in 1975. Under Soil Taxonomy, the soil series subdivisions were based on the uses the soils might be put to, particularly their agricultural uses (Simonson, 1997). While the concept of the soil series has changed over the years, the term soil series has been the longest-lived term in U.S. soil classification. It has appeared in every official classification system used by the U.S. soil survey (Brevik and Hartemink, 2013). The first classification system was put together by Milton Whitney in 1909 and had soil series at its second lowest level, with soil type at the lowest level. The second classification system used by the U.S. soil survey was developed by C.F. Marbut, H.H. Bennett, J.E. Lapham, and M.H. Lapham in 1913. It had soil series at the second highest level, with soil classes and soil types at more detailed levels. This was followed by another system in 1938 developed by M. Baldwin, C.E. Kellogg, and J. Thorp. In this system soil series were again at the second lowest level with soil types at the lowest level. The soil type concept was dropped and replaced by the soil phase in the 1950s in a modification of the 1938 Baldwin et al. classification (Simonson, 1997). When Soil Taxonomy was released in 1975, soil series became the most detailed (lowest) level of the classification system, and the only term maintained throughout all U.S. classifications to date. While the number of recognized soil series have increased steadily throughout the history of U.S. soil survey, there was a rapid increase in the recognition of new soil series following the introduction of Soil Taxonomy (Brevik and Hartemink, 2013). References Brevik, E.C., and A.E. Hartemink. 2013. Soil maps of the United States of America. Soil Science Society of America Journal 77:1117-1132. doi:10.2136/sssaj2012.0390. Simonson, R.W. 1997. Evolution of soil series and type concepts in the United States. Advances in Geoecology 29:79-108.
Estimating biodegradation half-lives for use in chemical screening.
Aronson, Dallas; Boethling, Robert; Howard, Philip; Stiteler, William
2006-06-01
Biodegradation half-lives are needed for many applications in chemical screening, but these data are not available for most chemicals. To address this, in phase one of this work we correlated the much more abundant ready and inherent biodegradation test data with measured half-lives for water and soil. In phase two, we explored the utility of the BIOWIN models (in EPI Suite) and molecular fragments for predicting half-lives. BIOWIN model output was correlated directly with measured half-lives, and new models were developed by re-regressing the BIOWIN fragments against the half-lives. All of these approaches gave the best results when used for binary (fast/slow) classification of half-lives, with accuracy generally in the 70-80% range. In the last phase, we used the collected half-life data to examine the default half-lives assigned by EPI Suite and the PBT Profiler for use as input to their level III multimedia models. It is concluded that estimated half-lives should not be used for purposes other than binning or prioritizing chemicals unless accuracy improves significantly.
Vandelle, Elodie; Puttilli, Maria Rita; Chini, Andrea; Devescovi, Giulia; Venturi, Vittorio; Polverari, Annalisa
2017-01-01
The life cycle of bacterial phytopathogens consists of a benign epiphytic phase, during which the bacteria grow in the soil or on the plant surface, and a virulent endophytic phase involving the penetration of host defenses and the colonization of plant tissues. Innovative strategies are urgently required to integrate copper treatments that control the epiphytic phase with complementary tools that control the virulent endophytic phase, thus reducing the quantity of chemicals applied to economically and ecologically acceptable levels. Such strategies include targeted treatments that weaken bacterial pathogens, particularly those inhibiting early infection steps rather than tackling established infections. This chapter describes a reporter gene-based chemical genomic high-throughput screen for the induction of bacterial virulence by plant molecules. Specifically, we describe a chemical genomic screening method to identify agonist and antagonist molecules for the induction of targeted bacterial virulence genes by plant extracts, focusing on the experimental controls required to avoid false positives and thus ensuring the results are reliable and reproducible.
Chae, Yooeun; Cui, Rongxue; Woong Kim, Shin; An, Gyeonghyeon; Jeong, Seung-Woo; An, Youn-Joo
2017-01-01
It is essential to remediate or amend soils contaminated with various heavy metals or pollutants so that the soils may be used again safely. Verifying that the remediated or amended soils meet soil quality standards is an important part of the process. We estimated the activity levels of eight soil exoenzymes (acid phosphatase, arylsulfatase, catalase, dehydrogenase, fluorescein diacetate hydrolase, protease, urease, and ß-glucosidase) in contaminated and remediated soils from two sites near a non-ferrous metal smelter, using colorimetric and titrimetric determination methods. Our results provided the levels of activity of soil exoenzymes that indicate soil health. Most enzymes showed lower activity levels in remediated soils than in contaminated soils, with the exception of protease and urease, which showed higher activity after remediation in some soils, perhaps due to the limited nutrients available in remediated soils. Soil exoenzymes showed significantly higher activity in soils from one of the sites than from the other, due to improper conditions at the second site, including high pH, poor nutrient levels, and a high proportion of sand in the latter soil. Principal component analysis revealed that ß-glucosidase was the best indicator of soil ecosystem health, among the enzymes evaluated. We recommend using ß-glucosidase enzyme activity as a prior indicator in estimating soil ecosystem health. Copyright © 2016 Elsevier Inc. All rights reserved.
Dryland pasture and crop conditions as seen by HCMM. [Washita River watershed, Oklahoma
NASA Technical Reports Server (NTRS)
Rosenthal, W. D.; Harlan, J. C.; Blanchard, B. J. (Principal Investigator)
1980-01-01
Ground truth, aircraft, and satellite data were examined in order to: (1) assess the capability for determining wheat and pasture canopy temperatures in a dryland farming region from HCMM data; (2) assess the capability for determining soil moisture from HCMM data in dryland crops (winter wheat) from adjacent range lands; and (3) determine the relationship of HCMM-derived soil moisture and canopy temperature values with the condition of winter wheat and dryland farming areas during the principal growth stages. The IR data were screened to include areas having greater than 60% pasture and surface temperatures were recalculated using the atmospheric correction factor calculated by the modified RADTRA model, and the July 29, 1978 IR data were analyzed. Screening the IR data improved the relationship for July 24/July 13 and October 7/August 31 temperature/API relationship. However the coefficient of determination was not improved in the July 29/July 13 relationship.
Mike Curran; Pat Green; Doug Maynard
2007-01-01
Sustainability protocols recognize forest soil disturbance as an important issue at national and international levels. At regional levels continual monitoring and testing of standards, practices, and effects are necessary for successful implementation of sustainable soil management. Volcanic ash-cap soils are affected by soil disturbance and changes to soil properties...
NASA Astrophysics Data System (ADS)
Gauger, Tina; Konhauser, Kurt; Kappler, Andreas
2016-04-01
Due to the lack of an ozone layer in the Archean, ultraviolet radiation (UVR) reached early Earth's surface almost unattenuated; as a consequence, a terrestrial biosphere in the form of biological soil crusts would have been highly susceptible to lethal doses of irradiation. However, a self-produced external screen in the form of nanoparticular Fe(III) minerals could have effectively protected those early microorganisms. In this study, we use viability studies by quantifying colony-forming units (CFUs), as well as Fe(II) oxidation and nitrate reduction rates, to show that encrustation in biogenic and abiogenic Fe(III) minerals can protect a common soil bacteria such as the nitrate-reducing Fe(II)-oxidizing microorganisms Acidovorax sp. strain BoFeN1 and strain 2AN from harmful UVC radiation. Analysis of DNA damage by quantifying cyclobutane pyrimidine dimers (CPD) confirmed the protecting effect by Fe(III) minerals. This study suggests that Fe(II)-oxidizing microorganisms, as would have grown in association with mafic and ultramafic soils/outcrops, would have been able to produce their own UV screen, enabling them to live in terrestrial habitats on early Earth.
Gauger, Tina; Konhauser, Kurt; Kappler, Andreas
2016-04-01
Due to the lack of an ozone layer in the Archean, ultraviolet radiation (UVR) reached early Earth's surface almost unattenuated; as a consequence, a terrestrial biosphere in the form of biological soil crusts would have been highly susceptible to lethal doses of irradiation. However, a self-produced external screen in the form of nanoparticular Fe(III) minerals could have effectively protected those early microorganisms. In this study, we use viability studies by quantifying colony-forming units (CFUs), as well as Fe(II) oxidation and nitrate reduction rates, to show that encrustation in biogenic and abiogenic Fe(III) minerals can protect a common soil bacteria such as the nitrate-reducing Fe(II)-oxidizing microorganisms Acidovorax sp. strain BoFeN1 and strain 2AN from harmful UVC radiation. Analysis of DNA damage by quantifying cyclobutane pyrimidine dimers (CPD) confirmed the protecting effect by Fe(III) minerals. This study suggests that Fe(II)-oxidizing microorganisms, as would have grown in association with mafic and ultramafic soils/outcrops, would have been able to produce their own UV screen, enabling them to live in terrestrial habitats on early Earth.
Punjabi, Kapil; Yedurkar, Snehal; Doshi, Sejal; Deshapnde, Sunita; Vaidya, Shashikant
2017-08-01
The aim of this study was to isolate and screen bacteria from soil and effluent of electroplating industries for the synthesis of silver nanoparticles and characterize the potential isolate. Soil and effluent of electroplating industries from Mumbai were screened for bacteria capable of synthesizing silver nanoparticles. From two soils and eight effluent samples 20 bacterial isolates were obtained, of these, one was found to synthesize silver nanoparticles. Synthesis of silver nanoparticle by bacteria was confirmed by undertaking characterization studies of nanoparticles that involved spectroscopy and electron microscopic techniques. The potential bacteria was found to be Gram-negative short rods with its biochemical test indicating Pseudomonas spp . Molecular characterization of the isolate by 16S r DNA sequencing was carried out which confirmed its relation to Pseudomonas hibiscicola ATCC 19867. Stable nanoparticles synthesized were 50 nm in size and variable shapes as seen in SEM micrographs. The XRD and FTIR confirmed the crystalline structure of nanoparticles and presence of biomolecules mainly proteins as agents for reduction and capping of nanoparticles. The study demonstrates synthesis of nanoparticles by bacteria from effluent of electroplating industry. This can be used for large scale synthesis of nanoparticles by cost effective and environmentally benign mode of synthesis.
Mao, Debin; Lookman, Richard; Van De Weghe, Hendrik; Vanermen, Guido; De Brucker, Nicole; Diels, Ludo
2009-04-03
An assessment of aqueous solubility (leaching potential) of soil contaminations with petroleum hydrocarbons (TPH) is important in the context of the evaluation of (migration) risks and soil/groundwater remediation. Field measurements using monitoring wells often overestimate real TPH concentrations in case of presence of pure oil in the screened interval of the well. This paper presents a method to calculate TPH equilibrium concentrations in groundwater using soil analysis by high-performance liquid chromatography followed by comprehensive two-dimensional gas chromatography (HPLC-GCXGC). The oil in the soil sample is divided into 79 defined hydrocarbon fractions on two GCXGC color plots. To each of these fractions a representative water solubility is assigned. Overall equilibrium water solubility of the non-aqueous phase liquid (NAPL) present in the sample and the water phase's chemical composition (in terms of the 79 fractions defined) are then calculated using Raoult's law. The calculation method was validated using soil spiked with 13 different TPH mixtures and 1 field-contaminated soil. Measured water solubilities using a column recirculation equilibration experiment agreed well to calculated equilibrium concentrations and water phase TPH composition.
Awasthi, Jay Prakash; Saha, Bedabrata; Regon, Preetom; Sahoo, Smita; Chowra, Umakanta; Pradhan, Amit; Roy, Anupam; Panda, Sanjib Kumar
2017-01-01
Aluminum (Al) is the third most abundant metal in earth crust, whose chemical form is mainly dependent on soil pH. The most toxic form of Al with respect to plants is Al3+, which exists in soil pH <5. Acidic soil significantly limits crop production mainly due to Al3+ toxicity worldwide, impacting approximately 50% of the world’s arable land (in North-Eastern India 80% soil are acidic). Al3+ toxicity in plants ensues root growth inhibition leading to less nutrient and water uptake impacting crop productivity as a whole. Rice is one of the chief grains which constitutes the staple food of two-third of the world population including India and is not untouched by Al3+ toxicity. Al contamination is a critical constraint to plant production in agricultural soils of North East India. 24 indigenous Indica rice varieties (including Badshahbhog as tolerant check and Mashuri as sensitive check) were screened for Al stress tolerance in hydroponic plant growth system. Results show marked difference in growth parameters (relative growth rate, Root tolerance index, fresh and dry weight of root) of rice seedlings due to Al (100 μM) toxicity. Al3+ uptake and lipid peroxidation level also increased concomitantly under Al treatment. Histochemical assay were also performed to elucidate uptake of aluminum, loss of membrane integrity and lipid peroxidation, which were found to be more in sensitive genotypes at higher Al concentration. This study revealed that aluminum toxicity is a serious harmful problem for rice crop productivity in acid soil. Based on various parameters studied it’s concluded that Disang is a comparatively tolerant variety whereas Joymati a sensitive variety. Western blot hybridization further strengthened the claim, as it demonstrated more accumulation of Glutathione reductase (GR) protein in Disang rice variety than Joymati under stressed condition. This study also observed that the emergence of lethal toxic symptoms occurs only after 48h irrespective of the dose used in the study. PMID:28448589
Fernandez-Alvarez, Maria; Llompart, Maria; Lamas, J Pablo; Lores, Marta; Garcia-Jares, Carmen; Cela, Rafael; Dagnac, Thierry
2008-04-25
A solvent-free and simple method based on headspace solid-phase microextraction (HS-SPME) was developed in order to determine simultaneously 36 common pesticides and breakdown products (mostly pyrethroids and organochlorine compounds) in soil. The analysis was carried out by gas chromatography with micro-electron-capture detection (GC-microECD). As far as we know, this is the first study about the SPME of pyrethroid insecticides from soil. Factors such as extraction temperature, matrix modification by addition of water, salt addition (% NaCl) and fiber coating were considered in the optimization of the HS-SPME. To this end, a 3 x 2(3-1) fractional factorial design was performed. The results showed that temperature and fiber coating were the most significant variables affecting extraction efficiency. A suitable sensitivity for all investigated compounds was achieved at 100 degrees C by extracting soil samples wetted with 0.5 mL of ultrapure water (0% NaCl) employing a polyacrylate (PA) coating fiber. Using the recommended extraction conditions with GC-microECD, a linear calibration could be achieved over a range of two orders of magnitude for both groups of analytes. Limits of detection (LODS) at the sub-ng g(-1) level were attained and relative standard deviations (RSDs) were found to be lower than 14% for both groups of pesticides. Matrix effects were investigated by the analysis of different soil samples fortified with the target compounds. The method accuracy was assessed and good recovery values (>70%, in most cases) were obtained. The method was also validated with a certified reference material (RTC-CRM818-050), which was quantified using a standard addition protocol. Finally, the proposed HS-SPME-GC-microECD methodology was further applied to the screening of environmental soil samples for the presence of the target pesticides.
[On the effect of partial flooding on 137Cs and 90Sr in forest biogeocenosis].
Perevolotskaia, T V; Bulavik, I M; Perevolotskiĭ, A N
2009-01-01
The analysis was made on 137Cs and 90Sr distribution oak, pine and hornbeam plantations depending on different under soil water levels. Intensity of 137Cs and of 90Sr migration along the vertical layers of soils is determined by under soil water level at a specific sampling site. The closer under soil water to the surface of the soil, the lowest radionuclide contamination is in the upper soil levels and the highest radionuclide contamination is in the deeper layers. The "fast" and "slow" quasi diffusion coefficients for 137Cs and for 90Sr and their contribution to the total migration of radionuclide through vertical soil levels were determined. A decrease in 137Cs and increase in 90Sr transfer factors to the elements of overground phytomass as a result of under soil water level lowering was established.
Efforts to standardize wildlife toxicity values remain unrealized.
Mayfield, David B; Fairbrother, Anne
2013-01-01
Wildlife toxicity reference values (TRVs) are routinely used during screening level and baseline ecological risk assessments (ERAs). Risk assessment professionals often adopt TRVs from published sources to expedite risk analyses. The US Environmental Protection Agency (USEPA) developed ecological soil screening levels (Eco-SSLs) to provide a source of TRVs that would improve consistency among risk assessments. We conducted a survey and evaluated more than 50 publicly available, large-scale ERAs published in the last decade to evaluate if USEPA's goal of uniformity in the use of wildlife TRVs has been met. In addition, these ERAs were reviewed to understand current practices for wildlife TRV use and development within the risk assessment community. The use of no observed and lowest observed adverse effect levels culled from published compendia was common practice among the majority of ERAs reviewed. We found increasing use over time of TRVs established in the Eco-SSL documents; however, Eco-SSL TRV values were not used in the majority of recent ERAs and there continues to be wide variation in TRVs for commonly studied contaminants (e.g., metals, pesticides, PAHs, and PCBs). Variability in the toxicity values was driven by differences in the key studies selected, dose estimation methods, and use of uncertainty factors. These differences result in TRVs that span multiple orders of magnitude for many of the chemicals examined. This lack of consistency in TRV development leads to highly variable results in ecological risk assessments conducted throughout the United States. Copyright © 2012 SETAC.
Data collection handbook to support modeling the impacts of radioactive material in soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, C.; Cheng, J.J.; Jones, L.G.
1993-04-01
A pathway analysis computer code called RESRAD has been developed for implementing US Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), and material-related (soil, concrete) parameters are used in the RESRAD code. This handbook discusses parameter definitions, typical ranges, variations, measurement methodologies, and input screen locations. Although this handbook was developed primarily to support the application of RESRAD, the discussions and values are valid for other model applications.
Reito, Aleksi; Lainiala, Olli; Elo, Petra; Eskelinen, Antti
2016-01-01
Metal-on-metal (MoM) hip replacements were used for almost a decade before adverse reactions to metal debris (ARMD) were found to be a true clinical problem. Currently, there is a paucity of evidence regarding the usefulness of systematic screening for ARMD. We implemented a systematic review and meta-analysis to establish the prevalence of revision confirmed ARMD stratified by the use of different screening protocols in patients with MoM hip replacements. Five levels of screening were identified: no screening (level 0), targeted blood metal ion measurement and/or cross-sectional imaging (level 1), metal ion measurement without imaging (level 2), metal ion measurement with targeted imaging (level 3) and comprehensive screening (both metal ions and imaging for all; level 4). 122 studies meeting our eligibility criteria were included in analysis. These studies included 144 study arms: 100 study arms with hip resurfacings, 33 study arms with large-diameter MoM total hip replacements (THR), and 11 study arms with medium-diameter MoM THRs. For hip resurfacing, the lowest prevalence of ARMD was seen with level 0 screening (pooled prevalence 0.13%) and the highest with level 4 screening (pooled prevalace 9.49%). Pooled prevalence of ARMD with level 0 screening was 0.29% and with level 4 screening 21.3% in the large-diameter MoM THR group. In metaregression analysis of hip resurfacings, level 4 screening was superior with regard to prevalence of ARMD when compared with other levels. In the large diameter THR group level 4 screening was superior to screening 0,2 and 3. These outcomes were irrespective of follow-up time or study publication year. With hip resurfacings, routine cross-sectional imaging regardless of clinical findings is advisable. It is clear, however, that targeted metal ion measurement and/or imaging is not sufficient in the screening for ARMD in any implant concepts. However, economic aspects should be weighed when choosing the preferred screening level. PMID:26930057
Cartwright, Jennifer M.; Advised by Dzantor, E. Kudjo
2015-01-01
Stress factors quantified by this research include shallow soil (depth to bedrock ranging from 2.4 to 22.6 cm), volumetric soil water content levels seasonally ranging from xeric (below 5%) to saturated (above 50%), and seasonally extreme ground-surface temperatures (above 48°C). Findings from this research indicate that spatial and temporal heterogeneity exists in limestone cedar glades in terms of abiotic stress factors and soil physical and chemical properties. Several such soil properties (e.g. soil depth, organic matter levels, pH, and particle size distribution) are spatially correlated. These soil properties were statistically related to ecological structures and functions such as vegetation patterns, soil respiration, the density of culturable heterotrophic microbes in soil and metabolic diversity of soil microbial community profiles. In general, zones within limestone cedar glades that had relatively shallow soil, alkaline pH, low levels of organic matter and high levels of silt also tended to have depressed rates of soil respiration and reduced densities and metabolic diversity of culturable heterotrophic soil microbes. Additionally, seasonally-relevant stress factors including soil water content and temperatures at or near the soil surface were related to the same set of ecological structures and functions.
Haucke, Florian
2010-11-01
Radon is a naturally occurring inert radioactive gas found in soils and rocks that can accumulate in dwellings, and is associated with an increased risk of lung cancer. This study aims to analyze the cost effectiveness of different intervention strategies to reduce radon concentrations in existing German dwellings. The cost effectiveness analysis (CEA) was conducted as a scenario analysis, where each scenario represents a specific regulatory regime. A decision theoretic model was developed, which reflects accepted recommendations for radon screening and mitigation and uses most up-to-date data on radon distribution and relative risks. The model was programmed to account for compliance with respect to the single steps of radon intervention, as well as data on the sensitivity/specificity of radon tests. A societal perspective was adopted to calculate costs and effects. All scenarios were calculated for different action levels. Cost effectiveness was measured in costs per averted case of lung cancer, costs per life year gained and costs per quality adjusted life year (QALY) gained. Univariate and multivariate deterministic and probabilistic sensitivity analyses (SA) were performed. Probabilistic sensitivity analyses were based on Monte Carlo simulations with 5000 model runs. The results show that legal regulations with mandatory screening and mitigation for indoor radon levels >100 Bq/m(3) are most cost effective. Incremental cost effectiveness compared to the no mitigation base case is 25,181 euro (95% CI: 7371 euro-90,593 euro) per QALY gained. Other intervention strategies focussing primarily on the personal responsibility for screening and/or mitigative actions show considerably worse cost effectiveness ratios. However, targeting radon intervention to radon-prone areas is significantly more cost effective. Most of the uncertainty that surrounds the results can be ascribed to the relative risk of radon exposure. It can be concluded that in the light of international experience a legal regulation requiring radon screening and, if necessary, mitigation is justifiable under the terms of CEA. Copyright 2010 Elsevier Ltd. All rights reserved.
Pan, Ping; Han, Tian Yi; OuYang, Xun Zhi; Liu, Yuan Qiu; Zang, Hao; Ning, Jin Kui; Yang, Yang
2017-12-01
The distribution characteristics of carbon density under aerially seeded Pinus massoniana plantations in Ganzhou City of Jiangxi Province were studied. Total 15 factors, including site, stand, understory vegetation, litter and so on were selected to establish a relationship model between stand carbon density and influencing factors, and the main influencing factors were also screened. The results showed that the average carbon density was 98.29 t·hm -2 at stand level with soil layer (49.58 t·hm -2 ) > tree layer (45.25 t·hm -2 ) > understory vegetation layer (2.23 t·hm -2 ) > litter layer (1.23 t·hm -2 ). Significantly positive correlations were found among the tree, litter and soil layers, but not among the other layers. The main factors were tree density, avera-ge diameter at breast height (DBH), soil thickness, slope position, stand age and canopy density to affect carbon density in aerially seeded P. massoniana plantations. The partial correlation coefficients of the six main factors ranged from 0.331 to 0.434 with significance by t test. The multiple correlation coefficient of quantitative model I reached 0.796 with significance by F test (F=9.28). For stand density, the best tree density and canopy density were 1500-2100 plants·hm -2 and 0.4-0.7, respectively. The moderate density was helpful to improve ecosystem carbon sequestration. The carbon density increased with increasing stand age, DBH and soil thickness, and was higher in lower than middle and upper slope positions.
Assessment of the bioaccumulation of metals to chicken eggs from residential backyards.
Grace, Emily J; MacFarlane, Geoff R
2016-09-01
Soil in urban areas contains the residues of past land-uses and practices. Urban farming (keeping chickens, vegetable gardening) requires soil disturbance and can increase exposure of residents to these contaminants. We measured the level of lead, arsenic, cadmium, copper and zinc contaminants in soil and eggs from 26 backyard chicken coops across the Lower Hunter, NSW Australia. We compared the levels of metals in soil to Health Investigation Levels and metals in home-grown eggs to the levels in commercial eggs tested in this study or published by Food Standards Australia New Zealand. The levels of arsenic, cadmium, copper and zinc were low, both in soil and in home-grown eggs and were comparable to commercial eggs tested in this study. The Health Investigation Level for lead in soil (300mglead/kg soil) was exceeded at 7 of the 26 sites. The level of lead in home-grown eggs was generally higher than in commercial eggs. The reference health standard for meat (including chicken), fruit and vegetables of 0.1mglead/kg produce was exceeded in home-grown eggs from 7 of the 26 sites. There was a significant relationship between the lead level in eggs and the lead level in soil accessible to chickens. As soil lead increased, concentrations of lead in eggs tended to increase. No relationship was detected between the lead level in feed and in eggs. We recommend strategies to reduce ingestion of soil by chickens thereby reducing metal contamination in home-grown eggs. Copyright © 2016 Elsevier B.V. All rights reserved.
Use of portable X-ray fluorescence spectroscopy and geostatistics for health risk assessment.
Yang, Meng; Wang, Cheng; Yang, Zhao-Ping; Yan, Nan; Li, Feng-Ying; Diao, Yi-Wei; Chen, Min-Dong; Li, Hui-Ming; Wang, Jin-Hua; Qian, Xin
2018-05-30
Laboratory analysis of trace metals using inductively coupled plasma (ICP) spectroscopy is not cost effective, and the complex spatial distribution of soil trace metals makes their spatial analysis and prediction problematic. Thus, for the health risk assessment of exposure to trace metals in soils, portable X-ray fluorescence (PXRF) spectroscopy was used to replace ICP spectroscopy for metal analysis, and robust geostatistical methods were used to identify spatial outliers in trace metal concentrations and to map trace metal distributions. A case study was carried out around an industrial area in Nanjing, China. The results showed that PXRF spectroscopy provided results for trace metal (Cu, Ni, Pb and Zn) levels comparable to ICP spectroscopy. The results of the health risk assessment showed that Ni posed a higher non-carcinogenic risk than Cu, Pb and Zn, indicating a higher priority of concern than the other elements. Sampling locations associated with adverse health effects were identified as 'hotspots', and high-risk areas were delineated from risk maps. These 'hotspots' and high-risk areas were in close proximity to and downwind from petrochemical plants, indicating the dominant role of industrial activities as the major sources of trace metals in soils. The approach used in this study could be adopted as a cost-effective methodology for screening 'hotspots' and priority areas of concern for cost-efficient health risk management. Copyright © 2018 Elsevier Inc. All rights reserved.
Alternative Approaches for Screening Contaminated Sediments and Soils for PCDD/PCDF
Generating analytical data for polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/PCDF) using the traditional high resolution mass spectrometry (HRMS) analysis method, EPA Method 1613B, is time-consuming and expensive. Consequently, alternative methods to ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Monsanto Chemical Company Superfund Site is located in Caribou County, Idaho, approximately one mile north of the City of Soda Springs. After screening using conservative human health and ecological screening values, the contaminants of potential concern in soils and on-Plant source piles include, radionuclides (radium-226, lead-210, and uranium-238) and chemicals (arsenic, beryllium, selenium and zinc). The groundwater contaminants of potential concern include those substances detected at concentrations above primary MCLs, i.e., cadmium, fluoride, nitrate, and selenium, and manganese, which is present above a secondary MCL.
Brown, Steven H; Edge, Russel; Elmer, John; McDonald, Michael
2018-06-01
Thousands of former uranium mining sites in the United States, primarily in the southwestern states of Colorado, Arizona, New Mexico, Arizona, and Utah, are being identified and evaluated to assess their potential for causing public and environmental impacts. The common radiological contaminant of concern that characterizes these sites is naturally occurring uranium ore and associated wastes that may have been left behind postmining. The majority of these sites were abandoned and in general, are referred to as abandoned uranium mines, regardless of the government authority currently managing the land or in some cases, assigned responsibility for the oversight of assessment and remediation. The U.S. Department of Energy has identified over 4,000 defense-related uranium mine sites from which uranium ore was purchased by the U.S. government for nuclear defense programs prior to 1970. U.S. Department of Energy has established a program to inventory and perform environmental screening on defense-related uranium mine sites. The focus of this paper is the approximately 2,400 defense-related uranium mine sites located on federal land managed by the Bureau of Land Management and the U.S. Forest Service. This paper presents the results of an analysis to develop radiological screening criteria for U.S. Department of Energy's defense-related uranium mine sites that can be used as input to the overall ranking of these sites for prioritization of additional assessment, reclamation, or remedial actions. For these sites managed by Bureau of Land Management, public access is typically limited to short-term use, primarily for recreational purposes. This is a broad category that can cover a range of possible activities, including camping, hiking, hunting, biking, all-terrain vehicle use, and horseback riding. The radiological screening levels were developed by calculating the radiological dose to future recreational users of defense-related uranium mine sites assuming a future camper spends two weeks per year at the site engaged in recreational activities. Although a number of possible exposure pathways were included in this analysis (inhalation and ingestion of dust and soil, radon and progeny inhalation, and gamma radiation exposure from the soil), it is desirable as a practical matter to determine what gamma exposure rate would ensure that the annual acceptable exposure as determined by the regulatory authority will not be exceeded in the future. Because these sites are generally remote and located in semiarid environments, traditional exposure scenarios often applied in these types of analyses (e.g., subsistent farmers and ranchers), including exposure pathways for the ingestion of locally grown food products and water, were not considered relevant to short-term recreational use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shem, L.M.; Rosenblatt, D.H.; Smits, M.P.
1995-12-01
In support of the U.S. Army`s efforts to determine the best technologies for remediation of soils, water, and structures contaminated with pesticides and chemical agents, Argonne National Laboratory has reviewed technologies for treating soils contaminated with mustard, lewisite, sarin, o-ethyl s-(2- (diisopropylamino)ethyl)methyl-phosphonothioate (VX), and their breakdown products. This report focuses on assessing alternatives to incineration for dealing with these contaminants. For each technology, a brief description is provided, its suitability and constraints on its use are identified, and its overall applicability for treating the agents of concern is summarized. Technologies that merit further investigation are identified.
Preliminary Evaluation of TM for Soils Information
NASA Technical Reports Server (NTRS)
Thompson, D. R.; Henderson, K. E.; Houston, A. G.; Pitts, D. E.
1984-01-01
Thematic mapper data acquired over Mississippi County, Arkansas, were examined for utility in separating soil associations within generally level alluvium deposited by the Mississippi River. The 0.76 to 0.90 micron (Band 4) and the 1.55 to 1.75 micron (Band 5) were found to separate the different soil associations fairly well when compared to the USDA-SCS general soil map. The thermal channel also appeared to provide information at this level. A detailed soil survey was available at the field level along with ground observations of crop type, plant height, percent cover and growth stage. Soils within the fields ranged from uniform to soils that occur as patches of sand that stand out strongly against the intermingled areas of dark soil. Examination of the digital values of individual TM bands at the field level indicates that the influence of the soil is greater in TM than it was in MSS bands. The TM appears to provide greater detail of within field variability caused by soils than MSS and thus should provide improved information relating to crop and soil properties. However, this soil influence may cause crop identification classification procedures to have to account for the soil in their algorithms.
Rentmeester, Shelby T; Pringle, Johanna; Hogue, Carol R
2017-11-01
Objectives Each year in the U.S., approximately 7200 infants are born with a critical congenital heart defect (CCHD). The Georgia Department of Public Health (DPH) mandated routine screening for CCHD starting January 2015. The current study evaluated hospital performance of the mandated CCHD screenings in Georgia. Methods Utilizing the DPH newborn screening surveillance system, data from 6 months before and after the mandate were analyzed for reports submitted and positive CCHD screening results. Chi square tests of independence were performed to examine the association between reporting of results for CCHD screening after the mandate and hospital nursery level [level I (well-baby/newborn); level II (special care); level III (neonatal intensive care unit-NICU)] and NICU submissions. Results In the 6 months following implementation, reports of the screening increased, but the DPH had not received information for approximately 40% of newborns. Hospitals with level III nurseries had poorer reporting rates compared to hospitals with level I or II nurseries. Newborn screening (NBS) cards submitted by NICUs were less likely to contain the CCHD screening results compared to cards submitted by regular Labor and Delivery units. Conclusions for Practice Further attention should focus on improving both CCHD screening and reporting of screening results within hospitals with level III nurseries and from NICUs at all hospital levels. Identifying and addressing the root of the issue, whether it be hospital compliance with CCHD screening or reporting of the results, will help to improve screening rates for all newborns, especially those most vulnerable.
NASA Astrophysics Data System (ADS)
Gines, G. A.; Bea, J. G.; Palaoag, T. D.
2018-03-01
Soil serves a medium for plants growth. One factor that affects soil moisture is drought. Drought has been a major cause of agricultural disaster. Agricultural drought is said to occur when soil moisture is insufficient to meet crop water requirements, resulting in yield losses. In this research, it aimed to characterize soil moisture level for Rice and Maize Crops using Arduino and applying fuzzy logic. System architecture for soil moisture sensor and water pump were the basis in developing the equipment. The data gathered was characterized by applying fuzzy logic. Based on the results, applying fuzzy logic in validating the characterization of soil moisture level for Rice and Maize crops is accurate as attested by the experts. This will help the farmers in monitoring the soil moisture level of the Rice and Maize crops.
NASA Astrophysics Data System (ADS)
Clarke, L. W.; Jenerette, D.; Bain, D. J.
2012-12-01
The availability of soil nutrients and heavy metals in urban community gardens can influence health of crops and participants. Interactions between garden history, management, and soils are understudied in cities. In July 2011, we collected soil samples from 45 plots at 6 Los Angeles community gardens. For comparison, 3 samples were collected from uncultivated garden soils and 3 more from outside soils. Samples were then tested for major nutrients- Nitrogen(N), Potassium (K), and Phosphorous (P)- and organic matter (SOM). We also measured concentrations of 29 metals in 3 gardens using Inductively Coupled Plasma- Atomic Emission Spectroscopy. Potassium and phosphorus exceeded optimum levels in all plots, with some over twice the maximum recommended levels. Over-fertilized soils may contribute to local watershed pollution and crop micronutrient deficiencies. Low soil SOM was observed in gardens in impoverished neighborhoods, possibly due to low quality amendments. Our metals analysis showed dangerous levels of lead (Pb)-- up to 1700 ppm in outside soils and 150 ppm in garden soils-- near older gardens, indicating lead deposition legacies. California lead safety standards indicate that children should not play near soils with Pb above 200 ppm, indicating need for long term monitoring of lead contaminated gardens. Arsenic (As) levels exceeded federal risk levels (0.3 ppm) and average CA background levels (2 ppm) in all areas, with some gardens exceeding 10 ppm. Heavy metal legacies in gardens may pose risks to participants with prolonged exposure and remediation of soils may be necessary.
Simelane, David O
2007-06-01
Laboratory studies were conducted to determine the influence of soil texture, moisture and surface cracks on adult preference and survival of the root-feeding flea beetle, Longitarsus bethae Savini and Escalona (Coleoptera: Chrysomelidae), a natural enemy of the weed, Lantana camara L. (Verbenaceae). Adult feeding, oviposition preference, and survival of the immature stages of L. bethae were examined at four soil textures (clayey, silty loam, sandy loam, and sandy soil), three soil moisture levels (low, moderate, and high), and two soil surface conditions (with or without surface cracks). Both soil texture and moisture had no influence on leaf feeding and colonization by adult L. bethae. Soil texture had a significant influence on oviposition, with adults preferring to lay on clayey and sandy soils to silty or sandy loam soils. However, survival to adulthood was significantly higher in clayey soils than in other soil textures. There was a tendency for females to deposit more eggs at greater depth in both clayey and sandy soils than in other soil textures. Although oviposition preference and depth of oviposition were not influenced by soil moisture, survival in moderately moist soils was significantly higher than in other moisture levels. Development of immature stages in high soil moisture levels was significantly slower than in other soil moisture levels. There were no variations in the body size of beetles that emerged from different soil textures and moisture levels. Females laid almost three times more eggs on cracked than on noncracked soils. It is predicted that clayey and moderately moist soils will favor the survival of L. bethae, and under these conditions, damage to the roots is likely to be high. This information will aid in the selection of suitable release sites where L. bethae would be most likely to become established.
Guo, Hongyan; Zhu, Jianguo; Zhou, Hui; Sun, Yuanyuan; Yin, Ying; Pei, Daping; Ji, Rong; Wu, Jichun; Wang, Xiaorong
2011-08-15
Elevated CO(2) levels and the increase in heavy metals in soils through pollution are serious problems worldwide. Whether elevated CO(2) levels will affect plants grown in heavy-metal-polluted soil and thereby influence food quality and safety is not clear. Using a free-air CO(2) enrichment (FACE) system, we investigated the impacts of elevated atmospheric CO(2) on the concentrations of copper (Cu) or cadmium (Cd) in rice and wheat grown in soil with different concentrations of the metals in the soil. In the two-year study, elevated CO(2) levels led to lower Cu concentrations and higher Cd concentrations in shoots and grain of both rice and wheat grown in the respective contaminated soil. Elevated CO(2) levels slightly but significantly lowered the pH of the soil and led to changes in Cu and Cd fractionation in the soil. Our study indicates that elevated CO(2) alters the distribution of contaminant elements in soil and plants, thereby probably affecting food quality and safety.
NASA Astrophysics Data System (ADS)
Ki, Seo Jin; Ray, Chittaranjan
2015-03-01
A regional screening tool-which is useful in cases where few site-specific parameters are available for complex vadose zone models-assesses the leaching potential of pollutants to groundwater over large areas. In this study, the previous pesticide leaching tool used in Hawaii was revised to account for the release of new volatile organic compounds (VOCs) from the soil surface. The tool was modified to introduce expanded terms in the traditional pesticide ranking indices (i.e., retardation and attenuation factors), allowing the estimation of the leaching fraction of volatile chemicals based on recharge, soil, and chemical properties to be updated. Results showed that the previous tool significantly overestimated the mass fraction of VOCs leached through soils as the recharge rates increased above 0.001801 m/d. In contrast, the revised tool successfully delineated vulnerable areas to the selected VOCs based on two reference chemicals, a known leacher and non-leacher, which were determined in local conditions. The sensitivity analysis with the Latin-Hypercube-One-factor-At-a-Time method revealed that the new leaching tool was most sensitive to changes in the soil organic carbon sorption coefficient, fractional organic carbon content, and Henry's law constant; and least sensitive to parameters such as the bulk density, water content at field capacity, and particle density in soils. When the revised tool was compared to the analytical (STANMOD) and numerical (HYDRUS-1D) models as a susceptibility measure, it ranked particular VOCs well (e.g., benzene, carbofuran, and toluene) that were consistent with other two models under the given conditions. Therefore, the new leaching tool can be widely used to address intrinsic groundwater vulnerability to contamination of pesticides and VOCs, along with the DRASTIC method or similar Tier 1 models such as SCI-GROW and WIN-PST.
RAPID OPTICAL SCREEN TOOL (ROST™) - INNOVATIVE TECHNOLOGY EVALUATION REPORT
In August 1994, a demonstration of cone penetrometer-mounted sensor technologies took place to evaluate their effectiveness in sampling and analyzing the physical and chemical characteristics of subsurface soil at hazardous waste sites. The effectiveness of each technology was ev...
Kaur, Jasmeen; Adamchuk, Viacheslav I.; Whalen, Joann K.; Ismail, Ashraf A.
2015-01-01
The eco-toxicological indicators used to evaluate soil quality complement the physico-chemical criteria employed in contaminated site remediation, but their cost, time, sophisticated analytical methods and in-situ inapplicability pose a major challenge to rapidly detect and map the extent of soil contamination. This paper describes a sensor-based approach for measuring potential (substrate-induced) microbial respiration in diesel-contaminated and non-contaminated soil and hence, indirectly evaluates their microbial activity. A simple CO2 sensing system was developed using an inexpensive non-dispersive infrared (NDIR) CO2 sensor and was successfully deployed to differentiate the control and diesel-contaminated soils in terms of CO2 emission after glucose addition. Also, the sensor system distinguished glucose-induced CO2 emission from sterile and control soil samples (p ≤ 0.0001). Significant effects of diesel contamination (p ≤ 0.0001) and soil type (p ≤ 0.0001) on glucose-induced CO2 emission were also found. The developed sensing system can provide in-situ evaluation of soil microbial activity, an indicator of soil quality. The system can be a promising tool for the initial screening of contaminated environmental sites to create high spatial density maps at a relatively low cost. PMID:25730479
NASA Astrophysics Data System (ADS)
Schroeder, R.; Jacobs, J. M.; Vuyovich, C.; Cho, E.; Tuttle, S. E.
2017-12-01
Each spring the Red River basin (RRB) of the North, located between the states of Minnesota and North Dakota and southern Manitoba, is vulnerable to dangerous spring snowmelt floods. Flat terrain, low permeability soils and a lack of satisfactory ground observations of snow pack conditions make accurate predictions of the onset and magnitude of major spring flood events in the RRB very challenging. This study investigated the potential benefit of using gridded snow water equivalent (SWE) products from passive microwave satellite missions and model output simulations to improve snowmelt flood predictions in the RRB using NOAA's operational Community Hydrologic Prediction System (CHPS). Level-3 satellite SWE products from AMSR-E, AMSR2 and SSM/I, as well as SWE computed from Level-2 brightness temperatures (Tb) measurements, including model output simulations of SWE from SNODAS and GlobSnow-2 were chosen to support the snowmelt modeling exercises. SWE observations were aggregated spatially (i.e. to the NOAA North Central River Forecast Center forecast basins) and temporally (i.e. by obtaining daily screened and weekly unscreened maximum SWE composites) to assess the value of daily satellite SWE observations relative to weekly maximums. Data screening methods removed the impacts of snow melt and cloud contamination on SWE and consisted of diurnal SWE differences and a temperature-insensitive polarization difference ratio, respectively. We examined the ability of the satellite and model output simulations to capture peak SWE and investigated temporal accuracies of screened and unscreened satellite and model output SWE. The resulting SWE observations were employed to update the SNOW-17 snow accumulation and ablation model of CHPS to assess the benefit of using temporally and spatially consistent SWE observations for snow melt predictions in two test basins in the RRB.
Levels of CDDs, CDFs, PCBs and Hg in Rural Soils of US (Project Overview)
No systematic survey of dioxins in soil has been conducted in the US. Soils represent the largest reservoir source of dioxins. As point source emissions are reduced emissions from soils become increasingly important. Understanding the distribution of dioxin levels in soils is ...
Li, Kun; Yu, Haiying; Li, Tingxuan; Chen, Guangdeng; Huang, Fu
2017-07-01
Cadmium (Cd) pollution has threatened severely to food safety and human health. A pot experiment and a field experiment were conducted to investigate the difference of Cd accumulation between rice (Oryza sativa L.) lines and F 1 hybrids in Cd-contaminated soils. The adverse effect on biomass of rice lines was greater than that of F 1 hybrids under Cd treatments in the pot experiment. The variations of Cd concentration among rice cultivars in different organs were smaller in stem and leaf, but larger in root and ear. Average proportion of Cd in root of F 1 hybrids was 1.39, 1.39, and 1.16 times higher than those of rice lines at the treatment of 1, 2, and 4 mg Cd kg -1 soil, respectively. Cd concentrations in ear of F 1 hybrids were significantly lower than rice lines with the reduction from 29.24 to 50.59%. Cd concentrations in brown rice of all F 1 hybrids were less than 0.2 mg kg -1 at 1 mg Cd kg -1 soil, in which Lu98A/YaHui2816, 5406A/YaHui2816, and C268A/YaHui2816 could be screened out as cadmium-safe cultivars (CSCs) for being safe even at 2 mg Cd kg -1 soil. C268A/YaHui2816 showed the lowest Cd concentration in root among F 1 hybrids, while Lu98A/YaHui2816 and 5406A/YaHui2816 showed lower capability of Cd translocation from root to shoot under Cd exposure, which eventually caused the lower Cd accumulation in brown rice. The lower level of Cd translocation contributed to reducing the accumulation of Cd in brown rice had been validated by the field experiment. Thus, Lu98A/YaHui2816, 5406A/YaHui2816, and C268A/YaHui2816 could be considered as potential CSCs to cultivate in Cd-contaminated soils (<2 mg Cd kg -1 soil).
Gray, John E.; Theodorakos, Peter M.; Fey, David L.; Krabbenhoft, David P.
2015-01-01
Samples of soil, water, mine waste leachates, soil gas, and air were collected from areas mined for mercury (Hg) and baseline sites in the Big Bend area, Texas, to evaluate potential Hg contamination in the region. Soil samples collected within 300 m of an inactive Hg mine contained elevated Hg concentrations (3.8–11 µg/g), which were considerably higher than Hg in soil collected from baseline sites (0.03–0.05 µg/g) distal (as much as 24 km) from mines. Only three soil samples collected within 300 m of the mine exceeded the probable effect concentration for Hg of 1.06 µg/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of Hg in mine water runoff (7.9–14 ng/L) were generally higher than those found in springs and wells (0.05–3.1 ng/L), baseline streams (1.1–9.7 ng/L), and sources of drinking water (0.63–9.1 ng/L) collected in the Big Bend region. Concentrations of Hg in all water samples collected in this study were considerably below the 2,000 ng/L drinking water Hg guideline and the 770 ng/L guideline recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic wildlife from chronic effects of Hg. Concentrations of Hg in water leachates obtained from leaching of mine wastes varied widely from <0.001 to 760 µg of Hg in leachate/g of sample leached, but only one leachate exceeded the USEPA Hg industrial soil screening level of 31 µg/g. Concentrations of Hg in soil gas collected at mined sites (690–82,000 ng/m3) were highly elevated compared to soil gas collected from baseline sites (1.2–77 ng/m3). However, air collected from mined areas at a height of 2 m above the ground surface contained concentrations of Hg (4.9–64 ng/m3) that were considerably lower than Hg in soil gas from the mined areas. Although concentrations of Hg emitted from mine-contaminated soils and mine wastes were elevated, persistent wind in southwest Texas disperses Hg in the air within a few meters of the ground surface.
Tank 241-AX-104 upper vadose zone cone penetrometer demonstration sampling and analysis plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
FIELD, J.G.
1999-02-02
This sampling and analysis plan (SAP) is the primary document describing field and laboratory activities and requirements for the tank 241-AX-104 upper vadose zone cone penetrometer (CP) demonstration. It is written in accordance with Hanford Tank Initiative Tank 241-AX-104 Upper Vadose Zone Demonstration Data Quality Objective (Banning 1999). This technology demonstration, to be conducted at tank 241-AX-104, is being performed by the Hanford Tanks Initiative (HTI) Project as a part of Tank Waste Remediation System (TWRS) Retrieval Program (EM-30) and the Office of Science and Technology (EM-50) Tanks Focus Area. Sample results obtained as part of this demonstration will providemore » additional information for subsequent revisions to the Retrieval Performance Evaluation (RPE) report (Jacobs 1998). The RPE Report is the result of an evaluation of a single tank farm (AX Tank Farm) used as the basis for demonstrating a methodology for developing the data and analyses necessary to support making tank waste retrieval decisions within the context of tank farm closure requirements. The RPE includes a study of vadose zone contaminant transport mechanisms, including analysis of projected tank leak characteristics, hydrogeologic characteristics of tank farm soils, and the observed distribution of contaminants in the vadose zone in the tank farms. With limited characterization information available, large uncertainties exist as to the nature and extent of contaminants that may exist in the upper vadose zone in the AX Tank Farm. Traditionally, data has been collected from soils in the vadose zone through the installation of boreholes and wells. Soil samples are collected as the bore hole is advanced and samples are screened on site and/or sent to a laboratory for analysis. Some in-situ geophysical methods of contaminant analysis can be used to evaluate radionuclide levels in the soils adjacent to an existing borehole. However, geophysical methods require compensation for well casing interference and soil moisture content and may not be successful in some conditions. In some cases the level of interference must be estimated due to uncertainties regarding the materials used in well construction and soil conditions, Well casing deployment used for many in-situ geophysical methods is relatively expensive and geophysical methods do not generally provide real time values for contaminants. In addition, some of these methods are not practical within the boundaries of the tank farm due to physical constraints, such as underground piping and other hardware. The CP technologies could facilitate future characterization of vadose zone soils by providing vadose zone data in near real-time, reducing the number of soil samples and boreholes required, and reducing characterization costs.« less
Pei, Jiubo; Li, Hui; Li, Shuangyi; An, Tingting; Farmer, John; Fu, Shifeng; Wang, Jingkuan
2015-01-01
Soil type and fertility level influence straw carbon dynamics in the agroecosystems. However, there is a limited understanding of the dynamic processes of straw-derived and soil-derived carbon and the influence of the addition of straw carbon on soil-derived organic carbon in different soils associated with different fertility levels. In this study, we applied the in-situ carborundum tube method and 13C-labeled maize straw (with and without maize straw) at two cropland (Phaeozem and Luvisol soils) experimental sites in northeast China to quantify the dynamics of maize-derived and soil-derived carbon in soils associated with high and low fertility, and to examine how the addition of maize carbon influences soil-derived organic carbon and the interactions of soil type and fertility level with maize-derived and soil-derived carbon. We found that, on average, the contributions of maize-derived carbon to total organic carbon in maize-soil systems during the experimental period were differentiated among low fertility Luvisol (from 62.82% to 42.90), high fertility Luvisol (from 53.15% to 30.00%), low fertility Phaeozem (from 58.69% to 36.29%) and high fertility Phaeozem (from 41.06% to 16.60%). Furthermore, the addition of maize carbon significantly decreased the remaining soil-derived organic carbon in low and high fertility Luvisols and low fertility Phaeozem before two months. However, the increasing differences in soil-derived organic carbon between both soils with and without maize straw after two months suggested that maize-derived carbon was incorporated into soil-derived organic carbon, thereby potentially offsetting the loss of soil-derived organic carbon. These results suggested that Phaeozem and high fertility level soils would fix more maize carbon over time and thus were more beneficial for protecting soil-derived organic carbon from maize carbon decomposition.
Pei, Jiubo; Li, Hui; Li, Shuangyi; An, Tingting; Farmer, John; Fu, Shifeng; Wang, Jingkuan
2015-01-01
Soil type and fertility level influence straw carbon dynamics in the agroecosystems. However, there is a limited understanding of the dynamic processes of straw-derived and soil-derived carbon and the influence of the addition of straw carbon on soil-derived organic carbon in different soils associated with different fertility levels. In this study, we applied the in-situ carborundum tube method and 13C-labeled maize straw (with and without maize straw) at two cropland (Phaeozem and Luvisol soils) experimental sites in northeast China to quantify the dynamics of maize-derived and soil-derived carbon in soils associated with high and low fertility, and to examine how the addition of maize carbon influences soil-derived organic carbon and the interactions of soil type and fertility level with maize-derived and soil-derived carbon. We found that, on average, the contributions of maize-derived carbon to total organic carbon in maize-soil systems during the experimental period were differentiated among low fertility Luvisol (from 62.82% to 42.90), high fertility Luvisol (from 53.15% to 30.00%), low fertility Phaeozem (from 58.69% to 36.29%) and high fertility Phaeozem (from 41.06% to 16.60%). Furthermore, the addition of maize carbon significantly decreased the remaining soil-derived organic carbon in low and high fertility Luvisols and low fertility Phaeozem before two months. However, the increasing differences in soil-derived organic carbon between both soils with and without maize straw after two months suggested that maize-derived carbon was incorporated into soil-derived organic carbon, thereby potentially offsetting the loss of soil-derived organic carbon. These results suggested that Phaeozem and high fertility level soils would fix more maize carbon over time and thus were more beneficial for protecting soil-derived organic carbon from maize carbon decomposition. PMID:25774529
von Tucher, Sabine; Hörndl, Dorothea; Schmidhalter, Urs
2018-01-01
Phosphorus (P), a plant macronutrient, must be adequately supplied for crop growth. In Germany, many soils are high in plant-available P; specifically in arable farming, P fertilizer application has been reduced or even omitted in the last decade. Therefore, it is important to understand how long these soils can support sustainable crop production, and what concentrations of soil P are required for it. We analyzed a 36-year long-term field experiment regarding the effects of different P application and liming rates on plant growth and soil P concentrations with a crop rotation of sugar beet, wheat, and barley. Sugar beet reacted to low soil P and low soil pH levels more sensitively than wheat, which was not significantly affected by the long-term omitted P application. All three crop species showed adequate growth at soil P levels lower than the currently recommended levels, if low soil pH was optimized by liming. The increase in efficacy of soil and fertilizer P by reduced P application rates therefore requires the adaptation of the soil pH to a soil type-specific optimal level.
Schomburg, A; Schilling, O S; Guenat, C; Schirmer, M; Le Bayon, R C; Brunner, P
2018-10-15
Ecosystem services provided by floodplains are strongly controlled by the structural stability of soils. The development of a stable structure in floodplain soils is affected by a complex and poorly understood interplay of hydrological, physico-chemical and biological processes. This paper aims at analysing relations between fluctuating groundwater levels, soil physico-chemical and biological parameters on soil structure stability in a restored floodplain. Water level fluctuations in the soil are modelled using a numerical surface-water-groundwater flow model and correlated to soil physico-chemical parameters and abundances of plants and earthworms. Causal relations and multiple interactions between the investigated parameters are tested through structural equation modelling (SEM). Fluctuating water levels in the soil did not directly affect the topsoil structure stability, but indirectly through affecting plant roots and soil parameters that in turn determine topsoil structure stability. These relations remain significant for mean annual days of complete and partial (>25%) water saturation. Ecosystem functioning of a restored floodplain might already be affected by the fluctuation of groundwater levels alone, and not only through complete flooding by surface water during a flood period. Surprisingly, abundances of earthworms did not show any relation to other variables in the SEM. These findings emphasise that earthworms have efficiently adapted to periodic stress and harsh environmental conditions. Variability of the topsoil structure stability is thus stronger driven by the influence of fluctuating water levels on plants than by the abundance of earthworms. This knowledge about the functional network of soil engineering organisms, soil parameters and fluctuating water levels and how they affect soil structural stability is of fundamental importance to define management strategies of near-natural or restored floodplains in the future. Copyright © 2018 Elsevier B.V. All rights reserved.
Arsenic contamination in New Orleans soil: temporal changes associated with flooding.
Rotkin-Ellman, Miriam; Solomon, Gina; Gonzales, Christopher R; Agwaramgbo, Lovell; Mielke, Howard W
2010-01-01
The flooding of New Orleans in late August and September 2005 caused widespread sediment deposition in the flooded areas of the city. Post-flood sampling by US EPA revealed that 37% of sediment samples exceeded Louisiana corrective screening guidelines for arsenic of 12mg/kg, but there was debate over whether this contamination was pre-existing, as almost no pre-flood soil sampling for arsenic had been done in New Orleans. In this study, archived soil samples collected in 1998-1999 were location-matched with 70 residential sites in New Orleans where post-flood arsenic concentrations were elevated. Those same locations were sampled again during the recovery period 18 months later. During the recovery period, sampling for arsenic was also done for the first time at school sites and playgrounds within the flooded zone. Every sample of sediment taken 1-10 months after the flood exceeded the arsenic concentration found in the matched pre-flood soils. The average difference between the two sampling periods was 19.67mg/kg (95% CI 16.63-22.71) with a range of 3.60-74.61mg/kg. At virtually all of these sites (97%), arsenic concentrations decreased substantially by 18 months into the recovery period when the average concentration of matched samples was 3.26mg/kg (95% CI 1.86-4.66). However, 21 (30%) of the samples taken during the recovery period still had higher concentrations of arsenic than the matched sample taken prior to the flooding. In addition, 33% of samples from schoolyards and 13% of samples from playgrounds had elevated arsenic concentrations above the screening guidelines during the recovery period. These findings suggest that the flooding resulted in the deposition of arsenic-contaminated sediments. Diminution of the quantity of sediment at many locations has significantly reduced overall soil arsenic concentrations, but some locations remain of concern for potential long-term soil contamination.
Transport and fate of nitrate within soil units of glacial origin
NASA Astrophysics Data System (ADS)
Moore, Suzanna L.; Peterson, Eric W.
2007-08-01
Questions concerning the influence of soil type and crop cover on the fate and transport of nitrate (NO{3/-}) were examined. During a growing season, soils derived from glacial material underlying either corn or soybeans were sampled for levels of NO{3/-} within the pore water. Measured levels of NO{3/-} ranged from below detection limit to 14.9 g NO{3/-} per kilogram of soil (g/kg). In fields with the same crop cover, the silty-clayey soil exhibited a greater decrease in NO{3/-} levels with depth than the sandier soil. Crop uptake of NO{3/-} occurs within the root zone; however, the type of crop cover did not have a direct impact on the fate or transport during the growing season. The soils underlying soybeans had an increase in NO{3/-} levels following harvest, suggesting that the decomposition of the soybean roots contributed to the net gain of NO{3/-} in the shallow soil. For all of the soil types, conditions below 100 cm are conducive for microbial denitrification, with both a high water saturation level (>60%) and moderate organic carbon content (1-2%). At depths below 100 cm, temporal differences in NO{3/-} levels of over a magnitude, up to a 95% reduction, were recorded in the soil units as the growing season progressed. Physical properties that control the transport of NO{3/-} or denitrification have a larger influence on NO{3/-} levels than crop type.
Do shrubs reduce the adverse effects of grazing on soil properties?
Eldridge, David J.; Beecham, Genevieve; Grace, James B.
2015-01-01
Increases in the density of woody plants are a global phenomenon in drylands, and large aggregations of shrubs, in particular, are regarded as being indicative of dysfunctional ecosystems. There is increasing evidence that overgrazing by livestock reduces ecosystem functions in shrublands, but that shrubs may buffer the negative effects of increasing grazing. We examined changes in water infiltration and nutrient concentrations in soils under shrubs and in their interspaces in shrublands in eastern Australia that varied in the intensity of livestock grazing. We used structural equation modelling to test whether shrubs might reduce the negative effects of overgrazing on infiltration and soil carbon and nitrogen (henceforth ‘soil nutrients’). Soils under shrubs and subject to low levels of grazing were more stable and had greater levels of soil nutrients. Shrubs had a direct positive effect on soil nutrients; but, grazing negatively affected nutrients by increasing soil bulk density. Structural equation modelling showed that shrubs had a direct positive effect on water flow under ponded conditions but also enhanced water flow, indirectly, through increased litter cover. Any positive effects of shrubs on water flow under low levels of grazing waned at high levels of grazing. Our results indicate that shrubs may reduce the adverse effects of grazing on soil properties. Specifically, shrubs could restrict access to livestock and therefore protect soils and plants beneath their canopies. Low levels of grazing are likely to ensure the retention of soil water and soil carbon and nitrogen in shrubland soils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaake, R.H.; Bono, J.; Yergovich, T.
Characterization of a former weapons loading and assembly facility identified soil contaminated with the explosives TNT (2,4,6-trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). The site contains of a variety of discrete soil types that include clay, sand, and humus. A portion of the site is also periodically submerged due to tidal action. Treatability studies were performed in conjunction with the Army Corps of Engineers Waterways Experiment Station. Studies indicated the SABRE Process could successfully treat the soil to the specified treatment goals. A full scale demonstration of the Simplot Anaerobic Biological Remediation (SABRE{trademark}) Process was carried out at the Yorktown, Virginia Naval Weaponsmore » Station. Over 650 yd{sup 3} of soil was treated to less than 2.5 mg/kg TNT in approximately 30 days. Initial concentrations were estimated to be 450 mg/kg. The soil was screened and placed into an in-ground, double-lined biocell using a soil fluidizing system.« less
Ueland, Maiken; Blanes, Lucas; Taudte, Regina V; Stuart, Barbara H; Cole, Nerida; Willis, Peter; Roux, Claude; Doble, Philip
2016-03-04
A novel microfluidic paper-based analytical device (μPAD) was designed to filter, extract, and pre-concentrate explosives from soil for direct analysis by a lab on a chip (LOC) device. The explosives were extracted via immersion of wax-printed μPADs directly into methanol soil suspensions for 10min, whereby dissolved explosives travelled upwards into the μPAD circular sampling reservoir. A chad was punched from the sampling reservoir and inserted into a LOC well containing the separation buffer for direct analysis, avoiding any further extraction step. Eight target explosives were separated and identified by fluorescence quenching. The minimum detectable amounts for all eight explosives were between 1.4 and 5.6ng with recoveries ranging from 53-82% from the paper chad, and 12-40% from soil. This method provides a robust and simple extraction method for rapid identification of explosives in complex soil samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of slash on forwarder soil compaction
Timothy P. McDonald; Fernando Seixas
1997-01-01
A study of the effect of slash on forwarder soil compaction was carried out. The level of soil compaction at two soil moisture contents, three slash densities (0, 10, and 20 kg/m2), and two levels of traffic (one and five passes) were measured. Results indicated that, on dry, loamy sand soils, the presence of slash did not decrease soil compaction after one forwarder...
Shentu, Jia-li; He, Zhen-li; Yang, Xiao-e; Li, Ting-qiang
2008-01-01
Effects of cadmium (Cd) on microbial biomass, activity and community diversity were assessed in a representative variable charge soil (Typic Aquult) using an incubation study. Cadmium was added as Cd(NO3)2 to reach a concentration range of 0~16 mg Cd/kg soil. Soil extractable Cd generally increased with Cd loading rate, but decreased with incubation time. Soil microbial biomass was enhanced at low Cd levels (0.5~1 mg/kg), but was inhibited consistently with increasing Cd rate. The ratio of microbial biomass C/N varied with Cd treatment levels, decreasing at low Cd rate (<0.7 mg/kg available Cd), but increasing progressively with Cd loading. Soil respiration was restrained at low Cd loading (<1 mg/kg), and enhanced at higher Cd levels. Soil microbial metabolic quotient (MMQ) was generally greater at high Cd loading (1~16 mg/kg). However, the MMQ is also affected by other factors. Cd contamination reduces species diversity of soil microbial communities and their ability to metabolize different C substrates. Soils with higher levels of Cd contamination showed decreases in indicator phospholipids fatty acids (PLFAs) for Gram-negative bacteria and actinomycetes, while the indicator PLFAs for Gram-positive bacteria and fungi increased with increasing levels of Cd contamination. PMID:18357628
SCREENING MODEL FOR VOLATILE POLLUTANTS IN DUEL POROSITY SOILT
This paper develops mass fraction models for transport and fate of volatile organic chemicals, such as pesticides, in two-region soils. It addressed two main and interrelated parts. First, expressions are derived which describe the rate mass transfer coefficient in a periodical...
DEVELOPMENT AND VERIFICATION OF A SCREENING MODEL FOR SURFACE SPREADING OF PETROLEUM
Overflows and leakage from aboveground storage tanks and pipelines carrying crude oil and petroleum products occur frequently. The spilled hydrocarbons pose environmental threats by contaminating the surrounding soil and the underlying ground water. Predicting the fate and transp...
Liao, Changjun; Xu, Wending; Lu, Guining; Liang, Xujun; Guo, Chuling; Yang, Chen; Dang, Zhi
2015-01-01
This study has investigated the use of screened maize for remediation of soil contaminated with crude oil. Pots experiment was carried out for 60 days by transplanting maize seedlings into spiked soils. The results showed that certain amount of crude oil in soil (≤2 147 mg·kg(-1)) could enhance the production of shoot biomass of maize. Higher concentration (6 373 mg·kg(-1)) did not significantly inhibit the growth of plant maize (including shoot and root). Analysis of plant shoot by GC-MS showed that low molecular weight polycyclic aromatic hydrocarbons (PAHs) were detected in maize tissues, but PAHs concentration in the plant did not increase with higher concentration of crude oil in soil. The reduction of total petroleum hydrocarbon in planted soil was up to 52.21-72.84%, while that of the corresponding controls was only 25.85-34.22% in two months. In addition, data from physiological and biochemical indexes demonstrated a favorable adaptability of maize to crude oil pollution stress. This study suggested that the use of maize (Zea mays L.) was a good choice for remediation of soil contaminated with petroleum within a certain range of concentrations.
Balaji, V; Arulazhagan, P; Ebenezer, P
2014-05-01
The present study focuses on fungal strains capable of secreting extracellular enzymes by utilizing hydrocarbons present in the contaminated soil. Fungal strains were enriched from petroleum hydrocarbons contaminated soil samples collected from Chennai city, India. The potential fungi were isolated and screened for their enzyme secretion such as lipase, laccase, peroxidase and protease and also evaluated fungal enzyme mediated PAHs degradation. Total, 21 potential PAHs degrading fungi were isolated from PAHs contaminated soil, which belongs to 9 genera such as Aspergillus, Curvularia, Drechslera, Fusarium, Lasiodiplodia, Mucor Penicillium, Rhizopus, Trichoderma, and two oilseed-associated fungal genera such as Colletotrichum and Lasiodiplodia were used to test their efficacy in degradation of PAHs in polluted soil. Maximum lipase production was obtained with P. chrysogenum, M. racemosus and L. theobromae VBE1 under optimized cultural condition, which utilized PAHs in contaminated soil as sole carbon source. Fungal strains, P. chrysogenum, M. racemosus and L. theobromae VBE1, as consortia, used in the present study were capable of degrading branched alkane isoprenoids such as pristine (C17) and pyrene (C18) present in PAHs contaminated soil with high lipase production. The fungal consortia acts as potential candidate for bioremediation of PAHs contaminated environments.
Use of probability analysis to establish routine bioassay screening levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbaugh, E.H.; Sula, M.J.; McFadden, K.M.
1990-09-01
Probability analysis was used by the Hanford Internal Dosimetry Program to establish bioassay screening levels for tritium and uranium in urine. Background environmental levels of these two radionuclides are generally detectable by the highly sensitive urine analysis procedures routinely used at Hanford. Establishing screening levels requires balancing the impact of false detection with the consequence of potentially undetectable occupation dose. To establish the screening levels, tritium and uranium analyses were performed on urine samples collected from workers exposed only to environmental sources. All samples were collected at home using a simulated 12-hour protocol for tritium and a simulated 24-hour collectionmore » protocol for uranium. Results of the analyses of these samples were ranked according to tritium concentration or total sample uranium. The cumulative percentile was calculated and plotted using log-probability coordinates. Geometric means and screening levels corresponding to various percentiles were estimated by graphical interpolation and standard calculations. The potentially annual internal dose associated with a screening level was calculated. Screening levels were selected corresponding to the 99.9 percentile, implying that, on the average, 1 out of 1000 samples collected from an unexposed worker population would be expected to exceed the screening level. 4 refs., 2 figs.« less
Carkovic, Athena B; Calcagni, Magdalena S; Vega, Alejandra S; Coquery, Marina; Moya, Pablo M; Bonilla, Carlos A; Pastén, Pablo A
2016-08-01
Urban expansion in areas of active and legacy mining imposes a sustainability challenge, especially in arid environments where cities compete for resources with agriculture and industry. The city of Copiapó, with 150,000 inhabitants in the Atacama Desert, reflects this challenge. More than 30 abandoned tailings from legacy mining are scattered throughout its urban and peri-urban area, which include an active copper smelter. Despite the public concern generated by the mining-related pollution, no geochemical information is currently available for Copiapó, particularly for metal concentration in environmental solid phases. A geochemical screening of soils (n = 42), street dusts (n = 71) and tailings (n = 68) was conducted in November 2014 and April 2015. Organic matter, pH and elemental composition measurements were taken. Notably, copper in soils (60-2120 mg/kg) and street dusts (110-10,200 mg/kg) consistently exceeded international guidelines for residential and industrial use, while a lower proportion of samples exceeded international guidelines for arsenic, zinc and lead. Metal enrichment occurred in residential, industrial and agricultural areas near tailings and the copper smelter. This first screening of metal contamination sets the basis for future risk assessments toward defining knowledge-based policies and urban planning. Challenges include developing: (1) adequate intervention guideline values; (2) appropriate geochemical background levels for key metals; (3) urban planning that considers contaminated areas; (4) cost-effective control strategies for abandoned tailings in water-scarce areas; and (5) scenarios and technologies for tailings reprocessing. Assessing urban geochemical risks is a critical endeavor for areas where extreme events triggered by climate change are likely, as the mud flooding that impacted Copiapó in late March 2015.
Dagnino, Alessandro; Sforzini, Susanna; Dondero, Francesco; Fenoglio, Stefano; Bona, Elisa; Jensen, John; Viarengo, Aldo
2008-07-01
A new Expert Decision Support System (EDSS) that can integrate Triad data for assessing environmental risk and biological vulnerability at contaminated sites has been developed. Starting with ecosystem relevance, the EDSS assigns different weights to the results obtained from Triad disciplines. The following parameters have been employed: 1) chemical soil analyses (revealing the presence of potentially dangerous substances), 2) ecotoxicological bioassays (utilizing classical endpoints such as survival and reproduction rates), 3) biomarkers (showing sublethal pollutant effects), and 4) ecological parameters (assessing changes in community structure and functions). For each Triad discipline, the EDSS compares the data obtained at the studied field sites with reference values and calculates different 0-1 indexes (e.g., Chemical Risk Index, Ecotoxicological Risk Index, and Ecological Risk Index). The EDSS output consists of 3 indexes: 1) Environmental Risk index (EnvRI), quantifying the levels of biological damage at population-community level, 2) Biological Vulnerability Index (BVI), assessing the potential threats to biological equilibriums, and 3) Genotoxicity Index (GTI), screening genotoxicity effects. The EDSS has been applied in the integration of a battery of Triad data obtained during the European Union-funded Life Intervention in the Fraschetta Area (LINFA) project, which has been carried out in order to estimate the potential risk from soils of a highly anthropized area (Alessandria, Italy) mainly impacted by deposition of atmospheric pollutants. Results obtained during 4 seasonal sampling campaigns (2004-2005) show maximum values of EnvRI in sites A and B (characterized by industrial releases) and lower levels in site D (affected by vehicular traffic emissions). All 3 potentially polluted sites have shown high levels of BVI and GTI, suggesting a general change from reference conditions (site C).
2012-01-01
Background Soil-transmitted helminths (STH) infections, anaemia and malnutrition are major public health problems in school-age children in developing countries. This study was conducted on 289 Orang Asli (aboriginal) schoolchildren in order to assess the current prevalence and predictors of anaemia and malnutrition, as well as the nutritional impacts of STH infections among these children. Methods A cross-sectional study was combined with a longitudinal follow-up three months after treatment with anthelminthic drugs. Blood samples were collected from the children to measure haemoglobin (Hb) level. Anthropometric and socioeconomic data were also collected and the children were screened for STH. Results The baseline findings revealed that the prevalence of anaemia, significant stunting, underweight and wasting among the children were 41.0%, 28.0%, 29.2% and 12.5%, respectively. Overall, the prevalence of trichuriasis, ascariasis and hookworm infections were 84.6%, 47.6% and 3.9%, respectively. Haemoglobin level was significantly lower among the moderate-to-heavy infected children compared to the negative-to-light infected children. Age <10years and moderate-to-heavy ascariasis were the predictors of anaemia. Stunting was associated with gender, age, moderate-to-heavy ascariasis and trichuriasis. Three months post-treatment assessment showed that the moderate-to-heavy infected children gained significant increment in their mean Hb level compared to the negative-to-light infected children (0.44 g/dL compared to 0.08 g/dL). However, no difference was found in the mean increments in growth indices between the groups. Conclusion STH infections, anaemia and malnutrition are still prevalent and a matter of public health concern in Orang Asli communities in Malaysia. Sustainable deworming programme at school and community levels among these populations will help to improve their health and nutritional status. PMID:22704549
Organizational Factors Affecting the Likelihood of Cancer Screening Among VA Patients.
Chou, Ann F; Rose, Danielle E; Farmer, Melissa; Canelo, Ismelda; Yano, Elizabeth M
2015-12-01
Preventive service delivery, including cancer screenings, continues to pose a challenge to quality improvement efforts. Although many studies have focused on person-level characteristics associated with screening, less is known about organizational influences on cancer screening. This study aims to understand the association between organizational factors and adherence to cancer screenings. This study employed a cross-sectional design using organizational-level, patient-level, and area-level data. Dependent variables included breast, cervical, and colorectal cancer screening. Organizational factors describing resource sufficiency were constructed using factor analyses from a survey of 250 Veterans Affairs primary care directors. We conducted random-effects logistic regression analyses, modeling cancer screening as a function of organizational factors, controlling for patient-level and area-level factors. Overall, 87% of the patients received mammograms, 92% received cervical and 78% had colorectal screening. Quality improvement orientation increased the odds of cervical [odds ratio (OR): 1.27; 95% confidence interval (CI), 1.03-1.57] and colorectal cancer screening (OR: 1.10; 95% CI, 1.00-1.20). Authority in determining primary care components increased the odds of mammography screening (OR: 1.23; 95% CI, 1.03-1.51). Sufficiency in clinical staffing increased the odds of mammography and cervical cancer screenings. Several patient-level factors, serving as control variables, were associated with achievement of screenings. Resource sufficiency led to increased odds of screening possibly because they promote excellence in patient care by conveying organizational goals and facilitate goal achievement with resources. Complementary to patient-level factors, our findings identified organizational processes associated with better performance, which offer concrete strategies in which facilities can evaluate their capabilities to implement best practices to foster and sustain a culture of quality care.
Bukowski, Alexandra R; Schittko, Conrad; Petermann, Jana S
2018-02-01
One of the processes that may play a key role in plant species coexistence and ecosystem functioning is plant-soil feedback, the effect of plants on associated soil communities and the resulting feedback on plant performance. Plant-soil feedback at the interspecific level (comparing growth on own soil with growth on soil from different species) has been studied extensively, while plant-soil feedback at the intraspecific level (comparing growth on own soil with growth on soil from different accessions within a species) has only recently gained attention. Very few studies have investigated the direction and strength of feedback among different taxonomic levels, and initial results have been inconclusive, discussing phylogeny, and morphology as possible determinants. To test our hypotheses that the strength of negative feedback on plant performance increases with increasing taxonomic level and that this relationship is explained by morphological similarities, we conducted a greenhouse experiment using species assigned to three taxonomic levels (intraspecific, interspecific, and functional group level). We measured certain fitness-related aboveground traits and used them along literature-derived traits to determine the influence of morphological similarities on the strength and direction of the feedback. We found that the average strength of negative feedback increased from the intraspecific over the interspecific to the functional group level. However, individual accessions and species differed in the direction and strength of the feedback. None of our results could be explained by morphological dissimilarities or individual traits. Synthesis . Our results indicate that negative plant-soil feedback is stronger if the involved plants belong to more distantly related species. We conclude that the taxonomic level is an important factor in the maintenance of plant coexistence with plant-soil feedback as a potential stabilizing mechanism and should be addressed explicitly in coexistence research, while the traits considered here seem to play a minor role.
Zheng, S; Wang, C; Shen, Z; Quan, Y; Liu, X
2015-01-01
This study presents an efficient heavy metal (HM) control method in HM-contaminated wetlands with varied soil moisture levels through the introduction of extrinsic arbuscular mycorrhizal fungi (AMF) into natural wetland soil containing indigenous AMF species. A pot culture experiment was designed to determine the effect of two soil water contents (5-8% and 25-30%), five extrinsic AMF inoculants (Glomus mosseae, G. clarum, G. claroideum, G. etunicatum, and G. intraradices), and HM contamination on root colonization, plant growth, and element uptake of common reed (Phragmites australis (Cav.) Trin. ex Steudel) plantlets in wetland soils. This study showed the prevalence of mycorrhizae in the roots of all P. australis plantlets, regardless of extrinsic AMF inoculations, varied soil moisture or HM levels. It seems that different extrinsic AMF inoculations effectively lowered HM concentrations in the aboveground tissues of P. australis at two soil moisture levels. However, metal species, metal concentrations, and soil moisture should also be very important factors influencing the elemental uptake performance of plants in wetland ecosystems. Besides, the soil moisture level significantly influenced plant growth (including height, and shoot and root dry weight (DW)), and extrinsic AMF inoculations differently affected shoot DW.
1991-03-29
laboratory. In addition, weather conditions (i.e., cloud cover, pre- cipitation, air temperature, and wind speed and direction), water clarity, and...carried over a 25-foot grid in this area. The weather at the time of emissions screening was mostly sunny with high clouds . The wind was 3 to 5 knots...TRIBUTARY TO HUTCHINSON CREEK SOIL GOMMIG ANGLED 300 FROM VERTICAL Ae o * SOL. 90011GM VERTICAL 0 100, o SURFACE SOIL SAMPLE AU. VALUES ARE IN mg/Kg MONITORIG
Electrostatic beneficiation of ores on the moon surface
NASA Technical Reports Server (NTRS)
Inculet, I. I.; Criswell, D. R.
1979-01-01
The feasibility of the electrostatic beneficiation of lunar ores is studied. It is shown that the lunar environment with its sustained high vacuum, low temperature, and low acceleration of gravity, is suitable for the use of the electrostatic technique with magnetic as well as nonmagnetic ores. Only an initial coarse screening will be required prior to processing, as the lunar soil is already in fine particulate form. The low temperature and the absence of water suggest the use of tribo-electrification for the electric charging of lunar soils.
NASA Astrophysics Data System (ADS)
Astuti, DT; Pujiastuti, Y.; Suparman, SHK; Damiri, N.; Nugraha, S.; Sembiring, ER; Mulawarman
2018-01-01
Bacillus thuringiensis is a gram-positive bacterium that produces crystal proteins toxic (ᴕ-endotoxin) specific to the target insect, but is not toxic to humans and non-target organisms. This study aims to explore the origin of the soil bacterium B. thuringiensis sub-district Sekayu, Banyuasin, South Sumatra and toxicity to larvae of lepidoptera. Fifty soil samples were taken from Musi Banyuasin District, namely 15 from Kayuare strip 2, 20 from Kayuare and 15 from Lumpatan. Isolation, characterization, identification and screening test were conducted in the laboratorium of Pest and Disease, Agricultural Faculty, Sriwijaya University. Isolat codes were given based on the area origin of the samples. Results of the study showed that from 50 isolates of bacteria that had been isolated, there were 15 bacterial isolates, characterized by morphology and physiology the same as B. thuringiensis, which has round colonies, white, wrinkled edges, slippery, elevation arise, aerobic and gram-positive. Of the 15 codes that contain positive isolates of B. thuringiensis, we have obtained several isolates of the following codes: KJ2D5, KJ2N1, KJ2N4, KJ2B3, KJ3R1, KJ3R2, KJ3R3, KJ3R5, KJ3J3, KJ3J4, KJ3P1, DLM5, DLKK12, and DLKK23. Results of screening tests on insects of the Lepidoptera Order showed that there were six isolates that had toxic to Plutella xylostella and Spodoptera litura insects, ie bacterial isolate codes DLM5, KJ3R3, KJ3R5, KJ3J4, KJ3P1, and DLKK23.
Test of tree core sampling for screening of toxic elements in soils from a Norwegian site.
Algreen, Mette; Rein, Arno; Legind, Charlotte N; Amundsen, Carl Einar; Karlson, Ulrich Gosewinkel; Trapp, Stefan
2012-04-01
Tree core samples have been used to delineate organic subsurface plumes. In 2009 and 2010, samples were taken at trees growing on a former dump site in Norway and analyzed for arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), and zinc (Zn). Concentrations in wood were in averages (dw) 30 mg/kg for Zn, 2 mg/kg for Cu, and < 1 mg/kg for Cd, Cr, As and Ni. The concentrations in wood samples from the polluted test site were compared to those derived from a reference site. For all except one case, mean concentrations from the test site were higher than those from the reference site, but the difference was small and not always significant. Differences between tree species were usually higher than differences between reference and test site. Furthermore, all these elements occur naturally, and Cu, Ni, and Zn are essential minerals. Thus, all trees will have a natural background of these elements, and the occurrence alone does not indicate soil pollution. For the interpretation of the results, a comparison to wood samples from an unpolluted reference site with same species and similar soil conditions is required. This makes the tree core screening method less reliable for heavy metals than, e.g., for chlorinated solvents.
Interaction of vesicular-arbuscular mycorrhizal fungi with erosion in an oxisol.
Habte, M; Fox, R L; Aziz, T; El-Swaify, S A
1988-04-01
The development of vesicular-arbuscular mycorrhizal (VAM) symbiosis was monitored in Leucaena leucocephala grown in an Oxisol subjected to incremental simulated erosion. The density of VAM infective propagules in the soil diminished as the level of simulated erosion (removal of surface soil) was increased from 0 to 50 cm. The level of infection on L. leucocephala roots observed at harvest was not significantly influenced by simulated erosion unless removal of surface soil exceeded 25 cm. Inoculation of this soil and the uneroded soil with Glomus aggregatum enhanced the early onset of infection but did not significantly influence the level of infection observed at the time of harvest. Simulated erosion in excess of 7.5 cm of surface soil removal significantly delayed the development of VAM effectiveness monitored in terms of the P status of L. leucocephala subleaflets and also curtailed the level of maximum effectiveness observed. Decreases in VAM effectiveness were significantly correlated with decreases in soil chemical constituents. However, VAM effectiveness in a soil subjected to 30 cm of surface soil removal was not restored to a significant extent unless the soil was amended with P, even though other nutrients were restored to sufficiency levels. Our results demonstrate that the development of VAM effectiveness is the phase of the VAM symbiosis that is most adversely influenced by simulated erosion and that this effect appears to be caused primarily by insufficient P in the soil solution.
Wang, Yongjie; Dang, Fei; Evans, R. Douglas; Zhong, Huan; Zhao, Jiating; Zhou, Dongmei
2016-01-01
Methylmercury (MeHg) accumulation in rice has great implications for human health. Here, effects of selenium (Se) on MeHg availability to rice are explored by growing rice under soil or foliar fertilization with Se. Results indicate that soil amendment with Se could reduce MeHg levels in soil and grain (maximally 73%). In contrast, foliar fertilization with Se enhanced plant Se levels (3–12 folds) without affecting grain MeHg concentrations. This evidence, along with the distinct distribution of MeHg and Se within the plant, demonstrate for the first time that Se-induced reduction in soil MeHg levels (i.e., MeHg-Se antagonism in soil) rather than MeHg-Se interactions within the plant might be the key process triggering the decreased grain MeHg levels under Se amendment. The reduction in soil MeHg concentrations could be mainly attributed to the formation of Hg-Se complexes (detected by TEM-EDX and XANES) and thus reduced microbial MeHg production. Moreover, selenite and selenate were equally effective in reducing soil MeHg concentrations, possibly because of rapid changes in Se speciation. The dominant role of Se-induced reduction in soil MeHg levels, which has been largely underestimated previously, together with the possible mechanisms advance our mechanistic understanding about MeHg dynamics in soil-rice systems. PMID:26778218
NASA Astrophysics Data System (ADS)
Fagnano, Massimo; Fioretnino, Nunzio
2017-04-01
The definition of a soil contamination is a 2 step process, based on screening values and risk analysis. The variability of values of screening values across Europe casts some doubts about the ecological and toxicological meaning of such values. In the case of agricultural soils, the situation is more unclear since there is not a clear process for evaluation of the suitability of a soil for food production. Different methods have been proposed (i.e metal bioavailability by using different extracting agents), but the final response is given by plant analyses that can assess if the contaminants have been accumulated in edible organs. The study case of the so called Terra dei Fuochi (plainy area of Campania Region, Southern Italy) is presented, since in this area the LIFE-Project Ecoremed was developed with the aim to identify the contaminated soils in the perspective of their phytoremediation with biomass crops that could be used as source of renewable energy, thus avoiding competition for land between energy and food crops. At the end of assessment activities, the contaminated agricultural soils in this area resulted too few (about 30 ha) for satisfying the exigence of a bio-refinery. Therefore in Terra dei Fuochi area there aren't perspectives for biomass crops, because there is an intense production of high-value, healthy and safe vegetables and water buffalo mozzarella cheese, that are exported worldwide. Instead other marginal areas are very spread in internal hilly arable land of Southern Italy where 100,000 ha of durum wheat are not sustainable both from economic and environmental points of view. In particular, yields are very low (2-3 t/ha) and income (4-600 €/ha) doesn't cover the cultivation costs; soils are vulnerable to soil losses due to water erosion (not covered from tillage in August to germination in November) in the months in which rainfall erosivity is higher. A reasonable percentage of this area (i.e. 10%) could be used for producing biomasses, this justifying the construction of commercial-scale biorefineries in this area.
Bulk and rare earth abundances in the Luna 16 soil levels A and D.
NASA Technical Reports Server (NTRS)
Gillum, D. E.; Ehmann, W. D.; Wakita, H.; Schmitt, R. A.
1972-01-01
Determination of the abundances of major, minor, and trace elements by means of sequential INAA (instrumental neutron activation analysis) in two Luna 16 soils, at levels A (about 7 cm depth) and D (about 30 cm depth). Abundances of the bulk elements in Luna 16 soils generally agree with the values reported by Vinogradov (1971). Elemental abundances of both bulk and trace elements are nearly the same for the two A and D soil levels. Overall, the chemical compositions of the two Luna 16 soils are more closely related to Apollo 11 soil 10084 than to Apollo 12 and 14 soils, with the exception of TiO2 abundances.-
NASA Astrophysics Data System (ADS)
Golja, B.; Forte Tavčer, P.
2017-10-01
Microcapsules with a pressure-sensitive melamine-formaldehyde wall and triclosan core were printed to 100% cotton fabric with screen printing technique. Previous research showed excellent antibacterial activity (estimated for E. Coli and S. Aureus) of such fabric, so our aim in this research was to determine its resistance to the action of microorganisms present in the soil. The soil burial test was conducted. The breaking strength of the buried samples was measured and also the scanning electron microscope analysis was done. The results showed that none of the samples are resistant to decay. It is evident from SEM micrographs that on all of the buried samples greater morphological changes occur due to the functions of the soil microflora. It can be concluded that the samples printed with triclosan microcapsules are biodegradable which is environmentally preferable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idris, Nasrullah, E-mail: nasrullah.idris@unsyiah.ac.id; Ramli, Muliadi; Hedwig, Rinda
This work is intended to asses the capability of LIBS for the detection of the tsunami sediment contamination in soil. LIBS apparatus used in this work consist of a laser system and an optical multichannel analyzer (OMA) system. The soil sample was collected from in Banda Aceh City, Aceh, Indonesia, the most affected region by the giant Indian Ocean tsunami 2004. The laser beam was focused onto surface of the soil pellet using a focusing lens to produce luminous plasma. The experiment was conducted under air as surrounding gas at 1 atmosphere. The emission spectral lines from the plasma weremore » detected by the OMA system. It was found that metal including heavy metals can surely be detected, thus implying the potent of LIBS technique as a fast screening tools of tsunami sediment contamination.« less
[Variations of soil fertility level in red soil region under long-term fertilization].
Yu, Han-qing; Xu, Ming-gang; Lü, Jia-long; Bao, Yao-xian; Sun, Nan; Gao, Ju-sheng
2010-07-01
Based on the long-term (1982-2007) field experiment of "anthropogenic mellowing of raw soil" at the Qiyang red soil experimental station under Chinese Academy of Agricultural Sciences, and by using numerical theory, this paper studied the variations of the fertility level of granite red soil, quaternary red soil, and purple sandy shale soil under six fertilization patterns. The fertilization patterns included non-fertilization (CK), straw-returning without fertilizers (CKR), chemical fertilization (NPK), NPK plus straw-return (NPKR), rice straw application (M), and M plus straw-return (MR). The soil integrated fertility index (IFI) was significantly positively correlated with relative crop yield, and could better indicate soil fertility level. The IFI values of the three soils all were in the order of NPK, NPKR > M, MR > CK, CKR, with the highest value in treatment NPKR (0.77, 0.71, and 0.71 for granite red soil, quaternary red soil, and purple sandy shale soil, respectively). Comparing with that in the treatments of no straw-return, the IFI value in the treatments of straw return was increased by 6.72%-18.83%. A turning point of the IFI for all the three soils was observed at about 7 years of anthropogenic mellowing, and the annual increasing rate of the IFI was in the sequence of purple sandy shale soil (0.016 a(-1)) > quaternary red clay soil (0.011 a(-1)) > granite red soil (0.006 a(-1)). It was suggested that a combined application of organic and chemical fertilizers and/or straw return could be an effective and fast measure to enhance the soil fertility level in red soil region.
Phytoforensics—Using trees to find contamination
Wilson, Jordan L.
2017-09-28
The water we drink, air we breathe, and soil we come into contact with have the potential to adversely affect our health because of contaminants in the environment. Environmental samples can characterize the extent of potential contamination, but traditional methods for collecting water, air, and soil samples below the ground (for example, well drilling or direct-push soil sampling) are expensive and time consuming. Trees are closely connected to the subsurface and sampling tree trunks can indicate subsurface pollutants, a process called phytoforensics. Scientists at the Missouri Water Science Center were among the first to use phytoforensics to screen sites for contamination before using traditional sampling methods, to guide additional sampling, and to show the large cost savings associated with tree sampling compared to traditional methods.
Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye
2016-11-18
Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest.
Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye
2016-01-01
Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest. PMID:27857198
Potential health impacts from range fires at Aberdeen Proving Ground, Maryland.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willians, G.P.; Hermes, A.M.; Policastro, A.J.
1998-03-01
This study uses atmospheric dispersion computer models to evaluate the potential for human health impacts from exposure to contaminants that could be dispersed by fires on the testing ranges at Aberdeen Proving Ground, Maryland. It was designed as a screening study and does not estimate actual human health risks. Considered are five contaminants possibly present in the soil and vegetation from past human activities at APG--lead, arsenic, trichloroethylene (TCE), depleted uranium (DU), and dichlorodiphenyltrichloroethane (DDT); and two chemical warfare agents that could be released from unexploded ordnance rounds heated in a range fire--mustard and phosgene. For comparison, dispersion of twomore » naturally occurring compounds that could be released by burning of uncontaminated vegetation--vinyl acetate and 2-furaldehyde--is also examined. Data from previous studies on soil contamination at APG are used in conjunction with conservative estimates about plant uptake of contaminants, atmospheric conditions, and size and frequency of range fires at APG to estimate dispersion and possible human exposure. The results are compared with US Environmental Protection Agency action levels. The comparisons indicate that for all of the anthropogenic contaminants except arsenic and mustard, exposure levels would be at least an order of magnitude lower than the corresponding action levels. Because of the compoundingly conservative nature of the assumptions made, they conclude that the potential for significant human health risks from range fires is low. The authors recommend that future efforts be directed at fire management and control, rather than at conducting additional studies to more accurately estimate actual human health risk from range fires.« less
Hung, H.-W.; Daniel, Sheng G.; Lin, T.-F.; Su, Y.; Chiou, C.T.
2009-01-01
Concentrations of organic contaminants in common productive soils based on the total soil mass give a misleading account of actual contamination effects. This is attributed to the fact that productive soils are essentially water-saturated, with the result that the soil uptake of organic compounds occurs principally by partition into the soil organic matter (SOM). This report illustrates that the soil contamination intensity of a compound is governed by the concentration in the SOM (Com) rather than by the concentration in whole soil (Cs). Supporting data consist of the measured levels and toxicities of many pesticides in soils of widely differing SOM contents and the related levels in in-situ crops that defy explanation by the Cs values. This SOM-based index is timely needed for evaluating the contamination effects of food crops grown in different soils and for establishing a dependable priority ranking for intended remediation of numerous contamination sites.
Yang, Wen; Huang, Jin-lou; Peng, Hui-qing; Li, Si-tuo
2013-09-01
Attrition scrubbing was used to remediate lead contaminated-site soil, and the main purpose was to remove fine particles and lead contaminants from the surface of sand. The optimal parameters of attrition scrubbing were determined by orthogonal experiment, and three soil samples with different lead concentration were subjected to attrition scrubbing experiments. The results showed that the optimal scrubbing parameters were: a solid ratio of 70% dry matter, a temperature of 25 degrees C, an attrition time of 30 min, and an attrition speed of 1200 r x min(-1). Before attrition scrubbing, the screening and analysis of soil showed that in all three soil samples, lead was mainly enriched on sand and fine particles, and the distribution of lead was highly correlated to the organic matter. After attrition scrubbing, the washing efficiency of the original state lead contaminated sand soil in triplicates was 67.61%, 31.71% and 41.01%, respectively, which indicates that attrition scrubbing can remove part of the fine soil and lead contaminants from the surface of sand, to accomplish the purpose of pollutants enrichment. Scanning electron microscopy (SEM) analysis showed that the sand surface became smooth after attrition scrubbing. The results above show that attrition scrubbing has a good washing effect for the remediation of lead contaminated sand soil.
Screening of plants for phytoremediation of oil-contaminated soil.
Ikeura, Hiromi; Kawasaki, Yu; Kaimi, Etsuko; Nishiwaki, Junko; Noborio, Kosuke; Tamaki, Masahiko
2016-01-01
Several species of ornamental flowering plants were evaluated regarding their phytoremediation ability for the cleanup of oil-contaminated soil in Japanese environmental conditions. Thirty-three species of plants were grown in oil-contaminated soil, and Mimosa, Zinnia, Gazania, and cypress vine were selected for further assessment on the basis of their favorable initial growth. No significant difference was observed in the above-ground and under-ground dry matter weight of Gazania 180 days after sowing between contaminated and non-contaminated plots. However, the other 3 species of plants died by the 180th day, indicating that Gazania has an especially strong tolerance for oil-contaminated soil. The total petroleum hydrocarbon concentration of the soils in which the 4 species of plants were grown decreased by 45-49% by the 180th day. Compared to an irrigated plot, the dehydrogenase activity of the contaminated soil also increased significantly, indicating a phytoremediation effect by the 4 tested plants. Mimosa, Zinnia, and cypress vine all died by the 180th day after seeding, but the roots themselves became a source of nutrients for the soil microorganisms, which led to a phytoremediation effect by increase in the oil degradation activity. It has been indicated that Gazania is most appropriate for phytoremediation of oil-contaminated soil.
2014-02-01
moisture level of 14% dry soil mass was maintained for the duration of the study by weekly additions of ASTM Type I water. Soil samples were collected...maintain the initial soil moisture level. One cluster of Orchard grass straw was harvested from a set of randomly selected replicate containers...decomposition is among the most integrating processes within the soil ecosystem because it involves complex interactions of soil microbial, plant , and
Xia, Jiangbao; Zhao, Ximei; Chen, Yinping; Fang, Ying; Zhao, Ziguo
2016-01-01
Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL), soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC) declined significantly, whereas the salt content (SC) and absolute soil solution concentration (CS) decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9–1.2 m) and shallow water levels (0.6 m) respectively, whereas the CS presented the greatest variation at the deep water level (1.5–1.8 m).The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5–1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions. PMID:26730602
Effects of apple branch biochar on soil C mineralization and nutrient cycling under two levels of N.
Li, Shuailin; Liang, Chutao; Shangguan, Zhouping
2017-12-31
The incorporation of biochar into soil has been proposed as a strategy for enhancing soil fertility and crop productivity. However, there is limited information regarding the responses of soil respiration and the C, N and P cycles to the addition of apple branch biochar at different rates to soil with different levels of N. A 108-day incubation experiment was conducted to investigate the effects of the rate of biochar addition (0, 1, 2 and 4% by mass) on soil respiration and nutrients and the activities of enzymes involved in C, N and P cycling under two levels of N. Our results showed that the application of apple branch biochar at rates of 2% and 4% increased the C-mineralization rate, while biochar amendment at 1% decreased the C-mineralization rate, regardless of the N level. The soil organic C and microbial biomass C and P contents increased as the rate of biochar addition was increased to 2%. The biochar had negative effects on β-glucosidase, N-acetyl-β-glucosaminidase and urease activity in N-poor soil but exerted a positive effect on all of these factors in N-rich soil. Alkaline phosphatase activity increased with an increase in the rate of biochar addition, but the available P contents after all biochar addition treatments were lower than those obtained in the treatments without biochar. Biochar application at rates of 2% and 4% reduced the soil nitrate content, particularly in N-rich soil. Thus, apple branch biochar has the potential to sequester C and improve soil fertility, but the responses of soil C mineralization and nutrient cycling depend on the rate of addition and soil N levels. Copyright © 2017 Elsevier B.V. All rights reserved.
Margesin, R.; Schinner, F.
2001-01-01
We investigated the feasibility of bioremediation as a treatment option for a chronically diesel-oil-polluted soil in an alpine glacier area at an altitude of 2,875 m above sea level. To examine the efficiencies of natural attenuation and biostimulation, we used field-incubated lysimeters (mesocosms) with unfertilized and fertilized (N-P-K) soil. For three summer seasons (July 1997 to September 1999), we monitored changes in hydrocarbon concentrations in soil and soil leachate and the accompanying changes in soil microbial counts and activity. A significant reduction in the diesel oil level could be achieved. At the end of the third summer season (after 780 days), the initial level of contamination (2,612 ± 70 μg of hydrocarbons g [dry weight] of soil−1) was reduced by (50 ± 4)% and (70 ± 2)% in the unfertilized and fertilized soil, respectively. Nonetheless, the residual levels of contamination (1,296 ± 110 and 774 ± 52 μg of hydrocarbons g [dry weight] of soil−1 in the unfertilized and fertilized soil, respectively) were still high. Most of the hydrocarbon loss occurred during the first summer season ([42 ± 6]% loss) in the fertilized soil and during the second summer season ([41 ± 4]% loss) in the unfertilized soil. In the fertilized soil, all biological parameters (microbial numbers, soil respiration, catalase and lipase activities) were significantly enhanced and correlated significantly with each other, as well as with the residual hydrocarbon concentration, pointing to the importance of biodegradation. The effect of biostimulation of the indigenous soil microorganisms declined with time. The microbial activities in the unfertilized soil fluctuated around background levels during the whole study. PMID:11425732
USDA-ARS?s Scientific Manuscript database
Initial screening for bacteriophages lytic for Clostridium perfringens was performed utilizing filtered samples obtained from poultry (intestinal material), soil, sewage and poultry processing drainage water. Lytic phage preparations were initially characterized by transmission electron microscopy ...
TRANSPORT, FATE AND RISK IMPLICATIONS OF ENVIRONMENTALLY ACCEPTABLE ENDPOINT DECISIONS
The second and third year project goals are the following: Continue to develop and finalize the expected source zone module incorporating slow release and finalize the contaminated soil screening model. Chemical rate of release data will be obtained and used with t...
We compared three methods for estimating fungal species diversity in soil samples. A rapid screening method based on gross colony morphological features and color reference standards was compared with traditional fungal taxonomic methods and PCR-RFLP for estimation of ecological ...
Rhizosphere Colonization and Control of Meloidogyne spp. by Nematode-trapping Fungi
Persson, Christina; Jansson, Hans-Börje
1999-01-01
The ability of nematode-trapping fungi to colonize the rhizosphere of crop plants has been suggested to be an important factor in biological control of root-infecting nematodes. In this study, rhizosphere colonization was evaluated for 38 isolates of nematode-trapping fungi representing 11 species. In an initial screen, Arthrobotrys dactyloides, A. superba, and Monacrosporium ellipsosporum were most frequently detected in the tomato rhizosphere. In subsequent pot experiments these fungi and the non-root colonizing M. geophyropagum were introduced to soil in a sodium alginate matrix, and further tested both for establishment in the tomato rhizosphere and suppression of root-knot nematodes. The knob-forming M. ellipsosporum showed a high capacity to colonize the rhizosphere both in the initial screen and the pot experiments, with more than twice as many fungal propagules in the rhizosphere as in the root-free soil. However, neither this fungus nor the other nematode-trapping fungi tested reduced nematode damage to tomato plants. PMID:19270886
Color View 'Dodo' and 'Baby Bear' Trenches
NASA Technical Reports Server (NTRS)
2008-01-01
NASA's Phoenix Mars Lander's Surface Stereo Imager took this image on Sol 14 (June 8, 2008), the 14th Martian day after landing. It shows two trenches dug by Phoenix's Robotic Arm. Soil from the right trench, informally called 'Baby Bear,' was delivered to Phoenix's Thermal and Evolved-Gas Analyzer, or TEGA, on Sol 12 (June 6). The following several sols included repeated attempts to shake the screen over TEGA's oven number 4 to get fine soil particles through the screen and into the oven for analysis. The trench on the left is informally called 'Dodo' and was dug as a test. Each of the trenches is about 9 centimeters (3 inches) wide. This view is presented in approximately true color by combining separate exposures taken through different filters of the Surface Stereo Imager. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Avagyan, Rozanna; Nyström, Robin; Boman, Christoffer; Westerholm, Roger
2015-06-01
A simple and fast method for analysis of hydroxylated polycyclic aromatic hydrocarbons using pressurized liquid extraction and high performance liquid chromatography utilizing photoionization tandem mass spectrometry was developed. Simultaneous separation and determination of nine hydroxylated polycyclic aromatic hydrocarbons and two hydroxy biphenyls could be performed in negative mode with a run time of 12 min, including equilibration in 5 min. The calibration curves were in two concentration ranges; 1-50 ng/mL and 0.01-50 μg/mL, with coefficients of correlation R (2) > 0.997. The limits of detection and method quantification limits were in the range of 9-56 pg and 5-38 ng/g, respectively. A two-level full factorial experimental design was used for screening of conditions with the highest impact on the extraction. The extraction procedure was automated and suitable for a large number of samples. The extraction recoveries ranged from 70 to 102 % and the matrix effects were between 92 and 104 %. The overall method was demonstrated on wood smoke particles and soil samples with good analytical performance, and five OH-PAHs were determined in the concentration range of 0.19-210 μg/g. As far as we know, hydroxylated polycyclic aromatic hydrocarbons were determined in wood smoke and soil samples using photoionization mass spectrometry for the first time in this present study. Accordingly, this study shows that high performance liquid chromatography photoionization tandem mass spectrometry can be a good option for the determination of hydroxylated polycyclic aromatic hydrocarbons in complex environmental samples. Graphical Abstract The method developed in this study was used to determine hydroxylated polycyclic aromatic hydrocarbons in wood smoke and soil.
Environmental DNA sequencing primers for eutardigrades and bdelloid rotifers
2009-01-01
Background The time it takes to isolate individuals from environmental samples and then extract DNA from each individual is one of the problems with generating molecular data from meiofauna such as eutardigrades and bdelloid rotifers. The lack of consistent morphological information and the extreme abundance of these classes makes morphological identification of rare, or even common cryptic taxa a large and unwieldy task. This limits the ability to perform large-scale surveys of the diversity of these organisms. Here we demonstrate a culture-independent molecular survey approach that enables the generation of large amounts of eutardigrade and bdelloid rotifer sequence data directly from soil. Our PCR primers, specific to the 18s small-subunit rRNA gene, were developed for both eutardigrades and bdelloid rotifers. Results The developed primers successfully amplified DNA of their target organism from various soil DNA extracts. This was confirmed by both the BLAST similarity searches and phylogenetic analyses. Tardigrades showed much better phylogenetic resolution than bdelloids. Both groups of organisms exhibited varying levels of endemism. Conclusion The development of clade-specific primers for characterizing eutardigrades and bdelloid rotifers from environmental samples should greatly increase our ability to characterize the composition of these taxa in environmental samples. Environmental sequencing as shown here differs from other molecular survey methods in that there is no need to pre-isolate the organisms of interest from soil in order to amplify their DNA. The DNA sequences obtained from methods that do not require culturing can be identified post-hoc and placed phylogenetically as additional closely related sequences are obtained from morphologically identified conspecifics. Our non-cultured environmental sequence based approach will be able to provide a rapid and large-scale screening of the presence, absence and diversity of Bdelloidea and Eutardigrada in a variety of soils. PMID:20003362
Critical Source Area Delineation: The representation of hydrology in effective erosion modeling.
NASA Astrophysics Data System (ADS)
Fowler, A.; Boll, J.; Brooks, E. S.; Boylan, R. D.
2017-12-01
Despite decades of conservation and millions of conservation dollars, nonpoint source sediment loading associated with agricultural disturbance continues to be a significant problem in many parts of the world. Local and national conservation organizations are interested in targeting critical source areas for control strategy implementation. Currently, conservation practices are selected and located based on the Revised Universal Soil Loss Equation (RUSLE) hillslope erosion modeling, and the National Resource Conservation Service will soon be transiting to the Watershed Erosion Predict Project (WEPP) model for the same purpose. We present an assessment of critical source areas targeted with RUSLE, WEPP and a regionally validated hydrology model, the Soil Moisture Routing (SMR) model, to compare the location of critical areas for sediment loading and the effectiveness of control strategies. The three models are compared for the Palouse dryland cropping region of the inland northwest, with un-calibrated analyses of the Kamiache watershed using publicly available soils, land-use and long-term simulated climate data. Critical source areas were mapped and the side-by-side comparison exposes the differences in the location and timing of runoff and erosion predictions. RUSLE results appear most sensitive to slope driving processes associated with infiltration excess. SMR captured saturation excess driven runoff events located at the toe slope position, while WEPP was able to capture both infiltration excess and saturation excess processes depending on soil type and management. A methodology is presented for down-scaling basin level screening to the hillslope management scale for local control strategies. Information on the location of runoff and erosion, driven by the runoff mechanism, is critical for effective treatment and conservation.
Benacer, Douadi; Woh, Pei Yee; Mohd Zain, Siti Nursheena; Amran, Fairuz; Thong, Kwai Lin
2013-01-01
Leptospira species were studied in water and soils from selected urban sites in Malaysia. A total of 151 water (n=121) and soil (n=30) samples were collected from 12 recreational lakes and wet markets. All samples were filtered and inoculated into semi-solid Ellinghausen and McCullough modified by Johnson and Harris (EMJH) media supplemented with additional 5-fluorouracil. The cultures were then incubated at 30°C and observed under a dark field microscope with intervals of 10 days. A PCR assay targeting the rrs gene was used to confirm the genus Leptospira among the isolates. Subsequently, the pathogenic status of the isolates was determined using primer sets G1/G2 and Sapro1/Sapro2, which target the secY and rrs genes, respectively. The isolates were identified at serogroup level using the microscopic agglutination test (MAT) while their genetic diversity was assessed by pulsed field gel electrophoresis (PFGE). Based on dark field microscopy, 23.1% (28/121) water and 23.3% (7/30) soil cultures were positive for Leptospira spp. Of the 35 positive cultures, only 8 were pure and confirmed as Leptospira genus by PCR assay. Two out of 8 isolates were confirmed as pathogenic, 5 were saprophytic and one was intermediate. These 8 isolates were negative for the 25 reference hyperimmune rabbit sera tested in the MAT. PFGE showed that all 8 of these environmental Leptospira spp. were genetically diverse. In conclusion, the presence of pathogenic Leptospira spp. in the urban Malaysian environment may indicate and highlight the importance of water screening, especially in recreational lakes, in order to minimize any chance of Leptospira infection. PMID:23363618
Akhavan Sepahy, Abbas; Jabalameli, Leila
2011-01-01
Soil samples of Tehran jungle parks were screened for proteolytic Bacilli. Among eighteen protease producers one of the isolates obtained from Lavizan park, in north east of Tehran, was selected for further experimental studies. This isolate was identified as Bacillus sp. strain CR-179 based on partial sequencing of 16S rRNA. Various nutritional and environmental parameters affected protease production by Bacillus sp. strain CR-179. Protease production by this Bacillus cultivated in liquid cultures reached a maximum at 24 h, with levels of 340.908 U/mL. Starch and maltose were the best substrates for enzyme production while some pure sugars such as fructose, glucose, and sucrose could not influence production of protease. Among various organic nitrogen sources corn steep liquor, which is commercial, was found as the best substrate followed by yeast extract, whey protein, and beef extract. The optimal pH and optimal temperature of enzyme production were 8.0 and 45°C, respectively. Studies on enzymatic characterization revealed that crude protease showed maximum activity at pH 9.0 and 60°C, which is indicating the enzyme to be thermoalkaline protease. PMID:22191016
Physiological genomics of response to soil drying in diverse Arabidopsis accessions.
Des Marais, David L; McKay, John K; Richards, James H; Sen, Saunak; Wayne, Tierney; Juenger, Thomas E
2012-03-01
Arabidopsis thaliana, like many species, is characterized by abundant genetic variation. This variation is rapidly being cataloged at the sequence level, but careful dissection of genetic variation in whole-organism responses to stresses encountered in the natural environment are lacking; this functional variation can be exploited as a natural mutant screen to determine gene function. Here, we document physiological and transcriptomic response to soil drying in 17 natural accessions of Arabidopsis. By imposing ecologically realistic stress conditions, we found that acclimation in Arabidopsis involved a strong signature of increased investment in photosynthesis, carbohydrate turnover, and root growth. Our results extend previous work in the Columbia accession suggesting that abscisic acid signaling pathways play an important role in drought stress response. We also identified several mechanisms, including an increase in leaf nitrogen concentration and upregulation of two-component signaling relays, that were common to most natural accessions but had not been identified in studies using only the Columbia accession. Principal component analysis reveals strong correlations between suites of genes and specific physiological responses to stress. The functional variants we identified may represent adaptive mutations in natural habitats and useful variants for agronomic improvement of crop species.
Physiological Genomics of Response to Soil Drying in Diverse Arabidopsis Accessions[W][OA
Des Marais, David L.; McKay, John K.; Richards, James H.; Sen, Saunak; Wayne, Tierney; Juenger, Thomas E.
2012-01-01
Arabidopsis thaliana, like many species, is characterized by abundant genetic variation. This variation is rapidly being cataloged at the sequence level, but careful dissection of genetic variation in whole-organism responses to stresses encountered in the natural environment are lacking; this functional variation can be exploited as a natural mutant screen to determine gene function. Here, we document physiological and transcriptomic response to soil drying in 17 natural accessions of Arabidopsis. By imposing ecologically realistic stress conditions, we found that acclimation in Arabidopsis involved a strong signature of increased investment in photosynthesis, carbohydrate turnover, and root growth. Our results extend previous work in the Columbia accession suggesting that abscisic acid signaling pathways play an important role in drought stress response. We also identified several mechanisms, including an increase in leaf nitrogen concentration and upregulation of two-component signaling relays, that were common to most natural accessions but had not been identified in studies using only the Columbia accession. Principal component analysis reveals strong correlations between suites of genes and specific physiological responses to stress. The functional variants we identified may represent adaptive mutations in natural habitats and useful variants for agronomic improvement of crop species. PMID:22408074
Jawitz, James W.; Munoz-Carpena, Rafael; Muller, Stuart; Grace, Kevin A.; James, Andrew I.
2008-01-01
Alterations to the predevelopment delivery of water and nutrients into the Everglades of southern Florida have been occurring for nearly a century. Major regional drainage projects, large-scale agricultural development, and changes to the hydrology of the Kissimmee River-Lake Okeechobee watershed have resulted in substantial phosphorus transport increases by surface waters. Excess phosphorus has accumulated in the soils of northern Everglades marshes to levels that have impaired the natural resources of the region. Regulations now limit the amount of phosphorous that enters the Everglades through an extensive network of water-control structures. This study involved the development and application of water-quality modeling components that may be applied to existing hydrologic models of southern Florida to evaluate the effects of different management scenarios. The result of this work is a spatially distributed water-quality model for phosphorus transport and cycling in wetlands. The model solves the advection-dispersion equation on an unstructured triangular mesh and incorporates a wide range of user-selectable mechanisms for phosphorus uptake and release parameters. In general, the phosphorus model contains transfers between stores; examples of stores that can be included are soil, water column (solutes), pore water, macrophytes, suspended solids (plankton), and biofilm. Examples of transfers are growth, senescence, settling, diffusion, and so forth, described with first order, second order, and Monod types of transformations. Local water depths and velocities are determined from an existing two-dimensional, overland-flow hydrologic model. The South Florida Water Management District Regional Simulation Model was used in this study. The model is applied to three case studies: intact cores of wetland soils with water, outdoor mesocosoms, and a large constructed wetland; namely, Cell 4 of Stormwater Treatment Area 1 West (STA-1W Cell 4). Different levels of complexity in the phosphorus cycling mechanisms were simulated in these case studies using different combinations of phosphorus reaction equations. Changes in water column phosphorus concentrations observed under the controlled conditions of laboratory incubations, and mesocosm studies were reproduced with model simulations. Short-term phosphorus flux rates and changes in phosphorus storages were within the range of values reported in the literature, whereas unknown rate constants were used to calibrate the model output. In STA-1W Cell 4, the dominant mechanism for phosphorus flow and transport is overland flow. Over many life cycles of the biological components, however, soils accrue and become enriched in phosphorus. Inflow total phosphorus concentrations and flow rates for the period between 1995 and 2000 were used to simulate Cell 4 phosphorus removal, outflow concentrations, and soil phosphorus enrichment over time. This full-scale application of the model successfully incorporated parameter values derived from the literature and short-term experiments, and reproduced the observed long-term outflow phosphorus concentrations and increased soil phosphorus storage within the system. A global sensitivity and uncertainty analysis of the model was performed using modern techniques such as a qualitative screening tool (Morris method) and the quantitative, variance-based, Fourier Amplitude Sensitivity Test (FAST) method. These techniques allowed an in-depth exploration of the effect of model complexity and flow velocity on model outputs. Three increasingly complex levels of possible application to southern Florida were studied corresponding to a simple soil pore-water and surface-water system (level 1), the addition of plankton (level 2), and of macrophytes (level 3). In the analysis for each complexity level, three surface-water velocities were considered that each correspond to residence times for the selected area (1-kilometer long) of 2, 10, and 20
Characteristics of water infiltration in layered water repellent soils
USDA-ARS?s Scientific Manuscript database
Hydrophobic soil can influence soil water infiltration, but information regarding the impacts of different levels of hydrophobicity within a layered soil profile is limited. An infiltration study was conducted to determine the effects of different levels of hydrophobicity and the position of the hyd...
Aufreiter, S; Mahaney, W C; Milner, M W; Huffman, M A; Hancock, R G; Wink, M; Reich, M
2001-02-01
Termite mound soils eaten by chimpanzees of the Mahale Mountains and Gombe National Parks, Tanzania, have mineralogical and geochemical compositions similar to many soils eaten by higher primates, but release very low levels of either toxic or nutritional inorganic elements to solution at acid pH. Comparison with control (uneaten) soils from the same areas showed lower levels of carbon and nitrogen in the eaten soils, a relationship confirmed by surface analysis. Surface analysis also revealed lower levels of iron on particle surfaces versus interiors, and higher levels of iron on ingested versus control soil particle surfaces. The soils can adsorb dietary toxins, present in the plant diet or those produced by microorganisms. Taking the toxic alkaloids quinine, atropine, sparteine, and lupanine as examples, it is evident that soils from Mahale have a very good adsorptive capacity. A new adaptive advantage of geophagy is proposed, based on the prevention of iron uptake. The behavior of the soils in vitro is consistent with the theory that geophagy has a therapeutic value for these chimpanzees.
Estimating Soil Organic Carbon Stocks and Spatial Patterns with Statistical and GIS-Based Methods
Zhi, Junjun; Jing, Changwei; Lin, Shengpan; Zhang, Cao; Liu, Qiankun; DeGloria, Stephen D.; Wu, Jiaping
2014-01-01
Accurately quantifying soil organic carbon (SOC) is considered fundamental to studying soil quality, modeling the global carbon cycle, and assessing global climate change. This study evaluated the uncertainties caused by up-scaling of soil properties from the county scale to the provincial scale and from lower-level classification of Soil Species to Soil Group, using four methods: the mean, median, Soil Profile Statistics (SPS), and pedological professional knowledge based (PKB) methods. For the SPS method, SOC stock is calculated at the county scale by multiplying the mean SOC density value of each soil type in a county by its corresponding area. For the mean or median method, SOC density value of each soil type is calculated using provincial arithmetic mean or median. For the PKB method, SOC density value of each soil type is calculated at the county scale considering soil parent materials and spatial locations of all soil profiles. A newly constructed 1∶50,000 soil survey geographic database of Zhejiang Province, China, was used for evaluation. Results indicated that with soil classification levels up-scaling from Soil Species to Soil Group, the variation of estimated SOC stocks among different soil classification levels was obviously lower than that among different methods. The difference in the estimated SOC stocks among the four methods was lowest at the Soil Species level. The differences in SOC stocks among the mean, median, and PKB methods for different Soil Groups resulted from the differences in the procedure of aggregating soil profile properties to represent the attributes of one soil type. Compared with the other three estimation methods (i.e., the SPS, mean and median methods), the PKB method holds significant promise for characterizing spatial differences in SOC distribution because spatial locations of all soil profiles are considered during the aggregation procedure. PMID:24840890
USDA-ARS?s Scientific Manuscript database
In the past decade, research in urban soils has focused on the soil carbon (C) sequestration capacity in residential yards. We performed a case study to examine four potential drivers for soil C levels in residential yards. In 67 yards containing trees, we examined the relationship of soil C (kg m-2...
Love, Jeff; Zatzick, Douglas
2014-07-01
Few investigations have examined screening and intervention procedures for comorbid substance use and mental disorders at trauma centers in the United States, although these disorders are endemic among survivors of traumatic injury. In 2006, the American College of Surgeons (ACS) mandated that level I and level II trauma centers screen for alcohol use problems and that level I centers provide brief intervention for those who screen positive. The ACS is expected to recommend best practice policy guidelines for screening for drug use problems and posttraumatic stress disorder (PTSD). This study examined screening and intervention procedures for the full spectrum of comorbid mental and substance use disorders at U.S. trauma centers. Respondents at all level I and level II trauma centers (N=518) in the United States were asked to complete a survey describing screening and intervention procedures for alcohol and drug use problems, suicidality, depression, and PTSD. There were 391 (75%) respondents. Over 80% of trauma centers routinely screened for alcohol and drug use problems. Routine screening and intervention for suicidality, depression, and PTSD were markedly less common; in fact, only 7% of centers reported routine screening for PTSD. Consistent with ACS policy, level I centers were significantly more likely than level II centers to provide alcohol intervention. Alcohol screening and intervention occurred frequently at U.S. trauma centers and appeared to be responsive to ACS mandates. In the future, efforts to orchestrate clinical investigation and policy could enhance screening and intervention procedures for highly prevalent, comorbid mental disorders.
Fujino, Yoshihisa; Tanabe, Naohito; Honjo, Kaori; Suzuki, Sadao; Iso, Hiroyasu; Tamakoshi, Akiko
2011-01-01
In Japan, screening programmes have been widely implemented as a public health practice. We investigated the effect of the area-level interest in health screening on mortality using data from a large cohort in Japan. A baseline survey was conducted between 1988 and 1990 among 110,792 residents of 45 areas, aged 40-79 years. Area-level interest in health screening was defined as the proportion of people with high and moderate interest in health screening in an area. Multilevel Poisson regression was employed in a two-level structure of individuals nested within the areas. During 15 years of follow-up (1,035,617 person-years), 13,184 deaths were observed. The reduction in mortality rate was (a) 2% in both men (p=0.009) and women (p=0.038) for each percent increase in area-level interest in screening, and (b) 10% in men (p=0.001) and 9% in women (p=0.001) for individual attendance to screening in the year before follow-up. There was no interaction between area-level interest in screening, individual-level attendance at screening and overall mortality. Area-level and individual interest for health screening appear to be independent predictor of 15-year mortality in this national Japanese study. The present findings may support public health practices to promote knowledge and participation in screening programmes. Copyright © 2010 Elsevier Inc. All rights reserved.
Effects of soil water content on the external exposure of fauna to radioactive isotopes.
Beaugelin-Seiller, K
2016-01-01
Within a recent model intercomparison about radiological risk assessment for contaminated wetlands, the influence of soil saturation conditions on external dose rates was evidenced. This issue joined concerns of assessors regarding the choice of the soil moisture value to input in radiological assessment tools such as the ERICA Tool. Does it really influence the assessment results and how? This question was investigated under IAEA's Modelling and Data for Radiological Impacts Assessments (MODARIA) programme via 42 scenarios for which the soil water content varied from 0 (dry soil) to 100% (saturated soil), in combination with other parameters that may influence the values of the external dose conversion coefficients (DCCs) calculated for terrestrial organisms exposed in soil. A set of α, β, and γ emitters was selected in order to cover the range of possible emission energies. The values of their external DCCs varied generally within a factor 1 to 1.5 with the soil water content, excepted for β emitters that appeared more sensitive (DCCs within a factor of about 3). This may be of importance for some specific cases or for upper tiers of radiological assessments, when refinement is required. But for the general purpose of screening assessment of radiological impact on fauna and flora, current approaches regarding the soil water content are relevant. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ribeiro, F C A; Silva, J I R; Lima, E S A; do Amaral Sobrinho, N M B; Perez, D V; Lauria, D C
2018-02-01
Located in the south-western part of Brazil, the state of Rio de Janeiro is geotectonically contained within a complex structural province that resulted in the amalgamation of the Western Gondwana Paleocontinent. To undertake an extensive radiological characterization of this complex geological province and investigate the influence of bedrock, soil type and soil chemical-physical characteristics on natural radionuclide levels in soils, 259 surface soil samples were collected that encompassed the main soil types and geological formations throughout the state. Gamma spectrometry analysis of the samples resulted in median values of 114 Bq.kg -1 for 40 K, 32 Bq.kg -1 for 226 Ra and 74 Bq.kg -1 for 228 Ra. The median value for 226 Ra was similar to the world median value for soils, the 40 K value was well below the worldwide value, and that for 228 Ra exceeded the world median value. The intense weathering caused by the high rainfall rates and high temperatures may be responsible for the low levels of 40 K in the soils, of which the strongly acidic and clayey soils are markedly K-depleted. A soil from a high-grade metamorphic rock (granulite) presented the lowest 226 Ra (18 Bq.kg -1 ) content, whereas the highest levels for 226 Ra (92 Bq.kg -1 ) and 228 Ra (139 Bq.kg - 1) were observed in a young soil enriched in primary minerals (Leptsol). A lowland soil (Gleysol) showed the highest median of 40 K (301 Bq.kg -1 ). Strongly acidic soils tended to present high amounts of 226 Ra, and sandy soils tended to contain low levels of 228 Ra. The external radiation dose indicates that the state has a background radiation level within the natural range. Copyright © 2017 Elsevier Ltd. All rights reserved.
Review of State Soil Cleanup Levels for Dioxin (December 2009)
This final report summarizes a survey of state soil cleanup levels for dioxin and characterizes the science underlying these values. The objective of this project was to summarize existing state cleanup levels for dioxin in soil, together with their scientific bases where availa...
Kim, Eun Jung; Choi, Sung-Deuk; Chang, Yoon-Seok
2011-11-01
To investigate the influence of biomass burning on the levels of polycyclic aromatic hydrocarbons (PAHs) in soils, temporal trends and profiles of 16 US Environmental Protection Agency priority PAHs were studied in soil and ash samples collected 1, 5, and 9 months after forest fires in South Korea. The levels of PAHs in the burnt soils 1 month after the forest fires (mean, 1,200 ng/g dry weight) were comparable with those of contaminated urban soils. However, 5 and 9 months after the forest fires, these levels decreased considerably to those of general forest soils (206 and 302 ng/g, respectively). The burnt soils and ash were characterized by higher levels of light PAHs with two to four rings, reflecting direct emissions from biomass burning. Five and 9 months after the forest fires, the presence of naphthalene decreased considerably, which indicates that light PAHs were rapidly volatilized or degraded from the burnt soils. The temporal trend and pattern of PAHs clearly suggests that soils in the forest-fire region can be contaminated by PAHs directly emitted from biomass burning. However, the fire-affected soils can return to the pre-fire conditions over time through the washout and wind dissipation of the ash with high content of PAHs as well as vaporization or degradation of light PAHs.
Huwait, Etimad A; Kumosani, Taha A; Moselhy, Said S; Mosaoa, Rami M; Yaghmoor, Soonham S
2015-09-01
This study aimed to analyze the agricultural soils from different regions in Saudi Arabia for cobalt and related metals as Cu(2+), Ni(2+), Cr(3+), Zn(2+) and Pb(2+). Liver and muscle tissues of livestock grazing on the selected areas were analyzed for the content of Co and vitamin B12. Our results indicated that the levels of Co in surface soil (0-15 cm) were higher than in sub-surface soil (>15 cm-45 cm). In contrast, Pb and Zn were higher in sub-surface soil than in surface soil. A significant positive correlation existed between the levels of Co and vitamin B12 in the liver of livestock. However, Co was not detected in muscle tissues while vitamin B12 was present at very low levels in comparison with the levels found in the liver. The results indicated that Zn(2+), Pb(2+) compete with Co in soil, which eventually affected the levels of vitamin B12 in liver. It was recommended that survey of heavy metals in grazing fields of cattle should consider inclusion of multiple elements that compete with the bioavailability of essential elements in plants and animals for the prevention of deficiency of essential elements such as Co.
Cost-effectiveness analysis of a quantitative immunochemical test for colorectal cancer screening.
Wilschut, Janneke A; Hol, Lieke; Dekker, Evelien; Jansen, Jan B; Van Leerdam, Monique E; Lansdorp-Vogelaar, Iris; Kuipers, Ernst J; Habbema, J Dik F; Van Ballegooijen, Marjolein
2011-11-01
Two European randomized trials (N = 30,000) compared guaiac fecal occult blood testing with quantitative fecal immunochemical testing (FIT) and showed better attendance rates and test characteristics for FIT. We aimed to identify the most cost-effective FIT cutoff level for referral to colonoscopy based on data from these trials and allowing for differences in screening ages. We used the validated MIcrosimulation SCreening ANalysis (MISCAN)-Colon microsimulation model to estimate costs and effects of different screening strategies for FIT cutoff levels of 50, 75, 100, 150, and 200 ng/mL hemoglobin. For each cutoff level, screening strategies were assessed with various age ranges and screening intervals. We assumed sufficient colonoscopy capacity for all strategies. At all cost levels, FIT screening was most effective with the 50 ng/mL cutoff level. The incremental cost-effectiveness ratio of biennial screening between ages 55 and 75 years using FIT at 50 ng/mL, for example, was 3900 euro per life year gained. Annual screening had an incremental cost-effectiveness ratio of 14,900 euro per life year gained, in combination with a wider age range (between ages 45 and 80 years). In the sensitivity analysis, 50 ng/mL remained the preferred cutoff level. FIT screening is more cost-effective at a cutoff level of 50 ng/mL than at higher cutoff levels. This supports the recommendation to use FIT at a cutoff level of 50 ng/mL, which is considerably lower than the values used in current practice. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.
Singh, Suruchi; Agrawal, Madhoolika; Agrawal, S B
2013-07-01
The metabolic reasons associated with differential sensitivity of C3 and C4 plant species to enhanced UV-B under varying soil nutrient levels are not well understood. In the present study, spinach (Spinacia oleracea L. var All Green), a C3 and amaranthus (Amaranthus tricolor L. var Pusa Badi Chaulai), a C4 plant were subjected to enhanced UV-B (280-315 nm; 7.2 kJ m(-2) day(-1)) over ambient under varying soil nutrient levels. The nutrient amendments were recommended Nitrogen (N), Phosphorus (P), Potassium (K), 1.5× recommended NPK, 1.5× recommended N and 1.5× recommended K. Enhanced UV-B negatively affected both the species at all nutrient levels, but the reductions varied with nutrient concentration and combinations. Reductions in photosynthetic rate, stomatal conductance and chlorophyll content were significantly more in spinach compared with amaranthus. The reduction in photosynthetic rate was maximum at 1.5× recommended K and minimum in 1.5× NPK amended plants. The oxidative damage to membranes measured in terms of malondialdehyde content was significantly higher in spinach compared with amaranthus. Enhanced UV-B reduced SOD activity in both the plants except in amaranthus at 1.5× recommended K. POX activity increased under enhanced UV-B at all nutrient levels in amaranthus, but only at 1.5× K in spinach. Amaranthus had significantly higher UV-B-absorbing compounds than spinach even under UV-B stress. Lowest reductions in yield and total biomass under enhanced UV-B compared with ambient were observed in amaranthus grown at 1.5× recommended NPK. Enhanced UV-B did not significantly change the nitrogen use efficiency in amaranthus at all NPK levels, but reduced in spinach except at 1.5× K. These findings suggest that the differential sensitivity of the test species under enhanced UV-B at varying nutrient levels is due to varying antioxidative and UV-B screening capacity, and their ability to utilize nutrients. Amaranthus tolerated enhanced UV-B stress more than spinach at all nutrient levels and 1.5× recommended NPK lowered the sensitivity maximally to enhanced UV-B with respect to photosynthesis, biomass and yield. PCA score has also confirmed the lower sensitivity of amaranthus compared with spinach with respect to the measured physiological and biochemical parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suomela, K.D.; Highsmith, R.L.; Rapuano, K.F.
1994-11-15
An Expanded Site Inspection (ESI) was conducted at the Anniston Army Depot (ANAD) Ammunition Storage Area (ASA). The objective of this ESI was to gather the information and data necessary to determine whether there is sufficient evidence of any release of contamination that would require additional investigation. The ASA contains 1,300 ammunition storage magazines and an ammunition maintenance workshop complex which includes buildings for maintenance, demilitarization, and inspection of all types of ammunition and their components. Fifteen Solid Waste Management Units (SWMUs) were the focus of the ESI, of which 11 were recommend for further investigation. The work included amore » review of historical records, field investigations, laboratory analyses, data interpretation, and report preparation. Contamination from volatile organic compounds and semi volatile organic compounds is not a major problem at the ASA. Arsenic, beryllium, cadmium, chromium, lead, mercury, nickel, silver, vanadium, zinc, explosives, and total petroleum hydrocarbons were detected above control screening values levels in one or more of the media sampled. Nitrate/nitrite and total organic carbon were also detected above control screening values in samples of groundwater, soil, and sediment from a number of SWMUs.« less
Liu, Ruimin; Men, Cong; Wang, Xiujuan; Xu, Fei; Yu, Wenwen
Soil and water conservation in the Three Gorges Reservoir Area of China is important, and soil erosion is a significant issue. In the present study, spatial Markov chains were applied to explore the impacts of the regional context on soil erosion in the Xiangxi River watershed, and Thematic Mapper remote sensing data from 1999 and 2007 were employed. The results indicated that the observed changes in soil erosion were closely related to the soil erosion levels of the surrounding areas. When neighboring regions were not considered, the probability that moderate erosion transformed into slight and severe erosion was 0.8330 and 0.0049, respectively. However, when neighboring regions that displayed intensive erosion were considered, the probabilities were 0.2454 and 0.7513, respectively. Moreover, the different levels of soil erosion in neighboring regions played different roles in soil erosion. If the erosion levels in the neighboring region were lower, the probability of a high erosion class transferring to a lower level was relatively high. In contrast, if erosion levels in the neighboring region were higher, the probability was lower. The results of the present study provide important information for the planning and implementation of soil conservation measures in the study area.
Papadopoulos, A; Prochaska, C; Papadopoulos, F; Gantidis, N; Metaxa, E
2007-10-01
The objective of this study was to determine the levels of major phytotoxic metals--including cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn)--in agricultural soils of Western Macedonia, Greece. We also wanted to determine the possible relationships among elements and between soil properties and elemental concentrations. Surface soil samples, n = 570, were collected and analyzed. The results of the elemental analysis showed that the mean metal concentrations were consistent with reported typical concentrations found in Greek agricultural soils in the cases of Zn and Cu. Cd exhibited lower and Ni higher mean concentrations than the typical levels reported in the literature. Metal concentrations in the majority of the examined samples (>69%) were found to be higher than the respective critical plant-deficiency levels. However, only 0.4% and 0.2% of the analyzed soil samples, respectively, exhibited Cd and Ni concentrations higher than the levels that cause plant toxicity, as referenced by other investigators. These results suggest that the soils studied can be considered as unpolluted with respect to the examined food-chain metal contaminants. However, the levels of the metal concentrations in some of the soil samples, and the low correlation of the metals with soil properties, suggest an anthropogenic rather that lithogenic origin.
Potential use of edible crops in the phytoremediation of endosulfan residues in soil.
Mitton, Francesca M; Gonzalez, Mariana; Monserrat, José M; Miglioranza, Karina S B
2016-04-01
Endosulfan is a persistent and toxic organochlorine pesticide of banned or restricted use in several countries. It has been found in soil, water, and air and is bioaccumulated and magnified in ecosystems. Phytoremediation is a technology that promises effective and inexpensive cleanup of contaminated hazardous sites. The potential use of tomato, sunflower, soybean and alfalfa species to remove endosulfan from soil was investigated. All species were seeded and grown in endosulfan-spiked soils (8000 ng g(-1) dry weight) for 15 and 60 days. The phytoremediation potential was evaluated by studying the endosulfan levels and distribution in the soil-plant system, including the evaluation of soil dehydrogenase activity and toxic effects on plants. Plant endosulfan uptake leads to lower insecticide levels in the rhizosphere with regards to bulk soil or near root soil at 15 days of growth. Furthermore, plant growth-induced physical-chemical changes in soil were evidenced by differences in soil dehydrogenase activity and endosulfan metabolism. Sunflower showed differences in the uptake and distribution of endosulfan with regard to the other species, with a distribution pesticide pattern of aerial tissues > roots at 15 days of growth. Moreover, at 60 days, sunflower presented the highest pesticide levels in roots and leaves along with the highest phytoextraction capacity. Lipid peroxidation levels correlated positively with endosulfan accumulation, reflecting the negative effect of this insecticide on plant tissues. Considering biomass production and accumulation potential, in conjunction with the reduction of soil pesticide levels, sunflower plants seem to be the best phytoremediation candidate for endosulfan residues in soils. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lin, Jun-jie; Zhang, Shuai; Liu, Dan; Zhou, Bin; Xiao, Xiao-jun; Ma, Hui-yan; Yu, Zhi-guo
2016-02-15
To reveal the effect of seasonal temperature increasing on nitrogen mineralization in soil of the water level fluctuating soil zone of three gorge reservoir areas in the Yangtze river tributary during the dry period, surface soils were collected from the water level fluctuating zone of Pengxi river crossing two hydrological sections, i.e., upstream and downstream and three water level altitudes, 155 m (low), 165 m (middle) and 175 m (high). We incubated the soil at 25 degrees C and 35 degrees C to determine the transformation rates of nitrogen in soil of Pengxi river basin during the dry period. The result showed that TN and NO3- -N contents in the soil of upstream section and higher (175 m) altitude of water level were higher than those in downstream and low (165 m) altitude of water level, whereas the pattern for NH4+ -N was different, with higher NH4+ -N contents in downstream and low water level. The inorganic nitrogen was dominated by NO3- -N, which accounted for up to 57.4%-84.7% of inorganic nitrogen. Generally, soil ammoniation, nitration and net N mineralization increased with the rising water level altitude and stream sections (P < 0.05). In summary, nitration and net N mineralization significantly increased with increasing temperature, (P < 0.05), while ammoniation showed no difference (P > 0.05).
Xiao, Rong; Bai, Junhong; Wang, Junjing; Lu, Qiongqiong; Zhao, Qingqing; Cui, Baoshan; Liu, Xinhui
2014-09-01
The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in the soils from industrial, wharf, cropland, milldam and natural wetland sites to characterize their distributions, toxic levels and possible sources in the Pearl River Estuary and identify their relationships with soil organic matter (SOM) and water-stable aggregates (WSAs). Our results indicate that the average concentration of total PAHs in this region reached a moderate pollution level, which was higher than that in other larger estuaries in Asia. The average level of total PAHs in industrial soils was 1.2, 1.5, 1.6 and 2.3 times higher than those in soils from wharf, cropland, milldam and natural wetland sites, respectively. Greater accumulation of PAHs occurred in the middle and/or bottom soil layers where 3-ring PAHs were dominant. Industrial soils also exhibited the highest toxic levels with the highest toxic equivalent concentrations of PAHs, followed by wharf and milldam soils, and the cropland and wetland soils had the lowest toxicity. The diagnostic ratios suggested that PAHs primarily originated from biomass and coal combustion at industrial and milldam sites, and petroleum combustion was determined to be the primary source of PAHs at the wharf, cropland and wetland sites. Both 3-ring and 4-ring PAHs in the milldam and wharf soils were significantly positively correlated with the SOM, whereas the 4,5,6-ring PAHs and total PAHs in industrial soils and the 2-ring PAHs in cropland soils were significantly negatively correlated with the SOM. In addition, large WSAs also exhibited a significant positive correlation with PAHs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effects of human trampling on populations of soil fauna in the McMurdo Dry Valleys, Antarctica.
Ayres, Edward; Nkem, Johnson N; Wall, Diana H; Adams, Byron J; Barrett, J E; Broos, Emma J; Parsons, Andrew N; Powers, Laura E; Simmons, Breana L; Virginia, Ross A
2008-12-01
Antarctic ecosystems are often considered nearly pristine because levels of anthropogenic disturbance are extremely low there. Nevertheless, over recent decades there has been a rapid increase in the number of people, researchers and tourists, visiting Antarctica. We evaluated, over 10 years, the direct impact of foot traffic on the abundance of soil animals and soil properties in Taylor Valley within the McMurdo Dry Valleys region of Antarctica. We compared soils from minimally disturbed areas with soils from nearby paths that received intermediate and high levels of human foot traffic (i.e., up to approximately 80 passes per year). The nematodes Scottnema lindsayae and Eudorylaimus sp. were the most commonly found animal species, whereas rotifers and tardigrades were found only occasionally. On the highly trampled footpaths, abundance of S. lindsayae and Eudorylaimus sp. was up to 52 and 76% lower, respectively, than in untrampled areas. Moreover, reduction in S. lindsayae abundance was more pronounced after 10 years than 2 years and in the surface soil than in the deeper soil, presumably because of the longer period of disturbance and the greater level of physical disturbance experienced by the surface soil. The ratio of living to dead Eudorylaimus sp. also declined with increased trampling intensity, which is indicative of increased mortality or reduced fecundity. At one site there was evidence that high levels of trampling reduced soil CO(2) fluxes, which is related to total biological activity in the soil. Our results show that even low levels of human traffic can significantly affect soil biota in this ecosystem and may alter ecosystem processes, such as carbon cycling. Consequently, management and conservation plans for Antarctic soils should consider the high sensitivity of soil fauna to physical disturbance as human presence in this ecosystem increases.
Pochron, Sharon T; Fiorenza, Andrew; Sperl, Cassandra; Ledda, Brianne; Lawrence Patterson, Charles; Tucker, Clara C; Tucker, Wade; Ho, Yuwan Lisa; Panico, Nicholas
2017-04-01
Municipalities have been replacing grass fields with artificial turf, which uses crumb rubber infill made from recycled tires. Crumb rubber contains hydrocarbons, organic compounds, and heavy metals. Water runoff from crumb rubber fields contains heavy metals. These components can damage the environment. We contaminated topsoil with new crumb rubber and measured its impact on earthworms and soil microbes. Specifically, we compared soil microbe activity and earthworm health, survivorship, and longevity in heat and light stress under two soil regimes: clean topsoil and clean topsoil contaminated with crumb rubber. We then characterized levels of metals, nutrients, and micronutrients of both soil treatments and compared those to published New York soil background levels and to levels set by the New York State Department of Environmental Conservation (DEC) as remediation goals. We found that: 1) contaminated soil did not inhibit microbial respiration rates, 2) earthworm survivorship was not impacted by exposure to contaminated soil, 3) earthworms' ability to cope with heat and light stress remained unchanged after living in contaminated soil, but 4) earthworms living in contaminated soil gained 14% less body weight than did earthworms living in uncontaminated soil. We also found that, with the exception of zinc, heavy metals in our contaminated soil did not exceed the background levels found throughout New York State or the remediation targets set by the DEC. Published by Elsevier Ltd.
Toxicity evaluation of natural samples from the vicinity of rice fields using two trophic levels.
Marques, Catarina R; Pereira, Ruth; Gonçalves, Fernando
2011-09-01
An ecotoxicological screening of environmental samples collected in the vicinity of rice fields followed a combination of physical and chemical measurements and chronic bioassays with two freshwater trophic levels (microalgae: Pseudokirchneriella subcapitata and Chlorella vulgaris; daphnids: Daphnia longispina and Daphnia magna). As so, water and sediment/soil elutriate samples were obtained from three sites: (1) in a canal reach crossing a protected wetland upstream, (2) in a canal reach surrounded by rice fields and (3) in a rice paddy. The sampling was performed before and during the rice culture. During the rice cropping, the whole system quality decreased comparatively to the situation before that period (e.g. nutrient overload, the presence of pesticides in elutriates from sites L2 and L3). This was reinforced by a significant inhibition of both microalgae growth, especially under elutriates. Contrary, the life-history traits of daphnids were significantly stimulated with increasing concentrations of water and elutriates, for both sampling periods.
The Consortium for Site Characterization Technology (CSCT) has established a formal program to accelerate acceptance and application of innovative monitoring and site characterization technologies that improve the way the nation manages its environmental problems. In 1995 the CS...
PERFORMANCE OF A NEW PASSIVE DIFFUSION SAMPLER FOR SOIL GAS AND GROUND WATER SAMPLING
Conventional practice to estimate intrusion of fuel vapors from ground water to buildings measures the concentration of BTEX in ground water beneath the building using a conventional well screened across the water table. Conventional practice assumes that the concentration of co...
Polycyclic aromatic hydrocarbons (PAHs) are frequently encountered in the environment and may pose health concerns due to their carcinogenicity. A commercial enzyme-linked immunosorbent assay (ELISA), was evaluated as a screening method for monitoring PAHs at contaminated site...
1983-04-01
Rubber and Felt............. 3610. Biouptake ........... . . . . . . . . . . . . . . . . 37 :;•: 11. Biosorption ...... o...oxidized in the soil before being assimilated by plants (Bohn et al., 1970; Sokolov at al., 1976). 11. Biosorption Using the correA-’iion equation
INNOVATIVE SCREENING TECHNOLOGIES FOR DIOXINS IN SOIL
Dioxins are recognized as one of the most pervasive and toxic class of chemicals in the environment. They have been the focus of various human exposure studies and have been found at numerous Superfund and other hazardous waste sites. The cost of dioxin analysis represents a s...
Phylogenetic study of the species within the family Streptomycetaceae
USDA-ARS?s Scientific Manuscript database
Species of the genus Streptomyces, which constitute the vast majority of taxa within the family Streptomycetaceae, are a predominant component of the microbial population in soils throughout the world and have been the subject of major isolation and screening efforts over the years because they are ...
Biosolids affect soil barium in a dryland wheat agroecosystem.
Ippolito, J A; Barbarick, K A
2006-01-01
In December 2003, the USEPA released an amended list of 15 "candidate pollutants for exposure and hazard screening" with regard to biosolids land application, including Ba. Therefore, we decided to monitor soil Ba concentrations from a dryland wheat (Triticum aestivum L.)-fallow agroecosystem experiment. This experiment received 10 biennial biosolids applications (1982-2003) at rates from 0 to 26.8 dry Mg ha(-1) per application year. The study was conducted on a Platner loam (Aridic Paleustoll), approximately 30 km east of Brighton, CO. Total soil Ba, as measured by 4 M HNO(3), increased with increasing biosolids application rate. In the soil-extraction data from 1988 to 2003, however, we observed significant (P < 0.10) linear or exponential declines in ammonium bicarbonate-diethylenetriaminepentaacetic acid (AB-DTPA) extractable Ba concentrations as a function of increasing biosolids application rates. This was observed in 6 of 7 and 3 of 7 yr for the 0- to 20- and 20- to 60-cm soil depths, respectively. Results suggest that while total soil Ba increased as a result of biosolids application with time, the mineral form of Ba was present in forms not extractable with AB-DTPA. Scanning electron microscopy using energy dispersive spectroscopy verified soil Ba-S compounds in the soil surface, probably BaSO(4). Wet chemistry sequential extraction suggested BaCO(3) precipitation was increasing in the soil subsurface. Our research showed that biosolids application may increase total soil Ba, but soil Ba precipitates are insoluble and should not be an environmental concern in similar soils under similar climatic and management conditions.
Heavy metals and hydrocarbons contents in soils of urban areas of Yamal autonomous region (Russia)
NASA Astrophysics Data System (ADS)
Alekseev, Ivan; Abakumov, Evgeny; Shamilishvili, George
2016-04-01
This investigation is devoted to evaluation of heavy metals and hydrocarbons contents in soils of different functional localities within the Yamalo-Nenets autonomous region (YaNAR, North-Western Siberia, Russia). Geo-accumulation indices Igeo (Müller 1988) were calculated in order to assess soil contamination levels with heavy metals (Cu, Pb, Cd, Zn, Ni, As, Hg) in the studied settlements: Harsaim, Aksarka, Labytnangy, Harp and Salekhard. The degree of soil pollution was assessed according to seven contamination classes (Förstner et al. 1990) in order of increasing numerical value of the index. Cd's regional soil background concentrations of the Yamal peninsula (Moskovchenko 2010), Hg's Earth crust clarke (Greenwood & Earnshaw 2008) and concentrations of the rest trace elements in natural sandy soil from the Beliy island, YaNAR (Tomashunas & Abakumov, 2014) were used in calculations. In general terms, obtained Igeo values in all samples were under or slightly above the 0 level, indicating low to moderate pollution of the studied soils. However, considerable Igeo values of Zn, Pb and Ni were revealed in several samples, suggesting different soil pollution levels, namely: Zn Igeo in Harsaim soil sample of 2.22 - moderate polluted to highly polluted soil; Pb Igeo in Aksarka soil sample of 4.04 - highly polluted to extremely polluted soil; Ni Igeo in Harp soil sample of 4.34 - highly polluted to extremely polluted soil. Soil contamination level was additionally evaluated, comparing with the maximal permissible concentrations (MPCs) of the trace elements in soil (SANPIN 4266-87), established by the national legislation. Almost all samples exceeded the MPC for As in soils (2 mg•kg-1). Concentrations of Ni in several soil samples taken in Harp were 19 times higher than recommended level (20 mg•kg-1). Moderate excess of Zn, Pb and Cu MPCs was also noted. Data obtained will be used in further environmental researches and environmental management purposes in this key oil and gas exploration region. This study was supported by Russian president's grant for Young Doctors of Science № MD 3615-2015-4.
Assessment of possibilities and conditions of irrigation in Hungary by digital soil map products
NASA Astrophysics Data System (ADS)
Laborczi, Annamária; Bakacsi, Zsófia; Takács, Katalin; Szatmári, Gábor; Szabó, József; Pásztor, László
2016-04-01
Sustaining proper soil moisture is essentially important in agricultural management. However, irrigation can be really worth only, if we lay sufficient emphasis on soil conservation. Nationwide planning of irrigation can be taken place, if we have spatially exhaustive maps and recommendations for the different areas. Soil moisture in the pores originate from 'above' (precipitation), or from 'beneath' (from groundwater by capillary lift). The level of groundwater depends on topography, climatic conditions and water regime of the nearby river. The thickness of capillary zone is basicly related to the physical and water management properties of the soil. Accordingly the capillary rise of sandy soils - with very high infiltration rate and very poor water retaining capacity - are far smaller than in the case of clay soils - with very poor infiltration rate and high water retaining capacity. Applying irrigation water can be considered as a reinforcement from 'above', and it affects the salinity and sodicity as well as the soil structure, nutrient supply and soil formation. We defined the possibilities of irrigation according to the average salt content of the soil profile. The nationwide mapping of soil salinity was based on legacy soil profile data, and it was carried out by regression kriging. This method allows that environmental factors with exhaustive spatial extension, such as climatic-, vegetation-, topographic-, soil- and geologic layers can be taken into consideration to the spatial extension of the reference data. According to soil salinity content categories, the areas were delineated as 1. to be irrigated, 2. to be irrigated conditionally, 3. not to be irrigated. The conditions of irrigation was determined by the comparison of the 'actual' and the 'critical' depth of the water table. Since, if the water rises above the critical level, undesirable processes, such as salinization and alkalinization can be developed. The critical depth of the water table was calculated according to the literature, and based on average soil content of the soil profile, the water regime category of soil, salt content of the groundwater, and soil pH. The water regime category map originated from legacy polygon-based map of physical soil properties. The soil content, and the actual level of groundwater as well as the soil pH map - similarly to the soil salinity map - was compiled by regression kriging. The conditions are classified into the following three categories: 1. level of groundwater have to be sinked, 2. rising of groundwater level have to be hindered, 3. level of groundwater have to be regularly controlled. The newly compiled maps can help decision makers to improve land use management, taking soil conservation into consideration. Our work was supported by the Hungarian National Scientific Research Foundation (OTKA, Grant No. K105167) and the Research Institute of Agricultural Economics.
Screening of Biodegradable Function of Indigenous Ligno-degrading Mushroom Using Dyes
Cho, Soo-Muk; Seok, Soon-Ja; Kong, Won-Sik; Kim, Gyu-Hyun; Sung, Jae-Mo
2009-01-01
The process of biodegradation in lingo-cellulosic materials is critically relevant to biospheric carbon. The study of this natural process has largely involved laboratory investigations, focused primarily on the biodegradation and recycling of agricultural by-products, generally using basidiomycetes species. In order to collect super white rot fungi and evaluate its ability to degrade lingo-cellulosic material, 35 fungal strains, collected from forests, humus soil, livestock manure, and dead trees, were screened for enzyme activities and their potential to decolorize the commercially used Poly-R 478 dye. In the laccase enzymatic analysis chemical test, 33 white rot fungi and 2 brown rot fungi were identified. The degradation ability of polycyclic aromatic hydrocarbons (PAHs) according to the utilized environmental conditions was higher in the mushrooms grown in dead trees and fallen leaves than in the mushrooms grown in humus soil and livestock manure. Using Poly-R 478 dye to assess the PAH-degradation activity of the identified strains, four strains, including Agrocybe pediades, were selected. The activities of laccase, MnP, and Lip of the four strains with PAH-degrading ability were highest in Pleurotus incarnates. 87 fungal strains, collected from forests, humus soil, livestock manure, and dead trees, were screened for enzyme activities and their potential to decolorize the commercially used Poly-R 478 dye on solid media. Using Poly-R 478 dye to assess the PAHdegrading activity of the identified strains, it was determined that MKACC 51632 and 52492 strains evidenced superior activity in static and shaken liquid cultures. Subsequent screening on plates containing the polymeric dye poly R-478, the decolorization of which is correlated with lignin degradation, resulted in the selection of a strain of Coriolus versicolor, MKACC52492, for further study, primarily due to its rapid growth rate and profound ability to decolorize poly R-478 on solid media. Considering our findings using Poly-R 478 dye to evaluate the PAH-degrading activity of the identified strains, Coriolus versicolor, MKACC 52492 was selected as a favorable strain. Coriolus versicolor, which was collected from Mt. Yeogi in Suwon, was studied for the production of the lignin-modifying enzymes laccase, manganese-dependent peroxidase (MnP), and lignin peroxidase (LiP). PMID:23983508
Cs phytoremediation by Sorghum bicolor cultivated in soil and in hydroponic system.
Wang, Xu; Chen, Can; Wang, Jianlong
2017-04-03
Cs accumulation characteristics by Sorghum bicolor were investigated in hydroponic system (Cs level at 50-1000 μmol/L) and in soil (Cs-spiked concentration was 100 and 400 mg/kg soil). Two varieties of S. bicolor Cowly and Nengsi 2# grown on pot soil during the entire growth period (100 days) did not show significant differences on the height, dry weight (DW), and Cs accumulation. S. bicolor showed the potential phytoextraction ability for Cs-contaminated soil with the bioaccumulation factor (BCF) and the translocation factor (TF) values usually higher than 1 in soil system and in hydroponic system. The aerial parts of S. bicolor contributed to 86-92% of the total removed amounts of Cs from soil. Cs level in solution at 100 μmol/L gave the highest BCF and TF values of S. bicolor. Cs at low level tended to transfer to the aerial parts, whereas Cs at high level decreased the transfer ratio from root to shoot. In soil, the plant grew well when Cs spiked level was 100 mg/kg soil, but was inhibited by Cs at 400 mg/kg soil with Cs content in sorghum reaching 1147 mg/kg (roots), 2473 mg/kg (stems), and 2939 mg/kg (leaves). In hydroponic system, average Cs level in sorghum reached 5270 mg/kg (roots) and 4513 mg/kg (aerial parts), without significant damages to its biomass at 30 days after starting Cs treatment. Cs accumulation in sorghum tissues was positively correlated with the metal concentration in medium.
Merino, Agustín; Fonturbel, María T; Fernández, Cristina; Chávez-Vergara, Bruno; García-Oliva, Felipe; Vega, Jose A
2018-06-15
Simple, rapid and reliable methods of assessing soil burn severity (SBS) are required in order to prioritize post-fire emergency stabilization actions. SBS proxies based on visual identification and changes in soil organic matter (SOM) content and quality can be related to other soil properties in order to determine the extent to which soil is perturbed following fire. This task is addressed in the present study by an approach involving the use of differential scanning calorimetry-thermogravimetric analysis (DSC-TGA) to determine changes in SOM generated in soils subjected to different levels of SBS. Intact topsoil monoliths comprising the organic horizons and the surface mineral soil (alumic-humic umbrisols) were collected from a representative P. pinaster stand in NW Spain. The monoliths were experimentally burned in a combustion wind tunnel to simulate different fire conditions (fuel bed comprising forest pine litter and wood; air flow, 0.6 m s -1 ). Changes in OM properties in the soil organic layer and mineral soils samples (0-2 cm) at the different temperatures and SBS levels were identified. For both duff and mineral soil, the data revealed a temperature-induced increase in aromatic compounds and a concomitant decrease of carbohydrates and alkyl products. However, for a given temperature, the degree of carbonization/aromatization was lower in the mineral soil than in the duff, possibly due to the different composition of the OM and to the different combustion conditions. The low degree of aromatization of the organic matter suggests that this soil component could undergo subsequent biological degradation. SOM content and thermal recalcitrance (measured as T50) discriminated the SBS levels. Use of visual identification of SBS levels in combination with DSC-TGA enables rapid evaluation of the spatial variability of the effects of fire on SOM properties. This information is useful to predict soil degradation process and implement emergency soil stabilization techniques. Copyright © 2018 Elsevier B.V. All rights reserved.
Level of Fluoride in Soil, Grain and Water in Jalgaon District, Maharashtra, India.
Naik, Rahul Gaybarao; Dodamani, Arun Suresh; Vishwakarma, Prashanth; Jadhav, Harish Chaitram; Khairnar, Mahesh Ravindra; Deshmukh, Manjiri Abhay; Wadgave, Umesh
2017-02-01
Fluoride has an influence on both oral as well as systemic health. The major source of fluoride to body is through drinking water as well as through diet. Staple diet mainly depends on local environmental factors, food grains grown locally, its availability etc. Determination of fluoride level in these food grains is important. So, estimation of the amount of fluoride in grains and its relation to the sources of fluoride used for their cultivation viz., soil and water is important. To estimate the relation of fluoride concentration in grains (Jowar) with respect to that of soil and water used for their cultivation. Fifteen samples each of soil, water and grains were collected using standardized method from the same farm fields of randomly selected villages of Jalgaon district. Fluoride ion concentration was determined in laboratory using SPADNS technique. Mean difference in fluoride levels in between the groups were analyzed using ANOVA and Post-Hoc Tukey test. Linear regression method was applied to analyse the association of the fluoride content of grain with water and soil. There was a significant difference in between mean fluoride levels of soil and water (p<0.001) and in between soil and grain (p<0.001); however, difference in between mean fluoride levels of water and grain was found to be non significant (p=0.591). Also fluoride levels in all the three groups showed significant association with each other. Fluoride level of soil, grains and water should be adjusted to an optimum level. Soil has positive correlation with respect to uptake of fluoride by Jowar grains. So, Jowar grains with optimum fluoride content should be made available in the commercial markets so that oral and general health can be benefitted.
Feasibility of Energy Crops Grown on Army Lands
2012-03-01
Figure 11). The soil texture is sandy with a 12-inch A horizon (the top level of soil), and the soil is well drained and acidic. The macronutrient ...strongly acidic. The macronutrient levels are depleted relative to optimum crop production standards, but the organic matter content is relatively good... macronutrient levels are depleted relative to optimum crop production standards, and the organic matter content is low. This site is prime for soil
NASA Astrophysics Data System (ADS)
Dettmann, Ullrich; Bechtold, Michel
2016-04-01
Water level depth is one of the crucial state variables controlling the biogeochemical processes in peatlands. For flat soil surfaces, water level depth dynamics as response to boundary fluxes are primarily controlled by the water retention characteristics of the soil in and above the range of the water level fluctuations. For changing water levels, the difference of the integrals of two soil moisture profiles (ΔAsoil), of a lower and a upper water level, is equal to the amount of water received or released by the soil. Dividing ΔAsoil by the water level change, results into a variable that is known as specific yield (Sy). For water level changes approaching the soil surface, changes in soil water storage are small due to the thin unsaturated zone that remains. Consequentially, Sy values approach zero with an abrupt transition to 1 in case of inundation. However, on contrary, observed water level rises due to precipitation events at various locations showed increasing Sy values for water level changes at shallow depths (Sy = precipitation/water level change; Logsdon et al., 2010). The increase of Sy values can be attributed in large parts to the influence of the microrelief on water level changes in these wet landscapes that are characterized by a mosaic of inundated and non-inundated areas. Consequentially, water level changes are dampened by partial inundation. In this situation, total Sy is composed of a spatially-integrated below ground and above ground contribution. We provide a general one-dimensional expression that correctly represents the effect of a microrelief on the total Sy. The one-dimensional expression can be applied for any soil hydraulic parameterizations and soil surface elevation frequency distributions. We demonstrate that Sy is influenced by the microrelief not only when surface storage directly contributes to Sy by (partial) inundation but also when water levels are lower than the minimum surface elevation. With the derived one-dimensional expression we developed a novel approach for the in situ determination of soil water retention characteristics that is applicable to shallow groundwater systems. Our approach is built on two assumptions: i) for shallow groundwater systems with medium- to high conductive soils the soil moisture profile is always close to hydrostatic equilibrium and ii) over short time periods differences in total water storage due to lateral fluxes are negligible. Given these assumptions, the height of a water level rise due to a precipitation event mainly depends on the soil water retention characteristics, the precipitation amount, the initial water level depth and, if present, the microrelief. We use this dependency to determine water retention characteristics (van Genuchten parameter) by Bayesian inversion. Our results demonstrate that observations of water level rises, caused by precipitation events, contain sufficient information to constrain the water retention characteristics around two dip wells in a Sphagnum bog to plausible ranges. We discuss the possible biases that come along with our approach and point out the research that is needed to quantify their significance.
Geotechnical centrifuge use at University of Cambridge Geotechnical Centre, August-September 1991
NASA Astrophysics Data System (ADS)
Gilbert, Paul A.
1992-01-01
A geotechnical centrifuge applies elevated acceleration to small-scale soil models to simulate body forces and stress levels characteristic of full-size soil structures. Since the constitutive behavior of soil is stress level development, the centrifuge offers considerable advantage in studying soil structures using models. Several experiments were observed and described in relative detail, including experiments in soil dynamics and liquefaction study, an experiment investigation leaning towers on soft foundations, and an experiment investigating migration of hot pollutants through soils.
Highly charged swelling mica reduces free and extractable Cu levels in Cu-contaminated soils.
Stuckey, Jason W; Neaman, Alexander; Ravella, Ramesh; Komarneni, Sridhar; Martínez, Carmen Enid
2008-12-15
Smelting of copper (Cu) results in the atmospheric deposition of Cu onto surrounding soils. Excess concentrations of Cu in soils can be absorbed by soil biota to toxic levels or leached into the groundwater, threatening the entire ecosystem. A means to restrict Cu mobility and uptake by plants is to remove it from the aqueous phase by applying an adsorptive material. A synthetic clay (highly charged swelling mica) was tested for its ability to decrease the levels of free and 0.1 M KNO3-extractable Cu in 15 surface soils from three different Cu mining areas in central Chile. The soils contained excessive total Cu levels (112-2790 mg Cu (kg soil)(-1)), while extractable Cu ranged from 0.3 to 22.9 mg Cu L(-1). The mica was applied to each soil at rates of 0.1%, 1%, and 2% (w/w). A 2% sodium-montmorillonite treatment and the nonamended soil served as controls. The order of treatment efficacy in reducing extractable Cu and free Cu2+ for low pH soils (
Sensitivity Analysis of the Land Surface Model NOAH-MP for Different Model Fluxes
NASA Astrophysics Data System (ADS)
Mai, Juliane; Thober, Stephan; Samaniego, Luis; Branch, Oliver; Wulfmeyer, Volker; Clark, Martyn; Attinger, Sabine; Kumar, Rohini; Cuntz, Matthias
2015-04-01
Land Surface Models (LSMs) use a plenitude of process descriptions to represent the carbon, energy and water cycles. They are highly complex and computationally expensive. Practitioners, however, are often only interested in specific outputs of the model such as latent heat or surface runoff. In model applications like parameter estimation, the most important parameters are then chosen by experience or expert knowledge. Hydrologists interested in surface runoff therefore chose mostly soil parameters while biogeochemists interested in carbon fluxes focus on vegetation parameters. However, this might lead to the omission of parameters that are important, for example, through strong interactions with the parameters chosen. It also happens during model development that some process descriptions contain fixed values, which are supposedly unimportant parameters. However, these hidden parameters remain normally undetected although they might be highly relevant during model calibration. Sensitivity analyses are used to identify informative model parameters for a specific model output. Standard methods for sensitivity analysis such as Sobol indexes require large amounts of model evaluations, specifically in case of many model parameters. We hence propose to first use a recently developed inexpensive sequential screening method based on Elementary Effects that has proven to identify the relevant informative parameters. This reduces the number parameters and therefore model evaluations for subsequent analyses such as sensitivity analysis or model calibration. In this study, we quantify parametric sensitivities of the land surface model NOAH-MP that is a state-of-the-art LSM and used at regional scale as the land surface scheme of the atmospheric Weather Research and Forecasting Model (WRF). NOAH-MP contains multiple process parameterizations yielding a considerable amount of parameters (˜ 100). Sensitivities for the three model outputs (a) surface runoff, (b) soil drainage and (c) latent heat are calculated on twelve Model Parameter Estimation Experiment (MOPEX) catchments ranging in size from 1020 to 4421 km2. This allows investigation of parametric sensitivities for distinct hydro-climatic characteristics, emphasizing different land-surface processes. The sequential screening identifies the most informative parameters of NOAH-MP for different model output variables. The number of parameters is reduced substantially for all of the three model outputs to approximately 25. The subsequent Sobol method quantifies the sensitivities of these informative parameters. The study demonstrates the existence of sensitive, important parameters in almost all parts of the model irrespective of the considered output. Soil parameters, e.g., are informative for all three output variables whereas plant parameters are not only informative for latent heat but also for soil drainage because soil drainage is strongly coupled to transpiration through the soil water balance. These results contrast to the choice of only soil parameters in hydrological studies and only plant parameters in biogeochemical ones. The sequential screening identified several important hidden parameters that carry large sensitivities and have hence to be included during model calibration.
Hogendoom, E A; Huls, R; Dijkman, E; Hoogerbrugge, R
2001-12-14
A screening method has been developed for the determination of acidic pesticides in various types of soils. Methodology is based on the use of microwave assisted solvent extraction (MASE) for fast and efficient extraction of the analytes from the soils and coupled-column reversed-phase liquid chromatography (LC-LC) with UV detection at 228 nm for the instrumental analysis of uncleaned extracts. Four types of soils, including sand, clay and peat, with a range in organic matter content of 0.3-13% and ten acidic pesticides of different chemical families (bentazone, bromoxynil, metsulfuron-methyl, 2,4-D, MCPA, MCPP, 2,4-DP, 2,4,5-T, 2,4-DB and MCPB) were selected as matrices and analytes, respectively. The method developed included the selection of suitable MASE and LC-LC conditions. The latter consisted of the selection of a 5-microm GFF-II internal surface reversed-phase (ISRP, Pinkerton) analytical column (50 x 4.6 mm, I.D.) as the first column in the RAM-C18 configuration in combination with an optimised linear gradient elution including on-line cleanup of sample extracts and reconditioning of the columns. The method was validated with the analysis of freshly spiked samples and samples with aged residues (120 days). The four types of soils were spiked with the ten acidic pesticides at levels between 20 and 200 microg/kg. Weighted regression of the recovery data showed for most analyte-matrix combinations, including freshly spiked samples and aged residues, that the method provides overall recoveries between 60 and 90% with relative standard deviations of the intra-laboratory reproducibility's between 5 and 25%; LODs were obtained between 5 and 50 microg/kg. Evaluation of the data set with principal component analysis revealed that the parameters (i) increase of organic matter content of the soil samples and (ii) aged residues negatively effect the recovery of the analytes.
Characteristics and engineering properties of residual soil of volcanic deposits
NASA Astrophysics Data System (ADS)
Wibawa, Y. S.; Sugiarti, K.; Soebowo, E.
2018-02-01
Residual soil knowledge of volcanic-sedimentary rock products provides important information on the soil bearing capacity and its engineering properties. The residual soil is the result of weathering commonly found in unsaturated conditions, having varied geotechnical characteristics at each level of weathering. This paper summarizes the results of the research from the basic engineering properties of residual soil of volcanic-sedimentary rocks from several different locations. The main engineering properties of residual soil such as specific gravity, porosity, grain size, clay content (X-Ray test) and soil shear strength are performed on volcanic rock deposits. The results show that the variation of the index and engineering properties and the microstructure properties of residual soil have the correlation between the depths of weathering levels. Pore volume and pore size distribution on weathered rock profiles can be used as an indication of weathering levels in the tropics.
NASA Technical Reports Server (NTRS)
Bok, S. H.; Casida, L. E., Jr.
1977-01-01
A screening procedure was used to isolate from soil a Penicillium sp., two bacterial isolates, and a Streptomyces sp. that produced a previously unknown microbial growth factor. This factor was an absolute growth requirement for three soil bacteria. The Penicillium sp. and one of the bacteria requiring the factor, an Arthrobacter sp., were selected for more extensive study concerning the production and characteristics of the growth factor. It did not seem to be related to the siderochromes. It was not present in soil extract, rumen fluid, or any other medium component tested. It appears to be a glycoprotein of high molecular weight and has high specific activity. When added to the diets for a meadow-vole mammalian test system, it caused an increased consumption of diet without a concurrent increase in rate of weight gain.
Mark D. Coleman; J.G. Isebrands; David N. Tolsted; Virginia R. Tolbert
2004-01-01
We collected soil samples from 27 study sites across North Central United States to compare the soil carbon of short rotation poplar plantations to adjacent agricultural crops and woodlots. Soil organic carbon (SOC) ranged from 20 to more than 160 Mg/ha across the sampled sites. Lowest SOC levels were found in uplands and highest levels in riparian soils. We attributed...
Derivation of Soil Ecological Criteria for Copper in Chinese Soils.
Wang, Xiaoqing; Wei, Dongpu; Ma, Yibing; McLaughlin, Mike J
2015-01-01
Considerable information on copper (Cu) ecotoxicity as affected by biological species and abiotic properties of soils has been collected from the last decade in the present study. The information on bioavailability/ecotoxicity, species sensitivity and differences in laboratory and field ecotoxicity of Cu in different soils was collated and integrated to derive soil ecological criteria for Cu in Chinese soils, which were expressed as predicted no effect concentrations (PNEC). First, all ecotoxicity data of Cu from bioassays based on Chinese soils were collected and screened with given criteria to compile a database. Second, the compiled data were corrected with leaching and aging factors to minimize the differences between laboratory and field conditions. Before Cu ecotoxicity data were entered into a species sensitivity distribution (SSD), they were normalized with Cu ecotoxicity predictive models to modify the effects of soil properties on Cu ecotoxicity. The PNEC value was set equal to the hazardous concentration for x% of the species (HCx), which could be calculated from the SSD curves, without an additional assessment factor. Finally, predictive models for HCx based on soil properties were developed. The soil properties had a significant effect on the magnitude of HCx, with HC5 varying from 13.1 mg/kg in acidic soils to 51.9 mg/kg in alkaline non-calcareous soils. The two-factor predictive models based on soil pH and cation exchange capacity could predict HCx with determination coefficients (R2) of 0.82-0.91. The three-factor predictive models--that took into account the effect of soil organic carbon--were more accurate than two-factor models, with R2 of 0.85-0.99. The predictive models obtained here could be used to calculate soil-specific criteria. All results obtained here could provide a scientific basis for revision of current Chinese soil environmental quality standards, and the approach adopted in this study could be used as a pragmatic framework for developing soil ecological criteria for other trace elements in soils.
Biological control of fusarium seedling blight disease of wheat and barley.
Khan, Mojibur R; Fischer, Sven; Egan, Damian; Doohan, Fiona M
2006-04-01
ABSTRACT Fusarium fungi, including F. culmorum, cause seedling blight, foot rot, and head blight diseases of cereals, resulting in yield loss. In a screen for potential disease control organisms and agents, Pseudomonas fluorescens strains MKB 100 and MKB 249, P. frederiksbergensis strain 202, Pseudomonas sp. strain MKB 158, and chitosan all significantly reduced the extent of both wheat coleoptile growth retardation and wheat and barley seedling blight caused by F. culmorum (by 53 to 91%). Trichodiene synthase is a Fusarium enzyme necessary for trichothecene mycotoxin biosynthesis; expression of the gene encoding this enzyme in wheat was 33% lower in stem base tissue coinoculated with Pseudomonas sp. strain MKB 158 and F. culmorum than in wheat treated with bacterial culture medium and F. culmorum. When wheat and barley were grown in soil amended with either chitosan, P. fluorescens strain MKB 249, Pseudomonas sp. strain MKB 158, or culture filtrates of these bacteria, the level of disease symptoms on F. culmorum-inoculated stem base tissue (at 12 days post- F. culmorum inoculation) was >/=31% less than the level on F. culmorum-inoculated plants grown in culture medium-amended soil. It seems likely that at least part of the biocontrol activity of these bacteria and chitosan may be due to the induction of systemic disease resistance in host plants. Also, in coinoculation studies, Pseudomonas sp. strain MKB 158 induced the expression of a wheat class III plant peroxidase gene (a pathogenesis-related gene).
Chirima, George Johannes
2016-01-01
Restoration of polycyclic aromatic hydrocarbon- (PAH-) polluted sites is presently a major challenge in agroforestry. Consequently, microorganisms with PAH-degradation ability and soil fertility improvement attributes are sought after in order to achieve sustainable remediation of polluted sites. This study isolated PAH-degrading bacteria from enriched cultures of spent automobile engine-oil polluted soil. Isolates' partial 16S rRNA genes were sequenced and taxonomically classified. Isolates were further screened for their soil fertility attributes such as phosphate solubilization, atmospheric nitrogen fixation, and indoleacetic acid (IAA) production. A total of 44 isolates were obtained and belong to the genera Acinetobacter, Arthrobacter, Bacillus, Flavobacterium, Microbacterium, Ochrobactrum, Pseudomonas, Pseudoxanthomonas, Rhodococcus, and Stenotrophomonas. Data analysed by principal component analysis showed the Bacillus and Ochrobactrum isolates displayed outstanding IAA production. Generalized linear modelling statistical approaches were applied to evaluate the contribution of the four most represented genera (Pseudomonas, Acinetobacter, Arthrobacter, and Rhodococcus) to soil fertility. The Pseudomonas isolates were the most promising in all three soil fertility enhancement traits evaluated and all isolates showed potential for one or more of the attributes evaluated. These findings demonstrate a clear potential of the isolates to participate in restorative bioremediation of polluted soil, which will enhance sustainable agricultural production and environmental protection. PMID:27774456
The use of red mud as an immobiliser for metal/metalloid-contaminated soil: A review.
Hua, Yumei; Heal, Kate V; Friesl-Hanl, Wolfgang
2017-03-05
This review focuses on the applicability of red mud as an amendment for metal/metalloid-contaminated soil. The varying properties of red muds from different sources are presented as they influence the potentially toxic element (PTE) concentration in amended soil. Experiments conducted worldwide from the laboratory to the field scale are screened and the influencing parameters and processes in soils are highlighted. Overall red mud amendment is likely to contribute to lowering the PTE availability in contaminated soil. This is attributed to the high pH, Fe and Al oxide/oxyhydroxide content of red mud, especially hematite, boehmite, gibbsite and cancrinite phases involved in immobilising metals/metalloids. In most cases red mud amendment resulted in a lowering of metal concentrations in plants. Bacterial activity was intensified in red mud-amended contaminated soil, suggesting the toxicity from PTEs was reduced by red mud, as well as indirect effects due to changes in soil properties. Besides positive effects of red mud amendment, negative effects may also appear (e.g. increased mobility of As, Cu) which require site-specific risk assessments. Red mud remediation of metal/metalloid contaminated sites has the potential benefit of reducing red mud storage and associated problems. Copyright © 2016 Elsevier B.V. All rights reserved.
Distribution, relationship, and risk assessment of toxic heavy metals in walnuts and growth soil.
Han, Yongxiang; Ni, Zhanglin; Li, Shiliang; Qu, Minghua; Tang, Fubin; Mo, Runhong; Ye, Caifen; Liu, Yihua
2018-04-14
Walnut is one of the most popular nuts worldwide and contains various mineral nutrients. Little is known, however, about the relationship between toxic heavy metals in walnuts and growth soil. In this study, we investigated the distribution, relationship, and risk assessment of five toxic heavy metals-lead (Pb), arsenic (As), chromium (Cr), cadmium (Cd), and mercury (Hg)-in walnuts and growth soil in the main production areas of China. The results showed that the main heavy metal pollution in walnut and soil was Pb and Cd. Regionally, positive relationships existed between heavy metals and the pH and organic matter of soil. In addition, we observed a notable uptake effect between walnut and growth soil. In this study, we found a significant correlation (r = 0.786, P < 0.05) between the bioconcentration factors and the longitude of the sampling areas. The risks (total hazard quotients) of five heavy metals toward children and adults by dietary walnut consumption were 46.8 and 56.2%, respectively. The ability to identify toxic heavy metal pollution in walnuts and growth soil could be helpful to screen suitable planting sites to prevent and control heavy metal pollution and improve the quality and safety of walnut.
Ecotoxicity monitoring and bioindicator screening of oil-contaminated soil during bioremediation.
Shen, Weihang; Zhu, Nengwu; Cui, Jiaying; Wang, Huajin; Dang, Zhi; Wu, Pingxiao; Luo, Yidan; Shi, Chaohong
2016-02-01
A series of toxicity bioassays was conducted to monitor the ecotoxicity of soils in the different phases of bioremediation. Artificially oil-contaminated soil was inoculated with a petroleum hydrocarbon-degrading bacterial consortium containing Burkholderia cepacia GS3C, Sphingomonas GY2B and Pandoraea pnomenusa GP3B strains adapted to crude oil. Soil ecotoxicity in different phases of bioremediation was examined by monitoring total petroleum hydrocarbons, soil enzyme activities, phytotoxicity (inhibition of seed germination and plant growth), malonaldehyde content, superoxide dismutase activity and bacterial luminescence. Although the total petroleum hydrocarbon (TPH) concentration in soil was reduced by 64.4%, forty days after bioremediation, the phytotoxicity and Photobacterium phosphoreum ecotoxicity test results indicated an initial increase in ecotoxicity, suggesting the formation of intermediate metabolites characterized by high toxicity and low bioavailability during bioremediation. The ecotoxicity values are a more valid indicator for evaluating the effectiveness of bioremediation techniques compared with only using the total petroleum hydrocarbon concentrations. Among all of the potential indicators that could be used to evaluate the effectiveness of bioremediation techniques, soil enzyme activities, phytotoxicity (inhibition of plant height, shoot weight and root fresh weight), malonaldehyde content, superoxide dismutase activity and luminescence of P. phosphoreum were the most sensitive. Copyright © 2015 Elsevier Inc. All rights reserved.
Effects of Plutonium on Soil Microorganisms
Wildung, Raymond E.; Garland, Thomas R.
1982-01-01
As a first phase in an investigation of the role of the soil microflora in Pu complex formation and solubilization in soil, the effects of Pu concentration, form, and specific activity on microbial types, colony-forming units, and CO2 evolution rate were determined in soils amended with C and N sources to optimize microbial activity. The effects of Pu differed with organism type and incubation time. After 30 days of incubation, aerobic sporeforming and anaerobic bacteria were significantly affected by soil Pu levels as low as 1 μg/g when Pu was added as the hydrolyzable 239Pu(NO3)4 (solubility, <0.1% in soil). Other classes of organisms, except the fungi, were significantly affected at soil Pu levels of 10 μg/g. Fungi were affected only at soil Pu levels of 180 μg/g. Soil CO2 evolution rate and total accumulated CO2 were affected by Pu only at the 180 μg/g level. Because of the possible role of resistant organisms in complex formation, the mechanisms of effects of Pu on the soil fungi were further evaluated. The effect of Pu on soil fungal colony-forming units was a function of Pu solubility in soil and Pu specific activity. When Pu was added in a soluble, complexed form [238Pu2(diethylenetriaminepentaacetate)3], effects occurred at Pu levels of 1 μg/g and persisted for at least 95 days. Toxicity was due primarily to radiation effects rather than to chemical effects, suggesting that, at least in the case of the fungi, formation of Pu complexes would result primarily from ligands associated with normal (in contrast to chemically-induced) biochemical pathways. PMID:16345947
USDA-ARS?s Scientific Manuscript database
The trichothecene mycotoxin deoxynivalenol (DON) is a common contaminant of wheat, barley, and maize. New strategies are needed to reduce or eliminate DON in feed and food products. Microorganisms from plant and soil samples collected in Blacksburg, VA, USA, were screened by incubation in a mineral ...
A trial of herbicide treatments for enrichment plantings of cherrybark oak
James H. Miller; E.C. Burkhardt
1987-01-01
An ongoing screening trial is testing nine herbicide treatments for establishing planted cherrybark oak (Quercus falcata var. Pagodaefolia Ell.) on the loessial bluff forests in weutern Mississippi. The test treatments include tree injection (TordonTM RTU) and two rates of two soil-active pelleted herbicides...
USDA-ARS?s Scientific Manuscript database
Char produced from the gasification of post-seed harvest Kentucky bluegrass residues could be recycled to a cropping system as a soil amendment if chemical characterization determined that the gasification process had not produced or concentrated deleterious chemical or physical factors that might h...